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It is crucial to monitor CO concentrations due to harmful effects on human
lives and their indirect role in climate change, especially in the case of deac-
tivating air quality monitoring stations across the Netherlands. Moreover,
there is a lack of frameworks designed to estimate surface-level CO con-
centrations in the Netherlands. To address these issues, this study aims to
develop and evaluate linear and machine learning models for estimating
surface CO concentrations in the Netherlands, utilizing Sentinel-5P satel-
lite data in conjunction with meteorological and ancillary variables. The
observation included daily satellite-based observations from 19 locations
and was derived on a fixed timescale from January 1, 2022, to December
31, 2023. The validation results demonstrate an R2 of 0.53 for random forest
with location-based cross-validation. Other approaches yielded R2 values
of 0.44, 0.30, 0.20, and 0.12 for extreme gradient boosting, support vector
machine, multilinear regression, and linear regression models, respectively.
Furthermore, the feature analysis highlighted the considerable importance of
meteorological variables for all models that included all variables. Ancillary
variables had minimal influence, suggesting a need for further methodologi-
cal improvement.

Additional Key Words and Phrases: Sentinel-5P, carbon monoxide, meteoro-
logical variable, ancillary variable, machine learning, variable importance

1 INTRODUCTION
Carbon monoxide (CO) was chosen for this study due to a research
gap in estimating CO at the surface level using machine learning
approaches. According to Raub et al. [37], even low concentrations
of CO in the air can cause cardiovascular and neurological diseases
in human bodies by altering oxygen. In addition, CO produces ozone,
which harms the respiratory systems of animals in several ways
[50].
CO is a colorless and toxic emission that originates from the

combustion of vehicles, industrial activities, and biomass burning.
Vehicles that burn fossil fuels and industrial processes, controlled
by humans, contribute 27% to atmospheric CO [51]. An additional
45% of CO originates from chemical reactions that involve methane
(CH4) [51]. Burning biomass adds another 19% CO to the air [51].

In terms of climate, CO indirectly affects global warming by
combining with hydroxyl radicals (·OH), extending the life of the
greenhouse gas - methane (CH4) [10]. At the tropospheric level, CO
forms ozone, which has a negative influence on global warming
[12].
Therefore, the demand for air quality monitoring was raised to

monitor CO concentrations. The Dutch National Air Quality Moni-
toring Network originally had 21 stations distributed throughout
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the Netherlands in urban, non-urban, and road areas [44]. However,
after staining within the established threshold of 10 mg/m3 for 8
hours, as set by the European Union and the World Health Organi-
zation, the decision was made to limit the number of stations [8, 44].
Therefore, CO is only monitored at six stations in the North Holland
region of the Netherlands, leaving other regions underrepresented
in CO surveillance [48].

Consequently, the satellite-driven solution came up. In 2017, the
Sentinel-5P satellite was launched, equipped with a TROPOMI sen-
sor (Tropospheric Monitoring Instrument) that traces atmospheric
gases, including CO [18]. It uses the SWIR band to measure CO,
which is captured from solar radiation reflected off the Earth’s sur-
face [18]. Moreover, a hyperspectral imaging spectrometer inside
the band measures the vertical column densities of atmospheric
gases from the surface to the top of the atmosphere [24, 36]. The
CO extracted from the satellite has been carefully evaluated by re-
searchers in terms of accuracy and applicability. Martinez-Alonso et
al. [30] evaluated satellite CO values with AirCore vertical column
samples, confirming the precision of satellite CO with a relative
bias of 2% under different conditions. Borsdorff et al. [1] demon-
strated a high correlation between satellite CO and ground-based
Fourier Transform Infrared (FTIR) CO observations, ensuring min-
imal bias across numerous validation sites. Schneising et al. [40]
conducted a comparison in the California wildfire extreme case,
which demonstrated high consistency between the satellite CO and
ground measurements even in the extreme case.

However, despite positive evaluations, the usability of the satellite
is limited by certain drawbacks. The first drawback is the extracted
CO format, which is provided in vertical column format rather
than direct surface measurements, making it difficult to assess what
people actually breathe. The second issue is the unavailability of
CO observations due to meteorological factors, especially cloud
cover, which is usual in the Netherlands. Petetin et al. [32] raised
concerns about the availability of data, stating that only 30-45%
of the data were available during cloudy conditions and 70-80%
during clear summer days over the Iberian Peninsula. Grzybowski
[14] also confirmed the missing values of the Sentinel-5P product
due to cloud concerns, stating that only 170-180 observations were
extracted in 2019 in the southeastern part of Poland.

