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Fig. 1. Images from the KITTI-360[10] and WildScenes[19] datasets used in the paper.

Semantic segmentation is a crucial task in autonomous systems, including
those used in driving, robot navigation, and medical diagnosis. While there
are methods for 2D segmentation using convolutional neural networks
(CNN) and 3D segmentation using 3D models, the complementary nature
of 2D data and 3D data should not be ignored. This research investigates
multimodal fusion of 2D images and 3D LiDAR point clouds for semantic
segmentation in structured and unstructured environments. Building on
the DeepViewAgg framework, we aim to investigate the impact of feature
fusion on semantic segmentation compared to 2D- and 3D-only models. The
methodology involves training a model for each modality and evaluating
its performance. On KITTI-360, fusion improves mean IoU from 54.20 (3D-
only) and 56.70 (2D-only) to 57.53, with the largest gain on thin classes such
as 'pole’ (+21.3 points). In the WildScenes natural dataset, it achieves 33.0
mloU, outperforming 2D and 3D baselines with a margin of 5.0 points. These
trends demonstrate that multimodal fusion can outperform single modalities,
particularly in scene elements with complementary 2D-3D cues.
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1 INTRODUCTION

Semantic segmentation is the pixel-level classification of different ob-
jects against a complex background[23]. This classification enables
an understanding of an environment, therefore it is a fundamental
requirement in fields such as robot navigation, robotic arm grasping
systems, autonomous driving systems, and medical diagnosis[21].
Earlier convolutional neural network (CNN) approaches for seg-
mentation include the use of 2D architectures such as U-NET[15]
and simple models with ResNet backbones[7]. Recent approaches
involve more advanced models, such as DeepLabV3[2], which cap-
tures both fine details and the wider scene simultaneously, resulting
in more accurate segmentations. These CNNs utilize RGB images
(2D data) that provide rich semantic content, including color, texture,
and shape, which are key aspects of object identification. A broad
toolkit for enhancing per-pixel segmentation in 2D data is available
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- methods such as high-resolution backbones[20] and online hard
example mining[16] further raise mean Intersection-over-Union
(mIoU). However, CNNs that rely exclusively on RGB cues are vul-
nerable to object occlusion, changes in lighting, and the absence
of geometric information, often misclassifying thin, distant, or oc-
cluded objects.

LiDAR sensors and 3D segmentation techniques address these
limitations by providing precise distance and depth measurements
for each point, enriching environment understanding. Significant
progress has been achieved in the point cloud segmentation field,
with models such as PointNet++[13], MinkUNet[3], and KPConv[18]
demonstrating the potential of point-cloud-based object detection
on (indoor) datasets such as ScanNet[1, 11] and (outdoor) KITTI
360[10], however, often struggle with identifying semantic classes
for small or occluded objects. To enhance performance, several
approaches can be used to augment point clouds with color informa-
tion, including the use of colorization (which requires specialized
sensors or a colorization step), meshing, or true depth maps[14].
These methods are either hardware-dependent or computationally
expensive and may fail to capture the semantic cues available in
RGB images.

In an attempt to leverage the complementary nature of both types
of data, multimodal fusion techniques have emerged as a promising
direction in semantic segmentation research[8, 17]. Taken together,
a 2D-3D pipeline can bridge the critical gaps in single-modality real-
world perception. Notably, 3D point cloud data is often accompanied
by corresponding 2D images[22], making such fusion possible in
most cases and providing a solid ground for research in the field.
Current fusion frameworks such as DeepViewAgg[14] utilize 2D
image features from multiple camera views and fuse them with point
cloud data via an attention-based mechanism to perform semantic
segmentation on 3D data. This approach achieved the current state-
of-the-art performance on 3D semantic segmentation on the urban
dataset KITTI-360[10].

Although multimodal fusion has shown promising results in ur-
ban and indoor datasets, its performance in natural environments
remains unclear. Current research on the intersection between mul-
timodal fusion and natural unstructured environments remains
limited. Research only explores fusion in the agricultural context
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or utilizes single-modality architectures[9, 19]. Better semantic un-
derstanding in forests, fields, and natural habitats can contribute to
improved automated search and rescue applications, wildlife con-
servation and monitoring, and agricultural automation, for which
urban datasets are not suitable[19].

1.1 Objective and goals

This paper aims to explore the effect of multimodal feature fusion of
2D images and 3D LiDAR point clouds for semantic segmentation
in urban (structured) and natural (unstructured) environments. The
research is based on the outline of the DeepViewAgg framework
in [14]. The goal is to compare the performance of the multimodal
framework against similar 2D-only and 3D-only baselines and deter-
mine its effects. To achieve this, the three segmentation paradigms
will be systematically trained and evaluated using consistent splits
and Intersection-over-Union (IoU) metrics as defined in Section 3.1.
This approach will isolate the effect of fusion on overall accuracy
and class-wise performance in both datasets.

1.2 Research questions

In order to address the defined problem statement and achieve these
goals, the following research question is defined:

RQ1: How does multimodal feature fusion of 2D images and 3D
LiDAR point clouds impact the performance of semantic segmenta-
tion compared to 3D-only and 2D-only models?

To examine the effects of fusion, the question was further broken
down into the following sub-questions:

¢ RQ1.1: How does multimodal feature fusion affect segmenta-
tion accuracy in a structured urban environment compared
to 3D-only and 2D-only models?

e RQ1.2: Which object classes (e.g., car, person, building) are
affected the most by the fusion in a structured environment?

