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This research investigates whether synthetic data augmentation improves
machine learning models’ performance in detecting and classifying Self-
Admitted Technical Debt (SATD) from code comments. We evaluate the
DebtHunter and PILOT models using both Maldonado et al.’s dataset as
well as SATDAUG, an augmented dataset based on it. Ultimately, we show
that this approach yields significant results by effectively addressing class
imbalance issues that has previously hindered accurate detection and classi-
fication.

Additional Key Words and Phrases: self-admitted technical debt, augmented
data, neural networks, artificial intelligence, machine learning, code com-
ments, empirical study

1 INTRODUCTION
Technical debt (TD) is a metaphor that describes suboptimal so-
lutions that provide immediate benefits at the cost of increased
maintenance costs and complexity in the future. The term was of-
ficially coined in 1992 by Cunningham [3], and researchers have
been investigating how they could identify it, manage it, repay it,
and resolve it since then [1], [9]. These studies have facilitated the
development of metrics, tools, and methodologies that aim to make
technical debt more tangible and actionable for developers faced
with limited resources and competing priorities.

More recently, a particular kind of technical debt, self-admitted
technical debt (SATD), has emerged as an interesting area of re-
search. It can fall into any of the categories mentioned above for
TD, but the key difference is that developers explicitly acknowl-
edge it within the code itself. The term was first defined by Potdar
and Shihab [12] who conducted an initial investigation into this
phenomenon.
Following these steps, Maldonado and Shihab [10] identified

62 distinct SATD patterns in code comments in various software
projects, establishing a taxonomy that has facilitated automated
detection and analysis of this specific form of technical debt.

The findings of those studies [12], [10] have been built up upon by
Bavota et al. [2] who conducted a large-scale empirical study on self-
admitted technical debt that covered more than 600K commits and
2 billion comments that were extracted from 159 open-source Java
projects that were under the management of the Apache Software
Foundations and from the list of GitHub repositories managed by
the Eclipse Foundation.

However, a common issue between the so far mentioned studies
is the performance of the classification and identification due to
the use of human-summarized patterns to match SATD instances.
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Vocabulary diversity, semantic variations, project uniqueness, and
length make this approach less ideal [13].

The recent advancements in Artificial Intelligence have also had
an impact in this field of research. Recent studies employ various
natural language processing (NLP) and machine learning (ML) tech-
niques to improve the accuracy in SATD categorization and recogni-
tion [7], [5], [11]. For example, DebtHunter [14] is an ML tool that
automatically detects and classifies SATD in source code comments
into five debt types (defect, design, documentation, requirement,
and test). They implemented a two-step classification process: first a
binary classifier to identify SATD apart from non-SATD comments,
then a multi-class classifier to categorize SATD comments by debt
type, using NLP preprocessing, feature selection, and data sampling
techniques.
The work on DebtHunter was followed by the paper of Di Salle

et al. [5] which proposes a framework, Processing and machIne
Learning tO detect self-admitted Technical debt (PILOT), that com-
bines NLP processing and neural network architecture to detect and
categorize SATD in code comments. They also created a prototype
which they trained and compared its performance with DebtHunter,
showing that the neural approach outperforms traditional ML ap-
proaches.
However, the use of an AI model requires training on a dataset

prior to use. Most investigations suffer from imbalanced sets where
some types of SATD are greatly underrepresented compared to
others. Several articles have noted this issue as a threat to validity
[14], [5]. For example, the dataset provided by Maldonado et al. [11],
used by almost all studies on this topic, contains 2,703 Code\Design
Debt instances within code comments and only 54 Documentation
Debt instances and 85 Test debt instances.

In order to address this shortcoming of existing datasets, Sutoyo
et al. [16] proposed the SATDAUG dataset where they augmented
the dataset used by Li et al. [8] using AugGPT [4] to synthetically
equalize the number of SATD instances of each category.

The purpose of this study is to investigate the performance ben-
efits of using data augmentation to enrich existing datasets that
suffer from class imbalance when training ML and neural network
models. As a basis of the investigation, we will train and evaluate the
performance of DebtHunter and PILOTmodels on a non-augmented
dataset and we will compare it to their performance after training
on the SATDAUG dataset.

