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Abstract

Penetration testing is the practice of simulating real-world attacks on

information systems to uncover vulnerabilities before adversaries exploit

them. It is labor-intensive because testers must gather intelligence, plan

multi-step exploits, interact with diverse interfaces, and document every

action with precision and accuracy. Recent progress in large language

models (LLMs) has sparked e�orts to automate parts of this work�ow.

Prior studies have shown that LLM agents can generate commands,

interpret tool output, and chain tasks, yet they lack programmatic control

over a web browser. That omission limits their ability to test the client-

side logic that dominates modern web applications.

This paper examines whether adding browser access to LLM-driven

agents closes that gap. We build two agents: a command-line baseline

and a browser-enabled variant that can click, type, read the Document

Object Model, and watch network tra�c. Both are evaluated on twenty-

seven Web Security labs covering nine common web vulnerabilities.

The browser-enabled agent solves 66.7 percent of the labs, compared

to 40.7 percent for the baseline, expands coverage from three to seven

vulnerability classes, and achieves the largest gains on medium-di�culty

tasks. These �ndings con�rm that giving agents control over a web

browser is a major step forward for automated penetration testing. The

next challenges are to incorporate precise timing analysis and support

for out-of-band interactions, enabling the process to become fully au-

tonomous.

1 INTRODUCTION

AI has rapidly become a cornerstone of modern cybersecurity strat-

egy. Google Cloud’s 2024 State of AI & Security survey of 2486

security practitioners reveals that 55 % of organizations intend to

deploy generative-AI security tooling within the next 12 months,

and 19 % already plan to apply it to attack-simulation and red-team

automation. Yet only 63 % believe these tools will clearly improve

their defenses, while a 33 % skills-gap remains the top implemen-

tation barrier, signaling an enthusiasm–readiness gulf that makes

disciplined penetration testing more critical than ever. [4]

Penetration testing, or pentesting, is still vital for protecting sys-

tems, but requires many work hours and there are not enough

skilled testers [1, 10]. Recent progress in arti�cial intelligence, and

especially in large language models (LLMs), therefore, has renewed

interest in automating parts of this work [7]. Early studies showed

that classical AI and machine learning methods can help identify

vulnerabilities, but also pointed out scaling and real-time analysis

problems that remain today [10]. The arrival of instruction-tuned
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LLMs has pushed research beyond basic tasks such as simple classi-

�cation or sending random inputs and toward full attack work�ows,

making expert techniques easier to share and speeds up each test

cycle [6].

Despite this progress, fully autonomous LLM-based pentesting

is not yet fully solved. Exploratory studies such as PentestGPT

demonstrate that current models can reliably generate tool com-

mands, interpret outputs, and chain sub-tasks, yet they struggle

to retain long-range context, to reason strategically across multi-

ple attack paths and to interact with dynamic client-side surfaces

such as modern web browsers [5]. These limitations manifest in

premature task termination, overlooked vulnerabilities and brit-

tle prompt-engineering practices. Recent multi-agent prototypes

(e.g. BreachSeek) mitigate context-window exhaustion through task

decomposition, but still rely on coarse shell interfaces that cannot ex-

ercise rich browser behaviors central to today’s web applications [3].

Closing these gaps is essential for LLMs to move from promising

helpers to reliable penetration testers capable of handling the full

spectrum of tasks.

To advance the state of the art, this study investigates the use

of browser-enabled LLM agents, namely agents equipped with pro-

grammatic control over a real browser process, allowing them to

perceive and manipulate the Document Object Model (DOM), exe-

cute JavaScript, and monitor network tra�c. Our main goal is to �nd

out whether these agents can break through the strategic reasoning

and environment interaction barriers identi�ed in earlier studies,

bringing automated testing closer to the level of a skilled human

tester.

Accordingly, we pose the following research questions (RQ):

• RQ1:What are the demonstrated capabilities and identi�ed

limitations of using Large Language Models for automating

web penetration testing?

• RQ2: How can browser-enabled LLM agents address the lim-

itations observed in current LLM-based penetration-testing

systems?

• RQ3: Can LLMs conduct comprehensive web-application

penetration tests when equipped with browser-level control?

The remainder of this paper is structured as follows. Section 2

reviews recent work on LLM-driven penetration testing and pro-

vides the answer to RQ1. Section 3 details the agent architecture, the

evaluation corpus, and the experimental protocol that set the stage

for RQ2 and RQ3. Section 4 presents the empirical �ndings that com-

pare the browser-enabled agent with the command-line baseline.

