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The exponential growth of deep learning research has made it difficult for
publishers and readers to write and evaluate scientific papers in an efficient
way. While automatic summarisation tools exist, they normally generate
brief, unstructured outputs and lack transparency or content validation
mechanisms. This project introduces a framework that generates IMRAD-
structured abstracts using OpenAI's GPT-4o, guided by extracted keywords
and evaluated through both automatic and Large Language Model (LLM)
based methods. The system incorporates a keyword validation loop that en-
forces the inclusion of the most important concepts and iteratively improves
abstract quality. Evaluation is performed using semantic similarity metrics,
natural language inference (NLI), and judgment from two independent LLMs
(Gemini and Claude), each rating factual accuracy, clarity, completeness, and
keyword relevance. Results show that the proposed framework improves
factual consistency, coverage, and semantic alignment over a simple prompt
baseline, though may introduce trade-offs in clarity. These findings demon-
strate the value of structured prompting, and keyword feedback in scientific
summarisation.
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1 INTRODUCTION

In the last years, there has been an exponential growth in scientific
publications in the field of computer science, particularly deep learn-
ing. In publishing platforms like arXiv, Al-related categories, includ-
ing cs.LG and stat. ML, have experienced a sudden number increase
doubling approximately every 23 months due to the continuous
advancements in the field [14]. Publishers then face the challenge to
create large volumes of scientific content. Consequently, the need
for automatic tools to guide and support publishers arises.

It is important to note that the Al generation of most of the pa-
per’s written content is generally discouraged because of concerns
about originality and academic integrity [26]. However, the nature
of the abstract and keywords section differs, as they aim to sum-
marise and highlight the work’s main points, which are based on the
rest of the already completed work. Therefore, if the correct frame-
work is applied, the generated output can be reliable and seamlessly
integrated with the rest of the paper.

Currently, tools like SciSummary provide quick summaries in a
unstructured, single paragraph format [1]. These summaries have
shown inconsistent coverage of key points and often produce out-
puts that are too generic or too focused on one section of the paper.
This limitation makes it difficult to extract key findings or methods
quickly, especially in complex papers. In technical fields, such as
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deep learning, sections like methodology are essential and need to
be correctly represented and explained, which makes this kind of
summarisation insufficient.

A scientific abstract should give a clear, high-level understanding
of a paper’s main results and contributions. It has been shown that
structured abstracts are easier to read and navigate and improve
information retrieval, reader comprehension, and scientific commu-
nication [10]. More specifically, the IMRAD format is commonly
used in scientific writing and follows: Introduction, Methods, Re-
sults and Discussion. It provides a logical, familiar, and standard
way of presenting scientific research [28]. Despite these benefits, it
is rarely automated in these types of tools.

Similarly, the role of keywords have been overlooked. Keywords
help with indexing and searchability in digital libraries, and informs
readers about the content focus [27]. However, current summarisa-
tion tools ignore them completely or fail to ensure their inclusion in
the generated summaries, leaving them unrepresented. Moreover,
their potential role in abstract generation remains to be unexplored.
Since keywords summarise the core concepts of a paper, they could
be introduced in the abstract generation and guide Large Language
Models (LLMs) in the process.

At present, no available tool focuses specifically on deep learning
papers, generates structured abstracts and integrates keywords as
part of both the input and the quality control process. This project
introduces an iterative keyword-based framework that aims to guide
and validate abstract generation, where extracted keywords are used
both to prompt the LLM and to assess whether the generated abstract
covers core concepts, making it revise if key terms are missing and
therefore addressing the limitations in the existing solutions.

Ensuring the factual accuracy of the generated content is one of
the main challenges in the study. As LLMs may omit or misrepresent
[2], this research emphasises the importance of an evaluation mech-
anism to detect incomplete or unrelated summaries. The keyword
validation step serves as a core method to reduce hallucinations and
improve the alignment with the source paper.

The objective of this research is to build an abstract generation
framework for scientific publishers, tailored to deep learning papers.
The central hypothesis is that structured prompting combined with
keyword guidance can improve the quality of LLM-generated ab-
stracts in factual accuracy, completeness, and relevance. To address
this hypothesis, the following research and sub-research questions
will be answered.

RQ: To what extent can structured keyword-guided prompts
improve the factual accuracy, coverage, and relevance of LLM-

generated abstracts for deep learning papers?

This can be answered through the following sub-research ques-
tions (SRQ’s):
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SRQ1: How does the quality of abstracts generated with the
proposed structured keyword-guided framework compare to those
generated with a flat, single-prompt baseline?

SRQ2: To what extent does the iterative keyword validation
loop improve abstract quality across successive generation attempts
within the framework?

2 RELATED WORK

Scientific article summarization is gaining attention as researchers
seek to represent complex studies into clear and accurate abstracts.
Among scientific writing standards, the IMRAD structure (Intro-
duction, Methods, Results, Discussion) has become a widely used
and well-supported format for both authors and readers [10, 28].
Many summarization tools use this structure because it improves
readability and makes use of academic writing structure[23]. How-
ever, IMRAD is a structure, it is not in itself a novel mechanism for
content generation or validation.

Recent frameworks have applied deep learning models and large
language models (LLMs) to produce scientific summaries, but most
rely on a single prompt generation and offer little control over
content selection or factual alignment. For example, Oh et al. [23]
proposed a method for generating structured abstracts from full-
text papers using section-wise summarisation. While this improves
distribution across abstract sections, the process still does not have
any mechanism for verifying whether key domain concepts are
included.

