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Morphing Robust Face Recognition
ANA DARIA GAVRA, University of Twente, The Netherlands

Applications for safe access control, such as those in bordermanagement, rely
on systems based on face, fingerprint, or iris recognition. As face recognition
systems become increasingly prevalent, their vulnerability to morphing
attacks has become a relevant topic of discussion. An example of a morphing
attack is in airports, with some countries permitting the release of electronic
Machine Readable Travel Documents with photos submitted by the applicant
which are subsequently approved or rejected. By examining ways to avert
morphing attacks (i.e., techniques to reject or accept an image), this paper
proposes a system that considers how various image quality properties
may influence morph rejection. The threshold used in the decision-making
process, as well as the final prediction score, is based on image quality
properties combined with the prediction score given by a face recognition
system. In doing so, the possible relationship between an image’s quality
properties, its similarity score, and BRISQUE is investigated. Further, to
assess the validity of our performance enhancement claims, the chosen face
recognition systemwill be tested both with and without taking image quality
properties into account.

Additional Key Words and Phrases: Morphing Attacks, Biometrics, Face
Morphing, Image Quality Assessment, BRISQUE

1 INTRODUCTION
Over the past decades, electronic documents storing biometric infor-
mation have gradually replaced paper documentation [7]. Within
this context, face, fingerprint, or iris recognition biometric systems
are largely deployed in various access control applications. Face
recognition systems (FRS) are primarily deployed in the context
of authenticating users through ID verification services [30]. An
example of such a service is the Automated Border Control (ABC)
systems usually found in airports. The way ABC systems (or eGates)
work is that the passenger presents their electronic Machine Read-
able Travel Document (eMRTD) to the ABC to verify their identity
[23, 29]. Although identity can be confirmed by comparing it to the
image on the document, many countries allow applicants to submit
self-taken photos for their eMRTD, which are subsequently accepted
or not. This aspect makes face recognition systems vulnerable to
face morphing attacks [22].
Morphing is a visual effect commonly used in films and anima-

tions that smoothly transforms one image or shape into another [31].
A face morphing attack utilizes this technique to blend two or more
images of different individuals–a criminal and an accomplice–to
fool face recognition systems. An example of this can be seen in
Figure 3.

In assessing whether an image is bona fide or morphed, the deci-
sion to accept or reject is made using a pre-defined threshold. The
primary issue at hand is that choosing this threshold has its advan-
tages and disadvantages, depending on the point of view, which is
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illustrated in Figure 1. On the one hand, setting a very high thresh-
old can result in successfully rejecting a high number of morphs,
as shown at the top; however, this comes with the downside of
rejecting many innocent individuals as well. On the other hand,
looking at the bottom figure, setting a low threshold could mean
the acceptance of a higher number of criminals (i.e., morphs) [27].
Factors that influence the decision-making process that can be over-
looked are image quality properties, such as sharpness, blurriness,
and quality. For example, image compression is an aspect that could
influence whether an image is rejected or accepted [23].

Fig. 1. Example illustrations of varying thresholds: the top figure shows a
high threshold of 0.8 and the bottom one shows a lower threshold of 0.6

To address this issue, we propose a system that takes into account
the quality properties of the input images in the decision-making
process, aiming to achieve better performance in morph rejection.
Figure 2 illustrates the proposed system’s architecture.
Considering this, the project is centered around the following

research question and its corresponding sub-questions:
RQ: How can image quality properties be used to enhance the

effectiveness of a face recognition system in rejecting morphs?
(1) SRQ1:How is the effectiveness of morph rejection measured?
(2) SRQ2:What image quality properties should be taken into

account to enhance morph rejection?
(3) SRQ3: How much do image property metrics influence the

decision-making process of morph rejection?
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Fig. 2. Overview of proposed system architecture

2 BACKGROUND
Creating a morph comprises three main stages. The first stage in-
volves establishing a correspondence between the samples being used.
The following stage, known as warping, involves the distortion of
the sample images such that their corresponding features align ge-
ometrically. Lastly, in the blending stage, the color values of the
warped images are combined to produce the final morphed face im-
age. Besides the three stages presented, some post-processing steps
can be taken to improve the morph’s quality. For example, blurring
and sharpening could be used to eliminate unnatural color gradients
and edges, and using histogram equalization can help achieve real-
istic color histogram shapes. The aforementioned post-processing
steps aid in achieving a higher quality morph and introduce a higher
probability of a criminal passing ABC gates [23].
Looking at the generic structure of an automated biometric sys-

tem, these are usually comprised of the following [18]:
• A live capture device (e.g., a camera),
• A database with biometric information and other personal
data,

• A feature extraction algorithm,
• Comparison and decision algorithms that establish whether
the two samples (i.e., ID photo and live capture) belong to the
same source.