1.1 Related work
As these challenges occur not only for the satellite CO product, the
trend of applying machine learning approaches has increased to
estimate certain atmospheric emissions using satellite data, meteo-
rological, and ancillary data sources. Thus, there are four studies on
the estimation of ground CO mass concentrations using machine
learning, which involve satellite CO data and additional variables.
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Firstly, Chen et al. [3] used the extra tree model to predict the sur-
face CO level in China and found R2 = 0.712, which involved the
use of other satellites (FY-4A and FY-4B). Secondly, Wang et al. [49]
applied the light gradient boosting method to predict CO using the
Sentinel-5P CO product in China, achieving an R2 value of 0.55.
Thirdly, Liu et al. [26] obtained an R2 of 0.51 in predicting ground
CO mass in China using random forest and spatio-temporal kriging
models, but with another satellite, MOPPIT. Finally, according to
Rahnama and Abkooh [35], the CO estimate at the surface level
was carried out using the multiple linear regression approach in
Mashhad, Iran, involving only five environmental-social variables,
which accounted for 0.42 of the variance. All studies used fixed daily
CO observations from the satellite.

1.2 Research questions
The above-mentioned issues and the absence of similar studies that
operated in the Netherlands were the main motivation to conduct
this research and to answer the following questions:

RQ1: How can machine learning models be used to accurately es-
timate surface-level CO concentrations based on satellite CO values
that have gaps, together with meteorological and ancillary data?
RQ2: Which approach has the highest accuracy in predicting

ground CO mass?
RQ3: What are the influences of meteorological and ancillary

variable sets in estimating surface-level CO concentrations?
This study aims to develop and evaluate linear and machine learn-

ing models for predicting surface CO concentrations in the Nether-
lands, incorporating the Sentinel-5P CO product with meteorologi-
cal and ancillary factors. The second objective is to understand the
contribution of each input variable that influences the estimation of
ground CO levels.

2 METHODOLOGY

2.1 Study area
The study area comprised multiple urban, semi-urban, and non-
urban locations within the Netherlands. The selection criteria for
the locations were based on diversity, population, urban levels, and
location itself. A total of 19 points were observed, which can be
found in Fig. 1. According to the territorial typology of Eurostat
[9], 86.6% of the Dutch population resides in urban and semi-urban
areas, while 13.4% live in non-urban areas. However, only 5.3% of
the total area can be classified as urban centers and 16.4% as urban
clusters, while 83.3% of the country remains non-urban [9].

2.2 Materials
Estimation of ground COmass concentration included datasets from
various sources and was derived on a fixed-range timescale from 1
January 2022 to 31 December 2023. All data management processes,
including handling, extraction, and filtering, were executed using
Python, utilizing open-source libraries and APIs.

2.2.1 Satellite CO. The satellite sensor (Sentinel-5P TROPOMI)
does not take images, but it records sunlight that is absorbed by
gases [27, 41]. Each gas has its own special way of absorbing sun-
light [41]. Consequently, the sensor detects CO concentrations by

Fig. 1. Observed locations for estimating ground CO concentrations

identifying this "special" way [41]. Due to sunlight reflected off
the Earth’s surface, CO measurements are presented in a vertical
column format, which does not accurately represent the concentra-
tions people actually breathe [41]. Thus, the satellite captures this
vertical column of CO (COsatellite) at 13:30 local time with a spatial
resolution of 5.5×7km2 [41].
Google Earth Engine was used to extract CO column densities

(COsatellite) every hour, providing direct access to satellite products
(Sentinel-5P) without barriers or limitations [13].

2.2.2 Meteorological data. The impact of meteorological conditions
can influence the prediction of all atmospheric gases [3, 14, 21, 22,
26, 33, 47, 49, 52]. According to the last related works (Section 1.1),
the following variables were recommended to include in the study:
temperature (Ttemperature) in Kelvin, pressure (PRSpressure) in Pas-
cals, radiation accumulated over one hour (RADradiation) in W/m2, U
zonal wind component (UWIND), meridional V wind component (V
WIND), planetary boundary layer height (PBLH) in meters, precipi-
tation (PRprecipitation) in mm, cloud fraction (CFcloudiness) from 0-1.
All variables, except PBLH, were extracted from CDS at a spatial
resolution of 0.1° × 0.1° [16]. The PBLHs were derived from the
ERA5-Land hourly data. [31]. U WIND and V WIND were used to
calculate the wind speed (WSwind speed): WSwind speed=U2+V2