To guide the research, we have formulated the following research
questions.

• RQ1: Does the use of an augmented dataset for training im-
prove the performance of the DebtHunter model for identifi-
cation and classification of self-admitted technical debt?

• RQ2: Does the use of an augmented dataset for training im-
prove the performance of the PILOT model for identification
and classification of self-admitted technical debt?
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After covering the necessary background knowledge in Section 2,
we will go over the experimental setup in Section 3. Subsequently,
the results of the experiment will be presented in Section 4. Finally,
Section 5 provides an interpretation of the results and a comparison
with the state-of-the-art.

2 BACKGROUND KNOWLEDGE

2.1 DebtHunter
DebtHunter is a framework that utilizes a supervised machine learn-
ing approach for automated detection and classification of SATD
in source code comments. The paper by Sala et al. [14] proposes a
hierarchical two-phase classification strategy: the initial one decides
between SATD and non-SATD instances, followed by a multiclass
classifier that categorizes the identified SATD comments into five
technical debt categories (defect, design, documentation, require-
ment, and test debt).
The preprocessing pipeline incorporates standard natural lan-

guage processing techniques, including tokenization, stopword elim-
ination, morphological normalization via Lovins stemming, and
feature vectorization through term frequency-inverse document
frequency (TF-IDF) weighting [14].

To mitigate the class imbalance inherent in natural SATD datasets,
the researchers used Spread Subsample for undersampling majority
classes and Synthetic Minority Oversampling Technique (SMOTE)
for augmenting minority class instances [14]. The classification
engine utilizes Sequential Minimal Optimization (SMO) algorithms,
with hyperparameter optimization conducted via grid search and
model validation performed using stratified 10-fold cross-validation.
The DebtHunter tool was implemented using Weka, a Java library
that provides machine learning algorithms and data mining tools [6].

2.2 PILOT
Processing and machIne Learning tO detect self-admitted Techni-
cal debt (PILOT) proposes a deep learning approach to the more
commonly used at the time machine learning approaches. It consti-
tutes a framework that leverages neural network architectures for
enhanced SATD detection and classification.
To address the limitations of ML techniques, Di Salle et al. [5]

employ feedforward neural networks as the primary classification
mechanism, with architectural extensibility to accommodate convo-
lutional neural networks (CNN) and graph neural networks (GNN).

In terms of natural language processing, the prototype proposed
in the paper uses a comprehensive preprocessing pipeline encom-
passing text standardization, word-level tokenization, stopword re-
moval, Porter algorithm-based stemming, and lemmatization using
NLTK WordNetLemmatizer for morphological analysis. Although
the current implementation utilizes TF-IDF vectorization for feature
extraction, it is possible to use more sophisticated techniques such
as Word2Vec or GloVe.
The researchers compared a prototype of the PILOT framework

and compared it with DebtHunter where the performance superior-
ity of a neural network approach became clear.

2.3 The Maldonado dataset
In a 2017 paper, Maldonado et al. [11] decided to address the short-
comings of the current state-of-the-art, which relied on rather out-
dated and, as it turned out, less efficient techniques based on pattern
matching previously found patterns [10] in text that suggest SATD.
Additionally, a lot of manual work was required when it came to
classifying code comments in terms of SATD. In their study, they
propose an NLP classifier to replace the manual work.
As a result of their study, they came up with a dataset of 62,566

code comments each of which is classified as either Design, Im-
plementation, Defect, Test and Documentation debt or as not
having technical debt. The comments were extracted from 10 open
source Java projects (Ant, ArgoUML, Columba, EMF, Hibernate,
JEdit, JFreeChart, JMeter, JRuby, and SQuirrel SQL).
The researchers removed the irrelevant comments by ignoring

source code and licensing comments, while preserving the ones that
contained task annotations, i.e. TODO, FIXME, XXX, etc. Addition-
ally, they grouped sequential single line comments by making use
of regular expressions, excluded Javadoc unless it contained task
annotations, and finally auto-generated IDE comments were filtered
out. This process narrowed down the initial 259,229 comments to
62,566 relevant ones. Table 1 presents an overview of the dataset.
Finally, Maldonado and his colleagues manually classified each

of the remaining comments. They are one of the first ones to come
with a rather large dataset for training AI and ML models for SATD
and their work has been used by a lot of other practitioners.

