
MSc Computer Science
Final Project

Self Organised Criticality
and Avalanche Detection
in Neural Networks

Tayfun AKIN

Supervisor: Moritz Hahn

July, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 3

2 Theoretical Background 4
2.1 Neural Networks . 4

2.1.1 Convolutional Neural Networks . 5
2.2 Decision Trees . 6

2.2.1 Random Forests . 6
2.3 Critical State & Avalanches . 7
2.4 Self Organized Criticality in DNNs . 8
2.5 Performance Metrics for Machine Learning Models 8

2.5.1 Accuracy . 9
2.5.2 Recall . 9
2.5.3 Precision . 10
2.5.4 F1-Score . 10

3 Avalanche Detection 11
3.1 Application Domain . 11
3.2 Data Collection . 12
3.3 Detection Metrics . 12

3.3.1 Neuron Activation Counts (NAC) . 13
3.3.2 Gradient (Grad) . 13
3.3.3 Eigen Value of Activations (EV) . 13

3.4 Monitoring Methods . 13

4 Experimental Setup 15
4.1 Data . 15

4.1.1 Road Sign Data . 15
4.1.2 Morphed Images . 15

4.2 Traffic Sign Detection Models . 17
4.3 Avalanche Detection Models . 18

5 Results 19
5.1 Avalanche Detection . 19

6 Limitations & Future Work 23
6.1 Avalanche Definition For NNs . 23
6.2 Video Data vs Morph Image Generation . 23
6.3 Tests with DNNs . 23
6.4 Examining different kinds of NNs . 24
6.5 Pre-Trained Networks . 24

7 Conclusion 25

2

Chapter 1

Introduction

In the domain of Machine Learning, which deals with algorithms that are designed to extract
patterns from data that is fed to them, Neural Networks (NN) are a fundamental tool for tackling
complex problems that may require higher levels of pattern recognition [22]. They require a large
amount of data to be trained as compared to other methods and are relatively expensive to both
train and operate. However, their ability to learn tasks that are mainly associated with human
capabilities and depending on the context, being able to outperform human cognition makes
them the choice of method for some domains [29].

NNs are what would be considered a Black-box system, yielding minimum information about
the purpose and the structure of the neurons within them [25]. By their design, the influence that
the neurons have on each other will form according to the training data and in an unpredictable
fashion. This leads to neurons forming groups among themselves to achieve a particular step in
the processing of its input, where their purpose in the overall system will not be immediately
explainable to an outside observer.

The Black-box nature of the NNs causes them to be tough to evaluate for reliability and
faults. This secretive nature means that certain components of the decision process (for cases
where the decisions need multiple stages of reasoning to achieve) can not be tested individually,
only the system as a whole. That means that the whole system can not be theoretically proven to
be reliable and, only be assessed as far as the testing data allows. This fact raises large concerns
for applications that are safety-critical, such as the automotive and the health industries [27].

One of the factors that hinder the reliability of NNs is the naturally occurring state of
criticality [8]. This state increases the likelihood of the system to change its state with very
minimal outside influence, making the system highly sensitive. Having the neurons set up in
such a way that would result in critical behaviour, they get a chance to get the rest of the neurons
to fire in a cascading manner, with their numbers of activations following a power-law. Naturally,
when this kind of behaviour is not designed into the system, such disturbances can have negative
effects on their performance. We aim to reduce the number of these disturbances in a system by
analyzing the underlying structure which may lead to such behaviors and potentially devising a
method in which the structure can be modified to minimize the effect of them.

3

Chapter 2

Theoretical Background

2.1 Neural Networks

Neural networks are a type of a model used in machine learning to capture information from
a labeled set of data [6]. The main idea behind a NN is to mimic the working principles of
organic nervous systems, having a large number of neurons, which are individual components of
the system doing simple mathematical calculations. These systems are built with an underlying
connections between neurons, which will transfer the output of one into another. These connec-
tions have an associated weight attribute, that is used to multiply the value being transferred.
These values are modified during a training phase, where an algorithm called Backward Propa-
gation [28] is used to break down the influence of other neurons over a select neuron, and will
modify the weight values of the connections between these neurons to get closer to the desired
output, given the input for that instance. In fig. 2.1, details regarding the anatomy of the
implementations of a neuron can be seen.

Typically, a neuron has connections from multiple sources, all connected with their own
synaptic weights. Then, these values are combined using a simple mathematical function, com-
monly chosen as the sum. Then, the result of this operation is taken through an activation
function. This function will do a simple operation over the previously calculated value to repre-
sent the total activation value of the given neuron. A common function used for this operation
is the ReLU function, that outputs a 0 if the given values is smaller than 0, otherwise outputs
the given values without change. Furthermore, a threshold value can be chosen to again reduce
the resulting number to 0 if its below this chosen number. This operation is done mainly to
reduce the noise that may be caused by the input within the system; by not allowing very small
numbers to propagate from the system.

For the setup of the system, the connections will be initialized with random values in a small
range, as the algorithms that are used for the training of these systems work on the assumption
that there are number in place already, that just need to be optimized. Over the training phase,
these values will be shaped in a way to capture certain information from a provided input.

A typical NN is comprised of individual layers, that house neurons in parallel. These layers
are referred to as either an input layer, a hidden layer or an output layer. Every system has
one input and one output layer. The input layer’s job is to be fed data directly. The input
layer is usually connected to a series of hidden layers, which are layers that are only connect to
other layers, however the inclusion of these layers are optional. At the end of it all, the final
layer that is found is called an output layer. This layer is usually stretched out to represent an
external concept, which would correspond to classes for which we are trying to train the network
to detect.

In more advanced systems, we start to get more specialized layers, that can do extra op-
erations and have different architectures [16]. A common practice is to have drop-out layers
[31], which cancel a certain amount of connections at random on training rounds to make sure

4

Figure 2.1: Anatomy of a neuron used in a digital neural network (diagram taken from
[10]).

the system can develop a bit of redundancy and does not over specialize. Another one of these
specialized layers is the convolution layer, which is used extensively for image processing tasks
and usually makes up a large majority of a given network in such domains [9]. These layers
work by having a filter move across the main input, calculating dot products over the area it
goes over with itself, then recreating a new representation of the original data from the results
of these. The size of the filter and how many rows the filter shifts after every calculation can be
altered to fit the specific needs of the system. Neural networks who mainly employ convolution
layers are referred to as Convolutional Neural Networks (CNN).

2.1.1 Convolutional Neural Networks

Convolutional neural networks are a kind of specialized version of the generic neural networks
[15]. These networks are defined by having one ore more convolutional layers. The main advan-
tage that comes from employing such systems is that they look at the input data in small groups
of adjacent values [33]. These networks excel on tasks where the adjacency of the data points
within your inputs are important and carry some information, also referred to as spacial data.
Some of these areas include computer vision, natural language processing and signal processing.

