
Generating Adversarial Prompts from Incidents and Guidelines
KURT G. SALAPARE, University of Twente, The Netherlands

Abstract Rapid deployment of Large Language Models (LLMs) has intro-
duced significant security vulnerabilities, yet the limited public availability
of detailed incident reports regarding exact prompts or techniques used
impedes comprehensive security analysis and the development of robust
defenses. This research addresses this gap by designing and evaluating a
novel AI agent capable of automatically generating adversarial prompts
from existing security guidelines and reported incidents. The agent employs
a two-phase workflow: first, processing unstructured text into a classified,
metadata-rich dataset via LLM-driven paragraph classification, and second,
utilizing these insights to generate executable adversarial prompts. We inves-
tigate the performance of various LLMs and prompt architectures (Descrip-
tive, Concise, Few-Shot) within the agent, evaluating their computational
efficiency, classification reliability, and the characteristics of the generated
prompts. This systematic methodology offers a reproducible framework for
improving proactive security analysis by providing a structured approach
to adversarial prompt generation for law enforcement and developers.

ACM Reference Format:
Kurt G. Salapare. 2025. Generating Adversarial Prompts from Incidents and
Guidelines. In Proceedings of 43𝑡ℎ Twente Student Conference on IT (TScIT
43). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

The landscape of Artificial Intelligence (AI) has been significantly
reshaped by the rapid development and widespread adoption of
Large Language Models (LLMs) in recent years, underpinned by
significant advancements in AI architectures [1]. These models have
grown dramatically in scale and capability, becoming integral to
diverse applications across numerous industries [1]. This adoption
is increasingly evident in organizational workflows; for example,
analysis of various text domains indicates that by late 2024, approxi-
mately 18% of financial consumer complaint text and up to 24%
of corporate press release text appeared to be LLM-assisted [2].
The widespread use of LLMs impacts areas from content generation
and customer interaction to complex analytical tasks [1].

However, this rapid deployment has been accompanied by in-
creasing concerns regarding the security and robustness of these
models against adversarial attacks [3]. The field of adversarial ma-
chine learning explores sophisticated techniques designed to exploit
vulnerabilities in AI systems, such as, and not limited to, prompt
injection [4, 5]. For instance, research presented at security confer-
ences has shown the tangible impact of these vulnerabilities, with
one study demonstrating that 56% of prompt injection attempts

Author’s address: Kurt G. Salapare, k.g.salapare@student.uwtente.nl, University of
Twente, P.O. Box 217, Enschede, The Netherlands, 7500AE.

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of 43𝑡ℎ

Twente Student Conference on IT (TScIT 43), https://doi.org/10.1145/nnnnnnn.nnnnnnn.

successfully bypassed LLM safeguards in an analysis of diverse
models [5, 6]. Despite the growing awareness of these vulnerabili-
ties, as discussed by a community of nearly 500 experts contributing
to initiatives like the OWASP Top 10 for LLM applications [7, 8],
a key challenge in the field is the limited availability of specific,
reproducible details regarding observed attacks and the prompts or
techniques used. Ethical considerations and security concerns often
restrict the public disclosure of such granular information, creating
a gap that impedes comprehensive security analysis, hinders the re-
liable reproduction of attacks for research and defense development,
and limits the actionable knowledge available to security practi-
tioners and developers ([5], implied by security discussions like
[6]). This gap in reproducible attack documentation necessitates fur-
ther research into systematic methods for studying and generating
diverse adversarial prompts based on reported vulnerabilities.

Building on the need for reproducible adversarial attack documen-
tation, this research investigates and will propose a reproducible
novel AI agent to process reported AI vulnerabilities and automati-
cally generate adversarial prompts. The increasing deployment of
LLMs in real-world applications has highlighted their susceptibility
to critical vulnerabilities, as illustrated by incidents such as an AI
chatbot being manipulated to agree to sell a car for 1 USD [9] and
reports of sensitive data leakage when employees used AI agents
with access to internal databases [10]. These vulnerabilities include
the aforementioned prompt injection [4, 5], which can manipulate
model behavior. While current benchmarks exist to test LLM robust-
ness against adversarial attacks [5, 6], these often focus primarily
on technical manipulations, potentially overlooking more semantic
or deceptive prompting strategies akin to human attackers [5, 6, 11].
Leveraging the understanding of how adversarial attacks are crafted,
an interesting approach is to design an AI agent capable of analyz-
ing vulnerability information and generating diverse, reproducible
prompts that mimic aspects of human adversarial thinking and
attack generation [11].

This research focuses on designing and evaluating the effective-
ness of a proposed AI agent in automatically generating diverse and
relevant adversarial prompts. The core idea is to design an agent
that can utilize publicly available information about AI vulnerabili-
ties and attack strategies. This involves building a list of relevant
URLs, systematically scraping the content from these sources, and
feeding this information into an LLM to generate prompts. The
generated prompts would then be stored and subsequently eval-
uated. This evaluation will determine the effectiveness of the AI
techniques utilized within the agent’s internal process, considering
aspects such as the efficiency of content processing, the quality of
information extraction, and the diversity and structural properties
of the generated prompts. Ideally, the generated prompts would also
be tested against various target AI models to assess their success
rate, diversity, the nature of the elicited unintended behaviors, and
the effectiveness of this AI agent’s output would be quantitatively

TScIT 43, July 4, 2025, Enschede, The Netherlands.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Kurt G. Salapare

compared against prompts derived from current adversarial attack
benchmarks [5, 6, 11]. However, due to limited time constraints and
lack of a labeled data set of paragraphs, the paper focuses primarily
on the designing of the proposed novel AI agent and evaluating the
AI techniques utilized. Ultimately, this evaluation will determine
the agent’s practical utility in enhancing proactive security analysis
for law enforcement and developers.

