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This paper explores the use of gravity-based centrality measures to rank
nodes in Directed Acyclic Graphs (DAGs) of Autonomous System (AS)
networks. These measures are inspired by the classical gravity model,
where influence is determined by node size and distance. We compare
twelve variants of gravity-based centrality, each with distinct weighting
and distance formulations, against customer cone size, a widely used AS
ranking metric. Using historical AS DAG snapshots from 1998 to 2025, we
evaluate each method in terms of ranking monotonicity, correlation, and
stability. The results show that several gravity-based models, particularly
DKEGM, Entropy-Based, and Multi-Characteristics Gravity, consistently
outperform customer cone size in ranking resolution and stability. After
removing leaf nodes, these models achieve near-perfect monotonicity
(≈ 0.9999) and strong agreement among themselves, offering a more
nuanced view of AS importance in directed network topologies.

Additional Key Words and Phrases: Autonomous System Network, Au-
tonomous System Ranking, Gravitational ranking

1 INTRODUCTION
The internet is made up of thousands of smaller networks, called
Autonomous Systems (ASes). An AS is a collection of IP net-
works and routers under the control of a single organization that
presents a unified routing policy to the rest of the internet [5].
Each AS is responsible for forwarding packets correctly within
its network and to neighboring ASes.
Some examples of ASes are Internet Service Providers (ISPs),

universities, large enterprises, and government networks[3].While
each AS operates independently, it participates in global routing
by exchanging information with other ASes, using the Border
Gateway Protocol (BGP).
When multiple of these ASes are connected, they form an

Autonomous System Network (ASN). This network is created
when multiple of these ASes exchange routing information using
the Border Gateway Protocol (BGP), enabling end-to-end data
transfer across different ASNs. The ASN shows relationships
between ASes and defines how data is routed from one AS to
another. The structure of the ASN changes dynamically based on
routing policies, peering agreements.
The structure of an ASN can be represented as a Directed

Acyclic Graph (DAG), where each node is an AS and each edge is
a valid route between them. Since routing loops are avoided in
BGP, the resulting topology forms a DAG[2]. This structure helps
analyze routing behavior, identify influential ASes, and apply
graph-based algorithms.
Edges in the DAG represent different types of inter-AS rela-

tionships:
• Provider-to-Customer (p2c): A provider allows its cus-
tomer to send and receive traffic through its network.
• Customer-to-Provider (c2p): A customer connects through
a provider to reach the internet.
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• Peer-to-Peer (p2p): Two ASes exchange traffic between
their customers without paying each other.

Although the DAG edges represent route advertisements, ac-
tual data packets may flow in either direction, depending on the
policies of intermediate ASes. For example, an AS at the bottom of
the DAG may reach another AS on a different branch if providers
along the way permit the traffic. Thus, the DAG is a logical ab-
straction used to show structure and policy relationships, not a
strict enforcement of data flow direction[4].

1.1 Contributions
This paper makes the following key contributions:
• We provide a comparative analysis of twelve gravity-based
centralitymodels applied toDirectedAcyclic Graphs (DAGs)
representing Autonomous System (AS) networks.
• We propose an evaluation framework that uses monotonic-
ity and rank correlation to assess the effectiveness of these
models in separating and ranking AS nodes.
• We demonstrate that certain gravity-based models (e.g.,
DKEGM, Multi-Characteristics, and Entropy-based) out-
perform the widely used customer-cone size metric in both
ranking resolution and structural insight.
• We identify structural differences between gravity-based
models and show how they reveal ASes with strategic im-
portance not captured by traditional metrics.

To the best of our knowledge, this is the first work that system-
atically compares multiple gravity-based centrality models on
large-scale DAGs of AS networks.

1.2 Motivation
1.2.1 Why rank ASes? Ranking ASes is important for businesses
that operate their own networks. In particular, it plays an im-
portant role when establishing peer-to-peer (p2p) connections,
which are usually created to improve local or regional routing ef-
ficiency. By identifying and ranking ASes based on their influence
or centrality in the network, a business can make more informed
decisions about which ASes to peer with, ultimately maximizing
connectivity, performance, and resilience across the internet.

1.2.2 Role of centrality in understanding network influence and
dynamics. Centrality is used to measure how important or im-
pactful a node is in a network. For ASNs, centrality is used to
find important ASes for connectivity in a network. These ASes
usually have more connections or appear on many paths between
other ASes, making them important for forwarding traffic. Rank-
ing ASes based on centrality gives insight into the structure of
the network and shows how resilient or efficient it is. It can also
be used to find bottlenecks, improve routing, or decide where to
create new peerings.

1.2.3 Limitations of customer-cone and other traditional approaches.
There are several traditional ranking methods used to evaluate
AS importance, such as Degree Centrality, Eigenvector Centrality,
Alpha Centrality, customer-cone size, and Betweenness Centrality
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[16]. While these methods are useful, each has its own limitations
when applied to ASNs.
• Degree Centrality: Measures how many direct connec-
tions an AS has. It does not consider the quality or impor-
tance of those connections [13].
• Eigenvector Centrality: Accounts for the influence of
neighboring nodes, but assumes symmetric relationships,
which is often not the case in ASNs [6].
• Alpha Centrality: Similar to eigenvector centrality but
includes external influence. However, it requires tuning a
parameter and lacks clear interpretation in some network
types [1].
• Customer-cone size: Counts the number of ASes that
can be reached through provider-to-customer paths. It ig-
nores peering and c2p links, which might result in different
ASes receiving similar rank indexes, potentially reducing
ranking resolution [12].
• Betweenness Centrality: Measures how often an AS ap-
pears on the shortest paths between others. It’s computa-
tionally expensive and can overemphasize nodes that lie
between sparse regions of the graph [13].

