

Master Thesis
Methodology as a Service (MaaS)

Germans Aņikevičs

Faculty of Electrical Engineering, Mathema5cs and Computer Science

University of Twente

Supervisors

Dr. L. Ferreira Pires
Dr. G. Sedrakyan

Abstract

Pla%orm as a Service (PaaS) pla%orms have become synonymous with fast :me-to-market so=ware
development, substan:ally reshaping how applica:ons are built, tested, and delivered. With a so=ware
development process fundamentally different from conven:onal environments, established so=ware
development methodologies are employed without adequate adapta:on. Recognising this gap, this
thesis introduces Methodology as a Service (MaaS), which is a hybrid so=ware development framework
tailored for PaaS development environments. This study demonstrates MaaS through an applica:on case
study on the metadata-driven PaaS ServiceNow pla%orm to illustrate its prac:cal applica:on, pave the
way for future PaaS-centric so=ware development methodology innova:on, and determine if the
benefits of a PaaS-oriented so=ware development methodology led to beJer outcomes compared to
non-PaaS oriented methodologies. Evalua:on conducted through expert surveys produced exploratory
results indica:ng improvements across so=ware development outcomes, such as collabora:on, resource
efficiency, end-user involvement, performance, and delivery, when compared to established tradi:onal,
Agile, or other hybrid methodologies, paving the way for future research and development of PaaS-
centric so=ware development methodologies.

Table of Contents

Table of Contents .. 3

1 Introduc:on .. 6

1.1 Mo:va:on ... 6

1.2 Problem Statement ... 7

1.3 Research Ques:ons ... 7

1.4 Approach ... 8

1.5 Expert Survey .. 8

1.6 Thesis Structure .. 9

2 Background ... 10

2.1 Pla%orm as a Service ... 10

2.1.1 PaaS Pla%orms Type .. 10

2.1.2 PaaS Characteris:cs .. 11

2.1.3 Limita:ons .. 12

2.2 So=ware Development Methodologies .. 13

2.2.1 Waterfall ... 13

2.2.2 V-Model .. 14

2.2.3 Agile .. 15

2.2.4 SCRUM .. 15

2.2.5 Rapid Applica:on Development ... 16

2.2.6 Rugby .. 17

2.2.7 Con:nuous Integra:on, Delivery, and Deployment .. 19

2.2.8 Hybrid Development Methodologies ... 20

3 PaaS So=ware Development Principles .. 21

3.1 Principle Iden:fica:on .. 21

3.2 Benefits ... 22

3.3 Security Challenges ... 23

3.4 Gradual Introduc:on ... 23

4 Compa:bility with So=ware Development Methods ... 24

4.1 Tradi:onal ... 24

4.2 Agile .. 25

4.3 CI/CD ... 25

5 Methodology as a Service .. 27

5.1 Development Process ... 27

5.2 Planning .. 28

5.2.1 Ini:a:on .. 28

5.2.2 Execu:on .. 29

5.3 Development ... 29

5.3.1 RAD ... 29

5.3.2 SCRUM .. 30

5.4 Maintenance ... 31

5.5 CI/CD ... 31

5.6 Project Management .. 31

6 Valida:on .. 32

6.1 Use Case .. 32

6.2 Applying MaaS to ServiceNow .. 33

6.2.1 Project Management .. 34

6.2.2 CI/CD ... 34

6.2.3 Planning .. 37

6.2.4 Development .. 38

6.2.5 Maintenance ... 39

6.3 Applying MaaS to Mendix ... 39

7 Results .. 41

7.1 Survey ... 41

7.2 PaaS and Tradi:onal So=ware Development Differences ... 42

7.3 PaaS Methodology Compa:bility .. 43

7.4 Benefits of a PaaS-oriented So=ware Development Methodology .. 43

8 Final Remarks ... 50

8.1 Discussion ... 50

8.2 Limita:ons ... 50

8.3 Benefits ... 51

8.4 Future Work .. 52

8.5 Conclusion ... 52

Acknowledgements .. 54

References .. 55

Appendix A: Survey Ques:ons ... 58

1 Introduc3on
1.1 Mo%va%on
The ever-increasing demand for so=ware solu:ons applies to every industry. To remain compe::ve,
organiza:ons consistently demand high-quality so=ware to be delivered quickly and efficiently. Amongst
others, this mo:vated the rapid rise and use of cloud compu:ng (CC) pla%orms, providing Infrastructure
as a Service (IaaS), So=ware as a Service (SaaS), or Pla%orm as a Service (PaaS) capabili:es, as shown in
Figure 1. With regards to so=ware development, no single CC pla%orm is inherently beJer than the
other. CC pla%orms offer either a pay-as-you-go or a subscrip:on-based business model, making them
cost-effec:ve and accessible to both large and small enterprises [2, 3]. From the customers perspec:ve,
the goal is to receive the ordered product as fast as possible and at the lowest cost; from the developer
perspec:ve, the goal is to deliver the highest possible value to the customer [1]. Therefore, the op:mal
choice depends on project requirements, budget, technical level of exper:se, and the level of desired
control over the so=ware.

Figure 1: Cloud Compu0ng Models

PaaS stands out in so=ware development because it offers a streamlined and efficient environment for
developers. While IaaS produces the primary compu:ng services that allow for the deployment and
management of virtual machines, opera:ng systems, and applica:ons [2], it is typically used when
customers desire flexibility and full control over their compu:ng resources—for example, to meet
fluctua:ng capacity demands by adjus:ng compu:ng power or storage [3]. SaaS provides the
opportunity to use applica:ons from a so=ware provider that run on a cloud pla%orm, usually accessed
through a web applica:on service or a dedicated interface with limited configurability tools [2, 3]. This
allows for easy access to ready-to-use so=ware applica:ons without the complexi:es of installa:on,
maintenance, and updates, thereby reducing the workload on digital talent but also limi:ng the
poten:al for strategic differen:a:on.

1.2 Problem Statement
PaaS occupies the essen:al middle ground by supplying developers with scalable, mul:-layer
architectures to build, test, and deploy applica:ons on the network. It u:lises specialized resources such
as ready-to-use func:onali:es, pre-built components, automated workflows, con:nuous integra:on, and
con:nuous delivery (CI/CD) capabili:es [2, 3, 5, 6, 14]. This means developers can focus on crea:ng and
improving applica:ons without managing the complexity of the infrastructure, providing them with the
necessary tools and frameworks to accelerate development and deployment processes. Addi:onally,
facili:es offered by PaaS dras:cally reduce the level of technological literacy required to develop
so=ware, which in turn increases the interest towards, and dependence on ci:zen developers,
addressing the dispropor:onality between the demand for so=ware solu:ons and the availability of IT
talent [4]. Such diverse capabili:es, matched with a high variance in technical exper:se of developers,
require a so=ware development process fundamentally different from tradi:onal (non-CC / non-PaaS)
so=ware development.

The methodologies used to manage and structure so=ware development, however, have remained
consistent across both tradi:onal and PaaS environments. The same so=ware development
methodologies that were ini:ally created for tradi:onal environments are being applied to develop
so=ware on PaaS pla%orms without significant adapta:on. For example, Agile remains a dominant
methodology in both environments, as its core principles, such as itera:ve cycles, customer feedback
loops, and team collabora:on are universally applicable and largely depend on the underlying project.
One contribu:ng factor is the rela:ve novelty of PaaS pla%orms. Academic literature has paid liJle
aJen:on to the impact of PaaS on so=ware development, or its SDLC model [27], in contrast to the inner
workings of services, business models, ecosystems, and characteris:cs of PaaS pla%orms [6]. In our
literature survey, we could not find any scien:fic sources focusing on a PaaS-centric methodology for the
so=ware development process itself. Given that PaaS pla%orms require a fundamentally different
development approach, yet lack a dedicated development methodology, an opportunity arises for
innova:on by proposing a methodology beJer suited to the characteris:cs, development principles,
benefits, and limita:ons of PaaS pla%orms.

1.3 Research Ques%ons
The goal of this thesis is to propose a hybrid so=ware development methodology, which can support the
so=ware development principles of PaaS pla%orms more efficiently and effec:vely than their established
counterparts and validate it via an applica:on case study. This goal can be translated into the following
research ques:ons:

• RQ 1: What are the differences in so=ware development principles and requirements between
PaaS and tradi:onal so=ware development environments?

• RQ 2: Which established or novel methodologies and their components are compa:ble with
PaaS so=ware development principles?

• RQ 3: Do the benefits of a PaaS-oriented so=ware development methodology lead to beJer
outcomes (collabora:on, performance, resource efficiency, end-user involvement, and delivery)
compared to established tradi:onal, agile, con:nuous, or hybrid methodologies?

1.4 Approach
To achieve our goal, we applied an approach based on Design Science consis:ng of the problem
iden:fica:on, solu:on design, demonstra:on, evalua:on, and communica:on steps, par:ally adhering
to the structures outlined by Peffers et al. and Offermann et al. [7, 8]. This means that not all steps from
the defined nominal or itera:ve process sequences of Design Science could be fully completed due to
lack of resources, :me, and a dedicated real-world context in which the solu:on ar:fact would be
evaluated.

Table 1: Source Distribu0on

Sources Topic
[2, 3, 5, 6, 9, 10, 11, 12, 14,
15, 21, 26]

Principles and characteris:cs of PaaS pla%orms and
PaaS so=ware development.

[1, 4, 13, 16, 17, 18, 19, 20,
22, 23, 24, 25, 27]

Currently established, hybrid, or novel so=ware
development methodologies in the context of PaaS
pla%orms.

[7, 8, 28] Research methods

The problem iden:fica:on consisted of both iden:fica:on and mo:va:on of the problem, which should
have prac:cal relevance [7]. Relevance of the problem was achieved through literature review. The
solu:on ar:fact design phase consisted of developing a so=ware development methodology for an
applica:on case study geared towards development principles of PaaS pla%orms, wherein the answers to
RQ 1 and RQ 2 acted as guidelines in determining its design. To answer RQ 1 and RQ 2, a systema:c
literature review (Table 1) was conducted to determine the differences in development principles of PaaS
and non-PaaS so=ware development environments, as well as differences in exis:ng methods, to
produce a PaaS-centric development methodology. This methodology focuses on integra:ng prac:ses
that leverage the specialised resources and capabili:es offered by PaaS. The demonstra:on phase
consisted of applying the constructed methodology on a PaaS environment, within the context of a mock
so=ware development project, to illustrate how the methodology can be implemented in prac:ce.
During the evalua:on phase, we conducted expert surveys to assess the benefits, improvements, and
effec:veness of the applica:on case study methodology, answering RQ 3. Finally, the communica:on
phase involves summarising all findings, discussing limita:ons, wri:ng this thesis, proposing areas for
future research, and drawing final conclusions.

The search for scien:fic sources was conducted across scien:fic databases, such as Google Scholar,
Scopus, ResearchGate and IEEE, as well as from references of the selected papers. Search queries were
performed by using relevant keywords, namely “Cloud Compu:ng Pla%orms”, “Pla%orm as a Service”,
“PaaS”, “IaaS”, “SaaS”, “PaaS So=ware Development, “PaaS Development Characteris:cs”, “PaaS
Development Principles”, “So=ware Development Principles”, “PaaS So=ware Development
Methodology”, “Tradi:onal So=ware Development”, “So=ware Development Methodology”, “SDLC”,
“Agile”, “Innova:ve So=ware Development Methodologies”, “Hybrid So=ware Development
Methodologies”, “Design Science”, “Likert Scale”, “Survey Methodology”.

1.5 Expert Survey
The experts were chosen from a pool of actors typically associated in either par:cipa:ng in or facilita:ng
so=ware development processes. Addi:onally, the chosen experts are expected to possess experience

working with both non-PaaS and PaaS so=ware development projects, as well as an understanding of the
use, benefits, and applica:on of so=ware development methodologies and lifecycle models. For this
thesis, experts with the following backgrounds par:cipated in the survey: technical and func:onal
consultants, so=ware engineers, and product owners or project leads. Addi:onally, respondents are
informally divided into technical and func+onal subgroups (Table 2) to explore any differences of
percep:on of MaaS.

Table 2: Survey Expert Groups

Technical Experts Func=onal Experts
Technical Consul:ng Specialist Product Owner

AI So=ware Engineer UX Designer

Technical Consultant Lead App Engine & Creator

So=ware Engineer Business Process Op:miza:on Consultant

Full Stack Developer

Integra:on PaaS Pla%orm Developer

1.6 Thesis Structure
This thesis is further structured as follows: Chapter 2 provides the literature review results of, and the
theore:cal background for, covered topics, such as PaaS pla%orms and their characteris:cs, as well as
established, hybrid, or novel so=ware development methodologies. Chapter 3 discusses the differences
between tradi:onal and PaaS so=ware development and lays out PaaS-centric so=ware development
principles. Chapter 4 provides an analysis and comparison of PaaS so=ware development principles and
so=ware development methods covered in Chapter 2. Chapter 5 introduces the Methodology as a
Service (MaaS) approach and structure, which is a hybrid methodology tailored towards PaaS-specific
so=ware development, u:lising tradi:onal, Agile, Rugby, and CI/CD prac:ces. Chapter 6 demonstrates
MaaS on a mock project on the ServiceNow pla%orm, showcasing phases of MaaS during planning,
development, and maintenance ac:vi:es. Chapter 7 evaluates MaaS based on expert Likert-scale survey
responses and addi:onal feedback across collabora:on, end-user involvement, performance, resource
efficiency, and delivery effec:veness. Chapter 8 presents the discussion of key findings, limita:ons,
recommenda:ons for future research, and the conclusion of the thesis.

2 Background
To give the necessary contextual background to understand the thesis, this chapter introduces the
theore:cal concepts relevant for this research.

2.1 PlaDorm as a Service
In the category of modern Cloud Compu:ng (CC) services, PaaS pla%orms support a game changing
paradigm, offering their customers facili:es to develop, run and manage so=ware with the backing of
Model-Driven Development [9] and without the complexity of building and maintaining the underlying
infrastructure (Table 3). Different CC service models differ by providing a unique resource as a service
and are defined by Wulf et al. [3] as:

• IaaS Offers an environment to host informa:on systems (IS)
• PaaS Provides an environment for IS development.
• SaaS Delivers ready-to-use IS.

PaaS can be described rela:ve of the other CC service models, as it is most o=en built on top of an IaaS
and in the end can be used to produce SaaS products.

Table 3: PaaS defini0ons

Author Defini=on
Shu-Qing et al. [10] PaaS is a business model in the cloud compu:ng

era, which provides a server pla%orm or
development environment for developers.

Gass et al. [5] PaaS furnishes a broad spectrum of elaborate
applica:on-level services and offers an execu:on
and development environment on top of a cloud
infrastructure.

Singh et al. [11] PaaS is a virtualized pla%orm that consist of many
servers. It comprises a layer of various so=ware
and provides it as a service that can be used to
make higher-level services.

From an end-user perspec:ve, PaaS applica:ons, or applica:ons developed and supported using PaaS
pla%orms and environments, resemble standard SaaS applica:ons [5], which are accessible if an Internet
connec:on is available. For developers, however, PaaS pla%orms open a world of possibili:es. The en:re
infrastructure, consis:ng of hardware, databases, opera:ng systems and their corresponding patches, is
available as a paid-for service. Furthermore, when developing so=ware, PaaS offers developers a variety
of shared components, such as predefined objects or built-in access and security features that
developers can leverage. Finally, development is o=en supported by wizards and point-and-click
features, which might simplify applica:on crea:on [5].

2.1.1 PaaS Pla)orms Type
PaaS pla%orms provide a development environment and can be further differen:ated based on the
following categories defined by Walraven et al. [12]:

• PaaS pla%orms that mimic and match the APIs of popular enterprise applica:on servers and
middleware pla%orms. Such pla%orms are great for developing mobile and web applica:ons that
are meant to integrate with exis:ng enterprise systems, or applica:ons which require an
extensive use of the mimicked middleware features. Examples include Microso= Azure using the
.NET framework, Oracle Cloud running on top of the WebLogic Server, Red Hat OpenShi= based
on the JBoss pla%orm, and Cloud Foundry using VMware and Spring technology [12].

