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Embedded systems are highly specialized computer systems integrated
within larger, typically electronic or mechanical systems. Unlike general
computing on personal computers or enterprise servers, which aim to fa-
cilitate a vast set of operations applicable across many domains, embedded
systems serve highly specific tasks and, as such, are generally purpose-built.
Since embedded systems are present in safety-critical systems, suitable ver-
ification is paramount to ensure correctness. One strategy is the use of
static analysis for deductive verification. VerCors is a toolset that can be
used for such verification of concurrent systems, and previous work has
generated tooling that can transform SystemC code into VerCors’ Prototypal
Verification Language, alongside most of its respective annotations. This
research aims to expand upon this work in the sector of loop invariant
generation. This is achieved by simulating loop behavior and keeping track
of over-approximations over the set of possible values of program variables.
In doing so, we can provide numerical bounds for said program variables,
which are used to provide invariants with respect to loop bounds.
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1 INTRODUCTION

With the advance of technology, embedded systems are becoming
more and more common and fundamental to the smooth operation
of a large variety of systems. Applications in which embedded sys-
tems are present are vast and ever-increasing. These range from
relatively simple wearable devices, such as sensors within smart-
watches, to safety-critical applications, such as autonomous driving.
Thus, there is a need for systematic methods to validate the correct-
ness of embedded systems, as highlighted by [15]. Verification is
important in this context for two main reasons: the cost of testing
and development of technologies can be decreased by finding bugs
early, but more importantly, correct behavior of embedded systems
is necessary to ensure the safety of people in safety-critical systems.

Static analysis is a family of software verification techniques that
analyzes input programs without actually running them directly. It
can be used to reason about program behavior through the use of
logic and constraint analysis, which can yield sound proofs about
the correctness of the program.

Embedded systems generally use specific hardware with associ-
ated software, which tends to be parallelized in nature in order to
optimize its performance, and as such, support for concurrency is
necessary in order to perform static verification on it. SystemC is a
design language implemented as a C++ library, used in simulating
hardware designs, which can be used to prototype embedded system
architectures. In this study we use SystemC to illustrate our work.
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One tool that offers such support for parallelized systems is Ver-
Cors [1], which is built specifically with the intent of studying
concurrent systems in languages such as C and Java. While VerCors
does not natively offer support for languages used in embedded sys-
tem design, previous work [14] has been done to create tools that
can transform SystemC code [9], which is widely used in industry,
to VerCors’ internal Prototypal Verification Language (PVL). Along-
side code transformation, limited annotation inference is offered,
thus easing the process of verification of the designed system. These
annotations take the form of functional contracts, specifying the
pre- and post-conditions of methods, and invariants, highlighting
parts of the program state that do not change throughout certain
sections of the code.

Static analysis needs loop invariants to be able to reason about
loops. This is because loops cannot be inspected directly, since they
are blocks of code that may be executed arbitrarily many times.
Thus, loop invariants are used to assume certain properties of the
loop throughout its execution. Inferring loop invariants is, however,
quite difficult. This is because they largely depend on the actual
implementation of the loop, unlike functional contracts, which are
abstract entities defining how a piece of code must behave [6]. There
are a number of previous works [2, 4-6, 12] that define different
methods of loop invariant generation, employing methods derived
from the domain knowledge of the particular applications under
analysis, but the problem of loop invariant generation is undecidable
for the general case.

We approach this problem with a technique that relies on sym-
bolic execution - the execution of a program where, instead of
concrete numerical inputs, variables are initialized with symbolic
values, after which the program is run with said symbolic values. For
this method, we have chosen to represent our symbolic values with
intervals that represent an overapproximation over the set of all
possible values for a given variable during execution. In doing so, we
generate concrete numerical bounds for program variables, which
are then transformed into loop invariants. This shows promise in
the context of embedded systems verification using VerCors because
of the intrinsic use of concrete integer values throughout SystemC
designs.

This study aims to explore the applicability of loop bound analysis
(the study of upper and lower execution bounds of loops) techniques,
namely abstract interpretation through interval abstract domains,
to the domain of loop invariant generation for embedded systems
design. The idea to use such methods in this domain came as in-
spiration from the work of Cadek et al. [2], who have successfully
generated a variety of loop invariants based on the observation that
loop bounds and invariants are tightly related, allowing extrapo-
lation of one from the other. In their paper, the authors primarily
tackled the use of ranking functions, which provide an upper bound
to the iteration count of a loop, and metering functions, which
provide similar lower bounds.
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Apart from the work of Cadek et al., this study tries to expand
on the work of Tasche et al. [14], by adding automated generation
for loop invariants representing concrete numerical bounds. The
resulting PVL and annotations can then be used as input to VerCors,
which uses separation logic to reason about different properties
of concurrent systems, thus being a good fit for embedded system
verification.