1.3 Problem Statement
1.3.1 ProblemDescription. Traditional methods for ranking ASes
often rely on standard centrality measures, such as degree or be-
tweenness, which do not fully show the structure of ASNs. These
metrics either oversimplify connectivity or are too computation-
ally expensive for large-scale graphs. Gravity-based centrality is
a more flexible approach that uses node properties (like size or
distance) to model influence. However, there are multiple ways to
define and compute gravity in network graphs, and it is unclear
which variation works best for DAGs like ASNs.

1.3.2 Research Questions.

• How do different gravity-based centrality models, specifi-
cally the basic gravity model, improved gravity, DKEGM,
Laplacian gravity, generalized gravity, local gravity, k-shell-
based gravity, multi-characteristics gravity, and the entropy-
based gravity model, perform on ASNs in terms of mono-
tonicity and stability?
• Can gravity-based centrality offer a more scalable and dis-
criminative alternative to traditional AS ranking methods
like degree, betweenness, and customer-cone size?
• Can gravity-based centrality enhance the customer-cone
size metric, which is currently the standard for ranking
ASes, to more accurately reflect AS influence in DAGs?

2 STATE OF THE ART
Ranking ASes in ASNs is not a new concept. Many methods have
been used, like degree, eigenvector, betweenness, and customer-
cone size. Customer-cone is still the most common [12], but it
only counts downstream ASes in p2c links, ignoring peering. This
can give a skewed view in flat or hybrid topologies.
Standard graph centralities like degree are fast but only look

at direct neighbors. Eigenvector and alpha centrality weight im-
portant neighbors more, but they assume symmetric links, which
is not true for ASNs [1]. Betweenness looks at shortest paths but
becomes slow on large networks [16].

To fix these issues, gravity-based models have been introduced.
They combine a node’s “mass” with how far away it is from others.
Most models follow the idea of Newton’s law. The basic gravity

model uses degree or k-shell as mass [10]. The improved gravity
model (IGM) [17] limits influence with a radius to reduce noise.
The generalized gravity model (GGM) [7] adds local clustering to
the mass to reflect neighborhood structure. Local gravity (LGM)
[9] focuses on short-range influence using degree and distance.
Other versions go further. K-shell based gravity (KSGM) [18]

boosts mass using exponential weights on the k-shell score. The
multi-characteristics gravity model (MCGM) [8] mixes normal-
ized values of degree, k-shell, and eigenvector into one term. The
entropy-based gravity model (SEGM) [11] uses local entropy to
adjust mass, making it sensitive to uneven connectivity. Finally,
DKEGM [15] combines degree, k-shell, and eigenvector into a
score.
Most of these models have only been tested on undirected or

spatial graphs. But ASNs are directed, hierarchical, and often
tree-like. So far, few papers look at how gravity works on DAGs.
This research fills that gap by comparing multiple gravity models
on AS DAGs and testing how they hold up against traditional
metrics.

3 BACKGROUND
This section describes the DAG structure and the centrality met-
rics used in our analysis: degree centrality, k-shell decomposition,
and eigenvector centrality. Specific changes have been made to
address common issues when applying these methods to DAGs.

3.1 DAGs
A DAG is a directed graph that contains no cycles. Formally, let
𝐺 = (𝑉 , 𝐸) be a graph with vertex set 𝑉 and directed edge set
𝐸 ⊆ 𝑉 × 𝑉 . The graph 𝐺 is a DAG if and only if it contains no
directed cycles, i.e., there does not exist a sequence of vertices
𝑣1, 𝑣2, . . . , 𝑣𝑘 ∈ 𝑉 with 𝑘 ≥ 2 such that:

(𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 𝑖 = 1, 2, . . . , 𝑘 − 1 and (𝑣𝑘 , 𝑣1) ∈ 𝐸.

3.2 Degree Centrality
In a directed graph, each node 𝑣 ∈ 𝑉 has an in-degree 𝑘 in𝑣 and an
out-degree 𝑘out𝑣 , defined as:

𝑘 in𝑣 = |{𝑢 ∈ 𝑉 : (𝑢, 𝑣) ∈ 𝐸}| (1)

𝑘out𝑣 = |{𝑤 ∈ 𝑉 : (𝑣,𝑤) ∈ 𝐸}| (2)

To avoid problems with nodes that have either zero in-degree or
out-degree, which can result in division-by-zero errors in some
models, we use the total degree:

𝑘𝑣 = 𝑘
in
𝑣 + 𝑘out𝑣 (3)

This combined metric ensures that each node has a non-zero
degree value in most cases, allowing consistent and robust pro-
cessing.

3.3 K-shell Decomposition
K-shell decomposition assigns nodes to layers (or shells) based
on their degree [14]. In a directed setting, one can define in-shells
or out-shells using 𝑘 in or 𝑘out, but this is problematic in DAGs
where many nodes naturally have zero in- or out-degree.