¢ RQ1.3: How does multimodal feature fusion affect segmen-
tation accuracy in natural, unstructured scenes compared to
3D-only and 2D-only models?

¢ RQ1.4: Which object classes (e.g., bush, dirt, fence) are af-
fected the most by the fusion in an unstructured environ-
ment?

The remainder of this paper is organized as follows. Section 2
reviews related work on semantic segmentation and multimodal
fusion. Section 3 details the pipeline used for preprocessing the
data, model architectures, and their training procedures. Section 4
presents the paper’s evaluation procedures and results, and Section
5 discusses ablations conducted with different parameters. Finally,
Section 6 presents analysis of the results, highlighting limitations
and outlining directions for future research. Section 7 concludes the
research.

2 RELATED WORK

Research has been conducted to identify relevant works in the field
of data fusion for semantic segmentation. This section will review
existing literature on the topic, discuss the methods and techniques
used, while highlighting limitations in current research.

Andrey Nikolov

2.1 Attention-based multi-view framework

In [14], 3D LiDAR points are projected into multiple calibrated RGB
camera views. Features are extracted from each image using a pre-
trained 2D CNN, and a view-aware attention module is used to
aggregate features from different perspectives before feeding them
into a 3D segmentation backbone by early fusion. This strategy
eliminates the need for meshes or depth maps while achieving
the state-of-the-art performance on 3D semantic segmentation in
the KITTI 360 dataset[10]. The research demonstrates the higher
performance of fusion compared to 3D models however, it does not
compare the proposed fusion model against a 2D architecture.

2.2 Bidirectional feature projection

In [8], a new model, BPNet, is proposed. This model employed a sym-
metric dual-branch architecture, simultaneously running 2D UNet
and 3D MinkUNet models, thereby allowing for feature exchange
between them. This feature exchange facilitated by the Bidirectional
Projection Module (BPM), enables both models to benefit from the
features of the other model. Such an exchange is a form of interme-
diate fusion that leads to higher mIoU for the ScanNetV2 dataset[6]
compared to the other models. The paper highlights the perfor-
mance boost of fusion compared to 3D and 2D models but does not
assess its performance on an outdoor dataset.

2.3 Multimodal obstacle detection

The authors in [9] propose a method for fusing camera and LiDAR
sensing with a conditional random field to perform obstacle detec-
tion in agricultural fields using a moving ground vehicle. Adding
spatial links between segments in 2D and 3D, and further including
a multimodal link between them, resulted in performance gains of
9 points for 2D classification and 13 points for 3D classification in
four-class mloU. Although the study demonstrates the potential of
using combined 2D-3D data for natural environments, its exper-
iments were limited to the use of only four simple classes: ’sky’,
’object’, *ground’, and ’vegetation’.

In summary, prior studies have focused on urban datasets without
complete comparison or have utilized limited obstacle categories
in natural scenes. The effectiveness of multimodal fusion in a large
natural dataset remains unexplored, motivating our experiments in
WildScenes[19].

3 METHODOLOGY

To answer the main research questions of the study, we implemented
three types of semantic segmentation models: a 2D-3D multimodal
model, a 3D-only model, and a 2D-only model. This section begins
with the chosen datasets and their corresponding evaluation metrics,
followed by a high-level explanation of the pipeline, as well as the
specific implementation of the three models, each with its own
configuration.

3.1 Datasets and evaluation metric

First, performance in structured urban environments was evaluated
using the KITTI-360[10] dataset, which consists of 320,000 images
and 100,000 laser scans across a driving distance of 73.7 km in urban
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areas in Karlsruhe, Germany. The data was captured with a multi-
sensor mobile platform. The camera calibration, which provides the
intrinsics and extrinsics of the sensors, and accurate georegistered
vehicle poses are provided to enable mapping between the 2D and
3D data in the dataset.

The selected unstructured natural dataset is WildScenes[19]. The
dataset comprises multiple large-scale traversals of forests in Aus-
tralia, collecting multimodal data in the span of 6 months. The
distance covered totals 21.28 km, resulting in the collection of 9,306
annotated images and 12,148 annotated point clouds. Furthermore,
it provides camera calibration and poses used for mapping the two
types of data. It provides 15 total classes, of which 13 will be used
to assess the performance of the models.

The KITTI-360 dataset allows for confidence-weighted Intersection-
over-Union (IoU) performance evaluation for each of the 15 semantic
classes. This metric shows the overlap between a prediction and the
ground truth for a pixel set and is calculated as follows:

i Ci
IoU = i {TP} Ci

2ie{TP,FP,FN} Ci W
where TP, FP, and FN denote the number of true positives, false
positives, and false negatives pixel sets for each class, respectively.
The evaluation of the KITTI-360 dataset uses confidence weighting
to account for ambiguity in their automatically generated anno-
tations, where ¢; denotes confidence at pixel i, and ¢; € [0;1].
Additionally, we used a mean Intersection-over-Union (mloU) to
show the average performance across all classes for a model. For
both metrics, a higher value corresponds to a better pixel-wise over-
lap between the prediction mask and the ground truth annotation.
The metric that will be used for WildScenes is IoU, as defined in
Equation 1. However, for this dataset, confidence weighting will not
be employed.

