Extending Model-Based Testing for Agile Development: Managing

Boundaries of Incomplete Systems

BOGDAN BUSUI, University of Twente, The Netherlands

Model-Based Testing (MBT) is a powerful approach to software testing that
enables systematic test generation from formal models of system behaviour.
While traditionally applied to fully implemented systems, its integration into
Agile and iterative development workflows—where features may be only
partially complete—remains a challenge. This paper investigates how MBT
can be adapted for use in systems under active development, where certain
components are not yet available. The focus is on modelling such systems
using Labelled Transition Systems (LTS), identifying and formalising model
boundaries at the interface between implemented and unimplemented fea-
tures, and adapting the model creation to preserve the LTS structure and
prevent invalid or unexecutable test cases. A small-scale prototype—a digital
printer with an evolving 3D printing feature—is used to demonstrate the fea-
sibility of this approach. The study proposes practical modelling strategies
that incorporate bounds between modelled and unmodelled behaviour, and
feature flags, allowing early testing and incremental test model refinement.
The findings support the viability of MBT in dynamic, partially completed
systems, offering a pathway to earlier fault detection and improved align-
ment with modern software engineering practices.

Additional Key Words and Phrases: Model-based testing, MBT, LTS, un-
implemented features, incomplete systems, system under test, sut

1 INTRODUCTION

In software development, detecting defects early in the lifecycle is
critical for minimising costs, ensuring system quality, and accel-
erating delivery timelines. As modern systems grow increasingly
complex, traditional manual testing methods struggle to keep pace
with the breadth of execution paths and feature interactions. This
has led to a growing interest in Model-Based Testing (MBT), a tech-
nique that automates test case generation from formal models of
system behaviour. By abstracting the system into a set of states and
transitions, MBT enables more systematic and exhaustive testing
compared to manually written test suites.

In principle, MBT offers significant advantages, including im-
proved coverage, early detection of specification mismatches, and a
clear link between requirements and test cases. However, its adop-
tion in the industry has been limited due to several practical chal-
lenges. Firstly, MBT introduces a steep initial cost: it requires not
only toolchain integration and modelling tools, but also a workforce
trained in formal modelling. The quality of the entire testing pro-
cess becomes highly dependent on the quality of the model—any
design flaw or misrepresentation can lead to misleading tests or
false confidence. Moreover, MBT’s structured, model-driven process
often clashes with the rapid, iterative cycles typical of Agile and
DevOps methodologies.

TScIT 43, July 4, 2025, Enschede, The Netherlands

© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

In an Agile framework, testing can consume up to 30% of total
project workload [4], a figure that underscores both the importance
and intensity of continuous testing. Agile teams require testing
strategies that can evolve alongside the implementation, adapting to
changes without incurring excessive rework. Unfortunately, tradi-
tional MBT methodologies typically assume a fully specified system
under test (SUT), which poses problems in development environ-
ments where features are built incrementally and may remain par-
tially implemented for extended periods.

To bridge this gap, this paper investigates the feasibility and
methodology of applying MBT to unfinished systems—systems in
which certain components are unimplemented, under construction,
or delayed by design. The goal is to explore how such systems can
be formally modelled, how boundaries between implemented and
unimplemented features can be defined, and how test generation
can remain effective in these conditions.

The modelling approach used in this study is based on Labelled
Transition Systems (LTS), a well-established formalism in which
system behaviour is described through a set of states, actions, and
transitions [5]. The states model the system states; the labelled tran-
sitions model the actions that a system can perform. This paper
focuses only on LTS for modelling, due to their formal simplic-
ity, direct applicability to model-based testing frameworks and the
availability of industry-ready tools that support automated test
generation.

In the context of MBT, an LTS can be converted into executable
test cases using specialised tools. While such tools already exist and
are outside the scope of this paper, the modelling itself—particularly
in cases of partial implementation—presents significant research
opportunities. This project focuses on how to model such systems
accurately, how to simulate or stub the behaviour of unimplemented
components, and how to ensure that the resulting tests are both
meaningful and maintainable as the system evolves.