The resulting method of loop invariant generation, alongside the
implementation and evaluation of this technique, represents the
main contribution of this paper.

The structure of this paper is as follows: first, the aims of the study
are formulated in the form of research questions, followed by related
work and how this study differentiates itself from it. Afterwards, the
necessary background is provided before delving into the proposed
method, alongside its evaluation. Finally, we conclude by answering
the research questions and offering suggestions for future work.

2 PROBLEM STATEMENT

Research into loop invariant generation is extensive; however, no
general, all-encompassing solution exists. Thus, studies such as
this one aim to slowly advance the area towards solutions that are
applicable to real-life scenarios. This study strives to take existing
knowledge of loop invariant generation, specifically through the use
of loop bound analysis, which has been previously demonstrated
to be valid for sequential programs [2], and apply it to the domain
of embedded system design verification. With this in mind, the
research question is posed:

RQ: How can loop bound analysis techniques be used in
loop invariant generation for embedded system design verifi-
cation?

When investigating this query, the following sub-research ques-
tions will be used:

(1) SRQ: What types of loop invariants can be generated
based on loop bound analysis?

(2) SRQ: What kinds of loops can have invariants gener-
ated?

(3) SRQ: How effective are solutions found for generating
useful loop invariants?

3 RELATED WORK

In this section we look at work related to the present study and how
this study fits within the domain of loop invariant generation.

A variety of loop invariant generation techniques have been
proposed over the years. As no general solution for this problem
exists, existing tools use a diverse set of approaches based on the
domain of the application under verification. Present solutions tend
to fall into either a static generation category, dynamic generation,
or, more recently, hybrid approaches [8].

Using loop bound analysis methods for inferring loop invariants
has been shown as a promising approach to the problem in a pa-
per by Cadek et al. [2]. In their work, the authors claim that loop
bounds and loop invariants can have intrinsic relations, allowing
one to infer one based on the other. They argue that the field of loop
bound analysis presents many different techniques and approaches
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that were not used in the domain of invariant generation prior. The
authors have implemented their approach in a tool [3], which they
used to supplement invariants generated by state-of-the-art tooling.
By doing so, they demonstrated that invariants found through loop
bound analysis differ from loop invariants generated through differ-
ent means and improve the performance of those tools noticeably
on the SV-COMP [11] 2018 benchmark.

This work aims to expand upon the ideas presented by Cadek
et al. by applying loop bound analysis techniques in the context
of embedded systems, expanding the invariant generation capabil-
ities of previous work, such as [14]. We take the primary idea of
using loop bounds to generate loop invariants, and we propose a
method for generating loop invariants representing concrete numer-
ical bounds for program variables by means of symbolic execution,
specifically using interval abstract domains to simulate how said
bounds mutate by means of symbolic execution of the loop. The
proposed method differentiates itself from previous work by apply-
ing different techniques, namely symbolic execution, as opposed to
making use of ranking functions. Additionally, previous work places
focus on symbolic relations, whereas this study tries to compute
numerical bounds.

4 BACKGROUND
4.1 VerCors

VerCors [1] is a tool set for software verification, specifically geared
towards concurrent systems. It supports a wide array of program-
ming languages as input, such as Java and C, but more importantly,
its own Prototypal Verification Language (PVL), which is an object-
oriented programming language that aims to support a large array
of language features, with a primary focus on integer and boolean
data types. We are interested in PVL specifically because in this
work we use VeSUV, which transforms SystemC to PVL. In order to
check properties of the program under verification, VerCors uses
contract-based reasoning by means of method contracts, so pre-
conditions (e.g. requires n > 0), post-conditions (e.g. \result > 0),
and loop invariants (e.g. loop_invariant i <= n), which are annota-
tions of the input code that specify its behavior. VerCors will use
these annotations to reason about the program behavior, replacing
method calls by their respective contracts and verifying subsections
in isolation.