To achieve this we divided this research to tackle 3 research
questions :

(1) What are the current methodologies and documented limi-
tations in publicly available resources for identifying, repro-
ducing and understanding the specific prompts or input ma-
nipulations used in sophisticated adversarial attacks against
AI systems?

(2) How can various LLMs be used to design a novel AI agent
to process information from incident reports and guidelines
to automatically generate adversarial prompts suitable for
use in proactive security analysis by law enforcement and
developers?

(3) How effective are the AI techniques within the proposed
agent in generating adversarial prompts from incidents re-
ports and guidelines?

By the end of this research we expect to have contributed in 3
different ways:

(1) Systematically identify and outline current methodologies
and limitations in public resources for understanding and
reproducing sophisticated adversarial attacks against AI sys-
tems. Highlight gaps hindering comprehensive security anal-
ysis based on available information.

(2) Propose and detail the design of a reproducible novel AI agent
engineered to process incident reports and guidelines in order
to automatically generate diverse, adversarial prompts.

(3) An evaluation of the proposed AI agent’s internal compo-
nents, specifically the AI techniques (classification models,
prompt architectures, and data processingmethods) employed
in generating adversarial prompts. The analysis will quantify
metrics such as computational efficiency, reliability of classifi-
cation, and diversity of generated prompt structures, thereby
providing insights into the performance and optimization of
these techniques for future development in this domain.

The github repository for all the code used in this research can
be found here. Additionally contains all the technical details &
information.

2 RELATEDWORKS

2.1 The Approach

In answering RQ1, a systematic literature search and analysis was
conducted for relevant documents primarily throughGoogle Scholar,

as it boasts an extensive array of interdisciplinary peer-reviewed
papers. The search strategy consisted of employing keywords &
phrases, such as “adversarial attacks LLM”, “prompt injection”, “jail-
breaking large language models”, and “reproducibility of adversarial
attacks” to find the aforementioned relevant documents & papers.
The inclusion criteria for sources will be peer-reviewed articles and
conference papers published after 2019 that focus on text-based
adversarial attacks.

2.2 Traditional Attack Strategies

Traditionally, manual prompt injection was employed primarily by
injecting human engineered conflicting or overriding instructions
into the target LLM’s input. One of the most prevalent approaches
to achieve this was by a direct instruction override, such as the
“Ignore all previous instructions” followed by a prohibited action
strategy [12]. This aimed to exploit the models’ critical vulnerable
tendency to process all instructions sequentially. This strategy was
implemented into 2 types of attacks, goal hijacking and prompt
leaking. Goal hijacking is defined as the act of misaligning the
original goal of a prompt to a new goal of printing a target phrase
and prompt leaking is the act of misaligning the original goal of
a prompt to a new goal of printing part of or the whole original
prompt instead. At the time, this strategy was able to achieve a
success rate of 58.6% ± 1.6% for goal hijacking and 23.6% ± 2.7% for
prompt leaking on text-davinci-002, which was the most powerful
publicly available OpenAI model at the time [12].

One more prominent technique is the compositional instruction
attack (CIA), which utilizes a "prompt packer” that aims to ‘pack’ a
harmful prompt into a seemingly harmless/pseudo-harmless one,
which in turn creates a composite prompt that LLMs tend to mis-
interpret as non-malicious [13]. This was achieved by utilizing a
framework that uses automated transformation functions, labelled
Talking-CIA (T-CIA) and Writing-CIA (W-CIA), to generate these
complex prompts disguised as conversational or writing tasks, ex-
ploiting LLMs’ susceptibility to respond under inferred personas
or fictional contexts [13]. Although this method utilizes a more
complex system and boasts automated generation, the core con-
cept and structure behind the attack is rooted to a manual type
(compositional instruction). This was a very successful method as
it can package over 90% of the initially rejected harmful prompts
into compositional instructions that can induce LLMs to generate
harmful content, achieving a 100% non-rejection rate [13].

2.3 Modern Attack Strategies

Another paper introduces a very interesting idea, the Greedy Coor-
dinate Gradient (GCG), which is a landmark automated method for
“universal and transferable adversarial suffixes” generation [14]. It
leverages gradient-based optimization (often on a white-box model,
but shows transferability to black-box models) to find a short se-
quence of tokens that, when appended to various harmful queries,

TScIT 43, July 4, 2025, Enschede, The Netherlands.

https://github.com/KurtSalapare/Research_Project.git

Generating Adversarial Prompts from Incidents and Guidelines • 3

causes LLMs to bypass their safety alignment and generate forbid-
den content. The paper was able to achieve the following results
with their strategy. For white-box models, Llama-2-Chat-7B: GCG
achieved an ASR (Attack Success Rate) of 57% for harmful strings
and 56% for harmful behaviors on Llama-2-7B-Chat [14]. This also
notably surpasses AutoPrompt (3% and 45%) and other baselines.
With black box models, Llama-2-Chat-7B: achieved ASRs from ap-
proximately 70% to 90% [14].