Section 5 interprets these results and highlights the remaining blind

spots. Finally, Section 6 summarizes the main contributions, pro-

poses directions for future research, and concludes the study. The

entire codebase of this study can be found in our GitHub repository.
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2 RELATED WORK

This section addresses RQ1: What are the demonstrated capabilities

and identi�ed limitations of using Large Language Models (LLMs) for

automating web penetration testing? We provide needed technical

background, outline the literature-search protocol, present �ndings

along four recurring axes, answer the research question directly,

and close with a brief synthesis.

2.1 Technical Background

This background section gives the reader the key ideas needed for

the rest of the paper. It reviews the standard penetration-testing

work�ow, the basics of large language models, common agent pat-

terns, browser automation, and the benchmarks used to judge progress.

Penetration testing follows a widely accepted sequence of activ-

ities. A typical engagement includes reconnaissance, enumeration,

initial exploitation, privilege escalation & lateral movement and re-

porting/cleanup. Traditional automation focuses on reconnaissance

with tools such as nmap and on scripted exploits with packages like

Metasploit. Strategic planning and graphical interaction are still

done by humans. With this phased work�ow established, the dis-

cussion now shifts to the language models that many researchers

hope will automate the more demanding steps.

Large Language Models (LLMs) such as GPT-4 or Llama 3 are

transformer networks that contain billions of parameters trained

on web scale corpora. They receive a prompt that �ts within the

model’s context window, which ranges from 8 k to 128 k tokens,

and they then produce a continuation. Their strengths include zero

shot reasoning, code synthesis and �uent command line generation,

while their weaknesses include hallucination, limited context and

speci�c knowledge gaps in security [6]. Open source models like

Mistral and Llama can run locally through llama.cpp or on GPUs.

Hosted APIs such as GPT-4o provide larger context and stronger

reasoning but introduce latency, usage fees and data exposure [11].

Understanding these trade o�s sets the stage for how LLMs are

organized inside practical agents.

When a model is embedded in an agent, designers choose among

several patterns. Single agent loops such as Chain of Thought or

ReAct let one LLM plan, act and observe in sequence. Multi agent

orchestration spreads the work across separate roles (planner, tool

runner, memory archivist) that communicate through message pass-

ing or a �nite state controller. BreachSeek adopts LangGraph for

isolation [3]. PentestGPT separates reasoning, generation and pars-

ing [5]. AutoPT builds a state machine in which each state triggers

a short lived LLM call [12]. These patterns control context growth,

enable parallelism and keep an explicit memory. Yet structure alone

is insu�cient because the agent also needs rich ways to interact

with its environment.

Realistic exploits often depend on browser automation. Frame-

works such as Playwright or Selenium allow agents to click DOM

elements, upload payloads and capture CSRF tokens. AutoPT in-

tegrates Playwright directly [12]. Other frameworks mention GUI

agents only as future work. PentestAgent identi�es browser automa-

tion as the missing piece for �le upload attacks [11]. In the study by

Isozaki et al. [8] a human driver was required for web navigation,

which underlines the gap. When browser control is available it un-

locks new exploit types. When it is absent critical steps still need

human attention. To measure how much these a�ordances matter,

researchers turn to systematic evaluations.

Prototypes are tested on public capture the �ag platforms such as

HackTheBox and VulnHub, on synthetic ranges like Metasploitable

2 and AI4SIM, and on custom suites including the 182 item Pen-

testGPT set. Key metrics include (i) sub task completion, (ii) root

or equivalent success, (iii) reward accumulation in reinforcement

learning settings and (iv) cost or latency. Di�culty is often strati�ed

by box labels that indicate easy, medium or hard, or by ATT&CK cov-

erage. These benchmarks give a common yardstick for comparing

new agent designs, browser capabilities and model selections.

2.2 Methodology

We ran a structured Google Scholar search for papers published

between January 2023 and May 2025. The search focused on peer

reviewed studies and respected preprints that connect AI with auto-

mated penetration testing. Results were limited to that timeframe,

and we removed duplicates, non-English texts, and purely theoreti-

cal papers:

"automated penetration testing" AND "large language

model" 2023-2025

LLM agent "penetration testing" arXiv

"reinforcement learning" penetration testing 2024

"deep learning" automated pentest

browser-based pentesting AI framework 2024

"multi-agent" penetration testing LLM

MITRE ATT&CK guided "auto penetration testing"

"end-to-end" web pentest automation GPT

cyber-range evaluation "AI penetration tester"

knowledge-informed RL "reward machine" security

testing

After reviewing the titles and abstracts, we kept ten main studies

along with a few related follow up papers. Together, these give a

clear picture of how LLMs are currently used in penetration testing.