4.1.1 VeSUV. VeSUV [14] is a tool in the VerCors toolset that is
used to transform a SystemC design into an equivalent program
written in VerCors’ PVL, thus enabling verification. First, the Sys-
temC code is parsed with an external tool into an Abstract Syntax
Tree (AST), which is a structured representation of the code. This
AST is then parsed yet again into SystemC Internal Representation
(SystemC IR). The SystemC IR is further translated by VeSUV into
the Common Object Language (COL), an internal representation
used by VerCors, by encoding timing events and processes. These,
alongside scheduling information, are embedded into a Reachable
Abstract States Invariant (RASI) [13], that encapsulates the possible
state space in such a way as to avoid state space explosion and is
turned into a global invariant that VerCors can use to reason about
the current state of the program during verification. During the
translation into COL, annotations are also generated: the RASI, but
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also loop invariants based on path conditions. It is at this point that
we wish to generate further loop invariants.

4.2 Symbolic Execution

In this section we provide an overview of and necessary definitions
for symbolic execution, which are to be used in the proposed method
for generating loop invariants.

Symbolic execution [7] is a technique for reasoning about pro-
gram behavior by utilizing symbols instead of inputs for program
variables and executing the program based on those symbols rather
than concrete values. The fundamental idea is to represent a variable
by a symbol and apply mutations to said symbol according to the
provided piece of code. In our case, instead of a single symbol, we
map program variables to symbolic intervals (e.g. i : [5—j, 5+ j])
and symbolically execute the code under inspection, which we then
use to infer numerical bounds for the variables in the loop. The idea
to use intervals is inspired by [15].

A symbol is a singular program variable that may or may not
have a known value at a certain point in the program execution
(e.g., "N", "i", etc.). To be used in abstract interpretation, symbols
are mapped to abstract interval domains, which we will call sym-
bolic intervals. These represent the set of all possible values that a
variable might have at a certain point in program execution. The
bounds of these intervals are represented by linear expressions (lin-
ear combinations of symbols, alongside a possible constant term)
and considered to be inclusive, unless they are unbounded on one
side (i.e., that bound is infinite). The mapping itself is referred to as
a symbolic state, which represents the relation between all sym-
bols at a given point during program execution to their respective
symbolic intervals.

A linear expression is a linear combination of symbols with all
coefficients being constant terms, alongside a trailing constant. (e.g.,
"i+1""2-i+3-j—1" etc.). The general form of a linear expression

is:
n—1

C+ Z ¢ * Xi,
i=0

where n is the number of symbols in the expression, C is the trailing
constant, ¢; are the constant coefficients, and x; are symbols, with
C,c; € Z,Vi € [0,n] (adapted from [10]).

5 INVARIANT GENERATION

In this section we provide an overview of the proposed method of
loop invariant generation.

5.1 The Basic Concept

The fundamental idea is to keep track of the program state as the
loop is symbolically executed, thus allowing us to generate accurate
concrete intervals for the values that certain symbols may have upon
termination of the loop of interest. By constantly joining intervals
between loop iterations, we can expand these intervals to cover
the entire range of values of the given symbols across the entire
execution of the loop. These bounds can then be trivially converted
to invariants representing the concrete numerical bounds of the
symbols present in the loop.
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For example, if we find that a symbol i € [0, 2], we can translate
this into an invariant stating

loop_invariant 0 <=i && i <=2

5.1.1 Assumptions and Limitations. For our approach, we consid-
ered a subset of possible loop expressions. While the main focus has
been placed on for loops, these concepts can easily be generalized
for while and do ... while loops. The for loop must have exactly
one counter variable attributed to it. This variable must be present
in the initializer of the loop, the loop condition, and the iterator.
Furthermore, all sub-expressions of the loop, meaning the initializer,
condition, iterator, and instructions in the loop body, must be in the
form of linear expressions. For the condition, a comparator must
also be present (i.e. <, <, >, >), while for instructions (including the
initializer and iterator), an assignment must be made (e.g. i = i + 1).
Finally, we assume that variables used in the loop are initialized to
concrete values before the loop itself. If the loop does not adhere to
this format, generation is not possible. The general form of such a
for loop is given by

initialization
for (int i = start; i op end; i = expression)
body

where op € {<, <, >, >}

5.2 Representation

In order to be able to generate loop invariants, a representational
model is necessary. This model stands as the basis of our abstract in-
terpretation of the piece of code provided as input. We consider a for
loop to be comprised of the following: the initializer, the condition,
the iterator, the body, and the context. By context we understand
the set of instructions present before the for loop itself, which must
contain the initialization of the program variables.