What defines a convolutional layer is the act of compressing a group of values within the
previous layer into a single value [32]. This operation is done through the utilization of a mask,
most commonly referred to as the kernel. This kernel of a specific size (must be smaller than
the input, however most common practical scenarios will use 3 by 3 or a 5 by 5 configuration)
is then applied to a selection of points form the input, with the same size as the kernel. These
values are put through a matrix multiplication, resulting in the reduction of their dimension
by one. Then, this kernel is moved along and the operation is repeated until the whole of the
input is scanned through. The amount of movement of the kernel, referred to as the stride, may
be adjusted. These values are then put in the same order in a new space, forming the output.
Essentially, the kernel acts as the connections between the input and the output. Since there
are no direct connections like the standard layers, instead the values of the kernel are what will
be adjusted while the system is being trained.

To help the performance of these layers, padding operations on the input data are usually
performed. These operations are a simple way of increasing the size of the data, to make sure
that the kernel can fit comfortably. Especially for smaller data, these assure that the kernel
has enough space to generate a meaningful output size that can be worked on further by the
rest of the network. One other benefit of these paddings is that in a typical setting, the kernel
wont have the chance to examine the outer most values on their own; for example, a data point
on the middle will be visited by the kernel multiple times, however if there is no padding, the

5

corner values will only be visited once. The padding ensures that these points also get the same
amount of attention from the kernels passes as the rest of the data points. The values put into
the padding sections are usually set as 0, in order to have the least affect on the output of the
regions that include them.

Figure 2.2: An example of how a convolutional layer’s operations look, with a kernel
size of 2x2, input size of 3x3, padding size of 1 and stirde of 1. (Diagram taken from [34])

2.2 Decision Trees

Decision trees are another type of a machine learning model, aimed at providing highly accu-
rate results for problems that require relatively simpler logical steps, with significantly cheaper
training and running costs as compared to neural networks [26]. The main idea behind decision
trees is to divide the feature space into smaller regions that are more homogenized in the classes
that they contain [19]. This operation is done recursively to create as large of a tree as needed,
or allowed. In the end, the resulting model will go through the features in the order it deems
the most efficient, and will return a result based on the regions that these features of the input
lie in.

The core algorithm that the decision trees use to figure out how to divide the feature space
employs a simple search strategy. In the training phase, the system will simply go through the
features one by one, picking out boundaries between all the unique entries. Then, given one of
these boundaries, the data will be split into 2 regions, one where the value of this given feature
is below the decided boundary point (threshold), and one equal to or higher. Then, a quality
metric will be calculated to asses how good the split was. After this operation has been done
on ever boundary for a given feature, the best result of this quality metric will be chosen as
the decision point of the given node. For the two regions that have been split, this process will
be run again to create new nodes. This operation is continued until the max depth allowed for
the tree has been reached or until the splits don’t improve the decision making in a substantial
amount.

2.2.1 Random Forests

Random forests (RF) are another machine learning method that is an improvement over the
regular decision trees [17]. They are considered a type of an ensemble learning algorithm,
meaning they combine multiple decision making algorithms to form their decisions [20]. Random
forests, as their name suggests, contain multiple trees. When an input is supplied, the trees in
the given RF all process it separately and create their own outputs. Then depending on the
task, either these outputs are put through an accumulative function, such as averaging or put
into a voting system to select one of the results.

One other procedure found in RFs is limitation of features. In the training phase, when the
individual trees within the system are forming, the input that is fed into them is limited within
the amount of features they include; in other words only a subset of the feature space. This both

6

Figure 2.3: Anatomy of a decision tree, with 4 decision nodes, 5 leaf nodes and a depth
of 3.

prevents overfitting and helps the system identify more complex relations between features, as
each tree can focus on just a few features.

2.3 Critical State & Avalanches

Criticality is defined by the proximity of the system to multiple states at once, also referred to as
the critical state, creating a dynamic where relatively smaller changes regarding the parameters
may result in the system completely changing states [18]. The main cause of the occurrence of
the critical states is for a system to be in a condition that would ease state transitions compared
to how easy it would be to change states in regular operating conditions. As this critical
state is reached, the systems gain the risk of crossing the boundary of two different states that
would change the characteristics of its performance. When a system is at its critical point, the
behavioral characteristics change from their expected patterns. At the state of criticality, the
system behaves following power-law [12] and scale-invariant distributions [21], defined by some
attributes of the system following the same distribution regardless of the time scale; meaning the
shape of the figure that would be obtained by graphing some performance metrics of the system
over a period of time, would still have the same shape if the time scale was changed. This also
results in the distributions of the outputs that are coming from the system being heavy-tailed
[24], meaning the tail end (the part that goes to infinity and gets smaller over time) occupies
a larger sum of space in relation to the rest of the distribution, thus, increasing the range of
values that may be expected. Coupled with the fact that a system may not behave this way
in other states, raises concerns regarding their robustness and trustworthiness, as the chance of
unexpected results is increased.

In NNs, the state of the individual neurons dictates how the system arrives at a decision and
performs. These states are usually represented by an activation value, which can be turned into

7

a binary value, activated or non-activated, based on whether it’s larger than a set threshold value
(usually 0.50). In systems where a change in the state of a neuron may also trigger some other
neurons’ states to change as well, chains of varying sizes of such state changes being triggered by
neighboring neurons will occur, referred to as a cascading chain. These cascading chains of events
also referred to as avalanches, have direct links to the critical state and are the reason behind
the sudden state changes in the systems [8]. As with the real world avalanches, this behavior is
characterized by a small change happening to one end of a system, in our case the input, causing
an effect in magnitudes in power on neighboring areas, in our case being the preceding layers.
As they grow rapidly in size and have a disproportionally large effect on the state of the system
compared to the relatively minor change that has caused them, they might prompt the system
to behave in was that may not be what is expected. Although these avalanches can happen
with varying sizes, our interests lie in relatively larger ones, where they may have significant
effects on the output of the systems, as our main case, changing the output class in classification
tasks. As commonly inspected on the Ising model [11], which is a mathematical model that
consists of discrete variables who interact with their nearest neighbors, with the system evolving
based on these interactions, the size of these avalanches follows a power law, in which smaller
avalanches are more common and as the sizes increase, their rarity also increasing following a
power relation.

The definition of avalanches can be formally defined by the out-liars in the statistical distri-
butions of the firing patterns within a continuous range. As the inputs of the system in question
changes, in our context being neural networks, the firing patterns of neurons, both in terms of
paths taken and total number of neurons activated, will largely remain in the center of a nor-
mal distribution. The avalanches can be thought of as the instances where the firing patterns
deviate from the mean when the input change is kept at a constant; as since the input change
is constant, we also would expect a constant change in the output. The exact definition of what
would be considered an avalanche can vary based on the context and the system at hand, so
should be set up in relation to the testing environment.

2.4 Self Organized Criticality in DNNs

Many natural phenomena, such as some biological [30], neurological [23] and physical [7] sys-
tems, showcase behavioral patterns that drive them toward a critical state. Since this state is
characterized by the sensitivity or fragility of the response a system may give out after a rela-
tively small change within the input parameters, It has been found by previous studies that this
state is beneficial for the traversal of information within the system [13]. As such, many systems
experience a phenomenon that drives them towards learning behaviors that would establish a
critical state over time. This has been observed in many natural phenomena and more impor-
tantly for our work, also in the structure of DNNs. As this is a naturally occurring phenomenon
in multiple system by their nature, it is also crucial that the effects and implications of this
tendency are understood.