3.2 Pipeline

We employed a three-stage pipeline to investigate how modality
selection (2D, 3D, and fusion of 2D and 3D) affects semantic seg-
mentation accuracy in urban environments. The first stage involved
selecting of a relevant dataset that offers synchronized LiDAR and
camera data for use by the different types of models. The dataset
selected was KITTI-360. The officially defined splits for the 2D and
3D data were used to ensure that any differences in performances
among the models are due to their type and architecture rather
than the dataset split. Data preprocessing was used to adjust the
data for the environment and models used. The next stage involved
selecting models. The selected multimodal model is the state-of-the-
art 2D-3D fusion network, previously benchmarked on KITTI 360 -
Res16UNet34 + ResNet-18 with early fusion. The 3D-only config-
uration mirrors the 3D backbone of the multimodal architecture,
allowing for a direct comparison. DeepLabV3+ with a ResNet-18
backbone was selected as a representative for a standard, compa-
rable 2D semantic segmentation architecture. In the next stage,
consistent training schedules and evaluation criteria were employed
to establish baselines and a fair comparison. We evaluate all three
models using a class-wise (across all common classes) and mean
Intersection-over-Union (IoU) metric, defined in Equation 1. This
helped highlight the overall contrast in performance and provided
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a more in-depth analysis of the classes that experienced substantial
differences between the models. Additionally, ablation studies were
conducted and are presented in Section 5.

For multimodal fusion in the natural environment, the pipeline
follows the same four high-level stages. However, it differs in three
important aspects. First, this pipeline utilized the complete Wild-
Scenes [19] splits (train, val, and test), whereas KITTI-360 provides
access only to the train and val sets. Second, different models were
adopted - the 2D-only baseline is DeepLabV3 with a ResNet-18
backbone. For the 2D-3D multimodal model, we selected a lighter
architecture due to the resources and time needed for training it.
The multimodal architecture uses a custom Res18UNet architecture
for both the image encoder and the sparse 3D backbone. Further-
more, late logit fusion is implemented, rather than early fusion,
as in the previous pipeline. Unlike in KITTI-360, for WildScenes
all models were trained. The 2D-only and 3D-only models were
trained on the dataset and used as initializations for the multimodal
architecture. Finally, each model was evaluated based on its mean
IoU and per-class IoU.

Raw KITTI 360

LiDAR, pictures, intrinsics,
extrinsics, poses

official train/val splits

Preprocessing

2D-3D 3D 2D
) Remap label
2Dto 3D | Cylinder ID to train ID
mapping | sampling
Training
pretrained 3D 2D
60 epochs, fine-tune
voting 40k iters
N Evaluation

mloU and per class loU

Fig. 2. High-level overview of urban dataset pipeline

3.3 Model architectures for KITTI-360

The environment used for implementing and evaluating the models
was a Jupyter server available to the university, equipped with an
NVIDIA A10 GPU (23 GB VRAM) and a CPU configuration with 65
cores and 256 GB of RAM.

3.3.1 Multimodal 2D-3D model. The first kind of model is the mul-
timodal architecture Res16UNet34-PointPyramid-early-cityscapes
implemented by the authors in [14]. This model consists of a 3D-only
backbone, namely Torch-Point3D’s Res16UNet34 implementation
of MinkowskiNet and a 2D encoder, ResNet-18, pre-trained on the
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Cityscapes dataset[5]. Early fusion between the 2D and 3D features
is employed in the model. The authors of the paper provide the
publicly available code and pre-trained weights for the model. They
define a sampling strategy for managing the large amount of data
present in KITTI-360 with the help of 6 m-radius vertical cylinders.
This approach involves downsampling the points in preprocessing
to 5 cm voxels, as well as selecting one image every five from the
left perspective camera of the dataset. Except for adding CUDA
acceleration for computing the 3D-2D mapping between a window
and all images of the sequence (to decrease the time needed for
preprocessing of data), we made no changes to the configuration
used by the authors of the paper.

3.3.2  3D-only model. The second kind of model is the 3D-only back-
bone of the multimodal model previously described. We employed
the architecture and training configuration made by the authors
of [14]. The model was trained on 3D-only data from KITTI-360,
respecting the official training and validation splits. The training
was conducted over 60 epochs, each consisting of approximately
12,000 cylinders, using stochastic gradient descent (SGD) with an
initial learning rate of 0.1. The learning rate was adjusted according
to the predefined multi-step learning rate scheduler, multi-kitti-360.

3.3.3  2D-only model. The third type of model is the architecture
DeepLabV3+ with a ResNet-18 backbone[2]. The model is initialized
from a checkpoint pre-trained on Cityscapes for 80,000 iterations by
the authors of [4]. For a fair comparison baseline, we fine-tuned the
model on the 2D data in KITTI-360. The data used were according
to the officially defined train split. Based on the configuration files
for the framework mmsegmenation[4], a custom configuration file
was created to provide the structure and pipelines of the fine-tuned
model, as well as a custom dataset configuration file. In the model
and training configuration file, we adopt the standard Encoder-
Decoder framework of DeepLabV3+ with a ResNet-18 backbone.

For better training, all data were converted from the original label
IDs to training IDs using an official label map. Images are augmented
during training with standard Cityscapes-style augmentations (e.g.,
random scale, horizontal flip).

To better simulate the original training conditions of the model
within the memory constraint of the available GPU, we implemented
a gradient cumulative optimizer[4], which simulated a batch size of 8
and fit it within the A10’s VRAM. Stochastic gradient descent (SGD)
was employed with a base learning rate of 0.005. The learning rate
was linearly warmed up for the first 500 iterations from 0.000001,
and then decayed according to a polynomial schedule to 0.000001 at
the final iteration. The model was fine-tuned for 40,000 iterations,
with evaluation every 10,000 based on the mloU metric.