To avoid such instability and division-by-zero issues, we again
use the total degree 𝑘𝑣 as defined above. The algorithm recur-
sively removes all nodes with 𝑘 (degree) ≤ 𝑘𝑠 until no such nodes
remain, and assigns those nodes to shell 𝑘𝑠 .
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3.4 Eigenvector Centrality
Eigenvector centrality [6] is based on the idea that connections
to important nodes contribute more to a node’s importance. For-
mally, it is defined as the solution to:

𝐴𝑥 = 𝜆𝑥 (4)
where 𝐴 is the adjacency matrix of the graph, 𝜆 is the largest
eigenvalue, and 𝑥 is the corresponding eigenvector.
In the case of a DAG, using the directed adjacency matrix 𝐴

leads to 𝑥 = 0, as there are no cycles. To address this, we transform
the DAG into an undirected graph by treating all directed edges
as undirected, and construct a new adjacency matrix 𝐴∗ for this
modified structure:

𝐴∗𝑖 𝑗 =

{
1 if (𝑖, 𝑗) ∈ 𝐸 or ( 𝑗, 𝑖) ∈ 𝐸
0 otherwise

(5)

We then compute eigenvector centrality on this undirected
matrix, which yields meaningful, non-zero scores for all nodes.
Here, 𝑥𝑣 denotes the centrality score of node 𝑣 , with higher values
indicating greater importance within the network.

4 METHODOLOGY

Symbol Definition

𝑘𝑖 Degree of node 𝑖
𝑘max Maximum degree in the network
𝑘mid Median degree in the network
𝑘𝑠𝑖 K-shell value of node 𝑖
𝑘𝑠max Maximum k-shell value in the network
𝑘𝑠min Minimum k-shell value in the network
𝑘𝑠mid Median k-shell value in the network
𝑥𝑖 Eigenvector centrality of node 𝑖
𝑥max Maximum eigenvector centrality in the network
𝑥mid Median eigenvector centrality in the network
𝐴𝑖 Set of neighbors of node 𝑖
𝑛𝑖 The number of edges between neighbors of node 𝑖 .
𝑅 Truncation radius (maximum distance considered)
𝑑𝑖 𝑗 Shortest path distance between nodes 𝑖 and 𝑗
𝜆 Eigenvalue of Laplacian matrix
Table 1. Symbol definitions used in gravity-based centrality models

4.1 Model Implementation
4.1.1 Gravity Model. The gravity model [10] measures influence
by combining how "massive" a node is (its k-shell index) with
how close it is to other nodes. Based on Newton’s law, two nodes
influence each other more if they’re both strong and nearby. The
gravity of node 𝑖 is calculated as:

𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 ), 𝑖≠𝑗

𝑘𝑠𝑖 · 𝑘𝑠 𝑗
𝑑2
𝑖 𝑗

(6)

This means that two high-𝑘 nodes just a few hops apart contribute
more to each other’s score. The effect drops off quickly with
distance.

The extended version also includes influence from the gravity
scores of direct neighbors:

𝐺𝑀+ (𝑖) =
∑︁
𝑛∈𝐴𝑖

𝐺𝑀 (𝑛) (7)

This adds local structure to the ranking and helps reduce high
scores from nodes that are structurally unimportant.

4.1.2 Improved Gravity Model. To further improve the model, a
truncation radius is used [17]:

𝐼𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 )≤𝑅, 𝑖≠𝑗

𝑘𝑠𝑖 · 𝑘𝑠 𝑗
𝑑2
𝑖 𝑗

(8)

An optimal truncation radius 𝑅∗ can be estimated using:

𝑅∗ ≈ 1
2 ⟨𝑑⟩ (9)

where ⟨𝑑⟩ is the average shortest path length in the network.
Similar to the gravity model, there is also an extended version

of the Improved Gravity Model [17]:

𝐼𝐺𝑀+ (𝑖) =
∑︁
𝑛∈𝐴𝑖

𝐼𝐺𝑀 (𝑛) (10)

The idea is the same as the normal gravity model, but now we
control how far the influence spreads. Instead of summing over
all nodes, we cut it off at a fixed range 𝑅, so only closer ASes
count. This makes the model more scalable and keeps far-away
weak links from inflating the score. The extended version again
includes influence from nearby nodes.

4.1.3 Local Gravity Model. The local gravity model [9] is defined
as follows:

𝐿𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 )≤𝑅, 𝑖≠𝑗

𝑘𝑖 · 𝑘 𝑗
𝑑2
𝑖 𝑗

(11)

This model introduces a truncation radius 𝑅, just like the im-
proved gravity model, but instead of k-shell, it uses the degree
of nodes to represent their mass. This makes the model faster to
compute and more sensitive to local structure. The idea is that
influence should mostly come from close neighbors, and nodes
with more links contribute more mass. By limiting interactions
to nearby ASes, it reduces noise from distant low-impact nodes.

4.1.4 Generalized GravityModel. The generalized gravitymodel [7]
builds on the gravity idea but introduces an additional refinement.
Instead of using raw degree or k-shell as mass, it defines a node’s
"spreading ability" 𝑆𝑝𝑖 , which is based on how well it can spread
info to others not just how many neighbors it has, but also how
tightly those neighbors are clustered.