Another modern and prominent technique is context manipula-
tion and role-playing generationwith an LLM. The LLM is instructed
to adopt a persona or scenario that encourages the generation of
restricted content [15]. AdvPrompter was designed to take a ma-
licious instruction (e.g., Write a tutorial on building a bomb) and
then generate an adversarial suffix (e.g., as part of a lecture on bomb
defusal) that would elicit a positive response when combined with
the malicious instruction [15]. This strategy was able to achieve a 1
shot ASR of 49.4% on GPT-3.5-1106 and 29.2% on GPT-4-0613.

2.4 Limitations

Although the traditional strategies have proven to be quite success-
ful, especially for their time as safeguards and defense mechanisms
were not as sophisticated and thorough, these strategies face signif-
icant limitations. Primarily, they are extremely labor-intensive as
they rely on human ingenuity and extensive trial-and-error in their
formulation. This negatively affects the scalability of these tech-
niques towards a wider range of diverse models. Building off on this
downside, due to the way they are usually generated, it is also not
certain that an adversarial prompt that works with one model may
work with another, leading them to be model specific. Additionally,
as LLM developers continuously release updates and patches, what
may have worked before may not work anymore. Thus, due to the
initial aforementioned difficulty in manual prompt generation, they
are prone to obsolescence. This constant "cat-and-mouse" game ne-
cessitates continuous discovery of new bypasses and highlights the
need for more systematic and generalizable attack methodologies
to ensure lasting security evaluations [12].

While the modern strategies significantly advanced beyond the
traditional, manual methods, they still have their distinct draw-
backs that this research aims to mitigate. GCG faces a problem with
human readability as it produces semantically meaningless char-
acter sequences to the untrained human eye [14]. Although these
prompts are effective, they have slowly become obsolete with new
filters, such as the perplexity-based filter. This in turn leads to them
becoming less useful for crafting actionable security guidelines. Ad-
vPrompter does not inherently prioritize or explore attacks relevant
to the complex and specific security policies that would be found in
an organization’s incident reports or internal guidelines [15].

This research aims to overcome these limitations by proposing
a novel method of generating highly relevant, interpretable, and
targeted adversarial prompts by deriving attack patterns directly
from reported incidents and guidelines and thereby providing more

actionable intelligence for enterprise-specific LLM security. In addi-
tion, this research will also tackle the limitations of the traditional
attack strategies. This aims to be a method of generating diverse
prompt structures based on current knowledge, via the previously
mentioned guidelines and incident reports, enabling it to be tailored
to a wider array of attacks. This advocates for more holistic and
adaptive red-teaming capabilities.

Table 1. Comparison of Attack Strategies (Part 1: Basic Characteristics)

Paper Type Core Mechanism
Perez & Ribeiro Manual Direct Instruction Override
Jiang et al. Automated Prompt Packing
Zou et al. Automated Gradient-based Universal Suffixes
Paulus et al. Automated Context/Role Manipulation
This Research Automated Derived from Incidents/Guidelines

Table 2. Comparison of Attack Strategies (Part 2: Advanced Features and
Limitations)

Paper Universal Legible Obsolete Prone
Perez & Ribeiro ✓ ✓
Jiang et al. ✓ ✓
Zou et al. ✓ ✓
Paulus et al. ✓
This Research ✓ ✓ ✓

3 METHODOLOGY

3.1 Data Set

This subsection details the selection process and considerations of
the core data inputs for the proposed AI agent: security guidelines
and, where feasible, incident reports.

The predominant sources of information are derived from stan-
dardized security guidelines, particularly three authoritative online
sources. These sources were strategically selected as they cover a
diverse spectrum of LLM attack principles, from foundational ty-
pologies to more creative techniques and industry-known standard
vulnerabilities. These include the National Institute of Standards and
Technology (NIST)’s publications on cyberattacks on AI systems,
Cloudfare’s explanation of the OWASP Top 10 for LLM applications
and HiddenLayer’s insights into novel universal bypass methods.
The rationale for these selections is that if an AI agent was able
to demonstrate effective processing, understanding and learning
on how and why these various attack strategies are designed, and
applying the knowledge garnered from these sources into generat-
ing adversarial prompts that adhere to what it learnt, then it can
be strongly inferred that this approach is broadly applicable. For
indicent reports, two particular incidents were examined, an Air
Canada chatbot promising to selling a ticket at a discounted price
and Amazon’s Bad Rufus: A Chatbot Gone Wrong. These incidents
highlighted scenarios where safety and particularly security was
compromised within these AI applications or systems.

TScIT 43, July 4, 2025, Enschede, The Netherlands.

4 • Kurt G. Salapare

3.2 Scraping and Data Extraction

For the data extraction from the websites, a webscraping was done
utilizing the Crawl4ai framework, taking advantage of its integration
with Playwright. This was critical for handling modern, dynamic
web pages that heavily relied on Java Script for rendering their
content. Crawl4ai was configured to navigate to each target URL,
Playwright was then used to render the pages, and the main body
HTML content was extracted and automatically converted into
a structured Markdown object. This step was vital as Markdown
provides a cleaner, more organized, and human readable version
of the text compared to raw HTML, significantly reducing noise
from advertisements, other elements that are irrelevant such as
navigation components, as they can also cause problems for direct
text analysis or LLM input. A workflow diagram visuzalizing the
process can be found in Appendix A.1.