3.4 Model architectures for WildScenes

For the natural dataset, the environment used was a high-performance
cluster available to the university, equipped with an NVIDIA A40
GPU (48 GB VRAM) and a CPU configuration with 16 cores and 64
GB of RAM.

3.4.1 Multimodal 2D-3D model. Due to resource and time con-
straints, we adopt a lighter model architecture, utilizing the frame-
work defined by [14]. The multimodal model consists of two parallel
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UNet branches, resembling the configuration of a ResNet18UNet.
Outputs are combined at the logit level, producing a late feature fu-
sion. The 3D branch uses sparse 3D convolutions with an initial 7 to
32-channel embedding, four downsampling stages, and a symmetric
upsampling back to 96 channels. The 2D part of the architecture
closely mirrors this design, taking RGB inputs through the same
sampling scheme to produce 96-channel per-pixel logits over the
13 dataset classes. During inference, the per-pixel image logits are
pooled and aligned to each LiDAR point, and the set of logits is
averaged and passed through a softmax to obtain the final semantic
label.

To address point collision, we removed the non-static mask trans-
form, and an additional grid sampling step was applied after the
image mapping. The model was trained for 30 epochs, with vali-
dation every 5 epochs, with each epoch containing approximately
10,000 cylinders. The weights were initialized using matching lay-
ers from the 3D-only and the 2D-only models. Due to the smaller
size 2 training batch, SGD was used with an initial learning rate of
0.01, adjusted according to the predefined multi-step learning rate
scheduler used in the multimodal model for KITTI-360.

3.4.2 3D-only model. For the 3D-only architecture, the 3D sparse
UNet model from the multimodal architecture was used. Since the
training for this model is less time-consuming than that of the multi-
modal one, we conducted training for 60 epochs on the point clouds
present in WildScenes. To account for the difference in epochs, the
number of cylinders per epoch was reduced by half, resulting in
5,000 cylinders per epoch. However, the same 5 cm voxel resolution
was used. The same pre-, train, test, and validation transformations
as in KITTI-360 were used.

3.4.3 2D-only model. The 2D-only architecture we implemented
is DeepLabV3 with a ResNet-18 backbone[4]. The dataset authors
used this model with a ResNet-50 backbone to obtain a 2D semantic
segmentation baseline in their paper[19]. We employed a smaller
ResNet-18 backbone to provide a fairer comparison compared to the
other architectures. The training closely followed the procedures
outlined by the dataset authors. The crucial difference lies in the
different label mapping, with the removal of the classes ’sky’ and
‘water’ to match the list of 3D classes. Furthermore, the learning
rate was linearly scaled to match the batch size of 2 that was used,
resulting in a value of 0.001. SGD was used with the same warm-up
and decay configuration as in KITTI-360. We trained the model for
80,000 iterations, with evaluation every 4,000 based on mlIoU.

4 EVALUATION AND RESULTS

In this section, evaluation procedures and results will be discussed
for all three models in the two selected datasets. Models were eval-
uated using IoU (cf. Section 3.1). We used the officially provided
evaluation splits as defined by the datasets authors[10, 19]. All mod-
els were implemented and evaluated in the environments outlined
in Section 3.

For all models, we evaluated their performance on the validation
set available in the KITTI-360 dataset. Evaluation was performed
on full-resolution point clouds using a spatial resolution of 1, i.e.,
roughly one cylinder every 3 meters cf. [14]. Additionally, voting
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inference was done on the data with a single vote. For semantic
segmentation evaluation on the 2D data, the dataset authors provide
evaluation scripts[10]. No modifications were made to the scripts,
except for the omission of the classes "sky’ and 'rider’ to align the list
of classes across all modalities. The complete 2D class validation is
presented in Section 5. During evaluation the images were remapped
back from train IDs to label IDs. All images in the validation split
are assessed.

The performance assessment of the fusion and 3D-only models
for WildScenes was carried out in the same manner as for KITTI-360.
For the 2D-only model, we closely followed the evaluation procedure
of the WildScenes paper[19], except for the implementation of an
alternative label map as mentioned in Section 3. Performance is
reported on the test set of the dataset.

4.1 Impact of multimodal fusion in KITTI-360

In this section, we report quantitative results for the segmentation
models on the KITTI-360 validation set. For this validation only
the 15 classes common to all models are used (Table 4). Due to its
lightweight nature, we trained the 2D-only network twice with two
independent random seeds to measure run-to-run variations. Due
to time and resource constraints, we trained the 3D-only model only
once.

The early-fusion model Res16UNet34 achieved an average mloU
of 57.5. The two 2D runs obtain 55.7 and 57.6 mloU, giving a mean
of 56.7 + 1.3. The 3D-only model scores 54.2 mloU, which is 3.3
points lower than the multimodal one. Against the 2D baseline, the
fusion model performs with a 1.8 points gain over the lower run
and a -0.1 points loss compared to the higher run. This performance
still results in a +0.9 gain above the mean of the two runs. Although
this is below the 2D model’s variability, the improvement indicates
the complementary information that both modalities convey in
structured urban scenes.

Small and thin classes experience a large gain over both the 2D-
and 3D-only models. The fusion architecture achieved 59.2 IoU for
’pole’ and 15.4 IoU for ’traffic light’, against the 2D-only model 37.9
ToU (’pole’) and 0 IoU (’traffic light’). In contrast, the 3D-only model
performs more closely to the multimodal one, with a 57.3 IoU for
‘pole’, but still falls short for ’traffic light” with a 9.8 IoU. Notably,
large surfaces and background classes show a slight decline relative
to the 2D-only model.

