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ABSTRACT
Neural networks are an extremely impressive technology, allow-
ing computers to model the real world at a level of effectiveness
not previously thought possible. However, more complex ones re-
quire massive amounts of computing power and storage, creating
a limit to their potential. Thus, much research is done into find-
ing ways to decrease the computational efficiency and memory
usage of more complex models without losing functionality. One
of these methods is the post-training compression technique ‘sin-
gular value decomposition’, which approximates a weight matrix
with smaller matrices. To avoid the necessity of extensive retrain-
ing, the paper proposes a dynamic implementation of the same
mathematical concept, which starts training with full-size decom-
posed matrices and prunes itself during training. Through batched
pruning and a relaxed orthogonality constraint, the final system
effectively decreases model size during training while increasing
overall accuracy.

The full Tensorflow implementation is available at
https://github.com/WanderStribos/CompleteImplementation.
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1 INTRODUCTION
Neural networks are a remarkable technology, with applications
ranging from computer vision to natural language processing. [7]
However, they can easily grow to bizarre sizes, with larger systems
using millions or sometimes even billions of parameters. This high
level of computational workload and memory creates a limit to their
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efficacy, especially on embedded systems with stronger memory
and computational constraints. [5] Because of this, much research is
done on methods to make models that have similar levels of efficacy
as larger systemswhilst requiring less computational power, such as
pruning connections with minimal effect on the total calculations
from the system [5], quantisation [10], or a multitude of novel
techniques to filter out parts of the input before training the model.
[11] [8]

While there are many of these techniques, the effective com-
pression of neural networks remains a significant open problem;
a quick search of “neural network compression” on DBLP returns
sixteen published scientific articles and four conference papers in
the first four months of 2025 alone. One of these techniques is
truncated singular value decomposition (SVD), [4], a post-training
compression method which has been shown to be effective in neu-
ral networks. [2] However, it often requires significant re-training
as the approximated matrix often performs at a significantly lower
level. [6] Because of this, there have been attempts at implementing
this technique in a dynamic fashion, wherein the rank is decreased
in-training. In Chung et al [2019], a sparsity constraint is applied to
weight matrices initialised in truncated SVD form, which is other-
wise trained normally. [3] In Sharma et al [2025], the SVD structure
was enforced by means of a structural loss function throughout
training. This allowed the system to truncate the weights during
training dynamically by only checking the singular values. How-
ever, the paper contained an odd inconsistency: The compression
loss, the part of the system that pushes the lower ends of the model
to close-to-zero values before pruning, as described, only affects
values that have already been pruned, which would, thus, no longer
be part of the calculation. While it could be interpreted as the model
simply compressing ‘pruned’ values to zero instead of actively re-
moving them, the paper clearly mentions removing the parameters
mid-training. [9]

In this paper, a novel approach is proposed that implements the
pruning in batched form, where both compression and pruning
are applied to multiple ranks simultaneously. To allow the model
to handle the increase in effect from pruning in this manner, the
orthonormality constraint of column vectors is replaced with a
mathematically simpler normalisation constraint. This significantly
increases the model’s flexibility in handling its decreasing size,
considerably reducing the decrease in accuracy that previously
accompanied pruning. Applying this technique to a simple mul-
tilayer perceptron both significantly compressed the model’s size
and increased its accuracy over the control model.

https://github.com/WanderStribos/CompleteImplementation
https://doi.org/XXXXXXX.XXXXXXX
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2 BACKGROUND
2.1 Multilayer perceptron
Multilayer perceptrons are a type of neural network that consists of
one or more fully connected layers, each with an activation function.
The fully connected layer consists of a weight matrix𝑊 ∈ R𝑚×𝑛

and a bias layer 𝑏 ∈ R𝑛 . During the forward pass, it takes an input
vector of size𝑚 and transforms it into an output vector of size 𝑛
through

𝑍 = 𝑋𝑊 + 𝑏. (1)

[2] Afterwards, a continuous activation function such as𝑅𝑒𝐿𝑈 (𝑥) =
𝑚𝑎𝑥 (0, 𝑥) or 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 1

1+𝑒−𝑥 is applied, after which the output
is fed into the input of the new layer. After one or more hidden lay-
ers, they reach the output layer. This is also a fully-connected layer,
which attempts to transform the outputs of the previous layer(s)
into an interpretable output, such as a scalar for a regression task
or a one-hot encoded output for a classification task. [1] They are
one of the first forms of what later became deep neural networks.