3.3 Workflow methodology

The workflow is structured into 2 distinct but interconnected phases.
These phases both utilize LLMs in their respective ways. The initial
phase is paragraph classification. This phase serves a critical role
as it is responsible for data pre-processing and organization. Raw
unlabeled text data, attained from webscraping, was fed into an
LLM. The instructions of the LLM were of 3 different prompt struc-
tures : structured prompt, concise prompt and few-shot prompt. The
results of how these distinct prompt structures vary can provide a
significant insight on how to best maximize this workflow depend-
ing on the real-life context. The primary task within this phase is
to analyze each paragraph’s content and assign a a usability score
(0 - could not extract classification data because format was not as
instructed, 1 - text that was outputed in the correct format however
is entirely irrelevant to prompt attacks, 2 - relevant but not direct
prompt examples, 3 - direct prompt examples) along with a detailed
reasoning on said classification. This rigorous classification pro-
cess converts unstructured text into an organized and categorized
dataset benefiting the corresponding constituent phase. A workflow
diagram visuzalizing the process can be found in Appendix A.2.

The second phase is Adversarial Prompt Generation. As aforemen-
tioned, this part heavily relies that the data is categorized properly
as only text classified as usability scores 2 and 3 will be utilized.
Similarly, a LLM is employed here as well, but a different instance
to the prior phase’s. This phase’s LLM is specifically instructed to
create concrete, executable adversarial prompts based on the data
filtered out from the first phase. Along with the input data, an-
other important component to this phase is the different prompt
architectures, mimicking phase 1, to examine how they affect the
results. A workflow diagram visuzalizing the process can be found
in Appendix A.3.

3.3.1 Model Selection and Architecture for Classification. For the
text-based classification, several LLMs available through the Ollama
framework were evaluated, selected for its zero-cost accessibility,

privacy-preserving local execution, and comprehensive model li-
brary enabling this to be reproducible for anyone as well as scal-
ability to larger and more complex models. The evaluated models
represent diverse architectural approaches and parameter scales:

(1) Llama3 (8B): Meta’s open-weight model optimized for bal-
anced performance across various NLP tasks

(2) Qwen (7b): Alibaba’s multilingual model with strong semantic
understanding capabilities

(3) Gemma (7B) : A new open model developed by Google and its
DeepMind team. It is inspired by Gemini models at Google.

(4) Gemma3 (12B) : Another open model developed by Google
and its DeepMind team however, is a larger variant within
the Gemma family, with the purpose to use as a reference
model.

3.3.2 Model Selection and Architecture for Prompt Generation. Simi-
lar to the text-based classification, the same LLMs available through
the Ollama framework were selected for the same reasons as men-
tioned before. However, for the adversarial prompt generation, an
ablitered version of Llama 3.1 was also included as it lowers the
chance of guardrails inhibiting adversarial prompt generation as it
was occasionally classified as prohibited by the models.

• mannix/llama3.1-8b-abliterated:latest (8B) : This is an uncen-
sored version of Llama 3.1 8B Instruct created with ablitera-
tionwith an uncensored prompt.Will be referred as lamma3.1-
ab from now on.

3.4 Prompt Architecture and Engineering Strategy

Descriptive Prompt (Structured Definition). This foundational
prompt structure follows a comprehensive, definition-based ap-
proach that explicitly details all the instructions. For Paragraph
Classification, this prompt ensures that the LLM gains a complete
and unambiguous understanding of how to categorize raw text
based on its relevance to AI security vulnerabilities. For Adversarial
Prompt Generation, it establishes the LLM’s expert role and clearly
states the objective and specific security-focused requirements.

Concise Prompt (Minimal Instructions). The core concept of this
prompt architecture is to streamline tasks by reducing them to their
fundamental elements. This is especially beneficial when computa-
tional overhead must be minimized, or when computation speed is
prioritized over accuracy. For Paragraph Classification, the concise
prompt details only the core classification instruction information
and output format, but minimizes much of the other nuances. Simi-
larly for Adversarial Prompt Generation, it solely focuses on only
the core concepts of generating adversarial prompts from the con-
text. The concise prompt structure leverages the concept that LLMs
have the ability to retain context and apply learned instructions
efficiently by minimizing complexity and length.

Few-Shot Prompt (In-Context Learning). This prompt format in-
corporates carefully curated labeled examples into the user prompt,

TScIT 43, July 4, 2025, Enschede, The Netherlands.

Generating Adversarial Prompts from Incidents and Guidelines • 5

leveraging the LLM’s ability to learn from a small labeled dataset.
This approach also aims to mitigate the chance of hallucination
by showcasing concrete demonstrations. For Paragraph Classifica-
tion, few-shot examples illustrate how specific text content should
be paired with its correct usability score and reason. For Adver-
sarial Prompt Generation, examples demonstrate how the input
data/content should be transformed into an effective, security-focused
adversarial prompt, leading to more sophisticated and targeted out-
puts.

For all the prompts used in this paper, refer to this link to the
github repository Prompts Utilized.

RQ2 is comprehensively addressed in this section as it details how
a novel AI agent is designed using various LLMs to process security
information for automatic adversarial prompt generation. It specifies
the use of diverse LLMs selected via the Ollama framework. This is
the core of the agent’s two-phaseworkflow: ParagraphClassification
and Adversarial Prompt Generation. The proposed agent processes
information from standardized security guidelines and incident
reports, through web scraping with Crawl4ai/Playwright for clean
Markdown extraction. The Adversarial Prompt Generation phase
specifically outlines how an LLM, guided by structured, concise,
or few-shot prompts, automatically creates executable adversarial
prompts, thus laying the groundwork for tools suitable for proactive
security analysis by law enforcement and developers. A workflow
diagram visuzalizing the entire AI agents processes can be found in
Appendix A.4.

4 RESULTS & DISCUSSION

4.1 Classification Results

The following tables convey the differing average computation times
of the 4 models mentioned previously to classify a paragraph.