As is described in [9], during enrollment at an ABC gate, a feature
vector is extracted from the ID photo, which serves as a reference
sample, and a live capture. The feature vector obtained from the live
capture is compared against the reference (claimed identity), result-
ing in a final biometric comparison score. The aforementioned score
is compared against a pre-defined threshold yielding acceptance or
rejection.
There is an alternative scenario in which no live capture device

is present; in such cases, the decision to reject or accept is strictly
based on the ID photo and themanual check of its validity conducted
by ABC gate personnel [21]. But the task of manual checking is
becoming more and more difficult as the quality of morphs is in-
creasing. Looking at the three images in Figure 3, to the human
eye, it seems fair to assume that the photo in the middle can be the

passport photo of the individual on the left or the one on the right,
whereas, in fact, it is a morph of both. Therefore, this paper will
only focus on the case in which a live capture is present for extra
information.

Individual 1 Passport Photo Individual 2

Fig. 3. Example of how two different individuals can use a morph as a valid
passport photo (passport photo is a morph of the two individuals)

As mentioned prior, the proposed system will take into account
an ID photo and a live capture of the individual present. When
someone applies for an eMRTD, the image they provide has to meet
specific quality standards. Consequently, an assumption that can be
made is that the ID photo that will be inputted into the system will
respect these standards. An overview of ICAO standards [10], which
are widely used and referenced, can be seen in Table 1. Analyzing
these specifications provides a good starting point for identifying
the key quality properties to be studied in this research.

Requirement ICAO Specification
Photo Age Must not be older than 6 months
Photo Size 35–40mm width
Framing Face must take up 70–80% of photo
Quality Photomust be clear and of sharp focus, have appropriate

brightness and contrast, be taken with uniform lighting
and not show shadows or light reflections

Coloring Photo must show natural and uniform skin color
Resolution Photo needs to be of high resolution

Face Expression Subject must have neutral expression, with eyes open
and clearly visible, mouth closed

Subject Positioning Subject must be looking straight at camera, front facing
and must be centered in image

Background Photo must have a light uniform background
Glasses Glasses can be worn if frames are thin and lenses are

not reflective
Head Coverings Can be worn for religious reasons, but facial features

from bottom of chin to top of forehead and both face
edges must be clearly visible

Table 1. Summary of ICAO passport photo requirements

To measure the degradation of an image’s quality, image quality
assessment (IQA) techniques are typically employed. Depending
on the amount of information available about the original image,
IQA metrics range from full-reference (i.e., the original is available
for degradation comparison) to no-reference (i.e., no original is
available). An example of a widely used no-reference IQA metric is
BRISQUE [15], a natural scene statistic (NSS) based model, which
quantifies the "naturalness" of an image by measuring its deviation
from the expected patterns of undistorted images.
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3 RELATED WORK
Although this paper looks into enhancing morph rejection, related
work in the areas of morph detection and face recognition offers
great insights into how image quality properties influence the ac-
ceptance/rejection decision-making process.
Ghost or blur artifacts are residuals of face morphing caused

by misplaced landmarks. These artifacts are strong indicators of a
morphed image. Szabó’s [27] research into face recognition tackles
the effect of warping in creating a more robust system. By warping
all faces to a standard "average face", there is a possibility of more
easily finding these artifacts. Further, other image quality properties,
such as blurriness, sharpness, and brightness, can have an effect in
better identifying morphing artifacts.

Another aspect that has been treated in trying to spot morphing
artifacts is the color histogram of the provided image, as some
morphs prove to have uneven color histograms. As shown in [28],
by leveraging denoising techniques in the HSV color space, exposing
morphing artifacts proves to be possible.
Additionally, image quality has proven to have significant influ-

ence on performance. Scherhag et al. [22] show that, from a digital
perspective, morph attack detection systems are robust enough to
detect morphs. However, after the same images are printed and
scanned (such as the case of ABC systems checks in airports), they
have a very low success rate. The compression that an image un-
dergoes affects its BRISQUE score, with morphed images having
very high BRISQUE values after compression [23]. Further, recent
research shows that FRS are susceptible to images of lower resolu-
tion, one of the reasons being the lack of low resolution training
data [4, 12]. Besides issues with training data, [11] points out that
most FRS treat all data the same, without taking into account qual-
ity aspects, thus resulting in poorer performance for lower quality
images.