Building on this foundation, several prior studies have explored
the use of LTS and related formalisms to support model-based test-
ing in scenarios involving incomplete or evolving systems. For in-
stance, Utting and Legeard [7] provide a comprehensive overview of
MBT practices, including the role of abstract models in early testing
phases. More recent work, such as by Artho et al. [2], investigates
the use of stub models to enable testing in the presence of unavail-
able components, advocating for explicitly defined I/O behaviours
at model boundaries. Similarly, research on interface automata and
input-output labelled transition systems (IOLTS) has contributed
techniques for managing test execution in systems with uncertain
or evolving interfaces [1]. This paper builds upon these directions
by addressing a gap in how formal models can be systematically
extended with intelligent stubs or abstractions that allow for seam-
less integration into continuous development workflows, without
compromising test validity or model fidelity.

TScIT 43, July 4, 2025, Enschede, The Netherlands

2 PROBLEM STATEMENT AND RESEARCH OBJECTIVES

While Model-Based Testing (MBT) presents a promising alternative
to traditional testing approaches, it is predominantly designed for
systems that are fully specified and implemented. In practice, partic-
ularly within Agile and iterative development workflows, systems
are often incomplete for extended periods. Certain features may be
planned but not yet implemented, while others may be undergoing
revision or awaiting integration. This poses several challenges when
attempting to apply MBT in such environments.

The fundamental issue lies in the mismatch between MBT’s as-
sumptions and the realities of incremental development. Traditional
MBT workflows presume the existence of a well-defined, complete
model of the system under test (SUT), against which tests can be
automatically generated and executed. However, in an evolving
system, such a model cannot be fully realised. This raises a set of
critical questions:

e How can we accurately and meaningfully model only
the parts of the system that have been implemented,
while preserving their inner functionality?

e How can we formally define the boundaries of the model—

the points at which implemented components connect
to unimplemented or placeholder features?

e How do we ensure that the tests resulting from the test
generation algorithms are valid and informative, even
in the presence of missing features that do not represent
real execution paths?

These questions form the foundation of the research presented in
this paper. The objective is to explore and develop methodologies
that allow MBT to function effectively within partially implemented
systems. By doing so, testing can begin earlier in the development
cycle, providing feedback that is otherwise delayed until after the
implementation is completed.

To address these challenges, the focus of this paper and contribu-
tions to the topic at hand are the following:

¢ Investigate formal approaches for modelling partially
implemented systems within the LTS framework. The
emphasis is on preserving testability and correctness while
accounting for system evolution. In this context, testability
refers to the conservation of the LTS structure, which can be
imported to different software tools (for example TorXakis
or GraphWalker). Correctness relates to the system’s interac-
tions being unchanged following the found implementations,
and future modifications to the system, by expanding the
functionality do not affect the existing feature-set.

o Define strategies for handling model boundaries. This
includes the use of placeholder transitions to represent known
inputs and outputs without requiring full internal behaviour
implementation. This refers to the boundaries of the model,
before the software implementation and expansion of the
model happens.

e Adapt test generation algorithms to produce executable
test cases that avoid interactions with undefined states
or transitions. This includes incorporating guards or condi-
tional logic to distinguish between implemented and place-
holder behaviour. This, as it will be addressed further on,

Author

turned out not to be necessary as the entire adjustment is han-
dled during the modelling process, leaving the test generation
unchanged, adhering to the testability objective mentioned
above.

e Validate the proposed modelling strategies through a
prototype example. Although full automation is outside
the project’s current scope, a structured modelling and test
design process is demonstrated using an illustrative system—a
digital printer with evolving feature sets.

3 EXAMPLE PROTOTYPE IMPLEMENTATION

Throughout the project, given the theoretical nature of the findings,
no actual implementation could be done. However, this does not
mean the findings lack practical application. For this reason, a small-
scale system example has been devised in order to combine all
relevant parts of MBT. These include the modelling of the existing
system, creating boundaries for the unimplemented features and
generating comprehensive test cases.