Table 3. Average Classification Time Per Model

Classification Model Avg Classification time (seconds)

gemma3:12b 8.49720305389544
gemma:7b 2.234373011525648
llama3:8b 0.6470358492216473
qwen:7b 0.9361249665090879

Table 4. Avg Comp Time per Model per Prompt Architecture

Model Concise Few Shot Structured

gemma3:12b 8.768 9.354 7.370
gemma:7b 1.861 2.772 2.070
llama3:8b 0.499 0.623 0.820
qwen:7b 0.832 0.995 0.981

4.1.1 Average Computation Time Results. Table 3 shows the aver-
age computation time per model irrespective of prompt architec-
ture. This provides valuable insight on how these models perform
regardless of prompt architecture. Table 4 displays the average com-
putation time per model, but respective of prompt architecture. This
provides a deeper perspective on how these models perform in re-
gards to computation speed, depending on the prompt architecture.

Key Insights :

• Model Size: gemma3:12b is slower because it’s a larger model
(12B parameters).

• Architectural Efficiency: llama3:8b and qwen:7b are inher-
ently more efficient architectures for this classification task
compared to the gemma models at similar (7-8B) parameter
scales. This could be due to their inherent design or superior
inference optimizations.

Prompt structure has a consistent impact related to expected
token count and processing overhead:

(1) Few Shot prompts are generally the slowest (due to raw
token count).

(2) Concise prompts are generally the fastest (due to minimal
token count).

(3) Structured prompts vary, but for the more efficient models
(llama3:8b, qwen:7b), the fixed overhead of parsing the struc-
tured format can be substantial, sometimes even approaching
the cost of few-shot prompts or exceeding concise prompts
by a notable margin. For gemma3:12b, its structured prompt
seems unusually efficient given the other prompt types.

4.1.2 Score count per model per prompt structure. The following
table shows the amount of paragraphs that were classified a partic-
ular score given a model and prompt structure. The first column is
a pairing of the model used in classification and the corresponding
usability score that will be counted in that row.

This data, derived from unlabelled paragraphs, highlights sig-
nificant scoring biases or inherent propensities of each model and
prompt combination, rather than their objective accuracy. These
biases are critical given the absence of ground truth labels for clas-
sification.

• Llama3:8b shows that it consistently was able to classify the
paragraphs with no problems and adhering to the required
JSON format. This is evident as it rarely classifies 0 scores
(meaning could not extract classification data because for-
mat was not as instructed). Additionally, it predominantly
assigned scores of 1 and 2, with it favoring score 2 most
with concise prompts. This model overall seemed to be more
inclusive overall.

• Gemma:7b and Qwen:7b (Primarily for Few-Shot and Struc-
tured Prompts) exhibited that they were not able to adhere to
the instructions of the prompts as they significantly classified
the texts are 0. However Qwen:7b when using the concise

TScIT 43, July 4, 2025, Enschede, The Netherlands.

https://github.com/KurtSalapare/Research_Project/blob/97ca712fb5ef78ed3ac9ccc656a530749b65cf3c/prompts_used.py

6 • Kurt G. Salapare

Table 5. Score Count per Model per Prompt Architecture

Model & Score Concise Few Shot Structured

gemma3:12b, 1 86 138 111
gemma3:12b, 2 113 67 97
gemma3:12b, 3 15 9 6
gemma:7b, 0 150 182 162
gemma:7b, 1 17 6 27
gemma:7b, 2 22 19 15
gemma:7b, 3 25 7 10
llama3:8b, 1 42 152 165
llama3:8b, 2 139 52 38
llama3:8b, 3 33 0 11
qwen:7b, 0 13 210 214
qwen:7b, 1 0 0 0
qwen:7b, 2 41 0 0
qwen:7b, 3 160 4 0

prompts was able to perform as instructed, signifying that the
prompts themselves would be the issue and not the models
themselves.

• Gemma3:12b displays a more modereate but still conserva-
tive bias as it classifies majority of the texts as 1 (not relevant
to prompt generation) but still scores a significant amount
of texts as 2 and 3, which logically speaking makes sense as
there are more instances of explaining concepts than direct
examples.

These observations regarding the biases is a very crucial aspect
to consider for real-world deployment. This heavily dictates how
much information would be considered relevant by the proposed
AI agent when processing unlabeled security data. Understanding
these innate biases is extremely significant for model selection since
selecting one whose internal scoring aligns with the desired level of
inclusiveness or conservativeness for subsequent prompt generation,
especially with the absence of explicit labels.

Table 6. Percentage of Agreement of Other Models vs. Gemma3:12b for
Usability Score Classification

Model Score 1 Score 2 Score 3

gemma:7b 6.34% 11.95% 14.04%
llama3:8b 45.56% 37.74% 31.58%
qwen:7b 0.00% 6.85% 34.21%

4.1.3 Percentage of Agreement Scoring of All Models vs Gemma3:12b
per Score per Prompt. This section investigates the agreement per-
centage in usability score classification from all other models against
gemma3:12b, utilizing it as a reference model. This approach is
motivated by the general understanding that LLMs, with more ex-
tensive training datasets and greater parameter counts, often exhibit
enhanced reasoning capabilities and are presumed to offer more
accurate or robust classifications. The concept of "LLM-as-a-Judge"

Table 7. Percentage of Agreement between Other Models vs. Gemma3:12b
for Usability Score Classification by Prompt Type