Table 1. Comments per class in the Maldonado dataset

Classification Count
Without Classification 58,204
Design 2,703
Implementation 757
Defect 472
Test 85
Documentation 54
Total 62,275

2.4 SATDAUG
The dataset proposed by Maldonado et al. [11] is a vivid example of
one of the main issues that researchers have had in the creation of
SATD classification engines, class imbalance.
Motivated by this problem, Sutoyo et al. [15] decided to investi-

gate whether augmented datasets would improve the performance of
popular ML and AI models. They used AugGPT, a method proposed
by Dai et al. [4] that relies on ChatGPT to enhance natural language
in the context of self-admitted technical debt to perform data aug-
mentation. The researchers identified two strategies for increasing
the number of instances of minority classes, namely single-turn and
multi-turn dialogues. Sutoyo et al. [15] opted for the "Multi-turn di-
alogue prompt" approach, which refers to sequential conversational
exchange of messages. They incorporated context and persona to
their prompts along with the comment to be augmented and the
number of comments that must be generated.
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Subsequently, they trained a number of popular AI andMLmodels
on enhanced and non-enhanced data. Their results suggest that this
approach could be beneficial in trying to improve the classification
and identification of SATD instances [15].
As a result of their previous work, Sutoyo et al. [16] proposed

the SATDAUG dataset. They applied the mentioned augmentation
approach to the dataset provided by Li et al. [8]. Comments in the
SATDAUG dataset, similarly to the original dataset, if identified as
self-admitted technical debt, fall into one of the following categories:
code/design debt (C/D), documentation debt (DOC), test debt (TES),
and requirement debt (REQ) [8]. Both datasets feature text from
four sources. That is, code comments (CC), commit messages (CM),
pull request sections (PS), and issue tracker sections (IS); however,
only the CC part of the SATDAUG dataset is within the scope of
this project. The authors used the largest SATD class (C/D debt
with 2,703 instances) as the target baseline for the augmentation of
minority classes. Table 2 compares the number of instances of each
class, found in code comments (CC), in the dataset of Li et al. [8]
and its augmented version, SATDAUG.
Furthermore, it is important to note that Li et al. [8] used the

dataset proposed by Maldonado et al. [11] for the code comments of
their own dataset, however, they decided to omit the "Defect" debt
instances, since it was not as prevalent as the other four types of
SATD across all four data sources. Hence, "Defect" debt is also not
present in the SATDAUG dataset.

Table 2. Comparison between the number of class instance in code
comments in the Maldonado dataset and SATDAUG

SATD Class Li et al. SATDAUG Factor
C/D debt 2,703 2,703 1.0×
REQ debt 757 2,271 3.0×
TES debt 85 2,635 31.0×
DOC debt 54 2,700 50.0×
Total SATD 3,599 10,309 2.9×
Non-SATD 58,676 58,676 1.0×
Total Dataset 62,275 68,985 1.1×

3 EXPERIMENTAL SETTING
The studies introducing DebtHunter [14] and PILOT [5] used the
original non-augmented Maldonado dataset to train their respective
model. For this reason, we will train both models on this dataset and
the performance will be used as a baseline during the evaluation.
Subsequently, to explore the benefits of using augmented datasets
for SATD detection and classification, we will train both models
on the SATDAUG dataset and the results will be compared to the
baseline, followed by their interpretation.
However, before the training phase can begin, the data must

be preprocessed. Both models are equipped with a preprocessing
pipeline that includes stopword removal, lemmatization, and stem-
ming methods. Feature extraction is made possible via TF-IDF for
both models. Furthermore, the 10-fold cross-validation method was
employed to prepare the training and testing data.