Our working example represents a digital printer that has the fol-
lowing functionalities: it can load documents (via an external means,
sending them directly to the printer, or by scanning them, which
are outside of the scope of the model), and it can print them, after
they have been loaded. There is a failsafe mechanism that prevents
the system from wrong inputs (e.g. printing without having loaded
a document beforehand). If the system enters the failsafe section, a
red LED will light up, the “Reset” button must be pressed, and the
printer goes back to idle (waiting for a document). The following
diagram (Figure 1) presents the Labelled Transition System (LTS)
representation of the printer.

reset?

Lo -
. Initial
(printer off)
loadDocument?

loadDocument?

Document
Loaded

loadDocument? | print?

Fig. 1. A Labelled Transition System of a Printer

In the “Initial” state, the printer is turned off. By pressing the
“Power On” button, it switches to the “Ready” state, from where,
by loading a document, it transitions to “Document Loaded”. Then,
selecting the ‘Print’ button causes the system to produce its output:
the printed document. If an input that violates the expected sequence
of operations is received, the printer goes into the “Error” state,
signalled by a red LED, which can be recovered from by pressing
the “Reset” button. An error can happen in more than one way, all
of which are modelled by arrows pointing from different states to

Extending Model-Based Testing for Agile Development: Managing Boundaries of Incomplete Systems

the “Error” state (for example, printing without a document loaded).
All but the “Printing” and "Error" states have quiescence (8), as they
do not have any output, but that is the correct behaviour. Pressing
the “Reset” button from any state that accepts input will end up in
“Ready”. From the “Ready” state, by pressing the “Power Off” button,
the system shuts off.

The next development cycle aims to extend the functionality of
the system. For instance, the printer could also have a 3D printing
feature. This takes a different type of document (3D printer files)
and takes a completely different path inside the system. The nor-
mal “Document Loaded” and “Printing” states (for regular printing)
would no longer adhere to the new specification. Our implementa-
tion is to have a separate Ul element that only accepts 3D printing
files and follows its instructions. This would be an upload field that
accepts only files that can be 3D printed. Another distinct feature is
that the user no longer has to start 3D printing; it is done as soon
as the file has been checked for correctness. Figure 2 portrays a
modified diagram that models the newly added changes, but does
not integrate the new features. What we know so far (and where
the implementation currently stops) is that there is an input loaded
into the system, in the form of a 3D file, and there is an output
provided, namely a 3D printed object. The exact details as to how
the scanning or printing happens are unknown so far, which is why
the placeholder "FutureState" represents an abstraction of these
functionalities. The idea of stopping here and not have the feature
implemented is to mimic an ‘unfinished’ behaviour and present how
that can be adapted in the LTS.

[} load30File?
reset? 3DPrinted!
powerOff? .
reset?
(pl‘i‘r’:l‘gfloﬂ') powerOn? Ready
print?
LED_Red!
loadDocument?
printt Error
resel?
loadDocument?
Printing print? Document

Loaded

&

loadDocument? | print?
Fig. 2. Updated LTS with 3D printing partial modelling

This updated version has yet to implement the features; however,
it knows what type of input and output is expected, making it a
valid solution, respecting the LTS format. From the “Ready” state,
providing a 3D file will load it and print it. Following that, the result
is output. Despite the missing implementation states, the behaviour
is known, making the system ready for testing. This refers to the fact
that the unimplemented functionality does not affect the behaviour

TSclT 43, July 4, 2025, Enschede, The Netherlands

of the test generation itself, as the heavy modifications were handled
during the modelling process (proper construction of the LTS).

[fleError]

3DFileChecker autoStart: 3DTODO

Ioad3DFile? [3D_printing_feature_enabled = frue]
5

reset?

powerOfi? 3DPrinted!

. reset?
wn!:.‘g?'nm powerOn? Ready
print?