Model & Score Concise Few Shot Structured

gemma:7b, 1 8.90% 1.67% 11.22%
gemma:7b, 2 17.97% 5.00% 9.38%
gemma:7b, 3 26.67% 33.33% 0.00%
llama3:8b, 1 35.17% 97.21% 7.82%
llama3:8b, 2 59.91% 41.00% 22.50%
llama3:8b, 3 60.00% 11.11% 0.00%
qwen:7b, 1 0.00% 0.00% 0.00%
qwen:7b, 2 20.28% 0.00% 0.00%
qwen:7b, 3 73.33% 0.00% 0.00%

[16] provides a strong precedent for using powerful & universal
LLMs to evaluate and score textual content. This is even applied
to scenarios with the absence of human-determined ground truth.
This principle extends to classification tasks, where a larger model’s
sophisticated understanding and nuanced judgment can serve as a
reliable benchmark for assessing the consistency and performance of
other models handling unlabeled data. By comparing other models’
classifications against gemma3:12b on the same unlabeled para-
graph dataset, this approach aims to identify which models and
prompt architectures exhibit a high degree of consistency with this
reference.

The findings from Table 6, showcasing overall agreement, indi-
cates :

• llama3:8b demonstrates the highest average consistency
with gemma3:12b.With Score 1 (45.56%) and Score 2 (37.74%)
being the highest.

• Qwen:7b, while showing a notable 34.21% agreement for
Score 3, exhibits a complete disagreement for Score 1 (0.00%).

• Conversely, gemma:7b consistently shows the lowest agree-
ment across all scores, suggesting a significant difference in
its classification patterns compared to gemma3:12b.

Table 7, separates agreements by prompt type, highlighting criti-
cal insights.

• Llama3:8b’s agreement is exceptionally high for Score 1
when utilizing Few-Shot prompts (97.21%). Llama3:8b also
maintains strong agreement with Concise prompts for Scores
1 (35.17%), 2 (59.91%), and for Score 3 (60.00%).Overall, Llama3:8b
is themost consistent and reliable substitute forGemma3:12b,
especially with Few-Shot prompting.

• In contrast, Qwen:7b shows a remarkable 73.33% agree-
ment for Score 3 when using Concise prompts.

• Gemma:7b’s agreement levels remain comparatively low
across all prompt types, reinforcing its general inconsistency
with gemma3:12b.

These results are crucial for selecting models that can reliably clas-
sify paragraphs for adversarial prompt generation with a smaller,

TScIT 43, July 4, 2025, Enschede, The Netherlands.

Generating Adversarial Prompts from Incidents and Guidelines • 7

more efficient model rather than the generally larger and more
resource-intensivemodels. From thiswe can conclude that Llama3:8b
is the most reliable and consistent model when utilizing few-shot
prompts. For concise prompts, qwen :7b was the most consistent.
For structured prompts, the model with the highest percentage is
lamma:8b, however the percentages are not sufficient enough to
consider as a substitute model (7.82% for classifying score 1, and
22.5% for score 2).

4.2 Prompt Generation

Table 8. Prompt Generation Model Average Computation Time

Prompt Generation Model Avg Generation Time

gemma3:12b 9.268
gemma:7b 2.347
llama3:8b 0.651
lamma3.1-ab 0.838
qwen:7b 1.332

Table 9. Average Computation Time per Model and Prompt Type

Model Concise Few-Shot Structured

gemma3:12b 13.182 8.778 5.844
gemma:7b 2.521 2.136 2.383
llama3.1-ab 0.661 0.797 1.057
llama3:8b 0.561 0.535 0.857
qwen:7b 1.557 1.302 1.135

4.2.1 Average Generation Time per Model. Tables 8 & 9 convey the
differing average computation times of the 5 models mentioned
previously to generate adversarial prompts only from paragraphs
classified by gemma3:12b.

Table 8 shows the average computation time per model irrespec-
tive of prompt architecture, providing insight into their baseline
performance. Table 9 displays the average computation time per
model respective to prompt architecture, offering a deeper perspec-
tive on how these models perform in regards to computation speed
based on the specific prompt format. Key Insights:

• Model Size: As expected, gemma3:12b consistently exhibits
the slowest prompt generation times (9.268 seconds overall),
reinforcing the principle that larger models generally incur
higher computational overhead.

• Architectural Efficiency: llama3:8b (0.651 seconds overall)
and llama3.1-ab (0.838 seconds overall) prove to be the most
efficient architectures for prompt generation, significantly
outperforming the gemma and qwen models at similar pa-
rameter scales.

Prompt structure has a distinct impact related to expected token
count and processing overhead during generation:

• Llama Models’ Efficiency: For llama3:8b and llama3.1-ab,
Concise and Few-Shot prompts generally remain the fastest
for prompt generation (e.g., llama3:8b at 0.561s for Concise,
0.535s for Few-Shot).

• Structured Prompt Generation Variability: Structured
prompts can be surprisingly efficient for generation in some
models. For gemma3:12b and qwen:7b, Structured prompts
are notably the fastest for generating output (5.844s and 1.135s
respectively), in contrast to the trend seen in paragraph clas-
sification(section 4.1.1). This indicates that providing a clear
output structure can streamline the generation process for
these models, potentially reducing search space or cognitive
load compared to less constrained formats.

• InvertedConcise Performance: Interestingly, for gemma3:12b,
Concise prompts result in the slowest generation times (13.182s).
This inverse relationship compared to other models suggests
that this prompt structure requires more internal processing
or iterative refinement for gemma3:12b, leading to a higher
computational cost.