2.2 Singular Value Decomposition
Given a matrix𝑊 ∈ R𝑚×𝑛 , a singular value decomposition (SVD)
of 𝑊 are orthonormal matrices 𝑈 ∈ R𝑚×𝑟 , 𝑉 ∈ N𝑛×𝑟 and di-
agonal matrix Σ ∈ R𝑟×𝑟 consisting of positive singular values
𝝈 = {𝝈1,𝝈2, ...,𝝈𝑟 } = {Σ1,1, Σ2,2, .., Σ𝑟,𝑟 , } such that𝑊 = 𝑈 Σ𝑉𝑇 ,
where 𝑟 ≤ 𝑚𝑖𝑛(𝑚,𝑛) is the rank of the matrix. The SVD of a ma-
trix does not have to be unique, but there always exists a unique
decomposition such that 𝝈1 ≥ 𝝈2 ≥ ... ≥ 𝝈𝑟 > 0. Since the later,
smaller singular values have less effect on the recomposition, it is
possible to truncate the matrices into a low-rank approximation
𝑈𝑡 ∈ R𝑚×𝑘 ,𝑉𝑡 ∈ R𝑛×𝑘 , Σ𝑡 ∈ R𝑘×𝑘 , where the new rank 𝑘 ≤ 𝑟

and 𝑈𝑡Σ𝑡𝑉
∗
𝑡 = 𝑊 ≈ 𝑊 . With 𝑘 sufficiently small, one can store

𝑊 as two matrices 𝑈 Σ and 𝑉𝑇 , which consist of 𝑘 (𝑚 + 𝑛) num-
bers, instead of the original𝑚 × 𝑛 numbers. [4] This technique can
be straightforwardly applied to fully-connected layers in a neural
network, transforming the classical formula in Equation 1 into

𝑍 = (𝑋𝑈 Σ)𝑉𝑇 + 𝑏

as described in [2].

3 PROPOSED METHOD
3.1 Loss function
During training, the model uses a simple stochastic gradient descent
to minimise a triple loss function. With 𝐷 being the list of dense
layers where the dynamic technique is applied, it is defined as

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑎𝑝𝑝 +
∑︁
𝑑∈𝐷

𝐿𝑠𝑡𝑟𝑢𝑐𝑡 (𝑑) + 𝐿𝑐𝑜𝑚𝑝 (𝑑), (2)

which is mostly based on the function described in [9]. However,
in this paper, two novel techniques are implemented through a
reimagining of the 𝐿𝑐𝑜𝑚𝑝 and 𝐿𝑠𝑡𝑟𝑢𝑐𝑡 functions. 𝐿𝑎𝑝𝑝 , the applica-
tion loss, is calculated in the same way as it would in a normal
scenario. (In the experiment, categorical cross-entropy is used.)

3.1.1 Compression loss. 𝐿𝑐𝑜𝑚𝑝 paves the way for the dynamic
pruning by pushing the last 𝜃 singular values to zero with hyper-
parameters 𝜇𝑐𝑜𝑚𝑝 and 𝜃 , the compression count:

𝐿𝑐𝑜𝑚𝑝 = 𝜇𝑐𝑜𝑚𝑝 ×
𝑘∑︁

𝑖=𝑘−𝜃
𝝈𝑖 (3)

3.1.2 Original structural loss. The structural loss function ensures
that the SVD structure of the layer remains intact throughout the
training process. Originally, this was implemented in a very similar
way to [9] and is, itself, also divided into subfunctions, with 𝜇𝑜𝑟𝑡
and 𝜇𝑠𝑖𝑛𝑔 being hyperparameters that can be adjusted per layer:

𝐿𝑠𝑡𝑟𝑢𝑐𝑡 = 𝜇𝑜𝑟𝑡𝐿𝑜𝑟𝑡 + 𝜇𝑠𝑖𝑛𝑔 (𝐿𝑛𝑒𝑔𝑠 + 𝐿𝑠𝑜𝑟𝑡 ). (4)
𝐿𝑜𝑟𝑡 is tasked with retaining the orthonormality of the𝑈 and 𝑉

matrices. By ensuring the column vectors are of equal length, the
sizes of the singular values become the primary metric for gauging
the effects that decreasing the rank has on the total calculation. It
is defined as follows, with 𝜙 being an assisting function that takes
the average of all values, squared in a matrix:

𝐿𝑜𝑟𝑡 = 𝜙 (𝑈𝑇
𝑡 𝑈𝑡 − 𝐼𝑘×𝑘 ) + 𝜙 (𝑉𝑇

𝑡 𝑉𝑡 − 𝐼𝑘×𝑘 ). (5)
𝐿𝑛𝑒𝑔𝑠 is tasked with keeping the singular values positive. To

prevent layers with a large rank from dominating the calculation,
it takes the average of all negative singular values. It returns zero if
there are none, which is omitted from the formula for readability:

𝐿𝑛𝑒𝑔𝑠 =
{𝑚𝑎𝑥 (−𝝈𝑖 , 0) |𝑖 ∈ {1..𝑘}}

#non-zero values in the above set
. (6)

𝐿𝑠𝑜𝑟𝑡 is tasked with keeping the singular values sorted from
large to small. It is similar to 𝐿𝑛𝑒𝑔𝑠 , but calculates the average of all
positive differences of values with the one before. Once again, it
returns zero if there is no average to calculate:

𝐿𝑠𝑜𝑟𝑡 =
{𝑚𝑎𝑥 (𝝈𝑖+1 − 𝝈𝑖 , 0) |𝑖 ∈ {1..𝑘 − 1}}
#non-zero values in the above set

(7)

With careful balancing of hyperparameters, 𝐿𝑠𝑡𝑟𝑢𝑐𝑡 pushes the
model to only learn through rotations of the 𝑈 and 𝑉 matrices and
scaling of Σ.

3.1.3 Improved structural loss. The previous method did not yield
the desired results. However, the author noticed a few possible
points of improvement, and a new structural loss function was
developed:

𝐿𝑠𝑡𝑟𝑢𝑐𝑡 = 𝜇𝑛𝑜𝑟𝑚𝐿𝑛𝑜𝑟𝑚 + 𝜇𝑠𝑖𝑛𝑔 (𝐿𝑠𝑜𝑟𝑡 +𝑚𝑎𝑥 (0,−𝜎𝑘 )). (8)

In this formula, 𝐿𝑛𝑒𝑔𝑠 was replaced with a significantly less math-
ematically complex calculation that only kept the final value pos-
itive, as 𝐿𝑠𝑜𝑟𝑡 already ensured the other values were larger and
therefore positive as well. Additionally, 𝐿𝑜𝑟𝑡 was replaced with
𝐿𝑛𝑜𝑟𝑚 , defined as

𝐿𝑛𝑜𝑟𝑚 =𝑚𝑒𝑎𝑛

( ∑︁
𝒗∈𝑈𝑡 ,𝑉𝑡

|1 −
∑︁
𝑥∈𝒗

𝑥2 |
)

(9)

where 𝒗 are the column vectors comprising𝑈 and 𝑉 . Through
this simplified norm calculation, the columns are still pushed to
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remain unit vectors. Meanwhile, the removal of the orthogonal-
ity constraint grants the system the flexibility to compensate for
vectors under compression by rotating the remaining vectors to
decrease their distance from the to-be-pruned vector set.

3.2 Dynamic pruning
Through 𝐿𝑐𝑜𝑚𝑝 , the last 𝜃 values in the singular values 𝝈𝑡 are
pushed to zero. Since they will have less effect on the overall calcu-
lation, they can be pruned without too significant impact. During
training, the system monitors the ratio between the last 𝜃 and
second-to-last 𝜃 values, and decreases the rank 𝑘 by 𝜃 if this ratio
is more than 𝜖 , the pruning threshold hyperparameter. In other
words, if:

𝑘∑︁
𝑖=𝑘−𝜃

𝝈𝑖 < 𝜖

𝑘−𝜃∑︁
𝑗=𝑘−(2×𝜃 )

𝝈 𝑗 . (10)

𝜃 and 𝜖 need to be carefully set: the higher their values, the
faster the system can compress. On the other hand, it also results in
larger parts of the system being pruned at once, causing temporary
drops in accuracy that require the system to readjust. For 𝜃 , a size of
around 1-2% of the starting rank appeared to be optimal; much lower
values would result in the system converging long before enough
compression was reached, requiring artificially high training times
just for compression, while higher values would result in too high
drops in accuracy.