2.2.3 Ancillary data. Additional variables also influence the pre-
diction of atmospheric gases [3, 17, 23, 26, 29, 34]. Due to time and
resource constraints, only these variables were used in the study:
population density (PDpopulation), elevation (ELVTNelevation) in me-
ters, and intensity of the nighlights (NLSnightlights) [7]. PDspopulation
were collected from the 2015 Global Human Settlement Layers, in-
cluding the number of people within a spatial grid of 250 m x 250
m [39]. The ELVTNelevation variable is extracted from the Shuttle
Radar Topography Mission with a 30 m × 30 m spatial resolution
[20]. Finally, the NL variable was acquired fromVIIRS at a spatial res-
olution of 464 m x 464 m [13]. These variables are slowly changing,
which makes them different from other data.

2.2.4 Ground-truth data. The validated surface CO concentrations
of CAMS for 2022 and the interim reanalysis for 2023 were used as
actual values (COactual) in this study. The truth values were obtained
for the fixed time range and each location, as described in Section 2.1.
The spatial resolution is 1 km x 1 km and was derived for a fixed time
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- 13:00, at a vertical level of 500m from the surface [19]. The validated
reanalysis is provided as fully quality-controlled observations, while
the interim is nearly validated and has a one-year delay to undergo
full quality control [4]. However, interim reanalysis in this research
can be used as truth observations due to the completion of quality
control.

2.3 Preprocessing of data
After collecting all the necessary data for this study, it was crucial
to preprocess the diverse datasets for reliable machine learning
modeling. Diverse sources caused missing and inaccurate values
in the merged dataset. Preprocessing was applied using Python to
ensure consistency, accuracy, and robustness of the model. It aimed
to align all the above-mentioned datasets across common time and
location, eliminate invalid or extreme values, and reduce noise.

2.3.1 Harmonization of timescales. Datasets provided different tem-
poral resolutions. The meteorological values and satellite CO obser-
vations were interpolated to a daily resolution (13:00). This process
resulted in a unique combination of date and location rows with all
required values from the mentioned data sources.

2.3.2 Keeping only clear-sky data. For other atmospheric gases,
there is a possibility of retrieval of qa > 0.75 (high-quality) emission
concentrations, ensuring low cloud fraction retrievals [45]. Mean-
while, satellite CO concentration collection does not provide this
option, resulting in manual removal of values with a high cloud
fraction. The official documentation on cloud property recommends
using the 0.5 quality assurance value threshold [42]. Consequently,
observations with cloud fraction > 0.5 were excluded.

2.3.3 Removing outliers. Outliers can result from sensor malfunc-
tions or environmental spikes, leading to biased perception and
reduced accuracy. The presence of cloud causes blockage of view in
the SWIR band, resulting in incorrect CO values [27, 36]. Further-
more, climate extremes such as heat waves, droughts, and heavy
precipitation can also indirectly affect CO levels, causing outliers in
datasets [5, 53]. In addition, removing outliers is an effective practice
to enhance the predictive precision of models [43]. Ouliers were
removed using the interquartile range (IQR) method (Q1, Q3, IQR,
±1.5 × IQR), which is endorsed in several studies applying modeling
in geological contexts [6, 28, 46].

2.3.4 Preparing data for modeling. Building a unified "final" dataset
was an essential step in proceeding with modeling. Each dataset
represented a different dimension. All variables were aligned by date
and location. Furthermore, duplicate dates were removed to elimi-
nate overlapping measurements, avoiding model bias [15]. During
preprocessing, missing values were identified due to merging of dif-
ferent sources, particularly due to cloud cover issues, as mentioned
in Section 1. Therefore, removing rows with empty values was a
necessary step to prevent machine learning models from training
on incomplete data, which can lead to misleading predictions [38].

In general, the preprocessing pipeline ensured consistency, clean-
liness, and dynamism with atmospheric and satellite conditions.
Consequently, the study phase can proceed to the model training
phase.

2.4 Methods
2.4.1 Final dataset. After preprocessing the data, the final dataset
included a total of 2,795 daily satellite-based observations from 19
locations, mentioned in Section 2.1. The dataset consisted of obser-
vations from February, April, June, August, October, and December.

As mentioned in Section 2.2 and Section 2.3.2, only data for 2022-
2023 with clear-sky data were chosen for observation.