To go from the SystemC IR representation into a form that we can
work with, we translate the initializer into a linear expression. The
condition is represented by two linear expressions alongside their
relation (i.e., {<, <, >, >}). For example, i < n. The body is translated
into a list of assignment operations (an assignment operation simply
being a mapping between a symbol and a linear expression), to
which the iterator is added at the end, similarly translated (e.g.
i = i + 1). Finally, the context is transformed into a symbolic state
(including the counter variable). This state is represented by the
mapping between the symbol and the symbolic interval for that
symbol. All symbols are initially considered to be mapped to an
interval containing only their assigned value. For example, if before
the loop body we initialize a symbol n = 5, then its corresponding
initial state is {n : [5,5]}.

5.3 High-Level Algorithms

In this subsection we provide explanations for the algorithms used
and how they are applied.

5.3.1 The basic example. We begin by means of a simple example.
Consider this snippet of code:
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1 j = 5;

2 for (i = 0; i < 5; i =1 + 1) {
3 -

4 }

Code Snippet 1. Example code

All this piece of code does is increment i while decrementing
Jj. From simply looking at the example, we can infer the bounds
i, j € [0,5], which can trivially be translated into invariants about
the loop, i.e.:

loop_invariant 0 <= i;
loop_invariant i <= 5;
loop_invariant 0 <= j;

5;

W N =

loop_invariant j <=

Code Snippet 2. Desired invariants

5.3.2  Symbolic Execution. Although the basic example is obvious
for a person, we need a mechanism to systematically infer this
information so we can generate it automatically. The basic algorithm
is provided by Algorithm 1.

Algorithm 1 Symbolic Execution

1: function symbolicExecute(initial_state, body, cond)

2 next_state < initial_state

3 repeat

4: current_state <— next_state

5 next_state < executeAnd Join(body, current_state)

6 until current_state = next_state or not

satisfies(current_state, cond)
7: return current_state
8: end function

Here executeAndJoin, shown in Algorithm 2, is a simple routine
that does as the name implies, symbolically executes the body on the
current_state, which results in a new state. This new state is then
joined with the current_state, resulting in the next state. What this
effectively achieves is a single iteration of the loop body, enlarging
the state intervals of our symbols. For example, the instruction i =
i+1 would be stored in the list as (i, i+1). Here, the body is an ordered
list of tuples, with the first element being the symbol on which the
transformation is done, while the second is the transformation itself.
The body also includes the loop update, added as a final instruction.

Figure 1 is a visual representation of how this algorithm works.
The point X is the initial value of a symbol, and the squiggly contour
represents the set of all possible values that symbol can take during
program execution. Subsequent iterations of the symbolic execu-
tions provide increasingly large intervals that overapproximate this
set.

A join() is an operation applied on two intervals, with the result
being a new minimal interval that contains both of the original
intervals. This can be viewed as the over-approximation over the
union of the two intervals (e.g., [0,3] U [4,5] C [0,3] > [4,5] =
[0, 5]). The join of two states is then defined as joining the symbolic
interval of a symbol from the first state with the symbolic interval of
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iter 4

iter 5

Fig. 1. Visual representation of symbolic execution

the same symbol in the second state, done for all symbols between
the two states. If the interval bounds are concrete, then we have
[a1, b1] v« [az, b2] = [min(ay, az), max(by, b2)].

If the interval bounds are not concrete, the join is not computable
in the general case (since min and max are not either), unless the
difference between the bounds is a constant term.

Algorithm 2 Execute and Join

1: function executeAndJoin(body, initial_state)

2 current_state < initial_state

3 for all (symbol, transformation) € body do

4 update(current_state, symbol, trans formation)
5 reduce(current_state)

6 end for

7 result « join(initial_state, current_state)

8 return result

9: end function

One important part to note of this algorithm is the use of the
reduce function. This function tries to resolve a symbolic state to
its most concrete form by iteratively applying replacement on its
symbols. We say that the state of a symbol is concrete if it is not an
expression of other symbols in the state (e.g., {i : [0, 5]} is a concrete
state, while {i : [0, N — 1]} is not). By replacement we mean that a
symbol a is replaced by its bound in the expressions of the symbolic
interval of the symbol b (of course, only if b depends on a), such that
we respect the minimum and maximum properties of the bounds of
the symbol b. A replacement is considered to respect the minimum
(respective maximum) property of the interval bounds if no other
replacement exists such that a lower (respective higher) bound can
be computed (i.e., this gives us the largest possible interval for the

symbol b).
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It may be possible, however, that no set of replacements will
resolve a symbolic state into a concrete state; thus, we consider the
most concrete state. We define the most concrete state as a state that
cannot be further reduced by any number of replacements. We are
interested in finding the most concrete state because this state yields
the simplest possible expressions to be used in the next iterations,
but also because we might otherwise reach an expression in the
loop condition that cannot be computed otherwise, as finding the
smaller (or larger) between two expressions is non-solvable for the
general case. This makes the use of non-concrete states generally
unusable.