𝐺𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 ), 𝑖≠𝑗

𝑆𝑝𝑖 · 𝑆𝑝 𝑗
𝑑2
𝑖 𝑗

(12)

Where 𝑆𝑝𝑖 is:

𝑆𝑝𝑖 = 𝑒
−2𝐶𝑖 × 𝑘𝑖 (13)

Where 𝐶𝑖 is the clustering coefficient:

𝐶𝑖 =
2𝑛𝑖

𝑘𝑖 (𝑘𝑖 − 1)
(14)

The underlying assumption is that nodes with a high number
of connections and whose neighbors are not just connected to
each other is likely to spread influence further. If its neighbors
are very connected among themselves, information gets trapped
locally so we reduce that node’s weight.

4.1.5 K-shell Based Gravity Model. The k-shell based gravity
model [18] builds on the idea that nodes deeper in the core of the
network (with higher k-shell values) are more stable and densely
connected. To reflect this, the model adjusts the gravitational
interaction between nodes using a correction factor 𝑐𝑖 𝑗 , which
scales the influence based on how central both nodes are.
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𝐾𝑆𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 ), 𝑖≠𝑗
𝑐𝑖 𝑗
𝑘𝑖 · 𝑘 𝑗
𝑑2
𝑖 𝑗

(15)

𝑐𝑖 𝑗 = 𝑒

𝑘𝑠𝑖𝑘𝑠𝑗
𝑘𝑠𝑚𝑎𝑥 −𝑘𝑠𝑚𝑖𝑛 (16)

When two nodes are both in the core, 𝑐𝑖 𝑗 boosts the gravity.
If they are on the edge of the core, the boost is smaller. So this
model gives more influence to nodes that are better positioned in
the network structure.

4.1.6 DKEGM Gravity Model. The DKEGM model [15] attempt
to address the limitations of traditional measures (like only using
degree or k-shell in the mass) in distinguishing between nodes. A
lot of ASes may have the same values in those simple metrics. So,
this model combines three things: degree, eigenvector centrality,
and an improved k-shell score into one index called DKE.

This index gives each node a more distinct score, which helps
avoid ties. The DKE score is used as the mass in the gravity
equation:

𝐷𝐾𝐸 (𝑖) = 𝑘𝑖 + 𝑘𝑠∗𝑖 + 𝑥𝑖 (17)

𝑘𝑠∗𝑖 = 𝑘𝑠𝑖 +
𝑅(𝑖)

max𝑘 𝑆 (𝑘) + 1
(18)

where the overall count of stages is 𝑆 (𝑘) during the k-shell de-
composition for a specific k-degree iteration, and 𝑅(𝑖) is in which
stage 𝑖 is eliminated.

Using this more detailed score, the model applies gravity with
a truncation radius:

𝐷𝐾𝐸𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 )≤𝑅, 𝑖≠𝑗

𝐷𝐾𝐸 (𝑖) · 𝐷𝐾𝐸 ( 𝑗)
𝑑2
𝑖 𝑗

(19)

By doing this, the model assigns higher importance to nodes
that score highly across different centrality measures and are also
close to each other. It’s especially useful when you want to better
distinguish key nodes in large networks where many nodes would
otherwise receive similar scores.

4.1.7 Laplacian Gravity Model. The Laplacian gravity model [19]
swaps out node degree for something more refined: Laplacian
centrality. This centrality does not just count how many links a
node has but also looks at how its removal changes the entire
structure, giving a better picture of its overall importance.
The Laplacian matrix can be defined as follows:

𝐿 = 𝐷 −𝐴 (20)

where 𝐷 is the degree matrix and 𝐴 is the adjacency matrix.
The energy of the full graph and the graph with node 𝑖 removed

are:
𝐸 (𝐺) =

∑︁
𝜆∈𝐿

𝜆2 𝐸 (𝐺−𝑖 ) =
∑︁
𝜆∈𝐿−𝑖

𝜆2 (21)

The centrality is the difference in energy:

𝐿𝐶 (𝑖) = 𝐸 (𝐺) − 𝐸 (𝐺−𝑖 ) (22)

Finally, this is plugged into a gravity model:

𝐿𝑃𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 )≤𝑅, 𝑖≠𝑗

𝐿𝐶 (𝑖) · 𝐿𝐶 ( 𝑗)
𝑑2
𝑖 𝑗

(23)

This approach uses spectral information from the graph, mak-
ing it more sensitive to both local and global structure. It captures
not just how connected a node is, but how important it is to the
network’s overall structure.

4.1.8 Multi-characteristics GravityModel. Themulti-characteristics
gravity model [8] builds on the idea that a single metric is not
enough to capture a node’s true importance. Instead of using just
degree or k-shell, this model combines three: degree centrality, k-
shell index, and eigenvector centrality each measuring something
different about a node’s position and influence in the network.

Since these metrics can differ in scale, they’re normalized and
combined with a correction factor 𝛼 , which balances the smaller
k-shell range compared to the others. The model then applies the
gravity formula using this combined metric.