More recent LLM-based systems like Summlt [30] and Self-Refine
[21] introduce iterative generation strategies, prompting the model
to critique and revise its own outputs. These approaches have shown
improvements in fluency and factual accuracy by treating summari-
sation as a multi-step reasoning process. However, they do not
incorporate any external anchors, such as specific keywords, and do
not enforce alignment between the abstract and the core scientific
content. Other systems like ISQA [18] use fact-checking through
LLMs during summarisation, but again without structured guidance
or semantic constraints.

In addition, controllable summarisation methods aim to influ-
ence what is included in the summary, often through keywords.
For example, Li et al. [16, 17] demonstrated that summaries guided
by extracted or user-specified key phrases can improve relevance.
CTRLsum [3] extended this idea to include a customisable focus to
the summaries using keywords as a control method. These works
claim that keywords can guide generation effectively, but they treat
keyword use only as an input, not a feedback mechanism. If key-
words are missing from the generated summary, the model is not
prompted to revise its output. Moreover, keyword conditioning is
rarely applied in technical or scientific domains, and even less in
structured outputs like abstracts.

In summary, existing work on scientific summarisation tends to
either follow the IMRAD structure without mechanisms for veri-
fying content coverage, or use keywords in a simple, single-shot
way that lacks validation. It seems no existing framework combines
structured abstract generation with keyword-based guidance and
quality control.
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This thesis addresses that gap by introducing a novel framework
that generates structured abstracts using an LLM with section-
specific prompts, conditions generation on author-defined keywords
as semantic anchors, and implements a keyword validation loop
that detects missing terms and re-prompts the model to revise the
abstract accordingly.

3 RESEARCH METHODOLOGY

This study presents a framework that generates structured abstracts
from scientific papers using large language models (LLMs), guided
by keywords, and evaluates it through various methods. The ap-
proach has five main phases: data extraction and preprocessing,
IMRAD and keyword extraction, structured abstract generation,
keyword-based validation, and evaluation. This section explains the
motivation and technical implementation of each stage.

3.1 Overview of the Pipeline
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Fig. 1. Pipeline

The pipeline consists of the following phases:

(1) Data Extraction and Pre-processing: Cleans raw papers
by removing irrelevant sections, giving a plain text input.

(2) IMRAD and Keyword extraction: Uses regular expressions
to extract the Introduction, Methods, Results, and Discussion
(IMRAD) sections from cleaned papers, along with their key-
words.

(3) Structured Abstract Generation: Prompts an LLM (ChatGPT-
40) to generate abstracts in IMRAD format, conditioned on
both the content of the paper and the keywords.

(4) Keyword-Based Validation Loop: Automatically checks
if all keywords are included and prompts the model again if
any are missing.

(5) Evaluation: Assess abstract quality using different metrics.

3.2 Pre-processing techniques

Unlike open repositories such as arXiv, which offer easier extraction
pipelines due to the availability of LaTeX source files, this project
uses scientific papers from the SpringerLink digital library. Springer
publications were selected because they consistently include clearly
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labelled keyword sections, a critical feature for this framework’s
generation and evaluation process. In contrast, arXiv papers of-
ten lack keywords, making them less suitable for this study. This
preprocessing step produced a clean, structured version of each

paper.

3.3 IMRAD and Keyword Extraction

To guide the abstract generation, each cleaned scientific paper is
divided into its different sections according to the IMRAD struc-
ture: Introduction, Methods, Results, and Discussion. This division
is done using regular expression (regex) patterns designed to match
a range of common section headings found in academic writing.
The regex takes into account most common variants and format-
ting inconsistencies ("Materials and Methods", "Conclusion(s)", or
numbered headers like "3. Methods") to identify and extract each
section’s content.

This structured segmentation is motivated by findings that struc-
tured abstracts improve readability, completeness, and information
retrieval performance, particularly in biomedical and scientific do-
mains [6].

In parallel, keywords are extracted directly from the body of each
paper. Instead of relying on LLMs or statistical models, this approach
uses regex patterns to obtain author-defined keyword blocks.

The resulting IMRAD sections and keyword list are used as inputs
for the next phase of the pipeline.

3.4 Structured Abstract Generation

This step generates a structured abstract following the IMRAD for-
mat with OpenAT’s gpt-4o. Each abstract is created with the infor-
mation of the previously extracted IMRAD sections and a keyword
list.

The prompt defines the output format to have four labelled sec-
tions: Introduction, Methods, Results, and Discussion. Each section
is generated based on the corresponding source section from the full
paper, ensuring that the model focuses on the correct and relevant
information. This approach differs from traditional prompt designs,
which provide the entire paper to the model as a single flat input.

In addition, the prompt includes semantic anchors: keywords
defined by the paper’s author. These keywords are mentioned to
be in specific sections (domain terms in the Introduction, technical
descriptors in the Methods, and broader implications in the Discus-
sion). This design makes it more likely that the generated abstract
keeps key concepts and terminology from the original work. This
prompt focused on format and keywords aligns with works showing
that format conditioning, when combined with content anchors,
improves the informativeness and structure of LLM outputs [9, 32]

The generation step is iterative; the system checks whether the ab-
stract covers all extracted keywords. If not, the model is re-prompted
using a modified version of the original instruction, explicitly re-
questing the inclusion of the missing terms. This validation loop
continues for a fixed number of attempts (5) or until all the keywords
are included semantically.

This methodology ensures that the abstract is organised and based
on both the content and vocabulary of the source paper. The output

is a structured abstract in paragraph form, divided by section labels,
which is then passed to the evaluation phases.

3.5 Evaluation

The quality of the generated abstracts is evaluated using a combina-
tion of automatic metrics and semantic analysis. This approach is
designed to measure surface-level similarity and also deeper factual
alignment between the generated output and the source material.