We account for possible mutual dependencies between symbols
by applying the reduce function between every instruction. For
example, abody i = j+1, j = i+ 1 would lead to an unsolvable state
if the state is not reduced between instructions. This would happen
because the first instruction makes the bounds of i into an expression
of j, while the second makes the bounds of j an expression of i, thus
no replacements can exist that solve this situation.

5.3.3 Resolving to the most concrete state. The algorithm for resolv-
ing to the most concrete state is given by Algorithm 3.

Algorithm 3 Reduce State

1: function reduce(initial_state)

2 current_state « initial_state

3 constants < getConstants(current_state)

4 result < 0

5 while constants # (0 do

6 result.putAll(constants)

7 current_state < current_state.removeAll(constants)
8 new_state «— 0

9 for all (symbol, interval) € current_state do

10: new_interval < evaluate(interval, result)

11 new_state.put(symbol, new_interval)

12: end for

13: current_state < new_state

14: constants < getConstants(current_state)

15: end while

16: result.putAll(current_state) > Add all remaining symbols
17: return result

18: end function

The algorithm works by repeating a simple routine of removing
concrete symbols and evaluating the rest of the state based on those
concrete symbols until this can no longer be done.

5.3.4 Evaluating an interval for a given state. The function evaluate,
is what ensures that we keep the minimum and maximum properties
of our interval states. To evaluate the largest possible bounds for
the states, we effectively wish to replace symbols by possible values
such that the lower bound becomes the smallest it can after the
replacement (respective upper bound becomes the largest). Let us
consider a simple example. Take the state {N : [-2,2];i : [5 -
N, 5+ N|}. We can see that this is not the most concrete form of
this state, because the symbol i depends on the symbol N, which
is concrete; thus, a replacement is possible. Looking at the lower
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bound expression of i, 5— N, and replacing the symbol by its bounds,
we get the new possible bounds 5 - (-2) = 7 and 5 -2 = 3, of which
3 is clearly smaller. We apply this similarly to the upper bound 5+ N:
the possible bounds are 5+(—2) = 3 and 5+2 = 7, of which 7 is larger.
Then we can conclude that the largest concrete interval for i is [3, 7].
This result can be generalized. When we wish to compute a lower
bound, we use the largest value for that symbol if its coefficient is
negative and the smallest value for that symbol if its coefficient is
positive. For the upper bound, the inverse is done: add the largest
value if the coefficient is positive or the smallest if the coefficient is
negative.

5.4 Verification

54.1 Preliminary Verification. With the algorithms described above,
we can automatically infer numerical bounds for program variables
with respect to the execution of a loop. Looking back at our example
5.3.1, we do indeed get the desired invariants 2.

Plugging the generated and annotated PVL back into VerCors,
however, does not verify, even though the bounds are correct. This
gives us a verification error: This invariant may not be main-
tained, since this expression may be false, referring to the ex-
pression loop_invariant 0 <= this.j. This happens because VerCors
verifies by isolation. While we may have used the loop context,
this.j = 5, to generate these invariants, VerCors does not take this
into account when doing the verification. VerCors isolates the loop,
assuming its invariants to be true, then verifies the loop body to
see if they are maintained. In our example, VerCors assumes that
Jj € [0,5], executes the first iteration of the loop, which results in
the next state of j € [—1, 4], but since [—1,4] ¢ [0, 5], the invariant
cannot be maintained.

5.4.2 Loop Condition Mutation. In order to make our generated
invariants verifiable by VerCors, we need to provide it with the
additional context in which the loop is executed, thus allowing for
verification. What we can do here is apply a mutation to the loop
condition that will give the necessary context. We choose to mutate
the condition specifically because VerCors uses it as part of the
verification process.

This new condition must satisfy two conditions: it must not
change the behavior of the loop, and it must provide VerCors with
information about the state of the program at the beginning of the
loop execution. The proposed mutation for this is adding the pro-
gram state at the iteration prior to exiting the loop to the condition
with a logical AND operator. We can obtain this state by slightly
altering our symbolicExecute function to also keep track of the
previous state and return it alongside the final state.

