Master Thesis
Methodology as a Service (Maa$)

Germans Anikevics
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente

Supervisors

Dr. L. Ferreira Pires
Dr. G. Sedrakyan

Abstract

Platform as a Service (PaaS) platforms have become synonymous with fast time-to-market software
development, substantially reshaping how applications are built, tested, and delivered. With a software
development process fundamentally different from conventional environments, established software
development methodologies are employed without adequate adaptation. Recognising this gap, this
thesis introduces Methodology as a Service (MaaS), which is a hybrid software development framework
tailored for PaaS development environments. This study demonstrates MaaS through an application case
study on the metadata-driven Paa$S ServiceNow platform to illustrate its practical application, pave the
way for future PaaS-centric software development methodology innovation, and determine if the
benefits of a PaaS-oriented software development methodology led to better outcomes compared to
non-PaaS oriented methodologies. Evaluation conducted through expert surveys produced exploratory
results indicating improvements across software development outcomes, such as collaboration, resource
efficiency, end-user involvement, performance, and delivery, when compared to established traditional,
Agile, or other hybrid methodologies, paving the way for future research and development of PaaS-
centric software development methodologies.

Table of Contents

TabIE Of CONTENTS. ...eeiiiieii ettt sa e e st e e s st e e s be e e s abe e e sabe e e sabeeesareeesabeeesnreessarenesanes 3
RN 101 oo [¥ T n o] o FU T TP SRR PRSP 6
11 1Yo 10 1Yz w0 o FO P PO UOTPSRRP 6
1.2 Problem StatemMENtcoo i e s 7
1.3 RESEAICH QUESTIONSveieiiiieeiie ettt ee e st s e e s e e sabe e e s b e e sabee e snreeesarenesanes 7
1.4 AN o] o] o T- ol USSR 8
1.5 EXPEIT SUIVEY ..ottt cecete et e e e e e e e e e e et e e et e e ee e e e et eee e e ae e e e e esaseaesasaaaaaeaeeseseesssneseensesensnnnnnnnnnnnn 8
1.6 TRESIS STIUCTUIE ..ottt sttt et ettt e st e e st e e e sab e e e sabe e e smbeeesabeeesareeesarenesanes 9

DA - 7= ol <=4 o 101 o RS UPRURN 10
2.1 PlatfOrm @S @ SEIVICEeiiiiiiieeiee ettt ettt e st e e s e e e sare e e sab e e e snreeesareeenns 10
N N ST I o oY {0 0 0 T AV o P PUUURRROE 10
2.1.2 PaaS CharaCteriStiCS ..cueueeaireeeeiie ettt st et st e et e e sb e e s e s sa bt e e sareessmreeesareeeanreeesnreeenns 11

B N T 10 1 = o o [T PSRRI 12

2.2 Software Development MethodOIOZIESeieiei it e e 13
D V1T =Y o - | | PP PP P PPRTOPRPURRION 13
D Y |V [0 o 1= PP PP P TP PPRTOPPPURRION 14
. T V- { | LU PURURRROE 15
2.2.4 SCRUM ..ttt ettt h e st b e st e e bt e sae e s te e s ht e e beesb e e et e e bt e e abe e bt e eabeeabeesareen 15
2.2.5 Rapid Application DeVElOPMENTcciiii it e e e e e e e e e e e anaees 16
B T £ (VT -{ o 1Y PSRRI 17
2.2.7 Continuous Integration, Delivery, and Deployment...........cccovviiiereeiiee e e 19
2.2.8 Hybrid Development MethodolOgIescccuiiiiiiiieeii it 20

3 PaaS Software Development PrinCiples ...ttt e e e e e e e e e arae e e e e e e e e e e 21
3.1 PrincCiple IdentifiCationooocuiiiie et e e e e e aareas 21
3.2 BENEFIES et e e b e e sar e e e s b e e e enreeeeareeeas 22
3.3 SECUNILY CRAllENEES ... ettt e e e e e e e e e e st rr e e e e e e e e e e s e eesnnstsraseaeeaaaeaenan 23
34 Gradual INtrOAUCTION ...ceeiiieeee ettt e e e e e s sare e s sare e s smreeesans 23

4 Compatibility with Software Development Methods ... 24
4.1 L Lo [iuToT o - | PP PP PTUP P PRRTOPOPPOTRIN 24

4.2 Y =] U UUR 25

4.3 O 0 SO S 25

I Y/ 114 e ToTe [o] [=4V T BT <1 Vi [<R USRS 27
5.1 B LEAVZ] (oY o) g V=] oYl ad o Yo LSRR 27
5.2 o Yo 1oV - SRR 28

3 0 R [1w = o o PSPPSRI 28
I A =5 =T U | n o] o RO ST P SRR 29
53 D LEIVZ<] [oT o] 4 V=] oY U 29
LT I R 7Y b L OO P P STUPPUPRTUPRUIO 29
5312 SCRUM ettt ettt b e st b e st e bt e s at e e be e s ht e e abeesb e e e abe e bt e eabe e beeeabeeabeesaneeas 30
5.4 Y =Y ¢=T g = o Tol PP TPRRP P 31
5.5 O 0 U S 31
5.6 oY =Tot Y =T o =T =T o g T=T o N 31

oI Y [T = [o T o D PP P PR PUPTR 32
6.1 USE S e nieiee e ettt ettt ettt e et e e s s e e e st e e e e e r e e e e e e r e e e e e e e r e e e e e e e e e e e e nre e e e e e nrenee e e nneees 32
6.2 ApPPIYIiNg MaaS t0 SEIVICENOWccceiiieiiecteieee e e e e e e e e e e s re e e e e e e e e e seeeeansesseaeeees 33

0 R o ¢ oY [=Tox f Y, F= T o = ==Y o 1= o | RPNt 34
LT o 1 b TSP 34
. T o] =1 oY o YoV -SSP PPUUPRROS 37
O B TV 1 FoT o .4 =1 o1 USROS 38
L T Y = 01 = g - [o o] OO PSPPI 39
6.3 APPIYING MaaS 10 IMENAIX ...uuriiiiiiiiiee e ettt e e e e e eseccrr e e e e e e e e e e s anbbaaaeeeeeaeeeseseannssssaaeeees 39

/A £ (=1 UL £ PP TR PP UPTT 41
7.1 R UL Y1 41
7.2 Paa$S and Traditional Software Development Differences.........cccocoeeeeeeiiieeeecciiee e, 42
7.3 PaaS Methodology Compatibilitycceeeeeecciiiiiieeec e e 43
7.4 Benefits of a PaaS-oriented Software Development Methodologyccccveeeeeeeiiieiicciinninneen. 43

8 FINAI REMAIKS ...ttt ettt et e e bt e s ab e s be e e s bt e e e sar e e sneeeesnreeeanreeeanreeesanes 50
8.1 DISCUSSION .ttt ettt ettt e st e e e s et e e e e s e e e s s anr e e e e e e nee e e e eamreeeeesnreneessnnnenes 50
8.2 70 01 =Y o o [PPSR 50
8.3 21T =] 1L K TSP U PP OPRTOPOPTPPRIN 51
8.4 FUBUNE WOTK .ttt ettt et e e st e e st e e sab e e e sabe e e smreeesabeeesnreeesnreeenns 52
8.5 CONCIUSION ..ttt ettt e et e e s ab e e e sb e e santeesanreesneeeesnbeesanneesanreeennrs 52

Yol 1oAY =To Fd= g 0 1=) 4 SRR 54

References

AppPendix A: SUIVEY QUESTIONS ..ciiiiiiiiieiie e ececrrer e e e e e e e e e e et rr e e e e e e eaeeesesasnstasaeeeeaaeseseesasnssnrananees

1 Introduction

1.1 Motivation

The ever-increasing demand for software solutions applies to every industry. To remain competitive,
organizations consistently demand high-quality software to be delivered quickly and efficiently. Amongst
others, this motivated the rapid rise and use of cloud computing (CC) platforms, providing Infrastructure
as a Service (laaS), Software as a Service (SaaS), or Platform as a Service (PaaS) capabilities, as shown in
Figure 1. With regards to software development, no single CC platform is inherently better than the
other. CC platforms offer either a pay-as-you-go or a subscription-based business model, making them
cost-effective and accessible to both large and small enterprises [2, 3]. From the customers perspective,
the goal is to receive the ordered product as fast as possible and at the lowest cost; from the developer
perspective, the goal is to deliver the highest possible value to the customer [1]. Therefore, the optimal
choice depends on project requirements, budget, technical level of expertise, and the level of desired
control over the software.

PaaS
Development

Architecture

Figure 1: Cloud Computing Models

PaaS$ stands out in software development because it offers a streamlined and efficient environment for
developers. While laaS produces the primary computing services that allow for the deployment and
management of virtual machines, operating systems, and applications [2], it is typically used when
customers desire flexibility and full control over their computing resources—for example, to meet
fluctuating capacity demands by adjusting computing power or storage [3]. SaaS provides the
opportunity to use applications from a software provider that run on a cloud platform, usually accessed
through a web application service or a dedicated interface with limited configurability tools [2, 3]. This
allows for easy access to ready-to-use software applications without the complexities of installation,
maintenance, and updates, thereby reducing the workload on digital talent but also limiting the
potential for strategic differentiation.

1.2 Problem Statement

PaaS occupies the essential middle ground by supplying developers with scalable, multi-layer
architectures to build, test, and deploy applications on the network. It utilises specialized resources such
as ready-to-use functionalities, pre-built components, automated workflows, continuous integration, and
continuous delivery (Cl/CD) capabilities [2, 3, 5, 6, 14]. This means developers can focus on creating and
improving applications without managing the complexity of the infrastructure, providing them with the
necessary tools and frameworks to accelerate development and deployment processes. Additionally,
facilities offered by PaaS drastically reduce the level of technological literacy required to develop
software, which in turn increases the interest towards, and dependence on citizen developers,
addressing the disproportionality between the demand for software solutions and the availability of IT
talent [4]. Such diverse capabilities, matched with a high variance in technical expertise of developers,
require a software development process fundamentally different from traditional (non-CC / non-PaaS)
software development.

The methodologies used to manage and structure software development, however, have remained
consistent across both traditional and PaaS environments. The same software development
methodologies that were initially created for traditional environments are being applied to develop
software on PaaS$ platforms without significant adaptation. For example, Agile remains a dominant
methodology in both environments, as its core principles, such as iterative cycles, customer feedback
loops, and team collaboration are universally applicable and largely depend on the underlying project.
One contributing factor is the relative novelty of PaaS platforms. Academic literature has paid little
attention to the impact of PaaS on software development, or its SDLC model [27], in contrast to the inner
workings of services, business models, ecosystems, and characteristics of PaaS platforms [6]. In our
literature survey, we could not find any scientific sources focusing on a PaaS-centric methodology for the
software development process itself. Given that PaaS platforms require a fundamentally different
development approach, yet lack a dedicated development methodology, an opportunity arises for
innovation by proposing a methodology better suited to the characteristics, development principles,
benefits, and limitations of Paa$S platforms.

1.3 Research Questions

The goal of this thesis is to propose a hybrid software development methodology, which can support the
software development principles of PaaS platforms more efficiently and effectively than their established
counterparts and validate it via an application case study. This goal can be translated into the following
research questions:

e RQ 1: What are the differences in software development principles and requirements between
PaaS and traditional software development environments?

e RQ 2: Which established or novel methodologies and their components are compatible with
PaaS software development principles?

e RQ 3: Do the benefits of a PaaS-oriented software development methodology lead to better
outcomes (collaboration, performance, resource efficiency, end-user involvement, and delivery)
compared to established traditional, agile, continuous, or hybrid methodologies?

1.4 Approach

To achieve our goal, we applied an approach based on Design Science consisting of the problem
identification, solution design, demonstration, evaluation, and communication steps, partially adhering
to the structures outlined by Peffers et al. and Offermann et al. [7, 8]. This means that not all steps from
the defined nominal or iterative process sequences of Design Science could be fully completed due to
lack of resources, time, and a dedicated real-world context in which the solution artifact would be
evaluated.

Table 1: Source Distribution

Sources Topic

[2,3,5,6,9,10, 11, 12, 14, Principles and characteristics of PaaS platforms and

15, 21, 26] PaaS software development.

[1, 4, 13,16,17, 18, 19, 20, Currently established, hybrid, or novel software

22,23, 24, 25, 27] development methodologies in the context of PaaS
platforms.

[7, 8, 28] Research methods

The problem identification consisted of both identification and motivation of the problem, which should
have practical relevance [7]. Relevance of the problem was achieved through literature review. The
solution artifact design phase consisted of developing a software development methodology for an
application case study geared towards development principles of PaaS platforms, wherein the answers to
RQ 1 and RQ 2 acted as guidelines in determining its design. To answer RQ 1 and RQ 2, a systematic
literature review (Table 1) was conducted to determine the differences in development principles of PaaS
and non-PaaS$ software development environments, as well as differences in existing methods, to
produce a PaaS-centric development methodology. This methodology focuses on integrating practises
that leverage the specialised resources and capabilities offered by PaaS. The demonstration phase
consisted of applying the constructed methodology on a PaaS environment, within the context of a mock
software development project, to illustrate how the methodology can be implemented in practice.
During the evaluation phase, we conducted expert surveys to assess the benefits, improvements, and
effectiveness of the application case study methodology, answering RQ 3. Finally, the communication
phase involves summarising all findings, discussing limitations, writing this thesis, proposing areas for
future research, and drawing final conclusions.

The search for scientific sources was conducted across scientific databases, such as Google Scholar,
Scopus, ResearchGate and IEEE, as well as from references of the selected papers. Search queries were
performed by using relevant keywords, namely “Cloud Computing Platforms”, “Platform as a Service”,
“PaaS”, “laaS”, “SaaS”, “PaaS Software Development, “PaaS Development Characteristics”, “PaaS
Development Principles”, “Software Development Principles”, “PaaS Software Development
Methodology”, “Traditional Software Development”, “Software Development Methodology”, “SDLC”,
“Agile”, “Innovative Software Development Methodologies”, “Hybrid Software Development

Methodologies”, “Design Science”, “Likert Scale”, “Survey Methodology”.

1.5 Expert Survey
The experts were chosen from a pool of actors typically associated in either participating in or facilitating
software development processes. Additionally, the chosen experts are expected to possess experience

working with both non-Paa$S and PaaS software development projects, as well as an understanding of the
use, benefits, and application of software development methodologies and lifecycle models. For this
thesis, experts with the following backgrounds participated in the survey: technical and functional
consultants, software engineers, and product owners or project leads. Additionally, respondents are
informally divided into technical and functional subgroups (Table 2) to explore any differences of
perception of MaaS.

Table 2: Survey Expert Groups

Technical Experts Functional Experts

Technical Consulting Specialist Product Owner

Al Software Engineer UX Designer

Technical Consultant Lead App Engine & Creator

Software Engineer Business Process Optimization Consultant

Full Stack Developer

Integration Paa$S Platform Developer

1.6 Thesis Structure

This thesis is further structured as follows: Chapter 2 provides the literature review results of, and the
theoretical background for, covered topics, such as PaaS platforms and their characteristics, as well as
established, hybrid, or novel software development methodologies. Chapter 3 discusses the differences
between traditional and PaaS software development and lays out PaaS-centric software development
principles. Chapter 4 provides an analysis and comparison of Paa$S software development principles and
software development methods covered in Chapter 2. Chapter 5 introduces the Methodology as a
Service (Maa$) approach and structure, which is a hybrid methodology tailored towards PaaS-specific
software development, utilising traditional, Agile, Rugby, and CI/CD practices. Chapter 6 demonstrates
MaaSs on a mock project on the ServiceNow platform, showcasing phases of MaaS during planning,
development, and maintenance activities. Chapter 7 evaluates Maa$ based on expert Likert-scale survey
responses and additional feedback across collaboration, end-user involvement, performance, resource
efficiency, and delivery effectiveness. Chapter 8 presents the discussion of key findings, limitations,
recommendations for future research, and the conclusion of the thesis.