Paper M L B S

Li et al. ✓

AlShehri et al. ✓ ✓

Isozaki et al. ✓

Wu et al. ✓ ✓ ✓

Shen et al. ✓ ✓ ✓

Al-Sinani et al. ✓

Karagiannis et al. ✓

Hilario et al. ✓

Deng et al. ✓ ✓

Table 1. Key characteristics of recent studies

Table 1 highlights how earlier studies address the four design

choices that are central to our work. Column M marks the use of a

multi-agent architecture, column L shows whether the authors ran

a local LLM, column B records the presence of a browser-enabled

agent, and column S notes whether the paper reports successful

empirical results. By scanning these columns we can see which
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combinations have been tested in the past and where gaps remain,

giving useful context for the design decisions and evaluation goals

of the present study.

Empirical e�cacy and success rates. Across the literature the

bottom-line question does it work? gets a quali�ed “yes.” Happe

and Cito [6] showed a lone GPT-3.5 could scan, pick an exploit

and gain shell on a deliberately weak VM, though runs collapsed

once prompts grew too long. Adding structure helps: PentestGPT

wrapped GPT-4 in planning and memory, breaking into six of seven

“easy” and two of four “medium” HackTheBox machines more than

double an unstructured GPT-4 loop yet neither GPT-4o nor open

Llama-3.1 fully cracked any “hard” target [5, 8]. State-driven ormulti-

role designs go further: AutoPT raised end-to-end completions from

22 % to 41 % on mixed web slash network challenges [12], while

BreachSeek chained three agents and fully rooted Metasploitable 2

in pilot runs [3]. Reward-machine RL adds another boost, �nishing

more tasks with fewer steps than plain learners [9]. Human-centered

PenTest++ kept a tester in charge but reported faster compromises

and cleaner write-ups when ChatGPT handled paperwork [2]. Over-

all, LLM agents excel at reconnaissance and straightforward exploits,

help on medium targets, and still stumble on hardened machines

that need long multi-stage reasoning or GUI interaction, yet even

partial wins already save time and reveal creative attack paths. These

mixed outcomes naturally prompt a closer look at whether stronger

agent structures can push success even further.

Single versus multi-agent orchestration. Single-agent prompting

su�ers from prompt bloat, forgotten goals and brittle tool calls. Multi-

role designs �x this. BreachSeek’s supervisor–pentester–recorder

trio prevents knowledge dilution over 150 k tokens [3]. PentestGPT’s

tripartite stack attributes most of its lift to the explicit Reasoning

module [5]. AutoPT’s state machine keeps each LLM call short,

avoiding context thrashing [12]. Evidence favors structured or multi-

agent topologies for higher completion rates and steadier exploit

chains.With architectural issues addressed, the next logical question

is how much capability hinges on richer interaction with the target

environment, especially through a real browser.

Browser-enabled interaction.Many exploits rely on GUI steps such

as resetting passwords, uploading payloads or navigating CSRF

�ows. Only AutoPT equips its agent with Playwright, a key reason

it reached 41 % success [12]. PentestAgent �ags browser automation

as the missing link for �le-upload attacks [11]. Isozaki et al. [8]

similarly required a human driver, underscoring the gap. Once the

need for browser control is clear, attention turns to the underlying

models themselves and whether running them locally or in the cloud

a�ects e�ectiveness.

Local versus hosted LLMs. Happe and Cito [6] recommend Llama

2 or Mistral on commodity GPUs, while PentestAgent reports near

parity when swapping GPT-4 for Llama 3 apart from latency [11].

Isozaki et al. [8] show quantized Llama 3.1 beating GPT-4o on easy

boxes but falling behind on hard privilege-escalation chains. Au-

toPT’s authors warn that open models lack security �ne-tuning

and may hallucinate commands unless held in check by strong scaf-

folds [12]. Local LLMs therefore suit mid-complexity jobs when

paired with domain prompts, whereas cloud APIs still dominate

intricate multi-stage exploits. Taken together, these observations set

up a consolidated answer to the �rst research question.