4 PROPOSED METHODOLOGY

4.1 System Overview
In contrast to the state of the art, as previously discussed, the system
proposed (Figure 2) incorporates quality aspects. From Figure 2, it
can be seen that extra modules have been added, specifically the
"Quality Metric Calculation" and "Prediction Score Calculation". The
purpose of these two modules is the following: first, extract from
the live capture its relevant quality aspects and generate a quality
score, and second, output a prediction score for the system based
on this. Moving forward, in the process to accept or reject, both the
quality prediction score and the score generated by the FRS will be
considered.

The methodology for performance metrics, face recognition sys-
tems, the dataset used, the decision-making process, image quality
and prediction score calculation are elaborated upon in the following
subsections.

4.2 Performance Metrics
In biometric systems and morphing attacks, various metrics eval-
uate effectiveness. Since this project focuses on measuring morph
rejection effectiveness, rather than morph detection, metrics such as
Attack Presentation Classification Error Rate (APCER) and Bonafide

Attack Presentation Classification Error Rate (BPCER) are set aside,
as these are meant for assessing Morphing Attack Detection (MAD)
algorithm accuracy.

In assessing the effectiveness of a system, two aspects need to be
considered: its behavior and overall vulnerability. To gain insights
into the system’s behavior, the following metrics will be utilized
[18]:

• False Match Rate (FMR): The proportion of the completed
biometric non-mated comparison trials that result in a false
match.

• False Non-Match Rate (FNMR): The proportion of the com-
pleted biometric mated comparison trials that result in a false
non-match.

Additionally, we will consider the True Non-Match Rate (TNMR)
and True Match Rate (TMR), which, by definition, are the comple-
ments of the False Match Rate (FMR) and False Non-Match Rate
(FNMR), respectively. All aforementioned metrics can be visualised
using:

• ReceiverOperatingCharacteristic (ROC): plots TMR against
FMR [33],

• Detection Error Trade Off (DET): plots FMR against FNMR
[32].

To evaluate the overall vulnerability of the system, we will use the
Mated Morph Presentation Match Rate (MMPMR), which is defined
as follows in [21]:

𝑀𝑀𝑃𝑀𝑅(𝜏) = 1
𝑀

·
𝑀∑︁

𝑚=1

{[
min

𝑛=1,...,𝑁𝑚

𝑆𝑛𝑚

]
> 𝜏

}
,

where 𝜏 is the verification threshold, 𝑆𝑛𝑚 is the mated morph
comparison score of the n-th subject of morph m, M is the total
number of morphed images and 𝑁𝑚 the total number of subjects
contributing to morph m.

4.3 Face Recognition System
Due to variations in behavior and implementation, this project will
only focus on one FRS and its associated behavior. Consequently, a
literature review of the state of the art has been performed in order
to make a final decision within this research’s scope.
There is a series of key properties that need to be looked into

to properly assess what the best choice would be: the size and
complexity of the system, its accuracy, the datasets it has been
trained on, its performance with occluded faces, and how it reacts to
various photo quality. All chosen systems respect Frontex guidelines
(i.e. False Acceptance Rate ≤ 0.01, False Rejection Rate ≤ 0.5) [1],
and had their performance tested on the same data, so we will use
the same to compare them between each other. Table A.1 presents
an overview of all systems reviewed. The table is constructed using
the information given by each model’s paper.

Based on all the presented information, the project will use AdaFace
[11], since recent papers show that it outperforms its popular peers,
such as ArcFace. Moreover, AdaFace was designed with considera-
tions for face occlusion and varying image quality, two areas highly
relevant to the goals of this project.
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4.4 Dataset
To replicate the real life scenario of eGates, the dataset used needs
to contain two types of images, one which adheres to the standards
specified in [10], representing the passport photo, and another rep-
resenting the live capture. For the latter, this could mean:

• Harsh face shadows,
• Busy background,
• Varying expression, (e.g., the subject is smiling)
• Occlusion of the face (i.e., the subject might not be looking
straight at camera, may be wearing accessories, or may have
hair covering their face).

The dataset that will be used is FRLL-Morphs [19, 20], which
uses faces sourced from the Face Research London Lab [5]. One
advantage of this dataset is that it offers morphs of people that re-
semble one another. For example, there are no morphs of a man and
a woman, or of an elderly person and a young person. Additionally,
the dataset provides images of people with various hairstyles, facial
hair, makeup, and from different ethnic backgrounds and age groups.
FRLL-Morphs only includes front-facing images with either a smil-
ing or neutral expression. Therefore, to satisfy the need of varying
live capture photos, we are also using quarter profiles provided by
[5].