3.3 Recompiling and fine-tuning
With 𝑘 being sufficiently low, saving𝑊 as𝑈𝑡Σ𝑡 and𝑉𝑇

𝑡 can take up
significantly less storage space. However, a non-truncated singular-
value decomposed matrix (or simply, one where 𝑘 remains the
starting value) saved in this manner can take up up to twice the
size of the original matrix. To ensure the parameter count of each
dynamic layer is at worst the size of a non-decomposed layer with
the same total effect on the input, the model recompiles itself near
the end of training. During this recompiling, it checks each layer to
determine whether keeping the weight matrix decomposed saves
storage space. If it doesn’t, it ‘recomposes’ the matrix and saves the
matrix as singular𝑊 .

Afterwards, the system fine-tunes for a few epochs while only
minimising the application loss. This has two reasons:

• As mentioned before, pruning is often paired with a tempo-
rary drop in accuracy. By abstaining from pruning for these
final few epochs, the model is prevented from stopping in
the middle of one of these dips.

• Additionally, during this last bit of fine-tuning, the model
can fully prioritise accuracy without focusing on structural
and compression rules. This results in a final (albeit often
minor) increase in its accuracy.

4 EXPERIMENTAL SETUP
4.1 Overal setup
To allow for enough experimentation to study the effects of various
hyperparameters, a relatively simple setup was used: A three-layer
multilayer perceptron with ReLu activation functions after the
hidden layers and a SoftMax function after the final one, as shown

Figure 1: The model architecture used to test the dynamic
layers. Between each dense layer, the activation function
(top) and vector size (bottom) are specified.

in Figure 1. This model was then trained on the MNIST dataset,
which consists of 28 × 28-pixel images of written digits, the goal
being recognising which digit was written. The original model was
trained for 200 epochs, followed by 10 fine-tuning epochs. However,
the new version converged significantly faster and trained for 150
epochs before the 10 fine-tuning epochs.

The output layer was not included in the pruning, as decreasing
its rank could quickly result in it no longer being able to classify ten
different outputs, logically causing a significant drop in accuracy.

4.2 Original comparison
4.2.1 Control model. To establish a baseline accuracy, the model
was compared with a non-SVD model of the same structure, which
did not attempt the pruning and ran for 150 epochs, followed by 60
epochs with a lower learning rate to allow it to fine-tune.

4.2.2 Traditional SVD. Additionally, the model was compared to
a more traditional SVD setup. In this form, it ran for a mere 150
epochs, after which SVD is applied to each layer’s weights. Then,
with hyperparameter pruning threshold 𝜖 , it finds largest 𝑘 for
which 𝝈𝑘 > 𝜖𝝈1 and truncates everything after 𝑘 . Similar to the
dynamic system, it then recompiles, with its layers either remaining
as-is or being saved as SVD layers (depending on which is more
memory-efficient), and trains for a final 60 epochs, once again with
a lower learning rate. The reasoning behind the fine-tuning taking
up a much larger part of the training is simple. Since the pruning
occurs all at once instead of in smaller increments, it results in a
significantly higher accuracy drop, which it must recover from.

4.3 Comparison improved version.
Since the improved version was trained for fewer epochs, it required
comparisons that also had these constraints. In these versions, the
first training consisted of 110 epochs, followed by 50 fine-tuning
epochs. Additionally, a ‘non-pruning’ version of the dynamic model
was trained, which had the same setup as the dynamic model but
with 𝜇𝑐𝑜𝑚𝑝 set to 0. The smaller control models were trained for
130 and 40 epochs.

4.4 Results
The results for the original implementation can be found in Table 1.
It consists of the control model, three different degrees of compres-
sion for the dynamic method, and two traditional SVD models with
different pruning thresholds. Additionally, it contains two standard
models, which were initialised to have a similar parameter count
as the most effective SVD method. The full configuration of the
systems can be found in the appendix.

The results were clear: the original dynamic method was not
an improvement over traditional singular value decomposition
as a post-hoc method, or simply training a simpler model in the
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Table 1: Accuracies and parameter counts for the first dynamic implementation. While it successfully decreased the model size,
this came with a higher decrease in accuracy compared to traditional post-hoc SVD with retraining.