3.1 PILOT setup
In order to constrain the experiment to only evaluating the effect of
augmented data, we will be using PILOT’s preprocessing pipeline
that was proposed by Di Salle et al. [5]. Furthermore, in their study
proposing the framework, the researchers experimented with three
different architectures for the neural network of the classifier fea-
turing one (C1), two (C2), and three (C3) middle layers each with 10
neurons, respectively. Their data presented almost perfect scores
for models C2 and C3, while C1 is a rather suboptimal option for
data at the scale of the dataset presented by Maldonado et al. [11].
The room for improvement in the C1 configuration of the PILOT
model is why it was chosen for our experiment.
However, the number of inputs of the neural network had to

be changed depending on the number of features extracted. Using
TF-IDF as a feature extraction method for the multiclassification
problem yielded 4,773 features for the Maldonado dataset and 3,007
for the binary one. In terms of output units, we had 5 and 2 respec-
tively.

Furthermore, when preparing the SATDAUG dataset for training,
6,779 features were extracted to classify the four different types
of SATD and 4 output units were needed. Finally, 5,031 features
were obtained when discriminating between non-SATD and SATD
instances, and 2 output units were used.

The model is trained as previously mentioned in a 10-fold cross-
validation fashion in ten rounds. Each round consists of 100 epochs [5].

3.2 DebtHunter setup
The model of Sala et al. [14] is used mainly as is; however, some
adjustments were needed. Due to the fact that the classes in SAT-
DAUG are balanced in comparison with the dataset by Maldonado
et al. [11] the SMOTE approach for data augmentation used in the
DebtHunter is redundant to some extent, so it is omitted when train-
ing the multi-class classification model on the SATDAUG dataset.
Spread Subsampling is still included when training the binary clas-
sifier since the imbalance between SATD and non-SATD is similar
in both datasets. To train and evaluate the model, a 10-fold cross-
validation is used [14].

4 EVALUATION

4.1 Evaluation metrics
To access the performance of our classification approach, we evalu-
ated a collection of comments categorized into 𝐶 unique categories.
For each category 𝑐 ∈ 𝐶 there are four possible classification out-
comes:

• True Positives (TP): representing correctly classified com-
ments

• True Negatives (TN): instances that are correctly excluded
from category 𝑐

• False Positives (FP): denotes comments erroneously assigned
to category c when they belong to different categories

• False Negatives (FN): comments that genuinely belong to
category c but were misclassified into alternative categories
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We measure how well a classification engine is performing some
of the standard metrics, i.e. precision, recall, and F1-score, defined
as follows.
Precision measures how accurate positive predictions are. It is

the ratio between correctly classified instances to a category 𝑐 to
the total number of instances classified in that category. Precision
is defined by the following formula:

𝑃𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐

Recall, on the other hand, focuses on howwell the model classifies
into category c. The true positive rate (TPR), as Recall is also known,
is the ratio between correctly classified comments of type c to the
total number of instances of category c.

𝑅𝑐 = 𝑇𝑃𝑅𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐

Finally, the F1-score or simply F1, measures how balanced the
performance of a classification engine is by calculating the harmonic
mean between the precision and the recall. This metric is an indica-
tor of how accurate and reliable the predictions of a model are. The
formula is as follows:

𝐹1𝑐 =
2 · 𝑃𝑐 · 𝑅𝑐
𝑃𝑐 + 𝑅𝑐

4.2 Results
The results of both DebtHunter and PILOT on theMaldonado dataset
will be used as a baseline to assess the usefulness of augmented data.
This baseline will be compared with the performance of the models
when trained on the SATDAUG dataset.

4.2.1 DebtHunter. Table 3 measures the baseline performance of
DebtHunter against its enhanced version. In terms of binary classi-
fication, the model improved when it came to SATD identification,
with scores for precision, recall, and F1 increased from 0.913, 0.635,
and 0.749 to 0.977, 0.901, and 0.938, respectively. The improvement
of around 53% on recall indicates that after training on the aug-
mented dataset, DebtHunter became better at accurately spotting
SATD instances. The improvement is further supported by the dis-
tribution of the predictions in Figs. 1a and 2a. The baseline version
of DebtHunter correctly identified 2,583 of 4,071 SATD instances,
while the enhanced one successfully classified 9,293 of 10,310 SATD
instances. This was also reflected in the overall performance of the
model, represented by the F1. Both versions of DebtHunter perform
similarly when classifying NON-SATD comments. This can also be
observed in Figs. 1a and 2a, which present the confusion matrices
of DebtHunter’s binary classifier on both datasets.
Furthermore, improved performance can also be observed on