Facet-Level Embedding Similarity. Each IMRAD section of the gen-
erated abstract is compared to its corresponding source section
using Sentence-BERT (SBERT) embeddings. This comparison fol-
lows approaches used in scientific summarisation research [8, 20],
and shows which parts of the structure are more or less represented.

Factual Consistency via NLI. Following recent best practices in eval-
uating factual grounding [11, 12], a natural language inference (NLI)
model is applied. This step categorises statements as entailed, con-
tradictory, or neutral, highlighting factual differences that may not
have been captured by embedding similarity alone.

Flesch Reading Ease. The Flesch Reading Ease Score is used to mea-
sure the readability of generated abstracts. This metric captures how
easy a text is to understand, based on the length and complexity of
its sentences [7]. Higher scores indicate simpler, more readable text,
and lower scores suggest denser, more technical language. Since
abstracts are often the first text read in papers, they must be under-
standable and easy to read. This is important because low readability
in abstracts negatively affects accessibility and reproducibility [25].
Thus, the Flesch score provides an additional metric to evaluate if
the generated outputs are usable and communicative.

LLM-Based Facet Evaluation via Gemini and Claude. Google’s Gem-
ini 1.5 Pro model and Claude 3 are used to evaluate each IMRAD
section based on four criteria: factual accuracy, clarity, structural
completeness, and keyword relevance.

Gemini has been shown to perform competitively across different
evaluation scenarios, with similar results as human judgments on
content quality, factuality, and completeness [4, 22, 31].

Claude also shows to be a strong candidate for independent eval-
uation, especially in cases where neutrality is important, correlating
strongly with human judgments [31], making it suitable for evalu-
ating OpenAl-generated abstracts.

Importantly, because Gemini and Claude are independent from
the generation model (GPT-40), their use reduces the risk of model
bias and makes the assessment more impartial [24]. Moreover, using
both together is beneficial; recent studies recommend using multiple
diverse models in an LLM jury to improve evaluation fairness and
reduce individual model bias through triangulation [5].

The same structured prompt was used for both Gemini and Claude
models for consistency across evaluations. The prompt explicitly
defines the four evaluation criteria, and requests a 1-5 integer score
for each, along with a short justification. Additionally, the prompt
clearly defines the exact meaning of each of the four criteria. The
complete prompt is included in Appendix D.

Prompt Design and Best Practices. The prompt design reflects several
best practices from recent literature. Although chain-of-thought
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(CoT) prompting has been shown to improve reasoning in LLMs, this
approach was not implemented, as its benefits are evident in reason-
ing that requires multiple steps rather than practical judgment tasks.
Instead, justifications from the LLMs were implemented, which have
been shown to have similarly strong results for evaluation tasks
without increasing verbosity unnecessarily [13].

Furthermore, research indicates that specific, detailed rubrics
greatly improve LLM scoring consistency. For this reason, the prompt
clearly defines what each evaluation dimension means and uses a
5-point integer scale. Using small, explained integer scales avoids
common issues with 0-1 floating-point ratings, where models tend
to rate toward midpoint values or produce noisy outputs. Stud-
ies also show that overly large scales introduce randomness and
numeric bias [15].

Section-Wise Evaluation Strategy. Another key design decision was
to do different evaluations per section . Each abstract was divided
into IMRAD sections (Introduction, Methods, Results, Discussion),
and the LLM was asked to assess one section at a time using the
corresponding section from the original paper. This approach was
motivated by findings that LLMs struggle to maintain focus on long
inputs due to the "lost in the middle" effect [19]. By making the
input smaller, the load on the model is reduced, and the outputs
seem to be more reliable. Fine-grained evaluations of smaller text
are more similar to human evaluation behaviour, where reviewers
typically look into scientific papers section by section.

In fact, recent tools such as FineSurE take this approach further
by evaluating each sentence or unit individually, showing improved
correlation with human judgments and the ability to detect subtle
inconsistencies [29]. Consequently, the chosen evaluation allows
for a precise identification of strengths and weaknesses.

The practical implementation of each of these components is
detailed in the following section, Experimental Setup.

4 EXPERIMENTAL SETUP

This part outlines how the proposed methodology was implemented,
including data selection, model configuration, prompt design, itera-
tion limits, and evaluation methods.

4.1 Data Collection and Preprocessing

A dataset of 20 deep learning papers is collected from the Springer-
Link digital library. The collected papers are downloaded in PDF
format and converted to plain text using the PyMuPDF library.
The preprocessing process includes:
e Abstract removal using regular expressions and positional
heuristics
e Filtering figure/table captions by detecting numbered refer-
ences (e.g., "Figure 3", "Table 1")
¢ Excluding equations, removing lines with a significant amount
of numbers and specific formatting
e Truncating documents at headings such as "References", "Bib-
liography", "Appendix”, etc.

4.2 IMRAD and Keyword Extraction

This phase follows the steps described in the methodology section,
where each cleaned paper was divided into the IMRAD structure
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using regular expressions. The same approach was used to extract
author-defined keywords.

The full list of regex patterns used for section and keyword iden-
tification is included in Appendix A.

4.3 Structured Abstract Generation

To generate structured abstracts, a custom Python pipeline is im-
plemented using OpenAI’s gpt-40 model via the official API. Each
abstract follows the IMRAD structure and is generated section by
section using only the corresponding segment of the full paper as
input.

The generation prompt for each paper is constructed dynamically.
After loading the paper’s IMRAD sections from . json files, the
script combines each section’s content with specific instructions
and a list of keywords extracted from the original paper.