2.4.2 Modeling methods. To predict ground CO concentrations, the
final dataset from Section 2.4.1 was used. Furthermore, the features
of COsatellite, Ttemperature, PRSpressure, PRprecipitation, WSwind speed,
RADradiation, Planetary Boundary Layer Height (PBLH), CFcloudiness,
NLSnightlights, PDpopulation, and ELVTNelevation were included as
input variables. In total, five types of machine learning were applied
in this study.
• Linear regression with a single independent variable (LR) –

COsatellite.
• Multiple linear regression with all independent input variables

(MLR) – all features.
• Random forest with all independent input variables (RF) - all

features.
• Extreme gradient boosting with all independent input variables

(XGB) - all features.
• Support vector machine with all independent input variables

(SVM) – all features.

2.4.3 Validation of performance. Location-based cross-validation
was used, which is well-suited for spatially clustered data [26, 49],
particularly when different locations are involved. Each iteration
consisted of a specific location for testing, ensuring that only one
area out of 19 areas from Section 2.1 was tested. The results of the
prediction of the ground CO concentrations were validated by the
following statistical parameters: R2, mean absolute error (MAE), root
mean squared error (RMSE), bias, and mean percentage absolute
error (MAPE) (Appendix A).
Feature scaling was used for prediction purposes because of the

varying units of input variables. Thus, z-score normalization was
applied to the support vector machine due to the sensitivity to the
input scale (Appendix B).

2.4.4 Feature importance in the modeling. To assess the contribu-
tion of each predictor to the predicted ground-level CO mass, an
analysis of feature importance was performed, helping to under-
stand the drivers behind the variation in ground-level CO. Two
methodologies were used for different models:

• Linear regression: not used due to a single independent variable,
COsatellite.
•Multilinear regression: absolute values of the standardized re-

gression coefficients were used [2].
• Random forest and XGB: permutation importance was used,

which is more accurate compared to default impurity-based scores
[11, 25].
• Support vector machine: Permutation importance was used,

which is the only option for feature importance in this model.
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3 RESULTS

3.1 Available observations
As mentioned in Section 2.4.1, a total of 2,795 observations were
extracted for modeling, representing at least one useful satellite
estimation based on a low cloud fraction.

The average number of clear-sky observation days per month for
2022-2023 was 18.04 (18 days). Reflects the availability of 60.1% use-
ful satellite measurements in one month based on the 30-day format.
The mean number of valid observation days per month for each
location during the 2022-2023 period is presented in the Appendix C.
The highest monthly averages were recorded in Leiden, Deventer,
and Maastricht with 19.36, 18.64, and 18.55 days, respectively. The
lowest monthly averages were captured in Breda Airport, Tegelen,
and Enschede with 17.36, 17.36, and 16.05 days, respectively.

3.2 Estimation of the surface-level CO mass concentration
Predicting ground CO concentrations was one of the objectives.
After collecting data, preprocessing it, and preparing models, the
validation and evaluation of the results can proceed. All input and
actual variables were taken from Section 2.2.

3.2.1 Linear regression with single variable. A linear regression
model was used to estimate the ground CO concentrations, involv-
ing a single independent variable – COsatellite. The results showed R2
= 0.122 with MAE, MAPE, and RMSE values of 20.05 𝜇g/m3, 14.01%,
and 26.4 𝜇g/m3 for daily estimates, respectively (Table 1). Linear
regression showed the highest values for MAE, MAPE, and RMSE,
and the lowest R2 between models (Table 1). Thus, this model is the
most unsuccessful. However, a low R2 represents the low correla-
tion between COsatellite and COactual, ensuring the validity of the
actual values. Furthermore, according to Fig. 2, the linear regression
model focuses on predicted values in the range of 140 to 160 𝜇g/m3,
failing to capture the high and low extremes of COactual. A large
proportion of data points in Fig. 2 that exceeded 200 𝜇g/m3 were
predicted to have much lower values (130-160 𝜇g/m3), confirming
a solid underestimation. Meanwhile, the actual low values around
130 𝜇g/m3 were mainly overpredicted (Fig. 2).

Fig. 2. Scatter plot for Linear regression (COsatellite)
Note: Red line - fitted line, black dashed line - 1:1.

3.2.2 Multilinear regression. The second linear model is a multilin-
ear regression with eleven predictors. The results appear slightly
more accurate than the linear regression model, considering R2 =
0.2, MAE = 19.46 𝜇g/m3, MAPE = 13.6%, and RMSE = 25.15 𝜇g/m3
(Table 1). The low R2 in this model represents limitations in linear
interactions, while some reduced errors (MAE = 19.46 𝜇g/m3, RMSE
= 25.15 𝜇g/m3 ) suggest that additional variables (meteorological
and ancillary) minimally increase the fit of the model. According
to Fig. 3, the multilinear regression model improves the spread of
predicted values in the midrange (130-200 𝜇g/m3), but it does not
yet capture actual values in the high range, exceeding 200 𝜇g/m3
as in the linear regression model. The parallel trend to the linear
regression model can be highlighted, indicating the underprediction
of high values and the overprediction of low values (Fig. 3).