Compression method Parameter count start Parameter count final (size diff.) Test set accuracy

None (control) 654.316 654.316 (-0%) 97.47%
Dynamic (weak) 1.105.222 461.058 (-29.54%) 95.30%
Dynamic (medium) 1.105.222 372.246 (-43.11%) 93.31%
Dynamic (strong) 1.105.222 287.118 (-56.12%) 83.39%
Static SVD (weak) 654.316 445.493 (-31.91%) 97.25%
Static SVD (strong) 654.316 120.538 (-81.58%) 96.33%
None (140, 70) 120.486 120.486 (-81.59%) 94.05%
None (100, 400) 122.916 122.916 (-81.21%) 97.19%

Figure 2: Accuracy (left axis) and rank (right axis) during the
first epochs of the original dynamic model with weak com-
pression. One can see how the rank decreases very quickly at
first, yet slows down over the course of training as the system
gets more efficient with its parameter usage. It also reveals
the weakness of the original system: by not being able to
compensate in the direction of compressed vectors through
rotation of the remaining vectors, accuracy often drops after
pruning, resulting in a decrease in final accuracy. Some of
the more clear accuracy dips due to pruning are indicated.

first place. While it successfully decreased its rank dynamically
during training, it did so at a high cost in accuracy compared to the
traditional method. Additionally, the training in decomposed form
meant that the model started training with almost twice the amount
of parameters, and the triple loss function gave it a significantly
higher computational load per parameter.

In Figure 2, the rank and accuracy of the weak dynamic model
are shown. The plot reveals how the rank decreases very quickly
at first, yet slows down over the course of training once the system
gets more efficient with its parameter usage. One can also see how
pruning occasionally results in minor accuracy drops, which the
system usually recovers from within a few epochs.

However, the results for the improved setup, which are presented
in Table 2, tell a much more positive tale. Even with a 24% reduction

Figure 3: Accuracy (left axis) and rank (right axis) during the
first 150 epochs of the improved model at strong settings.
While a few smaller pruning dips are visible in a few of the
final epochs, they are significantly less present than during
the original setup.

in training epochs, the dynamic models outclass even the control
groups from the previous experiment. This appears to be in part
due to the increased complexity of the model, as the dynamic setup
with no compression also gave a noticeably higher result than the
control group. However, the self-pruning models still managed to
get the highest result. This can be explained by taking a closer look
at the strong dynamic model and the non-pruning model. While the
training accuracy for the non-pruning model was slightly higher
than the training accuracy for the strong model, the latter still had
a higher validation accuracy. This implies the pruning to work as a
form of regularisation, guarding against overfitting.

The graphs do not show the final fine-tuning step. However, the
final increase from this step is often not too large, except for some
early experiments with far too strong pruning that happened to
prune right before recompilation.

Figure 5 contains an example graph for the results of a too-
aggressive configuration. It effectively highlights one of the sys-
tem’s main limitations: the inability to determine when to stop
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Table 2: Accuracies and parameter counts for the improved setup, including the percentual difference in size to the control
model. Our dynamic method both increases accuracy and significantly decreases model size.

Compression method Param. count start Param. count final (size diff.) Training set acc. Test set acc.

None (control) 654.316 654.316 (-0%) 97.10% 95.07%
Dynamic (weak) 1.105.222 498.758 (-23.77%) 99.96% 99.42%
Dynamic (medium) 1.105.222 397.718 (-39.22%) 99.98% 99.36%
Dynamic (strong) 1.105.222 220.914 (-66.24%) 99.74% 98.98%
Dynamic (none) 1.105.222 654.316 (-0%) 99.78% 98.81%
Static SVD (weak) 654.316 422.782 (-35.39%) 97.29% 95.48%
Static SVD (strong) 654.316 139.906 (-78.62%) 95.81% 94.18%
None (140, 70) 120.486 120.486 (-81.59%) 97.31% 96.76%
None (100, 400) 122.916 122.916 (-81.21%) 98.21% 94.05%

Figure 4: Accuracy (left axis) and rank (right axis) during the
first 150 epochs of the improved model at weak settings. This
version only pruned 23.77% of the original size. However, it
boasted the highest testing accuracy at 99.42%.

pruning. If configured to prune too intensely, the system will sim-
plify itself to the point where it can no longer accurately repre-
sent reality. On the other hand, if the model does not adequately
prioritise compression, it will not compress itself sufficiently and
recompile itself to full size.