Based on the observations of this section, we could conclude

that the answer to RQ1What are the demonstrated capabilities and

identi�ed limitations of using Large Language Models for automating

web penetration testing? is as follows. LLM agents already handle

three core tasks in web penetration testing: (i) automated mapping

of endpoints and parameters [12], (ii) crafting and re�ning payloads

for classic bugs such as SQLi and XSS [5], and (iii) driving a browser

to complete multi-step actions like login or �le upload when Play-

wright or similar tooling is available [11]. Key gaps remain. Agents

lose track of session state in long work�ows, stumble on single-page

applications that shift the DOM dynamically, and struggle to plan

multi-stage privilege-escalation chains [8, 12]. Closing these gaps

with better state tracking, stronger DOM hooks and smarter plan-

ning will be necessary before LLMs can match experienced human

testers on modern web stacks.

Overall, recent work shows that LLM agents bring clear but un-

even gains to automated web penetration tests. They do better when

planning, tool use and memory are handled by separate roles, and

they improve again when they can operate a real browser. Local

models cope with easy and medium targets, yet cloud models still

win on the hardest ones. The next section presents our agent design

that keeps its focus and uses full browser control to close these gaps.

3 METHODOLOGY

This section �rst sketches the full agent architecture, then explains

the model choices, the command-line module, the browser module,

and �nally the logging setup that supports later analysis.

3.1 Agent Architecture

Agent design explains how we turn a large language model into a

working penetration tester. This section outlines the control loop,

the model choice, the command-line core, and the browser exten-

sion.

The interpreter planner loop. Each agent follows a simple cycle.

A natural-language goal goes to the LLM, the model returns one

or more shell commands, the agent runs those commands, records

the output, and feeds the updated context back to the model. This

repeats until the target is reached or a time or token budget runs

out. With this loop in place the next step is to pick the model that

powers it.

We �rst tried self-hosted Llama 3-8B and Qwen-7B through ol-

lama on an Apple M1 Pro MacBook. They worked but were too slow

and inconsistent for end-to-end tests. We therefore moved to the

paid ChatGPT API, speci�cally gpt-4o-mini, which gave the speed

and reliability we needed. After settling on this model we wrapped

it in a controlled command-line setup.

The main CLI agent runs inside a Dockerized Kali Linux con-

tainer. The container o�ers a restricted Bash shell to gpt-4o-mini.

Common tools such as nmap, ffuf, sqlmap, and Burp CLI utilities

are already installed. The LLM receives the running transcript, a

short guide to the available tools, and the current target’s host name

or IP address. It answers with one shell line that the interpreter

runs unless a sandbox rule blocks it. If this shell agent stalls, control

passes to a browser module.
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When the CLI path cannot move forward, a second agent steps in

through the Browser-Use Python library, the Browser-enabled agent.

This wrapper starts a Chromium instance so the LLM can click DOM

elements, �ll forms, upload �les, send requests, and read rendered

HTML, JavaScript values, and network logs. The CLI transcript and

the failure context are added to the browser prompt so the attack

can continue without losing state. Every action is written to a plain

CSV log for later review.

Every agent step is appended to a plain-text CSV �le with the

schema <timestamp>,<agent>,<action>,<result>. Timestamps

use HH:MM:SS wall-clock notation. For the CLI agent the action �eld

records the exact shell line, while for the browser agent it stores the

high-level DOM operation and target URL or selector.

00:17:48,CLI,curl -s https://lab.target.com/login,Success

00:18:02,Browser,Click #login-submit on https://...,Success

These compact logs are easy to parse, replay and aggregate for later

performance analysis, setting the stage for the evaluation phase

described next.

In Figure 1, you can see the planner loop used for the CLI-only

based agent. Initially, the prompt goes to ChatGPT using their API

and it then returns a command that gets run on our Dockerized Kali

Linux container. That output then gets fed back to ChatGPT which

comes up with the next steps and commands to execute. This goes

on until 100 iterations have passed which means the agent failed or

when the task is actually done.

In Figure 2, you can see a similar setup. What changed here is the

addition of the Browser-enabled agent which can perform real-time

browser actions such as clicking, viewing and analyzing the DOM.

Similar to how the CLI-only based agent commands to execute from

ChatGPT, our browser-enabled agent gets browser actions and then

feeds the results of the page back to ChatGPT.