• Focused PaaS pla%orms aimed at suppor:ng specific types of cloud applica:ons. These are
known for their supported deployment of highly scalable middleware and storage facili:es. Such
pla%orms are typically used for applica:ons that benefit from specific op:miza:ons in
performance and scalability, i.e., real :me analy:cs services, social media and e-commerce
pla%orms. Google App Engine and GigaSpaces’ XAP Elas:c Applica:on Pla%orm belong to this
category [12].

• Metadata-driven PaaS pla%orms, which are similar to focused PaaS pla%orms, are designed with
SaaS applica:ons in mind. These introduce a higher-level composi:on and configura:on
interface and are best suited for development of applica:ons where much of the func:onality
can be configured through metadata, rather than coded from scratch. Examples include
ServiceNow, Salesforce, Mendix, WOLF, and TCS InstantApps [12].

The focus of this thesis is primarily targeted at metadata-driven PaaS pla%orms due to their popularity
and accessibility to both ci:zen and seasoned so=ware developers. Addi:onally, the configura:onal
support of metadata-driven pla%orms naturally ins:ls a culture of component reusability, decreases the
:me spent on the development of exis:ng so=ware features, and decreases the level of maintenance
required.

2.1.2 PaaS Characteris7cs
Most PaaS pla%orms include a set of shared components, as shown in Table 4, to cover aspects such as
security, data management, connec:vity, and templa:ng. Built-in security controls ensure the availability
of robust role-based access to keep data secure [5]. This allows developers to determine the level of
accessibility of users to different parts of the so=ware. In addi:on, most of these pla%orms offer
advanced data management capabili:es that allow the developers to model, access, and change data
within their applica:ons [5, 14]. Connec:vity is fundamental for crea:ng modern and interoperable
applica:ons that can leverage external data and func:onality. Finally, a recognizable feature of PaaS is
the provision of templates and building blocks, which are reusable components that can be used to
speed up the development of custom applica:ons [5].

Another important PaaS characteris:c is extensibility, which can be defined into two sets of capabili:es:
configura:on and programming. Configura:on capabili:es help minimize coding :me and achieve
consistency among different projects. In contrast, programming capabili:es define what can be achieved
through custom code [5], which provides flexibility to build very customized and specific features that
cannot be achieved through configura:on. The development tools offered by PaaS pla%orms consist of
both web-based and local tools. A web-based development environment is usually offered through an
integrated development environment (IDE) which can be accessed through a web browser, whereas local
tools cater to those who prefer to develop in their local environment, offering advanced features and
integra:ons with other so=ware [5]. Lastly, learnability is an important characteris:c, encompassing the
required knowledge to effec:vely use the pla%orm and the provided knowledge through documenta:on

and training materials [5]. This makes PaaS pla%orms accessible to both experienced and new
developers.

Table 4: PaaS characteris0cs as defined by Gass et al. [5]

Feature Characteris=c Descrip=on
Shared
components

Access and security
controls

User management and user rights management

Data management
capabili:es

Features to model data and capabili:es to access
and modify data

Pla%orm connec:vity Support of protocols and preexis:ng connectors
to integrate external services

Templates and building
blocks

Pla%orm objects that can be reused for custom
applica:ons

Extensibility Configura:on capabili:es What can be achieved just by configura:on

Programming capabili:es What can be achieved with custom code

Development
tools

Web-development
environment

Func:onality and usability of the browser-based
Integrated Development Environment (IDE)

Local tools Func:onality and usability of local tools

Learnability Required knowledge Knowledge and previous experience required

Provided knowledge Documenta:on and training material

2.1.3 Limita7ons
Gass et al. [5] recognized the PaaS capability of removing the cumbersome maintenance and setup
responsibili:es from developers. However, such a novel approach presents its own challenges,
contras:ng from those in tradi:onal so=ware development. In their discussion on the transforma:ve
poten:al of cloud-based so=ware development solu:ons, specifically PaaS pla%orms, Aydin et al. [9]
point out that the transi:on towards cloud-based development introduces various uncertain:es. The
abstrac:on of underlying infrastructure and the mul:tude of services and tools available can be
in:mida:ng considering that the end-user range of exper:se is spread between experienced, novice,
and ci:zen developers. Similarly, the issue is extended further as PaaS or other types of CC pla%orms
employ a dedicated pla%orm development programming language [11]. While the language itself can be
the same as one used in tradi:onal so=ware development, such as JavaScript, PHP, Java, Ruby, or
Python, it is o=en modified to accommodate its respec:ve pla%orm, using a specific and less publicly
known framework. Pla%orms, such as Mendix and OutSystems, provide a visual development
environment which u:lises visual modelling as development language. Salesforce development operates
on the Apex language, which is similar to Java, but is not used outside of its pla%orm. ServiceNow u:lises
JavaScript, however, the heavy use of its own proprietary libraries dras:cally alters the code wri:ng
process. This means that even the most experienced developers are required to go through a learning
curve when switching to a PaaS development environment. Cloud based IDEs o=en lack certain features

compared to their desktop counterparts, such as comprehensive debugging tools, performance
analy:cs, and modelling capabili:es [14]. Quality assurance of an applica:on produces a large set of
challenges, as it can depend on external services [13]. Performance is o=en an issue as op:miza:on
requires a deep understanding of the pla%orm inner workings and limita:ons. Applica:on scalability is
difficult to maintain, as the developers have no knowledge of the poten:al changes a future release may
bring. Any customiza:on or other devia:on from out-of-the-box (OOTB) configura:on automa:cally puts
the applica:on at risk. Similar issues were iden:fied by Gass et al. [5], sta:ng that vendors fail to
understand and o=en understate poten:al produc:vity impediments. The complexity of PaaS pla%orms
is difficult for newcomers to grasp due to its crucial technical and non-technical informa:on being
scaJered across various sources.

2.2 SoEware Development Methodologies
So=ware development methodologies are systema:c approaches that guide the planning, execu:on,
and management of so=ware projects. These methodologies provide frameworks for organizing tasks,
coordina:ng teams, and delivering so=ware products that meet customer requirements. Over the years,
a variety of methodologies have emerged, each reflec:ng different philosophies and designs to address
specific challenges inherent of so=ware development. To help answer RQ 2, we lay the theore:cal
founda:ons with examples from tradi:onal, agile, con:nuous, hybrid, and novel so=ware development
methodologies. We include popular models based on the tradi:onal (sequen:al), prototyping, and
itera:ve SDLC philosophies.

2.2.1 Waterfall

Figure 2: Waterfall model

Tradi:onal so=ware development methodologies, such as Waterfall (Figure 2) or V-Model (Figure 3), are
referred to as heavyweight methodologies due to their structured sequen:al approach to so=ware
development. These are some of the older methodologies and thus are coined as tradi:onal yet are s:ll
incredibly popular to this day [23]. Waterfall stages can be broken down to requirement defini:on,
system design, implementa:on, tes:ng, deployment, and maintenance [13]. Each stage must be

completed before the next. Characterized by their adherence to predefined processes and an emphasis
on extensive documenta:on, this approach facilitates an ini:al clarity regarding project expenses,
:melines, and the distribu:on of resources [13]. However, it simultaneously poses significant challenges
to integrate modifica:ons during the ongoing phases of development. The efficiency of projects
orchestrated under such methodologies depends on a deep understanding of all requirements prior to
the commencement of the development phase. Waterfall is most appropriate for projects in which the
requirements are stable and are not subject to frequent change, specifically during the development and
implementa:on stages [16].

2.2.2 V-Model

Figure 3: V-Model

The NASA developed V-Model (Figure 3), which is a varia:on of the Waterfall model, is represented by a
V shape folded in half at the lowest level of decomposi:on [17]. The le= leg consists of sequen:al
phases, following a top-down approach, in which user requirements evolve into even smaller
components through the process of decomposi:on and defini:on, un:l the development phase is
reached. In parallel, the right leg consists of sequen:al phases, following a down-up approach, in which
decomposed user requirements are integrated, tested, and verified into successful levels of
implementa:on and assembly [17]. The models symmetric and structured approach assists in early
detec:on of issues, as well as their :mely resolu:on. It ensures that each development phase is paired
with a corresponding tes:ng phase, emphasising on valida:on and verifica:on. This makes the method
highly suitable for large and complex projects, including those with varying internal and external
stakeholders, as alignment of each party at each phase is required before advancing to the next.

2.2.3 Agile

Figure 4: Agile model

The dynamic nature of modern so=ware projects demands an increasingly greater level of
responsiveness and flexibility, as opposed to the structured and linear approaches employed by
tradi:onal so=ware development methodologies, such as Waterfall and the V-Model. As a result, the
Agile philosophy emerged rooted on itera:ve and incremental development, where requirements and
solu:ons evolve through collabora:on between self-organising, cross-func:onal teams [13, 20]. Agile is
dis:nguished by its repe::ve and progressive character, emphasizing adaptability, teamwork, and client
sa:sfac:on during the development phase (Figure 4). This approach u:lises self-directed,
mul:func:onal teams to navigate through shi=ing demands and solu:ons through con:nuous
communica:on, while retaining flexibility [13, 20]. This is achieved through itera:ve delivery of small,
func:onal increments of so=ware, in contrast to tradi:onal models like the waterfall model, where
so=ware is delivered a=er comprehensive development cycles [17].

Agile itself is not a development method, but rather a project management philosophy based on a set of
values outlined in the findings of Rohil et al. [13]. Actual development frameworks, such as RAD (Rapid
Applica:on Development) or SCRUM, are defined using the Agile philosophy. For example, the key
aspects of RAD resolve around itera:ve development, user involvement, and demonstrable deliverables,
aligning well with the demands of modern fast-paced so=ware development. By compressing the phases
of analysis, design, build and test into short, manageable itera:ons, the development teams are enabled
to quickly adapt to changes. Furthermore, the ability to incorporate user feedback becomes possible
from the early stages of development, increasing the chances of the product to meet user needs and
preferences.

2.2.4 SCRUM
SCRUM is an Agile methodology designed to facilitate collabora:on on complex projects in so=ware
development. Characterised by its flexibility and adaptability, it breaks down a product into small and
incremental builds, which are then delivered in :me-boxed itera:ons. Every itera:on involves cross-
func:onal teams working on planning, requirement analysis, design, implementa:on, and tes:ng. Such
itera:ons are called sprints and typically run for two to four weeks depending on the underlying projects

requirements. While Agile is a philosophy with a set of principles, SCRUM provides a structured way for
implemen:ng them through well-defined prac:ses, regularly delivering usable product increments. It is
par:cularly effec:ve in projects with constantly changing or unclear requirements, making it suitable for
environments which benefit from regular feedback and rapid adapta:on. Addi:onally, SCRUM was found
to improve produc:vity in so=ware projects, as well as posi:vely impact customer sa:sfac:on, quality,
team mo:va:on, and cost reduc:on [19].

The SCRUM methodology defines ar:facts and events, which promote efficient project management.
The product backlog is a centralized list of all an:cipated or desired work to be completed throughout
the project. The sprint backlog is a subset of items from the product backlog which are selected for
implementa:on for the dura:on of the ongoing sprint. The sprint planning is a mee:ng where the team
plans and selects from the backlog the work for the upcoming sprint. Stand-ups are daily team mee:ngs,
typically las:ng no longer than 15 minutes and performed at the beginning of the workday, where the
team synchronises on its progress and sets a plan for the rest of the day. The sprint review is held at the
end of a sprint to inspect and review the completed increment and adapt the product backlog if
required. The sprint retrospec:ve is a mee:ng for the team to reflect on the progress of the previous
sprint and iden:fy improvements for the next one. For these cross-func:onal teams, ar:facts, and
events, SCRUM defines specific roles, each with their own dis:nct responsibili:es. The product owner
represents the stakeholders and is responsible for naviga:ng, planning, managing, and maximising value
of the product backlog. The scrum master acts as a facilitator to the team, ensuring that the SCRUM
principles are adhered to, as well as removing any obstacles that might impede the sprint progress.
Finally, the development team is a cross-func:onal group of professionals who design, build, and test the
product increment during each sprint [20].

2.2.5 Rapid Applica7on Development

Figure 5: Rapid Applica=on Development

Like SCRUM, RAD is an Agile methodology, ini:ally developed as a response to the rigid and slow pace of
tradi:onal methodologies, like Waterfall or V-Model. It emphasizes quick and itera:ve release cycles,
user involvement, and adaptability [17]. While SCRUM is a more detailed and beJer structured method
with dedicated roles and events, RAD is less systema:c and focuses on rapid prototyping and user
feedback. Similarly to SCRUM, it operates on itera:ve development cycles and promotes self-organising
teams, however, it does not define any specific team roles or events. Instead, it relies heavily on
collabora:on between developers and users [17]. RAD is typically employed when :me-to-market and
user feedback is paramount, for example, when working on projects with systems or applica:ons that
heavily rely on user interac:on.

The process of RAD consists of four steps: requirement defini:on, user design, construc:on and
deployment. During the requirement defini:on, RAD already sets itself apart from tradi:onal so=ware
development methods, as it does not require a detailed list of specifica:ons; rather, it asks for a general
goal or key features, as well as any other business needs, to determine the project scope. The user
design phase is where the prototyping and tes:ng takes place. Developers create prototypes with
different features and func:ons as fast as they can within the context of the broader goal or feature. This
is performed in an itera:ve manner like that of SCRUM, where feedback is collected at the end of every
cycle allowing the client to decide on what to keep and what to dismiss. During the construc:on phase,
the accepted user design is then finally itera:vely implemented by the development team, where
prototypes are refined into working models. Lastly, the cutover phase, consists of final system tes:ng,
user training, and the subsequent deployment of the developed product.

2.2.6 Rugby
Krusche et al. [18] address the challenges faced by project-based organisa:ons by presen:ng their novel
Agile process model, Rugby, with the objec:ve of improving so=ware delivery processes through
integra:on with con:nuous delivery prac:ces to streamline the delivery of so=ware updates. The
effec:veness of Rugby was evaluated through its implementa:on in two large university courses with
100 par:cipants working on 10 projects each year in collabora:on with industry partners, closely
simula:ng a real-world scenario [18]. To understand Rugby, one has to understand its environment and
process model.

Figure 6: Rugby Eco-System (adapted from [18])

The Rugby eco-system is split in five environments, each with their own dedicated func:ons:
development, integra:on, collabora:on, delivery and the target environments. The project team,
consis:ng of up to eight developers, a team leader and project leader, is expected to be self-organising,
cross-func:onal and therefore responsible for all aspects of development and delivery of so=ware [18].
The project team, as well as the end-user, interact with different environments based on their project

responsibili:es, as seen in Figure 6. An emphasis is put on the collabora:on and delivery environments
as per the principles of con:nuous delivery – a consistent communica:on and feedback loop between
the developer and the end-user. A user is no:fied from the delivery environment if a new release is
available and can then use the so=ware in their target environment. Feedback of the user is stored in the
delivery environment and then forwarded into the collabora:on environment, i.e., as feature requests. A
user can also vote certain features in the collabora:on environment [18].

Rugby presents a unique combina:on of collabora:on, flexibility and delivery of quality so=ware, which
can be characterized through principles and prac:ces defined in the Rugby process model. During the
sprint planning, teams outline visionary scenarios to create backlog requirements for the upcoming
sprint [18]. This allows the customer to then choose the requirements to work on while providing
sufficient detail for developers to begin work. A key difference when comparing to SCRUM is that Rugby
allows requirements to be discussed and expanded during the sprint due to its event-based releases,
u:lising the con:nuous delivery workflow [18]. Addi:onally, Rugby proposes weekly mee:ngs rather
than daily, as it an:cipates part-:me developers to be present on the project [18]. In Sprint 0, las:ng two
to four weeks, teams focus on building unity, familiarising themselves with release management
techniques, such as version control, con:nuous integra:on and con:nuous delivery, as well as acquiring
necessary technical and func:onal knowledge depending on the project problem statement [18].