Let us illustrate this concept by applying symbolicExecute, Algo-
rithm 1, on the initial example 5.3.1. Translating the loop into our
representation, we have

the initial state{i : [0,0], j: [5,5]}
the condition i < 5

and the loopbody [j=j -1, i=i+1]



TScIT 43, July 4, 2025, Enschede, The Netherlands

We will apply the loop body to the state, joining previous states
until the loop condition is no longer satisfied. Applying it once, we
get the state

{i:[1,1], j:[4.4]},
which joined with the initial state becomes {i : [0,1], j : [4,5]}

On the next iteration, we get the state

{i:[0,2], j: [3,5]}
then {i : [0,3], j: [2,5]},
then {i: [0,4], j: [1, ]},

and finally {i : [0,5], j: [0,5]}

at which point the loop condition is no longer satisfied. Thus, the
final state that satisfies the loop condition is {i : [0,4],j : [1,5]}.
Indeed, looking at the interval of the symbol i, it matches the original
condition, with the upper bound being equivalent to the condition
itself. Let us name the iteration associated with this state iterf.
Since the symbolic interval of a variable is an over-approximation
of the set of all values that symbol can take up to that point of
execution in the program, we know that j € [1, 5] is true at least
for all iterations of the loop. This means that a condition 1 <=
j && j <=5 could not terminate the loop execution before the
original condition i < 5. It is not necessarily a concern whether
the state after the execution of iteration iters, still satisfies this
new condition, because combining it with the original condition
via a logical AND guarantees that the loop cannot run for more
iterations than the original. Thus we reach the mutated condition

i<5&& (1 <=j&& j<=5)

which can be confirmed to not change the behavior of the loop.
Although not explicitly tested with non-monotonous functions, this
line of reasoning should also hold in such situations.

5.4.3 Correctness. Let us look at this concept more generally. We
say that a state S is included in another state S’ if the state S’ contains
all symbols present in state S, and for every such symbol, the interval
in the state S is a subinterval to the one S’ for that respective symbol.
We represent this relation as S C §’. Based on the implementation of
executeAndJoin, Algorithm 2, at every iteration, the current state
is included in the next. This is because the set of symbols does
not change, and for every symbol, the resulting interval is joined
with the previous (thus guaranteeing the subintervals property).
So S; C Si41 is true for any iteration i of the loop. By induction,
Si C Siterﬁm is also true for any iteration i prior to iterfinal-
Consider a condition cond that refers to a symbol i present in
the state S, with the mapping of i in S satisfying cond, for example,
= {i : [0,3],j : [1,2]} and cond : i < 5). Then the state S
can be said to satisfy the condition cond. We can generate a new
condition condg that expresses that all symbols in S must be within
the bounds described by S. If the condition condg holds, then the
condition cond must also hold by conjunction elimination. For the
example, if (0 <=i && i <= 3) && (1 <= j && j <= 2) is true,
then i < 5 is also true. If a state S satisfies a condition cond, then
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any state S’ C S (that contains all symbols in cond) must also satisfy
cond, because the mapping of all symbols in S’ is included in the
respective mapping in state S.

Based on this, if we generate a condition that expresses the bounds
of state Sitery;,,;» it must imply the original condition of the loop.
And since any prior state of the loop is included in this state, they
must satisfy the generated condition. Then this new condition can-
not terminate the execution of the loop before the original condition,
so combining them by a logical AND, we get a condition that is
equivalent to the original. Using this equivalent condition, we can
now provide VerCors with the additional information necessary for
verifying the generated invariants. This works because VerCors can
no longer try to apply the loop body on the found bounds directly,
which would have let it find states outside of those bounds, resulting
in the invariants not being maintained.

5.4.4  Turning mutated conditions into invariants. Mutating the loop
condition allows for the verification of concrete numerical bounds
of program symbols. While the section above provides an informal
proof of equivalence to the original program, there are some down-
sides still: the possible introduction of errors and the strengthening
of the loop condition. It may be possible that modifying the loop
condition in this way can introduce unforeseen bugs. To mitigate
this, program equivalence verification would be necessary between
the original and the modified. Also, the strengthening of the loop
condition results in a weaker negation, and since the negation of
the loop condition is used after the loop in further proofs, this may
lead to failure of verification of additional program properties.

An alternative could be to turn the mutated condition into an
invariant itself, using logical implication. For a mutated condition
cond && additional, where cond is the original loop condition, and
additional is the condition generated based on the symbol states,
then we can generate an invariant cond ==> additional. This new
invariant circumvents the issues of mutating the condition itself,
but based on our experiments, we have not been able to verify
this invariant. The likely explanation is that we once again have
concrete numerical bounds in our invariant, which puts us in the
same situation as before mutating the loop condition in the first
place.