Fig. 3. Scatter plot for Multilinear regression
Note: Red line - fitted line, black dashed line - 1:1.

3.2.3 Random forest. The third approach is a random forest with
all predictors, which significantly outperformed linear models with
R2 = 0.53, MAE = 14.07 𝜇g/m3, MAPE = 9.86%, and RMSE = 18.75
𝜇g/m3 (Table 1). Moreover, it resulted in the highest R2 and the low-
est MAE, MAPE, and RMSE values across all models. This model
shows the ability to represent complex data and nonlinear patterns.
Furthermore, the random forest showed a small positive bias of 1.27
𝜇g/m3, which means that there is a slight trend of overestimation
(Table 1). The random forest shows that the predictions are most
closely clustered above the dashed line (Fig. 4). A large concentra-
tion of close predicted values can be found in the range of 100-200
𝜇g/m3. However, Fig. 4 indicates that the random forest spread after
exceeding the actual value of 210 𝜇g/m3. In general, the random
forest model provided better performance for extreme values than
other models.

3.2.4 Extreme gradient boosting. The XGB model also used eleven
features. According to Table 1, it performed slightly worse than the
random forest with R2 = 0.44, MAE = 15.95 𝜇g/m3, MAPE = 11.04%,
and RMSE = 20.88 𝜇g/m3, but performed better than the support
vector machine and significantly better than the linear models. How-
ever, the bias in this model prediction was the lowest in all models
(0.60 𝜇g/m3), illustrating that it neither overestimates nor underes-
timates ground CO concentrations with significant changes. The
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Dataset Mean STD Min Max Q1 / Q3

Testing Dataset (n=2,795) 144.80 16.05 98.16 236.38 134.12 / 155.20

Model 𝑅2 MAE [µg/m3] RMSE [µg/m3] MAPE [%] Bias [µg/m3]

Linear Regression (COsatellite) 0.12 20.05 26.40 14.01 -0.03
Multilinear regression 0.20 19.46 25.15 13.60 1.22
Random Forest 0.53 14.07 18.75 9.86 1.27
XGB 0.44 15.95 20.88 11.04 0.60
Support vector machine 0.30 17.00 23.34 11.40 -3.31

Table 1. Surface CO Mass Concentration Predictions statistics.

Fig. 4. Scatter plot for Random Forest
Note: Red line - fitted line, black dashed line - 1:1.

XGB exhibits moderate MAE and RMSE values compared to other
models, confirming the reliability of the model. The performance
of the XGB shows a trend similar to the random forest, but with a
greater dispersion on the right side of the diagonal, especially at
values greater than 180 𝜇g / m3, which means that it underpredicts
the highest values (Fig. 5). Generally, predictions of the XGB are
well within the central distribution but have a flattening effect on
extremes.

3.2.5 Support vector machine. The support vector machine model
outperformed linear models but underperformed compared to tree-
based models (Random forest and Extreme gradient boosting). The
result was R2 = 0.30, MAE = 17 𝜇g/m3, MAPE = 11.4%, and RMSE
= 23.34 𝜇g/m3, requiring additional work on optimization (Table 1).
Furthermore, it indicated a negative bias of −3.31 𝜇g/m3, illustrating
a consistent underestimation of CO values. The support vector
machine has problems with underpredicting high values, as other
models, especially in the range of 190-250 𝜇g/m3 actual values by
predicting values below 180 𝜇g/m3 (Fig. 6). A small detail can be
observed in Fig. 6, where the support vector machine performs well
in the range of low actual values (90–120 𝜇g/m3). A deviation to
the right side of the 1:1 line proposes the limitation of capturing all
nonlinearities (Fig. 6).

Fig. 5. Scatter plot for Extreme Gradient Boosting
Note: Red line - fitted line, black dashed line - 1:1.

As the most accurate model for the prediction of the surface CO
mass, Random Forest was chosen for further exploration.

Fig. 6. Scatter plot for Support vector machine
Note: Red line - fitted line, black dashed line - 1:1.