Figure 7: Rugby Feedback Cycle (adapted from [18])

The goal of Sprint 0 is to create an ini:al empty :me-based release to demonstrate the availability of
release management and feedback capabili:es [18]. The subsequent sprints also maintain a two-to-four-
week :me frame depending on the requirements, where each sprint is aimed at producing a poten:ally
shippable product increment. Releases in Rugby are vital as they facilitate communica:on between
project stakeholders. While teams are expected to deliver at least one :me-based release at the end of

each sprint, they are also mo:vated to release their so=ware whenever communica:on or feedback is
required, or when it is requested by the manager or customer [18]. Upon receiving a new release, users
(customers) begin interac:ng with the new product increment to provide feedback, which subsequently,
is added to the backlog. Feedback is categorized into feature requests, design requests and bug reports,
which are handled by the analysis’s workflow, the design workflow and the implementa:on workflow,
respec:vely. The release manager of the team is responsible for deciding when and to whom the build
should be delivered. A way developers can communicate and inquire for specific feedback is through
release notes of a product increment [18]. This con:nuous feedback loop is present throughout all
sprints and leads to itera:ve development.

Preliminary results a=er the use of the Rugby model indicated an increased frequency and quality of
interac:ons between the developers and the users, which in turn led to a higher accuracy in delivering
the desired requirements, as well as their quality, sugges:ng the effec:veness of consistent developer-
user communica:on. Furthermore, it enabled the ability to include requirement revision and
manipula:on during an ongoing Rugby sprint, rather than at the end of one [18]. Ul:mately, the results
displayed that Rugby’s integra:on of version control, con:nuous integra:on and con:nuous delivery
significantly improved collabora:ve development and development speed [18].

2.2.7 Con7nuous Integra7on, Delivery, and Deployment
Con:nuous integra:on involves several cri:cal steps aimed at maintaining code quality and facilita:ng
collabora:ve development efforts. The process is centred around source code management, requiring
every team member to commit their changes to a centralized repository upon comple:ng tasks or
making new changes. Con:nuous delivery extends CI by automa:ng the en:re so=ware delivery process,
ensuring that code can be delivered at any :me. This includes the automa:on of code tes:ng, its
integra:on into shared repositories, builds, and acceptance tes:ng. Once these steps are complete, a
manual ac:on is required to deploy to produc:on. Con:nuous Deployment (CD) is the automa:on of the
release deployment to produc:on a=er passing predefined tests.

This approach is highlighted as a fundamental aspect of Agile and efficient so=ware development
prac:ces [21]. The prac:ce of CI and CD is emphasized as a vital strategy for organiza:ons aiming for
frequent and reliable updates to their projects or products [22]. Benefits of transi:oning towards a CI/CD
pipeline (Figure 5) includes faster release cycles, increasing the rate at which the product is passed on to
the hands of the user. Reduced risk is naturally achieved through the con:nuous release of updates and
features. A higher quality in a product is achieved through con:nuous delivery of small updates,
increased developer-user interac:on, fewer bugs, and reduced occurrence of issues. For these reasons,
CI/CD remains the main toolset within the general prac:ce of DevOps, which is a philosophy
encompassing broad range of prac:ces, including culture, collabora:on, automa:on, delivery and
con:nuous improvement of so=ware.

The biggest issue that comes with a transi:on towards CI/CD is the cultural change, specifically for
organisa:ons coming from a tradi:onal methodology background, as the dras:c prac:cal shi= might
require that the staff is retrained, including the managers. The task of building an automated code
repository is simply complex as it is, which in turn requires a tes:ng suite of the highest integrity. In fact,
integrity is a necessary condi:on of success, as without an appropriate tes:ng suite, CI/CD introduces
more risks than benefits if the tests are not effec:ve.

Figure 8: CI/CD Model

2.2.8 Hybrid Development Methodologies
Apart from the choice between Agile and tradi:onal, hybrid methodologies are also prevalent and
popular in modern projects. Hybrid development methodologies are manifested dynamically through
blending of elements from different so=ware development methodologies depending on the underlying
project and its requirements. Such approaches are common because no single methodology can
appropriately accommodate absolutely all project needs [24]. In fact, in their research, Vijayasarathy et
al. [23] found that over 45% of so=ware development projects ran on a hybrid methodology. The most
common approach is the blend of tradi:onal and Agile prac:ces [24]. Hybrid approaches typically
emerge organically, rather than through a formal process improvement program, where the top
mo:va:ng factors include project/product management and commitment, evolu:on and pragma:sm,
and project opera:on and improved flexibility [24]. Hybrid approaches are seen as a way towards more
stable yet flexible projects, where the stability of established tradi:onal methodologies aims to appeal
towards both management and customer commitment, and the flexibility of agile methodologies
provide the necessary flexibility to the developer teams [24]. Lastly, hybrid approaches are used
regardless of company size or industry sector [24].

An example of an applied hybrid methodology is the development of a HRIS (Human Resource
Informa:on System), where Singhto et al. [16] combined both waterfall and SCRUM methodologies. The
planning and the analyses phases of the project were conducted under the waterfall model, defining the
business process while assis:ng new developers in understanding the so=ware development lifecycle
[16]. Most of the design and the development phase are conducted according to SCRUM, breaking down
requirements into stories and consequently into itera:ve SCRUM sprints.

Another example is the blend of SCRUM and extreme programming (XP), where Mushtaq et al. [25]
address the gap between the two popular agile methods by crea:ng their own novel hybrid model.
While SCRUM is used as a lightweight, flexible, and adap:ve project management framework, it provides
liJle to no guidance on the engineering aspects of so=ware development [25]. The hybrid model
retained the itera:ve and incremental approaches of SCRUM, using sprints and SCRUM events, such as
stand-ups, sprint reviews, sprint plannings, and sprint retrospec:ves. Engineering prac:ces of XP were
integrated to ensure higher code quality, specifically concepts such as simple design, pair programming,
con:nuous integra:on, and test-driven development [25]. Through the incorpora:on of XP prac:ces,
development teams were guided not only by itera:ve planning and review mechanisms of SCRUM, but
also by systema:c coding standards, as well as early and frequent tes:ng.

3 PaaS So;ware Development Principles
Tradi:onal so=ware development has evolved over decades, shaped by numerous methodologies and
engineering prac:ces. In these environments, development teams manage the full technology stack,
requiring infrastructure set-up, middleware maintenance, data handling, and applica:on deployment.
This approach, preda:ng cloud adop:on, is typically characterized by manual, heavyweight processes
and environments. Over the years, various so=ware development methodologies, from the structured
phases of the Waterfall model to the itera:ve cycles of Agile, have aJempted to tackle these issues.
Despite this, maintaining and upda:ng physical infrastructure, integra:ng tools, and enforcing consistent
development standards o=en remains a :me-consuming endeavour. Addi:onally, in contrast to PaaS
pla%orms, tradi:onal development environments frequently lack built-in support for rapid scalability,
security features, and on-demand resource alloca:on. As a result, the development cycle can become
too prolonged with teams devo:ng significant effort to non-development related tasks. This dras:cally
delays the :me-to-market, as well as places opera:onal demands on so=ware development teams that
might otherwise be focused on delivery. This chapter answers RQ 1.

3.1 Principle Iden%fica%on
Although established prac:ces and theore:cal frameworks exist for tradi:onal development, scien:fic
literature on so=ware development or SDLC on PaaS pla%orms is scarce [27], even more so with regards
to defining concrete principles and instruc:ons on how the so=ware development process must be
conducted, or which methodologies should be used. Instead, the literature outlines the structure,
capabili:es, and limita:ons of PaaS pla%orms, as well as their comparison with each other for different
types of so=ware projects

Table 5: PaaS Development Principles [3, 5, 6, 9, 10, 12, 26, 27]

Principle How Why
Leverage built-in services Use pla%orm-provided services

like databases, security
features and integra:on
connectors

By using pre-built services,
developers can avoid the
complexity of re-inven:ng the
wheel or sexng up and
maintaining these components
themselves, reducing error
rates and reducing :me-to-
market

Adopt itera:ve and customer-
centric development

Develop in short itera:ve
cycles, which include building,
tes:ng, feedback and
refinement

PaaS pla%orms support rapid
deployment by providing the
ability to quickly prototype
ideas into real solu:ons

Encourage self-organisa:on Foster a development culture
where the choice of
technology, tools, features and
deployment is performed at a
team level

The abstrac:on of
infrastructure management
promotes self-organisa:on by
gran:ng teams more crea:vity
to focus on applica:on logic
and user needs

U:lise extensibility Make full use of
configura:onal and
customizable capabili:es

Provision of configura:onal
tools and programming
interfaces allow developers to
configure and customise
applica:ons effec:vely

Priori:ze security Integrate security controls and
compliance checks early in the
development process

By leveraging the built-in
security features of PaaS
pla%orms, ensuring
applica:ons are secure by
design

Build knowledge Con:nuously update skills,
knowledge, and u:lise the
pla%orms developer
community

The ever-evolving nature of
PaaS pla%orms and their
technology requires ongoing
learning to stay on par with
best prac:ces, ensuring
op:mal use of the pla%orm
and its features

Design for scalability Define applica:on architecture
with scalability in mind

Maximize performance and
reduce cost by u:lising PaaS
scalability features, such that
applica:ons can handle varying
loads efficiently

To provide ac:onable development guidelines or principles for so=ware development (Table 5), we focus
on tangible benefits, such as fast :me-to-market, customer sa:sfac:on, high security, improved
maintenance and adaptability.

3.2 Benefits
The largest advantage for most enterprises is the speed with which new applica:ons can be launched to
catch the next wave of business opportuni:es, as various cloud-integrated tools help developers focus
on rapidly prototyping, building and deploying applica:ons [5, 26]. In tradi:onal so=ware environments
teams need to set up, maintain, and update their servers, opera:ng systems, as well as middleware. In
contrast, PaaS pla%orms abstract away most of the infrastructure layer, offering preconfigured
environments. Addi:onally, considering the PaaS pla%orm is a product in of itself, it is con:nuously
updated and improved by its parent organisa:on. Furthermore, PaaS provides dynamic scalability, where
on-demand resource alloca:on can be u:lised to either scale up or down, whereas in tradi:onal
environments this process would be completed manually by either adding addi:onal machines or
upgrading exis:ng resources, all of which require a degree of down:me and poten:al hardware
procurement. By relying less on infrastructure and manual procedures, teams have the freedom to make
decisions regarding deployment, coordina:on, and technology usage [6]. This independence creates an
environment that is more adaptable and responsive to changes, allowing for efficient implementa:on.
The ability to rapidly prototype, test, and iterate based on feedback from external stakeholders greatly
enhances the learning process for all team members. It empowers teams to refine their understanding of
requirements and address issues in :me, fostering a cycle of improvement. Embracing PaaS streamlines
the development process and empowers teams to swi=ly adapt to evolving needs and innovate more

effec:vely. The reusability of so=ware components and various elements enhance efficiency, as well as
reduces the :me and effort required to develop new applica:ons [5]. Addi:onally, developers appreciate
the ability to implement custom code solu:ons through tradi:onal programming capabili:es whenever a
par:cular use case is not supported by the capabili:es of the pla%orm [5]. The availability of
comprehensive documenta:on and a suppor:ve community that aids knowledge acquisi:on is also
noted [5]. Such tools and technologies boast advantages that ensure a high level of quality and
consistency, allowing developers to concentrate on core func:onali:es and features, thereby improving
innova:on opportuni:es and accelera:ng development speed [26].

3.3 Security Challenges
The level of technical exper:se of developers in PaaS so=ware development is typically lower than that
which is required in tradi:onal environments. Due to the extensive availability of tools and
configura:onal interfaces, ci:zen developers are empowered to par:cipate in the delivery of
applica:ons. This advancement further reduces :me-to-market, as well as the reliance on tradi:onal IT
resources, however, it also introduces a plethora of poten:al security challenges, which must be
addressed to mi:gate risks [4]. Some of the risks include [4]:

• Poorly defined security requirements
• Insecure coding prac:ses or component configura:on
• Insufficient tes:ng
• Exposing sensi:ve data
• Deployment of insecure components or services
• Vulnerabili:es introduced through updates

While not enough on their own, PaaS pla%orms provide numerous security related features to help
developers avoid risks. These include pre-built authen:ca:on, role-based access control, encryp:on,
standardized or component-based code genera:on, compliancy checks, CI/CD pipeline, environment
isola:on, extensive dashboarding and repor:ng, service-level agreements, and modern UI frameworks.
To achieve the best result, these features should be leveraged in combina:on with a security framework,
such as RAAFT [4], to ensure all crucial risks are accounted for. All these features would require manual
crea:on or integra:on with exis:ng tools and technologies when manifested within a tradi:onal
so=ware development environment, requiring high level of developer exper:se.

3.4 Gradual Introduc%on
Lastly, before considering development, it is important to note that while implemen:ng PaaS might
seem like an easy solu:on to changing business reali:es, it also entails inevitable technical and
some:mes regulatory challenges. Cohen [26] suggests that the best approach for established enterprises
that might be considering PaaS is to add it ini:ally as an alterna:ve to its current array of technologies
and gradually introduce PaaS to developers by replacing exis:ng legacy tools and systems [26].

4 Compa3bility with So;ware Development Methods
By now we have established that PaaS pla%orms dras:cally simplify the development pipeline and
provide a vast set of capabili:es for so=ware developers through the provision of model-driven
development and cloud-based services [5]. The unique characteris:cs of PaaS (Table 4) naturally enable
rapid prototyping and itera:ve development cycles, allowing developers to produce applica:ons faster,
than in tradi:onal environments. Built-in tools and shared user environments allow development teams
to directly communicate and collaborate with project stakeholders. Addi:onally, we have analysed
tradi:onal, itera:ve, con:nuous, prototyping, and hybrid development methodologies for their
strengths and weaknesses, as well as their applicability in different so=ware development contexts. This
chapter aims to bridge the gap between the characteris:cs and development principles of PaaS, as well
as the different methodologies discussed in Chapter 2, to answer RQ 2.

The selec:on and usage of a methodology primarily depends on the project scope, requirements and
the underlying set of tools or technologies available for development. Addi:onally, the choice is
influenced by circumstances, such as team size and organiza:onal revenue [23]. Agile or itera:ve
methodologies are favoured by organiza:ons with moderate revenues and smaller employee counts,
priori:sing flexibility and adaptability; however, pure Agile approaches may struggle to provide the
structure needed for large projects [23], in which the complexity renders unclear requirements,
unplanned outcomes, missed deadlines, or prolonged prototyping simply unaffordable. Tradi:onal
methodologies, such as waterfall, are more common in larger organiza:ons with higher revenues;
however, are too rigid to leverage the itera:ve and dynamic nature of PaaS [23]. Hybrid methodologies,
on the other hand, are applicable across various organiza+onal sizes and project types [23, 24]. Table 6
outlines the general applicability of so=ware development methodologies with PaaS development
principles (Table 5). Principles “U:lise extensibility” and “Build knowledge” are not included as the
means to achieve them are subjec:ve and highly dependent on parent organiza:ons circumstances,
such as the scope of the project, project complexity, budget, staff training, and technologies used.