Fig. 1. CLI-only agent graphic

Fig. 2. CLI & Browser enabled agent graphic

3.2 Evaluation Design

Vulnerability corpus.We build our test set around the OWASP Top

10, the industry’s go-to list of the most common web security risks.

Updated in 2021 and used in many coding guidelines and audits, it

o�ers a trusted view of real-world exposure. The list groups threats

into ten categories:

• Broken Access Control

• Cryptographic Failures

• Injection (e.g. SQLi, XSS)

• Insecure Design

• Security Miscon�guration (incl. XXE)

• Vulnerable and Outdated Components

• Identi�cation & Authentication Failures

• Software & Data-Integrity Failures

• Insu�cient Logging & Monitoring

• Server-Side Request Forgery (SSRF)

Because our goal is to test browser-enabled AI agents, we retained

the categories that manifest through active client–server interaction

and can be validated by observable exploits. Insecure Design and

Insu�cient Logging, while critical for architecture reviews, lack

concrete payloads suitable for automated testing and were therefore

excluded. To capture common threats that fall outside the strict

OWASP taxonomy yet are highly amenable to browser automation,

we added:

• Cross-Site Request Forgery (CSRF)

• Open Redirect

• Directory Traversal

This augmented corpus balances industry relevance with practical

testability, yielding nine attack classes that span authentication

bypass, input validation, session integrity, and client-side work�ow

manipulation. These situations are precisely where browser control

should matter most. With the target set de�ned, the next step is to

choose a realistic arena in which those targets can be exercised.

Testbed. For each class we used PortSwigger Web Security Acad-

emy labs. Labs are categorized as Apprentice, Practitioner, or Expert.

We map these to low, medium, and hard di�culty. The agent was

given the lab URL and told “obtain the Congratulations banner.” A

run ended either when the banner appeared (success) or after 100

iterations (failure). This controlled setup lets us compare agents side
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by side while keeping external variables to a minimum, paving the

way for a clear de�nition of what will be measured.

Metrics.We record:

• Success rate per vulnerability and di�culty

• Time-to-exploit (�rst success event minus start time)

• Command count (CLI) and DOM actions (browser).

These measures reveal both e�ectiveness and e�ciency, and via log

replay let us attribute wins or failures to either agent. Together, they

provide the data foundation for the results that follow in the next

section.

4 RESULTS

This section presents the empirical performance of the two agents

across the twenty-seven Web Security labs. It summarizes success

rates, shows how browser control a�ects vulnerability coverage

and di�culty tiers, and analyses iteration costs. The data provide a

quantitative foundation for the discussion that follows.We therefore

begin by outlining the experimental setup that generated the raw data.

We executed 27 PortSwigger Web Security Academy labs per

agent mode (9 vulnerability classes × 3 di�culty tiers). A run was

counted as a success when the lab’s “Congratulations” banner

appeared within ≤ 100 agent iterations. The number in parentheses

records how many iterations were required.1 With the evaluation

protocol de�ned, we can now compare how each agent performed

overall.

4.1 Overall E�ectiveness

In Table 2 we can see the raw results. The CLI + Browser con�gura-

tion solved (18 / 27) labs 66.7%, outperforming the CLI-only baseline

(11 / 27), 40.7%, by a relative +26 percentage points. These totals set

the stage for a closer look at where the browser provided its biggest

advantage.

Agent Low Medium Hard

CLI only 7/9 (77.8%) 3/9 (33.3%) 1/9 (11.1%)

CLI + Browser 8/9 (88.9%) 7/9 (77.8%) 3/9 (33.3%)

Table 2. Lab success counts by agent mode and di�iculty (maximum = 9

per tier).

The browser-enabled agent delivered its largest absolute gain

on medium-di�culty exercises (+44.5 pp), followed by a +22.2 pp

improvement on hard labs. On easy labs the margin narrowed to

+11.1 pp, indicating decreasing returns where plain CLI automation

already su�ced. To understand which weaknesses were addressed

by that advantage, we next examine vulnerability coverage.

4.2 Vulnerability Coverage

In Table 3 we can see the following. Applying the discoverability

rule that counts a vulnerability once the agent clears its medium

di�culty lab, the addition of browser control lifts coverage from

3 to 7 of the 9 classes. The four newly solved categories are all

1One iteration comprises a single shell command (CLI agent) or one DOM action
(Browser agent) followed by the resulting observation.

client side issues that rely on DOM interaction, which highlights

the practical bene�t of real browser access.