An aspect that has to be noted is that in the photos provided by [5],
all subjects are wearing a white T-shirt against a white background.
This is an issue that can be overlooked, as the pipeline that is being
used crops the images with face alignment before being fed into the
FRS. Therefore, we can ensure that we are focusing only on image
qualities in assessing the performance of our model. Examples of
the dataset can be found in Appendix B. Pictures with a neutral
expression with [0◦, 0◦, 0◦] position are a proxy for a passport photo,
whereas the rest serve as proxies for live captures.

Fig. 4. Similarity scores for mated images

A preliminary data cleanup was conducted to ensure that results
are not affected moving forward. As shown in Figure 4, some images
perform poorly even without manipulations. Therefore, these have
been removed from the dataset, as theywill likely skew experimental
results. Additionally, photos that do not adhere to ICAO regulations,

such as bangs covering relevant marks of the face, have also been
removed.

4.5 ImageQuality Properties
Based on the ICAO photo requirements that have been presented
in section 2, but also the related work presented in section 3, the
image quality properties that will be investigated are:

• Brightness,
• Sharpness,
• Contrast,
• Noise.

Of the two images that are going to be inputted into the system,
the passport photo is assumed to attain to quality standards specified
for eMRTD. Therefore, only live capture photos will be manipulated.
By manipulation we mean that a varying quality factor was applied
to the original photo to generate a new one. The new photo is then
inputted into the system to get a new a similarity score. Examples of
manipulation can be seen in Appendix C. In this phase of the project,
only one type of manipulation is applied to a photo. This way, we can
ensure that we can clearly see each manipulation type’s effect. All
results will be separated by pose, expression and manipulation type,
so it can be clearly seen how each one affects model performance.
After all similarity scores are computed and the effect of each

type of manipulation is visualised, one should be able to conclude
which image quality properties should be taken into account moving
forward, but also to categorize live capture images into High Quality
images and Low Quality images, which are defined as follows:

• High Quality (HQ) Image: an image that we are sure will
always perform well (i.e., always results in a similarity score
higher than threshold 𝜏),

• Low Quality (LQ) Image: an image that has varying behav-
ior, performance depends on the case.

Moving further, since all manipulations are done manually, a
mapping between HQ images, LQ images and an IQA metric needs
to be made. If a relationship between the aforementioned cannot be
found, we will resort to using a manual quality metric based on the
manipulations we have performed that will act as a proxy.

4.6 ImageQuality Assessment
This project will only focus on no-reference IQA metrics. Most
available metrics integrated with PyTorch are NSS based models
and have a low complexity, therefore not increasing the size of the
project by much. While there are also training-based models, such
as CORNIA [35], they are not as easy to integrate. There is also the
option of using deep features for IQA, recent papers showing that
deep features are highly correlated with NSS based metrics and are
highly accurate [11, 36]. However, incorporating deep features may
complicate our existing architecture for similarity scores, and may
limit our control over image manipulation processes, resulting in
reduced interpretability of the results.

One last aspect that has to be treated is using individual metrics
for the image quality properties that will be tested. Since there
are already metrics that take into account multiple image quality
properties in score calculation, adding an individual metric for each
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image quality property would make the project more complex than
necessary.
Taking everything into account, for this project, we will be us-

ing blind/referenceless image spatial quality evaluator (BRISQUE).
BRISQUE has been chosen over other IQA metrics, such as NIQE
[16] and BIQI [17], because it is better suited for the kind of image
quality properties we will be looking at during this project. Along
with its easy integration, high use in academia and its architec-
ture, BRISQUE proves to be the best fit for this project, as it makes
the mapping between image quality and BRISQUE scores a facile
process.

4.7 Setting the Threshold
The process of setting a threshold for the system to be tested is
pretty straightforward. The threshold will be set using impostor
pairs and a FMR of 0.01%, as stated in [1]. For our specific dataset,
impostor pairs of morphs (passport photo) and genuine people (live
capture) are fed into the FRS to get similarity scores. After all pairs
have gone through the FRS, the threshold is the 99.99th percentile
value, which is equivalent to FMR of 0.01%.

4.8 Testing the Proposed System
In order to properly assess the effectiveness of the proposed system,
we first need the performance metrics of the FRS for morph rejection.
Moving forward, there are two scenarios under which the proposed
system will be tested.