This analysis highlights that the efficiency of a prompt type is not
universal and depends significantly on the specific LLM architecture.
For prompt generation, more detailed or structured prompts can
sometimes reduce the processing time for the model, leading to
faster results, even if they initially add to the input token count.

Table 10. Model Prompt Generated Text Word Length per Prompt Type in
(Min, Average, Max) Format

Model Concise Few-Shot Structured

gemma3:12b (13, 53.11, 156) (8, 35.82, 78) (3, 21.16, 84)
gemma:7b (16, 39.48, 116) (12, 35.05, 69) (6, 31.35, 156)
llama3:8b (15, 28.81, 80) (12, 24.85, 39) (8, 26.62, 75)
llama3.1-ab (2, 31.95, 93) (3, 37.54, 93) (2, 17.38, 43)
qwen:7b (3, 57.20, 217) (9, 47.88, 279) (4, 28.18, 191)

4.2.2 Distribution of Generated Prompt Length: Table 10 illustrates
the minimum, average, and maximum word counts of generated
prompts across different models and prompt types. The data reveals
consistent patterns in models’ inherent text generation length biases
and how effectively prompt structures regulate output length.

• Llama3:8b and llama3.1-ab consistently generate the short-
est prompts by average word count (e.g., 28.81 and 31.95 for
concise respectively).

• Conversely, gemma3:12b and qwen:7b tend to produce
some of the longest prompts on average, with qwen:7b’s con-
cise prompts being the most verbose (57.20 words average).

• Gemma:7b was consistently average overall.

A key insight from this word length analysis is that structured
prompts generally lead to the most concise outputs by word count
for the majority of models (gemma3:12b, gemma:7b, llama3.1-ab, and
qwen:7b). This infers that a clear & structural format often guides

TScIT 43, July 4, 2025, Enschede, The Netherlands.

8 • Kurt G. Salapare

the model more efficiently as it directly communicates what is to be
expected and not expected. This reduces any ambiguities that can
cause unnecessary words in the generated content. Understanding
these distinct length biases is critical for real-world applications, as
word count directly impacts factors such as ease of human review,
potential for stealth or obfuscation within the prompt, and, due to
token count, lower computational costs.

This section addresses RQ3 by evaluating the effectiveness of the
AI techniques within the proposed agent through an analysis of its
internal performance metrics. It quantifies the computational effi-
ciency of various LLMs and prompt architectures during both para-
graph classification and adversarial prompt generation phases. The
section also examines the reliability of classification through score
distribution biases and inter-model agreement, using Gemma3:12b
as a reference to gauge consistency in identifying relevant security
information. Furthermore, the effectiveness of prompt generation
is assessed by analyzing the diversity and structural properties of
the generated outputs, particularly their word length distributions
across different models and prompt types. While direct empirical
validation of adversarial prompt efficacy against target LLMs was
beyond the scope due to practical constraints, this analysis provides
crucial insights into the agent’s capability to efficiently process in-
formation and produce structurally diverse and relevant adversarial
prompts based on incident reports and guidelines.

5 LIMITATIONS & FUTUREWORK

• Lack of Ground Truth Values & Primarily Unlabeled
Dataset : As aforementioned, one of the most significant lim-
itations of this paper is the lack of a ground truth value stem-
ming from the fact that the dataset is inherently unlabeled.
To address this we used the concept of LLM-as-a-Judge[16]
to establish a reference utilized as the grounf truth value.
However, this method innately succumbs to the model’s par-
ticular bias from its training set. A diverse set of professional
cybersecurity analysts to classify the data set would be a sub-
sequent future work to see how well these models perform
when compared to the ground truth labels from the consen-
sus of professionals. This was unfortunately not achievable
during this research due to the limited time constraints.

• Lack of Testing Adversarial Prompts on Target LLMs:
The other signficant limitation, which has also been men-
tioned, is the lack of direct testing of the adversarial prompts
against target LLMs. While it was initially intended and
planned to test these generated promtps against smaller and
older models to see how practical the generated prompts
were, it was unfortunately not feasible to do so as the amount
of generated prompts were significantly larger than antici-
pated. Subsequently, a proper selection strategy describing
which prompts to test was essential in order to perform these
tests which proved to be difficult to achieve given the time
constraints. This promotes the potential of a future work ex-
ploring and addressing this limitation. A future work that
tests and evaluates adversarial attack prompts, generated

from this AI agent, success rates against various models (pa-
rameter size, dates released, adversarial attack safeguards
implemented) is extremely interesting. This will also quantify
the practicality of the AI agent in a real-world setting.

• RAG Implementation and Adaptive Attack Strategy
Generation: A crucial future direction to explore is the inte-
gration of Retrieval-Augmented Generation (RAG) with the
AI agent. RAG will enable the AI agent to dynamically ac-
cess and incorporate the most recent data from continuously
updated security guidelines and incident reports. This pro-
poses the following concept: completely replace the human
necessity in adversarial prompt generation by mimicking the
thinking process. By learning from the intricate details of all
the adversarial prompt related data, such as; how they are
structured individually and compared to other attacks, how
they succeeded, what vulnerabilities they exploited, and how
defenses were bypassed, it not only is able to recreate prompts
at scale, but potentially create novel prompts, significantly
reducing the reliance on human ingenuity for discovering
new vulnerabilities and attack strategies.