Vulnerability CLI CLI + Browser

Broken Access Control ✓

Cross-Site Scripting (XSS) ✓

SQL Injection (SQLi)

XML External Entity (XXE) ✓ ✓

Server-Side Request Forgery

Cross-Site Request Forgery ✓

Open Redirect ✓

Directory Traversal ✓ ✓

OS Command Injection ✓ ✓

Table 3. Vulnerabilities that become discoverable (✓) once the agent can

solve at least the medium lab for that class.

Browser control is therefore pivotal for client-side attack surfaces

(e.g. XSS, CSRF, open redirects) and work�ow-rich authorization

�ows, while purely server-side bugs (SQLi, SSRF) see no additional

bene�t. The breadth gap motivates an analysis of how much addi-

tional e�ort each success required.

4.3 Iteration cost per vulnerability

Fig. 3. CLI-only agent: iterations to first success per vulnerability and di�i-

culty tier. Missing bars mean the agent exceeded the 100-iteration limit.
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Fig. 4. CLI + Browser agent under identical conditions. Browser control fills

most gaps, even if hard-tier labs require 20–25 iterations.

In Figure 3, we can see the agent covers most of the low-di�culty

vulnerabilities in fewer than �fteen iterations, with CSRF peaking

at about twenty. The picture changes sharply for the medium tier

where only scattered bars appear, and for the hard tier where just

a single success is recorded. These gaps reveal that a shell-only

work�ow stalls when the exploit path demands interaction with

dynamic client-side elements or out-of-band feedback.

Figure 4 tells a di�erent story. The bars �ll almost every cell,

showing full coverage of all low-di�culty labs except SSRF, and

steady completion of every medium-di�culty lab at roughly twenty-

�ve iterations each. Hard-tier tasks still cost the most e�ort but they

no longer disappear from the chart, con�rming that real browser

control lets the agent clear challenges that blocked the CLI baseline.

Viewed together, the two �gures show that doubling the median

iteration count buys a substantial expansion in coverage and depth.

The browser addition converts many former failures into reliable

wins, a trend that sets up the qualitative analysis discussed in the

next section.

Given our results and RQ2 being “How can browser-enabled LLM

agents address the limitations observed in current LLM based penetra-

tion testing systems?” we can conclude the following. Adding a real

browser window removes three main limits that hold back shell-

only agents. First, the model can now see and change every part of

the page, so it can deal with client-side �aws such as XSS, CSRF, and

open redirects that need clicks, form �lls, and token reuse. Second,

full DOM access lets the agent keep session state across many steps,

which prevents the stalls we saw in several command line runs.

Third, the browser actions allow the agent to follow longer attack

paths on its own, doubling the number of medium and hard wins

while using only twice the steps. A further bene�t is that the agent

can view and interact with modern sites that build their content on

the �y, something the command line could never reach. In short, a

browser view �xes gaps in visibility, state tracking, work�ow han-

dling, and support for dynamic pages, though a few hard bugs still

need extra sensors and helper tools.

5 DISCUSSION

This section re�ects on the empirical �ndings reported in Section 4

and explores what they mean for the future of LLM-driven pene-

tration testing. We discuss (i) where browser control delivers the

greatest leverage, (ii) how much extra e�ort that leverage costs, (iii)

why certain classes remain unsolved, (iv) design lessons and security

outcomes, (v) threats to validity, and (vi) a richer research agenda

that follows from the gaps identi�ed. With these focal points in

mind we begin by examining the speci�c impact of browser control.

5.1 Browser control as the primary leverage point

The move from a purely CLI agent to a browser-empowered agent

lifts overall success from 40.7 % to 66.7 %. Importantly, 90 % of that

lift comes from the medium tier: successes rise from 3 / 9 to 7 / 9

labs in that band, while gains at the low tier are marginal and gains

at the hard tier are modest. This pattern mirrors the structure of

PortSwigger’s curriculum because medium exercises embed at least

one client-side interaction such as triggering a JavaScript validator,

manipulating a state token in local storage, or replaying a cookie

across origins. Because the CLI agent lacks visibility into the DOM,

it stalls on these checkpoints. The browser agent, however, can read

and mutate browser state, allowing it to clear the very hurdles that

gate progress from low to medium realism.

Broken Access Control and CSRF move from low-only success

to low + medium success once a real browser is available, thereby

meeting our discoverability threshold. Since extra capability usually

comes with extra cost, we next quantify the price paid in additional

iterations.