2 Background

To give the necessary contextual background to understand the thesis, this chapter introduces the
theoretical concepts relevant for this research.

2.1 Platform as a Service

In the category of modern Cloud Computing (CC) services, PaaS platforms support a game changing
paradigm, offering their customers facilities to develop, run and manage software with the backing of
Model-Driven Development [9] and without the complexity of building and maintaining the underlying
infrastructure (Table 3). Different CC service models differ by providing a unique resource as a service
and are defined by Wulf et al. [3] as:

e |aaS Offers an environment to host information systems (IS)
e PaaS Provides an environment for IS development.
e SaaS Delivers ready-to-use IS.

PaaS can be described relative of the other CC service models, as it is most often built on top of an laaS
and in the end can be used to produce SaaS products.

Table 3: PaaS definitions

Author Definition

Shu-Qing et al. [10] PaaS is a business model in the cloud computing
era, which provides a server platform or
development environment for developers.

Gass et al. [5] Paas furnishes a broad spectrum of elaborate
application-level services and offers an execution
and development environment on top of a cloud
infrastructure.

Singh et al. [11] PaaS is a virtualized platform that consist of many
servers. It comprises a layer of various software
and provides it as a service that can be used to
make higher-level services.

From an end-user perspective, PaaS applications, or applications developed and supported using PaaS
platforms and environments, resemble standard SaaS applications [5], which are accessible if an Internet
connection is available. For developers, however, PaaS platforms open a world of possibilities. The entire
infrastructure, consisting of hardware, databases, operating systems and their corresponding patches, is
available as a paid-for service. Furthermore, when developing software, PaaS offers developers a variety
of shared components, such as predefined objects or built-in access and security features that
developers can leverage. Finally, development is often supported by wizards and point-and-click
features, which might simplify application creation [5].

2.1.1 PaaS Platforms Type
PaaS$ platforms provide a development environment and can be further differentiated based on the
following categories defined by Walraven et al. [12]:

e PaaS$ platforms that mimic and match the APIs of popular enterprise application servers and
middleware platforms. Such platforms are great for developing mobile and web applications that
are meant to integrate with existing enterprise systems, or applications which require an
extensive use of the mimicked middleware features. Examples include Microsoft Azure using the
.NET framework, Oracle Cloud running on top of the WebLogic Server, Red Hat OpenShift based
on the JBoss platform, and Cloud Foundry using VMware and Spring technology [12].

e Focused PaaS$ platforms aimed at supporting specific types of cloud applications. These are
known for their supported deployment of highly scalable middleware and storage facilities. Such
platforms are typically used for applications that benefit from specific optimizations in
performance and scalability, i.e., real time analytics services, social media and e-commerce
platforms. Google App Engine and GigaSpaces’ XAP Elastic Application Platform belong to this
category [12].

e Metadata-driven PaaS platforms, which are similar to focused Paa$S platforms, are designed with
SaaS$ applications in mind. These introduce a higher-level composition and configuration
interface and are best suited for development of applications where much of the functionality
can be configured through metadata, rather than coded from scratch. Examples include
ServiceNow, Salesforce, Mendix, WOLF, and TCS InstantApps [12].

The focus of this thesis is primarily targeted at metadata-driven Paa$S platforms due to their popularity
and accessibility to both citizen and seasoned software developers. Additionally, the configurational
support of metadata-driven platforms naturally instils a culture of component reusability, decreases the
time spent on the development of existing software features, and decreases the level of maintenance
required.

2.1.2 PaaS Characteristics

Most PaaS platforms include a set of shared components, as shown in Table 4, to cover aspects such as
security, data management, connectivity, and templating. Built-in security controls ensure the availability
of robust role-based access to keep data secure [5]. This allows developers to determine the level of
accessibility of users to different parts of the software. In addition, most of these platforms offer
advanced data management capabilities that allow the developers to model, access, and change data
within their applications [5, 14]. Connectivity is fundamental for creating modern and interoperable
applications that can leverage external data and functionality. Finally, a recognizable feature of PaaS is
the provision of templates and building blocks, which are reusable components that can be used to
speed up the development of custom applications [5].

Another important PaaS characteristic is extensibility, which can be defined into two sets of capabilities:
configuration and programming. Configuration capabilities help minimize coding time and achieve
consistency among different projects. In contrast, programming capabilities define what can be achieved
through custom code [5], which provides flexibility to build very customized and specific features that
cannot be achieved through configuration. The development tools offered by PaaS platforms consist of
both web-based and local tools. A web-based development environment is usually offered through an
integrated development environment (IDE) which can be accessed through a web browser, whereas local
tools cater to those who prefer to develop in their local environment, offering advanced features and
integrations with other software [5]. Lastly, learnability is an important characteristic, encompassing the
required knowledge to effectively use the platform and the provided knowledge through documentation

and training materials [5]. This makes PaaS platforms accessible to both experienced and new

developers.

Feature
Shared
components

Extensibility

Development
tools

Learnability

2.1.3 Limitations

Table 4: PaaS characteristics as defined by Gass et al. [5]

Characteristic
Access and security
controls

Data management
capabilities

Platform connectivity

Templates and building
blocks

Configuration capabilities
Programming capabilities

Web-development
environment

Local tools
Required knowledge

Provided knowledge

Description
User management and user rights management

Features to model data and capabilities to access
and modify data

Support of protocols and preexisting connectors
to integrate external services

Platform objects that can be reused for custom
applications

What can be achieved just by configuration
What can be achieved with custom code

Functionality and usability of the browser-based
Integrated Development Environment (IDE)

Functionality and usability of local tools
Knowledge and previous experience required

Documentation and training material

Gass et al. [5] recognized the Paa$S capability of removing the cumbersome maintenance and setup
responsibilities from developers. However, such a novel approach presents its own challenges,
contrasting from those in traditional software development. In their discussion on the transformative
potential of cloud-based software development solutions, specifically PaaS platforms, Aydin et al. [9]
point out that the transition towards cloud-based development introduces various uncertainties. The
abstraction of underlying infrastructure and the multitude of services and tools available can be
intimidating considering that the end-user range of expertise is spread between experienced, novice,
and citizen developers. Similarly, the issue is extended further as Paa$S or other types of CC platforms
employ a dedicated platform development programming language [11]. While the language itself can be
the same as one used in traditional software development, such as JavaScript, PHP, Java, Ruby, or
Python, it is often modified to accommodate its respective platform, using a specific and less publicly
known framework. Platforms, such as Mendix and OutSystems, provide a visual development
environment which utilises visual modelling as development language. Salesforce development operates
on the Apex language, which is similar to Java, but is not used outside of its platform. ServiceNow utilises
JavaScript, however, the heavy use of its own proprietary libraries drastically alters the code writing
process. This means that even the most experienced developers are required to go through a learning
curve when switching to a PaaS development environment. Cloud based IDEs often lack certain features

compared to their desktop counterparts, such as comprehensive debugging tools, performance
analytics, and modelling capabilities [14]. Quality assurance of an application produces a large set of
challenges, as it can depend on external services [13]. Performance is often an issue as optimization
requires a deep understanding of the platform inner workings and limitations. Application scalability is
difficult to maintain, as the developers have no knowledge of the potential changes a future release may
bring. Any customization or other deviation from out-of-the-box (OOTB) configuration automatically puts
the application at risk. Similar issues were identified by Gass et al. [5], stating that vendors fail to
understand and often understate potential productivity impediments. The complexity of PaaS platforms
is difficult for newcomers to grasp due to its crucial technical and non-technical information being
scattered across various sources.

2.2 Software Development Methodologies

Software development methodologies are systematic approaches that guide the planning, execution,
and management of software projects. These methodologies provide frameworks for organizing tasks,
coordinating teams, and delivering software products that meet customer requirements. Over the years,
a variety of methodologies have emerged, each reflecting different philosophies and designs to address
specific challenges inherent of software development. To help answer RQ 2, we lay the theoretical
foundations with examples from traditional, agile, continuous, hybrid, and novel software development
methodologies. We include popular models based on the traditional (sequential), prototyping, and
iterative SDLC philosophies.

2.2.1 Waterfall

Requirement Definition

System Design

Figure 2: Waterfall model

Traditional software development methodologies, such as Waterfall (Figure 2) or V-Model (Figure 3), are
referred to as heavyweight methodologies due to their structured sequential approach to software
development. These are some of the older methodologies and thus are coined as traditional yet are still
incredibly popular to this day [23]. Waterfall stages can be broken down to requirement definition,
system design, implementation, testing, deployment, and maintenance [13]. Each stage must be

completed before the next. Characterized by their adherence to predefined processes and an emphasis
on extensive documentation, this approach facilitates an initial clarity regarding project expenses,
timelines, and the distribution of resources [13]. However, it simultaneously poses significant challenges
to integrate modifications during the ongoing phases of development. The efficiency of projects
orchestrated under such methodologies depends on a deep understanding of all requirements prior to
the commencement of the development phase. Waterfall is most appropriate for projects in which the
requirements are stable and are not subject to frequent change, specifically during the development and
implementation stages [16].

2.2.2 V-Model

Requirement Definition)« Feedbacl > DepI(_)yme_nt &
\ Verification
C System Architecture)4_Feedback_>6ystem Integration & Tea

(Detailed Design)4-}(Build & Test >
(Development)

Figure 3: V-Model

The NASA developed V-Model (Figure 3), which is a variation of the Waterfall model, is represented by a
V shape folded in half at the lowest level of decomposition [17]. The left leg consists of sequential
phases, following a top-down approach, in which user requirements evolve into even smaller
components through the process of decomposition and definition, until the development phase is
reached. In parallel, the right leg consists of sequential phases, following a down-up approach, in which
decomposed user requirements are integrated, tested, and verified into successful levels of
implementation and assembly [17]. The models symmetric and structured approach assists in early
detection of issues, as well as their timely resolution. It ensures that each development phase is paired
with a corresponding testing phase, emphasising on validation and verification. This makes the method
highly suitable for large and complex projects, including those with varying internal and external
stakeholders, as alignment of each party at each phase is required before advancing to the next.

2.2.3 Agile

| .

A

Requirements >‘\
(Review) (Design

A

A 4

(Deployment > (Development)
k(Testing) J

Figure 4: Agile model

The dynamic nature of modern software projects demands an increasingly greater level of
responsiveness and flexibility, as opposed to the structured and linear approaches employed by
traditional software development methodologies, such as Waterfall and the V-Model. As a result, the
Agile philosophy emerged rooted on iterative and incremental development, where requirements and
solutions evolve through collaboration between self-organising, cross-functional teams [13, 20]. Agile is
distinguished by its repetitive and progressive character, emphasizing adaptability, teamwork, and client
satisfaction during the development phase (Figure 4). This approach utilises self-directed,
multifunctional teams to navigate through shifting demands and solutions through continuous
communication, while retaining flexibility [13, 20]. This is achieved through iterative delivery of small,
functional increments of software, in contrast to traditional models like the waterfall model, where
software is delivered after comprehensive development cycles [17].

Agile itself is not a development method, but rather a project management philosophy based on a set of
values outlined in the findings of Rohil et al. [13]. Actual development frameworks, such as RAD (Rapid
Application Development) or SCRUM, are defined using the Agile philosophy. For example, the key
aspects of RAD resolve around iterative development, user involvement, and demonstrable deliverables,
aligning well with the demands of modern fast-paced software development. By compressing the phases
of analysis, design, build and test into short, manageable iterations, the development teams are enabled
to quickly adapt to changes. Furthermore, the ability to incorporate user feedback becomes possible
from the early stages of development, increasing the chances of the product to meet user needs and
preferences.

2.2.4 SCRUM

SCRUM is an Agile methodology designed to facilitate collaboration on complex projects in software
development. Characterised by its flexibility and adaptability, it breaks down a product into small and
incremental builds, which are then delivered in time-boxed iterations. Every iteration involves cross-
functional teams working on planning, requirement analysis, design, implementation, and testing. Such
iterations are called sprints and typically run for two to four weeks depending on the underlying projects

requirements. While Agile is a philosophy with a set of principles, SCRUM provides a structured way for
implementing them through well-defined practises, regularly delivering usable product increments. It is
particularly effective in projects with constantly changing or unclear requirements, making it suitable for
environments which benefit from regular feedback and rapid adaptation. Additionally, SCRUM was found
to improve productivity in software projects, as well as positively impact customer satisfaction, quality,
team motivation, and cost reduction [19].

The SCRUM methodology defines artifacts and events, which promote efficient project management.
The product backlog is a centralized list of all anticipated or desired work to be completed throughout
the project. The sprint backlog is a subset of items from the product backlog which are selected for
implementation for the duration of the ongoing sprint. The sprint planning is a meeting where the team
plans and selects from the backlog the work for the upcoming sprint. Stand-ups are daily team meetings,
typically lasting no longer than 15 minutes and performed at the beginning of the workday, where the
team synchronises on its progress and sets a plan for the rest of the day. The sprint review is held at the
end of a sprint to inspect and review the completed increment and adapt the product backlog if
required. The sprint retrospective is a meeting for the team to reflect on the progress of the previous
sprint and identify improvements for the next one. For these cross-functional teams, artifacts, and
events, SCRUM defines specific roles, each with their own distinct responsibilities. The product owner
represents the stakeholders and is responsible for navigating, planning, managing, and maximising value
of the product backlog. The scrum master acts as a facilitator to the team, ensuring that the SCRUM
principles are adhered to, as well as removing any obstacles that might impede the sprint progress.
Finally, the development team is a cross-functional group of professionals who design, build, and test the
product increment during each sprint [20].

2.2.5 Rapid Application Development

Prototype —\
) Test .
Development User Desi;y —_ Construction Deployment

Feedback

Figure 5: Rapid Application Development

Like SCRUM, RAD is an Agile methodology, initially developed as a response to the rigid and slow pace of
traditional methodologies, like Waterfall or V-Model. It emphasizes quick and iterative release cycles,
user involvement, and adaptability [17]. While SCRUM is a more detailed and better structured method
with dedicated roles and events, RAD is less systematic and focuses on rapid prototyping and user
feedback. Similarly to SCRUM, it operates on iterative development cycles and promotes self-organising
teams, however, it does not define any specific team roles or events. Instead, it relies heavily on
collaboration between developers and users [17]. RAD is typically employed when time-to-market and
user feedback is paramount, for example, when working on projects with systems or applications that
heavily rely on user interaction.

The process of RAD consists of four steps: requirement definition, user design, construction and
deployment. During the requirement definition, RAD already sets itself apart from traditional software
development methods, as it does not require a detailed list of specifications; rather, it asks for a general
goal or key features, as well as any other business needs, to determine the project scope. The user
design phase is where the prototyping and testing takes place. Developers create prototypes with
different features and functions as fast as they can within the context of the broader goal or feature. This
is performed in an iterative manner like that of SCRUM, where feedback is collected at the end of every
cycle allowing the client to decide on what to keep and what to dismiss. During the construction phase,
the accepted user design is then finally iteratively implemented by the development team, where
prototypes are refined into working models. Lastly, the cutover phase, consists of final system testing,
user training, and the subsequent deployment of the developed product.

2.2.6 Rugby

Krusche et al. [18] address the challenges faced by project-based organisations by presenting their novel
Agile process model, Rugby, with the objective of improving software delivery processes through
integration with continuous delivery practices to streamline the delivery of software updates. The
effectiveness of Rugby was evaluated through its implementation in two large university courses with
100 participants working on 10 projects each year in collaboration with industry partners, closely
simulating a real-world scenario [18]. To understand Rugby, one has to understand its environment and
process model.