• Scenario 1: Static Threshold
After calculating the threshold for the system, we will simply
compare the difference between adding the quality prediction
score to the decision making process and without adding it.
This way, we can see how much image quality can affect
decision making.

• Scenario 2: Dynamic Threshold
Since we are able to also distinguish between high quality
images and low quality images, it is fair to assume that for
higher quality images the threshold should be higher. There-
fore, based on the quality metric, we will also set the threshold
of the system for the decision-making process.

In both cases, the prediction score that will be compared against
the threshold is an average of the quality metric prediction score
and the FRS prediction score:

𝐹𝑖𝑛𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 =
𝑄𝑢𝑎𝑙𝑖𝑡𝑦 − 𝐵𝑎𝑠𝑒𝑑 𝑃𝑟𝑒𝑑. 𝑆𝑐𝑜𝑟𝑒 + 𝐹𝑅𝑆 𝑃𝑟𝑒𝑑. 𝑆𝑐𝑜𝑟𝑒

2

5 FINDINGS

5.1 Relationship betweenQuality Manipulation and
Similarity Scores

Each photo in the dataset has been manipulated at various levels
and put in the FRS to obtain a new similarity score, as stated in
section 4. To gain an overall view of the effect of each manipulation
type (i.e., brightness, contrast, sharpness, noise), the mean scores
for the whole dataset have been plotted at each manipulation level.
All results, divided by pose, expression, and type, can be seen in
Appendix E.1.

Looking at the results, pose appears to be a significant factor in
the performance of a FRS. Figure 5 illustrates how, in the case where
only pose differs, similarity scores degrade quicker for 45◦ angles.
From top to bottom, comparing the first and third graphs, even the
highest point differs significantly. In each graph, the highest point
is represented by the original, meaning level 1. For front-facing
images, originals can achieve similarity scores close to 1, whereas
quarter-facing images start around 0.7.

Fig. 5. Results of brightness manipulation impact over the dataset similarity
scores, split by pose and expression
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Furthermore, expression has a minimal effect on performance. In
the case of quarter-facing images, the bottom two graphs in Figure
5 are almost identical. For front-facing images, there is a difference
between the top two graphs for low manipulation levels; however,
performance remains largely the same. It can be concluded that
front-facing images are more robust against manipulations, with
brightness having the biggest effect on them out of the four.

Considering all manipulation types, it is evident that all should be
taken into account moving forward. Although front-facing photos
are mainly affected by brightness manipulations, quarter-facing im-
ages prove to be susceptible to all four types. Consequently, moving
forward, all results will be split by pose.
The results shown in Appendix E.1 offer a great starting point

for certifying what HQ and LQ images are in the case of our dataset.
By following the manipulation results in Appendix E.1, we can
establish manipulation boundaries that enable us to certify whether
an image is of high or low quality. In our case, high quality means
that an image will always output a similarity score above 0.6, the
threshold of our current system. Therefore, four new datasets have
been created: one for HQ images and one for LQ images, with each
dataset divided into front-facing images and quarter-facing images.
One thing to note is that, in the case of LQ images, we have only gone
outside of bounds slightly, as taking all possible values into account
would result in mainly poorly performing images. For example, we
will not consider images with a brightness level higher than 5, as
this will always result in images with similarity scores below 0.1.
With some finetuning, Table 2 has been created. By following

the intervals indicated, one should be able to create images that
exhibit predictable behavior. The similarity score plots for all images
created using Table 2 can be found in Appendix D. The similarity
score distributions indicate that, in the case of front-facing images,
behavior remains predictable, with the data distribution gradually
shifting to the left as quality decreases (i.e., higher manipulation
levels). In contrast, for quarter-facing images, the model exhibits
bimodal behavior. As a result, in the case of quarter-facing images,
we can only identifymanipulation boundaries that will yield positive
results, but we cannot reliably predict outcomes in other scenarios.
This is unexpected, as the model we chose, AdaFace, is built keeping
in mind face occlusion and image quality.

Quality Property High Quality (HQ) Low Quality (LQ)
[0◦, 0◦, 0◦] [±45◦, 0◦, 0◦] [0◦, 0◦, 0◦] [±45◦, 0◦, 0◦]

Brightness (0.25, 3) (0.75, 1.5) (3, 4.5) (1.5, 2)
Sharpness – (0.25, 2.5) – (2.5, 3)
Contrast – (0.75, 1.25) – (1.25, 2)
Noise – (0, 10) – (10, 15)

Table 2. Finetuned intervals for generating HQ and LQ live captures. If an
interval is not specified, any value can be used.