𝑤𝑖 =
𝑘𝑖

𝑘max
+ 𝛼𝑘𝑠𝑖

𝑘𝑠max
+ 𝑥𝑖

𝑥max
(24)

𝑀𝐶𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 )≤𝑅, 𝑖≠𝑗

𝑤𝑖𝑤 𝑗

𝑑2
𝑖 𝑗

(25)

𝛼 =
max{ 𝑘𝑚𝑖𝑑

𝑘𝑚𝑎𝑥
,
𝑥𝑚𝑖𝑑

𝑥𝑚𝑎𝑥
}

𝑘𝑠𝑚𝑖𝑑

𝑘𝑠𝑚𝑎𝑥

(26)

This way, the model captures multiple layers of a node’s net-
work position from local connections to global influence and
reduces bias from using only one metric.

4.1.9 Entropy-based Gravity Model. The entropy-based gravity
model [11] improves on previous gravity approaches by using
information entropy to better capture how influence is spread
across a node’s neighborhood.

𝑆𝐸𝐺𝑀 (𝑖) =
∑︁

𝑑 (𝑖, 𝑗 )≤𝑅, 𝑖≠𝑗

𝑆𝐸 (𝑖) · 𝑆𝐸 ( 𝑗)
𝑑2
𝑖 𝑗

(27)

𝑆𝐸 (𝑖) = 𝑒𝐸 (𝑖 )𝑘𝑖 (28)
𝐸 (𝑖) = −

∑︁
𝑗∈𝐴𝑖

𝐼 ( 𝑗) ln 𝐼 ( 𝑗) (29)

𝐼 (𝑖) = 𝑘𝑖∑
𝑗∈𝐴𝑖

𝑘 𝑗
(30)

The idea behind this model is that influence is not just about
having a lot of neighbors it also depends on how evenly distributed
the neighbor degrees are. If a node’s neighbors have similar degree
values, the uncertainty (entropy) is higher. This means that there
is a stronger ability to spread information. This model combines
that entropy with gravity, giving more importance to nodes that
are both well-connected and structurally diverse.

4.2 Dataset Usage
The dataset we use comes from CAIDA’s AS Relationships dataset
[2]. It represents the ASN structure based on BGP routing data.
We treat the network as a DAG, where each node is an AS and
each directed edge is a p2c link.

We collected all CAIDAAS relationship snapshots from January
1, 1998 through May 1, 2025. This range covers many years of
Internet growth, ensuring each model is evaluated on a wide
variety of network sizes and structures.

The May 2025 snapshot (the latest in our set) contains 401,699
nodes and 160,292 directed edges. The average degree is around
0.3990, meaning each AS has on average less than one connection
in this directed graph (reflecting the many leaf ASes). The graph’s
diameter is 25 (the longest shortest path between two ASes), and
the density is very low (close to 0), as expected for a large-scale
Internet network.
We focus on the largest connected component to make sure

the network is fully reachable. This structure is important when
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computing centrality scores, especially gravity-based models that
depend on distance and connectivity across the graph.

4.3 Evaluation Metrics
To compare the different gravity-based centrality models, we em-
ploy several evaluation methods. These assess not only how dis-
tinct the rankings are within each model but also how consistent
they are with one another and with known indicators of influence
in Autonomous System (AS) networks, such as customer-cone
size.

4.3.1 Ranking Resolution (Monotonicity). Ranking resolution,
also referred to as monotonicity, measures how well a centrality
model distinguishes between nodes. A model with high resolu-
tion will produce fewer tied ranks and provide clearer separation
across the ranking scale.
We compute monotonicity using the following formula:

𝑀 (𝑋 ) = [1 −
∑

𝑐∈𝑉 𝑁𝑐 (𝑁𝑐 − 1)
𝑁 (𝑁 − 1) ] (31)

where 𝑁𝑐 is the number of nodes with the same rank and 𝑁 is
the size of the entire network.

4.3.2 Rank Correlation. To evaluate the correlation between
rankings produced by the different models, we compute two stan-
dard rank correlation coefficients: Spearman’s 𝜌 and Kendall’s
𝜏 .

Spearman’s rank correlation coefficient is defined as:

𝜌 = 1 −
6
∑
𝑑2𝑖

𝑛(𝑛2 − 1) (32)

where 𝑑𝑖 is the difference in ranks of node 𝑖 between the two
models, and 𝑛 is the total number of nodes.
Kendall’s Tau is computed as:

𝜏 =
𝑛𝑐 − 𝑛𝑑
1
2𝑛(𝑛 − 1)

(33)

where 𝑛𝑐 is the number of concordant node pairs and 𝑛𝑑 is the
number of discordant pairs. Both 𝜌 and 𝜏 range from −1 (com-
plete disagreement) to 1 (perfect agreement), with higher values
indicating stronger alignment between the compared centrality
models.

4.3.3 Ranking Comparison. To better understand how the differ-
ent models rank influential ASes, we generate a table for each
centrality model alongside the customer-cone ranking. These ta-
bles display the top-𝑛 ASes according to each approach, allowing
for a direct comparison of their outputs.

With this, we can observe how rankings differ across models for
example, if ASes with lower rank in customer-cone score higher in
certain gravity-based models. Such differences may indicate that
a model captures different aspects of network influence beyond
downstream reach, such as if there is a well-connected node is in
its neighborhood.