5.2 Iteration cost versus benefit

Median iterations rise from �ve with the CLI agent to ten with

the Browser agent, and the upper quartile climbs from twelve to

eighteen. Although this looks like double the e�ort, it yields a 2.3 ×

jump in medium and hard wins, moving from four to nine solved

labs. In simple terms, �ve extra steps buy �ve extra victories, a trade

that few human testers would turn down.

Figures 3 and 4 add more context. Even the longest successful

runs �nish in fewer than thirty iterations, leaving about seventy

percent of the available steps unused. The agent is not stuck in loops.

Once it can drive the browser, it moves toward the goal in a steady

and purposeful way instead of wandering. These numbers show

that richer interaction costs little and delivers clear bene�ts.

Despite these gains, two vulnerability classes are still unsolved.

The next subsection explains where the agent falls short and why.

5.3 Residual blind-spots: SQLi and SSRF

Two vulnerability classes remain stubbornly unsolved beyond the

low tier, and each failure exposes a di�erent limitation in the current

agent.

SQL Injection (SQLi). The low-di�culty lab is solved instantly

because an error-based payload (' or 1=1--) produces a verbose

stack trace that the agent can parse for table names. In the medium

lab, however, PortSwigger removes error echoes and forces con-

testants to pivot to blind SQLi: timing-based probes (SLEEP(5))

or conditional content-length di�erences. Despite observing the
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schema in the easy lab and possessing full browser visibility into

how the page responds, the agent failed to craft a working blind

payload within the 100-step budget. Log review shows a loop of

syntactically valid yet ine�ective injections followed by “no error

detected → try next payload.” In other words, the LLM could not

translate declarative knowledge of blind SQLi into an actionable

probing strategy. The root cause appears to be the stop condition:

waiting only for explicit error strings rather than measuring latency

or comparing response sizes. Future versions need a richer observa-

tion model, for example millisecond timers and byte-length di�ng,

to turn textbook knowledge into e�ective blind exploitation. This

measurement gap contrasts with a di�erent obstacle in the next

blind spot.

Server-Side Request Forgery (SSRF).. All three SSRF labs failed for

a more prosaic reason. The agent could not interact with the Burp

Collaborator endpoint that PortSwigger provides to con�rm out-

of-band callbacks. Solving these labs requires the tester to copy

the unique Collaborator URL, inject it into the payload, and later

poll the Collaborator client to verify that the target server made

a connection. Our browser agent successfully copied the URL but

lacked any capability to open the polling interface or parse its JSON

response. Consequently, even when a correct SSRF payload was

likely sent, the agent could not recognize success and timed out

after 100 iterations. A human tester would have switched to burp

collaborator client 3poll or routed tra�c through an ngrok

tunnel. Addressing this blind spot will require either stubbing a local

Collaborator-like service inside the sandbox or extending the action

space with explicit “open collaborator client” and “parse collaborator

output” commands.

Together, these two failures show that extra sensors and auxiliary

tooling are as important as browser control when tackling non-

trivial web-exploitation scenarios. The shortcomings identi�ed here

inform the design lessons discussed next.

5.4 Practical lessons and safety points

The tests give us twomain lessons. First, a small set of direct browser

actions{click, type, read, wait}helps the agent more than many

special CLI tools. Simple control of the page lets the model adjust

to new situations that �xed command lists cannot cover.

Second, steady e�ort matters more than shaving o� single steps.

No run used more than a third of the allowed moves, yet doubling

the average steps almost doubled the wins. It is better to give the

agent room to explore than to cut the step limit too early.

These gains bring new risks. The agent can now launch CSRF and

hard XSS attacks by itself, so any real use must add strong guardrails.

At a minimum, set a clear target list, add rate limits, and keep full

logs of every action.

With these points in mind, the next part looks at how limits in

the study design might a�ect our results.

5.5 Threats to validity

External validity. Real sites di�er. CAPTCHA widgets, per-IP throt-

tling, WAF signatures, and multi-factor authentication were absent

from the labs. Success in the testbed may therefore overstate �eld

performance.

Statistical validity. Each lab was executed once to contain API

costs. Random initialization, non-deterministic LLM sampling, and

network latency could shift individual outcomes. Replicating the

experiment with �vefold runs per lab would tighten con�dence

intervals.