Development Environment Integration Environment

Version Control

Modeling Tools IDE System

Build System

a

Developer
Collaboration Environment Delivery Environment

Delivery

Issue Tracker < > |F dback Tracker
Management

l

Target Environment

Communication
Tools

Executable

System Context

Figure 6: Rugby Eco-System (adapted from [18])

The Rugby eco-system is split in five environments, each with their own dedicated functions:
development, integration, collaboration, delivery and the target environments. The project team,
consisting of up to eight developers, a team leader and project leader, is expected to be self-organising,
cross-functional and therefore responsible for all aspects of development and delivery of software [18].
The project team, as well as the end-user, interact with different environments based on their project

responsibilities, as seen in Figure 6. An emphasis is put on the collaboration and delivery environments
as per the principles of continuous delivery — a consistent communication and feedback loop between
the developer and the end-user. A user is notified from the delivery environment if a new release is
available and can then use the software in their target environment. Feedback of the user is stored in the
delivery environment and then forwarded into the collaboration environment, i.e., as feature requests. A
user can also vote certain features in the collaboration environment [18].

Rugby presents a unique combination of collaboration, flexibility and delivery of quality software, which
can be characterized through principles and practices defined in the Rugby process model. During the
sprint planning, teams outline visionary scenarios to create backlog requirements for the upcoming
sprint [18]. This allows the customer to then choose the requirements to work on while providing
sufficient detail for developers to begin work. A key difference when comparing to SCRUM is that Rugby
allows requirements to be discussed and expanded during the sprint due to its event-based releases,
utilising the continuous delivery workflow [18]. Additionally, Rugby proposes weekly meetings rather
than daily, as it anticipates part-time developers to be present on the project [18]. In Sprint O, lasting two
to four weeks, teams focus on building unity, familiarising themselves with release management
techniques, such as version control, continuous integration and continuous delivery, as well as acquiring
necessary technical and functional knowledge depending on the project problem statement [18].

e ——
@ Feedback ' jste e mmmmmmmmm oo Backlog

O Release .
Design Feature !
[BugRepDn] [Request] [Request] :
]
1
]
Analysis 1
' Design
Developer Implementation |-

Release
Management

Figure 7: Rugby Feedback Cycle (adapted from [18])

- -

--

The goal of Sprint 0 is to create an initial empty time-based release to demonstrate the availability of
release management and feedback capabilities [18]. The subsequent sprints also maintain a two-to-four-
week time frame depending on the requirements, where each sprint is aimed at producing a potentially
shippable product increment. Releases in Rugby are vital as they facilitate communication between
project stakeholders. While teams are expected to deliver at least one time-based release at the end of

each sprint, they are also motivated to release their software whenever communication or feedback is
required, or when it is requested by the manager or customer [18]. Upon receiving a new release, users
(customers) begin interacting with the new product increment to provide feedback, which subsequently,
is added to the backlog. Feedback is categorized into feature requests, design requests and bug reports,
which are handled by the analysis’s workflow, the design workflow and the implementation workflow,
respectively. The release manager of the team is responsible for deciding when and to whom the build
should be delivered. A way developers can communicate and inquire for specific feedback is through
release notes of a product increment [18]. This continuous feedback loop is present throughout all
sprints and leads to iterative development.

Preliminary results after the use of the Rugby model indicated an increased frequency and quality of
interactions between the developers and the users, which in turn led to a higher accuracy in delivering
the desired requirements, as well as their quality, suggesting the effectiveness of consistent developer-
user communication. Furthermore, it enabled the ability to include requirement revision and
manipulation during an ongoing Rugby sprint, rather than at the end of one [18]. Ultimately, the results
displayed that Rugby’s integration of version control, continuous integration and continuous delivery
significantly improved collaborative development and development speed [18].

2.2.7 Continuous Integration, Delivery, and Deployment

Continuous integration involves several critical steps aimed at maintaining code quality and facilitating
collaborative development efforts. The process is centred around source code management, requiring
every team member to commit their changes to a centralized repository upon completing tasks or
making new changes. Continuous delivery extends Cl by automating the entire software delivery process,
ensuring that code can be delivered at any time. This includes the automation of code testing, its
integration into shared repositories, builds, and acceptance testing. Once these steps are complete, a
manual action is required to deploy to production. Continuous Deployment (CD) is the automation of the
release deployment to production after passing predefined tests.

This approach is highlighted as a fundamental aspect of Agile and efficient software development
practices [21]. The practice of Cl and CD is emphasized as a vital strategy for organizations aiming for
frequent and reliable updates to their projects or products [22]. Benefits of transitioning towards a Cl/CD
pipeline (Figure 5) includes faster release cycles, increasing the rate at which the product is passed on to
the hands of the user. Reduced risk is naturally achieved through the continuous release of updates and
features. A higher quality in a product is achieved through continuous delivery of small updates,
increased developer-user interaction, fewer bugs, and reduced occurrence of issues. For these reasons,
CI/CD remains the main toolset within the general practice of DevOps, which is a philosophy
encompassing broad range of practices, including culture, collaboration, automation, delivery and
continuous improvement of software.

The biggest issue that comes with a transition towards CI/CD is the cultural change, specifically for
organisations coming from a traditional methodology background, as the drastic practical shift might
require that the staff is retrained, including the managers. The task of building an automated code
repository is simply complex as it is, which in turn requires a testing suite of the highest integrity. In fact,
integrity is a necessary condition of success, as without an appropriate testing suite, Cl/CD introduces
more risks than benefits if the tests are not effective.

Deployment

Monitor

CD

Continuous Testing

Figure 8: CI/CD Model

2.2.8 Hybrid Development Methodologies

Apart from the choice between Agile and traditional, hybrid methodologies are also prevalent and
popular in modern projects. Hybrid development methodologies are manifested dynamically through
blending of elements from different software development methodologies depending on the underlying
project and its requirements. Such approaches are common because no single methodology can
appropriately accommodate absolutely all project needs [24]. In fact, in their research, Vijayasarathy et
al. [23] found that over 45% of software development projects ran on a hybrid methodology. The most
common approach is the blend of traditional and Agile practices [24]. Hybrid approaches typically
emerge organically, rather than through a formal process improvement program, where the top
motivating factors include project/product management and commitment, evolution and pragmatism,
and project operation and improved flexibility [24]. Hybrid approaches are seen as a way towards more
stable yet flexible projects, where the stability of established traditional methodologies aims to appeal
towards both management and customer commitment, and the flexibility of agile methodologies
provide the necessary flexibility to the developer teams [24]. Lastly, hybrid approaches are used
regardless of company size or industry sector [24].

An example of an applied hybrid methodology is the development of a HRIS (Human Resource
Information System), where Singhto et al. [16] combined both waterfall and SCRUM methodologies. The
planning and the analyses phases of the project were conducted under the waterfall model, defining the
business process while assisting new developers in understanding the software development lifecycle
[16]. Most of the design and the development phase are conducted according to SCRUM, breaking down
requirements into stories and consequently into iterative SCRUM sprints.

Another example is the blend of SCRUM and extreme programming (XP), where Mushtaq et al. [25]
address the gap between the two popular agile methods by creating their own novel hybrid model.
While SCRUM is used as a lightweight, flexible, and adaptive project management framework, it provides
little to no guidance on the engineering aspects of software development [25]. The hybrid model
retained the iterative and incremental approaches of SCRUM, using sprints and SCRUM events, such as
stand-ups, sprint reviews, sprint plannings, and sprint retrospectives. Engineering practices of XP were
integrated to ensure higher code quality, specifically concepts such as simple design, pair programming,
continuous integration, and test-driven development [25]. Through the incorporation of XP practices,
development teams were guided not only by iterative planning and review mechanisms of SCRUM, but
also by systematic coding standards, as well as early and frequent testing.

3 PaaS Software Development Principles

Traditional software development has evolved over decades, shaped by numerous methodologies and
engineering practices. In these environments, development teams manage the full technology stack,

requiring infrastructure set-up, middleware maintenance, data handling, and application deployment.
This approach, predating cloud adoption, is typically characterized by manual, heavyweight processes
and environments. Over the years, various software development methodologies, from the structured
phases of the Waterfall model to the iterative cycles of Agile, have attempted to tackle these issues.
Despite this, maintaining and updating physical infrastructure, integrating tools, and enforcing consistent
development standards often remains a time-consuming endeavour. Additionally, in contrast to PaaS

platforms, traditional development environments frequently lack built-in support for rapid scalability,
security features, and on-demand resource allocation. As a result, the development cycle can become

too prolonged with teams devoting significant effort to non-development related tasks. This drastically
delays the time-to-market, as well as places operational demands on software development teams that
might otherwise be focused on delivery. This chapter answers RQ 1.

3.1 Principle Identification

Although established practices and theoretical frameworks exist for traditional development, scientific
literature on software development or SDLC on PaaS platforms is scarce [27], even more so with regards
to defining concrete principles and instructions on how the software development process must be
conducted, or which methodologies should be used. Instead, the literature outlines the structure,
capabilities, and limitations of Paa$S platforms, as well as their comparison with each other for different

types of software projects

Table 5: PaaS Development Principles 3, 5, 6, 9, 10, 12, 26, 27]

Principle
Leverage built-in services

Adopt iterative and customer-
centric development

Encourage self-organisation

How

Use platform-provided services
like databases, security
features and integration
connectors

Develop in short iterative
cycles, which include building,
testing, feedback and
refinement

Foster a development culture
where the choice of
technology, tools, features and
deployment is performed at a
team level

Why

By using pre-built services,
developers can avoid the
complexity of re-inventing the
wheel or setting up and
maintaining these components
themselves, reducing error
rates and reducing time-to-
market

PaasS platforms support rapid
deployment by providing the
ability to quickly prototype
ideas into real solutions

The abstraction of
infrastructure management
promotes self-organisation by
granting teams more creativity
to focus on application logic
and user needs

Utilise extensibility

Prioritize security

Build knowledge

Make full use of
configurational and
customizable capabilities

Integrate security controls and
compliance checks early in the
development process

Continuously update skills,
knowledge, and utilise the
platforms developer
community

Provision of configurational
tools and programming
interfaces allow developers to
configure and customise
applications effectively

By leveraging the built-in
security features of Paa$S
platforms, ensuring
applications are secure by
design

The ever-evolving nature of
Paas platforms and their
technology requires ongoing
learning to stay on par with

best practices, ensuring
optimal use of the platform
and its features

Define application architecture | Maximize performance and

with scalability in mind reduce cost by utilising PaaS
scalability features, such that
applications can handle varying
loads efficiently

Design for scalability

To provide actionable development guidelines or principles for software development (Table 5), we focus
on tangible benefits, such as fast time-to-market, customer satisfaction, high security, improved
maintenance and adaptability.

3.2 Benefits

The largest advantage for most enterprises is the speed with which new applications can be launched to
catch the next wave of business opportunities, as various cloud-integrated tools help developers focus
on rapidly prototyping, building and deploying applications [5, 26]. In traditional software environments
teams need to set up, maintain, and update their servers, operating systems, as well as middleware. In
contrast, Paa$S platforms abstract away most of the infrastructure layer, offering preconfigured
environments. Additionally, considering the PaaS platform is a product in of itself, it is continuously
updated and improved by its parent organisation. Furthermore, PaaS provides dynamic scalability, where
on-demand resource allocation can be utilised to either scale up or down, whereas in traditional
environments this process would be completed manually by either adding additional machines or
upgrading existing resources, all of which require a degree of downtime and potential hardware
procurement. By relying less on infrastructure and manual procedures, teams have the freedom to make
decisions regarding deployment, coordination, and technology usage [6]. This independence creates an
environment that is more adaptable and responsive to changes, allowing for efficient implementation.
The ability to rapidly prototype, test, and iterate based on feedback from external stakeholders greatly
enhances the learning process for all team members. It empowers teams to refine their understanding of
requirements and address issues in time, fostering a cycle of improvement. Embracing Paa$S streamlines
the development process and empowers teams to swiftly adapt to evolving needs and innovate more

effectively. The reusability of software components and various elements enhance efficiency, as well as
reduces the time and effort required to develop new applications [5]. Additionally, developers appreciate
the ability to implement custom code solutions through traditional programming capabilities whenever a
particular use case is not supported by the capabilities of the platform [5]. The availability of
comprehensive documentation and a supportive community that aids knowledge acquisition is also
noted [5]. Such tools and technologies boast advantages that ensure a high level of quality and
consistency, allowing developers to concentrate on core functionalities and features, thereby improving
innovation opportunities and accelerating development speed [26].

3.3 Security Challenges

The level of technical expertise of developers in PaaS software development is typically lower than that
which is required in traditional environments. Due to the extensive availability of tools and
configurational interfaces, citizen developers are empowered to participate in the delivery of
applications. This advancement further reduces time-to-market, as well as the reliance on traditional IT
resources, however, it also introduces a plethora of potential security challenges, which must be
addressed to mitigate risks [4]. Some of the risks include [4]:

e Poorly defined security requirements

e Insecure coding practises or component configuration
e Insufficient testing

e Exposing sensitive data

e Deployment of insecure components or services

e Vulnerabilities introduced through updates

While not enough on their own, PaaS platforms provide numerous security related features to help
developers avoid risks. These include pre-built authentication, role-based access control, encryption,
standardized or component-based code generation, compliancy checks, CI/CD pipeline, environment
isolation, extensive dashboarding and reporting, service-level agreements, and modern Ul frameworks.
To achieve the best result, these features should be leveraged in combination with a security framework,
such as RAAFT [4], to ensure all crucial risks are accounted for. All these features would require manual
creation or integration with existing tools and technologies when manifested within a traditional
software development environment, requiring high level of developer expertise.

3.4 Gradual Introduction

Lastly, before considering development, it is important to note that while implementing PaaS might
seem like an easy solution to changing business realities, it also entails inevitable technical and
sometimes regulatory challenges. Cohen [26] suggests that the best approach for established enterprises
that might be considering PaaS is to add it initially as an alternative to its current array of technologies
and gradually introduce PaaS$ to developers by replacing existing legacy tools and systems [26].

4 Compatibility with Software Development Methods

By now we have established that PaaS platforms drastically simplify the development pipeline and
provide a vast set of capabilities for software developers through the provision of model-driven
development and cloud-based services [5]. The unique characteristics of PaaS (Table 4) naturally enable
rapid prototyping and iterative development cycles, allowing developers to produce applications faster,
than in traditional environments. Built-in tools and shared user environments allow development teams
to directly communicate and collaborate with project stakeholders. Additionally, we have analysed
traditional, iterative, continuous, prototyping, and hybrid development methodologies for their
strengths and weaknesses, as well as their applicability in different software development contexts. This
chapter aims to bridge the gap between the characteristics and development principles of Paa$, as well
as the different methodologies discussed in Chapter 2, to answer RQ 2.

The selection and usage of a methodology primarily depends on the project scope, requirements and
the underlying set of tools or technologies available for development. Additionally, the choice is
influenced by circumstances, such as team size and organizational revenue [23]. Agile or iterative
methodologies are favoured by organizations with moderate revenues and smaller employee counts,
prioritising flexibility and adaptability; however, pure Agile approaches may struggle to provide the
structure needed for large projects [23], in which the complexity renders unclear requirements,
unplanned outcomes, missed deadlines, or prolonged prototyping simply unaffordable. Traditional
methodologies, such as waterfall, are more common in larger organizations with higher revenues;
however, are too rigid to leverage the iterative and dynamic nature of PaaS [23]. Hybrid methodologies,
on the other hand, are applicable across various organizational sizes and project types [23, 24]. Table 6
outlines the general applicability of software development methodologies with PaaS development
principles (Table 5). Principles “Utilise extensibility” and “Build knowledge” are not included as the
means to achieve them are subjective and highly dependent on parent organizations circumstances,
such as the scope of the project, project complexity, budget, staff training, and technologies used.