Table 6: Methodology Compa0bility with PaaS Development Principles

 Tradi=onal Agile CI/CD

Leverage built-In services Medium Strong Strong

Itera:ve and customer-centric
development

Weak Strong Strong

Encourage self-organisa:on Weak Strong Strong

Design for scalability Medium Medium Strong

Priori:ze security Strong Strong Strong

4.1 Tradi%onal
Tradi:onal methodologies, such as Waterfall (Figure 2) or the V-Model (Figure 3), emphasize linear and
sequen:al approaches. These measures excel at defining the requirements and scope of the project, as
well as mi:ga:ng risks, manifes:ng themselves as valuable quali:es during the ini:al stages of a PaaS

so=ware development project. However, tradi:onal methods fail to promote a culture of self-
organisa:on, as the choice of technology, tools, and features would have to be predefined before the
stages of implementa:on, tes:ng, or deployment are ever reached. The adop:on of customer-centric
and itera:ve development, in which teams develop, build, test, gather feedback, and refine user
requirements in short itera:ve cycles, misaligns with tradi:onal approaches, as one stage must be
completed before the next is reached. In this case, the main advantage of PaaS, namely the ability to
rapidly prototype, build, and produce so=ware, is ignored. Furthermore, communica:on and
collabora:on between development teams and stakeholders is non-existent, as are the possibili:es to
implement any feedback once implementa:on has started.

4.2 Agile
Agile models priori:se adaptability, incremental delivery, and con:nuous stakeholder communica:on
and collabora:on. IaaS and PaaS layers of CC offer support through rapid provision of development
environments and cloud interfaces to facilitate so=ware deployment [21]. This results in significant
benefits to Agile development teams – cloud compu:ng reduces the :me and effort required to test and
deploy so=ware, therefore the latency between comple:ng development, and receiving feedback from
product owners and users, is dras:cally reduced. Furthermore, frequent communica:on between team
members, both in formal and non-formal environments, created a sense of unity and reduced the :me
needed to resolve issues [21]. The feedback cycle is reduced further through automa:on of CI/CD within
CC pla%orms.

Process models, such as SCRUM, RAD, or Rugby, u:lise incremental delivery with varying levels of
formality. SCRUM defines ar:facts such as stand-ups, backlogs, sprints, retrospec:ves, as well as user
roles to complete and provide efficient project management. RAD is less structured, priori:sing rapid
prototyping, relying on heavy collabora:on between developers and users [17]. Rugby proposes a
dedicated eco-system split between five environments: development, integra:on, collabora:on,
delivery, and target. Depending on project responsibili:es, development teams and other project
stakeholders interact with these environments. All process models require self-organising and cross-
func:onal teams to operate successfully within an Agile philosophy [13, 17, 18, 20]. Regardless of
environment or ar:fact, an interface or a technology is required to accommodate development teams to
complete their project responsibili:es. One unique characteris:c of PaaS is shared components, which
can be defined as interfaces or modules that accommodate access and security controls, data
management capabili:es, and pla%orm connec:vity. Addi:onally, most PaaS pla%orms (e.g. ServiceNow,
Mendix) provide built-in collabora:on tools that facilitate communica:on and coordina:on between
development teams and stakeholders. If not, then integra:ons with third party systems, such as Jira, are
possible. To summarize, integra:on of Agile process models into PaaS is par:cularly powerful, as PaaS
pla%orms are inherently designed to support itera:ve and incremental development, as well as team
and stakeholder communica:on. U:lising Agile as a development methodology leverages built-in serves,
operates in an itera:ve and customer-centric manner, designs for scalability, and encourages self-
organisa:on, all in line with PaaS development principles defined in Table 5.

4.3 CI/CD
CI/CD is responsible in minimizing the delivery and feedback loop of so=ware, handling tes:ng,
integra:on, and deployment autonomously. CI/CD processes are not only supported but are o=en
integrated as a core feature in PaaS pla%orms. For example, ServiceNow so=ware development projects

typically run on three instances: development, test, and produc:on. Development teams work on a
product increment or itera:on on the development instance, a=er which it is packaged, and either
manually, or through automa:on, deployed to the test instance. The customer then tests the release and
provides feedback. Separately, ServiceNow provides a na:ve automated test framework (ATF) which
allows for automated func:onal tes:ng. If everything operates without issues, the release then is
packaged for deployment into the final target environment – produc:on instance. This whole pipeline
can be automated using ServiceNow DevOps plugin which has Git, Azure DevOps, and Jenkins integrated
for easier automa:on. CI/CD concepts are o=en used in combina:on with other methods, such as Agile
and Tradi:onal, manifes:ng hybrid approaches depending on project needs [16, 23]. CI/CD pipelines
handle complex workflows, automa:ng tes:ng, building, and deployment of so=ware, as well as
facilitate rapid feedback via automated tests and shorter development cycles, hence aligning seamlessly
the principles (Table 5) of u:lising extensibility, design for scalability, leverage built-in services, and adopt
itera:ve and customer-centric development.

5 Methodology as a Service
This chapter describes MaaS illustra:ng the prac:cal applica:on of a hybrid so=ware development
methodology tailored specifically for metadata-driven PaaS pla%orm so=ware development based on the
results of RQ 1 and RQ 2.

5.1 Development Process
Relying on the insights discussed so far, we define a development process consis:ng of three main
phases: planning, development, and maintenance. Sequen:ally completed, the process combines
elements from the tradi:onal, Agile, prototyping, and con:nuous methodologies to address the unique
characteris:cs and development principles of PaaS we selected as seen in Table 7.

Table 7: MaaS Core Principles

Principle Defini=on
Structured ini:al planning Sequen:al approach to gather and define

founda:onal requirements, scope, maintenance
support, and other project-related expecta:ons

Itera:ve and incremental
development

Leverage methodologies based on Agile philosophy
for rapid development, adaptability, and user
involvement, depending on project scope and
requirements

Prototyping for broad
requirements

Use a prototyping methodology, such as RAD, to
deal with projects with ambiguous requirements,
or with a focus on user experience

Con:nuous integra:on and
delivery

Shorten feedback cycles, increase developer-
customer interac:on, improve product integrity
and scalability

Streamlined project
management

U:lise environment split approach of Rugby to
manage collabora:on, development, integra:on,
delivery, and feedback efficiency

MaaS leverages the structured and sequen:al approach of tradi:onal models to proceed between
planning, development, and maintenance, where each phase is to be completed before the next. During
the planning phase of the project, requirements, scope, and system design are defined, ensuring a solid
founda:on, correct sexng of expecta:ons, and rigorous documenta:on. The development phase is
supported by either SCRUM or RAD Agile process models, depending on the completeness of
requirements and scope defined in the planning phase. If the requirements are vague and not fully
developed, or if the project contains subjec:ve outcomes, such as a heavy focus on UI/UX, the RAD Agile
process model should be chosen as the main development paradigm. If the requirements, scope, and
project outcomes are clearly defined, the SCRUM process model should be chosen as the main
development paradigm. Both SCRUM and RAD models strongly adhere to PaaS so=ware development
principles outlined in Table 5, as well as make effec:ve use of PaaS services and capabili:es. Following
Rugby, CI/CD is integrated in parallel with either of the Agile process models (SCRUM or RAD), ensuring
speed and reliability of releases, automa:on, and scalability. This results in a significant increase in
frequency and quality of interac:ons between the developer and the customer, leading to a higher

accuracy in delivering desired requirements, as well as significantly improved collabora:ve development
and development speed [18]. Finally, project management u:lises the five environments defined in the
Rugby process model: development, integra:on, collabora:ve, delivery, and target environments. MaaS
offers flexibility to handle varying levels of requirement clarity, faster :me-to-market via itera:ve
development and the integra:on of CI/CD, improved project stakeholder sa:sfac:on and collabora:on
through short feedback loops, and scalable project management with a defined environment-based
process model. To summarise, the MaaS core principles are defined in Table 7, and the model in Figure 9.

Figure 9: Methodology as a Service (MaaS)

5.2 Planning
The planning phase lays the founda:on for the en:re project by establishing a rela:onship with the
customer, as well as scope, requirements, and overall applica:on architecture. Two steps are defined in
the planning phase: ini:a:on and execu:on.

5.2.1 Ini7a7on
Ini:a:on is about understanding the needs of the customer. To achieve this, stakeholder workshops are
conducted to iden:fy the goal of the project, and its expected deliverables of the project: func:onal
features, use-cases, integra:ons, and high-level system design choices. User roles, their responsibili:es,
and their interac:ons with the system are also defined. The completeness of these deliverables directly
influences the results of the phase, as well as the choice of development process model in the
development phase. If the completeness of requirements is low, customer-intended or otherwise, RAD is
recommended as the development process model relying on rapid prototyping and customer
collabora:on. Likewise, if the completeness of requirements is high, customer-intended or otherwise,
SCRUM is recommended as the development process model. Documenta:on-related deliverables, such
as technical documenta:on, process guides, user manuals, tes:ng depth, and training sessions are
defined. Addi:onally, the governance of the project is defined via sexng of roles and responsibili:es of

the customer, the end-user, and the development team. Lastly, PaaS-specific details are discussed by
asking the following ques:ons: does the customer already u:lise the underlying PaaS for any other
processes or use-cases? Are the and built-in services offered by PaaS pla%orms enough to accommodate
the desired use-case, or configura:on and customiza:on is required? Which pla%orm security features
can be and should be u:lised? This determines the level of extensibility (customiza:on or configura:on)
of the resul:ng applica:on.

5.2.2 Execu7on
Informa:on resul:ng from the ini:a:on step is compiled into a proposal or statement of work (SoW),
which is a document outlining all deliverables that needs to be signed by the customer to trigger the
official start of the project. The SoW includes the project descrip:on, goal, scope, governance, project
methodology, assump:ons, team structure, and a high-level :meline of the project. Financial analysis
and cost es:mates are also provided in the SoW. Once the document is signed, the project is officially
underway.

5.3 Development
The development phase of MaaS entails itera:ve development cycles and con:nuous feedback loops,
leveraging the rapid prototyping, building, and deployment capabili:es offered by PaaS pla%orms [5, 26].
To maximise efficiency and adaptability, MaaS provides development teams the ability to choose
between RAD and SCRUM methodologies based on project requirements and scope. A simple decision
framework is provided in Table 8.

Table 8: Development Methodology Decision Framework

Criteria RAD SCRUM
Requirement clarity Ambiguous or evolving

requirements, UX heavy
Evolving requirements

Time-to-market
urgency

Rapid prototype provision to meet
urgent market needs, has ini:al
product value

Regular delivery via :me-boxed
sprints, product value grows over :me

Stakeholder
involvement

Con:nuous involvement
throughout development
itera:ons

Involvement in SCRUM defined events
(ar:facts), such as a sprint review.
Par:cipate in tes:ng and feedback

Planning and
documenta:on

Lean planning and documenta:on
for rapid development, evolving
business reali:es

Detailed planning involving structured
events and ar:facts

Project complexity and
scale

Best suited for small or medium
sized projects, where room for
rapid or unexpected change is
possible

Scales well for complex projects with
interdependent tasks

5.3.1 RAD
MaaS proposes the use of a prototyping Agile process model, namely RAD, if the requirements gathered
from the planning phase are vague, the project entails a heavy focus on user experience, or other RAD
favoured criteria are met (Table 8). The benefits of using this process model over SCRUM consist of faster

prototyping and feedback cycles, reduced upfront planning and documenta:on, user-centric design
focus, and increased flexibility in handling ambiguous or changing requirements. RAD consists of four
steps, namely requirement defini:on, user design, construc:on, and deployment, which are described in
detail in Sec:on 2.2.5.

Focusing on most cri:cal user needs, broad requirements are defined with some Defini:on of Done
(DoD). Addi:onally, basic deadlines are set, together with DoD, to avoid infinite development or scope
creep. These requirements, covered earlier by the planning phase of MaaS (Sec:on 5.2), are classified as
epics. Epics are agile components, typically represen:ng large bodies of work (broad requirements),
which can be further broken down into smaller units of work, namely stories. The user design step marks
the beginning of itera:ve development. In this first itera:on, developers and designers rapidly create the
skeleton of the applica:on based on requirements consis:ng of basic UI elements, func:onality, and
interac:vity. Users provide immediate feedback, which is associated with epics defined earlier. This
feedback is broken down into stories (small units of work), associated with their correla:ng epic, and
added to a story backlog. This step is iterated con:nuously un:l a user-accepted design is reached. In
each itera:on, a new version of the product is built, reviewed by users, and improved con:nuously. In
the next step, namely construc:on, developers work to complete the accepted design u:lising the
stories generated via user feedback, improving on their parent epic. Once the users are sa:sfied with the
func:onality of the product, the cutover step (deployment) begins. The applica:on is finalised and
deployed to a pilot group. Addi:onally, the development team remains available to handle minor
adjustments or bug fixes based on the feedback of the pilot group.

RAD does not define concrete roles, therefore we introduce them as the development team, and the
product owner (PO). The PO is the double-facing bridge between the development team and the
customer. A PO represents the business needs of the customer, maintains the backlog, and manages
priori:za:on of work. The development team is responsible for building, delivering, and maintaining the
product.

5.3.2 SCRUM
MaaS proposes the use of an Agile development methodology, namely SCRUM, if the requirements
gathered from the planning phase are well-defined, or the :me-to-market urgency is low, or other
SCRUM favoured criteria are met (Table 8). SCRUM process, roles, events, and ar:facts are described in
detail in Sec:on 2.2.4.

Ini:al SCRUM backlog is derived from requirements gathered in the planning phase (Sec:on 5.1). SCRUM
proceeds in :me-boxed itera:ons called sprints, which represent development itera:ons. During each
sprint, new insights, changes, and modifica:ons are also con:nuously added to the backlog.

At the beginning of a sprint, a sprint planning session is held to determine which backlog items are going
to be delivered, further accompanied by daily stand-up mee:ngs for progress alignment and
impediment resolu:on. Once the sprint is over, a sprint review session is held to evaluate and demo the
progress to stakeholders. The stakeholders (users) provide feedback which is then added to the backlog.
Lastly, a sprint retrospec:ve is held for the development team to reflect on their progress and operability
in the last sprint.

For SCRUM, we define the following roles: PO who maintains the sprint backlog and, similarly to RAD, is
a double-facing bridge between the development team and the customer; development team, who are

responsible for building, delivering, and maintaining the product; SCRUM master who facilitates SCRUM
related processes and ar:facts, assists developers, and removes impediments.

5.4 Maintenance
A=er the development phase of the project is completed, a period of maintenance is cri:cal to ensure
the capture of unexpected bugs or defects. We propose to u:lise the following two op:ons in MaaS:
hypercare and maintenance packages. Hypercare is a predefined short-term support period where the
development team works on bugs or defects iden:fied during or post product delivery. Addi:onally, we
propose maintenance packages, where customers can opt in for a suppor:ng team which will work to
provide maintenance for a predefined set of hours every month. This can also entail work on
improvements or feature requests. Both the hypercare and maintenance packages are discussed and
agreed upon during the project planning phase.

5.5 CI/CD
MaaS incorporates CI/CD prac:ces to enhance the integrity and efficiency of development, as well as to
reduce user-developer feedback loops. It ensures that every development itera:on results in a validated,
tested, and deployable product via automa:ng applica:on build, publishing, installing, and tes:ng
processes.

As previously stated, MaaS u:lises the five-environment solu:on of Rugby (Sec:on 5.5) to streamline
project management. Development teams work on stories in the development environment. At the end
of either RAD or SCRUM development itera:on, the completed units of work (code and configura:on)
are packaged into a release ar:fact via the integra:on environment. This release ar:fact is then
deployed to a delivery environment for final tes:ng, where, if successfully tested, is further deployed to
a target (produc:on) environment. CI/CD automates the tasks of building, unit-tes:ng, integra:on-
tes:ng, packaging, and deployment of releases.

5.6 Project Management
Project management in MaaS is centred around the need for an efficient and CI/CD adaptable
development process for PaaS pla%orms. Based on the findings reported in Chapters 2 and 4, a hybrid
methodology consis:ng of elements from Agile, RAD, SCRUM, CI/CD, and Rugby to ensure effec:ve
development and project execu:on.