2.5 Performance Metrics for Machine Learning Models

To showcase the performance of the models we have trained, a multitude of empirical measure-
ments have been proposed and used over the years [35]. Within the current state of data science,
there are four metrics commonly used to denote the performance and behavior of models [14]:
Accuracy, Recall, Precision and F1-Score. These metrics are based on whats called a confusion
matrix, which is a 2x2 matrix used to display the predictions of a decision making model based
on binary classification; meaning the result can be either one of 2 possible classes. As seen on
2.4, we have 2 rows and columns; the Y axis corresponding to what our model has predicted and
the X axis representing what the answer should have been according to the real data. The top

8

Figure 2.4: Visual representation of the confusion matrix.

left box is referred to as the True Positives (TP), meaning they were classified as positive by our
model while they were also labeled by positive by our dataset. The top right box is referred to as
the Fals Positives (FP), representing the instances where our model classified them as positive
classes however they were labeled as negatives in the dataset. The bottom left box is called the
False Negatives, representing the instances that were labeled as negatives by the decision making
model however were meant to be positives according to the dataset. And finally the bottom right
box is referred to as the True Negatives, representing instances that were classified as negatives
by the decision making model while also being labeled as negatives according to the dataset.
For the future of our work, we will not use this matrix directly, however the performance metrics
that we will be using are directly based on these 4 boxes of the confusion matrix. Below, you
can find detailed descriptions and formulas explaining how they are calculated and what they
represent.

2.5.1 Accuracy

Accuracy is a simple metric representing the correctness of the guesses made by a model. It is
calculated by dividing the number of correct guesses by the number of total guesses. This is a
generic metric that shows us the likelihood of a guess being made by our system to be correct.
It is a generic indicator of the success of a model and for most cases should not be used on its
own, especially for environments where the data used has an asymmetrical distribution of the
different classes present. In more formal terms, using the confusion matrix as a basis for our
calculations the equation for accuracy is as shown in Equation 2.1.

ACCURACY =
TP + TN

TP + FP + TN + FN
(2.1)

2.5.2 Recall

Recall is a metric that represents the classification misses on the positive class. This metric is
most useful when the classes are not perfectly symmetrical, and there is an external importance
put on identifying members of the positive class. To simply put, the recall metric represents how
many instances of the positive class, has gotten labeled positive by the decision making model.
For most cases, getting a high recall is easy of the model sacrifices its precision, and vice versa.
As such, this metric is always combined with precision to make sure such sacrifices were not
made. In formal terms, the recall value is calculated by diving the true positives by the total
amount of positives, or in other words the sum of true positives and false negatives, as seen in
Equation 2.2.

9

RECALL =
TP

TP + FN
(2.2)

2.5.3 Precision

Precision is a score representing the correctness of the decision making model’s guesses when
the guess is of a positive class. This metric mainly checks the models to see if they have enough
restraint to only make positive guesses when the system is relatively sure. In more formal
terms, the precision value is calculated by dividing true positives by the total amount of positive
guesses, or in other words true positives and false positives, as seen in Equation 2.3.

PRECISION =
TP

TP + FP
(2.3)

2.5.4 F1-Score

F1-Score is the most advanced metric out of the 4 we have mentioned. To simply put, F1-
Score is a metric that combines the precision and recall values, making it only yield high results
when the model in question can both recall most of the positive classes and do so while giving
away very minimal wrong guesses for the positive classes. As this metric covers both reach
and the precision of the model’s guesses, it is the best metric to represent a model’s success.
The formula for the F1-Score will be represented using the Precision and Recall values directly
instead of using the confusion matrix for simplicity. The F1-Score is calculated by diving the
multiplication of the precision and recall score by their sum, then multiplying the result by 2,
as seen on Equation 2.4.

F1 -SCORE =
2 × Precision × Recall

Precision + Recall
(2.4)

10

Chapter 3

Avalanche Detection

One of the research gaps that we have identified within this domain is the detection of avalanches
that occur within DNNs. As relatively large avalanches may cause abrupt changes in the be-
havior of a system, e.g. the classification of an image changing with minimal modifications to
the picture, the need to be able to detect and potentially predict/avoid these avalanches rises.
In order to be able to understand the behavior of a system, viewed through empirical measure-
ments, we will first create an environment that simulates a use case scenario from a real-world
application. While trying to induce an avalanche, we will monitor the system and examine the
statistics we have gathered to see if an anomaly can be detected within these measurements at
moments where the system is at a critical state.

To be able to induce and analyze a critical state for our network, we propose the experimental
setup that is explained in section 4.

3.1 Application Domain

The main application of this process would be environments with continuous monitoring, as the
avalanches that are being aimed to detect are formed through temporal changes. By modifying
them, to include a second monitoring system, the aim is to increase accuracy and the trust-
ability. Of course, extra modifications on these decision systems such as NNs come at a cost,
be it computational effort, cost, or performance. This means that such protections and/or
improvements are more suited in environments where the extra benefit that they provide are at
a higher value.

As an example and the main source of our inspiration, is the automotive industry. Especially
with the rises of the trend of autonomous driving and the improvements in technologies leading
companies to be able to create products that perform at a high enough level to be adopted
for public use, we see a lot of interest that goes into both creating more robust networks [4]
and improving their safety against malicious users. One such case that these systems might
need to be defended against would be the use of adversarial attacks [5], where a third party
may manipulate an image using a mask, changing specific values in pixels, subtle enough to be
impossible to detect by a human eye however changing the classification of the system completely.
In another form, could include displaying images to these sensors that are sparse in the dataset to
the point where the system is very inefficient at detecting them, causing the system to misclassify
the objects around them. Since driving and transport activities are not completely safe, errors in
these programs and/or deliberate attacks might have great consequences for human well-being.
Being able to detect and possibly prevent these kinds of attacks would be a great way to improve
the safety of these systems.

11

Figure 3.1: Example of 4 different morph cases on multiple sign types, and images
created at the halfway point of the transition.

3.2 Data Collection

In order to detect these avalanches, we will first create a dataset that will house points of potential
avalanches and a series of metrics collected from the system around those points. Since getting
video data at a decent frame rate and labeling each frame will be above the limitations of our
project, the main data collection we propose will consist of simulating a video environment.

We propose a method we will refer to as the Morphing, in which we take 2 pictures and alter
the pixel values to create "in-between" pictures that are a combination of both with varying
degrees of similarity to either one of the pictures. This operation will be performed on discreet
steps within the theoretically continuous range between the two chosen pictures. By providing
a continuous and gradual change to the inputs over strategically chosen start and end points,
e.g. starting from a correctly classified picture and moving to a falsely classified one of the same
kind, we will be guaranteed to have a change in the output. As this change will occur over minor
changes within the input, it will, by definition, be an avalanche. The details on how this process
is completed are given in chapter 4.

