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Recent advances in architecture and scale have enabled LLMs to invoke
external tools, greatly expanding what an agent can do. Yet, as the number
and complexity of those tools grow, agents can still produce malformed or
incorrect calls. Many existing studies focused on testing LLMs capabilities
to assemble such tool calls, mostly focusing on the comparison between
different foundation models. However, most of the recently released models
are increasingly able to do so for specific tasks thanks to dedicated fine-
tuning, shifting the cause of the issue to custom prompting, tool complexity,
and tools combination and description. To test such specific situations it is
necessary to performmanual tests or produce hand-curated testing scenarios.
The aim of this paper is to show how, combining existing generation and
evaluation techniques, it is possible to generate and execute a set of tailored
tests for custom tools, tools combinations and prompt only requiringminimal
additional information, and removing the need for manual intervention
during the process. Our code is available at this URL.
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1 INTRODUCTION
Large Language Models (LLMs) are extremely powerful Natural Lan-
guage (NL) generators, able to produce syntactically and logically
correct sentences in most cases [16] [5]. Since their capabilities have
significantly improved in the past years [14] [6] [4], experts have
leveraged their pattern recognition and understanding capabilities
to introduce the concept of agents and tool-calling [19] [13]. Tools
are functions that can receive input and return output. Tool-calling
for agents refers to the ability to ask an LLM to generate calls to
these functions. These calls can then be parsed and executed, in-
serting the resulting output into the initially generated response.
This allows a certain degree of agency to LLMs, enabling them to
interact with external resources in multiple iterations.

However, tools can be very complex, and their use usually requires
advanced planning capabilities [17] [21]. Although foundation mod-
els are becoming increasingly better at planning [18], a successful
agent also needs clear prompt instructions and tool descriptions.
Any modification in the prompt, tool descriptions, or foundation
model used for inference can alter overall performance. Since the
output is NL, evaluating the consequences of those changes can be
very challenging and requires significant manual work.

Recent academic work has developed several strategies to test the
ability of foundation models to make correct use of tools, but the
majority neglected the complexity of custom agents with specific
prompts and tool descriptions, focusing instead on predefined lists
of tools and hand-curated datasets. Additionally, the evaluation of
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the results is not always sufficiently detailed to draw meaningful
conclusions, thus requiring further manual analysis.

The main research question that guides this work is the following:
How can a comprehensive set of tests be automatically
generated from minimal developer input to evaluate
whether a custom agent invokes the intended tools
with the correct arguments, in the correct order, and
produces contextually appropriate output in realistic
conversational scenarios?

To address it, the following sub-questions need to be investigated:
SQ1 What developer-supplied information is minimally required

to provide sufficient context to generate valid ground truth for
tests?

SQ2 What noise-injection strategies can produce realistic conver-
sation scenarios that effectively cover broader edge cases?

SQ3 Does T-Eval’s six-dimensional scoring provide meaningful
and actionable metrics for evaluating complete multi-turn
conversations?

In this paper, in Section 2 we first give an overview of the avail-
able literature relevant to the investigated issue. In the following
section, we describe the preliminary work necessary to address the
sub-question SQ1. Section 4 illustrates the implementation of the
pipeline, explaining in detail the approach used. In Section 5 we
present the results produced by the newly introduced framework
and in Section 6 we discuss the implications, potential limitations
and the proposed future steps. Finally, Section 7 presents the an-
swers to the proposed research question and the overall result of
this work.

2 RELATED RESEARCH
With the increasing use of LLMs as tool-calling agents, many re-
search groups have focused on the development of testing method-
ologies for this application. Previous work has focused mostly on
single interaction tool calling [11] sometimes allowing for multiple
tool calls [15]. More recent papers analyzed increasingly complex
scenarios [9] but still performed tests on a given set of tools pro-
vided in their work. However, for many business applications it is
necessary to develop custom tools tailored to a specific sector or
company.
The work by Arcadinho et al. [1] focuses on automating the

generation of tests dynamically using LLMs. They use intermediate
graphs to reduce LLMs’ tendency to hallucinate and to increase the
coverage of diverse conversation scenarios. With this approach, they
address the issue of a static dataset limited to a specific set of tools.
While their generation process primarily delegates tool ideation
to the LLM, based on user requests, they explicitly mention that
existing tools can be easily included in the pipeline. Unfortunately,
they do not provide any specific evaluation methodology and they
require manual verification of generated tools and conversations.
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Several papers provide relatively simple evaluation techniques,
focusing on the correctness of the tool choice and arguments [10]
or on the final response quality [11]. Alternatively, work by Yu et
al. [20] provides a more nuanced evaluation, but this comes with a
high computational cost and higher instability.