6 CONCLUSION

This research successfully identified existing methodologies and
significant limitations in publicly available resources for under-
standing and reproducing adversarial attacks against AI systems,
highlighting the critical gap in specific attack documentation. To
address this, the study designed a novel AI agent that effectively
leverages various LLMs through a two-phase workflow, paragraph
classification and adversarial prompt generation, to process security
guidelines and incident reports, automatically creating adversarial
prompts. Furthermore, the effectiveness of the AI techniques within
this agent was evaluated based on their computational efficiency
in processing and generating content, the reliability of informa-
tion extraction through classification, and the structural diversity
and characteristics of the generated prompts. Ultimately, this work
contributes a systematic approach to enhancing proactive security
analysis for law enforcement and developers by streamlining the
generation of relevant adversarial prompts.

The github repository for all the code used in this research can
be found here. Additionally contains all the technical details &
information.

7 AI STATEMENT

The author of this research paper used AI tools to support the aca-
demic writing process and the development of advanced scripting
tasks. Gemini was employed to improve the structure, and coherence.
It also assisted in generating and refining Python scripts, regular ex-
pressions, and prompts in developing the AI agent. All AIgenerated
content was critically reviewed and edited by the author to ensure
accuracy, clarity, and originality.

TScIT 43, July 4, 2025, Enschede, The Netherlands.

https://github.com/KurtSalapare/Research_Project.git

Generating Adversarial Prompts from Incidents and Guidelines • 9

REFERENCES

[1] M. Moradi, K. Yan, D. Colwell, M. Samwald, and R. Asgari, “A critical review
of methods and challenges in large language models,” Computers, Materials &
Continua, vol. 82, no. 2, 2025.

[2] T. W. A. of Large Language Model-Assisted Writing Across Society arXiv, “The
widespread adoption of large language model-assisted writing across society,”
arXiv preprint, n.d.

[3] A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. D. Tygar, Adversarial machine
learning. Cambridge University Press & Assessment, 2019.

[4] H. Kim and W. Park, “Text-based prompt injection attack using mathematical
functions in modern large language models,” MDPI, vol. 13, no. 24, 2024.

[5] Systematically Analysing Prompt Injection Vulnerabilities in Diverse LLM Ar-
chitectures, “Systematically analysing prompt injection vulnerabilities in diverse
LLM architectures,” in International Conference on Cyber Warfare and Security,
vol. 20, 2025.

[6] ResearchGate, “October 11, 2024 | security and auditing tools in large language
models (LLM),” ResearchGate, n.d.

[7] OWASP, “OWASP top 10: LLM & generative AI security risks.” https://owasp.org/
www-project-top-10-for-large-language-model-applications/, n.d.

[8] Technet24, “The AI revolution in networking, cybersecurity, and emerg-
ing technologies.” https://dl1.technet24.ir/Downloads/EBooks/Network/The-AI-
Revolution-in-Networking.pdf, n.d.

[9] T. Perry, “Hacker tricks chatbot into selling him a car for $1,” Upworthy, Dec. 2023.
[10] L. Law, “Samsung data leak: Engineers send confidential data to ChatGPT,” legal-

data.law, Apr. 2023.
[11] A. B. autonomous exploitation of adversarial example defenses arXiv, “AutoAd-

vExBench: Benchmarking autonomous exploitation of adversarial example de-
fenses,” arXiv preprint, n.d.

[12] F. Perez and I. Ribeiro, “Ignore previous prompt: Attack techniques for language
models,” arXiv preprint, 2022.

[13] S. Jiang, X. Chen, and R. Tang, “Prompt packer: Deceiving llms through composi-
tional instruction with hidden attacks,” 2023.

[14] A. Zou, Z. Wang, N. Carlini, M. Nasr, J. Z. Kolter, and M. Fredrikson, “Universal
and transferable adversarial attacks on aligned language models,” 2023.

[15] A. Paulus, A. Zharmagambetov, C. Guo, B. Amos, and Y. Tian, “Advprompter: Fast
adaptive adversarial prompting for llms,” 2025.

[16] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li,
E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica, “Judging llm-as-a-judge with
mt-bench and chatbot arena,” 2023.

A APPENDIX OF WORKFLOW DIAGRAMS

A.1 Paragraph Scraping

Fig. 1. Paragraph Scraping Work Flow Diagram

A.2 Paragraph Classification Workflow Diagram

Fig. 2. Paragraph Classification Work Flow Diagram

A.3 Prompt Generation Workflow Diagram

Fig. 3. Prompt Generation Work Flow Diagram

A.4 Complete Workflow Diagram

Fig. 4. Complete Work Flow Diagram

TScIT 43, July 4, 2025, Enschede, The Netherlands.

https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://dl1.technet24.ir/Downloads/EBooks/Network/The-AI-Revolution-in-Networking.pdf
https://dl1.technet24.ir/Downloads/EBooks/Network/The-AI-Revolution-in-Networking.pdf

	Abstract
	1 Introduction
	2 Related Works
	2.1 The Approach
	2.2 Traditional Attack Strategies
	2.3 Modern Attack Strategies
	2.4 Limitations

	3 Methodology
	3.1 Data Set
	3.2 Scraping and Data Extraction
	3.3 Workflow methodology
	3.4 Prompt Architecture and Engineering Strategy

	4 Results & Discussion
	4.1 Classification Results
	4.2 Prompt Generation

	5 Limitations & Future Work
	6 Conclusion
	7 AI Statement
	References
	A Appendix of Workflow Diagrams
	A.1 Paragraph Scraping
	A.2 Paragraph Classification Workflow Diagram
	A.3 Prompt Generation Workflow Diagram
	A.4 Complete Workflow Diagram