The LLM was called with the following configuration:

Model: GPT-40 (OpenAl)

Temperature: 0.1

Max generation tokens: 1000

System role instruction: “You are a highly factual scientific
abstract generator”

A key feature is the keyword coverage validation loop. The ab-
stract is compared after generating it against the expected keyword
list. If any terms are missing, the model is re-prompted using an
updated instruction that explicitly lists the missing keywords. This
mechanism runs for up to five attempts per paper, terminating early
if full keyword coverage is achieved. All iterations are saved inde-
pendently for analysis.

Post-generation, the section headers are normalised which en-
sures consistent formatting (converting “Materials and Methods”
to “Methods”). The complete structured prompt used for abstract
generation is provided in the Appendix B for reference.

Baseline Comparison Generation

To evaluate the benefit of the proposed structured framework, an
additional abstract was generated for each paper using a simpler
baseline method. Here, the fully cleaned paper text is provided as a
flat prompt to the same LLM, without any IMRAD segmentation or
structured prompt guidelines. The complete prompt is provided in
the Appendix C for reference.

Both the baseline and the framework-generated abstracts were
stored in parallel directories for comparison and evaluation.

4.4 Evaluation

All generated abstracts, including iterative outputs (1-5) and base-
line comparisons, are evaluated using the following methods:

Semantic Similarity by Section. : This evaluation loads each paper’s
IMRAD sections previously extracted and compares them to the
corresponding generated abstract sections using SBERT embeddings
from the all-mpnet-base-v2 model. Cosine similarity scores are
saved per section to allow section analysis.

NLI-Based Factual Consistency. : Using the ynie/bart-large-snli_-
mnli_fever_anli_R1_R2_R3-nlimodel, each sentence froma gen-
erated abstract is checked against the original section. Inferences
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are classified as entailment, neutral, or contradiction. Then,
both label counts and confidence-weighted summary scores are
calculated.

Flesch Reading Ease. : Readability is measured using the Flesch
Reading Ease Score, computed with the textstat library. This score
shows how easy the abstract is to read, with higher values indicating
simpler language. Scores between 30 and 50 typically correspond to
college-level texts [7].

LLM-Based Evaluation via Gemini and Claude. : Both evaluators are
accessed via their respective APIs using Python. For each paper,
both the generated abstract (either from the structured framework
or the baseline) and the corresponding IMRAD-parsed section from
the original paper are used as inputs.

The evaluation is done using a rubric-based prompt (see Appen-
dix D) that asks the model to rate each section on factual accuracy,
clarity, structural completeness, and keyword relevance. Output is
returned in strict JSON format to allow automatic parsing.

The evaluation loop is implemented in Python, using the google
.generativeai SDK for Gemini and the Anthropic API for Claude.
For each model and each abstract, four evaluation records were
collected (one per IMRAD section).

The LLMs were called with the following configuration:

¢ Claude 3 Opus (Anthropic)

Model: Claude 3 Opus (20240229)

— Temperature: 0

- Max generation tokens: 1000

— System role instruction: "You are a fair, accurate scientific
writing evaluator."

¢ Gemini 1.5 Pro (Google)
— Model: Gemini 1.5 Pro
— Temperature: 0
— Max generation tokens: Not explicitly set (default)
— System role instruction: None (Gemini uses user instruc-
tions only)

Output Structure. All evaluation outputs are stored in per-paper
CSV logs, with columns for paper ID, section, metric type, score,
and iteration.

5 RESULTS

In this section, the performance of the keyword-guided structured
abstract generation framework is compared to a simple prompt ap-
proach. The results are measured using multiple evaluation metrics
on accuracy, relevance, completeness, and readability.

The analysis is divided into two parts. First, to compare the overall
abstract quality between the framework and the baseline, only the
best-performing abstract from the framework’s iterative generation
attempts (the version with the highest evaluation scores) is selected
for each paper. This ensures that the comparison focuses on the
framework’s full potential.

Second, the keyword-based validation loop is examined to deter-
mine if abstract quality raises with each generation. For this, how
the evaluation scores evolve across the framework’s iterative at-
tempts was investigated: whether they improve, degrade, or remain

stable. This stage aims to evaluate the practical value of keyword
coverage through repeated generation.

Table 1. Summary of the Metric comparison between framework and com-
parison abstracts

Facet .. o NLI

Score Claude Gemini Readability Entailment
Framework 0.7757 3.8000 0.8454 0.1396 0.7287
Comparison 0.7198 3.8947 0.8408 0.0537 0.6691

Difference 7.769% -2.432% 0.548%  159.862% 8.917%

Table 1 shows a summary of all scores. Each row shows the
average score across 20 evaluated papers, showing both absolute
values for each method and the relative percentage difference. The
"Difference" row highlights where the framework outperforms or
underperforms compared to the baseline.

It is important to note that due to the scope of this project, 20
papers are used and evaluated, which is a limited sample size. Thus,
results should be interpreted as indicative trends. A more exten-
sive evaluation would be future work to confirm these findings
statistically.

5.1 LLM-Based Evaluation (Gemini and Claude)

Using two independent LLM evaluators (Google’s Gemini 1.5 Pro
and Anthropic’s Claude 3), ratings on four qualitative dimensions
are obtained: factual accuracy, clarity, structural completeness, and
keyword relevance. Gemini consistently favoured the framework
across most criteria.

Table 2. Gemini 1.5 Pro evaluation comparison between framework and
comparison abstracts

Factual . Structural Keyword
arity Average
Accuracy Completeness Relevance
Framework  4.3553  4.4342 3.5395 4.5789 4.2269
Comparison  4.0921  4.8421 3.4211 4.4605 4.2039
Difference 6.431%  -8.424% 3.462% 2.655% 0.548%

It rates the framework’s abstracts 6.43% more factually accurate,
3.46% more structurally complete, and 2.66% more aligned with
relevant keywords. The only drawback noted was a —8.42% drop
in clarity compared to the baseline. On average, this had a .55%
overall gain, suggesting a slight but positive improvement with the
structured framework compared to the baseline.