The work by Chen et al. [3] focuses attention on all the interme-
diate steps necessary for a correct tool call. It introduces T-Eval, a
six-dimensional evaluation framework aimed at decomposing the
evaluation into sub-tasks, to deepen the understanding of potential
issues. While T-Eval metrics use Sentence-BERT embeddings and
the Hopcroft-Karp matching algorithm, incurring some transformer
and graph-matching computational overhead, they avoid full LLM
inference on each example, making them substantially lighter and
more stable than LLM-based evaluators.

2.1 Gaps
After analyzing the previous work, the main gaps identified are:

(1) Inability to test custom tools and tool combinations.
(2) Lack of detailed evaluation metrics.
(3) Necessity of substantial manual curation.
To address the first gap, the work by Arcadinho et al. [1] provides

a generation pipeline that can be used to produce tests, and it can
be used with any set of tools. This process does not require any
manual intervention, thereby addressing the third gap. However, it
does not provide any specific evaluation methodology.
To address the second gap, the T-Eval framework by Chen et

al. [3] provides a nuanced set of metrics to evaluate the correctness
of the tool calls, including the thought process behind the decision,
the action to be performed, and the review of the result. However,
it is not designed to evaluate the correctness of the conversation as
a whole, but rather to evaluate the correctness of a single query. To
address this, we will further extend the T-Eval framework to create
aggregated metrics providing additional insights.

By combining the two approaches, we can produce a fully auto-
mated pipeline that generates tests for custom tools and tool com-
binations, and evaluates the results using a detailed set of metrics,
addressing all the gaps identified.

3 PRELIMINARY ASSESSMENT
Sub-question SQ1 investigates the need to require additional infor-
mation about the context to successfully generate a valid ground
truth. This necessity comes from the fact that the focus of this
research is on custom-developed tools and prompts, which may
include specific contextual information critical for generating a
meaningful conversation.
Since there is no relevant literature available about this specific

issue, to address it, we decided to rely on the evaluation of sec-
tor experts to validate what the minimally required information
that should be available in the LLM’s context is. We were able to
interview three experts. The validation process involved multiple
iterations of feedback and refinement.
The first step was to define a set of questions to ask the experts,

which focused on what the most common problems faced with tool-
calling assistants were and what the missing pieces of information
in the LLM’s context were, especially related to tool usage. This
information was used to craft the first version of the structured
object that is used as input for the intent generation step.
In the second iteration, the experts were asked to review the

structured object and provide feedback on its completeness and
relevance. The feedback was used to refine the object, removing
some fields and restructuring some of the entries.
The third iteration served as final validation of the structured

object, where the experts were asked to review the final version
and confirm its adequacy. The final result of these consultations is
explained in the subsection below.

Fig. 1. A diagram overview of the steps of the pipeline
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3.1 Minimal Developer Input
The first relevant set of information is related to the operative con-
text. Each agent is intended to fulfill a specific role in a given envi-
ronment. To produce relevant testing scenarios, the experts reported
that the role and the assumptions that hold true in such an envi-
ronment need to be made explicit. This avoids producing a ground
truth that ignores these preconditions and thus does not represent
a realistic conversation. It is also necessary to know the full agent
prompt, which may contain additional business logic, relevant for
tool usage.

When assembling a custom combination of tools, it is common to
have groups of tools that have a common purpose, similarly to what
happens with API endpoints dedicated to Create Read Update Delete
(CRUD) operations on the same entity. From the experts’ feedback
emerged that a clear definition of such groups can significantly
improve the quality of the intents, providing a deeper understanding
of the intended use of the collection of tools.
All the information mentioned is part of the minimal required

input used to increase the quality and relevance of the ground
truth generated using LLMs. Since the pipeline has some other
configuration information necessary, these have been merged into
one unique configuration object. The structured object containing
all these values is shown in the Appendix B.

4 METHODOLOGY
The pipeline developed, illustrated in Figure 1, is composed of eleven
steps, each of which is implemented as a class. Seven steps involve
the use of an LLM to generate the necessary information, indicated
with an icon in Figure 1, while the remaining four steps are imple-
mented as simple functions.

The first eight steps are used to generate the ground truth, follow-
ing the methodology outlined in the paper by Arcadinho et al. [1].
Step nine is when the predictions to evaluate are generated, and step
ten is when the evaluation results are produced using the T-Eval
framework by Chen et al. [3]. Finally, step eleven aggregates the
results of the evaluation to produce a meaningful summary of the
agent’s performance.
Throughout this methodology, the terms “tools” and “APIs” are

used interchangeably, following the terminology established in the
foundational frameworks by Arcadinho et al. [1] and Chen et al. [3],
since tools are the equivalent of APIs for agents.