LED_Red!

i loadDocument?
prinfing! Ermor

reset?

loadDocument?
print? Document

Printing Loaded

5

loadDocument? | print?

Fig. 3. Subsequently updated LTS with 3D printing possible functionality

Following the implementation of the 3D printing features in the
system and a subsequent modification of the model (Figure 3), the
system can now create 3D models. Once a file has been loaded, the
3D printer automatically starts printing. This design choice max-
imises the efficiency of the printer, since 3D printing file-checking
can take an undetermined amount of time, and this removes the
necessity of having a human in the loop once it is finished loading.
This specific diagram comes at a time in the development process
where the file-checker (3DFileChecker) has been implemented, but it
accommodates both having and not having the actual functionality
of the system (3DPrinting). This could happen if the feature has been
accepted by the management team, but before it is implemented,
to be able to present to the stakeholders the flow of the system
and perform testing on 3D file checking. The basis of this update is
having guards that allow the possibility to add new features, after
they have been implemented. This ensures that the model is always
in line with the development process, and it does not precede any
functionality of the system. This safety measure protects against
testing features that do not exist, which would lead to numerous
errors. If the flag "3D_printing_feature_enabled" is set to true (i.e.
the printer can 3D print), in the LTS diagram, this presents itself as
going to the 3DPrinting state. From there, the output is the physi-
cal, printed object. Conversely, the boolean is set to false until the
feature exists, meaning that nothing is output, and the system goes
back into the Ready state. This ensures that nothing is unmodelled,
and there are correct transitions between the appropriate states.
The possible transitions point to the option of further expanding
the system and adding more features, similar to Figure 2. It suggests
and allows system growth, despite also being a stable and complete
system.

TScIT 43, July 4, 2025, Enschede, The Netherlands

4 MODELLING THE SYSTEM

Integrating Model-Based Testing (MBT) into an active development
workflow requires a series of structured steps that support both the
progressive construction of the model and the incremental imple-
mentation of system features. In the context of partially completed
systems, modelling becomes more than a static representation—it
acts as a border between the existing and future features, with only
the current ones being modelled. Many times during the develop-
ment cycle, it can happen that work is being done on multiple fronts,
with several components being worked on concurrently, with some
of them functional, while others are still in progress. The best way to
differentiate between them is, in the case of MBT, by modelling only
the working ones. This is advantageous in several respects. On one
hand, the model conveys all the information about what is currently
working in the system, making it a great showcase for stakeholders
or higher management, who are not familiar with all components.
On the other hand, having an accurate LTS that only models the
live system makes it effortless to test, as it can simply be imported
into specific tools that generate testing automatically [5]. The steps
below describe the typical workflow in an MBT development cycle:

e Feature Planning and Design:

— The management team and stakeholders define and analyse
the new feature or requirement. After it has been approved
and accepted, two tracks proceed in parallel: Development
(Code) and Modelling (Test Model).

e Track A: Software Implementation:

— Architecture and Design Decisions

— Code Implementation

— Unit Testing

e Track B: MBT Model Development

— Creation of an LTS adhering to the specification or plan

— Model Validation and Refinement

— Test generation using dedicated tools, see section 5

e Tracks A and B:

— Convergence of the Software Implementation and the Model
Development

— Correctness checking

Track A is a conventional development process of a system

that can follow any framework. Track B marks the modifi-

cations due to the MBT approach, with extra work needed
concurrently to model the system, facilitating the testing goal.

At the end, a convergence is made that ensures the imple-

mentation passes the created tests, signalling success on both

branches. If inconsistencies appear, correctness checking has
to be done by both sub-teams until the alignment is perfect.

This cycle can then be repeated as many times as needed to

complete the system, and it accommodates for both small or

large features.

To begin the schematic creation, the model should be constructed
using a formalism such as Labelled Transition Systems (LTS) (e.g.
Figure 1), which offers clarity in representing system states, actions,
and transitions. Modelling should focus first on the core, stable
behaviour—features that are already implemented or have stable
specifications. This forms a dependable foundation on which addi-
tional components can be incrementally layered.