4.2 Impact of multimodal fusion in WildScenes

For the WildScenes test set, we used a list of the 13 common classes
across all models (Table 5). The 2D-3D fusion model achieved an
overall mIoU of 33.0, compared to 27.9 for the 2D-only baseline and
28.0 for the 3D-only model. These results demonstrate that in the
natural environment, multimodal fusion outperforms both single
modalities by a substantial margin of 5.0 mIoU.

A closer look at per-class performance reveals that fusion achieves
the larger score for the class ’structure’ with 66.9 IoU against 38.5 IoU
for the 2D-only model and 11.7 IoU for the 3D-only model. The class
’bush’ experiences a significant gain, with 24.9 IoU, representing an
11.2 points increase compared to 2D-only and a 17.6 points increase
compared to 3D-only. Notably, a slight increase is observed in the
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’'mud’ class, where only the fusion approach achieved a score higher
than 0.0 with a 0.4 IoU.

Across both datasets, the fusion architecture attains the high-
est mIoU and consistently improves segmentation on small and
structurally distinct classes (e.g., ‘pole’, ’structure’). A detailed in-
terpretation of these trends and their implication can be found in
Section 6.

5 ABLATION STUDIES
5.1 Multimodal model and 3D-only model

We conducted experiments with varying values for sample reso-
lution and full resolution. Apart from the baseline configurations,
which used sample resolution = 1 and full resolution = True, we
conducted a validation with sample resolution = 3 and full reso-
lution = False. In contrast to the method described in Section 3,
these settings effectively reduced the time needed for inference by
reducing the total number of evaluation locations, resulting in a
roughly 80% reduction in total time. This reduction in inference
time decreased the average validation mIoU by 1.86 points for the
multimodal model and by 0.77 points for the 3D-only model. This
run was therefore included to demonstrate that, for large urban
scenes or stricter inference time requirements, a slight decrease in
average mloU can be used as a trade-off for faster inference. The
times reported in Table 1 are derived from the time needed to make
a forward pass on the validation set. For the multimodal model, we
omitted the time needed for preprocessing the data (around 8 hours
for mapping images and neighborhood-based mapping features).

Table 1. Comparison of models at two sampling settings

Model Sample Res. Full Res. Avg.mloU Time
3D-only 1 True 54.20 10h
3D-only 3 False 53.43 2h
2D-3D 1 True 57.53 12h
2D-3D 3 False 55.67 2.5h

Full class-wise performance for this experiment can be seen in
Table 6.

5.2 Effect of loss rebalancing on 2D-only models

In this section, the performance difference between plain DeepLabV3+
(Section 3) and the same network with OHEM and class-balanced
loss are explored in the context of urban semantic segmentation.
The fine-tuning process and validation for all models were identical
to those described in Section 3. To assess run-to-run variation, we
performed two training runs for each variant and reported mean
and standard deviation. Our motivation for exploring loss rebalanc-
ing is the largely skewed distribution of pixels. For example, the
dominant 'road’ class has approximately 1,920 times more pixels
than the rare "bicycle’ class. More details about class pixel counts
and resulting weights can be seen in Table 3.

To support the model with rare classes (e.g., traffic signs, traffic
lights), we implemented an Online Hard Example Mining (OHEM)
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sampler [4] for the decoder head. By using it only for the decoder
head, double memory usage was avoided while still allowing for
gradient rebalancing. Following mmsegmentation’s default imple-
mentation, the sampler selects all pixels with model confidence
below 0.7, keeping at least 100,000 pixels per crop. The use of the
sampler led to a mIoU of 57.4 + 0.3 - an increase of 0.7 points over
the plain baseline of 56.7 + 1.3 mlIoU. Furthermore, the rare class
‘motorcycle’ IoU changed from 18.2+18.9 to 26.7 + 4.1 in the OHEM
variant - a notable gain of 8.5 points. However, in the case of "bicycle’
a significant drop is present - IoU dropped from 6.9 + 5.8 IoU in the
plain model to 1.7 + 6.4 IoU in the OHEM one.

We explored another approach to deal with the largely underrep-
resented classes - class-balanced loss. For this, we used the ENet
inverse log class weighting[12] with the following formula:

1

~ log(1+Dy) @

wi

where D; denotes the number of pixels belonging to class i and
w; is the corresponding weight for that class. The pixel count for
each class was obtained from the training split after mapping label
IDs to train IDs. The computed class weights were used only in
the decoder head of the model. The class-balanced loss resulted in
59.3 + 2.1 mloU, a 1.9 points increase in average mloU compared to
the OHEM variant, with the most notable gain in the ’bicycle’ class.
This class achieves a significant +22.3 IoU gain compared to the
plain model and a +27.5 IoU gain compared to the OHEM variant.
Overall, mIoU improved significantly by +2.6 points compared to
the plain DeepLabV3+.

All model training took approximately 1.5 hours to complete on
one NVIDIA A10 GPU. The time needed shows that there is no
notable difference in training time when using sampling strategies.
The class-wise performance between the three different 2D-only
models can be seen in Table 7. Complete validation on the full list
of 17 2D classes (including ’sky’ and ’'rider’) is presented in Table 8.