4.1 Implementation Details
We developed the testing pipeline in TypeScript to benefit from
enhanced type safety, making the codebase clearer and easier to
maintain. As a runtime environment, we selected Deno, primar-
ily because it natively supports TypeScript and includes a Jupyter
notebook kernel, which significantly improves the experimentation
process.
To simplify the implementation of the pipeline, we used the fol-

lowing libraries:

• LangChain: provides high-level abstractions for prompt con-
struction and LLM interaction, reducing implementation com-
plexity

• Zod: enforces JSON schema validation on LLM outputs, en-
suring that every generated object strictly conforms to the
expected structure

• graphlib: handles creation, validation, and traversal of graphs,
providing a simple way to check the correctness of the gen-
erated graphs

Each pipeline step is implemented as its own TypeScript class,
encapsulating the logic andmaking it easier tomanage dependencies
and state. The only exception to this object-oriented structure is the
evaluation step explained in Section 4.11. Since the T-Eval evaluation
framework is implemented in Python, we used a bash script to
execute this step. The script takes the exported JSON data from the
previous step as input, orchestrates the evaluator execution, collects
the output, and organizes it into structured directories for the next
step.

4.2 Intent Generation
The first step of the pipeline involves the generation of one or more
intents, which will be used as the goal of the conversation. An
intent is a sentence in NL that describes the desired outcome of the
conversation.

To generate a meaningful intent, it is necessary to provide some
additional information about the context in which the agent oper-
ates. The work by Arcadinho et al. [1] is focused specifically on
customer support scenarios, so their prompt is tailored to that spe-
cific use case. However, the goal of this work is to produce a more
general framework that can be used in any context, so we designed
this step to receive contextual information as input parameter.
The simplest way we identified is to require a structured object

defining what should be provided. The structure and the reasoning
behind the contextual information part have been explained in
Section 3.1.
The other input for the intent generation is the list of available

tools. As previously mentioned in Section 2, Arcadinho et al.’s frame-
work allows the use of existing tools, but it is not clearly stated how
to provide them. To standardize its definition, recently one of the
major AI laboratories, Anthropic, introduced the Model Context
Protocol (MCP), which is a communication standard focused on
agentic applications. This standard provides a simple way to fully
describe a tool. Since the industry adoption is already significant [8],
we decided to use their structured definition to ingest the custom
list of tools.

4.3 Procedure Generation
After the generation of an intent to guide the conversation, we use
an LLM to generate a procedure, which is an ordered list of actions,
described in one or two sentences, necessary to address the intent
given a list of available tools. For each tool, the name, a description,
and the list of arguments that can be used to call it are provided.
The procedure is a more structured version of the intent, covering
all the necessary steps to achieve the desired outcome. The inputs
provided to the LLM to generate the procedure are:

• the previously generated intent
• the list of available tools

3



TScIT 43, July 4, 2025, Enschede, The Netherlands Giacomo Calcaterra

The prompt used explicitly states that the procedure should not
contain any vague statements, conditionals are allowed but must
be resolved within the procedure, and procedure steps may contain
actions solely based on the list of available tools.

4.4 Flowgraph Generation
From the procedure it is now possible to produce a flowgraph, which
provides a structure of the flow and better encapsulates the con-
ditionals in the procedure. The flowgraph is composed of nodes,
which represent the agent messages or actions, and edges, which
represent the user responses. Each node has a unique id, a type
and a description. The nodes can be of four types:

• start_message: the initial message sent by the agent
• message: any other message sent by the agent
• api: any API call performed by the agent
• end_message: the final message by the agent ending the in-
teraction

The edges also have a unique id, a parent_node_id, a child_-
node_id and a description, which contains the user response in
a narrative format (e.g., ”The user provides a location” ).
In the prompt we enforce the flowgraph to have only one root

node of type start_message, and that it should have no incoming
edges, and to add in the messages all the details available in the
procedure. As presented also in the original paper, we build the
graph using a graph library, and we use it to check the construction
conditions mentioned above; if they are not met, we retry the gen-
eration up to three times, if they all fail, we discard the graph. We
also use one-shot prompting by providing an example flowgraph
in the prompt, since this is a well-established technique to improve
the output [2].
To better enforce the output structure of the LLM, we used the

structured output functionality provided by Langchain, which, given
a Zod schema definition, injects the corresponding JSON schema
in the prompt and parses the LLM response checking for any mis-
alignment. This approach is considered by industry experts as very
effective for ensuring valid JSON objects generation [12], and it will
be used in every subsequent step that involves the use of an LLM.
However, in some situations this may not be a sufficiently robust
strategy, thus in Section 6.2 we discuss how to further improve the
output consistency.