MaaS adopts the five-environment ecosystem approach of Rugby (Sec:on 2.2.6), split into development,
integra:on, collabora:on, delivery, and target environments. Rugby emphasises CI/CD and rapid
feedback loops [18], making it an ideal fit for MaaS. During each development itera:on developers work
within the development environment, a=er which their work is merged via the integra:on environment
and deployed to a delivery environment for feedback. The customer then provides feedback via both the
delivery and collabora:on environments. If the delivered work is acceptable and tested it can be moved
to the target environment. This environment structure can be mapped onto PaaS pla%orms based on
their services and features.

We define a project manager (PM) role to oversee the en:re five-environment process in collabora:on
with other actors of either the RAD or SCRUM development processes.

6 Valida3on
This chapter introduces the valida:on process for the applica:on case study of the so=ware
development methodology MaaS defined in Chapter 5. The goal of this valida:on process is to assess
whether MaaS can provide measurable benefits over alterna:ve established development
methodologies with regards to PaaS so=ware development. These benefits are otherwise defined as
improved development outcomes, such as faster development itera:ons, improved stakeholder
collabora:on, and fewer defects. Accomplishing this goal answers RQ 3. Addi:onally, it serves as the
demonstra:on step within the Design Science paradigm, in prepara:on for the evalua:on (Likert scale
survey ques:ons) and communica:on steps (survey result analysis, future work, and conclusion) [7, 8].

To demonstrate the feasibility of MaaS, we apply it to a mock project on ServiceNow, one of the leading
metadata-driven PaaS pla%orms. Addi:onally, we provide an architectural example of how the
methodology can be applied to a similar metadata-driven PaaS pla%orm – Mendix.

6.1 Use Case
Due to the complexity of real-life projects and their poten:al obscurement of the methodology, we
define a mock project, allowing us to observe how MaaS works when applied on ServiceNow. The
customer is a security opera:ons centre (SOC) for a large enterprise. This enterprise already has an
established regular incident management process in ServiceNow; however, the number of incoming
incidents has grown two-fold. It is becoming increasingly difficult to efficiently manage all incidents with
varying degrees of impact and priority. For this reason, SOC requires a security incident management
tool to allow a subset of users to create and track the progress of security incidents, thus detaching them
from regular incidents. SOC decided to build a new custom applica:on in ServiceNow to manage security
incidents separately, as they use the pla%orm for other services, including the basic incident
management. Table 9 shows two possible example sets of requirements which would trigger either a
RAD type or a SCRUM type development model implementa:on method.

Table 9: SOC General Project Requirements

 RAD SCRUM
Project vision Build an intui:ve and visually

appealing portal for the crea:on,
tracking, and management of
security incidents. Requires a fast
:me-to-market

Develop a comprehensive security
incident management applica:on with
detailed workflows, access
management, and advanced repor:ng

Visual interface Focus on a minimalis:c, yet highly
responsive modern design

Minimalis:c design, UI is structured to
support role-based views, as well as
self-servicing func:onality, such as
tool:ps

Design A simple and dynamic security
incident form with basic fields
(e.g. “Title”, “Descrip:on”). Use of
visual cues such as icons to
support clarity

Detailed security incident form
featuring predefined fields (e.g. type,
severity, affected systems, date and
:me) that can support a full security
incident lifecycle, including
escala:ons, approvals, service-level
agreements, and audi:ng

Integra:on Acts as standalone applica:on
with minimal integra:on with the
exis:ng incident management
tool. Must have the ability to
create a security incident from a
normal incident and vice-versa.
CI/CD used for rapid deployment
of incremental improvements

Standalone applica:on with seamless
integra:on with exis:ng incident
management tool, as well as other
third-party security tools. CI/CD
pipeline is established to support
regular builds, tes:ng, and
deployment

Repor:ng and analy:cs Ability to track security incident,
state-change no:fica:ons, simple
dashboard to view the current
states of security incidents (e.g.
open, in progress, complete)

Detailed dashboards with real-:me
analy:cs, mul:-level no:fica:on
system, custom repor:ng, and KPI
tracking

6.2 Applying MaaS to ServiceNow
MaaS was developed as a hybrid so=ware development methodology specifically tailored for PaaS
pla%orms, incorpora:ng elements from tradi:onal and Agile methodologies, as well as CI/CD prac:ces,
to create a structured yet flexible approach which aligns with PaaS development principles defined in
Table 5. This sec:on describes how MaaS can be u:lised in a project sexng, through the demonstra:on
of a run of a development itera:on for our mock use case (Sec:on 6.1), following the phases laid out in
Chapter 5.

Figure 10: Adapta=on of Rugby's Five-Environment Model for ServiceNow

At its core, ServiceNow is a cloud pla%orm that streamlines and automates enterprise service
management, providing a configurable data model, powerful workflow engine, and an array of built-in
applica:ons to manage IT, HR, security, among others. The primary reason for selec:ng ServiceNow is

the availability of access to the product, but also due to it being recognised for its strong workflow
automa:on, pre-built components and shared services, low-code and no-code capabili:es, scalability,
security, extensibility, and integrated CI/CD support. Lastly, these characteris:cs are shared among other
metadata-driven PaaS pla%orms (Sec:on 2.1.1), making ServiceNow a suitable tes:ng ground for MaaS.

6.2.1 Project Management
For MaaS project management we follow the MaaS principles defined in Table 7 and adapt the five-
environment model of Rugby (Figure 10). We use ServiceNow to facilitate the following structure: three
ServiceNow instances for our development, test (clone of the produc:on environment), and produc:on
environments; Azure DevOps is used as the integra:on environment, providing both CI/CD pipeline
facilita:on, and a Git code repository. Finally, ServiceNow’s Agile 2.0 module is u:lised as the
collabora:on environment, allowing for communica:on, backlog management, and progress tracking,
between developers, end-users, and other involved actors. Similarly to the environment model, we draw
inspira:on form Rugby to define our process model (Figure 11). For this demonstra:on, we keep it
simple. The following sec:ons go in-depth into the steps of the process model.

Figure 11: MaaS Process Model (adapted from [18])

6.2.2 CI/CD
For our CI/CD pipeline, Azure DevOps serves as the facilitator, hos:ng a Git repository for code
management, and enabling automa:on via a pipeline. The pipeline uses a YAML defini:on (code snippet
1) to provide automa:on of the build, test, and deployment processes. We set our trigger to be a
commit on the “master” branch. Changes from developers are commiJed to the Azure repository,
triggering the build stage. For this case study, we include the step of building and publishing the
applica:on on the development instance (environment), as commixng the changes does not inherently
publish the applica:on and is a separate ac:on in ServiceNow. Typically, a custom applica:on requires to

be published to be available for manual retrieval or deployment from a different instance, i.e., test
instance. For addi:onal informa:on, applica:on ar:facts, such as the applica:on version number, are
added in the relevant connec:on (to Azure DevOps) record of that instance. If the build stage ran
successfully, test stage is triggered, which automa:cally deploys the applica:on on our test environment.
Once deployed, automated tests are executed via ServiceNow Automated Test Framework (ATF). We
implement a rollback feature if tes:ng is unsuccessful, safeguarding the integrity of the produc:on
environment. Lastly, if the test stage is completed successfully, we automa:cally deploy the applica:on
to the produc:on instance.

 1. trigger:
 2. branches:
 3. include:
 4. - master
 5. variables:
 6. - name: APPSYSID
 7. value: 4951ec8fc39866102d4bf50f05013175
 8. - name: TESTSUITEID
 9. value: cd4d28cbc3d866102d4bf50f05013144
 10. - name: BRANCH
 11. value: $(Build.SourceBranchName)
 12. - name: JUNIT_FILE_DEV
 13. value: '$(System.DefaultWorkingDirectory)/DevTest.xml'
 14. - name: JUNIT_FILE_TEST
 15. value: '$(System.DefaultWorkingDirectory)/ACCTest.xml'
 16. - name: BRANCH
 17. stages:
 18. - stage: Build
 19. condition: eq(variables['Build.SourceBranch'], 'refs/heads/master')
 20. jobs:
 21. - job: ApplyChange_Publish
 22. steps:
 23. - task: ServiceNow-CICD-SC-Apply@2
 24. inputs:
 25. connectedServiceName: 'SOC Dev Instance'
 26. appSysId: '$(APPSYSID)'
 27. branchName: '$(BRANCH)'
 28. - task: ServiceNow-CICD-App-Publish@2
 29. condition: succeeded()
 30. inputs:
 31. connectedServiceName: 'SOC Dev Instance'
 32. sysId: '$(APPSYSID)'
 33. versionFormat: 'detect'
 34. - task: ServiceNow-DevOps-Agent-Artifact-Registration@1
 35. inputs:
 36. connectedServiceName: 'plat4mationdemonew02-ServiceNow CICD-ServiceNow DevOps Service
Connection'
 37. artifactsPayload: "{\n \"artifacts\": [\n {\n \"name\": \"ServiceNow Azure
CICD\",\n \"version\": \"1.$(Build.BuildId)\",\n \"semanticVersion\":
\"1.$(Build.BuildId).0\",\n \"repositoryName\": \"ServiceNow Azure CICD\"\n }\n]\n}
\n"
 38. - task: ServiceNow-DevOps-Agent-Package-Registration@1
 39. inputs:
 40. connectedServiceName: 'plat4mationdemonew02-ServiceNow CICD-ServiceNow DevOps Service
Connection'
 41. packageName: 'ServiceNow Azure CICD'
 42. artifactsPayload: |
 43. {
 44. "artifacts": [
 45. {
 46. "name": "ServiceNow Azure CICD",
 47. "repositoryName": "ServiceNow Azure CICD",

 48. "version": "1.$(build.buildId)",
 49. "pipelineName":"$(system.teamProject)/$(build.definitionName)",
 50. "taskExecutionNumber":"$(build.buildId)",
 51. "stageName":"$(system.jobDisplayName)",
 52. "branchName":"$(build.sourceBranchName)"
 53. }],
 54. "pipelineName":"$(system.teamProject)/$(build.definitionName)",
 55. "taskExecutionNumber":"$(build.buildId)",
 56. "stageName":"$(system.jobDisplayName)",
 57. "branchName":"$(build.sourceBranchName)"
 58. }
 59. - stage: Test
 60. condition: and(succeeded(), eq(variables['Build.SourceBranch'], 'refs/heads/master'))
 61. jobs:
 62. - job: InstallToTest_RunTest
 63. steps:
 64. - task: ServiceNow-CICD-App-Install@2
 65. inputs:
 66. connectedServiceName: 'SOC Test Instance'
 67. sysId: '$(APPSYSID)'
 68. - task: PowerShell@2
 69. name: RunTestATF
 70. inputs:
 71. targetType: inline
 72. script: "$user = \"test.azure\"\n$pass = \"012s+@&TgV.1@L5a^\"\n$base64AuthInfo =
[Convert]::ToBase64String([Text.Encoding]::ASCII.GetBytes((\"{0}:{1}\" -f $user, $pass)))\n$headers
= New-Object
\"System.Collections.Generic.Dictionary[[String],[String]]\"\n$headers.Add('Authorization',('Basic
{0}' -f $base64AuthInfo))\n$headers.Add('Accept','application/json')\n$headers.Add('Content-
Type','application/json')\n\n$uri = \"https://plat4mationdemonew20.service-
now.com/api/sn_cicd/testsuite/run?test_suite_sys_id=cd4d28cbc3d866102d4bf50f05013144\"\n$method =
\"post\"\n$atfProgress = Invoke-RestMethod -Headers $headers -Method $method -Uri $uri\n$progressID
= $atfProgress.result.links.progress.id | ConvertTo-Json | ConvertFrom-Json\necho
$progressID\nStart-Sleep -s 30\n\n$uri = \"https://plat4mationdemonew20.service-
now.com/api/sn_cicd/progress/$progressID\"\n$method = \"get\"\n$atfResult = Invoke-RestMethod -
Headers $headers -Method $method -Uri $uri \n$resultID = $atfResult.result.links.results.id |
ConvertTo-Json | ConvertFrom-Json\necho $progressID\n\n\n$uri =
\"https://plat4mationdemonew20.service-
now.com/api/pl4/cicd_junit_file?result_id=$resultID\"\n$method = \"get\" \n$response = Invoke-
RestMethod -Headers $headers -Method $method -Uri $uri\necho $response.result.file | ConvertTo-Json
| ConvertFrom-Json > '$(JUNIT_FILE_TEST)'\n"
 73. - task: PublishTestResults@2
 74. inputs:
 75. testResultsFormat: 'JUnit'
 76. testResultsFiles: '**/ACCTest*.xml'
 77. condition: succeededOrFailed()
 78. - task: CmdLine@2
 79. inputs:
 80. script: 'cat $(JUNIT_FILE_TEST)'
 81. - job: Rollback
 82. dependsOn:
 83. - InstallToTest_RunTest
 84. condition: failed()
 85. steps:
 86. - task: ServiceNow-CICD-App-Rollback@2
 87. inputs:
 88. connectedServiceName: 'SOC Test Instance'
 89. sysId: '$(APPSYSID)'
 90. autodetectVersion: 'yes'
 91. - stage: DeployToProd
 92. condition: and(succeeded(), eq(variables['Build.SourceBranch'], 'refs/heads/master'))
 93. jobs:
 94. - job: InstallToProd
 95. steps:
 96. - task: ServiceNow-CICD-App-Install@2

 97. inputs:
 98. connectedServiceName: 'SOC Prod Instance'
 99. sysId: '$(APPSYSID)'
100.

Code Snippet 1: Azure DevOps Pipeline YAML

6.2.3 Planning

Figure 12: SOC Sprint Planning

During the planning phase workshops are conducted to iden:fy scope, project requirements, selec:on
of the agile development process model (SCRUM or RAD), and define documenta:on structure, tes:ng
approach, deadlines, project roles, and the maintenance support package. MaaS proposes the use of
two alterna:ve agile process models for the development phase, SCRUM and RAD. However, the choice
should not be limited solely to these two models, if the requirements of the project demand a different
and more suitable itera:ve process. We provide an example of requirements (Table 9), which can trigger
either one of the models, via our project use case (Sec:on 6.1). For demonstra:on purposes, the choice
of model does not maJer, as both are itera:ve development processes.

Figure 13: SOC Collabora=on Communica=on Example

6.2.4 Development
Requirements captured during the planning phase are converted into ac:onable units of work called
user stories, u:lising Agile 2.0 of ServiceNow, which is setup on the produc:on instance (Figures 12, 13).
These stories ini:ally populate a general backlog, which are chosen into itera:ve sprints or rapid
prototyping cycles, depending on their priority. Developers complete the story tasks in the development
environment u:lising the built-in features, upda:ng their progress directly in ServiceNow. This allows the
customers to track the progress of work, communicate, and provide feedback or adapta:on sugges:ons
if needed. Once the stories are completed within an itera:on, developers commit their changes to Azure
DevOps (Figure 14), which triggers deployment pipeline ini:ally to test, and subsequently to produc:on
environments.

Figure 14: SOC Commit to Azure DevOps

How the user stories are tested depends on the agreement made during the planning phase. For this
itera:on demonstra:on, tes:ng is first manually conducted by developers on the development instance,

a=er a user story is complete. At the end of an itera:on, when the work is commiJed to Azure DevOps
(Sec:on 6.2.2), our pipeline is triggered, which runs the ServiceNow ATF test suite, upon deploying the
applica:on to test environment. If the test suite tests are completed successfully, the applica:on is
deployed to the produc:on environment.

Figure 15: Test Environment Test Suite

6.2.5 Maintenance
The maintenance phase is dependent on the type of agreement established during the planning phase.
MaaS proposes the use of two alterna:ves: hypercare and managed services. For this demonstra:on, we
use the laJer. A managed services team provides ongoing support through a predefined support
package. This can be done in a form of a contractual agreement which dictates the number of hours the
team is expected to spend every week on the maintenance of the applica:on. Maintenance ac:vi:es
include bug fixes and enhancements which may arise a=er the comple:on of the development phase.
Considering the CI/CD pipeline is already setup, managed services team can con:nue to u:lise it to
deliver their improvements itera:vely and efficiently. The feedback loop remains consistently short,
ensuring con:nuous delivery quality, and responsiveness towards evolving user needs.