5.3 Backbone depth impact

We further explored the comparison of multimodal fusion with
the stronger single-modality baseline (the 2D model) across both
datasets. By comparing the 2D-3D architectures with those of 2D
architectures having deeper backbones, we investigate whether a
smaller fusion model is comparable to a strong deep architecture.
For KITTI-360 we again used a plain DeepLabV3+ but with a ResNet-
101 backbone. However, due to the smaller multimodal architecture
used for WildScenes, we compare it to DeepLabV3 with a ResNet-
50 backbone. We trained and evaluated both models following the
procedures defined in Section 3 and Section 4.

A deeper analysis of the class-wise performance reveals that,
despite a significant gap in mIoU and parameter count, the fusion
model improves certain classes on KITTI-360. The classes "pole’ and
‘traffic light” experience a notable boost in the multimodal model.
The deeper 2D architecture achieved a 40 IoU for ’pole’ (19.2 points
drop compared to multimodal) and 0 for ’traffic light’ (15.4 points
drop compared to multimodal). This demonstrates that geometric
cues can support the identification of visually challenging classes
using RGB data.

Andrey Nikolov

Table 2. Comparison of models on the datasets

Dataset KITTI-360 WildScenes Parameters
ResNet-18 56.71 27.9 125 M
ResNet-50 - 314 343 M
ResNet-101 62.4 - 53.3 M
Multimodal

(KITTI-360) 57.5 - 28.1 M[14]
Multimodal

(WildScenes) - 33.0 15M

! This value is the mean across the two training runs. All
other numbers come from a single run.

Furthermore, the results highlight the difference in complexity
between urban and natural environments. Even with a significantly
deeper network, the 2D-only model struggles with semantic seg-
mentation in WildScenes, with an increase of only 3.5 points in
mloU compared to ResNet-18. However, multimodal fusion out-
performs both 2D models, while having 2 times less parameters
than a DeepLabV3 with a ResNet-50 backbone. Class-wise analysis
demonstrates strong increases in the classes ’structure’ (20.6 points
increase compared to ResNet-50), and ’dirt’ (15.7 points increase
compared to ResNet-50). Overall, the effect on most classes is posi-
tive, except for the class ‘object’, which suffers a 23.5 points drop
compared to the 2D-model with ResNet-50. Complete comparison
is presented in Table 9 and Table 10.

6 DISCUSSION
6.1 Answering sub-question 1 and sub-question 2

The results show that early fusion of 2D images and 3D LiDAR fea-
tures can noticeably improve segmentation of shape-defined or rare
classes (e.g., ‘pole’, ‘traffic light’) in urban scenes. Due to their thin
and small size, these classes are challenging for 2D segmentation,
as they occupy only a few pixels and can blend into the background.
In contrast, the 3D-only model achieves a performance compara-
ble to that of the multimodal one. The reason for this increase in
scores is due to the differences in capturing the objects. For example,
in point clouds, a pole appears as a thin vertical cluster of points
rising from the ground, which is less likely to be mislabeled for
background. When the two modalities are combined, performance
for both classes reaches its highest level. This suggests that the
model did not rely only on the LiDAR scans but also used images to
refine the classification, for example, in distinguishing a pole from
a thin tree trunk by their texture.

The benefit of fusion does not extend to every class - the fu-
sion model underperforms on most large and background classes,
with the exception of the building class, where depth cues helped
achieve a +5.6 IoU gain over the 2D baseline. For the other large and
background classes, early fusion may dilute visual cues and propa-
gate projection misalignments (such as at curbs between a sidewalk
and a road) into the fused representation. Roads in KITTI-360 have
distinctive colors and textures (such as asphalt appearance) that a
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camera effectively captures, but LiDAR sensors do not, explaining
the better results achieved from the 2D modality. A key implication
for systems utilizing semantic segmentation fusion is to implement
class- or confidence-aware fusion, e.g., using fusion only for classes
with low confidence predictions from one of the modalities. One
example where fusion also degrades performance is the ’bicycle’
class, where fusion yields a 19.2 IoU, 10.3 points lower than the 3D
baseline, indicating that noisy image features can override the more
reliable geometric cues.

6.2 Answering sub-question 3 and sub-question 4

The WildScenes results confirm that late fusion of 2D images and
3D LiDAR data yields a clear overall advantage in unstructured (nat-
ural) environments, achieving a 5.0 points mloU increase compared
to the stronger 3D baseline. This synergy demonstrates that, regard-
less of the highly variable terrain, multimodal fusion can enhance
segmentation performance compared to single-modality pipelines.

The per-class results reveal that the most significant benefit of
fusion is in classes with distinctive shapes or irregular forms. For ex-
ample, man-made ’structure’ elements and bush’, which challenged
both the 2D and the 3D models, are significantly better identified
in the fusion architecture. Because bushes in natural settings often
share the same color and texture as other vegetation areas, such
as grass or tree foliage, 2D-only models struggle. Moreover, a 3D
architecture lacks the fine-grained surface details needed to seg-
ment a bush cleanly. When the two modalities are combined, the
fused model recovers both the shape (from geometry) and the fine
boundary (from texture), yielding increases of 11.2 points over 2D
and 17.6 points over 3D.

However, an instance of varying class examples that the fusion
model did not correctly address is the class ’fence’. The authors of
WildScenes report that the class used in the train set has a single
horizontal railing, while the one present in the test set has three
horizontal ones[19]. Such differences confused the 2D model, which
propagated this limitation in the multimodal fusion, resulting in an
8.6 points decrease in the fusion’s 'fence’ IoU compared to the 3D
model.

6.3 Limitations and future work

We acknowledge the following limitations and outline directions for
future work. Due to time constraints we did not measure statistical
significance using different runs for multimodal and 3D models. In
addition, because of high standard deviation for some classes for
the 2D-only ablation, additional runs would be needed for a better
statistical significance.