5 RESULTS
In some of the results, leaf nodes are removed before calculating
correlation and monotonicity to improve the quality of the evalua-
tion. This is done because leaf nodes usually receive a score of zero
in both the customer-cone and gravity-based models. Including
them can give a higher correlation and a lower monotonicity.
In Figure 1, 𝑥4, 𝑥5, and 𝑥6 are leaf nodes. Under the customer-

cone model, these nodes have no customers below them, so their

𝑥1

𝑥2 𝑥3

𝑥4 𝑥5 𝑥6

Fig. 1. Example DAG

cone size is always zero. In the gravity-based model, the score
is also zero. The gravity score between two nodes 𝑖 and 𝑗 is
calculated as:

Gravity(𝑖, 𝑗) =
𝑤𝑖 ·𝑤 𝑗

dist(𝑖, 𝑗)2
where𝑤𝑖 and𝑤 𝑗 are node weights and dist(𝑖, 𝑗) is the path length
between them. For a leaf node, there are no reachable neighbors,
so no valid paths exist, and the total gravity score becomes:∑︁

𝑗≠𝑖

𝑤𝑖 ·𝑤 𝑗

dist(𝑖, 𝑗)2 = 0

To account for this, we also present results with leaf nodes
excluded.

5.1 Monotonicity
Figure 2 and 3 show the monotonicity scores for all the centrality
models. Monotonicity measures how consistent the ranking is
with the graph’s topological structure. A high score means the
model is better at producing a ranking that follows the DAG’s
flow.

With leafs: As seen in Figure 2, all models score below 0.1 when
we include leaf nodes. This is expected, since leaves do not have
any outgoing connections, so their centrality values end up being
0 or close to each other. This flattens the overall ranking and
makes it hard to distinguish between nodes. In fact, models like
Extended Gravity, Generalized Gravity, and Laplacian Gravity
have monotonicity values near 0 in this case, because they give
nearly identical (zero) scores to most of those leaf ASes.

Fig. 2. Monotonicity scores across all snapshots with leaf nodes in-
cluded. Most models perform poorly due to tied zero scores from leaves,
which flatten the rankings.

Without leafs: Removing the leaves changes the picture com-
pletely (Figure 3). DKE, Multi-Characteristics, and Entropy-Based
Gravity models now score nearly 1.0 (essentially perfect). K-Shell
Gravity is above 0.97. Gravity, Local Gravity, and Improved Grav-
ity all reach around 0.90-0.95. Even the Customer-Cone metric
improves to about 0.75 without leaves (higher than before but
still below the top gravity models). In contrast, Extended Gravity,
Generalized Gravity, and Laplacian Gravity remain far behind,
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only around 0.35, meaning they still produce many ties and in-
consistent ordering.

Fig. 3. Monotonicity scores across all snapshots without leaf nodes.
Models like DKEGM, Entropy, and Multi-Characteristics achieve near-
perfect ranking separation.

5.2 Rank Correlation
To understand how similar the rankings are, we calculated Kendall’s
𝜏 and Spearman’s 𝜌 between every pair of models. For eachmetric,
we computed the median correlation value across all CAIDA snap-
shots from 1998 to 2025. This ensures that short-term fluctuations
do not dominate the results.

With leafs: In the Kendall and Spearman heatmaps (Figures 4
and 5) for rankings with leafs included, two clusters stand out.
One contains models Gravity, Improved, Local, K-Shell, DKE,
Multi, Entropy and Customer-Cone. The other groups Extended,
Extended Improved, Laplacian, and Generalized Gravity.
While these clusters appear clear, they don’t provide much

insight. The main issue is that most leaf nodes receive the same
rank (often 0), so all models share a large block of similar values.
This drives the correlation scores up, but it does not reflect real
structural similarity between the models. So although it looks
structured, these correlations are skewed by the uniform treat-
ment of leaves.

Without leafs: After removing leaf nodes, the heatmaps (Fig-
ures 6 and 7) become much more informative. The gravity-based
models no longer form one big cluster instead, three groups
emerge:
• The first includes Extended, Extended Improved, Laplacian,
and Generalized Gravity. These share a specific design and
correlate well.
• The second cluster is only theMulti-Characteristics Gravity
model. Interestingly, it doesn’t strongly correlate with any
of the others even the gravity-based ones suggesting it
captures a different structure.
• The third cluster includes Gravity, Improved, Local, K-Shell,
DKE, and Entropy Gravity. These models rank ASes simi-
larly.

The Customer-Cone metric is a clear outlier. It shows only a
weak correlation with a few models, mostly Local Gravity, likely
because both use some form of local reachability. However, even
this connection is limited, showing that cone size reflects a very
different way of ranking ASes.

Fig. 4. Kendall rank correlation with leaf nodes included. Two clusters
emerge, but the structure is inflated due to many identical leaf scores.

Fig. 5. Spearman rank correlation with leaf nodes included. Similar to
Kendall: high correlations arise from uniformly zero leaf rankings.

5.3 Visual Ranking Comparison
Table 2 in Appendix A shows the top 10 ASes per model based
on the CAIDA snapshot from May 1, 2025. Some ASes like Level
3 Parent and Cogent appear at the top across all models, which
makes sense given their global connectivity. But there are small
differences between methods.
The customer-cone ranking mostly favors ASes with large

downstream trees. Gravity models, on the other hand, sometimes
bump up ASes that are more central in structure, even if they do
not have the biggest cones. This supports the idea that gravity-
based models can offer more nuance, especially in hierarchical
AS networks.