5 LIMITATIONS AND FUTUREWORK
Themost obvious limitation of this work is the lack of environments
in which the technique has been tested. Once the system was set up,
the final version was only tested on a simple three-layer MLP using
a relatively simple dataset due to time constraints. While some
testing was conducted on different output sizes of hidden layers, it
was not documented extensively enough, nor was it compared to
different setups. Additionally, the improved models all had accu-
racies of ∼ 99%. This made it difficult to compare results, as even
a tenth of a percent difference in accuracy would be significant.
More research should be conducted using more complex model
architectures, as the technique can be applied to any model archi-
tecture with fully-connected layers. This would also allow for more

Figure 5: An example of the dangers of over-enthusiastic
compression. In this setup, compression batch sizes 𝜃 were set
to 3% of the ranks, and pruning threshold 𝜖 was set to 0.7 and
0.6. Although the improved version has significantly smaller
accuracy drops frompruning, the accuracy still dropped from
90% to 70% over the final 25 epochs (including fine-tuning
epochs).

up-to-date comparisons, as the models were compared to relatively
simple control groups instead of state-of-the-art models.

Additionally, the ablation study in Table 3 revealed that the 𝐿𝑠𝑖𝑛𝑔
function had surprisingly little effect on the model. An inspection
of the contents of 𝝈𝑡 showed that the values were still sorted and
positive at the end of the training. Also, except for the values that
were under compression during the last few epochs, they were al-
most exactly the same as on initialisation. This was initially thought
to be an unexpected consequence of removing the orthogonality
constraint. However, a quick experiment in which 𝐿𝑠𝑖𝑛𝑔 was dis-
abled in the original models showed similar results for 𝝈𝑡 . Instead,
it could be explained by the differences in sizes to the weights in
decomposed form; While 𝝈 could contain values of above 50, the
column vectors of𝑈 and𝑉 were all unit vectors with average values
that often floated around 0.03 and 0.06 in the first and second layer,



TScIT 42, July 4, 2025, 2018, Enschede, The Netherlands Wander Stribos

Table 3: Ablation study on the various parts of the loss function, done on the improved dynamic model on medium strength. It
reveals that 𝐿𝑠𝑖𝑛𝑔 has surprisingly little effect on the results.

Disabled subfunction Param. count final (size diff.) Training set acc. Test set acc.

None (control) 397.718 (-39.22%) 99.98% 99.36%
𝐿𝑛𝑜𝑟𝑚 245.478 (-62.48%) 59.05% 57.35%
𝐿𝑠𝑖𝑛𝑔 245.478 (-62.48%) 99.94% 99.27%
𝐿𝑠𝑡𝑟𝑢𝑐𝑡 227.138 (-65.29%) 61.18% 61.27%
𝐿𝑐𝑜𝑚𝑝 654.316 (-0%) 99.43% 98.34%

respectively. This meant that, with the optimiser having a maxi-
mum amount it could change each weight through norm clipping,
vector rotation simply had a larger relative effect on the forward
pass compared to attempting to slowly update the large singular
values. However, further research is needed to determine whether
the loss function remains unnecessary in more rigorously trained
models, as the differences from the initial weights could become
significantly larger.

The technique could have also been significantly improved by
implementing safeguards against over-pruning. As shown in Figure
5, the system will continue pruning even when it is still attempting
to recover from previous pruning. In a future implementation, the
threshold 𝜖 and batch size 𝜃 could be set to decrease over time, E.G.
by having 𝜃 be relative to the current rank, having both parameters
decrease depending on the accuracy drop from the last prune, or
pruning could be temporarily paused until the accuracy recovered
enough from the last prune.

6 CONCLUSION
In this work, we describe and implement an in-training compres-
sion technique inspired by singular value decomposition for fully-
connected layers in neural networks. We demonstrate how the
technique functions substantially better without the orthogonality
constraint. This results in a method that, given that the hyperparam-
eters are properly set, dynamically decreases the model’s parameter
count during training whilst boasting significantly increased accu-
racy over models trained normally.
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Table 4: Hyperparameter configurations of the improved
dynamic systems. 𝜇𝑜𝑟𝑡 and 𝜇𝑛𝑜𝑟𝑚 were set to be 2 and 1, re-
spectively.

Strength learning rate 𝜇𝑐𝑜𝑚𝑝,1 𝜃1 𝜖1 𝜇𝑐𝑜𝑚𝑝,2 𝜃2 𝜖2

Weak 8𝑒−3 13 10 0.6 5 5 0.4
Medium 7𝑒−3 18 10 0.8 9 5 0.5
Strong 8𝑒−3 19 9 0.8 7 5 0.4
None 6𝑒−3 0 15 0.5 0 6 0.2

Figure 6: Development of accuracies (left axis) and rank (right
axis) in the improvedmediumdynamic implementation. Sim-
ilar to other figures, the fine-tuning stage is not included.