Table 6: Methodology Compatibility with PaaS Development Principles

Traditional Agile Cl/cD
Leverage built-In services Medium Strong Strong
Iterative and customer-centric Weak Strong Strong
development
Encourage self-organisation Weak Strong Strong
Design for scalability Medium Medium Strong
Prioritize security Strong Strong Strong

4.1 Traditional

Traditional methodologies, such as Waterfall (Figure 2) or the V-Model (Figure 3), emphasize linear and
sequential approaches. These measures excel at defining the requirements and scope of the project, as
well as mitigating risks, manifesting themselves as valuable qualities during the initial stages of a PaaS

software development project. However, traditional methods fail to promote a culture of self-
organisation, as the choice of technology, tools, and features would have to be predefined before the
stages of implementation, testing, or deployment are ever reached. The adoption of customer-centric
and iterative development, in which teams develop, build, test, gather feedback, and refine user
requirements in short iterative cycles, misaligns with traditional approaches, as one stage must be
completed before the next is reached. In this case, the main advantage of PaaS, namely the ability to
rapidly prototype, build, and produce software, is ignored. Furthermore, communication and
collaboration between development teams and stakeholders is non-existent, as are the possibilities to
implement any feedback once implementation has started.

4.2 Agile

Agile models prioritise adaptability, incremental delivery, and continuous stakeholder communication
and collaboration. laaS and PaaS layers of CC offer support through rapid provision of development
environments and cloud interfaces to facilitate software deployment [21]. This results in significant
benefits to Agile development teams — cloud computing reduces the time and effort required to test and
deploy software, therefore the latency between completing development, and receiving feedback from
product owners and users, is drastically reduced. Furthermore, frequent communication between team
members, both in formal and non-formal environments, created a sense of unity and reduced the time
needed to resolve issues [21]. The feedback cycle is reduced further through automation of Cl/CD within
CC platforms.

Process models, such as SCRUM, RAD, or Rugby, utilise incremental delivery with varying levels of
formality. SCRUM defines artifacts such as stand-ups, backlogs, sprints, retrospectives, as well as user
roles to complete and provide efficient project management. RAD is less structured, prioritising rapid
prototyping, relying on heavy collaboration between developers and users [17]. Rugby proposes a
dedicated eco-system split between five environments: development, integration, collaboration,
delivery, and target. Depending on project responsibilities, development teams and other project
stakeholders interact with these environments. All process models require self-organising and cross-
functional teams to operate successfully within an Agile philosophy [13, 17, 18, 20]. Regardless of
environment or artifact, an interface or a technology is required to accommodate development teams to
complete their project responsibilities. One unique characteristic of PaaS is shared components, which
can be defined as interfaces or modules that accommodate access and security controls, data
management capabilities, and platform connectivity. Additionally, most PaaS platforms (e.g. ServiceNow,
Mendix) provide built-in collaboration tools that facilitate communication and coordination between
development teams and stakeholders. If not, then integrations with third party systems, such as Jira, are
possible. To summarize, integration of Agile process models into PaaS is particularly powerful, as PaaS
platforms are inherently designed to support iterative and incremental development, as well as team
and stakeholder communication. Utilising Agile as a development methodology leverages built-in serves,
operates in an iterative and customer-centric manner, designs for scalability, and encourages self-
organisation, all in line with PaaS development principles defined in Table 5.

4.3 ClI/CD

CI/CD is responsible in minimizing the delivery and feedback loop of software, handling testing,
integration, and deployment autonomously. CI/CD processes are not only supported but are often
integrated as a core feature in PaaS platforms. For example, ServiceNow software development projects

typically run on three instances: development, test, and production. Development teams work on a
product increment or iteration on the development instance, after which it is packaged, and either
manually, or through automation, deployed to the test instance. The customer then tests the release and
provides feedback. Separately, ServiceNow provides a native automated test framework (ATF) which
allows for automated functional testing. If everything operates without issues, the release then is
packaged for deployment into the final target environment — production instance. This whole pipeline
can be automated using ServiceNow DevOps plugin which has Git, Azure DevOps, and Jenkins integrated
for easier automation. Cl/CD concepts are often used in combination with other methods, such as Agile
and Traditional, manifesting hybrid approaches depending on project needs [16, 23]. CI/CD pipelines
handle complex workflows, automating testing, building, and deployment of software, as well as
facilitate rapid feedback via automated tests and shorter development cycles, hence aligning seamlessly
the principles (Table 5) of utilising extensibility, design for scalability, leverage built-in services, and adopt
iterative and customer-centric development.

5 Methodology as a Service

This chapter describes Maas illustrating the practical application of a hybrid software development
methodology tailored specifically for metadata-driven PaaS platform software development based on the
results of RQ 1 and RQ 2.

5.1 Development Process

Relying on the insights discussed so far, we define a development process consisting of three main
phases: planning, development, and maintenance. Sequentially completed, the process combines
elements from the traditional, Agile, prototyping, and continuous methodologies to address the unique
characteristics and development principles of PaaS we selected as seen in Table 7.

Table 7: Maas$ Core Principles

Principle Definition

Structured initial planning Sequential approach to gather and define
foundational requirements, scope, maintenance
support, and other project-related expectations

Iterative and incremental Leverage methodologies based on Agile philosophy

development for rapid development, adaptability, and user
involvement, depending on project scope and
requirements

Prototyping for broad Use a prototyping methodology, such as RAD, to

requirements deal with projects with ambiguous requirements,
or with a focus on user experience

Continuous integration and Shorten feedback cycles, increase developer-

delivery customer interaction, improve product integrity
and scalability

Streamlined project Utilise environment split approach of Rugby to

management manage collaboration, development, integration,
delivery, and feedback efficiency

Maas leverages the structured and sequential approach of traditional models to proceed between
planning, development, and maintenance, where each phase is to be completed before the next. During
the planning phase of the project, requirements, scope, and system design are defined, ensuring a solid
foundation, correct setting of expectations, and rigorous documentation. The development phase is
supported by either SCRUM or RAD Agile process models, depending on the completeness of
requirements and scope defined in the planning phase. If the requirements are vague and not fully
developed, or if the project contains subjective outcomes, such as a heavy focus on UI/UX, the RAD Agile
process model should be chosen as the main development paradigm. If the requirements, scope, and
project outcomes are clearly defined, the SCRUM process model should be chosen as the main
development paradigm. Both SCRUM and RAD models strongly adhere to PaaS software development
principles outlined in Table 5, as well as make effective use of PaaS services and capabilities. Following
Rugby, CI/CD is integrated in parallel with either of the Agile process models (SCRUM or RAD), ensuring
speed and reliability of releases, automation, and scalability. This results in a significant increase in
frequency and quality of interactions between the developer and the customer, leading to a higher

accuracy in delivering desired requirements, as well as significantly improved collaborative development
and development speed [18]. Finally, project management utilises the five environments defined in the
Rugby process model: development, integration, collaborative, delivery, and target environments. Maa$S
offers flexibility to handle varying levels of requirement clarity, faster time-to-market via iterative
development and the integration of CI/CD, improved project stakeholder satisfaction and collaboration
through short feedback loops, and scalable project management with a defined environment-based
process model. To summarise, the Maa$ core principles are defined in Table 7, and the model in Figure 9.

Planning Development Maintenance
e N e \ -
Desiger‘ Construction }—»{ Deployment)
< > < Test > <
SCRUM
-

Development Develop

Sprint.s/.
Review

o _/

Supported By CI/CD Pipeline

)
Deploy g Package

Development
Method

Continuous
Testing

Figure 9: Methodology as a Service (Maas$)

5.2 Planning

The planning phase lays the foundation for the entire project by establishing a relationship with the
customer, as well as scope, requirements, and overall application architecture. Two steps are defined in
the planning phase: initiation and execution.

5.2.1 Initiation

Initiation is about understanding the needs of the customer. To achieve this, stakeholder workshops are
conducted to identify the goal of the project, and its expected deliverables of the project: functional
features, use-cases, integrations, and high-level system design choices. User roles, their responsibilities,
and their interactions with the system are also defined. The completeness of these deliverables directly
influences the results of the phase, as well as the choice of development process model in the
development phase. If the completeness of requirements is low, customer-intended or otherwise, RAD is
recommended as the development process model relying on rapid prototyping and customer
collaboration. Likewise, if the completeness of requirements is high, customer-intended or otherwise,
SCRUM is recommended as the development process model. Documentation-related deliverables, such
as technical documentation, process guides, user manuals, testing depth, and training sessions are
defined. Additionally, the governance of the project is defined via setting of roles and responsibilities of

the customer, the end-user, and the development team. Lastly, PaaS-specific details are discussed by
asking the following questions: does the customer already utilise the underlying PaaS for any other
processes or use-cases? Are the and built-in services offered by Paa$S platforms enough to accommodate
the desired use-case, or configuration and customization is required? Which platform security features
can be and should be utilised? This determines the level of extensibility (customization or configuration)
of the resulting application.

5.2.2 Execution

Information resulting from the initiation step is compiled into a proposal or statement of work (SoW),
which is a document outlining all deliverables that needs to be signed by the customer to trigger the
official start of the project. The SoW includes the project description, goal, scope, governance, project
methodology, assumptions, team structure, and a high-level timeline of the project. Financial analysis
and cost estimates are also provided in the SoW. Once the document is signed, the project is officially
underway.

5.3 Development

The development phase of MaaS$ entails iterative development cycles and continuous feedback loops,
leveraging the rapid prototyping, building, and deployment capabilities offered by PaaS platforms [5, 26].
To maximise efficiency and adaptability, MaaS provides development teams the ability to choose
between RAD and SCRUM methodologies based on project requirements and scope. A simple decision
framework is provided in Table 8.

Table 8: Development Methodology Decision Framework

Criteria RAD SCRUM
Requirement clarity Ambiguous or evolving Evolving requirements
requirements, UX heavy
Time-to-market Rapid prototype provision to meet = Regular delivery via time-boxed
urgency urgent market needs, has initial sprints, product value grows over time
product value
Stakeholder Continuous involvement Involvement in SCRUM defined events
involvement throughout development (artifacts), such as a sprint review.
iterations Participate in testing and feedback
Planning and Lean planning and documentation = Detailed planning involving structured
documentation for rapid development, evolving events and artifacts
business realities
Project complexity and | Best suited for small or medium Scales well for complex projects with
scale sized projects, where room for interdependent tasks
rapid or unexpected change is
possible
5.3.1 RAD

Maas proposes the use of a prototyping Agile process model, namely RAD, if the requirements gathered
from the planning phase are vague, the project entails a heavy focus on user experience, or other RAD
favoured criteria are met (Table 8). The benefits of using this process model over SCRUM consist of faster

prototyping and feedback cycles, reduced upfront planning and documentation, user-centric design
focus, and increased flexibility in handling ambiguous or changing requirements. RAD consists of four
steps, namely requirement definition, user design, construction, and deployment, which are described in
detail in Section 2.2.5.

Focusing on most critical user needs, broad requirements are defined with some Definition of Done
(DoD). Additionally, basic deadlines are set, together with DoD, to avoid infinite development or scope
creep. These requirements, covered earlier by the planning phase of Maa$ (Section 5.2), are classified as
epics. Epics are agile components, typically representing large bodies of work (broad requirements),
which can be further broken down into smaller units of work, namely stories. The user design step marks
the beginning of iterative development. In this first iteration, developers and designers rapidly create the
skeleton of the application based on requirements consisting of basic Ul elements, functionality, and
interactivity. Users provide immediate feedback, which is associated with epics defined earlier. This
feedback is broken down into stories (small units of work), associated with their correlating epic, and
added to a story backlog. This step is iterated continuously until a user-accepted design is reached. In
each iteration, a new version of the product is built, reviewed by users, and improved continuously. In
the next step, namely construction, developers work to complete the accepted design utilising the
stories generated via user feedback, improving on their parent epic. Once the users are satisfied with the
functionality of the product, the cutover step (deployment) begins. The application is finalised and
deployed to a pilot group. Additionally, the development team remains available to handle minor
adjustments or bug fixes based on the feedback of the pilot group.

RAD does not define concrete roles, therefore we introduce them as the development team, and the
product owner (PO). The PO is the double-facing bridge between the development team and the
customer. A PO represents the business needs of the customer, maintains the backlog, and manages
prioritization of work. The development team is responsible for building, delivering, and maintaining the
product.

5.3.2 SCRUM

Maas proposes the use of an Agile development methodology, namely SCRUM, if the requirements
gathered from the planning phase are well-defined, or the time-to-market urgency is low, or other
SCRUM favoured criteria are met (Table 8). SCRUM process, roles, events, and artifacts are described in
detail in Section 2.2.4.

Initial SCRUM backlog is derived from requirements gathered in the planning phase (Section 5.1). SCRUM
proceeds in time-boxed iterations called sprints, which represent development iterations. During each
sprint, new insights, changes, and modifications are also continuously added to the backlog.

At the beginning of a sprint, a sprint planning session is held to determine which backlog items are going
to be delivered, further accompanied by daily stand-up meetings for progress alignment and
impediment resolution. Once the sprint is over, a sprint review session is held to evaluate and demo the
progress to stakeholders. The stakeholders (users) provide feedback which is then added to the backlog.
Lastly, a sprint retrospective is held for the development team to reflect on their progress and operability
in the last sprint.

For SCRUM, we define the following roles: PO who maintains the sprint backlog and, similarly to RAD, is
a double-facing bridge between the development team and the customer; development team, who are

responsible for building, delivering, and maintaining the product; SCRUM master who facilitates SCRUM
related processes and artifacts, assists developers, and removes impediments.

5.4 Maintenance

After the development phase of the project is completed, a period of maintenance is critical to ensure
the capture of unexpected bugs or defects. We propose to utilise the following two options in MaaS:
hypercare and maintenance packages. Hypercare is a predefined short-term support period where the
development team works on bugs or defects identified during or post product delivery. Additionally, we
propose maintenance packages, where customers can opt in for a supporting team which will work to
provide maintenance for a predefined set of hours every month. This can also entail work on
improvements or feature requests. Both the hypercare and maintenance packages are discussed and
agreed upon during the project planning phase.

5.5 CI/CD

Maas incorporates CI/CD practices to enhance the integrity and efficiency of development, as well as to
reduce user-developer feedback loops. It ensures that every development iteration results in a validated,
tested, and deployable product via automating application build, publishing, installing, and testing
processes.

As previously stated, MaaS$ utilises the five-environment solution of Rugby (Section 5.5) to streamline
project management. Development teams work on stories in the development environment. At the end
of either RAD or SCRUM development iteration, the completed units of work (code and configuration)
are packaged into a release artifact via the integration environment. This release artifact is then
deployed to a delivery environment for final testing, where, if successfully tested, is further deployed to
a target (production) environment. Cl/CD automates the tasks of building, unit-testing, integration-
testing, packaging, and deployment of releases.

5.6 Project Management

Project management in Maas is centred around the need for an efficient and CI/CD adaptable
development process for PaaS platforms. Based on the findings reported in Chapters 2 and 4, a hybrid
methodology consisting of elements from Agile, RAD, SCRUM, CI/CD, and Rugby to ensure effective
development and project execution.

MaaS$ adopts the five-environment ecosystem approach of Rugby (Section 2.2.6), split into development,
integration, collaboration, delivery, and target environments. Rugby emphasises Cl/CD and rapid
feedback loops [18], making it an ideal fit for MaaS. During each development iteration developers work
within the development environment, after which their work is merged via the integration environment
and deployed to a delivery environment for feedback. The customer then provides feedback via both the
delivery and collaboration environments. If the delivered work is acceptable and tested it can be moved
to the target environment. This environment structure can be mapped onto Paa$S platforms based on
their services and features.