The main idea is to create a transition that will mimic how objects might move, how artifacts
can be formed on the image and other conditions that might effect the quality of the frames
received. We have gathered a number of different morphed images to check that they create
visible pictures that can be used for the tests. Some examples of these can be found on fig.
3.1. The transitions over which the tests will be conducted will consist of discrete steps within
this theoretically continuous change. The metrics that are going to be used will be discussed in
section 3.3.

3.3 Detection Metrics

The following section contains the metrics that we have proposed to be able to detect the
avalanches that may be occurring during a run time of a network. These metrics aim to capture
the running behavior of the system in real-time to be able to detect outliers in activation patterns.
While a neural network is running on a continues feed of images, the networks are to be measured

12

using these metrics to be analyzed to aid detection. These metrics are the current selection that
we have come up with, as the project progresses further there might be additions to this list.

3.3.1 Neuron Activation Counts (NAC)

Neuron Activation Counts (NAC) are the most basic and initial point of examination for our
system. This metric is defined by the number of neurons that are activated, or in other words
have an activation value above a set threshold, which was taken as 0.5 for our experiments.
This measurement is taken separately for each layer, that is we obtain a list of NACs for each
individual layer. The formal definition is as follows:

NACn =

nw∑
i=1

{
1, ni ≥ threshold
0, ni < threshold

, n ∈ I : 1 < n ≤ NLayers (3.1)

Where Nlayers is the number of layers in the system, NACn is the NAC value of layer n, nw

is the width of the layer n and ni is the activation value of the neuron i of layer n. Additions
upon this metric could be made by calculating the slope of the resulting graph at points and
examining the change in values rather than the values themselves.

3.3.2 Gradient (Grad)

A gradient, to simply put is a vector of partial derivatives of a function (in this case our NN) with
respect to its input variables. By calculating the gradient of our system, we get the contributions
of our inputs to our system. The implementation of the gradients are taken directly from the
PyTorch library, where each backward [1] propagation operation returns us a list of grad [3]
values for our output.

3.3.3 Eigen Value of Activations (EV)

Eigen Values (EV) are a set of values explaining the scale of change of the values of a matrix
in a linear transformation, representing how much they were stretched. EV s provide us with a
unique perspective on the change of the input through the layers as it gets transformed. The
implementation is taken directly out of the PyTorch library [2]. The outputs of each 2d layer is
taken through this function and the data is collected.

3.4 Monitoring Methods

To try and automate the process, we will also be exploring the idea of training additional machine
learning methods to be able to detect these avalanches. Our proposed method is to integrate
a second classifier tool, which will be referred to as the Monitoring Model (MM), that will be
gathering activation data of the neurons from the main NN and detect the occurance of any
avalanches in real time. This way, the detection of avalanches can be made more adaptable
and robust. Furthermore, the MM can be modified to provide a confidence value for the given
system instead of doing a binary classification, which can be used as the likelihood of the system
to make a mistake, which can be crucial for safety-critical applications where any security over
a given baseline is highly valuable.

The usage of a second classifier will require that we collect the data of the tests that we have
proposed, into a larger dataset and train this classifier on them. This data will consist of the
detection metrics that we have proposed on the section 3.3.

13

Figure 3.2: The architecture of the whole system with the integration of a second
machine learning algorithm for real-time monitoring.

14

Chapter 4

Experimental Setup

To begin our efforts, we start from a basic point of creating scenarios that will mimic continues
operation. For this, we propose a system where a continuous stream of pictures are fed into
a neural network, with each image being visually similar to adjacent pictures on a certain
transformation. We will be conducting our experiments on a data set that consists of pictures
of road signs from Germany, called GTSRB. This dataset will first be used to train an image
classification model to be able to determine what sign is present in given pictures. Then, we will
use strategically chosen pictures to create images that will mimic real world scenarios where the
quality of the images may not be optimal. The pictures obtained from this operation will be
referred to as morphed images. Later, we will feed these pictures into our image classification
model to cause an avalanche. As these avalanches occur, the performance metrics mentioned
in 3.3 will be measured and collected to form a second dataset. Finally, we will train another
machine learning method to predict avalanches only looking at these metrics. In the below
sections, you can find detailed explanations of each part of this process.

4.1 Data

The data used in our work can be divided into 3 parts: the raw road sign dataset, morphed
images and avalanche metrics. In the sub-sections below, each of these will be discussed in finer
detail.

4.1.1 Road Sign Data

The first part, will be to directly use the GTSRB dataset as mentioned before. This dataset
consists of pictures of roadsigns from Germany, and has 43 unique classes, in this case different
kinds of roadsigns. The dataset is pre-processed, all the pictures are taken from a relatively
direct angle (direct enough that the faces of the signs are clearly visible), has no obstructions to
the signs and the images are cropped in a way where the signs are in the middle of each frame
with minimal other objects around them. Each image has the dimensions 30 pixels by 30 pixels,
with a total of 51.900 images.

4.1.2 Morphed Images

The second part of the data consists of pictures taken through a transformation process, referred
to as morphing to generate additional, imperfect images that are designed to cause an avalanche.

The main idea behind this operation is to mimic real world scenarios, based on live video
feeds. With imperfect conditions that may decrease the quality of the images received, any
machine learning method might struggle to perform their tasks, varying with the severity of
conditions. By using strategically selected pictures, we create these imperfect transitions that

15

will trigger avalanches in our system. While a direct video recording could also achieve the same
result (and would be even closer to a practical, real world application scenario) it would also
require a significantly higher level of effort with the data collection and pre-processing them to
fit our use. Due to the resource limitations of our project, we were not able to explore this path.

The working principle is to get 2 pictures of the same kind of a road sign, one being correctly
labeled by our network while the other being incorrectly labeled. We then take the correctly
labeled image, and change the values of it’s pixels on a gradual transformation until we eventually
obtain the incorrectly labeled picture. As the pictures are of the same kind of a sign, theoretically
the system should not change its prediction. As we have selected the second picture to be one
that is misclassified, we guarantee that through the morphing, at a certain point the prediction
will change. Since we do the morphing with incremental steps that introduce minimal change
to the images, when the prediction occurs it would have occurred with minimal changes to the
input while the change is not supposed to happen, fitting the definition of an avalanche.

In more formal terms, given a trained network Ctrained , we take a pair of pictures PPn =
(PP 1

n , PP 2
n), such that the conditions in fig. 4.1 apply.

(i) class(PP 1
n) ≡ class(PP 2

n)

(ii) Ctrained(PP 1
n) ≡ class(PP 1

n)

(iii) Ctrained(PP 2
n) ̸≡ class(PP 2

n)

(4.1)

Then the Algorithm 1 is used to create pictures on which the experiments are to be done.
Where Pnew is the new picture that was created, H and W are the height and the width of the
picture respectively, i, j ∈ N : 0 ≤ i < H and 0 ≤ j < W , PPm

n [i, j] is the 3-dimensional value
representing pixel found at the i’th row of the j’th column and the s ∈ R: 0 ≤ s ≤ 1 represents
a percentage of the current morphing step. Essentially, what the algorithm does is morph one
image slowly into another, taking the difference of the values of each pixel in one image and
the corresponding pixel on the next one, this value is then added to the first pixel with a mul-
tiplier. A multiplier of 1 would mean we get a copy of the second pixel, a multiplier of 0 would
mean we get a copy of the first pixel, and any value in between will give us a hybrid value be-
tween the values of the two pixels. This operation is repeated on every single pixel of the images.