4.5 Conversation Graph Generator
The goal of this step is to convert the flowgraph, which only repre-
sents the conversation from the agent’s perspective, into an actual
conversation, where every message, both from the agent and the
user is a node. In the conversation graph there are three types of
nodes:

• assistant: containing the messages sent by the assistant
• user: containing the messages sent by the user
• api: containing the API call performed by the assistant

Every node has an id, a type, and a description, which is either
a message or an API call. Edges have an id, a parent_node_id, a
child_node_id, and a description, which contains the API re-
sponse or is left empty when no description is needed.

We use one-shot prompting here as well, providing an example of
a flowgraph and the corresponding conversation graph. We also use
the prompt to enforce other construction rules to prevent malformed
graphs, and, similarly to the previous step, we use a graph library
to check condition such as the root node being of type assistant
and having no incoming edges, all the leaf nodes being of type
assistant, and the edges being correctly connected to the nodes.
If any of these conditions are not met, we retry the generation up
to three times, and if they all fail, we discard the graph.

4.6 Noise Injector
To produce more realistic scenarios covering less straightforward
paths, the pipeline includes a noise injection step, where the conver-
sation graph is extended with nodes going outside what is usually
called the ”happy path”. The paper by Arcadinho et al. (2024) identi-
fies only two categories of noise: out-of-procedure and attack.
To address sub-question SQ2, we decided to expand to three cate-
gories of noise, namely:

• out-of-procedure: a user request that goes outside the ex-
pected procedure

• malicious: a user request that is intended to cause confusion
or disruption

• misunderstanding: a user request that shows a misunder-
standing of the conversation context or the agent’s capabili-
ties

To generate the noise we provide to the LLM the past interactions
in the conversation and the category of the noise, asking it to gener-
ate a user message matching the two inputs. Then we walk through
the agent nodes and with a certain probability we insert an edge
pointing to the noisy node, and another edge from the noisy node
to an assistant node with a description stating that the assistant is
available to help with the user’s original request.

4.7 Path Sampler
From the noised conversation graph it is now possible to extract
different paths traversing it. A path is represented as an array of node
ids. Following the pseudocode provided in the original paper, we use
an improved random-walk algorithm to traverse the conversation.
Using a set of weights that are adjusted after every iteration, the
goal is to increase the coverage by reducing the chance of visiting
the same node multiple times. From each graph we will extract a
given number of paths 𝑀 provided as input. After the paths are
extracted, we look for duplicates and remove them, since they do
not provide any additional information.

4.8 Conversation Generator
With the available paths it is now possible to generate the actual
conversations between the agent and the user. We use the ids in
the path to retrieve the corresponding nodes and edges connections
from the conversation graph, and we provide this and the list of
available tools to the LLM. Each entry in the generated conversation
is structured in the following way:

• a role: which can be one of user, assistant, api or api_-
output

• the content: representing the actual message
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We instruct the LLM with some constraints to make sure the
entries of type api should contain the API call, while the api_-
output entries should contain the output returned by the API.
For this step we use one-shot prompting as we did in previous

steps, by providing to the LLM an example path, an example list of
APIs and the expected conversation to be generated. We also define
in the prompt other constraints like always generating an api_-
output entry after an api one, and an assistant entry after an
api_output, to ensure the validity of the generated conversations.

4.9 Conversation Annotation
This step is the conjunction between the two main papers used
for this research. The current conversation, which will be used
as ground truth, only contains a role and a content. In order to
evaluate the conversations using the metrics provided by T-Eval,
we need to have a ground truth that follows the structure defined in
their paper, which requires that for every query 𝑞 we need a tuple
(𝑡, 𝑎, 𝑜, 𝑟 ) where:

• 𝑡 is the thought preceding the decision of an action
• 𝑎 is the action to be performed, which is the tool call
• 𝑜 is the observation, meaning the result of the tool call
• 𝑟 is the review of the result of the tool call, constrained to
one of five categories: Success, Internal Error, Input Error,
Irrelevant Response, and Unable to Accomplish.

Since the T-Eval annotation process was initially designed for sin-
gle queries, we first need to break down the conversation into a list
of interactions. This process corresponds to the last step described
in the paper by Arcadinho et al. [1], and we decided to combine
it with the annotation step since it is a very simple operation. A
function loops over the conversation entries and aggregates the
content values in an object with a key for each role. Since every
interaction starts with a user message, when the next user message
is found, the current object is added to the interactions list.
To generate the thought 𝑡 , we provide the LLM the complete

conversation history as context, plus the relevant user message and

the following api, api_output and assistantmessages, asking to
produce a compatible thought explaining the decision to call the
API. By providing the correct tool call in advance, we ensure that the
thought serves as valid ground truth that fits the conversation flow.
To generate the review 𝑟 , we provide the same information as before
plus the observation, which is obtained from the api_output. In
the prompt, we ask the LLM to evaluate the quality and usefulness
of the obtained observation, and return one of the five categories
mentioned above according to their definitions.