the classification problem as a result of the use of the SATDAUG
dataset. Fig 2b shows that balancing the SATD classes resulted in
a clear distinction between the four different types of SATD debt.
In contrast, when trained on the Maldonado dataset, DebtHunter
performed poorly in distinguishing the underrepresented classes.
Most of the "Implementation" and "Defect" debt instances were
classified as "Design", while barely any success was achieved when
categorizing "Test" and "Documentation" debt 1b. This is further

supported by the results in Table 3 where the improvement in F1-
scores for all classes is present when DebtHunter was trained on
the SATDAUG dataset.
Furthermore, the improvements in "Documentation" and "Test"

in terms of F1-score reflects the increase in recall and precision.
In addition, the baseline for precision on "REQ (S) + IMP(M)"

outperforms the enhanced version of the model, but the extremely
low score on recall indicates that the baseline is overly conservative.

Finally, both datasets yield different results in the "Design/Code"
category. DebtHunter on the SATDAUG dataset was slightly more
conservative (higher precision than recall, 0.948 and 0.859 respec-
tively), suggesting that the model prioritized prediction confidence
over correctly identifying into "Design/Code". However, on the Mal-
donado dataset, it performed more liberally (lower precision than
recall, 0.752 and 0.995 respectively), indicating the model favored
capturing more actual Design/Code cases at the expense of predic-
tion accuracy.

Table 3. Comparison of DebtHunter’s performance on SATDAUG (S)
and Maldonado (M) Datasets

Category Precision Recall F1 Score
S M S M S M
Binary Classification

SATD 0.977 0.913 0.901 0.635 0.938 0.749
NON-SATD 0.983 0.975 0.996 0.996 0.989 0.985

Multi-class Classification
DESIGN/CODE 0.948 0.752 0.859 0.995 0.901 0.857
REQ (S) + IMP(M) 0.806 0.978 0.937 0.238 0.867 0.383
DEFECT - 0.975 - 0.411 - 0.578
DOCUMENTATION 0.993 0.944 0.950 0.630 0.971 0.756
TEST 0.992 0.882 0.993 0.788 0.993 0.832

4.2.2 PILOT. Table 4 measures the baseline performance of PILOT
against its enhanced version. In terms of binary classification, the
model improved when it came to SATD identification, with the
scores for precision, recall, and F1 increased from 0.84, 0.83, 0.83 to
0.94, 0.88, and 0.91, respectively. The improvement of around 6% on
recall and 12% on precision indicates that after training on the aug-
mented dataset, PILOT became better at accurately spotting SATD
instances while maintaining confidence. This is also supported by
the distribution of predictions in Figs. 3a and 3a. The baseline ver-
sion of PILOT correctly identified 3,380 of 4,071 SATD instances,
while its enhanced version successfully classified 9,073 of 10,310
SATD instances. This is also present in the overall F1-score improve-
ment from 0.83 to 0.91. Both versions of PILOT perform similarly
when classifying NON-SATD comments, with the enhanced version
showing a rather unsignificant decrease in precision (0.99 to 0.98)
while preserving almost perfect recall. Those results can be seen in
Table 4.

Furthermore, major improvements can be observed in the mul-
ticlass classification problem as a result of using the SATDAUG
dataset. Fig. 3b shows that balancing the SATD classes resulted in a
clear distinction between the four SATD debt types. Initially, when
trained on theMaldonado dataset, PILOT performed poorly in distin-
guishing underrepresented classes. Fig. 3b reveals that the majority
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of "Implementation" instances (480 out of 510 misclassified cases,
or 94%) were incorrectly labeled as "Design" debt, while "Documen-
tation" and "Test" debt achieved minimal success with F1-scores of
only 0.48 and 0.57, respectively. This bias toward the "Design" class
was almost completely resolved with the augmented dataset, based
on the clear diagonal pattern that is present in Figure 4b.