We define a project manager (PM) role to oversee the entire five-environment process in collaboration
with other actors of either the RAD or SCRUM development processes.

6 Validation

This chapter introduces the validation process for the application case study of the software
development methodology MaaS defined in Chapter 5. The goal of this validation process is to assess
whether Maa$ can provide measurable benefits over alternative established development
methodologies with regards to PaaS software development. These benefits are otherwise defined as
improved development outcomes, such as faster development iterations, improved stakeholder
collaboration, and fewer defects. Accomplishing this goal answers RQ 3. Additionally, it serves as the
demonstration step within the Design Science paradigm, in preparation for the evaluation (Likert scale
survey guestions) and communication steps (survey result analysis, future work, and conclusion) [7, 8].

To demonstrate the feasibility of MaaS, we apply it to a mock project on ServiceNow, one of the leading
metadata-driven PaaS platforms. Additionally, we provide an architectural example of how the
methodology can be applied to a similar metadata-driven PaaS platform — Mendix.

6.1 Use Case

Due to the complexity of real-life projects and their potential obscurement of the methodology, we
define a mock project, allowing us to observe how MaaS works when applied on ServiceNow. The
customer is a security operations centre (SOC) for a large enterprise. This enterprise already has an
established regular incident management process in ServiceNow; however, the number of incoming
incidents has grown two-fold. It is becoming increasingly difficult to efficiently manage all incidents with
varying degrees of impact and priority. For this reason, SOC requires a security incident management
tool to allow a subset of users to create and track the progress of security incidents, thus detaching them
from regular incidents. SOC decided to build a new custom application in ServiceNow to manage security

incidents separately, as they use the platform for other services, including the basic incident
management. Table 9 shows two possible example sets of requirements which would trigger either a

RAD type or a SCRUM type development model implementation method.

Project vision

Visual interface

Design

Table 9: SOC General Project Requirements

RAD

Build an intuitive and visually
appealing portal for the creation,
tracking, and management of
security incidents. Requires a fast
time-to-market

Focus on a minimalistic, yet highly
responsive modern design

A simple and dynamic security
incident form with basic fields
(e.g. “Title”, “Description”). Use of
visual cues such as icons to
support clarity

SCRUM

Develop a comprehensive security
incident management application with
detailed workflows, access
management, and advanced reporting

Minimalistic design, Ul is structured to
support role-based views, as well as
self-servicing functionality, such as
tooltips

Detailed security incident form
featuring predefined fields (e.g. type,
severity, affected systems, date and
time) that can support a full security
incident lifecycle, including
escalations, approvals, service-level
agreements, and auditing

Integration

Acts as standalone application
with minimal integration with the
existing incident management
tool. Must have the ability to
create a security incident from a
normal incident and vice-versa.
CI/CD used for rapid deployment
of incremental improvements

Reporting and analytics | Ability to track security incident,

state-change notifications, simple
dashboard to view the current
states of security incidents (e.g.
open, in progress, complete)

Standalone application with seamless
integration with existing incident
management tool, as well as other
third-party security tools. ClI/CD
pipeline is established to support
regular builds, testing, and
deployment

Detailed dashboards with real-time
analytics, multi-level notification
system, custom reporting, and KPI
tracking

6.2 Applying MaaS to ServiceNow

Maa$ was developed as a hybrid software development methodology specifically tailored for PaaS
platforms, incorporating elements from traditional and Agile methodologies, as well as CI/CD practices,
to create a structured yet flexible approach which aligns with PaaS development principles defined in
Table 5. This section describes how Maa$ can be utilised in a project setting, through the demonstration
of a run of a development iteration for our mock use case (Section 6.1), following the phases laid out in

Chapter 5.

Development Environment

Integration Environment

plat4mationdemonew02

AzureDevOps

i

Developer
Collaboration Environment

Test Environment

Agile 2.0

platdmationdemonew20

User

|

Production Environment

plat4mationdemonew04

Figure 10: Adaptation of Rugby's Five-Environment Model for ServiceNow

At its core, ServiceNow is a cloud platform that streamlines and automates enterprise service
management, providing a configurable data model, powerful workflow engine, and an array of built-in
applications to manage IT, HR, security, among others. The primary reason for selecting ServiceNow is

the availability of access to the product, but also due to it being recognised for its strong workflow
automation, pre-built components and shared services, low-code and no-code capabilities, scalability,
security, extensibility, and integrated CI/CD support. Lastly, these characteristics are shared among other
metadata-driven Paa$S platforms (Section 2.1.1), making ServiceNow a suitable testing ground for MaasS.

6.2.1 Project Management

For MaaS project management we follow the MaaS principles defined in Table 7 and adapt the five-
environment model of Rugby (Figure 10). We use ServiceNow to facilitate the following structure: three
ServiceNow instances for our development, test (clone of the production environment), and production
environments; Azure DevOps is used as the integration environment, providing both CI/CD pipeline
facilitation, and a Git code repository. Finally, ServiceNow’s Agile 2.0 module is utilised as the
collaboration environment, allowing for communication, backlog management, and progress tracking,
between developers, end-users, and other involved actors. Similarly to the environment model, we draw
inspiration form Rugby to define our process model (Figure 11). For this demonstration, we keep it
simple. The following sections go in-depth into the steps of the process model.

@D Feedback
Development | = = = = = = = = = — — m e —_Backlog
O Release Iteration _
[Bugs] [Stories J

e R - -

1
1
1
1
1
1
1
1
1
1
1
1
1
1
Implementation | — - --------------- S -_ 1
1
1
1
1
l. S I
1
1
1
1
1
1
1
1
1
1
1

Developer

— Y
Commit to Azure +], _——— .[

DevOps

Use Application
Production - - =
Environment

User

Figure 11: Maa$ Process Model (adapted from [18])

6.2.2 CI/CD

For our CI/CD pipeline, Azure DevOps serves as the facilitator, hosting a Git repository for code
management, and enabling automation via a pipeline. The pipeline uses a YAML definition (code snippet
1) to provide automation of the build, test, and deployment processes. We set our trigger to be a
commit on the “master” branch. Changes from developers are committed to the Azure repository,
triggering the build stage. For this case study, we include the step of building and publishing the
application on the development instance (environment), as committing the changes does not inherently
publish the application and is a separate action in ServiceNow. Typically, a custom application requires to

be published to be available for manual retrieval or deployment from a different instance, i.e., test
instance. For additional information, application artifacts, such as the application version number, are
added in the relevant connection (to Azure DevOps) record of that instance. If the build stage ran
successfully, test stage is triggered, which automatically deploys the application on our test environment.
Once deployed, automated tests are executed via ServiceNow Automated Test Framework (ATF). We
implement a rollback feature if testing is unsuccessful, safeguarding the integrity of the production
environment. Lastly, if the test stage is completed successfully, we automatically deploy the application
to the production instance

1. trigger:

2 branches:

3 include:

4. - master

5. variables:

6. - name: APPSYSID

7 value: 4951ec8fc39866102d4bf50f05013175

8. - name: TESTSUITEID

9. value: cd4d28cbc3d866102d4bf50105013144

10. - name: BRANCH

11. value: $(Build.SourceBranchName)

12. - name: JUNIT_FILE_DEV

13. value: '$(System.DefaultWorkingDirectory)/DevTest.xml'
14. - name: JUNIT_FILE_TEST

15. value: '$(System.DefaultWorkingDirectory)/ACCTest.xml"'
16. - name: BRANCH

17. stages:

18. - stage: Build

19. condition: eq(variables['Build.SourceBranch'], ‘'refs/heads/master")

20. jobs:

21. - job: ApplyChange_Publish

22. steps:

23. - task: ServiceNow-CICD-SC-Apply@2

24. inputs:

25. connectedServiceName: 'SOC Dev Instance'

26. appSysId: '$(APPSYSID)'

27. branchName: '$(BRANCH)'

28. - task: ServiceNow-CICD-App-Publish@2

29. condition: succeeded()

30. inputs:

31. connectedServiceName: 'SOC Dev Instance'

32. sysId: '$(APPSYSID)'

33. versionFormat: 'detect’

34. - task: ServiceNow-DevOps-Agent-Artifact-Registration@l

35. inputs:

36. connectedServiceName: ‘plat4mationdemonew@2-ServiceNow CICD-ServiceNow DevOps Service
Connection’

37. artifactsPayload: "{\n \"artifacts\": [\n {\n \"name\": \"ServiceNow Azure
CICD\",\n \"version\": \"1.$(Build.BuildId)\",\n \"semanticVersion\":
\"1.$(Build.BuildId).e\",\n \"repositoryName\": \"ServiceNow Azure CICD\"\n \n J\n}
\n"

38. - task: ServiceNow-DevOps-Agent-Package-Registration@l

39. inputs:

40. connectedServiceName: ‘plat4mationdemonew@2-ServiceNow CICD-ServiceNow DevOps Service
Connection’

41. packageName: 'ServiceNow Azure CICD'

42. artifactsPayload: |

43. {

a44. "artifacts": [

45, {

46. "name": "ServiceNow Azure CICD",

47. "repositoryName”: "ServiceNow Azure CICD",

48. "version": "1.$(build.buildId)",

49. "pipelineName":"$(system.teamProject)/$(build.definitionName)",
50. "taskExecutionNumber":"$(build.buildId)",

51. "stageName":"$(system.jobDisplayName)",

52. "branchName":"$(build.sourceBranchName)"

53. I

54. "pipelineName":"$(system.teamProject)/$(build.definitionName)",

55. "taskExecutionNumber":"$(build.buildId)",

56. "stageName":"$(system.jobDisplayName)",

57. "branchName":"$(build.sourceBranchName)"

58. }

59. - stage: Test

60. condition: and(succeeded(), eq(variables['Build.SourceBranch'], 'refs/heads/master'))
61. jobs:

62. - job: InstallToTest_RunTest

63. steps:

64. - task: ServiceNow-CICD-App-Install@2

65. inputs:

66. connectedServiceName: 'SOC Test Instance'’

67. sysId: '$(APPSYSID)'

68. - task: PowerShell@2

69. name: RunTestATF

70. inputs:

71. targetType: inline

72. script: "$user = \"test.azure\"\n$pass = \"012s+@&TgV.1@L5a”\"\n$base64AuthInfo =

[Convert]::ToBase64String([Text.Encoding]::ASCII.GetBytes((\"{0}:{1}\" -f $user, $pass)))\n$headers
= New-Object
\"System.Collections.Generic.Dictionary[[String],[String]]\"\n$headers.Add("'Authorization', ('Basic
{@}' -f $baseb4AuthInfo))\n$headers.Add('Accept’, 'application/json')\n$headers.Add('Content-

Type', 'application/json')\n\n$uri = \"https://plat4mationdemonew20.service-
now.com/api/sn_cicd/testsuite/run?test_suite_sys_id=cd4d28cbc3d866102d4bf50f05013144\"\n$method =
\"post\"\n$atfProgress = Invoke-RestMethod -Headers $headers -Method $method -Uri $uri\n$progressID
= $atfProgress.result.links.progress.id | ConvertTo-Json | ConvertFrom-Json\necho
$progressID\nStart-Sleep -s 30\n\n$uri = \"https://plat4mationdemonew20.service-
now.com/api/sn_cicd/progress/$progressID\"\n$method = \"get\"\n$atfResult = Invoke-RestMethod -
Headers $headers -Method $method -Uri $uri \n$resultID = $atfResult.result.links.results.id |
ConvertTo-Json | ConvertFrom-Json\necho $progressID\n\n\n$uri =
\"https://platdmationdemonew20.service-
now.com/api/pla/cicd_junit_file?result_id=$resultID\"\n$method = \"get\" \n$response = Invoke-
RestMethod -Headers $headers -Method $method -Uri $uri\necho $response.result.file | ConvertTo-Json
| ConvertFrom-Json > '$(JUNIT_FILE_TEST)'\n"

73. - task: PublishTestResults@2

74. inputs:

75. testResultsFormat: 'JUnit’

76. testResultsFiles: '**/ACCTest*.xml'
77. condition: succeededOrFailed()

78. - task: CmdLine@2

79. inputs:

80. script: 'cat $(JUNIT_FILE_TEST)'
81. - job: Rollback

82. dependsOn:

83. - InstallToTest_RunTest

84. condition: failed()

85. steps:

86. - task: ServiceNow-CICD-App-Rollback@2
87. inputs:

88. connectedServiceName: 'SOC Test Instance'’
89. sysId: '$(APPSYSID)'

90. autodetectVersion: 'yes'

91. - stage: DeployToProd

92. condition: and(succeeded(), eq(variables['Build.SourceBranch'], 'refs/heads/master'))
93. jobs:

94. - job: InstallToProd

95. steps:

96. - task: ServiceNow-CICD-App-Install@2

97. inputs:

98. connectedServiceName: 'SOC Prod Instance'
99. sysId: '$(APPSYSID)'
100.

Code Snippet 1: Azure DevOps Pipeline YAML

6.2.3 Planning

servicenow Favorites History ~ Workspaces Admin Sprint Planning 7% Gmi:‘s‘:? ggmﬁgﬁaﬂ a & 2 © o @
Y agile @) Backlog SprintPlanning Sprint Tracking
FEITED Group | SOC Agile - | [Create Sprint] ' (Q search
No Results
ALLRESULTS ~ SOC: Sprint April 11th Release 2025-03-28 - 2025-04-11 Storypoints: 16intotal Odone 16left | Complete Sprint |
+ Agile Development @ Number Short Description Epic Points
Getting Started i = STRY0010003 SOC: Initialize SOC Custom Table Environment "2]
Guided Setup i = STRY0010002 SOC: Initialize CI/CD [4]
LEDEE = STRY0010001 SOC: Setup Azure Pipeline []
Personal Backlogs
2
Products Backlog o
Groups @ Number Short Description Epic Points
Create Agile Group i = STRY0010004 SOC: Setup Application Roles

Releases
Themes

Epics

Stories
Enhancements

Defects

v Strategic Planning

v Enterprise Agile Planning

EAP Configurations

Figure 12: SOC Sprint Planning

During the planning phase workshops are conducted to identify scope, project requirements, selection
of the agile development process model (SCRUM or RAD), and define documentation structure, testing
approach, deadlines, project roles, and the maintenance support package. MaaS proposes the use of
two alternative agile process models for the development phase, SCRUM and RAD. However, the choice
should not be limited solely to these two models, if the requirements of the project demand a different
and more suitable iterative process. We provide an example of requirements (Table 9), which can trigger
either one of the models, via our project use case (Section 6.1). For demonstration purposes, the choice
of model does not matter, as both are iterative development processes.

v Backlog SprintPlanning Sprint Tracking

STRY0010001

SOC: Setup Azure Pipeline

Add description]
Details

Work notes ASSIGNED TO
GA

DUE DATE
GA Germans Anikevics Work notes « just now

Could we please configure the pipeline such that the trigger is a commit action to master branch?

GA Germans Anikevics Field Changes - 20hago

Assignedto Germans Anikevics

GA Germans Anikevics Field Changes + 21hago

Assignmentgroup SOC Agile

GA Germans Anikevics Field Changes - 21hago

Openedby Germans Anikevics

Figure 13: SOC Collaboration Communication Example

6.2.4 Development

Requirements captured during the planning phase are converted into actionable units of work called
user stories, utilising Agile 2.0 of ServiceNow, which is setup on the production instance (Figures 12, 13).
These stories initially populate a general backlog, which are chosen into iterative sprints or rapid
prototyping cycles, depending on their priority. Developers complete the story tasks in the development
environment utilising the built-in features, updating their progress directly in ServiceNow. This allows the
customers to track the progress of work, communicate, and provide feedback or adaptation suggestions
if needed. Once the stories are completed within an iteration, developers commit their changes to Azure
DevOps (Figure 14), which triggers deployment pipeline initially to test, and subsequently to production
environments.