6.3 Applying MaaS to Mendix
Next to ServiceNow, we provide an example of a poten:al applica:on of MaaS on another metadata-
driven PaaS pla%orm, namely Mendix, which is a pla%orm that facilitates development primarily through
a visual development environment called Mendix Studio Pro. Unlike ServiceNow, Mendix Studio Pro
provides developers the ability to build and test their applica:ons locally, rather than through cloud. It
encourages rapid prototyping and experimenta:on due to development being local, avoiding addi:onal
costs, as well as affec:ng other environments. For the collabora:on environment, Mendix can u:lize
Sprintr, which is a project management tool built into Mendix. Packages from local Mendix environments
can be uploaded directly into Sprintr, and subsequently to integra:on, acceptance (test) or produc:on
environments. For tes:ng, Mendix does not offer automated tes:ng services, however, third party
vendors exist which do offer such capabili:es. Lastly, collabora:on and communica:on are offered via
Sprintr built-in user story, backlog, and sprint planning capabili:es, however, third-party systems such as
JIRA or Slack are usually preferred. The planning, development, and maintenance phases follow the
same process model (Figure 11) and steps defined for ServiceNow in Chapters 5 and 6, while u:lising the

environment setup of Rugby onto Mendix as displayed in Figure 16.

Figure 16: Adapta=on of Rugby's Five-Environment Model for Mendix

7 Results
In this chapter we present the results obtained through answering the research ques:ons defined in
Sec:on 1.3. The thesis explored the founda:onal differences between the processes of tradi:onal
so=ware development and so=ware development conducted using PaaS environments to answer RQ 1.
We examined the alignment and applicability of established and novel so=ware development methods,
as well as their components, with so=ware development principles specific to PaaS to answer RQ 2.
Lastly, based on these insights, we answer RQ 3, namely whether the benefits of a PaaS-oriented
so=ware development methodology led to beJer outcomes compared to non-PaaS oriented
methodologies.

7.1 Survey
Valida:on of MaaS has been performed through the evalua:on of benefits associated with improved
development outcomes, such as faster development itera:ons, improved stakeholder collabora:on, and
fewer defects. From these benefits, we derive the following evalua:on metrics: collabora:on,
performance, resource efficiency, end-user involvement, and delivery effec:veness. Considering the use
of experts, the ques:ons used for evalua:on aim to quan:fy subjec:ve human percep:ons, such as
opinions, axtudes, and experiences, with regards to the demonstra:on of the MaaS applica:on on a
mock project. To transform percep:ons into measurable data, we use the Likert scale, which was devised
specifically for measuring percep:on in an accepted and validated manner [28]. In other words, we
aimed to capture qualita:ve insights (par:cipants subjec:ve experiences) quan:ta:vely.

Equa=on 1: Cronbach's Alpha

Equa=on 2: Wilcoxon Signed-Rank Test

The Likert scale values represent a par:cular sen:ment, ranging from either strongly agreeing or strongly
disagreeing with the posed ques:on or statement, while also maintaining a neutral middle point. Likert
scale point ranges typically vary between 1-3, 1-5, 1-7, and 1-10 points, some:mes beyond that,
depending on the underlying goal of the research, and its human percep:on evalua:on. For this survey,
a Likert scale of 1-7 was used, as it reduces ambiguity via a more nuanced spectrum of choices. In lower
point ranges, par:cipants might be forced to choose between two equally undesirable points, whereas a
range of 1-7 points provides more choices, increasing the probability of mee:ng the objec:ve reality of
people [28]. Higher point ranges can have an opposite effect, introducing confusion, as it becomes
increasingly more difficult to reliably dis:nguish between a larger number of op:ons.

Equa=on 3: Mann-Whitney U Test

There are two schools of thought with regards to the treatment of Likert scales for analysis: ordinal and
interval scales. Ordinal scales consider choices as arranged in a par:cular ranking order, without

considering the rela:ve distance between two responses quan:ta:vely, whereas interval scales aim to
combine a set of responses to produce a general composite score for a par:cular ques:on [28]. Our goal
is to evaluate five dis:nct metrics, meaning that for each metric a subset of ques:ons is defined to
deduce a more general composite score as the outcome. In the case of this thesis, we have a small
sample size of ten experts. Because of this, normality assump:on cannot be guaranteed even if it were
true. Therefore, we use non-parametric tests and consider our scale as ordinal; namely Wilcoxon signed-
rank test (Equa:on 2) to determine if the experts view any given evalua:on metric of MaaS as above
average, Mann-Whitney U test (Equa:on 3) to compare the composite scores technical or func+onal
subgroups to uncover any poten:al role percep:on differences, and the Spearman correla:on test
(Equa:on 4), to explore if experts who rank one metric posi:vely also rank the other metrics similarly.
For an addi:onal reliability check on our Likert scale survey ques:ons, we use Cronbach’s alpha test
(Equa:on 1) to make sure the ques:ons for each evalua:on metric measure the same thing. Finally, as
we treat our scale as ordinal, medians and interquar:le ranges (IQR) are used for descrip:ve sta:s:cal
analysis a=er Cronbach’s alpha test.

Equa=on 4: Spearman's Rank Correla=on

7.2 PaaS and Tradi%onal SoEware Development Differences
The key differences between PaaS and tradi:onal so=ware development were iden:fied through a
literature review, explored and analysed in Sec:on 2.1 and Chapter 3, iden:fying PaaS characteris:cs
(Table 4) and PaaS development principles (Table 5). To answer RQ 1, we compile the key findings in
Table 10 below.

Table 10: Development Differences Between Tradi=onal and PaaS Environments

Infrastructure
abstrac:on

Tradi:onal so=ware development environments require the manual management
of their infrastructure, namely hardware, so=ware, middleware, and databases. In
contrast, PaaS pla%orms facilitate and therefore abstract this infrastructure
management, allowing developers to focus primarily on delivery of applica:ons,
user needs and func:onali:es, and other project tasks

Built-in tools
and services

PaaS pla%orms inherently offer pre-built services through shared components, such
as access and security controls, data management, func:oning so=ware templates
and building blocks, security frameworks, development tools, integra:on
connectors, and more. Tradi:onal environments in contrast require manual
configura:on and management or custom solu:ons to facilitate the same func:ons

Scalability and
flexibility

Tradi:onal environments typically scale through manual hardware upgrades or
addi:onal server procurement, whereas PaaS pla%orms support automa:c on
demand scaling, reducing down:me, maintenance, effort, and allowing resource
usage to match the demand or load on the pla%orm

Development
speed

Rapid prototyping capabili:es of PaaS pla%orms through extensive component
reusability, templates, and other built-in tools and services, as well as the general
infrastructure abstrac:on significantly shorten developer loops, allowing for a fast
:me-to-market delivery of so=ware applica:ons

Knowledge Tradi:onal environments require developers to have a deep understanding for
tools, programming languages, and the surrounding infrastructure, which can differ
from project to project, or organisa:on to organisa:on. PaaS pla%orms significantly
lower the entry barrier for developers due to their extensive configura:onal and
other built-in services capabili:es, documenta:on, training and learning materials,
enabling both experienced so=ware developers and ci:zen developers to produce
quality so=ware.

7.3 PaaS Methodology Compa%bility
We have established that PaaS pla%orms streamline so=ware development through the provision of
model-driven development, cloud services and built-in tools, collabora:ve environments, integra:on
capabili:es, and infrastructure abstrac:on to allow developers to produce and prototype applica:ons
with a faster :me-to-market than with tradi:onal environments. We analysed established and novel
methodologies against PaaS development principles (Tables 4, 5, and 10) to answer RQ 2 in Chapter 4.

The findings iden:fied Agile process models and CI/CD support as highly compa:ble with PaaS so=ware
development principles. Agile methodologies emphasize itera:ve and incremental delivery, as well as
user collabora:on, which align with the inherent rapid prototyping, short development loops,
collabora:on environments, and fast-:me-to market capabili:es of PaaS pla%orms. CI/CD capabili:es
align with PaaS via automa:ng tes:ng, integra:on, and deployment processes, further shortening
development loops, enhancing development speed, and improving so=ware sanita:on. Addi:onally,
many PaaS pla%orms, e.g. ServiceNow and Mendix, provide built-in support of CI/CD pipelines. Hybrid
methodologies which blend Agile and tradi:onal elements provide flexibility to leverage the benefits of
structured ini:al planning with itera:ve development and prototyping, u:lising the full range of PaaS
automa:on and scalability capabili:es. Lastly, the Rugby Agile process model emphasizes CI/CD and its
frequent releases with immediate user feedback loops, aligning with PaaS capabili:es and development
principles. Its five-environment model, consis:ng of development, integra:on, collabora:on, delivery,
and target environments, complements the mul:-instance setup typically used by PaaS pla%orms and
can therefore be used for facilita:ng structured project management.

7.4 Benefits of a PaaS-oriented SoEware Development Methodology
Finally, based on the answers of RQ 1 and RQ 2, we proposed an experimental hybrid methodology
MaaS (Chapter 5) to conduct an applica:on case study using ServiceNow and answer RQ 3, namely, to
explore if benefits of a PaaS-oriented so=ware development methodology led to beJer outcomes in
collabora:on, performance, resource efficiency, end-user involvement, and delivery. To achieve this, a
valida:on process was performed (Chapter 6) in the form of a mock project on ServiceNow to assess
whether MaaS can provide measurable benefits over established tradi:onal, itera:ve, or hybrid
methodologies. This process was then presented to ten industry experts with experience in both
tradi:onal and PaaS so=ware development environments. The feedback was recorded in the form of

Likert-scale survey with blocks of ques:ons (Appendix A) pertaining to each improved outcome metric
(Sec:on 7.1).

Table 11: Ini=al Median Scores

Collabora=on Performance Resource Efficiency End-User Involvement Delivery

5.0 3.5 5.0 6.0 5.5
4.5 4.5 5.0 5.5 5.5
4.5 5.0 4.5 6.0 4.0
4.5 5.0 4.5 5.5 4.0
6.5 6.5 6.0 6.0 6.5
5.0 5.0 4.5 5.0 4.0
4.0 5.0 5.0 4.0 4.5
4.5 5.0 5.0 5.0 5.0
5.5 4.0 5.0 4.5 6.0
5.0 5.0 5.0 5.5 5.0

Table 12: Ini=al Cronbach's Alphas

 Collabora=on Performance Resource Efficiency End-User Involvement Delivery

α 0.723 0.656 0.420 0.862 0.833

First, we calculate ini:al composite scores as median scores (Table 11) across all five metrics for all
respondents and their subsequent Cronbach’s alphas (Table 12) to determine if the ques:ons for each
metric measure the same thing. We use a score of α < 0.70 to determine if the ques:ons in each block
do not pertain to the same topic. If α < 0.70 for a metric, then we remove certain ques:ons from each
metric ques:on block to improve the α. A=er further analysis, to achieve α > 0.70 for each metric, we
removed ques:ons (see Appendix A) “To what extent do you agree that MaaS accelerates and shortens
development itera:on cycles?” and “Compared to tradi:onal so=ware development methods, does
MaaS improve performance outcomes with regards to PaaS-specific so=ware development projects?” for
the performance ques:on block, and ques:ons “To what extent do you agree that MaaS op:mises the
use of resources in PaaS-specific so=ware development projects?” and “Compared to tradi:onal
so=ware development methods, does MaaS demonstrate higher resource efficiency with regards to
PaaS-specific so=ware development?” for the resource efficiency ques:on block. Once removed, we
update our ini:al median scores (Table 13) based on the posi:ve α > 0.70 score (Table 14).

Table 13: Updated Median Scores

Collabora=on Performance Resource Efficiency End-User Involvement Delivery

5.0 3.0 4.0 6.0 5.5
4.5 4.0 4.5 5.5 5.5
4.5 5.0 5.0 6.0 4.0
4.5 4.5 4.0 5.5 4.0
6.5 6.5 6.5 6.0 6.5
5.0 4.5 4.0 5.0 4.0

4.0 5.5 5.0 4.0 4.5
4.5 5.0 5.0 5.0 5.0
5.5 5.0 5.0 4.5 6.0
5.0 4.5 6.0 5.5 5.0

Table 14: Updated Cronbach's Alphas

 Collabora=on Performance Resource Efficiency End-User Involvement Delivery

α 0.723 0.732 0.728 0.862 0.833

Table 15 presents medians, means, and dispersion indices for all completed responses. In general, for all
five of the composite metric scores (medians), the neutral point of 4.0 is exceeded, indica:ng an overall
favourable percep:on of MaaS by experts. End-user involvement shows the strongest agreement with
median = 5.5 and mean = 5.30 ± 0.67 sugges:ng that MaaS engages end-users effec:vely, followed by
resource efficiency and delivery – both with medians = 5.0. Collabora:on and performance share the
lowest, however, s:ll posi:ve agreement with medians = 4.75 each.

Table 15: MaaS Likert Survey Descrip=ve Sta=s=cs

 Count Median Mean Std Min Max Sem

Collabora:on 10.0 4.75 4.90 0.699 4.0 6.5 0.221

Performance 10.0 4.75 4.75 0.920 3.0 6.5 0.291

Resource Efficiency 10.0 5.00 4.90 0.843 4.0 6.5 0.267

End-user Involvement 10.0 5.50 5.30 0.675 4.0 6.0 0.213

Delivery 10.0 5.00 5.00 0.882 4.0 6.5 0.279

To determine if the experts rated any given metric above average, or the neutral midpoint of four (1-7
Likert scale), Wilcoxon signed-rank test was performed on every composite metric with results recorded
in Table 16. All five medians differ significantly from the neutral midpoint with p < 0.05 in every case,
signifying that experts perceive MaaS as poten:ally beneficial across all evalua:on metrics. The highest
W values of W = 45.0 can be found for collabora:on and end-user involvement, indica:ng that almost
every expert ranked these metrics above the neutral midpoint of four. Even the lowest W values of W =
28.0 for resource efficiency and delivery also report a posi:ve outlook with p < 0.05. Given the small
sample, the tests should be viewed as exploratory, however, the consistent paJern of posi:ve
percep:on of MaaS on all its evalua:on metrics further supports our descrip:ve results in Table 15, as
well as the proposi:on that MaaS can deliver advantages in collabora:on, performance, resource
efficiency, end-user involvement, and delivery.

Table 16: Wilcoxon Signed-rank Test Results

 Collabora=on Performance Resource Efficiency End-User Involvement Delivery

W 45.0 39.5 28.0 45.0 28.0
p 0.002 0.021 0.008 0.002 0.008

In Sec:on 1.5.1 we presented the experts partaking in the survey and their respec:ve roles. To examine
whether technical experts (n = 6) or func+onal experts (n = 4) perceived MaaS differently, we conduct an
exploratory Mann-Whitney U test on each composite metric score. We also include the rank-biserial
correla:on to show by how much does the technical or func:onal expert group rank one metric higher
than the other. The results are shown in Table 17. In general, no sta:s:cally significant group differences
were found for any metric with p > 0.05 in all cases. With r of +0.63 and +0.54 for resource efficiency and
delivery respec:vely, and p values of 0.12 and 0.19 respec:vely, only moderate indica:on of difference is
suggested in favour of the technical experts, yet with p > 0.05 remains not significant enough. The results
suggest that both technical and func+onal expert groups ranked MaaS evalua:on metrics similarly, with
small indica:ons in favour of the technical group for resource efficiency and delivery. The posi:ve
indica:ons remain sta:s:cally insignificant, and the results remain exploratory due to the small sample
size.