Improvements in the distribution of predictions are also present in
the evaluation metrics. Identifying "Documentation" debt improved
from an F1-score of 0.48 to 0.97, driven by noticeable gains in both
precision (0.76 to 0.99) and recall (0.35 to 0.96). Similarly, PILOT
showed improvement when classifying "Test" debt, from 0.57 to
0.99 in terms of F1-score, with recall increasing from 0.46 to 0.99.
The gains in the "REQ (S) + IMP(M)" category are comparable. The
values for precision, recall, and F1-score improved from 0.46, 0.33,
and 0.38 to 0.75, 0.86, and 0.80, respectively.

Table 4. Comparison of PILOT’s performance on SATDAUG (S) and
Maldonado (M) Datasets

Category Precision Recall F1 Score
S M S M S M

Binary Classification
SATD 0.94 0.84 0.88 0.83 0.91 0.83
NON-SATD 0.98 0.99 0.99 0.99 0.98 0.99

Multi-class Classification
DESIGN/CODE 0.87 0.75 0.78 0.87 0.82 0.80
REQ (S) + IMP(M) 0.75 0.46 0.86 0.33 0.80 0.38
DEFECT - 0.47 - 0.29 - 0.36
DOCUMENTATION 0.99 0.76 0.96 0.35 0.97 0.48
TEST 0.99 0.74 0.99 0.46 0.99 0.57

5 DISCUSSION

5.1 Result Interpretation
Overall, both models improved compared to the baseline after being
trained on the SATDAUG dataset, except for the performance on
identifying non-SATD comments; the results there are comparable.
We believe that this is due to the unchanged number of instances
before and after the augmentation Table 2. An overview of the
change in F1 scores for each category is provided in Table 5.
Between the two models, PILOT benefited more from the use of

augmented data. The performance in categorizing minority classes,
"REQ (S) + IMP(M)", "Documentation" and "Test" improved by 42%,
49%, and 42%, respectively. However, DebtHunter’s performance on
the same classes improved by 48.4%, 21.5%, and 16.1% respectively.
This is not as great as PILOT’s improvement, since DebtHunter
performed rather well initially when it came to the "Documenta-
tion" and "Test" categories, which is most likely due to the SMOTE
technique for data augmentation that DebtHunter utilizes.

Furthermore, both baseline models had a very difficult time identi-
fying instances of "Implementation" debt. Fig 1b shows that DebtHunter
misclassified 578 out of 757 "Implementation" debt instances of
which 570 were classified as "Design" debt. PILOT performed slightly
better in that category; 510 of the 757 comments labeled "Implemen-
tation" were not classified as such, with 480 of them falling under

the "Design" debt category. In addition, most False Negative cate-
gorizations across the other classes are also thought to be "Design"
debt, which suggests that due to the imbalance in the dataset, the
models are not able to effectively learn to distinguish the classes
apart.
However, the described issues were resolved once both models

were trained on the SATDAUG dataset, Figures 2b and 4 present the
confusion matrices obtained after training and testing.

5.2 Comparison with State-of-the-art
During the initial exploration of AugGPT, Sutoyo et al. [15] con-
cluded that the use of data augmentation can help to improve the
performance of classification engines when addressing the identi-
fication and classification of self-admitted technical debt. The re-
searchers concluded that augmenting the dataset, provided by Li et
al. [8], with the help of AugGPT to train BiLSTM and BERT, yields
better results than using the dataset as is. They managed to improve
BiLSTM’s F1-scores with 16% on average when identifying SATD
text and BERT’s with on average 42% when categorizing different
types of SATD.

Furthermore, data augmentation was also addressed when creat-
ing DebtHunter. Sala et al. [14] experimented with different amounts
of synthetic data added through SMOTE, namely 50%, 100%, and
150%. They found that doubling the number of SATD instances leads
to better performance on precision, recall, and F1-score, namely
+4.52%, +1.36%, and +8.10%, compared to DebtHunter’s performance
on the original data set. Moreover, the second-best option was
adding 50% augmented comments, which also improved the baseline
for all three metrics, namely precision +4.02%, recall +2.33%, and F1
+6.5%. Finally, Sala et al. [14] deemed adding 50% synthetic instances
to be the best option for data augmentation due to the close scores
on precision and F1 with adding 100% synthetic instances, while
improving recall and decreasing complexity.