The evaluation metrics by Chen et al. [3] are focused on queries
that require a tool call to answer. However, in a real conversation like
the onewe generated, some interactions do not involve a tool call but
only a response to ask the user more details. For such interactions,
we cannot define a valid action, observation, and review since no
tool call is needed. Nonetheless, it is still meaningful to generate
a thought where the agent makes the decision to not call any tool
and directly reply instead, to be then able to evaluate if the agent
has enough awareness to make such a decision. We also generate
a review that can be either ”Success” or ”Input Error”, depending
on whether the decision not to call a tool is justified by the user
request.

4.10 Prediction Generation
To generate the predictions, it is necessary to assemble an agent
with the user-defined prompt and list of tools, the user query, and
we add some additional information in the prompt to ensure that
the output can be then parsed by T-Eval evaluator functions, which
can accept either a string or stringified JSON as input. Since the
purpose of this research is to test the agent’s behaviour in a realistic
scenario, we decided to limit the input to string type, asking the
LLM to produce a thought containing the reasoning and tool calls
in one sentence.

After the thought is generated, we can parse it to extract the tool
calls to be able to provide the observation, which corresponds to
the tool output. If the extracted call is valid, we can provide the
resulting observation and then ask the LLM to generate a review. To

Table 1. Assistant A Results

Conversation Correct Paths Planning Reasoning Retrieval Understanding Instruction Review Mean

1 1/2 0.850 0.784 0.845 0.775 0.882 0.793 0.822
2 1/2 0.867 0.810 0.883 0.667 0.905 0.814 0.759
3 0/2 0.750 0.696 0.791 0.750 0.836 0.708 0.755

Overall 2/6 0.822 0.763 0.840 0.731 0.874 0.772 0.800

Table 2. Assistant B Results

Conversation Correct Paths Planning Reasoning Retrieval Understanding Instruction Review Mean

1 0/2 0.675 0.532 0.675 0.667 0.781 0.738 0.678
2 0/2 0.667 0.643 0.667 0.565 0.750 0.833 0.688
3 0/2 0.667 0.686 0.750 0.576 0.826 0.708 0.702

Overall 0/6 0.669 0.620 0.697 0.603 0.786 0.760 0.689
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do so, we provide in the prompt what was mentioned before, plus
the newly generated thought, and the observation, asking to return
one of the five review categories mentioned in Section 4.9.
However, if the extracted call mentions a non-existent tool, we

insert a fixed observation stating that the tool called does not exist
to still produce a valid review for evaluation. It can also happen that
the call has incorrect arguments; in this case, we still call the tool
and provide the resulting output that contains the error message, to
see if the review provided identifies the mistake in assembling the
call.

Since the next step is to perform the evaluation of the test results
using T-Eval, which is implemented in Python, we added to this
class an export method that fits the input format expected by T-Eval
evaluators. To maintain a clear organization, we create a directory
for each conversation, containing a directory for each path. Inside
this directory we store four JSON files, one for each evaluator, since
each one requires a slightly different input format.

4.11 Evaluation Execution
At this point we have all the necessary data to run the T-Eval evalua-
tors. To do so, we created a bash script that uses the exported data as
input and runs individually the four evaluators. When execution is
completed, it checks that the files containing the results exist; if not,
it lists in the shell the failed ones. To avoid losing this information
it also creates a summary file containing this information.
The output files are also arranged in the same structure as the

input files, with a directory for each conversation and a subdirectory
for each path. This allows us to easily aggregate the results in the
next step.

4.12 Metrics Aggregation
The results provided by the evaluators are generated per individual
interaction, since T-Eval is focused on single query-answer pairs.
However, our goal is to test a complete conversation with different
paths; thus, to make the results meaningful we need to aggregate
them to provide a broader overview.
We denote a conversational path by 𝑝 , a conversation by 𝑐 , and

index our six evaluation dimensions by 𝑑 = 1, . . . , 6.
(1) Path-level aggregation. Within each path 𝑝 , we average

all evaluator ratings along each dimension 𝑑 . The result is a
single score 𝑥𝑝,𝑑 for path 𝑝 on dimension 𝑑 .

(2) Conversation-level aggregation. For a given conversation
𝑐 , we gather its constituent paths and compute the mean of
their 𝑥𝑝,𝑑 values for each dimension. This gives conversation-
level scores 𝑥𝑐,𝑑 . To condense these into one overall conver-
sation score, we then take

𝑥𝑐 =
1
6

6∑︁
𝑑=1

𝑥𝑐,𝑑 .

(3) Overall aggregation. Finally, we average the conversation-
level metrics 𝑥𝑐,𝑑 across all conversations 𝑐 to obtain each
dimension’s corpus-level mean, and average 𝑥𝑐 to produce
the grand mean.