Construct validity. The binary “banner or no banner” metric ig-

nores partial footholds such as low-privilege shells or re�ected data

ex�ltration that fall short of full lab compromise. Consequently, the

agent’s practical utility may be understated for organizations that

value footprint discovery as much as full exploitation. These con-

straints frame the broader research agenda outlined in the conclusion

that follows.

Overall, Browser control converts four previously unreachable

vulnerability classes into solvable ones and lifts total lab completion.

The additional cost of roughly �ve extra iterations per winning

exploit is modest compared with the amount of coverage gained.

Taken together, the evidence indicates that GUI-empowered LLM

agents are on the cusp of performing end-to-end web penetration

tests at a level commensurate with junior human testers, moving

the �eld materially closer to autonomous security assessment.

Considering the outcomes of the research and the performance

of our agent model that was recorded and analyzed, we can answer

RQ3, “Can LLMs conduct comprehensive web-application penetration

tests when equipped with browser-level control?” The short reply is

“not yet.” Browser actions let the agent solve most easy labs and

a solid share of medium ones, but true full-scale testing demands

reliable coverage of the hardest targets, especially those that hide

blind SQL Injection or rely on out-of-band callbacks such as SSRF.

In our study the agent still failed at these tasks even with generous

time budgets, which shows that timing sensors, collaborator parsing,

and other specialized capabilities are still missing.

Because of these gaps, today’s browser-enabled LLM should be

seen as a helper, not a full replacement for an expert red-team tester.

It works well for easy bugs such as basic XSS, open redirects, and

missing access checks, letting human testers focus on longer exploit

chains, privilege escalation, and creative attack paths that need

judgment. In this support role the agent can cut repetitive work and

speed up early mapping, but �nal checks and report writing must

stay in human hands until richer feedback and stronger safety rules

cover the remaining blind spots.

6 CONCLUSION

This study asked whether large language models can move from

command line helpers to practical web-application penetration

testers once they have real browser control. We built two agents,

tested them on twenty-seven PortSwigger labs, and answered three

research questions.

RQ1 explored what current LLM systems can and cannot do.

Earlier work and our own baseline tests show that they handle

reconnaissance and simple exploits well but lose ground when rich

client interaction or long memory is required.

RQ2 examined how browser access changes that picture. We

found that a browser view removes three main limits. The agent

can see and modify each page in real time, keep session state across

many steps, and follow longer attack paths. Coverage rises from
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three to seven vulnerability classes, and the win rate on medium

and hard labs more than doubles.

RQ3 asked whether these gains are enough for a full penetration

test. The answer is not yet. The browser agent matches a junior

tester on easy and medium targets, but blind SQL Injection and

out-of-band SSRF still cause failures. The root causes are missing

timing sensors, no local collaborator, and limited context memory.

In practice the agent is best used as a helper that �nds easy bugs and

speeds up mapping, while human experts address complex chains

and �nal reporting.

Overall, adding browser control is a solid step toward autonomous

testing, yet human oversight remains essential. Organisations can

already use such agents to sweep low-hanging �aws and free time

for deeper analysis. To move from helper to full tester, three im-

provements are most urgent. First, the agent needs a millisecond

timer with simple statistics to detect blind payloads that reveal them-

selves only through small latency shifts. Second, a local egress proxy

that imitates a collaborator server would let the system check SSRF

safely and repeatably inside the sandbox. Third, an automated LLM

validator placed in the planner loop could compare each observation

with known success signals, stop unproductive branches early, and

reduce manual review. Progress on these fronts will push browser-

enabled LLM agents toward reliable end-to-end penetration tests

and bring the �eld closer to fully autonomous security assessment.

Addressing these points will move browser-enabled LLM agents

from useful assistants toward reliable end-to-end penetration testers

and bring the �eld closer to fully autonomous security assessments.

7 AI STATEMENT

We relied on OpenAI ChatGPT as a writing and coding assistant dur-

ing this study. When our prototype scripts failed to run, we pasted

error messages into ChatGPT and received short, targeted sugges-

tions that helped us spot missing imports, incorrect function calls,

and o�-by-one loop bounds. For the report itself we asked Chat-

GPT to highlight awkward phrasing, subject–verb disagreements,

and overly long sentences. Each recommendation was checked and,

when appropriate, rewritten by the authors before inclusion. The

model did not generate new research content, interpret results, or

decide on the study design. It was used only to shorten debugging

time and improve language clarity.
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