6 EVALUATION

In this section we present the running examples used throughout
the development of the proposed method, alongside their respective
invariants and verification status. These examples are generated
by the researcher to provide increasingly challenging cases for the
proposed method.
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6.1 Case Study

The basic case for which invariants have been generated is a simple
for loop that sums all the values of its counter variable. This loop
satisfies the assumptions presented in section 5.1.1.

1 total = 0;

2 for (i = 0; i < 5; i =1 + 1) {
3 total = total + 1i;

4 }

Case 1. Base loop case

This case is used to validate the generation of bounds for very
simple loops, which only have constant terms for the initial value,
the condition, and the iterator. Initially, the bounds of total have
been disregarded until multiple symbols could be supported. Several
variations of this case have also been considered, each one present-
ing additional complexity to the base case (differences highlighted
in bold and italic).

1 total = 0;

2 n=>5;

3 for (i = 0; i<n; i =1 + 1) {
4 total = total + i;

5 }

Case 2. Condition with additional symbol

This variation of the loop includes an additional symbol n in the
condition. Whether we can generate concrete bounds for i in this
case depends on whether we have initialized n with a concrete value.

1 total = 0;

2 n = 5;

3 s=0;

4 for (i = 0; i < n; i=i+s) {
5 total = total + 1i;

6 s=s+1;

7 }

Case 3. Variable step

This variation introduces a variable step between loop iterations.
At this point we are forced to generate bounds for the s variable
as well; otherwise, the bounds of i cannot be verified, as i is an
expression of s.

6.2 Results
For base case 1, we get the following generated invariants:
loop_invariant 0 <= this.i;

loop_invariant this.i <= 5;
loop_invariant 0 <= this.total;

B W N =

loop_invariant this.total <= 10;
Code Snippet 3. Invariants for base case (simplified)
Like mentioned earlier, we disregard the bounds of total (lines

3 and 4) for the time being. Plugging invariants 1 and 2 into Ver-
Cors results in successful verification. If we were to also add the
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invariants about total at this point, verification fails for similar rea-
sons to section 5.4.1. As discussed in section 5.4.2, we can apply
condition mutation to this loop, which yields the new condition
this.i <5 && (0 <= this.total && this.total <= 6). Adding this in,
verification is now successful.

For case 2, the numerical bounds of i and i are the same as in the
base case; however, we now also get an invariant about n being a
constant term:

loop_invariant 0 <= this.i;
loop_invariant this.i <= 5;
loop_invariant this.n == 5;
loop_invariant 0 <= this.total;

G W N =

loop_invariant this.total <= 10;

Code Snippet 4. Invariants for condition case (simplified)

In this case, the mutation of the condition does not require the
inclusion of the symbol n, as it is a constant term and we can simply
add the associated invariant. The difference between n and total is
that VerCors can internally represent n as a single constant value,
while total is considered a range. Since n is a constant, it can be
directly replaced in expressions containing it; thus, the invariant
already provides all necessary information for verification.

Finally, for the variable step (case 3):

>

loop_invariant 0 <= this

>

i
loop_invariant this.i <= 6
loop_invariant this.n == 5;
.S
3

loop_invariant 0 <= this.s;
loop_invariant this.s <= 3;
loop_invariant 0 <= this.total;

NN o W N =

loop_invariant this.total <= 4;

Code Snippet 5. Invariants for variable step case (simplified)

Here we cannot verify unless we add the mutated the condi-
tion this.i < this.n && (0 <= this.s && this.s <= 2) && (0 <=
this.i && this.i <= 3) && (0 <= this.total && this.total <= 1).
It is important to note the added condition that i € [0, 3], which
is different from the initial condition i < 5. However, observing
the actual behavior of the loop, the conditions are equivalent. The
symbol i starts at 0 and is monotonically increasing; thus i > 0.
When i reaches the value 3, s is equal to 3, so the next value of i will
be 6, which is greater than 5; thus, we stop iterating and i < 3. From
these two observations, the old and new conditions are equivalent
for this particular loop. Verifying this with VerCors is successful.

6.3 Discussion

The evaluation of the presented cases shows that the proposed
method of generating numerical bounds as loop invariants is promis-
ing. This method is able to correctly capture the behavior of different
for loops, including the effect of execution on the program state.
There are, however, some points to consider, especially with respect
to the applicability of these results across various SystemC designs.