The effect of class weighting should be explored in the context
of multimodal architectures. Our 2D ablation demonstrated that
class weighting greatly improved the performance in rare classes. In
addition, to better leverage the strengths of the different modalities,
fusion strategies should be able to learn weight modalities on a per
class basis.

The current proposed architecture for multimodal fusion in Wild-
Scenes does have room for improvement. Given the limited time, we
restricted our experiments to late fusion only. Future work can ex-
plore different fusion approaches (e.g., early, intermediate) and their
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impact on performance. Moreover, we inherit several key limita-
tions from the dataset itself. Variable lighting conditions in specific
images (cf. Figure 3) degraded the output of the image encoder and,
thus, the overall fusion performance. As reported in the WildScenes
paper, seasonal vegetation change lead to noticeable drops of ~ 4
points in mIoU when train and test seasons differ, and environmen-
tal domain shift result in considerably mIoU drops of ~ 7 points,
especially for man-made structures[19]. Future work can utilize
multi-seasonal data over multiple years at consistent locations, and
explore temporal and environment domain-adaptation techniques
to mitigate these limitations.

Another limitation is backbone capacity. The authors in [14]
report about using a smaller 3D backbone than the current one,
that resulted in a drop in mIoU on KITTI-360, however they do
not explore the effect of using a bigger one. Future research can
focus on architectures with deeper image encoders (e.g. ResNet-
50/ResNet-101 or transformer backbones) or deeper 3D backbones
to better compare with well established deeper 2D architectures
such as DeepLabV3/DeepLabV3+ with a ResNet-101 backbone. Fi-
nally, extending multimodal fusion evaluation on real-time data and
semantic segmentation architectures would provide key findings to
improve self-driving cars, drones, and robotics.

7 CONCLUSION

This study compared multimodal fusion with 2D and 3D baselines
for semantic segmentation on both urban and natural datasets. The
results demonstrated that the fusion yields a clear improvement in
semantic segmentation within KITTI-360 and WildScenes. In the
context of the urban KITTI-360 dataset, multimodal fusion achieved
a smaller mIoU gain of 0.8 points yet improved significantly in
segmentation for small and thin classes that are challenging for
single modalities. Across the 13 common WildScenes classes, the
fusion model achieved a 5.0 points mIoU gain over the stronger
model, reinforcing the claim about the complementary nature of
the two types of data. Both results demonstrate that one modality
can support the other when struggling and that fusion is most
effective when each modality supplies consistent, complementary
information to the other.

Furthermore, our ablation revealed that the lightweight multi-
modal fusion matches or exceeds the performance of much deeper
2D architectures, demonstrating that combining modalities can be
more effective than simply scaling a single model. Nevertheless,
the fusion approach has drawbacks. In cases where data was noisy,
too sparse, or contradicting, performance degraded in the fusion
architectures.

While the findings are promising, they are a result of mostly
single runs, and limitations are present. Future work can focus on
using multiple seeds and runs to ensure better statistically validity
and provide more insights into the field of multimodal fusion for
urban and natural datasets.
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PIXEL COUNT AND WEIGHTS

As explained in Section 5.2, the pixel count was calculated based on
the number of pixels for a corresponding class present in a ground
truth image in the train split. The images used were previously
converted into train ID instead of label ID and the count is based
on train ID.

Table 3. Pixel count and weights for all
1

classes
Class Pixel count Weight
road 3847.8 0.818
sidewalk 1625.9 0.851
building 4709.6 0.810
wall 705.2 0.886
fence 557.2 0.896
pole 92.1 0.984
traffic light 0.3 1.437
traffic sign 31.9 1.045
vegetation 9157.5 0.787
terrain 793.9 0.881
sky 1949.3 0.844
person 11.4 1.111
rider 7.7 1.139
car 1512.0 0.854
truck 127.3 0.967
bus 4.9 1.172
train 6.0 1.156
motorcycle 6.8 1.147
bicycle 2.8 1.215

1 pixels are divided by 10° and rounded
to one decimal.


https://github.com/daveredrum/Pointnet2.ScanNet
https://github.com/daveredrum/Pointnet2.ScanNet
https://doi.org/10.1109/CVPR.2019.00319
https://doi.org/10.1109/CVPR.2019.00319
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1002/rob.21866
https://arxiv.org/abs/2110.02210
https://arxiv.org/abs/2110.02210
https://arxiv.org/abs/1606.02147
https://arxiv.org/abs/1606.02147
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://github.com/drprojects/DeepViewAgg
https://arxiv.org/abs/1604.03540
https://arxiv.org/abs/1604.03540
https://doi.org/10.1109/TPAMI.2024.3402232
https://doi.org/10.1177/02783649241278369
https://doi.org/10.1177/02783649241278369
https://arxiv.org/abs/1908.07919
https://arxiv.org/abs/1908.07919
https://arxiv.org/abs/2503.18944
https://arxiv.org/abs/2503.18944

Feature-level fusion of 2D images and 3D LiDAR point clouds for semantic segmentation TSclT 43, July 4, 2025, Enschede, The Netherlands

B RESULTS TABLE

Table 4. KITTI-360 Val: Comparison between all models

: 3
- .
T; bﬁn = o ‘g =) g ? 2
(5] ~— o=t
w 3 85 % =z & 2 & & §% £ ¢ . % £ %
p— ] .
Model < S = B2 : & & T I g 2 & s B §& =
2D-3D 575 883 714 87.8 492 394 592 154 464 888 611 405 93.8 617 407 192
2D-only A 557 93.2 764 823 69.6 421 386 00 502 914 766 456 933 607 48 11