Since the scope of the research is to analyze the assistant be-
haviour in a complete conversation, we decided to introduce another

metric capturing if a path had all successful interactions. This value
is boolean and is calculated by comparing each interaction metric
with the maximum value (complete correctness). If they coincide
for every interaction in the path, the path is considered correct. We
then use this boolean value to calculate the fraction of correct paths
for each conversation.
All the metrics are stored in a JSON file, which is then used to

generate a final report in markdown, including the most relevant
evaluation results presented in a table format and a more detailed
part below it.
An example of the table results of this aggregation process can

be seen in Table 1.
Below the table we export the individual results for each path,

to facilitate a more granular analysis of the agent’s performance.
Here we include the boolean values indicating whether the path
had all successful interactions, the six evaluation dimensions, and a
boolean indicating if the path included noise nodes. An example of
the individual results can be seen in Appendix C.

5 VALIDATION
To test the pipeline, we designed two assistants with the same scope
but with different tools description, in particular one of them has
more vague descriptions that can lead to ambiguity in their usage.
The reason behind this validation strategy is that the assistant with
lower quality tool description should have worse performance than
the other assistant, and this should be reflected in the metrics. The
tool descriptions of the two assistants can be found in Appendix D.
The assistant with better tool description is referred to as assis-
tant_a and the second one assistant_b.
We used the same prompt and the same set of tools for both

assistants, to ensure that the only difference in the evaluation is
the quality of the tool descriptions. To generate the complete set of
tests, we used the claude-3.7-sonnet model from Anthropic. The
results for each assistant aggregated in table format are shown in
Table 1 and Table 2.

6 DISCUSSION
The results of the validation presented in the previous section show
that the evaluation results for the two assistants are significantly
different, with assistant_a achieving a higher overall correctness
compared to assistant_b.
In particular, if we look at the Correct Paths column, we can

see that assistant_a has two conversations with one correct path
each, while assistant_b has no correct paths in any conversation.
This is consistent with the expectation that the assistant with better
tool descriptions should have better performance, since the tool
descriptions are more precise.
We can also observe that the overall value of the planning col-

umn, which corresponds to the correctness of the tool selection, for
assistant A is above the overall average, while assistant B is below
this value. This difference can be interpreted as a sign that assistant
A is better at selecting the appropriate tools for the task at hand,
given the availability of more precise tool descriptions.
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By performing a deeper inspection in the individual path eval-
uation results, we tried to identify if the noise injected in the con-
versation graph affected the agent performance. We noticed that
for both assistants, the presence of noise in a path led to a decrease
in performance. This suggests that the noise-injection strategy is
effective in testing the agent’s ability to handle unexpected user
behavior, by covering a wider range of possible interactions.

While this result is promising, the scale of the testing is relatively
small, and the difference in results can be the consequence of the
stochastic nature of LLMs. In the following subsection we discuss
this and the other limitations of this work more in depth.

6.1 Limitations
The objective of this research is to automatically generate and exe-
cute a set of tests for custom tool-calling agents. However, it must
be taken into consideration that without any human supervision
or review, LLMs can produce incorrect output, undermining the
validity of the test results. This limitation can be addressed by al-
lowing the user to manually review the generated conversations
and discard the faulty ones, or by introducing additional verification
steps performed by dedicated LLMs. Since the first option would
compromise the automation aspect of the pipeline, in Section 6.2
we discuss potential LLM-based verification approaches.

One of the necessary inputs for the pipeline is the minimal devel-
oper input structured object, which is used to provide the context
necessary to generate valid ground truths. Due to the lack of lit-
erature on this specific topic, the structured object is based on the
feedback of a limited number of experts. This may not be sufficient
to successfully identify all the necessary information to generate
valid ground truths, potentially leading to a lower quality of the
generated conversations.
Another relevant feature of this research is to generate detailed

six-dimensional metrics, building on the T-Eval framework by Chen
et al. [3]. To produce such detailed analysis, it is necessary to force
the agent being tested to generate the output responses following
a specific structure. This structure includes explicit planning, tool
selection, argument definition, function call composition and output
review based on five predefined categories. While most of these ele-
ments are very commonly part of an agent output, their enforcement
alters the behavior of the agent in the testing environment, making
the evaluation results potentially less aligned with real environment
behavior.
Some design choices constitute an intrinsic limitation in scope.

The decision to use the MCP, for example, requires having an MCP
server running to be able to retrieve the list of tools and query them
to obtain the necessary observations. Another limitation comes from
the decision to generate ground truths assuming the tool response
is almost never returning a network error, making it less effective
in testing the assistant behavior in this edge case situation. In Sec-
tion 6.2 we discuss in more depth the further research to address
the limitations mentioned.
As mentioned in the introduction to this section, the validation

was performed on a small scale, which limits the statistical power
of our results. This is due to the limited computational and human
resources available for this research. However, this can be addressed

in future iterations over this work. In the next subsection we present
a list of possible next steps that can improve the scientific relevance
of these initial results.