The assumptions needed to apply this technique are fairly strong.
It is reasonable to assume that symbols can only take integer values,
as per the specification of VerCors, but it is not always the case that
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all instructions are simple assignments made of linear expressions.
This severely shrinks the set of programs for which this method is
applicable. However, for simple loops iterating over array entries,
for example, this seems like a useful technique. It is difficult to
judge how much the cases presented are representative of other
common uses of SystemC, mainly due to the limited experience of
the researcher with this framework.

Additionally, the validity of condition mutation in section 5.4.2
is not fully explored. Based on the informal proof and examples
provided, it seems to be a working concept, but a proper formal
proof would be necessary to ensure correctness. Furthermore, its
limitations are still unknown, as there might be cases for which
it gives a false result. One known issue is that it strengthens the
loop condition, which may be an issue for verification software that
relies on the negation of the condition in proofs.

The main strength of this method for generating loop invariants
lies in that it can provide invariants that may be difficult to deduce
but are still reasonably easy to verify manually should anything go
wrong.

7 CONCLUSION

In this research project, VeSUV has been extended to support the
generation of loop invariants that specify numerical bounds for
symbols used in and mutated by the execution of the loop. This
has been achieved through the use of symbolic execution on ab-
stract interval domains, which can generate upper and lower bounds
for each individual symbol present in the loop. These invariants
have, however, limited usability in verification of the initial designs,
mainly due to the way VerCors isolates the loop during verification.
This means that context, which allows the assertion of the generated
invariants, is not provided, leading to unmaintained invariants. To
circumvent this limitation, we also propose a way to mutate the
loop condition, which is used in the verification step, such as to
reintroduce the missing context, thus creating of an equivalent but
verifiable transformation.

For the rest of this section, we provide answers for the research
questions posed in section 2.

SRQ: What types of loop invariants can be generated based
on loop bound analysis? The kind of invariants found refer to
numerical bounds of program variables. These invariants are based
on the symbolic execution of the target piece of code, alongside the
context in which said piece of code resides. These bounds represent
over-approximations over the actual set of possible values for a given
symbol. Being over-approximations, correctness of the bounds can
be ensured, but in exchange for a loss of granularity. Depending on
the actual mutation of the symbols across iterations, it is likely to
represent states that are impossible in practice, which may result in
issues with verification of specific properties.

SRQ: What kinds of loops can have invariants generated?
The proposed method imposes a set of assumptions and limitations
on the types of loops for which it can be applied. One major limita-
tion currently present is the necessity to initialize all symbols used
in the loop. This noticeably shrinks applicability. If, for example, a
registered routine requires reading sensor input, this would make
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generation impossible for that loop. To alleviate this concern, as-
sumptions about the possible ranges of values for all symbols would
be necessary. An additional restriction is on the form of individual
instructions. Currently, support is limited to only linear expressions,
which are a suitable starting point but are likely unable to capture
the complexity of possible designs.

SRQ: How effective are solutions found for generating use-
ful loop invariants? The proposed solution is able to generate
invariants useful in the verification of simple designs. How effective
it is in the context of real-world applications, which are likely sig-
nificantly more complex and possibly not within the assumptions,
remains unclear still, and further exploration should be done.

RQ: How can loop bound analysis techniques be used in
loop invariant generation for embedded system design verifi-
cation? Loop bound analysis techniques, namely abstract interpre-
tation through the use of interval abstract domains, show promising
applicability in the field of embedded systems design verification.
The found technique can provide numerical bounds for the set of
possible values that a program variable may have throughout the
execution of a loop, as well as before and after, in the form of the
generated invariants. Although said invariants rely on having a
definite initial state, and they themselves represent concrete numer-
ical bounds, both of those may still be reasonable assumptions in
the context of embedded systems design. We cannot immediately
expect that all symbols are initialized to concrete values, but it is
fair to assume that the range of possible values for any specific
input symbol is known during the design phase. Similarly, having
concrete numerical bounds for different symbols could likely still be
useful, for example, for ensuring safe access of memory locations.

7.0.1  Future Work. Based on the current findings of this study,
we propose some directions possibly worth exploring further in
future research. One immediately obvious path is looking into the
applicability of these results in real-world designs, trying to find
the exact limits of the proposed approach. Another line of study
could try to further generalize these findings, potentially relaxing
the assumptions being made, or attempt to find bounds as relations
between symbols instead of concrete values. Finally, loop condition
mutation could be explored more in-depth, first by means of a proper
formal proof of equivalence to the original condition, and second
by trying to generalize this concept such that it may be used with
non-concrete states.
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