2D-onlyB  57.6 931 764 8 70.6 415 371 00 501 91.6 77.8 514 934 643 315 28

3D-only 542 924 748 869 459 449 573 98 479 8.1 546 468 909 45 41.8 295

Table 5. WildScenes Test: Comparison between all models

5 g E
= - T 2 ¥ F
< 1 2 2 =~ 3 g S = =
» % E £ E E » T &2 £ % E & E
Model < 2 = & 1 Y = ° e £ B 0 L

2D-3D 33.0 249 831 44 705 00 200 04 176 0.0 16 669 899 497
2D-only 279 137 689 0.0 604 0.1 226 00 162 00 00 385 851 56.7
3D-only 280 73 834 13.0 732 0.0 182 0.0 148 0.0 4.5 11.7 911 471

C ABLATION TABLES

Table 6. KITTI-360 Val: Different samplings for mutlimodal and 3D-only

: 3
«< = - « i
[=] o= -
< z = — 3 ® ) & 5 g 3 3 S g
P g < g = g = = 3 & £ & = g S 2
Model < e B 2 ES & & 0 & 2 2 a g & g a

B’D—only1 54.20 9243 7477 86.86 45.89 4485 57.31 9.76 47.88 8505 5461 46.81 9090 452 41.82 29.50
3D-only 53.43 92.07 74.96 87.42 4399 45.08 57.17 9.62 4583 85.6 56.06 3595 91.08 538 4140 29.70

2D-3D!  57.53 88.33 71.37 87.78 49.21 39.44 59.18 1544 46.41 8876 61.07 40.47 93.82 61.74 40.67 19.23
2D-3D 55.67 85.62 69.73 88.13 46.53 39.68 58.72 15.57 44.11 89.11 61.02 2326 93.59 64.52 36.51 18.95

I Rows denoting where sample resolution = 1 and full resolution = True. In these rows validation for full resolution is used, while in the others the
results from the voting run are used.
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Table 7. KITTI-360 Val: 2D-Only Segmentation Results Comparison Classes'
= =
= oD = 5
g 5 ° = o ® =) g o g 2
=} o =} Q
» 3§ O3 0z T & 2 P £ & E f L % 2 ¢z
Model < £ 3 A2 & A T L s 8 a 8 E B 3
plain 56.7 932 764 822 70.1 418 379 00 502 915 772 485 934 625 182 6.9
std 13 0.1 0.0 0.2 0.7 0.4 1.1 00 0.1 0.1 0.8 4.1 0.1 25 189 538
OHEM 574 933 768 821 70.0 413 383 00 503 915 774 500 93.5 653 267 17
std 0.3 0.5 1.0 0.1 0.1 0.5 09 00 01 0.0 0.2 0.2 0.1 0.4 4.1 6.4
class weights 59.3 929 759 82.0 700 421 392 0.0 499 914 765 549 928 622 294 29.2
std 2.1 0.1 0.3 0.3 0.0 0.1 03 00 09 0.1 0.5 8.6 0.6 2.3 9.9 140
! Mean values are reported for the models in each row.
Table 8. KITTI-360 Val: 2D-Only Segmentation Results All Classes
= =
= oD o &
—g k= k= o g g g e 2 =
3 - = =)
= 3 2 F 3z & 2 2 %2 % % o. £ & . % %G
Model < & =% &2 = & & T L& 2 & ¥ & £ 8 E E 5
plain 56.7 932 764 818 70.1 418 377 00 499 912 772 942 453 243 933 62 178 6.9
std 1.8 0.1 0.0 0.1 0.7 0.4 1.0 00 0.0 0.1 0.8 0.1 6.2 7.1 0.1 31 184 538
OHEM 576 933 768 818 700 412 381 0.0 500 912 773 943 480 280 93.5 650 263 17
std 0.3 0.5 1.0 0.0 0.1 0.4 09 00 02 0.0 0.2 0.0 0.6 2.1 0.1 0.7 4.0 6.4
class weights 59.3 929 759 81.6 700 421 39.0 0.0 495 911 765 941 524 302 928 615 29.1 29.0
std 2.2 0.1 0.3 0.3 0.0 0.1 03 00 09 0.1 0.5 0.1 101 6.6 0.6 2.8 95 139
Table 9. KITTI-360 Val: Comparison between backbone depth
g -
2w 2 4
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Multimodal 57.5 883 714 87.8 492 394 59.2 154 464 888 61.1 405 938 617 40.7 19.2
ResNet-18 56.7 932 764 822 701 418 379 00 502 915 772 485 934 625 182 6.9
ResNet-101 62.4 95 819 825 687 396 400 0.0 486 914 771 644 943 718 375 439
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Table 10. WildScenes Test: Comparison between backbone depth

5 g e
o0
P g o 3 5 L g £ =
< (%) - B
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Model < 2 = & & & = & © © £ % L& I
0.0

Multimodal 33.0 249 83.1 44 705 00 200 04 176 1.6 66.9 899 497

ResNet-18 279 137 689 00 604 01 226 00 162 00 00 385 851 56.7

ResNet-50 314 238 674 00 566 0.2 283 00 411 00 0.0 463 859 585
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D LIGHTING CONDITIONS

Q

100

Fig. 3. Example of poor lighting conditions. Image is taken from K-01 path in WildScenes[19].
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