6.2 Future Work
Given the aim to fully automate the testing process, future work
should focus on increasing the validation procedures for the output
of each step. An example is to improve the efficacy of the current
output parsing by handling an error situation with an agent loop,
where the error message is sent back to the LLM together with the
response, asking it to resolve the issue. This should guarantee a
higher success rate.

Given the limited availability of experts, the structured object used
to generate the ground truths is based on a small set of interviews.
To improve the quality of the generated ground truths, it is necessary
to expand the number of expert interviews and to include experts
from different sectors, since the current set may not capture the
full diversity of perspectives and use cases. This will help further
enhance the quality of the generated conversations.

Another area that can be further improved is the noise injection
strategy. As highlighted in Section 6.1 some edge cases connected
to the tool failure are not properly covered. To address this issue, a
simulated error response from the tools related to an internal error
can be introduced to test the assistant’s ability to recover.

Although the focus of this research is not on the efficiency of the
pipeline, it is still important to consider the temporal and compu-
tational cost of the various steps. All the intermediate steps aim
to produce a valid ground truth, but this creates significant over-
head. To address this issue, recent research introduced the concept
of prompt caching, which allows optimization of the inference by
reusing attention states from previous runs [7]. Since conversations
exhibit a high degree of contextual overlap across successive turns,
prompt caching is particularly convenient in this scenario.
Finally, the evaluation criteria could be expanded, creating ad-

ditional metrics providing more detailed insights on the specific
situation of failure, for example providing a ranking of the most
misused tools, or a list of the non-existing tools called.

7 CONCLUSIONS
This research addresses a significant gap in tool-calling agent evalua-
tion by introducing a fully automated pipeline for generating and ex-
ecuting test scenarios for custom tool-calling agents, requiring only
minimal developer input and delivering detailed, six-dimensional
evaluation metrics. By combining a nuanced conversation gener-
ation pipeline with the T-Eval framework, we demonstrate that
comprehensive test suites can be produced without manual scenario
curation and that they effectively identify weaknesses in agent per-
formance.

To answer sub-question SQ1 about minimal developer input, we
conducted expert consultations that identified four essential compo-
nents: (1) the agent’s operative context and role definition, (2) the
complete agent prompt containing business logic, (3) environment
assumptions that constrain tool usage, and (4) logical groupings of
related tools with their intended purposes. These findings suggest
that this structured input allows LLMs to generate contextually
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appropriate test scenarios without requiring extensive manual cura-
tion, providing a balance between developer effort and test validity.

For sub-question SQ2 on noise-injection strategies, we extended
the existing approach by introducing three distinct perturbation
categories: out-of-procedure (deviations from expected workflow),
malicious (intentional disruption attempts), and misunderstanding
(user confusion about context or capabilities). The results of our
initial validation indicate that these expanded noise-injection strate-
gies generate realistic conversation scenarios that effectively cover
broader edge cases, demonstrating improved coverage of realistic
user behavior variations.
Concerning sub-question SQ3 about T-Eval’s effectiveness for

conversation-level evaluation, we effectively integrated the thought-
action-observation-review schema into multi-turn dialogues and
extended it through metric aggregation at path, conversation, and
overall levels. In our validation experiment, T-Eval’s six-dimensional
scoring proved to provide meaningful and actionable metrics for
evaluating complete multi-turn conversations, detecting quality dif-
ferences between agents with varying tool description clarity. This
demonstrates that T-Eval’s single-query metrics can be meaning-
fully aggregated to assess complete conversational flows while also
maintaining computational efficiency.
Our initial validation shows that the pipeline can detect differ-

ences in tool-description quality by identifying weaker descriptions
with lower evaluation scores. While these results are promising,
given the limited scale of our validation, they represent a prelimi-
nary proof-of-concept that requires further validation. Future work
could include more extensive experiments, automated validation
mechanisms, prompt caching, and additional evaluation metrics.
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A AI DISCLOSURE
During the preparation of this work, we used ChatGPT, Claude,
and GitHub Copilot to support code development: analyzing de-
sign pattern alternatives, generating boilerplate implementations,
and debugging errors. We also employed these tools to proofread
text, identify grammatical inconsistencies, and optimize LaTeX for-
matting. We used Google Search and Overleaf, which employ AI
technologies under the surface, to perform research and review
Latex respectively. After using these tools, we thoroughly reviewed
and edited the content as needed, taking full responsibility for the
final outcome.