Table 5. F1 Score Comparison: Maldonado (M), SATDAUG (S), and
Improvement (Δ)

Category DebtHunter PILOT
M S Δ M S Δ

Binary Classification
SATD 0.749 0.938 +0.189 0.83 0.91 +0.08
NON-SATD 0.985 0.989 +0.004 0.99 0.98 -0.01

Multi-class Classification
DESIGN/CODE 0.857 0.901 +0.044 0.80 0.82 +0.02
REQ (S) + IMP(M) 0.383 0.867 +0.484 0.38 0.80 +0.42
DEFECT 0.578 - - 0.36 - -
DOCUMENTATION 0.756 0.971 +0.215 0.48 0.97 +0.49
TEST 0.832 0.993 +0.161 0.57 0.99 +0.42

5.3 Threats to Validity
5.3.1 Construct Validity: Evaluation Metrics Misalignment. A poten-
tial threat lies between the potential misalignment of the metrics
used and the real world utility of such a system potentially deeming
it as more useful than it actually is. The traditional metrics used
threat all misclassification equally, but in practice, developers may
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(a) Binary classification (b) Multi-class classification

Fig. 1. Confusion matrices on the Maldonado dataset and DebtHunter

(a) Binary classification (b) Multi-class classification

Fig. 2. Confusion matrices on the SATDAUG dataset and DebtHunter

(a) Binary classification (b) Multi-class classification

Fig. 3. Confusion matrices on the Maldonado dataset and PILOT

have asymptotic costs for different types of errors. For example, false
positives that waste developer time reviewing non-SATD comments
may be more costly than missing some actual SATD instances, or

certain categories of technical debt (e.g., security-related) may be
more critical to detect than others.
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(a) Binary classification (b) Multi-class classification

Fig. 4. Confusion matrices on the SATDAUG dataset and PILOT

5.3.2 External Validity: Limited Domain Evaluation. During this
study, we only explored data augmentation of SATD datasets only
focused on code comments in open-source Java projects from the
Apache and Eclipse foundations. This threatens generalizability
across different programming languages, development cultures, and
project types, as commenting conventions and technical debt ac-
knowledgment patterns vary significantly across ecosystems.

5.3.3 Internal Validity: Experimental Design Confounds. When de-
signing our experiment we decided tomaintain the original function-
ality of the DebtHunter model by retaining the SMOTE technique
when training on the Maldonado dataset. Since SMOTE itself is a
data augmentation technique it may have potentially undermined
the true benefits from using augmented datasets.

6 CONCLUSION

6.1 RQ1: Does the use of an augmented dataset for
training improve the performance of the DebtHunter
model for identification and classification of
self-admitted technical debt?

DebtHunter showed significant performance improvements when
trained on the SATDAUG dataset. Binary classification F1-score
improved from 0.749 to 0.938 (+25.2%), with particularly notable
gains in minority classes: "REQ (S) + IMP(M)" debt improved from
0.383 to 0.867 (+48.4%), Documentation debt from 0.756 to 0.971
(+21.5%), and Test debt from 0.832 to 0.993 (+16.1%).

6.2 RQ2: Does the use of an augmented dataset for
training improve the performance of the PILOT model
for identification and classification of self-admitted
technical debt?

Additionally, PILOT also demonstrated consistent improvements
across all metrics when trained on augmented data. Binary classifica-
tion F1-score increased from 0.83 to 0.91 (+9.6%). Themodel achieved
substantial improvements in minority class detection: "REQ (S) +
IMP(M)" debt improved from 0.38 to 0.80 (+42%), Documentation
debt from 0.48 to 0.97 (+49%), and Test debt from 0.57 to 0.99 (+42%).

6.3 Future work
During the project, we wondered how well the models generalize,
and do augmented data have an effect on it, whether it is positive
or negative. However, it was pulled out of scope due to time and re-
source constraints. Investigating this matter could be a key towards
wider adoption of this method.

Furthermore, it would be interesting to investigate the usefulness
of augmented data on models utilizing various types of feature
extraction and neural network architectures or machine learning
algorithms to figure out if there are different classifiers that benefit
more than others.
Finally, future work should investigate whether data augmenta-

tion also improves models when identifying and classifying SATD
instances in different sources, such as pull request sections, commit
messages, and issue tracker sections.
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