Edit Repository Configuration

S0C2 securiyIncid...

Table Network protocol @ https ssh
— e |
= i | Delet
SOC2 Security Incidents KURL [o o ¢ @ = H
Atableis a collection of records in the ¢ >k Credential S0C Credentials 2 Xv
More Info
Branch
master
> Label [MID Server Name Application SOC2 Security Incidents
v
>k Name Default Email @
Extendstable Always use this email for commits from all developers.
VLR Columns | Controls ‘ Application
Security Operations Center A »
¥ Modules
Security Indidents = Y TableColumns| for text ~ | Search & & « « to200f72 »
Dictionary Entries
Q. Columnlabel Type Reference Max length Default value Displ:
Rejection goto Reference Task 32 false
197001011100
Actual start Date/Time (empty) 40 false

Figure 14: SOC Commit to Azure DevOps

How the user stories are tested depends on the agreement made during the planning phase. For this
iteration demonstration, testing is first manually conducted by developers on the development instance,

after a user story is complete. At the end of an iteration, when the work is committed to Azure DevOps
(Section 6.2.2), our pipeline is triggered, which runs the ServiceNow ATF test suite, upon deploying the
application to test environment. If the test suite tests are completed successfully, the application is
deployed to the production environment.

LY
-]
i

Update H Run Performance Suite H Debug Test Suite H Copy Test e || Detete | 1

‘ Application SOC2 Security Incidents [0] ‘

Parent suite

- value -

‘ Update || Run Performance suite || Debug TestSuite || Copy Testuite || Deete |

Related Links
o

ts(2) | ChildTestSuites | TestSuite Results(2) | Performance Test Suite Results | Test Suite Schedules (2)

= ¥ | Executionorder v | Searc!

Test suite = SOC Testing Suite

Test Execution order 4 Abort on failure

1 false

2 false

Figure 15: Test Environment Test Suite

6.2.5 Maintenance

The maintenance phase is dependent on the type of agreement established during the planning phase.
Maas proposes the use of two alternatives: hypercare and managed services. For this demonstration, we
use the latter. A managed services team provides ongoing support through a predefined support
package. This can be done in a form of a contractual agreement which dictates the number of hours the
team is expected to spend every week on the maintenance of the application. Maintenance activities
include bug fixes and enhancements which may arise after the completion of the development phase.
Considering the CI/CD pipeline is already setup, managed services team can continue to utilise it to
deliver their improvements iteratively and efficiently. The feedback loop remains consistently short,
ensuring continuous delivery quality, and responsiveness towards evolving user needs.

6.3 Applying MaaS to Mendix

Next to ServiceNow, we provide an example of a potential application of MaaS on another metadata-
driven PaaS platform, namely Mendix, which is a platform that facilitates development primarily through
a visual development environment called Mendix Studio Pro. Unlike ServiceNow, Mendix Studio Pro
provides developers the ability to build and test their applications locally, rather than through cloud. It
encourages rapid prototyping and experimentation due to development being local, avoiding additional
costs, as well as affecting other environments. For the collaboration environment, Mendix can utilize
Sprintr, which is a project management tool built into Mendix. Packages from local Mendix environments
can be uploaded directly into Sprintr, and subsequently to integration, acceptance (test) or production
environments. For testing, Mendix does not offer automated testing services, however, third party
vendors exist which do offer such capabilities. Lastly, collaboration and communication are offered via
Sprintr built-in user story, backlog, and sprint planning capabilities, however, third-party systems such as
JIRA or Slack are usually preferred. The planning, development, and maintenance phases follow the
same process model (Figure 11) and steps defined for ServiceNow in Chapters 5 and 6, while utilising the

environment setup of Rugby onto Mendix as displayed in Figure 16.

Development Environment Integration Environment
Local Mendix Studio Azure DevOps,
Pro Environment Jenkins, ...
Developer
Collaboration Environment Test Environment
Mendix
Sprintr Acceptance/Test
Environment

&

User

|

Production Environment

Mendix Production
Environment

Figure 16: Adaptation of Rugby's Five-Environment Model for Mendix

7 Results

In this chapter we present the results obtained through answering the research questions defined in
Section 1.3. The thesis explored the foundational differences between the processes of traditional
software development and software development conducted using PaaS environments to answer RQ 1.
We examined the alighment and applicability of established and novel software development methods,
as well as their components, with software development principles specific to PaaS to answer RQ 2.
Lastly, based on these insights, we answer RQ 3, namely whether the benefits of a PaaS-oriented
software development methodology led to better outcomes compared to non-Paa$ oriented
methodologies.

7.1 Survey

Validation of MaaS has been performed through the evaluation of benefits associated with improved
development outcomes, such as faster development iterations, improved stakeholder collaboration, and
fewer defects. From these benefits, we derive the following evaluation metrics: collaboration,
performance, resource efficiency, end-user involvement, and delivery effectiveness. Considering the use
of experts, the questions used for evaluation aim to quantify subjective human perceptions, such as
opinions, attitudes, and experiences, with regards to the demonstration of the MaaS$ application on a
mock project. To transform perceptions into measurable data, we use the Likert scale, which was devised
specifically for measuring perception in an accepted and validated manner [28]. In other words, we
aimed to capture qualitative insights (participants subjective experiences) quantitatively.

I I 9 N,
1 — —Zz:.)l 7 W= Z[Sglltrla - IIJ) ' R:]

x =
E—1 o4
1 1=1

Equation 1: Cronbach's Alpha Equation 2: Wilcoxon Signed-Rank Test

The Likert scale values represent a particular sentiment, ranging from either strongly agreeing or strongly
disagreeing with the posed question or statement, while also maintaining a neutral middle point. Likert
scale point ranges typically vary between 1-3, 1-5, 1-7, and 1-10 points, sometimes beyond that,
depending on the underlying goal of the research, and its human perception evaluation. For this survey,
a Likert scale of 1-7 was used, as it reduces ambiguity via a more nuanced spectrum of choices. In lower
point ranges, participants might be forced to choose between two equally undesirable points, whereas a
range of 1-7 points provides more choices, increasing the probability of meeting the objective reality of
people [28]. Higher point ranges can have an opposite effect, introducing confusion, as it becomes
increasingly more difficult to reliably distinguish between a larger number of options.

ni(ny +1)
2

N

na(n2 + 1)

—RI.L”Z:H]IQ* — Ry

2
Uy = nino + =
1 1742 9 2

Equation 3: Mann-Whitney U Test

There are two schools of thought with regards to the treatment of Likert scales for analysis: ordinal and
interval scales. Ordinal scales consider choices as arranged in a particular ranking order, without

considering the relative distance between two responses quantitatively, whereas interval scales aim to
combine a set of responses to produce a general composite score for a particular question [28]. Our goal
is to evaluate five distinct metrics, meaning that for each metric a subset of questions is defined to
deduce a more general composite score as the outcome. In the case of this thesis, we have a small
sample size of ten experts. Because of this, normality assumption cannot be guaranteed even if it were
true. Therefore, we use non-parametric tests and consider our scale as ordinal; namely Wilcoxon signed-
rank test (Equation 2) to determine if the experts view any given evaluation metric of MaaS$ as above
average, Mann-Whitney U test (Equation 3) to compare the composite scores technical or functional
subgroups to uncover any potential role perception differences, and the Spearman correlation test
(Equation 4), to explore if experts who rank one metric positively also rank the other metrics similarly.
For an additional reliability check on our Likert scale survey questions, we use Cronbach’s alpha test
(Equation 1) to make sure the questions for each evaluation metric measure the same thing. Finally, as
we treat our scale as ordinal, medians and interquartile ranges (IQR) are used for descriptive statistical
analysis after Cronbach’s alpha test.

GZ(I;-)
P = 1 — 5
n(n=—1)

Equation 4: Spearman's Rank Correlation

7.2 PaaS and Traditional Software Development Differences

The key differences between PaaS and traditional software development were identified through a
literature review, explored and analysed in Section 2.1 and Chapter 3, identifying PaaS characteristics
(Table 4) and PaaS development principles (Table 5). To answer RQ 1, we compile the key findings in
Table 10 below.

Table 10: Development Differences Between Traditional and Paa$S Environments

Infrastructure Traditional software development environments require the manual management

abstraction of their infrastructure, namely hardware, software, middleware, and databases. In
contrast, PaaS platforms facilitate and therefore abstract this infrastructure
management, allowing developers to focus primarily on delivery of applications,
user needs and functionalities, and other project tasks

Built-in tools PaaS$ platforms inherently offer pre-built services through shared components, such

and services as access and security controls, data management, functioning software templates
and building blocks, security frameworks, development tools, integration
connectors, and more. Traditional environments in contrast require manual
configuration and management or custom solutions to facilitate the same functions

Scalability and Traditional environments typically scale through manual hardware upgrades or

flexibility additional server procurement, whereas Paa$S platforms support automatic on
demand scaling, reducing downtime, maintenance, effort, and allowing resource
usage to match the demand or load on the platform

Development Rapid prototyping capabilities of Paa$S platforms through extensive component

speed reusability, templates, and other built-in tools and services, as well as the general
infrastructure abstraction significantly shorten developer loops, allowing for a fast
time-to-market delivery of software applications

Knowledge Traditional environments require developers to have a deep understanding for
tools, programming languages, and the surrounding infrastructure, which can differ
from project to project, or organisation to organisation. Paa$S platforms significantly
lower the entry barrier for developers due to their extensive configurational and
other built-in services capabilities, documentation, training and learning materials,
enabling both experienced software developers and citizen developers to produce
quality software.

7.3 PaaS Methodology Compatibility

We have established that PaaS platforms streamline software development through the provision of
model-driven development, cloud services and built-in tools, collaborative environments, integration
capabilities, and infrastructure abstraction to allow developers to produce and prototype applications
with a faster time-to-market than with traditional environments. We analysed established and novel
methodologies against PaaS development principles (Tables 4, 5, and 10) to answer RQ 2 in Chapter 4.

The findings identified Agile process models and CI/CD support as highly compatible with PaaS software
development principles. Agile methodologies emphasize iterative and incremental delivery, as well as
user collaboration, which align with the inherent rapid prototyping, short development loops,
collaboration environments, and fast-time-to market capabilities of PaaS platforms. CI/CD capabilities
align with PaaS via automating testing, integration, and deployment processes, further shortening
development loops, enhancing development speed, and improving software sanitation. Additionally,
many Paa$ platforms, e.g. ServiceNow and Mendix, provide built-in support of CI/CD pipelines. Hybrid
methodologies which blend Agile and traditional elements provide flexibility to leverage the benefits of
structured initial planning with iterative development and prototyping, utilising the full range of PaaS
automation and scalability capabilities. Lastly, the Rugby Agile process model emphasizes CI/CD and its
frequent releases with immediate user feedback loops, aligning with PaaS capabilities and development
principles. Its five-environment model, consisting of development, integration, collaboration, delivery,
and target environments, complements the multi-instance setup typically used by PaaS platforms and
can therefore be used for facilitating structured project management.

7.4 Benefits of a PaaS-oriented Software Development Methodology

Finally, based on the answers of RQ 1 and RQ 2, we proposed an experimental hybrid methodology
Maas (Chapter 5) to conduct an application case study using ServiceNow and answer RQ 3, namely, to
explore if benefits of a PaaS-oriented software development methodology led to better outcomes in
collaboration, performance, resource efficiency, end-user involvement, and delivery. To achieve this, a
validation process was performed (Chapter 6) in the form of a mock project on ServiceNow to assess
whether Maa$ can provide measurable benefits over established traditional, iterative, or hybrid
methodologies. This process was then presented to ten industry experts with experience in both
traditional and PaaS software development environments. The feedback was recorded in the form of

Likert-scale survey with blocks of questions (Appendix A) pertaining to each improved outcome metric
(Section 7.1).

Table 11: Initial Median Scores

Collaboration ' Performance @ Resource Efficiency = End-User Involvement Delivery

5.0 3.5 5.0 6.0 5.5
4.5 4.5 5.0 5.5 5.5
4.5 5.0 4.5 6.0 4.0
4.5 5.0 4.5 5.5 4.0
6.5 6.5 6.0 6.0 6.5
5.0 5.0 4.5 5.0 4.0
4.0 5.0 5.0 4.0 4.5
4.5 5.0 5.0 5.0 5.0
5.5 4.0 5.0 4.5 6.0
5.0 5.0 5.0 5.5 5.0

Table 12: Initial Cronbach's Alphas

Collaboration = Performance Resource Efficiency End-User Involvement Delivery

o 0.723 0.656 0.420 0.862 0.833

First, we calculate initial composite scores as median scores (Table 11) across all five metrics for all
respondents and their subsequent Cronbach’s alphas (Table 12) to determine if the questions for each
metric measure the same thing. We use a score of a < 0.70 to determine if the questions in each block
do not pertain to the same topic. If a < 0.70 for a metric, then we remove certain questions from each
metric question block to improve the a. After further analysis, to achieve a > 0.70 for each metric, we
removed questions (see Appendix A) “To what extent do you agree that MaaS$ accelerates and shortens
development iteration cycles?” and “Compared to traditional software development methods, does
Maas improve performance outcomes with regards to PaaS-specific software development projects?” for
the performance question block, and questions “To what extent do you agree that Maa$S optimises the
use of resources in PaaS-specific software development projects?” and “Compared to traditional
software development methods, does MaaS demonstrate higher resource efficiency with regards to
PaaS-specific software development?” for the resource efficiency question block. Once removed, we
update our initial median scores (Table 13) based on the positive a > 0.70 score (Table 14).

Table 13: Updated Median Scores

Collaboration = Performance Resource Efficiency End-User Involvement Delivery

5.0 3.0 4.0 6.0 5.5
4.5 4.0 4.5 5.5 5.5
4.5 5.0 5.0 6.0 4.0
4.5 4.5 4.0 5.5 4.0
6.5 6.5 6.5 6.0 6.5

5.0 4.5 4.0 5.0 4.0

4.0 5.5 5.0 4.0 4.5

4.5 5.0 5.0 5.0 5.0
5.5 5.0 5.0 4.5 6.0
5.0 4.5 6.0 5.5 5.0

Table 14: Updated Cronbach's Alphas

Collaboration = Performance Resource Efficiency End-User Involvement Delivery

o 0.723 0.732 0.728 0.862 0.833

Table 15 presents medians, means, and dispersion indices for all completed responses. In general, for all
five of the composite metric scores (medians), the neutral point of 4.0 is exceeded, indicating an overall
favourable perception of Maa$ by experts. End-user involvement shows the strongest agreement with
median = 5.5 and mean = 5.30 * 0.67 suggesting that Maa$S engages end-users effectively, followed by
resource efficiency and delivery — both with medians = 5.0. Collaboration and performance share the
lowest, however, still positive agreement with medians = 4.75 each.

Table 15: MaasS Likert Survey Descriptive Statistics

Count Median Mean Std Min Max Sem
Collaboration 10.0 4.75 4.90 0.699 4.0 6.5 0.221
Performance 10.0 4.75 4.75 0.920 3.0 6.5 0.291
Resource Efficiency 10.0 5.00 4.90 0.843 | 4.0 6.5 0.267
End-user Involvement 10.0 5.50 5.30 0.675 4.0 6.0 0.213
Delivery 10.0 5.00 5.00 0.882 4.0 6.5 0.279

To determine if the experts rated any given metric above average, or the neutral midpoint of four (1-7
Likert scale), Wilcoxon signed-rank test was performed on every composite metric with results recorded
in Table 16. All five medians differ significantly from the neutral midpoint with p < 0.05 in every case,
signifying that experts perceive Maa$ as potentially beneficial across all evaluation metrics. The highest
W values of W = 45.0 can be found for collaboration and end-user involvement, indicating that almost
every expert ranked these metrics above the neutral midpoint of four. Even the lowest W values of W =
28.0 for resource efficiency and delivery also report a positive outlook with p < 0.05. Given the small
sample, the tests should be viewed as exploratory, however, the consistent pattern of positive
perception of MaaS on all its evaluation metrics further supports our descriptive results in Table 15, as
well as the proposition that Maa$ can deliver advantages in collaboration, performance, resource
efficiency, end-user involvement, and delivery.