Table 17: Mann-Whitney U Test Results

 U p Rank biserial r

Collabora:on 10.0 0.74 +0.17

Performance 11.0 0.91 +0.08

Resource Efficiency 4.5 0.12 +0.63

End-user Involvement 9.5 0.66 +0.21

Delivery 5.5 0.19 +0.54

Lastly, to explore if experts who rank one metric posi:vely also rank the other metrics similarly, we
performed Spearman rank correla:on test due to having a small survey sample size and the data as
ordinal medians. The results are displayed in the form of a heat map in Figure 16. Considering this is a
two-tailed test, p < 0.05 is required for a posi:ve correla:on. With an α of 0.05 for two-tailed test, and n
= 10, we get the cri:cal value of ±0.648, or 0.65 if rounded. This means that only values above 0.65 can
be considered sta:s:cally significant. In our results, only performance and resource efficiency share a
correla:on p value higher than 0.65 with p ≈ 0.71. Experts who see MaaS improve performance also
tend to see MaaS improve resource efficiency. A moderate collabora:on and delivery link can also be
observed with correla:on p ≈ 0.61, however fails to cross the significancy threshold of 0.65. A small link
indica:on can be observed between resource efficiency and delivery with correla:on p ≈ 0.43, but also
remains below the threshold of 0.65.

Figure 17: Spearman Correla=on Matrix Heat Map

Answers to open ques:ons (Appendix A) by experts following each Likert-scale block largely reinforce the
sta:s:cal results, supplying concrete examples of both posi:ve and nega:ve remarks on MaaS (Table
18). In summary, experts praised MaaS for facilita:ng transparent communica:on, integrated team
collabora:on, accelerated development cycles through CI/CD pipelines and con:nuous feedback loops,
reuse of pla%orm components, user involvement, and automated tes:ng. While nega:ve remarks were
scarce, they help iden:fy cri:cal areas for improvement. Some of these areas include over-reliance on
automa:on, end-user fa:gue due to constant methodology-related ac:vi:es, licensing and resource
alloca:on, and end-user pla%orm adop:on and usage.

Table 18: Compiled Expert Insights

 Answer1 Answer2 Answer3 Answern

Collabora:on “Having all stories
structurally
managed in the
Agile Development
on the pla%orm,
helps
tremendously. All
project members
always have access
to these and the
status is visible to
everybody. This is
crucial for
coordina:on.”

“Tradi:onal
methods (waterfall)
isolate planning,
development, and
delivery. MaaS
improves
collabora:on by
integra:ng those
aspects and more
agile approaches
and CI/CD from the
start, which I think
should reduce
misalignment and
improve
responsiveness to
feedback”

“Agile methods are
important
component of
MaaS. The agile
methods alone
(without the MaaS
frame around it)
aren't as effec:ve”

“I doubt MaaS
would improve
cross-func:onal
team collabora:on.
From my experience
teams from non-
so=ware
development
domains have hard
:me understanding
agile and other
methodologies that
are na:ve to our
field. And in my
opinion, it's hard to
understand those
unless you followed
them at least once”

Performance “MaaS is a
comprehensive
method for a
development.
From my
perspec:ve it not
a specific
component which
makes the
difference but the
combina:on of all
aspects”

“The use of CI/CD
pipelines and
collabora:ve tools,
such as Git and
ServiceNow's Agile
2.0, improves the
output of the
so=ware
development teams
specifically”

“Tradi:onal
methods o=en
delay feedback
and lack
automa:on,
leading to slower
delivery and higher
risk of rework”

“Simultaneous use
of CI/CD and
SCRUM sprints
means cycles can be
kept short as
improvements on
features are put on
the backlog and
picked up again for
the next sprint”

Resource
Efficiency

“U:liza:on is
higher per
resource
compared to other
tradi:onal and
agile methods”

“Development
members are
efficiently
op:mised as they
are put to work for
CI/CD and Sprints
and they are also
needed for design,
which now happens
con:nuously”

“- Time of
developers
- Time of project
managers (less
thinking about
methodology etc.
more about
following the
workflow)”

“The beginning
phase seems to be a
bit stricter, as it
follows a more
tradi:onal method.
This may create idle
:me for developers,
which isn't as
produc:ve as full
Agile”

End-user
Involvement

“Tradi:onal
methods generally
consider feedback
only during the
last stages of the
project. MaaS
seems to promote
end-user
involvement
during the
development
stage, which
improves
flexibility”

“End-users can spot
illogical
func:onality and
weird behaviour
much quicker,
making decisions
for rework or
revisioning easier
thanks to
con:nuous tes:ng
and feedback”

“For example, a
previously
determined user
trend may not be
accurate due to
lack of user
feedback during
the planning
phase. New
analysis, using
short feedback
loops during the
development
phase, can lead to
the change of
func:onal
requirements”

“With the
involvement of end
users throughout
the whole
development
process, boJlenecks
and issues can be
iden:fied early and
it can be avoided
that late rework
needs to be done”

Delivery “CI/CD
combina:on with
development
sprints contributes
most towards
quality and
:meline
management”

“Different
methodologies for
different stages of
the project, each
one that is most
suitable for the
stage”

“Holis:c view -
people, process,
technology”

“Considera:on of
end-user and other
stakeholders during
development,
con:nuous delivery,
short feedback
loops, and backlog
visibility”

In conclusion, to answer RQ 3, we used five types of analysis – descrip:ve sta:s:cs, qualita:ve expert
insights, one-sample Wilcoxon test, Mann-Whitney U test for group comparison, and the Spearman rank
correla:ons. In general, all medians are above the neutral point of 4.0, indica:ng a posi:ve outlook on
all MaaS evalua:on metrics from our experts, supported further by Wilcoxon test. Mann-Whitney U test
showed that both technical and func+onal experts do not differ in their ra:ngs with the lowest p value
being p = 0.12, or in other words no sta:s:cal significance was achieved to show otherwise. The
Spearman rank correla:on test found a strong posi:ve rela:onship between resource efficiency and
performance, a rela:vely posi:ve link between collabora:on and delivery, and a weak posi:ve link
between resource efficiency and delivery. Convergingly, the results from all sta:s:cal tests indicate
empirical support for MaaS as a hybrid methodology which improves development outcomes for PaaS
so=ware development within the dimensions of collabora:on, performance, resource efficiency, end-
user involvement, and delivery. Expert insights achieved via open ques:ons further support quan:ta:ve
findings, as well as provide avenues for improvement. These results, however, are to be considered
exploratory and non-decisive due to the small sample size of experts, and the lack of a real-world project
scenario.

8 Final Remarks
8.1 Discussion
In this thesis we set out to analyse and subsequently evaluate so=ware development methods tailored
for PaaS pla%orms, culmina:ng in the proposal and subsequent applica:on study of MaaS – a hybrid
so=ware development methodology adherent to PaaS so=ware development principles (Chapter 3). It
combines the structured planning approach of tradi:onal methodologies, the itera:ve nature and
flexibility of Agile methodologies, and integrates it with CI/CD delivery pipelines. To achieve this goal, we
followed Design Science structures outlined by Peffers et al. and Offermann et al. [7, 8], where we
iden:fied the problem – fundamentally different so=ware development processes and requirements
between tradi:onal and PaaS environments; presented a solu:on based on available scien:fic literature
in the form of MaaS, demonstrated it through a mock project using ServiceNow as our PaaS example,
and lastly evaluated it via expert surveys and subsequent result analysis (Chapter 7). While the findings
suggest that MaaS improves so=ware development on PaaS pla%orms in areas of collabora:on, end-user
involvement, performance, resource efficiency and delivery effec:veness, the results must be considered
as solely exploratory due to limita:ons with regards to applying MaaS on a real-world project, and a
small sample size of experts for evalua:on. Addi:onally, we were not able to find sufficient scien:fic
literature on this topic, therefore the theore:cal background of this thesis might be rela:vely weak.

While MaaS inherently does not propose any novel methods, it presents itself as a construc:on of
methods best suited for PaaS-specific so=ware development, taking structure from tradi:onal methods,
using Agile process models to facilitate development due to their flexible, itera:ve, and collabora:ve
nature, suppor:ng the development process model with an equally itera:ve and user-centric feedback
CI/CD pipeline, and applying a rela:vely novel project methodology and five environment model of
Rugby. Across all evalua:on metrics of MaaS, namely collabora:on, end-user involvement, performance,
resource efficiency and delivery effec:veness, expert Likert-scale survey results (Sec:on 7.4) show a
unanimous posi:ve outcome (Table 15). With the neutral midpoint score being 4.0, the lowest median
scores were recorded for collabora:on and performance at 4.75, and the highest at 5.50 for end-user
involvement.

Based on the open survey ques:ons (Appendix A) (Table 18) par:cularly posi:ve expert sen:ment
iden:fied integra:on of CI/CD with Agile process models, structured planning and responsibili:es,
itera:ve development, and con:nuous feedback loops as cri:cal success factors of MaaS. End-user
involvement was significantly praised over all other metrics, as MaaS involves users in planning and
development ac:vi:es through workshops and short feedback loops. Having all development ac:vi:es
situated in a single pla%orm, which provides a plethora of built-in services for development and
collabora:on, and is accessible to both development teams and users, allows for rapid feedback
provision and improved resource u:liza:on. Subsequently, similar sen:ment was directed towards
resource efficiency, as it is improved due to pre-built components and services offered by PaaS
pla%orms, meaning that the need for third party so=ware, tools, or other suppor:ng infrastructure is
dras:cally reduced. Delivery and performance were strongly praised for CI/CD automa:on, fast build-
test-deploy cycles, and automated tes:ng promo:ng frequent and high-quality applica:on deployments.

8.2 Limita%ons
While the results indicate on overall posi:ve support for the benefits of MaaS, several areas of
improvement are also discovered. End-user involvement and collabora:on are enabled through tools

offered by PaaS pla%orms, and structure offered by MaaS, however, are not effec:ve if the relevant
project stakeholders and users do not ac:vely use the pla%orm. Without constant par:cipa:on, the
benefits offered by PaaS pla%orms and MaaS are underu:lised. Stronger governance structures and user
adop:on trainings in the planning phase, or during an ini:al preliminary sprint, through workshops or
change management, are required to ensure all stakeholders fully engage with the pla%orm and its
services. Similarly, some experts doubt that MaaS would improve cross-func:onal team collabora:on, as
non-so=ware development teams of either the client or the so=ware producer may not be familiar with
PaaS pla%orms or not using them at all. The same could be said with regards to the usage and
understanding Agile or other types of methodologies. If the project is long and complex, users also may
experience fa:gue in constant feedback provision. Therefore, depending on project requirements and
:meline, suitable pacing should be introduced and agreed upon during the planning phase. CI/CD
automa:on was par:cularly praised for automated tes:ng, however, experts cau:oned that it also may
disguise poor tes:ng prac:ces. In our demonstra:on in Chapter 6, we presented a simple process, where
automated test suites would run on the test environment, and upon successful comple:on, the piece of
so=ware would be deployed to the produc:on environment. Upon tes:ng failure, the deployment would
be cancelled, and the so=ware rolled back. Ideally, automated tes:ng should run side by side with
manual tes:ng, as, to the understandable disappointment of developers, it remains the best prac:ce.
Once a story is completed, the responsible developer should also conduct tes:ng such that the story
acceptance criteria is met. User acceptance tes:ng (UAT) is also highly recommended, where test cases
and test steps are made for any piece of completed so=ware and completed by the users on the tes:ng
environment during the final stages of a project lifecycle. Considering the use of PaaS pla%orms, scope
creep can produce unexpected nega:ve outcomes in terms of licensing costs, par:cularly when working
on rapid prototyping type projects. To avoid this, strict scope planning, and resources which affect
licensing costs (number of tables, users, etc.), should be established early on and adhered to in the
planning phase.

8.3 Benefits
Compared to solely Agile models, MaaS is more versa:le, suitable both for complex projects requiring
rigid planning, as well as small-scale projects requiring a rapid :me-to-market. It provides flexibility in
the choice the project relevant Agile process model based on requirements of the project and
incorporates a structured and clearly defined planning phase to tackle topics of governance, scope,
requirements, and other project-relevant documenta:on. Lastly, it leverages the five-environment model
of Rugby, built specifically for Agile process models, providing a structured yet flexible framework which
tradi:onal Agile neglects. Compared to tradi:onal methods, MaaS improves delivery by integra:ng
flexibility via itera:ve development, CI/CD pipelines, and user feedback while s:ll retaining the
structured phase approach between planning, development, and maintenance. The development phase
is changed to employ an Agile process model, enabling rapid prototyping, frequent feedback, and
flexible adapta:on to changing requirements. MaaS incorporates the strengths of PaaS pla%orms, such
as ServiceNow or Mendix, namely low-code or no-code func:onali:es, workflow automa:on, templates,
integrated Agile project management, and CI/CD support, all of which neither Agile nor tradi:onal
methodologies account for. In essence, MaaS is designed to work on all possible projects of all scale and
scope intended to be developed on PaaS pla%orms.

8.4 Future Work
The main future research recommenda:on would be to polish the proposed hybrid MaaS methodology
to a more complete form and conduct valida:on on a real-life project with actual development teams,
project, and stakeholders, as well as evalua:on with a much broader number of experts to achieve
meaningful insights. A real example would allow researchers to gather data on stakeholder behaviour
and adaptability, defect or bug rates, development speed, user sa:sfac:on, and possibly return on
investment (if comparing the use of PaaS pla%orms with MaaS or tradi:onal environments with non-
MaaS methodologies). This would provide means to more accurately evaluate MaaS against tradi:onal,
Agile, or other hybrid methodologies. Addi:onally, researchers should explore the organisa:onal change
management imposed by MaaS on topics such as adop:on barriers, organisa:onal culture alignment,
and learning curves. As it stands currently, MaaS is nothing more than a proposal, demonstrated on a
mock project, and evaluated by a limited number of expert respondents. While achieving a generally
posi:ve receptance of MaaS and its methods, the results can only be considered as exploratory and not
indica:ve of any real impact.

With the flexible nature of MaaS, and its vision of suppor:ng PaaS-specific so=ware development
projects of all scopes and sizes, a promising and novel direc:on of future research lies in the
development of a modular methodology framework. An adap:ve model where so=ware development
methodology components can be selec:vely assembled and interchanged depending on specific project
variables. MaaS par:ally implements this on a high level with the ability to choose the appropriate Agile
process model for the development phase depending on project requirements. Considering the
existence of tens, if not hundreds of different methodologies, consistently choosing the most
appropriate one inherently would introduce limita:ons, which are otherwise likely supported by a
different methodology. A large decision matrix could be created to support the choice of par:cular
methodology components, regardless of project phase, based on such factors as project requirements,
team size, available tools and technologies, and other relevant characteris:cs.

8.5 Conclusion
The primary goal of this thesis was to conduct an applica:on case study to evaluate a so=ware
development methodology which can serve the so=ware development principles of PaaS pla%orms more
efficiently and effec:vely, than their established counterparts across five key dimensions: collabora:on,
end-user involvement, performance, resource efficiency, and delivery effec:veness.

The results (Chapter 7) produced a posi:ve sen:ment towards MaaS across all five evalua:on
dimensions, with the highest median score aJributed to end-user involvement of 5.50, and lowest
median score to collabora:on and performance of 4.75, both above the neutral midpoint of 4.00. These
results, while answering RQ 3, are to be considered exploratory and non-decisive due to the small
sample size of experts (N = 10), and the lack of a real-world project scenario. Expert sen:ment gathered
through open ques:ons highlight cri:cal success factors of MaaS, namely integra:on of CI/CD with Agile
methods, automated tes:ng, structured planning and responsibili:es, itera:ve development, and
con:nuous feedback loops. MaaS provides the structured discipline, sequen:al phases, and rigid
documenta:on characteris:c of tradi:onal methodologies, while enhancing the flexibility, itera:ve
feedback, collabora:on, and speed characteris:c of Agile methodologies. The capability to effec:vely
integrate CI/CD pipelines, leverage the strengths of services offered by PaaS pla%orms, while maintaining

a high level of stakeholder collabora:on and adaptability makes MaaS par:cularly advantageous for
so=ware projects typical to PaaS pla%orms.