5.2 Relationship between Similarity Scores, Quality
Properties and BRISQUE

Having established an understanding of the FRS and the impact
various manipulations have on its performance, the potential re-
lationship between similarity scores and IQA metrics, specifically

BRISQUE, will be investigated. The expected outcome is for the
distribution of BRISQUE scores to exhibit a behavior pattern sim-
ilar to similarity score distributions. Specifically, it is anticipated
that as image quality diminishes, its similarity score lowers, and its
BRISQUE becomes higher.
Plotting the BRISQUE scores of the live captures used to create

the visualizations in Appendix E.1 makes it fair to assume that this
will be the case, as can be seen in the results of Appendix E.2. Look-
ing at Figure 6, as quality manipulation levels increase, so does the
BRISQUE score. By comparing the behavior displayed in Figure 5
to the one in Figure 6, it’s clear that there is a relation between an
image’s BRISQUE and its similarity score. One particularly interest-
ing aspect to note is that, in some cases, higher sharpness actually
lowers BRISQUE.

Fig. 6. Figure showing the relationship between the brightness level of an
image and its BRISQUE score

Moving further, the BRISQUE scores of all live captures created
using the boundaries specified in Table 2 were calculated and plotted,
which yielded Figure 7. One aspect to note is that BRISQUE scores
are much higher for front-facing images than quarter-facing ones.
This is expected, as the manipulations applied to front-facing images
are much harsher than the ones applied to quarter-facing ones.

In the case of front-facing images (top), there is a clear overlap be-
tween HQ and LQ images, despite their similarity score distributions
not exhibiting the same behavior.
When examining the case of quarter-facing images (bottom),

there is an overlap around a BRISQUE score of 25, which was ex-
pected due to the overlap between HQ and LQ image similarity
scores, as visualized in Appendix D. Although the long tail in the
LQ image distribution indicates that lower-quality images tend to
have higher BRISQUE scores, this information is insufficient to draw
a solid conclusion.

While it is clear that a relationship exists between the quality of
our images, similarity scores and BRISQUE, this relationship cannot
be used to predict the similarity scores an image will have. From this,
it can be concluded that there isn’t any relation between BRISQUE
and similarity scores.

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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[0◦, 0◦, 0◦ ] Pose

[±45◦, 0◦, 0◦ ] Pose

Fig. 7. BRISQUE score mappings of HQ and LQ images, separated by pose

5.3 Testing the System: Revisited
As it has been established that there is no relationship between
similarity scores and BRISQUE, we will resort to calculating a man-
ual quality metric using the information provided in Table 2. By
using the manually manipulated data, we can easily assess what
manipulations have been used and at what level. Consequently, we
are able to calculate a quality metric that can act as a proxy for our
proposed system.
In order to calculate this metric, weights have to be set for the

four possible manipulations, as each has a different impact on the
performance of a FRS. Therefore, we created five new live capture
image datasets. In the first one, referred to as "default", all manip-
ulations have been performed at various levels, while in the other
four all but one manipulation has been performed. This way, we
can establish the weight of each manipulation type based on how
much the mean similarity score deviates from the default. The final
formula that will be used to establish a quality metric for each photo
is:

0.73𝐵 + 0.15𝐶 + 0.07𝑆 + 0.05𝑁,

where B = Brightness Level Applied, C = Contrast Level Applied,
S = Sharpness Level Applied, N = Noise Level Applied

Moving forward, a correlation between the quality metric and the
prediction score of our FRS has to be found. Specifically, we need
to find a function 𝑓 , such that 𝑠 = 𝑓 (𝑞), where 𝑠 is the prediction
score and 𝑞 is the quality metric. By training a polynomial model
with the data we have available, meaning the quality score and
associated prediction score of each photo in our dataset, we found
𝑓 (𝑞) = −0.009793𝑥3 + 0.0995𝑥2 − 0.3488𝑥 + 0.9604.

5.4 System Results
The distributions of the data that has been used for testing the
proposed systems can be seen in Figure 8. All performance results
for 𝐹𝑀𝑅 = 0.1 and 𝐹𝑀𝑅 = 0.01 have been summarized in Tables 3
and 4, respectively. One aspect to note is that, for calculating the
MMPMR, a higher number of morphs than the ones showcased in
Figure 8 has been used, but the threshold remained the same as
specified in the tables. Looking at the relationship between the True
Match Rate (TMR) and False Match Rate (FMR), some conclusions
can be drawn.