6
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Fig. 6. Kendall rank correlation without leaf nodes. Three distinct clus-
ters appear: (1) Extended models, (2) Multi-Characteristics (outlier), and
(3) Core gravity models. Customer cone is weakly correlated only with
Local Gravity.

Fig. 7. Spearman rank correlationwithout leaf nodes. Cluster structure
is preserved. Multi-Characteristics remains isolated; cone size still aligns
only with Local Gravity.

6 DISCUSSION

6.1 Interpretability of Rankings
While some models (like DKE and Entropy-Based) perform very
well in monotonicity and correlation, their internal mechanisms
combine several metrics in a non-transparent way. For real-world
applications, especially in network security or policymaking, un-
derstanding why a certain AS ranks high might be just as im-
portant as the score itself. Models like the basic Gravity or Local
Gravity are easier to interpret and may be preferred in such set-
tings.

6.2 Robustness Across Time
Given that our dataset spans from 1998 to 2025, we’ve implic-
itly tested whether models remain consistent across different
AS graph structures and topologies. The strong performance of
certain gravity models across all snapshots suggests they are
more robust to structural changes over time. This is particularly
valuable for long-term planning or detecting shifts in network
influence.

6.3 Relevance to Real-World AS Properties
The results show that the models consistently highlight ASes
such as Level 3, Cogent, and Arelion, which are well-known large
Tier 1 providers. This supports that gravity-based models are
capable of capturing meaningful structural properties in the AS
topology. In contrast, customer-cone size may fail to identify ASes
that are structurally important but have fewer direct customers,
especially when their centrality arises from indirect or strategic
connectivity.
Sprint ranks highly in some gravity-based models but only

2501st by customer-cone size.While it doesn’t have a big customer
cone, it plays an important role through indirect paths, such as:
Level3→ Yale University← Sprint. Such connections are
not found by the customer cone but are visible in gravity-based
rankings.

6.4 How Do Gravity Models Compare?
Themonotonicity and rank correlation results show a clear separa-
tion between the stronger and weaker models. Gravity, Improved
Gravity, Local Gravity, K-Shell, DKEGM, Multi-Characteristics,
and Entropy-Based models all score highly in monotonicity espe-
cially after leaf nodes are removed and are consistently grouped
in correlation heatmaps. However, a high rank correlation score
does not always mean that a ranking is better. It just means that
two models agree with each other. So, while correlation tells us
how stable models are with each other, it doesn’t tell us if they are
correct. That’s why we look at monotonicity alongside it, because
it gives a better sense of how well a model separates ASes based
on the topology.

6.5 Are Gravity-Based Rankings a Better Alternative?
Compared to traditional metrics like customer-cone size or degree,
gravity-based models offer a more nuanced picture. They consider
not just how many neighbors a node has, but also how important
those neighbors are and how close they are in the network. Some
also integrate additional properties like eigenvector centrality
or entropy. This makes them more scalable and discriminative
in large AS graphs, especially DAGs where plain degree or cone
count might miss central ASes. Additionally, gravity scores work
even if the graph changes slightly, making them more robust to
topology shifts.

6.6 Relationship Between Gravity Centrality and
Customer Cone Size

One interesting observation is that the Local Gravity model shows
some correlation with Customer Cone Size probably because it
also reflects local reach. This suggests it could be a good middle
ground for operators who want something familiar but better.
While customer cone focuses only on downstream count, gravity-
basedmodels add structural awareness. So, combining themmight
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lead to an even more accurate ranking system that better reflects
real-world AS influence, not just how many customers an AS has.

6.7 Limitations
Most gravity-based centrality models assume clean hierarchical
propagation of influence, which doesn’t always hold in real AS
graphs due to peering links and multihoming. Also, metrics like
entropy and eigenvector centrality rely on undirected assump-
tions or smooth connectivity, which may distort scores in a DAG
setting. Another issue is how we handled leaves removing them
improves metric quality, but also removes many smaller ASes,
potentially biasing the analysis toward large Tier 1/2 providers.

7 CONCLUSION AND FUTURE WORK

7.1 Conclusion
This study set out to evaluate the suitability of gravity-based cen-
trality models for ranking nodes in DAGs of Autonomous System
(AS) networks. We posed three research questions: (1) How do
gravity-based models perform in terms of ranking resolution and
stability? (2) Can these models offer a more scalable and discrimi-
native alternative to traditional metrics? (3) Can gravity centrality
be used to enhance or complement customer-cone rankings?

We compared twelve gravity-based centrality variants against
the widely used customer-cone size metric, using AS relation-
ship snapshots from 1998 to 2025. Our evaluation focused on
monotonicity and rank correlation, both with and without pre-
processing steps such as leaf removal.
The results show that DKEGM, Entropy-Based Gravity, and

Multi-Characteristics Gravity consistently produce clean, fine-
grained rankings with near-perfect monotonicity, thereby answer-
ing RQ1 regarding resolution and stability. Specifically, without
leaf nodes, DKEGM and Entropy-Based Gravity achieve mono-
tonicity scores around 0.9999, while Multi-Characteristics Gravity
closely follows with 0.9981, all substantially outperforming the
customer-cone metric (0.7035). Even with leaves present, these
models retain top performance, with scores around 0.0848, com-
pared to 0.0825 for the cone.
In addressing RQ2, gravity-based models especially DKEGM,