Algorithm 1 MorphImage
1: function MorphImage(PPn, s):
2: for i in [0, 1, . . . , N] do
3: for j in [0, 1, . . . ,M] do
4: Pnew[i, j] = PP 1

n [i, j] + s ∗ (PP 2
n [i, j]− PP 1

n [i, j])
5: end for
6: end for
7: return Pnew

The main part of the test uses the Algorithm 1 to create a range of pictures, based on
the percentage steps desired, which for our experiments was decided to be increments of 0.01,
starting from 0 and ending at 1. As these pictures are generated, they get run through the
pre-trained CNN, while also calculating some statistics about the activation of the network and
saving them. An overview of the full algorithm can be found in Algorithm 2. After the execution
of the tests are done, we are left with a dataset, consisting of a list of run-time statistics of our
CNN, along with the classification of the images. These results will be sorted within each run
according to the percentage value of the transformations.

16

Algorithm 2 MorphTest
1: Ctrained ← CNN
2: PPs ← (PP1, PP2, . . . , PPN)
3: for PPn in PPs do
4: for s = 0.0, 0.01, . . . , 1.0 do
5: PPnew ←MorphImage(PPn, s)
6: Classify PPnew with Ctrained

7: Calculate and save statistics
8: end for
9: end for

4.2 Traffic Sign Detection Models

To use as our testbed, we have chosen to work with convolutional neural networks, as they
have the best overall performance for image detection tasks. After looking at best practices and
considering the nature of our data, we have come up with 2 different architectures that may fit
our use case scenario the best. Furthermore, we have trained the larger model with different
hyperparameters to test the effects of proper training on our results as well. You can find the
dissection the models in fig. 4.1. Due to the framework that we have used for creating these
models, supporting operations such as batch normalisation and pooling, were also considered as
layers.

CNN-1 Architecture CNN-2 Architecture

Convolutional Layer Convolutional Layer

Convolutional Layer Max Pool Layer

Max Pool Layer Batch Norm Layer

Batch Norm Layer

Convolutional Layer Convolutional Layer

Convolutional Layer Max Pool Layer

Max Pool Layer Batch Norm Layer

Batch Norm Layer

Flatten Layer Flatten Layer

Linear Layer Linear Layer

Batch Norm Layer Linear Layer

Dropout Layer

Linear Layer

Table 4.1: Layer-by-layer comparison of the CNN architectures used for sign detection,
grouped by functional clusters.

17

We then fed our dataset to these models for training and measured their performances,
picking out the best one for use. As seen in 4.1, both of the architectures perform significantly
better than the baseline of random guesses, meaning they are relatively successful at completing
their tasks. However, we also see that CNN-1 outperforms CNN-2 by a significant margin.
CNN-1 fits what the best practices would suggest for our dataset better, thus these result are
what we had expected. Furthermore, we see that CNN-1 performs a lot better using the ADAM
optimizer as opposed to the SGD optimizer. The exact implementations of these optimizers are
irrelevant to our findings, we will only use these to examine what different extents of training
has on our final results. Due to the higher success rate of CNN-1, we will perform the main part
of our experiments on the two differently trained versions of this architecture. The results in
this figure will be used as a comparison point in the final part of our study. For the rest of this
paper, CNN-1 trained using ADAM will be referred to as the CNN-A and CNN-1 trained with
SGD will be referred to as the CNN-S.

Model Name Accuracy Epochs

CNN-1
ADAM 99.60%

30SGD 67.07%

CNN-2 ADAM 46.77%

Theoretical Random Guess 02.33% -

Figure 4.1: Performance metrics for sign detection models and training hyper-
parameters, compared with the accuracy that would be expected from trying to randomly
guess the results.

4.3 Avalanche Detection Models

In order to detect avalanches, we once again resort to machine learning models. Due to the
unstructured nature of our avalanche data, where the order of features does not matter, we were
able to use a broader range of models to achieve our results. Due to their robust nature and low
cost of operating and training, our first choice was a RF network. As we have gotten satisfactory
results from them, we did not explore any additional methods. For comparison’s sake, a small
neural network was also tested. The performance results and hyperparameter selections of these
models can be found in 5.

18

Chapter 5

Results

5.1 Avalanche Detection

As the result of our morph tests, we obtain the avalanche datasets for both of our networks
with 47 cases, totaling 4700 pictures and 50 cases, totaling 5000 pictures for CNN-A and CNN-S
respectively. We will feed these into 2 separate RFs, which will be referred to as the RF-A for
the one using the CNN-A data, and RF-S for the one using the CNN-S data. For clarification,
at no point in our experiments will these models ever use the data from the other CNN; they
will be trained and tested within their own CNN’s data exclusively. As these pictures are fed
into our systems, we collect the metrics that are mentioned in the section 3.3, giving us 3 points
of metrics for each layer, given there are 13 layers in our neural networks we get a total of 39
recorded metrics per test.

First point of our results will consist of feeding these data into our RF models. To ensure the
quality of our results, we will test the RF with 10 different combinations of hyper-parameters.
In our case, the only hyper-parameters that are altered will be the number of estimators, which
controls how many individual decision trees are present in the RFs. The performance metrics
of the RFs trained on the different CNN’s datas can be found in fig. 5.1. Having an initial look
at this figure, we can see that the performance metrics are all in very desirable ranges, meaning
our models perform quite well on predicting avalanches. Furthermore, we can see that both
models performed in a similar manner, with the model that uses the data of CNN-S performing
marginally better. This indicates that the formation characteristics of avalanches are similar in
the two different training scenarios. The slight performance increase on the model CNN-S, which
is the model that has worse training, may be caused by it having a less robust internal structure,
resulting in it having more and bigger avalanches, making it easier for them to be detected by
our models. This explanation can further be supported by the fact that it had produced more
avalanches within the data, where the CNN-S produced 50 and the CNN-A produced 6% less
avalanches, with a count of 47.

Looking at the individual performance metrics, we see that both the models have very high
accuracy and precision values. This is an indicator for the systems acting relatively on the safer
side for their guesses. As the recall values are not as high as the accuracy and precision, we can
say that the system has a bias to not label positive classes when it is not perfectly sure. Looking
at the F1 score as well, we see that the tradeoffs taken by the models are justifiable as they
do not sacrifice any of these values in a significant way in order to maximize others, meaning a
balanced approach.