3.2.6 Residual random forest distribution. Fig. 7 suggests a quantile-
quantile graph that illustrates the distribution of residuals of the
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random forest model. In the case of a perfect model fit, the blue
line would lie perfectly on the red diagonal. The points below the
red line represent underestimations, whereas the points above the
line represent overestimations. Significant deviations can be distin-
guished from both tails, indicating that the random forest model
predicts some asymmetrically distributed residuals (Fig. 7). Tails are
heavier in underestimations than in overestimations, which can be
confirmed with extreme points of −80 𝜇g/m3 and +70 𝜇g/m3. How-
ever, alignment of most observations with the normal line in the
center portion of the quantiles between -1.5 and +2.4 ensures that
the model performs well.

Fig. 7. Quantile-quantile Plot for Random Forest

3.2.7 Answer to RQ1. Standard tree-based machine learning meth-
ods, such as random forest (0.53) and extreme gradient boosting
(0.44), demonstrated solid predictive performance in estimating the
ground CO mass using satellite observations, with the help of mete-
orological and ancillary variables. Detailed preprocessing, including
harmonization of timescales (13:00), interpolation of all variables,
and removal of outliers (IQR) and cloud-covered values (cloud frac-
tion < 0.5), effectively addressed the drawbacks caused by the un-
clear vertical column format from the satellite and cloud-related
gaps. The models were trained and validated using location-based
cross-validation.

3.2.8 Answer to RQ2. After completing all prediction approaches,
the highest predictive accuracy was achieved by random forest with
R2 of 0.53 (MAE = 14.07 𝜇g/m3, MAPE = 9.86%, and RMSE = 18.75
𝜇g/m3). The substantial difference between random forest and linear
models demonstrates the strong nonlinearity of the data. According
to Figs. 2-3, linear models overestimated the ground CO concentra-
tions during clean or calm conditions and underestimated during
spikes or pollution events. The random forest model performed well
in estimating surface CO mass during clean conditions, but slightly
underperformed in predictions during pollution events due to the
underestimation of high values.

3.3 Importance of features
Importance analysis ensures an understanding of the contribution
of each input variable that predicts ground-level CO concentrations.

Each calculation methodology is described in Section 2.4.4. The
scores of each variable are expressed as percentages.

3.3.1 Importance of the multilinear regression variables. The im-
portance profile of the multilinear regression model reveals that
the most influential variable is COsatellite with 34% of the total dif-
ference (Fig. 8). The second-ranked variable is RADradiation with
16%, while the third is PBLH with 14.4% importance. NLSnightlights,
PRSpressure, CFcloudiness, Ttemperature, and WSwind speed explained
approximately 8%, 7%, 7%, 4.7%, and 4.5%, respectively. The lowest
influences captured in the variables ELVTNelevation, PDpopulation,
and PRprecipitation with 2.5%, 0.8%, and 0.4%, respectively. There-
fore, the summarized meteorological variables (RADradiation, PBLH,
PRSpressure, CFcloudiness, Ttemperature, WSwind speed, PRprecipitation)
outweigh the importance of COsatellite with 54.3%, while the ancil-
lary variables (NLSnightlights, PDpopulation, ELVTNelevation) have the
least influence with 11.7% in total (Fig. 8).

Fig. 8. Feature Importance for Multilinear regression

3.3.2 Importance of the random forest variables. The random for-
est model also has a well-distributed feature importance portfolio,
like other models. As was the case for multilinear regression, the
COsatellite variable outperforms other variables with an importance
of 27. 7% (Fig. 9). The variables PBLH, Ttemperature, RADradiation, and
PRSpressure follow after COsatellite with 17.5%, 15.8%, 14.6%, and 8.1%,
respectively (Fig. 9). Other variables resulted in low contributions.
Thus, well-distributed variables demonstrate the ability to learn
patterns, ignoring nonlinearity. Compared to multilinear regression,
it has less influence of ancillary variables (4. 2%) and more influence
of meteorological variables (68.1%), outperforming COsatellite (27.
7%).

3.3.3 Importance of the XGB variables. This model is also well-
distributed with the influence of the feature sets. The most influ-
ential variable remains COsatellite with 34.3%, which is higher than
in the multilinear regression and random forest models (Fig. 10).
For the first time, Ttemperature dominates over other variables in the
analysis of other models with 19.9% importance. Other key contrib-
utors are RADradiation, PBLH, and PRSpressure, each contributing to
a range of 5-16%. Other features contribute a small fraction, rang-
ing from 0.3% to 3.2% (Fig. 10). Therefore, this approach effectively
utilizes nonlinear features such as the random forest model. The
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Fig. 9. Feature Importance for Random Forest

total meteorological influence accounts for 61.6%, dominating the
satellite-based observation influence (34.3%), while the ancillary
influence is only 4.1%.