Table 16: Wilcoxon Signed-rank Test Results

Collaboration = Performance Resource Efficiency End-User Involvement = Delivery

W 45.0 39.5 28.0 45.0 28.0
p | 0.002 0.021 0.008 0.002 0.008

In Section 1.5.1 we presented the experts partaking in the survey and their respective roles. To examine
whether technical experts (n = 6) or functional experts (n = 4) perceived MaaS differently, we conduct an
exploratory Mann-Whitney U test on each composite metric score. We also include the rank-biserial
correlation to show by how much does the technical or functional expert group rank one metric higher
than the other. The results are shown in Table 17. In general, no statistically significant group differences
were found for any metric with p > 0.05 in all cases. With r of +0.63 and +0.54 for resource efficiency and
delivery respectively, and p values of 0.12 and 0.19 respectively, only moderate indication of difference is
suggested in favour of the technical experts, yet with p > 0.05 remains not significant enough. The results
suggest that both technical and functional expert groups ranked Maa$ evaluation metrics similarly, with
small indications in favour of the technical group for resource efficiency and delivery. The positive
indications remain statistically insignificant, and the results remain exploratory due to the small sample
size.

Table 17: Mann-Whitney U Test Results

U p Rank biserial r
Collaboration 10.0 0.74 +0.17
Performance 11.0 0.91 +0.08
Resource Efficiency 45 | 0.12 +0.63
End-user Involvement 9.5 | 0.66 +0.21

Delivery 5.5 0.19 +0.54

Lastly, to explore if experts who rank one metric positively also rank the other metrics similarly, we
performed Spearman rank correlation test due to having a small survey sample size and the data as
ordinal medians. The results are displayed in the form of a heat map in Figure 16. Considering this is a
two-tailed test, p < 0.05 is required for a positive correlation. With an a of 0.05 for two-tailed test, and n
=10, we get the critical value of £0.648, or 0.65 if rounded. This means that only values above 0.65 can
be considered statistically significant. In our results, only performance and resource efficiency share a
correlation p value higher than 0.65 with p = 0.71. Experts who see MaaS improve performance also
tend to see MaaS improve resource efficiency. A moderate collaboration and delivery link can also be
observed with correlation p = 0.61, however fails to cross the significancy threshold of 0.65. A small link
indication can be observed between resource efficiency and delivery with correlation p = 0.43, but also
remains below the threshold of 0.65.

Spearman correlation matrix - MaaS metrics

Collab

Perf

Delivery EndUser ResEff

I
Collab

- 028

-0.24

0.12

perf

| |
Reseff EndUser Delivery

1.00
l 0.75

Figure 17: Spearman Correlation Matrix Heat Map

- 0.50
0.12

-0.25
0.43 - 0.00

--0.25

--0.50

I—0.75

-—1.00

Spearman p

Answers to open questions (Appendix A) by experts following each Likert-scale block largely reinforce the
statistical results, supplying concrete examples of both positive and negative remarks on Maa$ (Table
18). In summary, experts praised Maas for facilitating transparent communication, integrated team
collaboration, accelerated development cycles through CI/CD pipelines and continuous feedback loops,
reuse of platform components, user involvement, and automated testing. While negative remarks were
scarce, they help identify critical areas for improvement. Some of these areas include over-reliance on

automation, end-user fatigue due to constant methodology-related activities, licensing and resource
allocation, and end-user platform adoption and usage.

Collaboration

Answer!

“Having all stories
structurally
managed in the
Agile Development
on the platform,
helps
tremendously. All
project members
always have access
to these and the
status is visible to
everybody. This is
crucial for
coordination.”

Answer?

“Traditional
methods (waterfall)
isolate planning,
development, and
delivery. Maa$S
improves
collaboration by
integrating those
aspects and more
agile approaches
and CI/CD from the
start, which | think
should reduce
misalignment and
improve
responsiveness to
feedback”

Table 18: Compiled Expert Insights

Answer?

“Agile methods are
important
component of
MaasS. The agile
methods alone
(without the Maa$
frame around it)
aren't as effective”

Answer"

“l doubt MaaS
would improve
cross-functional
team collaboration.
From my experience
teams from non-
software
development
domains have hard
time understanding
agile and other
methodologies that
are native to our
field. And in my
opinion, it's hard to
understand those
unless you followed
them at least once”

Performance

Resource
Efficiency

End-user
Involvement

Delivery

“MaaSis a
comprehensive
method for a
development.
From my
perspective it not
a specific
component which
makes the
difference but the
combination of all
aspects”
“Utilization is
higher per
resource
compared to other
traditional and
agile methods”

“Traditional
methods generally
consider feedback
only during the
last stages of the
project. MaaS
seems to promote
end-user
involvement
during the
development
stage, which
improves
flexibility”

“Cl/CD
combination with
development
sprints contributes
most towards
quality and
timeline
management”

“The use of CI/CD
pipelines and
collaborative tools,
such as Git and
ServiceNow's Agile
2.0, improves the
output of the
software
development teams
specifically”

“Development
members are
efficiently
optimised as they
are put to work for
Cl/CD and Sprints
and they are also
needed for design,
which now happens
continuously”
“End-users can spot
illogical
functionality and
weird behaviour
much quicker,
making decisions
for rework or
revisioning easier
thanks to
continuous testing
and feedback”

“Different
methodologies for
different stages of
the project, each
one that is most
suitable for the
stage”

“Traditional
methods often
delay feedback

and lack
automation,
leading to slower
delivery and higher
risk of rework”

“- Time of
developers

- Time of project
managers (less
thinking about
methodology etc.
more about
following the
workflow)”

“For example, a
previously
determined user
trend may not be
accurate due to
lack of user
feedback during
the planning
phase. New
analysis, using
short feedback
loops during the
development
phase, can lead to
the change of
functional
requirements”
“Holistic view -
people, process,
technology”

“Simultaneous use
of CI/CD and
SCRUM sprints
means cycles can be
kept short as
improvements on
features are put on
the backlog and
picked up again for
the next sprint”

“The beginning
phase seems to be a
bit stricter, as it
follows a more
traditional method.
This may create idle
time for developers,
which isn't as
productive as full
Agile”

“With the
involvement of end
users throughout
the whole
development
process, bottlenecks
and issues can be
identified early and
it can be avoided
that late rework
needs to be done”

“Consideration of
end-user and other
stakeholders during
development,
continuous delivery,
short feedback
loops, and backlog
visibility”

In conclusion, to answer RQ 3, we used five types of analysis — descriptive statistics, qualitative expert
insights, one-sample Wilcoxon test, Mann-Whitney U test for group comparison, and the Spearman rank
correlations. In general, all medians are above the neutral point of 4.0, indicating a positive outlook on
all Maas evaluation metrics from our experts, supported further by Wilcoxon test. Mann-Whitney U test
showed that both technical and functional experts do not differ in their ratings with the lowest p value
being p =0.12, or in other words no statistical significance was achieved to show otherwise. The
Spearman rank correlation test found a strong positive relationship between resource efficiency and
performance, a relatively positive link between collaboration and delivery, and a weak positive link
between resource efficiency and delivery. Convergingly, the results from all statistical tests indicate
empirical support for MaaS as a hybrid methodology which improves development outcomes for PaaS
software development within the dimensions of collaboration, performance, resource efficiency, end-
user involvement, and delivery. Expert insights achieved via open questions further support quantitative
findings, as well as provide avenues for improvement. These results, however, are to be considered
exploratory and non-decisive due to the small sample size of experts, and the lack of a real-world project
scenario.

8 Final Remarks

8.1 Discussion

In this thesis we set out to analyse and subsequently evaluate software development methods tailored
for PaaS platforms, culminating in the proposal and subsequent application study of MaaS — a hybrid
software development methodology adherent to Paa$S software development principles (Chapter 3). It
combines the structured planning approach of traditional methodologies, the iterative nature and
flexibility of Agile methodologies, and integrates it with CI/CD delivery pipelines. To achieve this goal, we
followed Design Science structures outlined by Peffers et al. and Offermann et al. [7, 8], where we
identified the problem — fundamentally different software development processes and requirements
between traditional and PaaS environments; presented a solution based on available scientific literature
in the form of MaaS$, demonstrated it through a mock project using ServiceNow as our PaaS example,
and lastly evaluated it via expert surveys and subsequent result analysis (Chapter 7). While the findings
suggest that Maa$S improves software development on Paa$ platforms in areas of collaboration, end-user
involvement, performance, resource efficiency and delivery effectiveness, the results must be considered
as solely exploratory due to limitations with regards to applying Maa$S on a real-world project, and a
small sample size of experts for evaluation. Additionally, we were not able to find sufficient scientific
literature on this topic, therefore the theoretical background of this thesis might be relatively weak.

While Maa$ inherently does not propose any novel methods, it presents itself as a construction of
methods best suited for PaaS-specific software development, taking structure from traditional methods,
using Agile process models to facilitate development due to their flexible, iterative, and collaborative
nature, supporting the development process model with an equally iterative and user-centric feedback
Cl/CD pipeline, and applying a relatively novel project methodology and five environment model of
Rugby. Across all evaluation metrics of MaaS, namely collaboration, end-user involvement, performance,
resource efficiency and delivery effectiveness, expert Likert-scale survey results (Section 7.4) show a
unanimous positive outcome (Table 15). With the neutral midpoint score being 4.0, the lowest median
scores were recorded for collaboration and performance at 4.75, and the highest at 5.50 for end-user
involvement.

Based on the open survey questions (Appendix A) (Table 18) particularly positive expert sentiment
identified integration of Cl/CD with Agile process models, structured planning and responsibilities,
iterative development, and continuous feedback loops as critical success factors of MaaS. End-user
involvement was significantly praised over all other metrics, as MaaSs involves users in planning and
development activities through workshops and short feedback loops. Having all development activities
situated in a single platform, which provides a plethora of built-in services for development and
collaboration, and is accessible to both development teams and users, allows for rapid feedback
provision and improved resource utilization. Subsequently, similar sentiment was directed towards
resource efficiency, as it is improved due to pre-built components and services offered by PaaS
platforms, meaning that the need for third party software, tools, or other supporting infrastructure is
drastically reduced. Delivery and performance were strongly praised for Cl/CD automation, fast build-
test-deploy cycles, and automated testing promoting frequent and high-quality application deployments.

8.2 Limitations
While the results indicate on overall positive support for the benefits of MaaS, several areas of
improvement are also discovered. End-user involvement and collaboration are enabled through tools

offered by PaaS platforms, and structure offered by Maa$S, however, are not effective if the relevant
project stakeholders and users do not actively use the platform. Without constant participation, the
benefits offered by PaaS platforms and Maa$ are underutilised. Stronger governance structures and user
adoption trainings in the planning phase, or during an initial preliminary sprint, through workshops or
change management, are required to ensure all stakeholders fully engage with the platform and its
services. Similarly, some experts doubt that MaaS would improve cross-functional team collaboration, as
non-software development teams of either the client or the software producer may not be familiar with
PaaS platforms or not using them at all. The same could be said with regards to the usage and
understanding Agile or other types of methodologies. If the project is long and complex, users also may
experience fatigue in constant feedback provision. Therefore, depending on project requirements and
timeline, suitable pacing should be introduced and agreed upon during the planning phase. CI/CD
automation was particularly praised for automated testing, however, experts cautioned that it also may
disguise poor testing practices. In our demonstration in Chapter 6, we presented a simple process, where
automated test suites would run on the test environment, and upon successful completion, the piece of
software would be deployed to the production environment. Upon testing failure, the deployment would
be cancelled, and the software rolled back. Ideally, automated testing should run side by side with
manual testing, as, to the understandable disappointment of developers, it remains the best practice.
Once a story is completed, the responsible developer should also conduct testing such that the story
acceptance criteria is met. User acceptance testing (UAT) is also highly recommended, where test cases
and test steps are made for any piece of completed software and completed by the users on the testing
environment during the final stages of a project lifecycle. Considering the use of PaaS platforms, scope
creep can produce unexpected negative outcomes in terms of licensing costs, particularly when working
on rapid prototyping type projects. To avoid this, strict scope planning, and resources which affect
licensing costs (number of tables, users, etc.), should be established early on and adhered to in the
planning phase.

8.3 Benefits

Compared to solely Agile models, MaaS$ is more versatile, suitable both for complex projects requiring
rigid planning, as well as small-scale projects requiring a rapid time-to-market. It provides flexibility in
the choice the project relevant Agile process model based on requirements of the project and
incorporates a structured and clearly defined planning phase to tackle topics of governance, scope,
requirements, and other project-relevant documentation. Lastly, it leverages the five-environment model
of Rugby, built specifically for Agile process models, providing a structured yet flexible framework which
traditional Agile neglects. Compared to traditional methods, MaaS improves delivery by integrating
flexibility via iterative development, CI/CD pipelines, and user feedback while still retaining the
structured phase approach between planning, development, and maintenance. The development phase
is changed to employ an Agile process model, enabling rapid prototyping, frequent feedback, and
flexible adaptation to changing requirements. MaaS$ incorporates the strengths of PaaS platforms, such
as ServiceNow or Mendix, namely low-code or no-code functionalities, workflow automation, templates,
integrated Agile project management, and CI/CD support, all of which neither Agile nor traditional
methodologies account for. In essence, Maas is designed to work on all possible projects of all scale and
scope intended to be developed on Paa$ platforms.

8.4 Future Work

The main future research recommendation would be to polish the proposed hybrid MaaS methodology
to a more complete form and conduct validation on a real-life project with actual development teams,
project, and stakeholders, as well as evaluation with a much broader number of experts to achieve
meaningful insights. A real example would allow researchers to gather data on stakeholder behaviour
and adaptability, defect or bug rates, development speed, user satisfaction, and possibly return on
investment (if comparing the use of Paa$S platforms with Maa$ or traditional environments with non-
Maa$S methodologies). This would provide means to more accurately evaluate Maa$ against traditional,
Agile, or other hybrid methodologies. Additionally, researchers should explore the organisational change
management imposed by Maa$S on topics such as adoption barriers, organisational culture alignment,
and learning curves. As it stands currently, MaaS is nothing more than a proposal, demonstrated on a
mock project, and evaluated by a limited number of expert respondents. While achieving a generally
positive receptance of MaaS and its methods, the results can only be considered as exploratory and not
indicative of any real impact.

With the flexible nature of MaaS, and its vision of supporting PaaS-specific software development
projects of all scopes and sizes, a promising and novel direction of future research lies in the
development of a modular methodology framework. An adaptive model where software development
methodology components can be selectively assembled and interchanged depending on specific project
variables. Maa$ partially implements this on a high level with the ability to choose the appropriate Agile
process model for the development phase depending on project requirements. Considering the
existence of tens, if not hundreds of different methodologies, consistently choosing the most
appropriate one inherently would introduce limitations, which are otherwise likely supported by a
different methodology. A large decision matrix could be created to support the choice of particular
methodology components, regardless of project phase, based on such factors as project requirements,
team size, available tools and technologies, and other relevant characteristics.