As we compare the metrics along the X axis of the plots, which represents the number of
estimators used on the tests, we can see that there exists a sweet spot that yields the best
results. This also serves as a sign of overfitting for higher numbers of estimators. However,
not all of the graphs include the same trends, indicating that the performance of the systems
change on different aspects of their decision making as this hyper-parameters is changed. One

19

20 40 60 80 100
90

95

100

Nr. of Estimators

%

Accuracy

20 40 60 80 100
90

95

100

Nr. of Estimators

%

Precision

20 40 60 80 100
70

80

90

100

Nr. of Estimators

%

Recall

20 40 60 80 100
70

80

90

100

Nr. of Estimators

%

F1 Score

CNN-A CNN-S

Figure 5.1: Performance metrics of CNN-A and CNN-S across different numbers of
estimators.

positive relation between two models is that the same sweet spot produces the best results on
both the models, which is in the 30-40 range of number of estimators. This also helps reduce
the training and operations costs as this number is quite low in terms of practical capabilities
and cost requirements of real-life scenarios.

Since our results are looking to be in very ideal ranges, we also opted in to verify them using
k-fold cross validation, which is a simple algorithm used to split the dataset in to k different
groups to make sure that we are not taking advantage of how we split the data into training
and tests set. Using cross validation, we train our models on all the groups of the data except
a single one, where the testing takes place. We do this for all the different groups and average
the results to find the performance of our system. We have chosen to use a version of cross
validation referred to as the stratified cross validation, which ensures that the two classes in our
data are evenly split among all the groups. The results of the tests can be found in fig. 5.2. The
results here show us that, indeed our systems have had very little effects of overfitting present
in their training. With the CNN-A based model, RF-A having the most impact on its results,
showing a 5% decrease in its F1 value. However, it is still in > 85% range, making it a good
classifier.

As an added benefit of the RF models, we also get a chance to look at their feature im-
portance’s, which are metrics that tell us the usefulness of any feature on the model’s decision
making. These values are measured in mean difference in impurity (MDI), which is a metric
that calculates what is the average effect of this feature on the impurity, or the separation of
different classes on the input. Looking at the figures 5.3 and 5.4, we can see that the feature

20

Model Used Testing Method Accuracy Recall Precision F1

RF-A
Cross Validation 99.38% 77.12% 96.78% 85.25%

Regular Split 99.57% 80.95% 100.00% 89.47%

RF-S
Cross Validation 99.82% 93.56% 96.89% 95.08%

Regular Split 99.60% 91.67% 99.80% 95.35%

Figure 5.2: Comparison for the performance of metrics of avalanche detection models
on a single split validation and a k-fold cross validation scenarios, with k chosen as 10.

importance’s are not balanced across all the features, indicating the redundancy between some
of them. Another point that is immediately visible is the amount of features that have no effect
on the decision process. As the features that have no effect are the same one across the two
models, we can say that the formation of avalanches are heavily effected by certain layers. The
overall magnitude of the importance’s of the features that were used are very similar across both
models, except for the increase on the data of the the later layers. This could be attributed to
the fact that the later layers on the NNs are flat layers. Since the first layers are convolutional
layers, they are much bigger in terms of neuron counts and are also more advanced in the sense
that they utilize extra masks and operations to process their data. This would make them re-
quire more training, in which the models that haven’t received proper training will get the most
decrease in performance in relation to ones with better training. As such, the final layers may
need to taken on heavier work loads to boost the system’s performance.

ac
t_

0
gr

ad
_

0
ei

ge
n
_

0

ac
t_

1
gr

ad
_

1
ei

ge
n
_

1

ac
t_

2
gr

ad
_

2
ei

ge
n
_

2

ac
t_

3
gr

ad
_

3
ei

ge
n
_

3

ac
t_

4
gr

ad
_

4
ei

ge
n
_

4

ac
t_

5
gr

ad
_

5
ei

ge
n
_

5

ac
t_

6
gr

ad
_

6
ei

ge
n
_

6

ac
t_

7
gr

ad
_

7
ei

ge
n
_

7

ac
t_

8
gr

ad
_

8
ei

ge
n
_

8

ac
t_

9
gr

ad
_

9
ei

ge
n
_

9

ac
t_

10
gr

ad
_

10
ei

ge
n
_

10

ac
t_

11
gr

ad
_

11
ei

ge
n
_

11

ac
t_

12
gr

ad
_

12
ei

ge
n
_

12

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Feature

M
ea

n
de

cr
ea

se
in

im
pu

ni
ty

Figure 5.3: Feature importance of CNN-A using mean decrease in impurity (MDI).

Furthermore, we can also use the feature importance’s to decrease the amount of data that
would be necessary to achieve our results. As seen on figures 5.3 and 5.4, there are 20 features
that are unused in the decision making process on both of the models. Having a total of 39
features originally, if these were to be removed, we would have decreased the input size by 51%
without effecting the performance of the models. We can also see that no features that use the
gradient values had an effect on the performance of the system. Removing the collection of these
values could further decrease the operating costs of our models, as less data would be needed to

21

ac
t_

0
gr

ad
_

0
ei

ge
n
_

0

ac
t_

1
gr

ad
_

1
ei

ge
n
_

1

ac
t_

2
gr

ad
_

2
ei

ge
n
_

2

ac
t_

3
gr

ad
_

3
ei

ge
n
_

3

ac
t_

4
gr

ad
_

4
ei

ge
n
_

4

ac
t_

5
gr

ad
_

5
ei

ge
n
_

5

ac
t_

6
gr

ad
_

6
ei

ge
n
_

6

ac
t_

7
gr

ad
_

7
ei

ge
n
_

7

ac
t_

8
gr

ad
_

8
ei

ge
n
_

8

ac
t_

9
gr

ad
_

9
ei

ge
n
_

9

ac
t_

10
gr

ad
_

10
ei

ge
n
_

10

ac
t_

11
gr

ad
_

11
ei

ge
n
_

11

ac
t_

12
gr

ad
_

12
ei

ge
n
_

12

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Feature

M
ea

n
de

cr
ea

se
in

im
pu

ni
ty

Figure 5.4: Feature importance of CNN-S using mean decrease in impurity (MDI).

be gathered from the running NNs. The lack of importance of gradients can be attributed to
their redundancy as they represent a similar quality to eigenvalues in theory.

To have a point to compare, we also have trained a simple neural network to detect avalanches.
The network that we have used is extremely basic, having only 3 layers of 39, 13 and 1 neurons;
that are fully connected with no other support operations. By feeding the same data that was
fed to the RFs, we obtain the results shown in 5.5. By looking at the differences in the results,
we can see that NNs are significantly outperformed by RFs. Also considering their heavier train-
ing and testing costs, makes them an inferior choice to RFs. These results are what we would
expect, as neural networks would require more data to be trained. With further work and more
specialized architectures, such as types of neural networks that are built to remember the past
inputs in limited fashions, they can perform better. However, with the high success rate we have
achieved from RFs, makes NNs the worse choice, as the specialized networks would only make
the operating costs higher.

Data Provider Model Accuracy Recall Precision F1

CNN-A
RF 99.57% 80.95% 100.00% 89.47%

NN 92.34% 46.99% 37.74% 39.40%

CNN-S
RF 99.70% 87.50% 100.00% 93.33%

NN 60.00% 48.94% 34.84% 27.96%

Figure 5.5: Comparison for the performance of RFs and NNs on avalanche detection.
For the representation of RFs, the hyper-parameters with the best performance were
chosen.