Figure 7: Development of accuracies (left axis) and rank (right
axis) in the non-pruning version of the dynamic implemen-
tation. Similar to other figures, the fine-tuning stage is not
included.

Figure 8: The accuracies of 150-epoch stronger traditional
SVD, pre-split (top) and post-split (bottom)

Figure 9: The accuracies of 150-epoch stronger traditional
SVD, pre-split (top) and post-split (bottom)

A.3 Control group
In the control group, the initial SGD optimiser had a learning rate
of 1𝑒−1, with a momentum of 0.9 and norm clipping at 3.0 for
the larger model and 2.0 for the smaller models. After fine-tuning,
the learning rate was set to 3𝑒−2 and norm clipping to 6.0, while
momentum remained at 0.9. In the simpler models, the learning
rate started at 1𝑒−1 while for the fine-tuning it was lowered to 5𝑒−3,
with norm clipping at 1.0 and a momentum of 0.9.
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Figure 10: The accuracies of the 150-epoch, normal-sized con-
trol model, withmain training (top) and fine-tuning (bottom)

Figure 11: The accuracies of the 150-epoch, smaller control
model, with main training (top) and fine-tuning (bottom)

Table 5: Hyperparameter configurations of the original dy-
namic system. 𝜇𝑜𝑟𝑡 and 𝜇𝑠𝑜𝑟𝑡 were set to be 2 and 0.5, respec-
tively.

Strength 𝜇𝑐𝑜𝑚𝑝,1 𝜃1 𝜖1 𝜇𝑐𝑜𝑚𝑝,2 𝜃2 𝜖2

Weak 6 10 0.8 5 5 0.5
Medium 8 12 0.8 6 6 0.7
Strong 14 15 0.8 9 9 0.7

Figure 12: The accuracies of the 150-epoch, smaller control
model with layer sizes 100 and 400, with main training (top)
and fine-tuning (bottom)

Figure 13: Development of accuracies (left axis) and rank
(right axis) in the original medium dynamic implementation.
Similar to many other figures, the fine-tuning stage is not
included.

B HYPERPARAMETER CONFIGURATIONS OF
THE ORIGINAL MODEL AND ITS
COMPARISON MODELS.

B.1 Dynamic Technique
The hyperparameters for the dynamic implementations can be
found in Table 5. 𝜖 was set to be relatively high to stop the system
from taking too long to compress. The stochastic gradient descent
optimiser had a learning rate of 3𝑒−3, with a momentum of 0.4 and
norm clipping to 6.
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Figure 15: Development of accuracies (left axis) and rank
(right axis) in the first strong dynamic implementation. Sim-
ilar to Figure 2, the fine-tuning stage is not included.

Figure 16: The accuracies of longer trained, weaker tradi-
tional SVD, pre-split (top) and post-split (bottom)

Figure 17: The accuracies of longer-trained, stronger tradi-
tional SVD, pre-split (top) and post-split (bottom)

Figure 18: The accuracies of the 200-epoch control model,
with main training (top) and fine-tuning (bottom)

Figure 14: Development of accuracies (left axis) and rank
(right axis) in the first medium dynamic implementation.
Similar to Figure 2, the fine-tuning stage is not included.

B.2 Static SVD
For the normal static SVD, a pruning threshold 𝜖 of 0.1 was used.
For the more aggressive one, 𝜖 was raised to 0.3. For the first epochs,
SGD optimiser had a learning rate of 1𝑒−1, also with a momentum
of 0.4 and norm clipping to 6. During the post-pruning fine-tuning
stage, the optimiser was replaced with one having a lowered learn-
ing rate of 5𝑒−3, increased momentum of 0.9, and norm clipping
set to 1.0.
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Figure 19: The accuracies of the non-pruning simple model,
with main training (top) and fine-tuning (bottom)

B.3 Control group
In the control group, the initial SGD optimiser had a learning rate
of 1𝑒−1, with norm clipping at 2.0 and a momentum of 0.9. After
fine-tuning, the learning rate was set to 3𝑒−2 and norm clipping to
6, while momentum remained at 0.9. In the less complex models,
the learning rate started at 1𝑒−1 while for the fine-tuning it was
lowered to 5𝑒−3, with norm clipping to 1 and a momentum of 0.9
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