8.5 Conclusion

The primary goal of this thesis was to conduct an application case study to evaluate a software
development methodology which can serve the software development principles of PaaS platforms more
efficiently and effectively, than their established counterparts across five key dimensions: collaboration,
end-user involvement, performance, resource efficiency, and delivery effectiveness.

The results (Chapter 7) produced a positive sentiment towards Maa$ across all five evaluation
dimensions, with the highest median score attributed to end-user involvement of 5.50, and lowest
median score to collaboration and performance of 4.75, both above the neutral midpoint of 4.00. These
results, while answering RQ 3, are to be considered exploratory and non-decisive due to the small
sample size of experts (N = 10), and the lack of a real-world project scenario. Expert sentiment gathered
through open questions highlight critical success factors of Maa$S, namely integration of CI/CD with Agile
methods, automated testing, structured planning and responsibilities, iterative development, and
continuous feedback loops. MaaS provides the structured discipline, sequential phases, and rigid
documentation characteristic of traditional methodologies, while enhancing the flexibility, iterative
feedback, collaboration, and speed characteristic of Agile methodologies. The capability to effectively
integrate Cl/CD pipelines, leverage the strengths of services offered by Paa$S platforms, while maintaining

a high level of stakeholder collaboration and adaptability makes Maa$ particularly advantageous for
software projects typical to PaaS platforms.

In summary, this thesis does not provide any objective evidence with regards to the effectiveness of a
software development methodology which can serve the software development principles of PaaS
platforms more efficiently and effectively than their established counterparts. However, it does provide
substantial exploratory evidence to support a further refined study on the effectiveness of Maa$ by
applying it in a real project setting and evaluating it with a substantially larger group of experts.

“Maas brings the process, people, and technology together in a way which hybrid methods fail to do”.

Acknowledgements

| would like to express my sincere gratitude to Dr. L. Ferreira and Dr. G. Sedrakyan for their guidance,
support, and an infinite pool of patience towards myself and my work process!

References
[1] — Nikiforova, O., Babris, K., Madelane, L. Expert Survey on Current Trends in Agile, Disciplined and

Hybrid Practices for Software Development. Applied Computer Systems, 2021, Vol. 26, No. 1, pp. 38-43.
ISSN 2255-8683. e-ISSN 2255-8691. Available from: doi:10.2478/acss-2021-0005

[2] — Chnar Mustafa Mohammed & Subhi R.M Zeebaree, 2021. "Sufficient Comparison Among Cloud
Computing Services: laaS, PaaS, and SaaS: A Review," International Journal of Science and Business, IJSAB
International, vol. 5(2), pages 17-30.

[3] — Wulf, Frederik & Lindner, Tobias & Strahringer, Susanne & Westner, Markus. (2021). laa$, PaaS, or
SaaS? The Why of Cloud Computing Delivery Model Selection - Vignettes on the Post-Adoption of Cloud
Computing. 10.24251/HICSS.2021.758.

[4] — G. Sedrakyan, M.E. lacob, J. Hillegersberg, “Towards LowDevSecOps Franework for Low-Code
Development”, integrating Process-Oriented Recommendations for Security Risk Management

[5] — O. Gass, H. Meth and A. Maedche, "PaaS Characteristics for Productive Software Development: An
Evaluation Framework," in IEEE Internet Computing, vol. 18, no. 1, pp. 56-64, Jan.-Feb. 2014, doi:
10.1109/MIC.2014.12.

[6] — Krancher, O., Luther, P., & Jost, M. (2018). Key Affordances of Platform-as-a-Service: Self-
Organization and Continuous Feedback. In Journal of Management Information Systems (Vol. 35, Issue 3,
pp. 776—812). Informa UK Limited. https://doi.org/10.1080/07421222.2018.1481636

[7] — Offermann, P., Levina, O., Schonherr, M., & Bub, U. (2009). Outline of a design science research
process. Proceedings of the 4th International Conference on Design Science Research in Information
Systems and Technology - DESRIST '09. doi:10.1145/1555619.1555629

[8] — Peffers, Ken & Tuunanen, Tuure & Rothenberger, Marcus & Chatterjee, S.. (2007). A design science
research methodology for information systems research. Journal of Management Information Systems.
24. 45-77.

[9] — M. N. Aydin, Z. N. Perdahci, |. Safak and J. (Jos) van Hillegersberg, "Metadata Action Network Model
for Cloud Based Development Environment", Advances in Intelligent Systems and Computing, vol. 1161,
pp. 531-543, 2020.

[10] — Shu-Qing, Z., & Jie-Bin, X. (2010). The Improvement of PaaS Platform. 2010 First International
Conference on Networking and Distributed Computing. doi:10.1109/icndc.2010.40

[11] - Singh, A., Sharma, S., Kumar, S. R., & Yaday, S. A. (2016). Overview of PaaS and SaaS and its
application in cloud computing. 2016 International Conference on Innovation and Challenges in Cyber
Security (ICICCS-INBUSH). d0i:10.1109/iciccs.2016.75423

[12] — Walraven, S., Truyen, E., & Joosen, W. (2013). Comparing PaaS$ offerings in light of SaaS
development. Computing, 96(8), 669-724. doi:10.1007/s00607-013-0346-9

[13] — Rohil, Harish & Syan, Manisha. (2012). Analysis of Agile and Traditional Approach for Software
Development. International Journal of Latest Trends in Engineering and Technology. 1. 1- 10.

https://doi.org/10.1080/07421222.2018.1481636

[14] — Fylaktopoulos, G., Goumas, G., Skolarikis, M. et al. An overview of platforms for cloud based
development. SpringerPlus 5, 38 (2016). https://doi.org/10.1186/s40064-016-1688-5

[15] — Bulajic, Aleksandar & Sambasivam, Samuel & Stojic, Radoslav. (2013). An Effective Development
Environment Setup for System and Application Software. Issues in Informing Science and Information
Technology. 10. 037-066. 10.28945/1795.

[16] — Singhto, W., & Phakdee, N. (2016). Adopting a combination of SCRUM and Waterfall
methodologies in developing Tailor-made Saa$S products for Thai Service and manufacturing SMEs. 2016
International Computer Science and Engineering Conference (ICSEC). doi:10.1109/icsec.2016.7859882

[17] — Ruparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT Software
Engineering Notes, 35(3), 8. doi:10.1145/1764810.1764814

[18] - Krusche, S., Alperowitz, L., Bruegge, B., & Wagner, M. O. (2014). Rugby: an Agile process model
based on continuous delivery. In Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering. ICSE '14: 36th International Conference on Software Engineering. ACM.
https://doi.org/10.1145/2593812.2593818

[19] — Cardozo, Elisa & Neto, Benito & Barza, Alexandre & Franca, César & Silva, Fabio. (2010). SCRUM
and Productivity in Software Projects : A Systematic Literature Review. 10.14236/ewic/EASE2010.16.

[20] - Srivastava, A., Bhardwaj, S., & Saraswat, S. (2017). SCRUM model for agile methodology. 2017
International Conference on Computing, Communication and Automation (ICCCA).
d0i:10.1109/ccaa.2017.8229928

[21] — Haig-Smith, T., & Tanner, M. (2016). Cloud Computing as an Enabler of Agile Global Software
Development. In InSITE Conference. InSITE 2016: Informing Science + IT Education Conferences:
Lithuania. Informing Science Institute. https://doi.org/10.28945/3477

[22] — Nath, Mahendra & Muralikrishnan, Jayashree & Sundarrajan, Kuzhanthaiyan & Varadarajanna,
Madhu. (2018). Continuous Integration, Delivery, and Deployment: A Revolutionary Approach in
Software Development. 5. 185-190

https://www.researchgate.net/publication/343760242 Continuous Integration Delivery and Deploym
ent A Revolutionary Approach in Software Development

[23] - Vijayasarathy, L. R., & Butler, C. W. (2016). Choice of Software Development Methodologies: Do
Organizational, Project, and Team Characteristics Matter? IEEE Software, 33(5), 86—94.
do0i:10.1109/ms.2015.26

[24] - Kuhrmann, M., Diebold, P., Munch, J., Tell, P., Trektere, K., Mc Caffery, F., ... Prause, C. (2018).
Hybrid Software Development Approaches in Practice: A European Perspective. IEEE Software, 1-1.
do0i:10.1109/ms.2018.110161245

[25] Mushtaq, Zaigham & Rizwan, M. & Qureshi, M. Rizwan. (2012). Novel Hybrid Model: Integrating
Scrum and XP. International Journal of Information Technology and Computer Science. 4.
10.5815/ijitcs.2012.06.06.

[26] - Cohen, B. (2013). PaaS: New Opportunities for Cloud Application Development. Computer, 46(9),
97-100. doi:10.1109/mc.2013.323

https://doi.org/10.1186/s40064-016-1688-5
https://doi.org/10.1145/2593812.2593818
https://doi.org/10.28945/3477
https://www.researchgate.net/publication/343760242_Continuous_Integration_Delivery_and_Deployment_A_Revolutionary_Approach_in_Software_Development
https://www.researchgate.net/publication/343760242_Continuous_Integration_Delivery_and_Deployment_A_Revolutionary_Approach_in_Software_Development

[27] - Hacaloglu, T., Eren, P. E., Mishra, D., & Mishra, A. (2015). A Software Development Process Model
for Cloud by Combining Traditional Approaches. Lecture Notes in Computer Science, 421-430.
doi:10.1007/978-3-319-26138-6_45

[28] — Joshi, Ankur & Kale, Saket & Chandel, Satish & Pal, Dinesh. (2015). Likert Scale: Explored and
Explained. British Journal of Applied Science & Technology. 7. 396-403. 10.9734/BJAST/2015/14975.

Appendix A: Survey Questions

Collaboration

e To what extent do you agree that Maa$S improves collaboration among cross-functional teams on
Paas projects?
o Can you describe a particular example, where Maa$S improved cross-functional team
collaboration? (Optional: Free-text answer)
e To what extent do you agree that is MaaS is effective in facilitating coordination among different
cross-functional teams?
o Which aspects or components of Maa$S contribute most to improved coordination?
(Optional: Free-text answer)
e To what extent do you agree that MaasS fosters more effective communication between
developers and stakeholders?
o Can you explain any changes you observed in the communication process? (Optional:
Free-text answer)
e Compared to traditional software development methods, does Maa$S improve collaborative
processes with regards to PaaS-specific software development projects?
o Which differences have you noticed in collaborative interactions between Maa$ and
traditional methods? (Optional: Free-text answer)
e Compared to Agile software development methods, does Maa$S improve collaborative processes
with regards to PaaS-specific software development projects?
o Which differences have you noticed in collaborative interactions between Maa$ and
Agile methods? (Optional: Free-text answer)
e Compared to other hybrid software development methods you have experienced, does Maa$S
improve collaborative processes with regards to PaaS-specific software development projects?
o Which differences have you noticed in collaborative interactions between Maa$ and
other hybrid methods? (Optional: Free-text answer)

Performance

e To what extent do you agree that Maa$S improves development speed and performance?
o Can you describe which Maa$ steps or components facilitate improved development
performance? (Optional: Free-text answer)
e To what extent do you agree that MaaS accelerates and shortens development iteration cycles?
o Can you describe which aspect of MaaS contributes to shorter development iteration
cycles? (Optional: Free-text answer)
e To what extent do you agree that MaaS leads to higher productivity in PaaS-specific software
development projects?
o Which specific process improvements of Maa$ have you noticed that contribute to
increased productivity? (Optional: Free-text answer)
e Compared to traditional software development methods, does Maa$S improve performance
outcomes with regards to PaaS-specific software development projects?
o Which key differences have you noticed in performance outcomes between MaaS and
traditional methods? (Optional: Free-text answer)

e Compared to Agile software development methods, does Maa$S improve performance outcomes
with regards to PaaS-specific software development projects?
o Which key differences have you noticed in performance outcomes between MaaS and
Agile methods?
e Compared to other hybrid software development methods you have experienced, does Maa$S
improve performance outcomes with regards to PaaS-specific software development projects?
o Which key differences have you noticed in performance outcomes between MaaS and
other hybrid methods?

Resource Efficiency

e To what extent do you agree that MaaS optimises the use of resources in PaaS-specific software
development projects?
o Can you describe which recourses is MaaS most efficient in optimising? (Optional: Free-
text answer)
e To what extent do you agree that MaaS reduces redundant or ineffective software development
processes?
o Can you provide a particular example, where Maa$ eliminates a redundant process?
e To what extent do you agree that MaaS leverages PaaS-specific built-in services to improve
resource efficiency? (Optional: Free-text answer)
o Which built-in services do you think Maa$ utilises most effectively? (Optional: Free-text
answer)
e Compared to traditional software development methods, does MaaS demonstrate higher
resource efficiency with regards to PaaS-specific software development?
o Which differences have you observed in resource use between Maa$ and traditional
methods? (Optional: Free-text answer)
e Compared to Agile software development methods, does MaaS demonstrate higher resource
efficiency with regards to PaaS-specific software development?
o Which differences have you observed in resource use between Maa$S and Agile
methods? (Optional: Free-text answer)
e Compared to other hybrid methods you have experienced, does Maa$S improve on resource
utilisation and cost savings?
o Which differences have you observed in resource use between Maa$S and other hybrid
methods? (Optional: Free-text answer)

End-User Involvement

e To what extent do you agree that Maas facilitates active end-user involvement throughout the
development cycle?
o Can you describe which MaaS components or processes have allowed for greater end-
user involvement? (Optional: Free-text answer)
e To what extent do you agree that MaasS effectively utilises end-user feedback into iterative
development cycles?
o Can you describe in which part of the development iteration does the end-user feedback
produce the greatest effect? (Optional: Free-text answer)

To what extent do you agree that Maas is effective in enabling end-users to influence project
outcomes?
o Can you provide an example on how end-user involvement in MaaS$ can influence
project or development decisions? (Optional: Free-text answer)
Compared to traditional software development methods, does MaaS encourage greater end-
user engagement and feedback?
o Which improvements have you observed in engagement and feedback between Maa$
and traditional methods? (Optional: Free-text answer)
Compared to Agile software development methods, does MaaS encourage greater end-user
engagement and feedback?
o Which improvements have you observed in engagement and feedback between Maa$
and Agile methods? (Optional: Free-text answer)
Compared to other hybrid methods you have experienced, does MaaS encourage greater end-
user engagement and feedback?
o Which improvements have you observed in engagement and feedback between Maa$
and other hybrid methods? (Optional: Free-text answer)

Delivery Effectiveness

To what extent do you agree that Maa$S improves the quality and timelines of software releases
in PaaS-specific software development?
o Which aspects of MaaS do you believe are most significant in contributing towards
release quality and timelines? (Optional: Free-text answer)
To what extent do you agree that Maa$S improves delivery sanitation and reduces the number of
post-release defects?
o Can you describe which MaaS components facilitate the reduction in post-delivery
defects? (Optional: Free-text answer)
To what extent do you agree that Maas is effective in aligning delivered features with customer
expectations?
o Which Maas features do you think contribute most to meeting customer expectations?
(Optional: Free-text answer)
Compared to traditional software development methods, does MaaS deliver superior outcomes
in terms of delivery effectiveness?
o Which key factors have you observed that contribute towards superior delivery
effectiveness between Maa$ and traditional methods? (Optional: Free-text answer)
Compared to Agile software development methods, does MaaS deliver superior outcomes in
terms of delivery effectiveness?
o Which key factors have you observed that contribute towards superior delivery
effectiveness between Maa$S and Agile methods? (Optional: Free-text answer)
Compared to other hybrid software development methods you have experienced, does Maa$S
deliver superior outcomes in terms of delivery effectiveness?
o Which key factors have you observed that contribute towards superior delivery
effectiveness between Maa$S and other hybrid methods? (Optional: Free-text answer)