Fig. 10. Feature Importance for Extreme Gradient Boosting

3.3.4 Importance of the support vector machine variables. The sup-
port vector machine approach uses the COsatellite variable for pre-
diction more than other approaches with 35.8% influence (Fig. 11).
However, the distribution still exists for additional variables. PBLH,
PRSpressure, Ttemperature, and RADradiation are important with im-
pact fractions of 14%, 10.8%, 8.3%, and 8.2%, respectively. Other vari-
ables affect prediction performance with less than 5.25% (Fig. 11).
Furthermore, the meteorological influence is the lowest in the mod-
els, at 54.2%. At the same time, the ancillary features sum up to 9.9%,
making them the least important set in the support vector machine
feature importance analysis.

3.3.5 Answer to RQ3. After analyzing the predictors, insights can
be derived about the variables and sets. According to Sections 3.3.1-
3.3.4, all models demonstrated a similar pattern with variable im-
portance, showing that satellite-based observation has the highest
influence, followed by individual meteorological features, and an-
cillary variables hold the least impact. However, according to the
means of multilinear regression, XGB, and SVM approaches, Table 2
indicates that the whole meteorological set of variables outperforms

Fig. 11. Feature Importance for Support Vector Machine

the single COsatellite with a difference of 22.01%. Meanwhile, ancil-
lary variables collectively have the lowest stake in the average, at
11.17%, indicating a need for further investigation.

However, the most predictive model, random forest (R2 = 0.53,
MAE = 14.07 𝜇g/m3), illustrated a similar behavior to others, ac-
counting for the highest importance of the meteorological set with
68.15% (Table 2). The random forest stated the lowest importance
of the ancillary set (4.18%), confirming the requirement to focus on
this set (Table 2).
In general, COsatellite is universally crucial for predictive perfor-

mance, while meteorological variables must be included to achieve
accurate ground CO concentrations. Ancillary variables contributed
modestly under the present methodology.

Feature Set Mean Importance
Across Other
Models [%]

Importance in
Random Forest [%]

COsatellite 34.70 27.68
Meteorological set 56.71 68.15
Ancillary set 11.17 4.18

Table 2. Comparison Between Mean of Multilinear regression, Extreme
gradient boosting, Support vector machine and Random forest Models
Feature Importance sets

4 DISCUSSION
According to Table 3, Liu et al. [26] achieved slightly higher pre-
cision than the current study and exhibited higher RMSE using
the light gradient boosting model. Both studies used Sentinel-5P
as the primary data source for CO concentrations. However, the
results are incomparable due to the difference in the number of
observed locations (1640 and 19 sites) and the dissimilarity of the
study areas (China and the Netherlands), suggesting that Liu et
al. [26] trained the model on a richer dataset and indicated a high
diversity of geography, affecting the results.
Wang et al. [49] follow a pattern similar to Liu et al. [26], but

using MOPPIT instead of Sentinel-5P. Wang et al. [49] applied a
methodology similar to the present study, using the random forest
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Reference Model Metric Location-
based CV

Sample-
based CV

Satellite Temp Area Sites Feature Set Importance
[%]

Proposed Random Forest R2 0.53 –
Sentinel-5P Daily Netherlands 19

Satellite CO 27.68
RMSE 0.019 mg/m3 – Meteorological set 68.15

Ancillary set 4.18

Liu et al. [26] Light gradient boosting R2 0.55 –
Sentinel-5P Daily China 1640

Satellite CO 9.40
RMSE 0.33 mg/m3 – Meteorological set 35.6

Ancillary set 25.0

Wang et al. [49] Random Forest-STK R2 0.51 –
MOPITT Daily China 1656

Satellite CO 5.30
RMSE 0.54 mg/m3 – Meteorological set 55.00

Ancillary set –

Chen et al. [3] Extra tree R2 – 0.71
FY-4A&4B Daily China 1600

Satellite CO 19.60
RMSE – 0.17 mg/m3 Meteorological set 42.00

Ancillary set 20.00

Rahnama & Abkooh [35] Multilinear regression R2 0.42 (No CV) – Sentinel-2A Daily Iran 25 – –
RMSE – – – –

Table 3. Comparison with related work on surface-level CO prediction using various models, satellites, and feature types.