22

Chapter 6

Limitations & Future Work

Due to the time and resource limitations of our project, we were not able to completely explore
every aspect of our topic. We would like to mention these in this chapter for future work and
to provide caution while using our findings. Below you will find, in no particular order, a short
chapter for each area of our work we think can be improved further.

6.1 Avalanche Definition For NNs

The topic of avalanches in neural circuits, or other but similar domains have mainly been re-
searched outside of the practical areas of computers science, we struggled to find work that
would be directly applicable. Most of the literature has focused on working physical, chemical
or biological systems that lack many of the limitations that we have in the neural networks
that we use in machine learning. One of the biggest differences that we have faced is the fact
that most of the systems that have been researched had a looping nature, where an output had
the chance to go over the system multiple times until it exhausted itself, or the bounds of the
system was bigger than the extent of the avalanches that would be formed. In our case, where
our networks propagate information in a single direction and are relatively limited by their size,
we were unable to use the same metrics and identification criteria for avalanches.

6.2 Video Data vs Morph Image Generation

The main motivation behind using morph image generation is to mimic the continuous inputs of
a video feed. We want to analyze practical scenarios that may come across a neural network in a
real world setting. Unfortunately, we were not able to find any datasets that consisted of video
frames that have been labeled. In order to create our own, we would need a vehicle, a decent
drive-length and a camera to record the road signs as they appear to the car and hand label
them, which would have been too much for the resources that were available to us. Furthermore,
the concept of Morph Image Generation can be taken a step further by using a masking process
to identify the objects within the images and shift them in a way that would make more visual
sense, instead of individual pixel manipulations that we have done. This could act like a middle
ground between a video feed and image generation.

6.3 Tests with DNNs

Due to the definition of avalanches, their behavior becomes much more significant and pro-
nounced when they have space to grow their sizes. Unfortunately, the models that would work
for our dataset were too small to allow the avalanches to grow to their potential maximum sizes.
Even though this was not a major issue as they still had the chance to form, it may be easier

23

to characterize them if they had bigger models to form in. A test setup where the dataset used
could allow for larger networks would have the potential to shine more light on avalanches.

6.4 Examining different kinds of NNs

Similar to the previous point, we had to confine to CNNs as our testbeds due to the nature of
the dataset we have used. However, this leaves some uncertainties regarding the generalization
of our results to NNs in general. As we have no way of knowing if our results are specific to
CNNs, we can not confidently comment on the applicability of our finding on different kinds of
neural networks.

6.5 Pre-Trained Networks

For our work, we only focused on networks that we have trained ourselves on our datasets
specifically. In real world, due to a variety of reasons such as generalization, costs and reliability,
some individuals might prefer to use a pre-trained model. As our models are only capable of
identifying certain kinds pictures, we miss out on observing how a broader knowledge might
effect the performance of the avalanche detection methods.

24

Chapter 7

Conclusion

We have tested two convolutional neural network models, that were trained to classify images
of road signs, to see if we could predict when they would have disruptive firing patterns occur
within them, in the form of avalanches. By coming up with a list of metrics and training an
additional machine learning model on them, we have created a pipeline to predict the formation
of avalanches. Our experiments showed that by using random forests, we were able to predict
avalanches with very high levels of success. Furthermore, comparing the two convolutional neural
networks that we have used, we were able to see that a better trained system has less avalanches
overall and makes it slightly harder to detected them. We have also conducted our experiments
in a limited capacity with another set of a neural network for predicting avalanches, which did
not perform up to standards of the random forests. The success we have achieved with the
random forest models will enable us to improve the performance of neural networks by having
this additional machine learning model that would monitor a given neural network and provide
feedback on the reliability of the outputs it gives out.

25

Bibliography

[1] Pytorch backward, March 2024. URL: https://pytorch.org/docs/stable/generated/
torch.Tensor.backward.html#torch.Tensor.backward.

[2] Pytorch eigen values, March 2024. URL: https://pytorch.org/docs/stable/generated/
torch.linalg.eig.html.

[3] Pytorch grad, March 2024. URL: https://pytorch.org/docs/stable/generated/torch.
Tensor.grad.html.

[4] Stephanie Abrecht, Alexander Hirsch, Shervin Raafatnia, and Matthias Woehrle. Deep
learning safety concerns in automated driving perception, 2024. URL: https://arxiv.
org/abs/2309.03774, arXiv:2309.03774.

[5] Barnawi A Almutairi S. Securing dnn for smart vehicles: an overview of adversarial attacks,
defenses, and frameworks. Journal of Engineering and Applied Science, 70, March 2023.
doi:10.1186/s44147-023-00184-x.

[6] Humaidi A.J. Alzubaidi L., Zhang J. Review of deep learning: concepts, cnn archi-
tectures, challenges, applications, future directions. Big Data, 8, March 2021. doi:
10.1186/s40537-021-00444-8.

[7] Markus Aschwanden. Self-Organized Criticality in Astrophysics. Springer Berlin Heidelberg,
January 2011. doi:10.1007/978-3-642-15001-2.

[8] John M. Beggs and Dietmar Plenz. Neuronal avalanches in neocortical circuits.
Journal of Neuroscience, 23(35):11167–11177, 2003. URL: https://www.jneurosci.
org/content/23/35/11167, arXiv:https://www.jneurosci.org/content/23/35/11167.
full.pdf, doi:10.1523/JNEUROSCI.23-35-11167.2003.

[9] Matthew Browne and Saeed Ghidary. Convolutional neural networks for image processing:
An application in robot vision. In Advances in Artificial Intelligence, pages 641–652, 12
2003. doi:10.1007/978-3-540-24581-0_55.

[10] Daniel Canedo and Alexandre Romariz. Data analysis of wireless networks using computa-
tional intelligence. Journal of Communications, 13:618–626, 11 2018. doi:10.12720/jcm.
13.11.618-626.

[11] Barry A. Cipra. An introduction to the ising model. American Mathematical Monthly,
94:937–959, 1987. URL: https://api.semanticscholar.org/CorpusID:10158214.

[12] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in
empirical data. SIAM Review, 51(4):661–703, November 2009. URL: http://dx.doi.org/
10.1137/070710111, doi:10.1137/070710111.

[13] Kreft M. et al. Cramer B., Stöckel D. Control of criticality and computation in spiking
neuromorphic networks with plasticity. Nature Communications, 11, june 2020. doi:10.
1038/s41467-020-16548-3.

26

https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html#torch.Tensor.backward
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html#torch.Tensor.backward
https://pytorch.org/docs/stable/generated/torch.linalg.eig.html
https://pytorch.org/docs/stable/generated/torch.linalg.eig.html
https://pytorch.org/docs/stable/generated/torch.Tensor.grad.html
https://pytorch.org/docs/stable/generated/torch.Tensor.grad.html
https://arxiv.org/abs/2309.03774
https://arxiv.org/abs/2309.03774
https://arxiv.org/abs/2309.03774
https://doi.org/10.1186/s44147-023-00184-x
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1007/978-3-642-15001-2
https://www.jneurosci.org/content/23/35/11167
https://www.jneurosci.org/content/23/35/11167
https://arxiv.org/abs/https://www.jneurosci.org/content/23/35/11167.full.pdf
https://arxiv.org/abs/https://www.jneurosci.org/content/23/35/11167.full.pdf
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1007/978-3-540-24581-0_55
https://doi.org/10.12720/jcm.13.11.618-626
https://doi.org/10.12720/jcm.13.11.618-626
https://api.semanticscholar.org/CorpusID:10158214
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1038/s41467-020-16548-3
https://doi.org/10.1038/s41467-020-16548-3

[14] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision, recall and f-score,
with implication for evaluation. In David E. Losada and Juan M. Fernández-Luna, editors,
Advances in Information Retrieval, pages 345–359, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1511.08458, June 2016. URL: https://arxiv.org/abs/
1511.08458.