Table 3. Claude evaluation comparison between framework and comparison
abstracts

Factual . Structural Keyword
Clarity Average
Accuracy Completeness Relevance
Framework  4.2375 3.7500 3.0375 4.1750 3.8000
Comparison  4.0921 4.2368 3.1842 4.0658 3.8947
Difference 3.553% -11.491% -4.607% 2.686%  -2.432%
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Claude, in contrast, presents a more critical evaluation. While
it agreed that the framework produced abstracts with higher fac-
tual accuracy (+3.55%) and stronger keyword relevance(+2.69%), it
rates the framework substantially lower in clarity (-11.49%) and
structural completeness (-4.61%). These scores led to an overall
average drop of —2.46% for the framework compared to the baseline.
Detailed visualizations of these results, comparing both models and
evaluators, can be found in Appendix D (Figure 2).

The justification outputs shows the reason for these scores. Claude’s
clarity results are often related to feedback such as "less concise
and harder to follow" or "repetitive phrasing", particularly in the
Introduction and Discussion sections. Likewise, its structural low
scores frequently references "missing summarization of specific
methodological components” or "lack of closure". By contrast, Gem-
ini emphasises that the framework includes relevant elements in the
sections, even noting that the Methods section is occasionally "tech-
nically overloaded" or "poorly organised”, which likely contributed
to its loss of clarity.

Justifications from both models support the improved ratings
in factual accuracy, frequently claiming that the framework "accu-
rately summarises the methods/results without hallucinating" and
that "factual claims are well-supported by the source". The consis-
tent inclusion of relevant domain terminology lead both models to
acknowledge that the generated abstracts "effectively incorporated
most keywords without disruption".

The differences between the two models suggest they give im-
portance to slightly different aspects. Gemini appears to prioritise
structure and conceptual alignment, which benefits the framework,
while Claude appears to be more sensitive to clarity and surface-level
cohesion, penalising the framework for less fluid writing. Despite
this difference, both models agree on two key points: the framework
improves factual grounding and keyword incorporation, and it may
struggle with clarity under certain conditions. This reinforces the
idea that while structured prompting enhances coverage and ac-
curacy, it can introduce complexity that may reduce readability or
narrative flow from an LLM’s perspective.

5.2 Section-Wise LLM Ratings (IMRAD)

The evaluation scores by IMRAD section shows where the structured
framework most improves abstract quality and where it presents
problems. The assessments from both Claude and Gemini reveal
areas of overlap and differences that highlight strengths and weak-
nesses.

According to Claude, the framework outperforms the baseline
in the Methods (+3.51%) and Results (+4.06%) sections. However,
Claude rates the framework lower in Introduction (-8.21%) and Dis-
cussion (-7.48%). These preferences are consistent with Claude’s
justifications, which repeatedly praised the baseline for being "flu-
ent”, "easier to read", especially in opening and closing sections.

In contrast, Gemini gives a more favourable view of the frame-
work, especially in Results and Discussion. It rates the framework
+8.97% higher in Results and +5.57% higher in Discussion, suggest-
ing that it recognised better coverage on those areas.

The Introduction also received a higher score (+8.411%). However,
Gemini showed a sharp drop in Methods performance (-14.65%),
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Table 4. Claude evaluation scores comparing framework and comparison
abstracts per IMRAD section

Factual Structural Keyword

i lari A
Section Accuracy Clarity Completeness Relevance verage
Introduction
Framework 4.400 3.850 3.150 4.350 3.938
Comparison 4.579 4.368 3.684 4.526 4.289
Difference -8.21%
Methods
Framework 4.000 3.750 2.900 3.950 3.650
Comparison 3.579 4.000 2.789 3.737 3.526
Difference 3.51%
Results
Framework 4.300 3.800 3.150 4.250 3.875
Comparison 4.000 4.158 2.842 3.895 3.724
Difference 4.06%
Discussion
Framework 4.250 3.600 2.950 4.150 3.738
Comparison 4.211 4.421 3.421 4.105 4.039
Difference -7.48%

Table 5. Gemini evaluation scores comparing framework and comparison
abstracts per IMRAD section

. Factual . Structural Keyword

Section Clarity Average
Accuracy Completeness Relevance

Introduction
Framework 4.737 4.737 3.895 4.947 4.579
Comparison 4.579 3.895 3.737 4.684 4.224
Difference 8.411%
Methods
Framework 3.526 3.895 2.947 3.737 3.526
Comparison 3.947 4.789 3.368 4.421 4.132
Difference -14.650%
Results
Framework 4.526 4.474 3.579 4.684 4.316
Comparison 3.737 4.789 3.105 4.211 3.961
Difference 8.970%
Discussion
Framework 4.632 4.632 3.737 4.947 4.487
Comparison 4.105 4.895 3.474 4.526 4.250
Difference 5.573%

favouring the baseline by a large margin. According to Gemini’s
justifications, this penalty often stemmed from complaints about
"overly detailed or fragmented phrasing" that "reduced readability"
in technical sections, highlighting that even structurally correct
content can have a drop in score if it overwhelms the reader.
Together, these trends show where each model saw value:

o Both Claude and Gemini praise the framework’s Results sec-
tion, highlighting its capacity to reflect empirical findings
more accurately and thoroughly.

e Claude alone favoured the framework’s Methods section,
likely due to its appreciation for the technical completeness,



Keyword-guided structured abstract generation for deep learning papers using ChatGPT-40 + 7

while Gemini strongly preferred the baseline, due to its sim-
pler expression and better organisation of content.

e In Introduction and Discussion, Gemini and Claude have
almost opposite scores, suggesting that evaluators differ in
how they judge clarity and interpretation.