In summary, this thesis does not provide any objec:ve evidence with regards to the effec:veness of a
so=ware development methodology which can serve the so=ware development principles of PaaS
pla%orms more efficiently and effec:vely than their established counterparts. However, it does provide
substan:al exploratory evidence to support a further refined study on the effec:veness of MaaS by
applying it in a real project sexng and evalua:ng it with a substan:ally larger group of experts.

“MaaS brings the process, people, and technology together in a way which hybrid methods fail to do”.

Acknowledgements
I would like to express my sincere gra:tude to Dr. L. Ferreira and Dr. G. Sedrakyan for their guidance,
support, and an infinite pool of pa:ence towards myself and my work process!

References
[1] – Ņikiforova, O., Babris, K., Madelāne, L. Expert Survey on Current Trends in Agile, Disciplined and
Hybrid Prac:ces for So=ware Development. Applied Computer Systems, 2021, Vol. 26, No. 1, pp. 38-43.
ISSN 2255-8683. e-ISSN 2255-8691. Available from: doi:10.2478/acss-2021-0005

[2] – Chnar Mustafa Mohammed & Subhi R.M Zeebaree, 2021. "Sufficient Comparison Among Cloud
Compu:ng Services: IaaS, PaaS, and SaaS: A Review," Interna:onal Journal of Science and Business, IJSAB
Interna:onal, vol. 5(2), pages 17-30.

[3] – Wulf, Frederik & Lindner, Tobias & Strahringer, Susanne & Westner, Markus. (2021). IaaS, PaaS, or
SaaS? The Why of Cloud Compu:ng Delivery Model Selec:on - VigneJes on the Post-Adop:on of Cloud
Compu:ng. 10.24251/HICSS.2021.758.

[4] – G. Sedrakyan, M.E. Iacob, J. Hillegersberg, “Towards LowDevSecOps Franework for Low-Code
Development”, integra:ng Process-Oriented Recommenda:ons for Security Risk Management

[5] – O. Gass, H. Meth and A. Maedche, "PaaS Characteris:cs for Produc:ve So=ware Development: An
Evalua:on Framework," in IEEE Internet Compu:ng, vol. 18, no. 1, pp. 56-64, Jan.-Feb. 2014, doi:
10.1109/MIC.2014.12.

[6] – Krancher, O., Luther, P., & Jost, M. (2018). Key Affordances of Pla%orm-as-a-Service: Self-
Organiza:on and Con:nuous Feedback. In Journal of Management Informa:on Systems (Vol. 35, Issue 3,
pp. 776–812). Informa UK Limited. hJps://doi.org/10.1080/07421222.2018.1481636

[7] – Offermann, P., Levina, O., Schönherr, M., & Bub, U. (2009). Outline of a design science research
process. Proceedings of the 4th Interna:onal Conference on Design Science Research in Informa:on
Systems and Technology - DESRIST ’09. doi:10.1145/1555619.1555629

[8] – Peffers, Ken & Tuunanen, Tuure & Rothenberger, Marcus & ChaJerjee, S.. (2007). A design science
research methodology for informa:on systems research. Journal of Management Informa:on Systems.
24. 45-77.

[9] – M. N. Aydin, Z. N. Perdahci, I. Safak and J. (Jos) van Hillegersberg, "Metadata Ac:on Network Model
for Cloud Based Development Environment", Advances in Intelligent Systems and Compu:ng, vol. 1161,
pp. 531-543, 2020.

[10] – Shu-Qing, Z., & Jie-Bin, X. (2010). The Improvement of PaaS Pla%orm. 2010 First Interna:onal
Conference on Networking and Distributed Compu:ng. doi:10.1109/icndc.2010.40

[11] – Singh, A., Sharma, S., Kumar, S. R., & Yadav, S. A. (2016). Overview of PaaS and SaaS and its
applica:on in cloud compu:ng. 2016 Interna:onal Conference on Innova:on and Challenges in Cyber
Security (ICICCS-INBUSH). doi:10.1109/iciccs.2016.75423

[12] – Walraven, S., Truyen, E., & Joosen, W. (2013). Comparing PaaS offerings in light of SaaS
development. Compu:ng, 96(8), 669–724. doi:10.1007/s00607-013-0346-9

[13] – Rohil, Harish & Syan, Manisha. (2012). Analysis of Agile and Tradi:onal Approach for So=ware
Development. Interna:onal Journal of Latest Trends in Engineering and Technology. 1. 1- 10.

https://doi.org/10.1080/07421222.2018.1481636

[14] – Fylaktopoulos, G., Goumas, G., Skolarikis, M. et al. An overview of pla%orms for cloud based
development. SpringerPlus 5, 38 (2016). hJps://doi.org/10.1186/s40064-016-1688-5

[15] – Bulajic, Aleksandar & Sambasivam, Samuel & Stojic, Radoslav. (2013). An Effec:ve Development
Environment Setup for System and Applica:on So=ware. Issues in Informing Science and Informa:on
Technology. 10. 037-066. 10.28945/1795.

[16] – Singhto, W., & Phakdee, N. (2016). Adop:ng a combina:on of SCRUM and Waterfall
methodologies in developing Tailor-made SaaS products for Thai Service and manufacturing SMEs. 2016
Interna:onal Computer Science and Engineering Conference (ICSEC). doi:10.1109/icsec.2016.7859882

[17] – Ruparelia, N. B. (2010). So=ware development lifecycle models. ACM SIGSOFT So=ware
Engineering Notes, 35(3), 8. doi:10.1145/1764810.1764814

[18] - Krusche, S., Alperowitz, L., Bruegge, B., & Wagner, M. O. (2014). Rugby: an Agile process model
based on con:nuous delivery. In Proceedings of the 1st Interna:onal Workshop on Rapid Con:nuous
So=ware Engineering. ICSE ’14: 36th Interna:onal Conference on So=ware Engineering. ACM.
hJps://doi.org/10.1145/2593812.2593818

[19] – Cardozo, Elisa & Neto, Benito & Barza, Alexandre & França, César & Silva, Fabio. (2010). SCRUM
and Produc:vity in So=ware Projects : A Systema:c Literature Review. 10.14236/ewic/EASE2010.16.

[20] – Srivastava, A., Bhardwaj, S., & Saraswat, S. (2017). SCRUM model for agile methodology. 2017
Interna:onal Conference on Compu:ng, Communica:on and Automa:on (ICCCA).
doi:10.1109/ccaa.2017.8229928

[21] – Haig-Smith, T., & Tanner, M. (2016). Cloud Compu:ng as an Enabler of Agile Global So=ware
Development. In InSITE Conference. InSITE 2016: Informing Science + IT Educa:on Conferences:
Lithuania. Informing Science Ins:tute. hJps://doi.org/10.28945/3477

[22] – Nath, Mahendra & Muralikrishnan, Jayashree & Sundarrajan, Kuzhanthaiyan & Varadarajanna,
Madhu. (2018). Con:nuous Integra:on, Delivery, and Deployment: A Revolu:onary Approach in
So=ware Development. 5. 185-190
hJps://www.researchgate.net/publica:on/343760242_Con:nuous_Integra:on_Delivery_and_Deploym
ent_A_Revolu:onary_Approach_in_So=ware_Development

[23] – Vijayasarathy, L. R., & Butler, C. W. (2016). Choice of So=ware Development Methodologies: Do
Organiza:onal, Project, and Team Characteris:cs MaJer? IEEE So=ware, 33(5), 86–94.
doi:10.1109/ms.2015.26

[24] – Kuhrmann, M., Diebold, P., Munch, J., Tell, P., Trektere, K., Mc Caffery, F., … Prause, C. (2018).
Hybrid So=ware Development Approaches in Prac:ce: A European Perspec:ve. IEEE So=ware, 1–1.
doi:10.1109/ms.2018.110161245

[25] Mushtaq, Zaigham & Rizwan, M. & Qureshi, M. Rizwan. (2012). Novel Hybrid Model: Integra:ng
Scrum and XP. Interna:onal Journal of Informa:on Technology and Computer Science. 4.
10.5815/ijitcs.2012.06.06.

[26] - Cohen, B. (2013). PaaS: New Opportuni:es for Cloud Applica:on Development. Computer, 46(9),
97–100. doi:10.1109/mc.2013.323

https://doi.org/10.1186/s40064-016-1688-5
https://doi.org/10.1145/2593812.2593818
https://doi.org/10.28945/3477
https://www.researchgate.net/publication/343760242_Continuous_Integration_Delivery_and_Deployment_A_Revolutionary_Approach_in_Software_Development
https://www.researchgate.net/publication/343760242_Continuous_Integration_Delivery_and_Deployment_A_Revolutionary_Approach_in_Software_Development

[27] – Hacaloglu, T., Eren, P. E., Mishra, D., & Mishra, A. (2015). A So=ware Development Process Model
for Cloud by Combining Tradi:onal Approaches. Lecture Notes in Computer Science, 421–430.
doi:10.1007/978-3-319-26138-6_45

[28] – Joshi, Ankur & Kale, Saket & Chandel, Sa:sh & Pal, Dinesh. (2015). Likert Scale: Explored and
Explained. Bri:sh Journal of Applied Science & Technology. 7. 396-403. 10.9734/BJAST/2015/14975.

Appendix A: Survey Ques3ons
Collabora=on

• To what extent do you agree that MaaS improves collabora:on among cross-func:onal teams on
PaaS projects?

o Can you describe a par:cular example, where MaaS improved cross-func:onal team
collabora:on? (Op:onal: Free-text answer)

• To what extent do you agree that is MaaS is effec:ve in facilita:ng coordina:on among different
cross-func:onal teams?

o Which aspects or components of MaaS contribute most to improved coordina:on?
(Op:onal: Free-text answer)

• To what extent do you agree that MaaS fosters more effec:ve communica:on between
developers and stakeholders?

o Can you explain any changes you observed in the communica:on process? (Op:onal:
Free-text answer)

• Compared to tradi:onal so=ware development methods, does MaaS improve collabora:ve
processes with regards to PaaS-specific so=ware development projects?

o Which differences have you no:ced in collabora:ve interac:ons between MaaS and
tradi:onal methods? (Op:onal: Free-text answer)

• Compared to Agile so=ware development methods, does MaaS improve collabora:ve processes
with regards to PaaS-specific so=ware development projects?

o Which differences have you no:ced in collabora:ve interac:ons between MaaS and
Agile methods? (Op:onal: Free-text answer)

• Compared to other hybrid so=ware development methods you have experienced, does MaaS
improve collabora:ve processes with regards to PaaS-specific so=ware development projects?

o Which differences have you no:ced in collabora:ve interac:ons between MaaS and
other hybrid methods? (Op:onal: Free-text answer)

Performance

• To what extent do you agree that MaaS improves development speed and performance?
o Can you describe which MaaS steps or components facilitate improved development

performance? (Op:onal: Free-text answer)
• To what extent do you agree that MaaS accelerates and shortens development itera:on cycles?

o Can you describe which aspect of MaaS contributes to shorter development itera:on
cycles? (Op:onal: Free-text answer)

• To what extent do you agree that MaaS leads to higher produc:vity in PaaS-specific so=ware
development projects?

o Which specific process improvements of MaaS have you no:ced that contribute to
increased produc:vity? (Op:onal: Free-text answer)

• Compared to tradi:onal so=ware development methods, does MaaS improve performance
outcomes with regards to PaaS-specific so=ware development projects?

o Which key differences have you no:ced in performance outcomes between MaaS and
tradi:onal methods? (Op:onal: Free-text answer)

• Compared to Agile so=ware development methods, does MaaS improve performance outcomes
with regards to PaaS-specific so=ware development projects?

o Which key differences have you no:ced in performance outcomes between MaaS and
Agile methods?

• Compared to other hybrid so=ware development methods you have experienced, does MaaS
improve performance outcomes with regards to PaaS-specific so=ware development projects?

o Which key differences have you no:ced in performance outcomes between MaaS and
other hybrid methods?

Resource Efficiency

• To what extent do you agree that MaaS op:mises the use of resources in PaaS-specific so=ware
development projects?

o Can you describe which recourses is MaaS most efficient in op:mising? (Op:onal: Free-
text answer)

• To what extent do you agree that MaaS reduces redundant or ineffec:ve so=ware development
processes?

o Can you provide a par:cular example, where MaaS eliminates a redundant process?
• To what extent do you agree that MaaS leverages PaaS-specific built-in services to improve

resource efficiency? (Op:onal: Free-text answer)
o Which built-in services do you think MaaS u:lises most effec:vely? (Op:onal: Free-text

answer)
• Compared to tradi:onal so=ware development methods, does MaaS demonstrate higher

resource efficiency with regards to PaaS-specific so=ware development?
o Which differences have you observed in resource use between MaaS and tradi:onal

methods? (Op:onal: Free-text answer)
• Compared to Agile so=ware development methods, does MaaS demonstrate higher resource

efficiency with regards to PaaS-specific so=ware development?
o Which differences have you observed in resource use between MaaS and Agile

methods? (Op:onal: Free-text answer)
• Compared to other hybrid methods you have experienced, does MaaS improve on resource

u:lisa:on and cost savings?
o Which differences have you observed in resource use between MaaS and other hybrid

methods? (Op:onal: Free-text answer)

End-User Involvement

• To what extent do you agree that MaaS facilitates ac:ve end-user involvement throughout the
development cycle?

o Can you describe which MaaS components or processes have allowed for greater end-
user involvement? (Op:onal: Free-text answer)

• To what extent do you agree that MaaS effec:vely u:lises end-user feedback into itera:ve
development cycles?

o Can you describe in which part of the development itera:on does the end-user feedback
produce the greatest effect? (Op:onal: Free-text answer)

• To what extent do you agree that MaaS is effec:ve in enabling end-users to influence project
outcomes?

o Can you provide an example on how end-user involvement in MaaS can influence
project or development decisions? (Op:onal: Free-text answer)

• Compared to tradi:onal so=ware development methods, does MaaS encourage greater end-
user engagement and feedback?

o Which improvements have you observed in engagement and feedback between MaaS
and tradi:onal methods? (Op:onal: Free-text answer)

• Compared to Agile so=ware development methods, does MaaS encourage greater end-user
engagement and feedback?

o Which improvements have you observed in engagement and feedback between MaaS
and Agile methods? (Op:onal: Free-text answer)

• Compared to other hybrid methods you have experienced, does MaaS encourage greater end-
user engagement and feedback?

o Which improvements have you observed in engagement and feedback between MaaS
and other hybrid methods? (Op:onal: Free-text answer)

Delivery Effec=veness

• To what extent do you agree that MaaS improves the quality and :melines of so=ware releases
in PaaS-specific so=ware development?

o Which aspects of MaaS do you believe are most significant in contribu:ng towards
release quality and :melines? (Op:onal: Free-text answer)

• To what extent do you agree that MaaS improves delivery sanita:on and reduces the number of
post-release defects?

o Can you describe which MaaS components facilitate the reduc:on in post-delivery
defects? (Op:onal: Free-text answer)

• To what extent do you agree that MaaS is effec:ve in aligning delivered features with customer
expecta:ons?

o Which MaaS features do you think contribute most to mee:ng customer expecta:ons?
(Op:onal: Free-text answer)

• Compared to tradi:onal so=ware development methods, does MaaS deliver superior outcomes
in terms of delivery effec:veness?

o Which key factors have you observed that contribute towards superior delivery
effec:veness between MaaS and tradi:onal methods? (Op:onal: Free-text answer)

• Compared to Agile so=ware development methods, does MaaS deliver superior outcomes in
terms of delivery effec:veness?

o Which key factors have you observed that contribute towards superior delivery
effec:veness between MaaS and Agile methods? (Op:onal: Free-text answer)

• Compared to other hybrid so=ware development methods you have experienced, does MaaS
deliver superior outcomes in terms of delivery effec:veness?

o Which key factors have you observed that contribute towards superior delivery
effec:veness between MaaS and other hybrid methods? (Op:onal: Free-text answer)