[16] Evelyn Herberg. Lecture notes: Neural network architectures, 2023. URL: https://arxiv.
org/abs/2304.05133, arXiv:2304.05133.

[17] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward. Sundials: Suite of nonlinear and differential/algebraic equation
solvers. ACM Transactions on Mathematical Software, 31(3):363–396, September 2005.
doi:10.1145/1089014.1089020.

[18] P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena. Rev. Mod.
Phys., 49:435–479, Jul 1977. URL: https://link.aps.org/doi/10.1103/RevModPhys.49.
435, doi:10.1103/RevModPhys.49.435.

[19] Eugene M. Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions
on Neural Networks, 15(5):1063–1070, September 2004. doi:10.1109/TSMCC.2004.843247.

[20] Eugene M. Izhikevich. Polychronization: Computation with spikes. IEEE Circuits and
Systems Magazine, 6(3):24–36, Third Quarter 2006. doi:10.1109/MCAS.2006.1688199.

[21] Simoens Pieter Khaluf Yara, Ferrante Eliseo and Huepe Cristián. Scale invariance in natural
and artificial collective systems: a review. J. R. Soc. Interface., 2017. doi:http://doi.
org/10.1098/rsif.2017.0662.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Use of artificial neural network in
pattern recognition. Nature Journal, June 2015. doi:10.1038/nature14539.

[23] K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, and R. J. Ilmoniemi. Long-range
temporal correlations and scaling behavior in human brain oscillations. J. Neurosci., 21(4),
February 2001. doi:10.1523/jneurosci.21-04-01370.2001.10.

[24] Dimitrije Marković and Claudius Gros. Power laws and self-organized criticality in theory
and nature. Physics Reports, 536(2):41–74, 2014. Power laws and Self-Organized Criticality
in Theory and Nature. URL: https://www.sciencedirect.com/science/article/pii/
S0370157313004298, doi:10.1016/j.physrep.2013.11.002.

[25] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting
and understanding deep neural networks. Digital Signal Processing, 73:1–15, February 2018.
URL: http://dx.doi.org/10.1016/j.dsp.2017.10.011, doi:10.1016/j.dsp.2017.10.
011.

[26] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, March 1986.
doi:10.1007/BF00116251.

[27] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?":
Explaining the predictions of any classifier, 2016. URL: https://arxiv.org/abs/1602.
04938, arXiv:1602.04938.

[28] Hinton G. Williams R. Rumelhart D. Learning representations by back-propagating errors.
Nature, 323:533 – 536, October 1986. doi:10.1038/323533a0.

27

https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/2304.05133
https://arxiv.org/abs/2304.05133
https://arxiv.org/abs/2304.05133
https://doi.org/10.1145/1089014.1089020
https://link.aps.org/doi/10.1103/RevModPhys.49.435
https://link.aps.org/doi/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1109/TSMCC.2004.843247
https://doi.org/10.1109/MCAS.2006.1688199
https://doi.org/http://doi.org/10.1098/rsif.2017.0662
https://doi.org/http://doi.org/10.1098/rsif.2017.0662
https://doi.org/10.1038/nature14539
https://doi.org/10.1523/jneurosci.21-04-01370.2001.10
https://www.sciencedirect.com/science/article/pii/S0370157313004298
https://www.sciencedirect.com/science/article/pii/S0370157313004298
https://doi.org/10.1016/j.physrep.2013.11.002
http://dx.doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1007/BF00116251
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.1038/323533a0

[29] Saptarshi Sengupta, Sanchita Basak, Pallabi Saikia, Sayak Paul, Vasilios Tsalavoutis, Fred-
erick Atiah, Vadlamani Ravi, and Alan Peters. A review of deep learning with spe-
cial emphasis on architectures, applications and recent trends. Knowledge-Based Sys-
tems, 194:105596, 2020. URL: https://www.sciencedirect.com/science/article/pii/
S095070512030071X, doi:10.1016/j.knosys.2020.105596.

[30] K Sneppen, P Bak, H Flyvbjerg, and M H Jensen. Evolution as a self-organized critical
phenomenon. Proc. Natl. Acad. Sci., 92(11), May 1995. doi:10.1073/pnas.92.11.5209.

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. URL: http://jmlr.org/papers/
v15/srivastava14a.html.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, June 2017. URL: https://arxiv.org/abs/1706.03762.

[33] Guangyu Robert Yang, Madhura R. Joglekar, H. Francis Song, William T. Newsome, and
Xiao-Jing Wang. Task representations in neural networks trained to perform many cognitive
tasks. Neural Computation, 31(12):3415–3449, December 2019. doi:10.1162/neco_a_
00990.

[34] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. Cambridge University Press, 2021. https://d2l.ai/chapter_
convolutional-neural-networks/padding-and-strides.html.

[35] Yong Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: A statistical
framework. Information Processing Management, 45(5):556–574, September 2009. doi:
10.1016/j.ipm.2009.03.002.

28

https://www.sciencedirect.com/science/article/pii/S095070512030071X
https://www.sciencedirect.com/science/article/pii/S095070512030071X
https://doi.org/10.1016/j.knosys.2020.105596
https://doi.org/10.1073/pnas.92.11.5209
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1706.03762
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1162/neco_a_00990
https://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html
https://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002

	Introduction
	Theoretical Background
	Neural Networks
	Convolutional Neural Networks

	Decision Trees
	Random Forests

	Critical State & Avalanches
	Self Organized Criticality in DNNs
	Performance Metrics for Machine Learning Models
	Accuracy
	Recall
	Precision
	F1-Score

	Avalanche Detection
	Application Domain
	Data Collection
	Detection Metrics
	Neuron Activation Counts (bold0mu mumu NACNAC2005/06/28 ver: 1.3 subfig packageNACNACNACNAC)
	Gradient (bold0mu mumu GradGrad2005/06/28 ver: 1.3 subfig packageGradGradGradGrad)
	Eigen Value of Activations (bold0mu mumu EVEV2005/06/28 ver: 1.3 subfig packageEVEVEVEV)

	Monitoring Methods

	Experimental Setup
	Data
	Road Sign Data
	Morphed Images

	Traffic Sign Detection Models
	Avalanche Detection Models

	Results
	Avalanche Detection

	Limitations & Future Work
	Avalanche Definition For NNs
	Video Data vs Morph Image Generation
	Tests with DNNs
	Examining different kinds of NNs
	Pre-Trained Networks

	Conclusion