Overall, this mixed model feedback highlights that the framework
consistently delivers stronger factual coverage, but its performance
in sections like the Introduction or Methods can vary depending on
the evaluator. This suggests that future improvements should focus
on balancing technical detail with clearer language, simplifying
dense sections and improving flow, to better meet both structural
and readability expectations.

5.3 Semantic Similarity via Facet Score

Table 6. Summary of the face metric scores, comparison between framework
and comparison abstracts

Introduction Methods Results Discussion Average

Framework 0.7993 0.7391  0.7206 0.8439 0.7757
Comparison 0.7834 0.6682  0.6658 0.7617 0.7198
Difference 2.036% 10.615% 8.225%  10.787% 7.773%

A semantic similarity at the facet level is calculated to quantify
how closely each abstract section matches the content of the corre-
sponding section of the original paper. The framework achieved a
higher average semantic similarity in all sections. On average, the
facet score (cosine similarity between the Sentence-BERT embed-
dings of the generated and original section) increased from 0.7198
with baseline to 0.7757 with the framework, a relative improvement
of about 7.8%. The gains varied by section, ranging from roughly
+2.0% to +10.8%. The smallest improvement was in the Introduction
(+2.0%), where even the baseline abstracts covered the general topic
reasonably well. In contrast, the Methods and Discussion sections
saw much larger jumps (around +10.6% and +10.8% higher similarity,
respectively). This implies that the baseline often omits or does not
correctly summarise the methodological details and the discussion
points of the papers. The structured framework was able to include
those key details, making its Methods and Discussion sections much
more aligned with the source text. The Results section also improved
substantially (+8.2%). Detailed visualisations of these results can be
found in Appendix D (Figure 3). These increases in semantic overlap
suggest that the framework’s abstracts are more faithful to the orig-
inal content. The structured prompts and keyword feedback loop
likely contributed to this alignment, ensuring that no key content
"facet" was left out or hallucinated.

5.4 Readability

In addition to content accuracy, the readability of the generated
abstracts was evaluated using the Flesch Reading Ease score. Here,
higher scores indicate text that is easier to read. The structured
framework’s abstracts were found to be significantly more readable
than the baseline’s. On average, the framework abstracts scored
13.96 on the Flesch scale, compared to a remarkably low 5.37 for the
baseline. For context, both numbers indicate a very dense, academic
style (as expected for deep learning papers), but the baseline output

is nearly at the floor of the readability scale. The framework’s 13.96
score, while still indicating difficult text, is 160% higher than the
baseline’s score, reflecting a meaningful improvement in clarity of
expression.

However, these readability scores may seem contradicting with
the lower clarity ratings assigned by the LLM evaluators in earlier
sections. This discrepancy can be explained by the different linguis-
tic dimensions these metrics measure. Readability focuses on surface
level features, such as sentence length and complexity, whereas LLM
clarity scores evaluate cohesion, conciseness, and narrative organi-
sation. In fact, both Claude and Gemini specifically noted that some
framework sections, particularly Methods and Introduction, were
"overly detailed" or "fragmented”, which reduced their perceived
clarity despite being easier to follow.

This reinforces the idea that improving linguistic accessibility
does not ensure clarity measured by LLM evaluators. Thus, future
refinements should aim to maintain the framework’s improved read-
ability while reducing redundancy and improving flow.

5.5 NLI Entailment

To evaluate factual consistency, a natural language inference (NLI)
model is applied to each abstract, measuring how much of the gen-
erated content is entailed (supported) by the original paper. The
framework shows a clear advantage, indicating fewer hallucinations
and unsupported claims. Specifically, 72.87% of the statements in
the framework’s abstracts were classified as entailed by the source
text, compared to 66.91% for the baseline. This is an 8.917% relative
increase in entailment, meaning the structured abstracts contain
a higher proportion of facts that can be verified by the original
paper. The framework’s iterative keyword-guided generation likely
achieved a better score by continuously checking and enforcing the
presence of relevant terms, thereby anchoring the content closer
to the original. The result is that the framework abstracts are more
trustworthy. Thus, they seem to cover more of the key points (as
seen in the facet similarity scores) and also do so with statements
that the source material can support. This higher entailment aligns
with the LLM evaluators’ judgment of better factual accuracy for
the framework. Together, the evidence points to the framework
effectively reducing hallucinations and increasing factual alignment
compared to the unguided summary approach baseline.

5.6 Keyword Validation Loop

This section investigates whether the iterative keyword validation
loop introduced in the framework contributes to the abstract quality.
Specifically, the analysis examines how evaluation scores evolve
across the five iterations, each triggered only if a previous attempt
failed to include the required keywords. The goal is to determine if
enforcing the inclusion of keywords over multiple prompts improves
abstract quality.

Table 7 shows the number and percentage of best-scoring ab-
stracts (those that achieved the highest evaluation score for each
metric) that were generated in each of the five possible iterations.
The results indicate that the majority of best abstracts were gener-
ated within the first two iterations.

TScIT 43, July 8, 2022, Enschede, The Netherlands.
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Table 7. Number and percentage of best abstracts across multiple evaluation
metrics over five iterations.