B MINIMAL DEVELOPER INPUT

{
// OpenAI -compatible API Configuration (loaded

from environment)
llm: {

baseUrl: Deno.env.get("LLM_BASE_URL"),
apiKey: Deno.env.get("LLM_API_KEY"),
model: Deno.env.get("LLM_MODEL"),
temperature:

parseFloat(Deno.env.get("LLM_TEMPERATURE")
|| "0.7"),

maxTokens:
parseInt(Deno.env.get("LLM_MAX_TOKENS")
|| "2000")

},

// MCP Server Configuration (loaded from
environment)

mcpServer: {
url: Deno.env.get("MCP_SERVER_URL"),
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timeout:
parseInt(Deno.env.get("MCP_SERVER_TIMEOUT")
|| "30000")

},

// Specifications (embedded from specs.yaml)
specs: {

context: {
agent_role: "AGENT_ROLE",
agent_prompt: "AGENT_PROMPT",
environment_assumptions: [/* array of

strings */]
},
toolsets: [

{
"name": "TOOLSET_NAME",
"usage": "TOOLSET_PURPOSE",
"tools": [/* list of tool -identifiers */]

}
/* additional toolsets */

]
}

};

C INDIVIDUAL PATH RESULTS

{
"intent_id": 1,
"path_id": 1,
"is_correct": false
"normalized_scores": {

"planning": 0.75,
"instruction": 0.8125,
"reasoning": 0.5442041158676147,
"understanding": 0.75,
"retrieval": 0.75,
"review": 0.875

},
"is_noisy": true ,

}

D TOOL DESCRIPTIONS

D.1 Assistant A Tools

[
{

"tool_name": "add_event",
"description": "Adds an event to the

calendar",
"args": [

{ "name": "title", "type": "string",
"description": "Title of the event",
"required": true },

{ "name": "date", "type": "string",
"description": "Date of the event in
YYYY -MM-DD format", "required": true },

{ "name": "time", "type": "string",
"description": "Time of the event in
HH:MM format", "required": true },

{ "name": "location", "type": "string",
"description": "Location of the event",
"required": true },

{ "name": "description", "type": "string",
"description": "Description of the
event , which is optional", "required":
false }

]
},
{

"tool_name": "get_events",
"description": "Gets events from the calendar

for a specific date and location. It
returns a list of events with their
titles , times , duration and IDs.",

"args": [
{ "name": "date", "type": "string",

"description": "Date to check events
for , in YYYY -MM-DD format", "required":
true },

{ "name": "location", "type": "string",
"description": "Location to filter
events by.", "required": false },

{ "name": "limit", "type": "number",
"description": "Maximum number of
events to return.", "required": false }

]
},
{

"tool_name": "delete_event",
"description": "Deletes an event from the

calendar given an ID. It can optionally
include a reason for deletion.",

"args": [
{ "name": "eventId", "type": "string",

"description": "ID of the event to
delete", "required": true },

{ "name": "reason", "type": "string",
"description": "Reason for deleting the
event.", "required": false }

]
},
{

"tool_name": "get_opening_hours_by_location",
"description": "Checks the opening hours for

a specific location. The location must be
provided.",

"args": [
{

"name": "location",
"type": "string",
"description": "Specific location to

check opening hours for. Provide city
or address , the system will identify
the closest office.",

"required": true
}

]
}

]
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D.2 Assistant B Tools

[
{

"tool_name": "add_event",
"description": "Adds an event to the

calendar",
"args": [

{ "name": "title", "type": "string",
"description": "Title of the event",
"required": true },

{ "name": "date", "type": "string",
"description": "Date of the event",
"required": true },

{ "name": "time", "type": "string",
"description": "Time of the event",
"required": true },

{ "name": "location", "type": "string",
"description": "Location of the event",
"required": true },

{ "name": "description", "type": "string",
"description": "Description of the
event", "required": false }

]
},
{

"tool_name": "get_events",
"description": "Gets events from the

calendar.",
"args": [

{ "name": "date", "type": "string",
"description": "Date to check events
for", "required": true },

{ "name": "location", "type": "string",
"description": "Location to filter
events by.", "required": false },

{ "name": "limit", "type": "number",
"description": "Maximum number of
events", "required": false }

]
},
{

"tool_name": "delete_event",
"description": "Deletes an event from the

calendar.",
"args": [

{ "name": "eventId", "type": "string",
"description": "ID of the event",
"required": true },

{ "name": "reason", "type": "string",
"description": "Reason for deletion",
"required": false }

]
},
{

"tool_name": "get_opening_hours_by_location",
"description": "Checks the opening hours.",
"args": [

{
"name": "location",
"type": "string",

"description": "Specific location to
check opening hours for.",

"required": true
}

]
}

]
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