model, which led to slightly worse results that could be affected
by the use of another satellite (Table 3). However, the results are
still incomparable due to differences in satellite selection and the
aforementioned reasons, such as the number of sites (1656 and 19
sites) and diverse geography (China and the Netherlands).
Chen et al. [3] used the extra tree model, utilizing the FY-4A

and FY-4B satellites, to extract CO estimates. This approach led
the authors to the highest accuracy under cross-validation based
on the sample (0.712), indicating the effectiveness of the satellite
and the methodology (Table 3). However, the current study applied
location-based cross-validation. Thus, the current study remains
incomparable to the research of Chen et al. [3] due to the factors
mentioned above, such as different satellites (FY-4A&4B), the num-
ber of sites (1600 and 19), and geographical differences (China and
the Netherlands).
Rahnama and Abkooh [35] demonstrated higher results (0.42)

in terms of applying the multilinear regression model than in the
current study (0.20), despite having almost the same number of sites
observed (Table 3). Their results differ due to the absence of cross-
validation, the number of variables applied (5), the use of another
satellite to extract CO estimates (Sentinel-2A), and the difference
in area (Iran and the Netherlands). Thus, the results cannot be
compared.

Feature analysis in all studies except Rahnama and Abkooh [35]
demonstrated that the meteorological set dominated the satellite
CO and ancillary sets in influencing the prediction of ground CO,
illustrating the high importance of including meteorological vari-
ables in the modeling (Table 3). Liu et al. [26] and Chen et al. [3]
illustrated the substantial importance of the ancillary set to predict
the ground CO mass, reflecting the great use and availability of
the variables (Table 3). Furthermore, Liu et al. [26] and Wang et
al. [49] demonstrated a low dependence on satellite CO, despite
using different satellites, which means that these studies utilized
additional variables (meteorological and ancillary) more effectively
than the current study (Table 3).

5 CONCLUSION
The study demonstrated the effectiveness of using machine learning
approaches and high spatial resolution CO observations based on the
Sentinel-5P satellite to improve COmonitoring at the surface level in
the Netherlands. Among the methods, the random forest emerged as

a high-quality predictive model, demonstrating its ability to handle
complex and nonlinear data. Furthermore, the results highlighted
the substantial importance of meteorological variables, increasing
the demand for atmospheric data in emission modeling. At the
same time, the ancillary variables performed poorly, reinforcing
the need to implement a more effective methodology for ancillary
variables. Ultimately, this research can serve as a foundation for
other environmental scientists to implement satellite-based CO
observations, thereby promoting more accurate CO assessments in
regions similar to the Netherlands.

The proposed framework is an end-to-end solution that excludes
the chemical aspect of CO formation, thereby limiting the compre-
hensive understanding of the role of CO in this research. Secondly,
the ancillary variables could have been expanded to include more
variables, potentially limiting the full potential of social and environ-
mental features. In future studies, the framework will be enhanced
by incorporating chemical mechanisms of CO and other ancillary
variables to improve the predictive performance of the models.
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A METRICS
• R-squared (𝑅2):

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦𝑖 )2∑(𝑦𝑖 − 𝑦)2 (1)

• Mean absolute error (MAE):

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (2)

• Root mean squared error (RMSE):

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (3)

• Bias:

BIAS =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 ) (4)

• Mean percentage absolute error (MAPE):

MAPE =
1
𝑛

𝑛∑︁
𝑖=1

����𝑦𝑖 − 𝑦𝑖

𝑦𝑖

���� (5)

• 𝑦𝑖 – Actual value
• 𝑦𝑖 – Predicted value
• 𝑦 – Mean of the actual values
• 𝑛 – Number of observations

B Z-SCORE

𝑧 =
𝑋 − 𝜇

𝜎
(6)

• 𝑋 – Original value (for standardization)
• 𝜇 – Mean of the population (used in z-score)
• 𝜎 – Standard deviation of the population
• 𝑧 – Standardized value (z-score)

C AVAILABLE OBSERVATIONS TABLE

Area Days Area Days

Leiden 19.36 Deventer 18.64
Maastricht 18.55 Haarlem 18.45
Rotterdam 18.45 Amsterdam

Airport
18.37

The Hague 18.36 Drachten 18.27
Apeldoorn 18.20 Amersfoort 18.09
Eindhoven
Airport

17.97 Heino 17.91

Hollum 17.83 Utrecht 17.82
Groningen
Airport

17.79 Tilburg 17.45

Breda Airport 17.36 Tegelen 17.36
Enschede 16.05

Table 4. Average clear-sky observation days per month for each location,
2022–2023.
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