Ite-
Facet NLI

ra- ace Readability = Claude Gemini .
. Score Entailment
tion

n° % n° % n° % n° % n° %
1 8 47.06% 14 82.00% 7 44.00% 8 47.06% 7 41.18%
2 9 5294% 3 18.00% 8 50.00% 7 41.18% 10 58.82%
3 0 0.00% 0 0.00% 0 0% 1 588% O 0.00%
4 0 0.00% O 0.00% 0 0% 1 588% O 0.00%
5 0 0.00% O 0.00% 1 6.00% 0 0.00% O 0.00%

Iterations after the second rarely produced superior outputs: it-
erations 3, 4, and 5 together accounted for 3.57% of the best scores
across all metrics. This suggests that in most cases, quality gains
occur early within the first or second iteration after enforcing key-
word coverage. While the first iteration often performs well, it is
notable that a very relevant amount of best abstracts were generated
during the second iteration, especially for metrics such as facet sim-
ilarity, NLI entailment, and LLM judgments. This indicates that the
framework’s iterative loop is an effective enhancement mechanism.
By forcing the model to regenerate content with increased attention
to the missing keywords, the second iteration often succeeds in
correcting incomplete or imprecise outputs that the first attempt
missed.

Table 8. Summary statistics of improvement percentages across evaluation
metrics

NLI
Facet Score Readability Claude Gemini .
Entailment

Average
. 5.27% 22.47% 3.42% 3.49% 12.11%
increase
Max 13.85% 56.94% 6.98% 10.17% 40.00%
Min 0.19% 4.22% 1.82% 1.33% 1.35%

Table 8 summarises the relative percentage improvements in the
evaluation metrics for cases where scores increased. On average,
the iterative process has moderate but consistent gains across all
evaluation metrics, with readability and factual consistency showing
particularly strong improvements. Maximum improvements per
paper were large, indicating that in specific instances, the validation
loop led to important enhancements in abstract quality.

Overall, these findings suggest that the keyword validation loop
is generally beneficial, particularly in the first two iterations. It
enables recovery from initially incomplete outputs by enforcing
the inclusion of key content elements. While increments tend to
diminish after the second attempt, the second iteration alone is
responsible for a considerable amount of the highest score outputs
across most metrics. However, given the low utility of later iterations,
future implementations could consider adding stopping mechanisms
after two attempts to reduce unnecessary use of resources without
sacrificing output quality.

TScIT 43, July 8, 2022, Enschede, The Netherlands.

6 CONCLUSION

The aim of this thesis is to investigate the extent to which structured,
keyword-guided prompts can improve the factual accuracy, cover-
age, and relevance of LLM-generated abstracts for deep learning
papers. To address this question, a generation framework is intro-
duced that uses an IMRAD structure, incorporates author-provided
keywords, and applies a feedback loop to iteratively refine the ab-
stract.

With respect to SRQ1, the results show that abstracts generated
using the proposed structured framework consistently outperform
those produced with a flat, single-prompt baseline. Improvements
are observed across both automated and LLM metrics, especially
in factual consistency, and structural completeness. These findings
demonstrate that guiding generation through explicit keyword an-
choring significantly enhances abstract quality.

SRQ2 focuses on the role of the iterative keyword validation loop.
Experiments show that the loop provides the greatest improvements
within the first one or two iterations. However, further iterations
showed small returns.

Future work could include exploring the applicability of this
framework apart from deep learning papers, including fields such as
physics, biology, or the social sciences. This may involve adapting
keyword extraction methods and adjusting how the text is divided
into IMRAD sections.

Involving human experts in the evaluation process could also
strengthen the assessment of abstract quality. Expert feedback would
be especially useful for identifying specific inaccuracies and evalu-
ating clarity from a researcher’s perspective.

Finally, the framework could be developed into a tool to support
researchers in writing abstracts. It could allow users to edit, review,
or approve each section during generation, combining automated
help with human input.

In summary, the framework developed in this study demonstrates
that structured keyword-guided prompting can substantially en-
hance the quality of LLM-generated abstracts in technical domains.
While the approach is currently designed for deep learning papers,
it offers a foundation for other applications in scientific summarisa-
tion.
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A APPENDIX A

This appendix lists the regular expressions used to extract IMRAD sections and keywords.

IMRAD Section Patterns
All regex patterns are case-insensitive and match optional punctuation or numbering in headers:

e Introduction:
(#+\s*)?(introduction)[:\-]1?\s*
e Methods or Materials and Methods:
(+\s*)?(methods|materials and methods)[:\-]?\s*
e Results:
(+\s*)?(results)[:\-]1?\sx*
e Discussion or Conclusions:
(+\s*)?(discussion|conclusion[s]?)[:\-]?\s*

These patterns also handle markdown headers (e.g., Discussion) and numbered formats like 3. Methods.

Keyword Block Pattern

Keywords:
(keywords|index terms)[:\-1?\s*(.*)
Only the first match per document was used. Extracted strings were split into keywords using commas.

B APPENDIX B

This prompt was used for section-aware abstract generation:

You are a scientific abstract generation engine. Your task is to generate a structured abstract in IMRAD
format (Introduction, Methods, Results, Discussion) using the provided content from each section of the
paper, which appears at the end of each corresponding instruction block in the format [SECTION NAME]
section text. You must preserve factual accuracy and semantic alignment with the source content.

## FORMAT Output exactly these four sections: #*xIntroductionx* ... #*xMethods*x ... **Resultsx*
**xDiscussionx* ...

## GENERAL RULES - Do not fabricate, infer, or generalize beyond the source. - Use terminology, numerical
results, and notation exactly as provided. - Avoid boilerplate; each sentence must reflect real content.
« Do not copy verbatim — paraphrase while keeping facts intact.