Entropy-Based, and Multi-Characteristics, demonstrate signifi-
cantly higher discriminative power than the customer-cone size.
DKEGM, for example, shows the strongest internal consistency
with Kendall 𝜏 ≈ 0.994 and Spearman 𝜌 ≈ 0.987, while Multi-
Characteristics and Entropy-Based models also exhibit high agree-
ment across rankings, confirming their robustness and scalability.
Regarding RQ3, Local Gravity provides a middle ground: it

aligns moderately with customer-cone rankings (Kendall 𝜏 =

0.769 without leaves) while offering better resolution (monotonic-
ity ≈ 0.9575), indicating its value as a complementary method for
cone-based thinking.
Overall, gravity-based models offer a robust, scalable, and nu-

anced approach to AS centrality in DAG-structured networks. In
practice, the choice of model depends on the intended application:
for compatibility with cone-based reasoning and interpretability,
Local Gravity is a natural fit due to its intuitive design and struc-
tural alignment. For applications requiring precise, stable, and
fine-grained rankings, models such as DKEGM, Entropy-Based
Gravity, and Multi-Characteristics Gravity are preferable, offering
strong performance across all evaluation metrics while capturing
subtle differences in network influence.

7.2 Future Work
There are several directions worth exploring:

• Track how rankings evolve over time to identify rising or
declining ASes.
• Combine structural models with actual traffic data to vali-
date rankings.
• Investigate how centralities changes after node removals.
• Some gravity models have tunable parts (like distance func-
tions). Fine-tuning these may yield better results.
• Whether results hold across other different DAG-structured
networks, not just AS graphs.
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A FULL TOP-10 AS RANKINGS

Rank Customer
Cone

Gravity Ext. Gravity Imp. Gravity Ext. Imp.
Gravity

Local Gravity Gen. Gravity K-Shell
Gravity

DKE Gravity Laplacian
Gravity

Multi-Char.
Gravity

Entropy
Gravity

1 Level 3 Parent,
LLC

Cogent Comm. Level 3 Parent,
LLC

Cogent Comm. Level 3 Parent,
LLC

Level 3 Parent,
LLC

Level 3 Parent,
LLC

Level 3 Parent,
LLC

Level 3 Parent,
LLC

Level 3 Parent,
LLC

Cogent Comm. Cogent Comm.

2 Arelion Swe-
den AB

Level 3 Parent,
LLC

Arelion Swe-
den AB

Level 3 Parent,
LLC

Arelion Swe-
den AB

Cogent Comm. Cogent Comm. Cogent Comm. Cogent Comm. Cogent Comm. Level 3 Parent,
LLC

Level 3 Parent,
LLC

3 Cogent Comm. Arelion Swe-
den AB

Cogent Comm. Arelion Swe-
den AB

Cogent Comm. Arelion Swe-
den AB

Arelion Swe-
den AB

Arelion Swe-
den AB

Arelion Swe-
den AB

Arelion Swe-
den AB

Sprint Sprint

4 GTT Comm.
Inc.

GTT Comm.
Inc.

NTT America,
Inc.

GTT Comm.
Inc.

TATA Comm. GTT Comm.
Inc.

GTT Comm.
Inc.

GTT Comm.
Inc.

Hurricane
Electric LLC

GTT Comm.
Inc.

Arelion Swe-
den AB

Zayo Band-
width

5 Verizon Busi-
ness

NTT America,
Inc.

TATA Comm. NTT America,
Inc.

NTT America,
Inc.

Hurricane
Electric LLC

Hurricane
Electric LLC

NTT America,
Inc.

GTT Comm.
Inc.

Hurricane
Electric LLC

GTT Comm.
Inc.

AT&T Services,
Inc.

6 PCCW Global,
Inc.

Hurricane
Electric LLC

Telecom Italia Hurricane
Electric LLC

Telecom Italia NTT America,
Inc.

NTT America,
Inc.

Hurricane
Electric LLC

NTT America,
Inc.

Zayo Band-
width

Hurricane
Electric LLC

Verizon Busi-
ness

7 Hurricane
Electric LLC

Telecom Italia GTT Comm.
Inc.

Telecom Italia GTT Comm.
Inc.

Zayo Band-
width

Zayo Band-
width

Zayo Band-
width

Zayo Band-
width

NTT America,
Inc.

Zayo Band-
width

Arelion Swe-
den AB

8 NTT America,
Inc.

TATA Comm. PCCW Global TATA Comm. PCCW Global Verizon Busi-
ness

Verizon Busi-
ness

Verizon Busi-
ness

Sprint Verizon Busi-
ness

NTT America,
Inc.

GTT Comm.
Inc.

9 Telecom Italia PCCW Global Durand do
Brasil

PCCW Global GTT Comm.
Inc.

Sprint Telecom Italia PCCW Global Verizon Busi-
ness

PCCW Global Verizon Busi-
ness

Hurricane
Electric LLC

10 TATA Comm. Zayo Band-
width

Hurricane
Electric LLC

Durand do
Brasil

Durand do
Brasil

Telecom Italia RETN Limited Telecom Italia RETN Limited RETN Limited AT&T Services,
Inc.

PJSC Rostele-
com

Table 2. Top-10 AS rankings based on the May 1, 2025 CAIDA snapshot. Gravity-based models show strong agreement on core ASes, but differences
remain, e.g., Sprint ranks high under Entropy, but very low by cone size.
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