Fig. 8. Similarity score distributions for mated, nonmated, and morphs

Firstly, strictly comparing the systems with a static threshold, it
is clear that taking quality metrics into account makes the FRS less
robust, as the TMR decreased and the FMR increased. Additionally,
this approach increased the vulnerability of our system, as it can be
seen in the MMPMR column. Second, it can be seen that a dynamic
threshold impacts TMR positively, but this comes at the cost of a
higher FMR.

Method TMR FNMR TNMR FMR MMPMR
Without QM 0.7434 0.2566 0.9990 0.0010 0.0025
With QM - Static 0.7182 0.2818 0.9958 0.0042 0.1022
With QM - Dynamic 0.8070 0.1930 0.9892 0.0108 –

Table 3. Performance metrics at FMR = 0.1, 𝜏 = 0.54

Method TMR FNMR TNMR FMR MMPMR
Without QM 0.6301 0.3699 0.9997 0.0003 0.0008
With QM - Static 0.5270 0.4730 0.9997 0.0003 0.0016
With QM - Dynamic 0.7247 0.2753 0.9963 0.0037 –

Table 4. Performance metrics at FMR = 0.01, 𝜏 = 0.63

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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To properly assess the effect of taking quality into account, along
with Tables 3 and 4, an indication of the system’s trade-offs are
visualized through ROC in Figure 9. From this visualization, we can
confirm that taking quality metrics into account negatively impacts
the system trade-off and not taking quality metrics remains the
more robust approach.

Fig. 9. ROC curve comparison for systems with and without QM

6 CONCLUSIONS

6.1 Answering SRQ1
As presented in section 4, but also from our findings, measuring the
effectiveness of morph rejection is done by calculating the MMPMR
of the FRS we are using. An FRS proves to be effective by being able
to reject morphs even in the cases where the face presents severe
occlusions which can be caused by pose, illumination, shadows and
other factors that were treated in this paper.

6.2 Answering SRQ2
After analyzing all the results, it is evident that all proposed image
quality properties influence similarity scores, with varying degrees
of impact.
As shown in the results of different manipulation levels in Ap-

pendix E.1 and the weights used to calculate the quality metric,
brightness and contrast have the most significant influences, while
noise and sharpness have a more minor impact. These results align
with expectations, as brightness and contrast cause some areas of
the face to be illegible, due to a photo being too bright or too satu-
rated, especially in the cases where a photo is not front-facing. Of
course, adding an extremely high level of noise, for example, will
also cause illegibility, but we are only looking at the manipulation
levels that have been applied in section 4.5.

However, what was not expected was sharpness having the lowest
impact, since blur also causes illegibility of face features. This may
be attributed to the minimal sharpness level that has been applied
during our manipulation phase. Nevertheless, all four image quality
properties should be taken into account, as they all have an impact

on performance and on each other, in some cases stronger than in
others.

6.3 Answering SRQ3
It is evident that incorporating quality metrics does not enhance
the effectiveness of morph rejection. To reiterate on section 5.4,
although taking quality metrics into account and setting a dynamic
threshold positively impact the True Match Rate, this comes at the
cost of the False Match Rate also becoming higher. Additionally,
only including quality metrics (i.e., no dynamic threshold) actually
proves to have a negative impact on performance. The ROC curve
further shows that the trade-off of the system proposed by us is
actually worse than the original one, and that taking quality metrics
into account makes our FRS less robust.

6.4 Answering RQ
While it is true that image quality properties have various effects on
similarity scores, it does not seem like it is a good source of extra
information in trying to make a FRS more robust against morphing
attacks. Additionally, while it does look like there is some relation
between the performance of an image, its quality and BRISQUE,
this chosen IQA metric does not make it possible to find a mapping
between the three, as one cannot conclude how good an image
will perform based on its BRISQUE. This could be attributed to the
fact that image quality properties serve as indicators of "perceptual
quality", whereas FRS use various other sources of information to
make a final decision on what score should be outputted.

7 FUTURE WORK
Some aspects that could be treated in the future are: trying to find an-
other FRS, since AdaFace presented bimodal behavior from the start.
Having a FRS that is simpler or uses another type of loss function
could make it easier to model similarity score distributions against
image quality properties. Since it proves to be a great influence for
FRS performance, quality metrics should also take into account pose.
Additionally, experimenting with deep features could be a starting
point in trying to assess how quality influences a FRS decision on
a deeper level. If further research would like to be conducted in
the direction of this paper, another solution to map image quality
properties to an IQA metric would be finding individual metrics for
each quality property treated, or testing other IQA metrics similar
to BRISQUE. Lastly, the bad performance of the proposed system
could also be caused by the way the final score was calculated (the
average between the quality-based prediction score and the FRS
prediction score).