## SECTION-SPECIFIC GUIDELINES
**Introductionxx - Clearly state the research question and motivation. - Frame the scientific challenge
and briefly hint at the solution approach. - Optionally use domain-specific terms such as: {keyword_str}
[INTRODUCTION SECTION] {intro}

**Methods*x - Describe the study design, datasets, model architecture, features, tools, and training
procedure. - Prioritise clarity and technical specificity (e.g., models used, metrics, hyperparameters).
- List steps in order, mirroring the logical flow of the real Methods. - Optionally use domain-specific
terms and relevant to this section such as: {keyword_str}

[METHODS SECTION] {methods}

— **Results** - Report all relevant numerical findings, comparisons, and performance metrics. - Prefer
exact values over vague statements. - Preserve table results in natural language. - Optionally use
domain-specific terms and relevant to this section, such as: {keyword_str}

[RESULTS SECTION] {results?}

**Discussion** - Emphasise key conclusions, implications, and any limitations noted. - Optionally incor-
porate broader ideas from: {keyword_str} - Do not speculate beyond the source content.
[DISCUSSION SECTION] {discussion}

TScIT 43, July 8, 2022, Enschede, The Netherlands.
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## FINAL INSTRUCTIONS Only return the abstract text. Do not include explanations, labels, or markdown
formatting beyond the section headers (**Introductionxx, **Methodsx*, **Results**, *xDiscussion#*x).

Keyword Iteration Example

To enforce full keyword coverage, the system checks whether all required terms appear in the generated abstract. If not, it regenerates the
abstract with a modified prompt. The process continues for up to 5 attempts.

Iteration Log Example

Attempt 1
Missing keywords: ['latent space', 'denoising']
Coverage: 60%

Attempt 2
Missing keywords: ['denoising']
Coverage: 80%

Attempt 3
Missing keywords: []
Coverage: 100%

Retry Prompt Format
When keywords are missing, the following message is prepended to the prompt:

The previous abstract was missing these important terms: [list of missing keywords].
Please regenerate the abstract using the same instructions, ensuring that all
missing terms appear in the correct sections without fabricating new information.

Example
For Attempt 2 in the example above (missing: denoising):

The previous abstract was missing these important terms: denoising.
Please regenerate the abstract using the same instructions, ensuring that
all missing terms appear in the correct sections without fabricating new information.

Output Structure of Abstracts

All generated abstracts follow a structured IMRAD format enforced by the prompt and post-processing. Each abstract contains four clearly
labeled sections:

*xIntroduction**
A brief summary of the research context and motivation...

**Methods**
Details on the experimental setup, datasets, and model architecture...

**Results*x
Key findings and performance metrics...

**Discussionx*
Interpretation of results and conclusions drawn from the study...

C APPENDIXC

This is the simpler prompt used to generate comparison abstracts:

Generate a structured abstract using bolded section titles (Introduction, Methods, Results, Discussion) based on
this paper text: {paper_text}
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Each section title must be surrounded by double asterisks. Do not include headers, quotes, or formatting beyond
the abstract itself.

These simple prompt abstracts have the same structure described in Appendix B

D APPENDIX D

This is the prompt used for both Gemini and Claude evaluation.

You are an expert scientific writing evaluator. Your task is to assess the quality of a generated {facet} section
(e.g., Introduction, Methods, Results, or Discussion) based on its alignment with the original paper.

You will evaluate the generated section on the following four criteria using a 1-5 integer scale, where 1 = poor,
3 = average, and 5 = excellent. Justify each score with 1-2 concise sentences.

Evaluation Criteria: 1. Factual Accuracy - Is the information factually correct and consistent with the original?
Avoid hallucinations or incorrect claims. 2. Clarity - Is the section written clearly and coherently? Are the
sentences well-formed and easy to understand? 3. Structural Completeness — Does the section include all essential
elements expected in this part of a scientific abstract? 4. Keyword Relevance - Are key concepts and terminology
from the original reflected in the generated section?

IMPORTANT: The response must be a valid JSON object. Do not include markdown, code blocks, or additional text.
Return only the JSON object.

Format: { "factual_accuracy": <1-5>, "clarity": <1-5>, "structural_completeness": <1-5>, "keyword_relevance":
<1-5>, "justification": "One or two sentences explaining your ratings." }

[Original {facet} Section] {source_text}

[Generated {facet} Section] {generated_text}

Output Structure of Evaluation

Each evaluation result is a valid JSON object:

{
"factual_accuracy": 5,
"clarity": 4,
"structural_completeness": 5,
"keyword_relevance": 5,
"justification": "The generated section accurately summarises the content,
includes key methods and terminology, and is clearly written."
}

The script saves these results per paper, mode (framework or comparison), and section (Introduction, Methods, Results, Discussion) into a
final CSV file for analysis.
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E APPENDIXE

--- Gemini 1.5 Pro  —— Claude 3 Opus

. Factual accuracy () Clarity Structural completeness . Keyword relevance

F: Introduction ® 0
—————————i———o——o
C: Introduction
- -------e0
F: Methods —_—00
——————— o-o-0
C: Methods *—o ®
—t------ o------ *~----0
F: Results ®- 0
------------- o -0
C: Results *—0—90
————————— ®------0--------0
F: Discussion * o
————————————— o----o
C: Discussion —_——o
————————— ®---—--o----0
3 3.5 4 4.5

Fig. 2. Evaluation results of all generated abstracts with Claude 3 Opus
and Gemini 1.5 Pro

Figure 2 compares the proposed framework (F:) and the baseline (C:) across all IMRAD sections. Each dot represents a score given by Claude 3
Opus or Gemini 1.5 Pro for one of four criteria: factual accuracy, clarity, structural completeness, and keyword relevance.

Facet Scores per Section (Framework vs Comparison)
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Fig. 3. Distribution of evaluation scores across facets and models

Figure 3 shows the distribution of evaluation scores for each IMRAD section, allowing visual comparison between the two generation
strategies and the two evaluators.
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