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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A SUMMARY TABLE OF FACE RECOGNITION SYSTEM LITERATURE REVIEW

FRS Loss Backbone Accuracy LFW Accuracy IJB-C Additional Comments
MobileFaceNets [3] ArcFace MobileFaceNet 99.28% - Lightweight, 4MB size
FaceNet [24, 34] Triplet Loss NN1-4 99.63% - Requires minimal alignment (i.e. tight

crop around the face). Difference in per-
formance between more complex archi-
tectures and smaller ones is statistically
insignificant.

ArcFace [6] ArcFace ResNet50 99.83% 97.27% Not stable for varying photo quality.
SphereFace [13] A-Softmax 64-layer CNN 99.42% - Outperforms all other models on 64-

layer CNN architecture.
CurricularFace [8] Adaptive Curriculum Learning ResNet100 99.8% 96.1% -

Circle Loss [25] Circle Loss
ResNet34
ResNet100

97.81%
98.5%

93.44%
93.59% High flexibility in optimization.

MagFace [14] MagFace ResNet100 99.83% 95.97% -
AdaFace [11] Margin Based ResNet100 99.83% 97.39% Treats the case of face occlusion and

varying image quality. Outperforms
other models for mixed quality data. Of-
fers smaller backbone options.

GhostFaceNets [2] ArcFace GhostFaceNet 99.76% 94.943% Lightweight
DeepID3 [26] - DeepID 99.53% - -

Table A.1. Performance comparison table for all identified Face Recognition Models. Accuracy reported for IJB-C is for TAR@FAR=1e-4.

B DATASET EXAMPLES

[−45◦, 0◦, 0◦ ] - Neutral [0◦, 0◦, 0◦ ] - Neutral [+45◦, 0◦, 0◦ ] - Neutral

[−45◦, 0◦, 0◦ ] - Smiling [0◦, 0◦, 0◦ ] - Smiling [+45◦, 0◦, 0◦ ] - Smiling

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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C MANIPULATED IMAGES (NEUTRAL FRONT EXAMPLES ONLY)

Original 0.25 0.5 0.75 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. C.1. Manipulated Images - Brightness Level
a positive value <1 makes the image darker, >1 makes the image brighter

Original 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 30.0 35.0 40.0 50.0

Fig. C.2. Manipulated Images - Noise Level
Gaussian noise is added with factor x, where x = standard deviation

Original 0.25 0.5 0.75 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Fig. C.3. Manipulated Images - Contrast Level
a positive value <1 makes the image less saturated, >1 makes the image more saturated

Original 0.5 2.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Fig. C.4. Manipulated Images - Sharpness Level
a positive value <1 makes the image blurrier, >1 makes the image sharper
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D MATED SIMILARITY SCORE DISTRIBUTIONS FOR MANIPULATED IMAGES

[0◦, 0◦, 0◦ ] Pose [±45◦, 0◦, 0◦ ] Pose

[0◦, 0◦, 0◦ ] Pose [±45◦, 0◦, 0◦ ] Pose

Fig. D.1. Mated similarity scores for high quality (HQ) images (top) and low quality (LQ) images (bottom) separated by pose
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E RESULTS

E.1 Influence of Manipulating ImageQuality Properties on Similarity Scores

Fig. E.1.1. Effect of Brightness Level on Similarity Scores
Comparison between Passport (neutral front) and Live Capture (varying poses and expressions)

Fig. E.1.2. Effect of Contrast Level on Similarity Scores
Comparison between Passport (neutral front) and Live Capture (varying poses and expressions)
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Fig. E.1.3. Effect of Noise Level on Similarity Scores
Comparison between Passport (neutral front) and Live Capture (varying poses and expressions)

Fig. E.1.4. Effect of Sharpness Level on Similarity Scores
Comparison between Passport (neutral front) and Live Capture (varying poses and expressions)
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E.2 Relationship between BRISQUE Scores and VariousQuality Manipulation Levels

Fig. E.2.1. Relationship between BRISQUE Scores and Various Levels of Quality Manipulation

TScIT 43, July 4, 2025, Enschede, The Netherlands.
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