Author

When dealing with features that are not yet implemented, the
model must still represent them in a meaningful and testable way.
This involves defining boundary points—states and transitions that
mark the interface between implemented and unimplemented func-
tionality. In these cases, inputs and outputs can still be modelled
based on design documentation, interface specifications, or expected
contracts. These behaviours are represented using transitions or
state representations that simulate the eventual behaviour without
requiring actual code execution.

Importantly, LTS modelling allows for quiescence (J), represent-
ing the absence of observable output. This concept is particularly
useful for modelling unimplemented features: while the input may
be accepted by the system, the expected output can be replaced with
quiescence or redirected to a placeholder state. This ensures that the
model remains logically complete and testable, even if the system
itself cannot execute the intended behaviour yet.

Parallel modelling and integration support a more agile develop-
ment process. As new features are implemented, model boundaries
can be replaced with fully modelled behaviour, allowing the test
suite to evolve without invalidating previous work. This iterative
alignment of model and implementation minimises rework and
maximises test reuse.

Despite its advantages, modelling under these conditions also
presents difficulties. The boundaries between implemented and
unimplemented features must be explicitly managed to avoid gener-
ating invalid or misleading test cases. Incorrect assumptions about
future behaviour can also compromise the validity of the model.
Therefore, maintaining clear documentation and formal specifica-
tions is crucial for long-term model integrity.

Ultimately, the goal is to construct a living model that grows in
parallel with the system itself, supporting continuous testing, early
fault detection, and a more predictable development cycle.

5 TEST CASE GENERATION

Once the system has been modelled using LTS or a similar formal-
ism, the next step in the MBT process timeline is the automatic
generation of test cases. Test generation relies on traversing the
modelled transitions and producing test cases that verify the correct
behaviour of the system under test (SUT).

In the case of partially completed systems, traditional MBT tools
may struggle to differentiate between legitimate behaviour and
modelling edges. Therefore, the adaptations made to the modelling
cycle must still respect the LTS format. Furthermore, the model
must not convey information about missing features, but include
boundary states that emulate a functionality edge, like in Figure 2.

Some tools that support LTS-based test generation include:

e TorXakis: An experimental tool for on-line model-based test-
ing. TorXakis implements the ioco-testing theory for labelled
transition systems [6].

o JTorX: A Java-based MBT tool that performs on-the-fly test
derivation and execution from labeled transition system (LTS)
models based on ioco conformance testing. It generates and
executes test cases dynamically, facilitating immediate feed-
back during model exploration [3].

Extending Model-Based Testing for Agile Development: Managing Boundaries of Incomplete Systems

e GraphWalker: An open-source MBT framework that lever-
ages graph-based models (e.g. extended finite state machines)
to automatically generate test paths. It supports various algo-
rithms (random, edge coverage) and can be integrated into
CI/CD pipelines [8].

The generation process can be tailored by setting coverage criteria
such as transition coverage, state coverage, or specific scenario
testing. For partially implemented systems, test selection strategies
should avoid paths that rely on unimplemented features, or they
should verify that the system responds with a stubbed output or
enters a default state like “Ready” or “Error”

In our first printer example (Figure 1), test cases would include:

o Verifying that a document cannot be printed without first
loading it.

e Confirming that the “Reset” button restores the printer to the
ready state from any error state.

e Ensuring that the intended execution flow—powering on the
system, loading a document, and initiating the print opera-
tion—produces the expected output, namely the successful
printing of the document.

Fail

Fail

Fail

printing!

Fail
Fail

Pass

Fig. 4. Hand-generated Case for Printing Functionality in the Initial Model

Figure 4 presents a simple test case for the initial system (Figure 1).
It starts from T0, which correlates to the "Initial" state in the model.
From there, given the inputs/ outputs from the transitions, the test
case grows in a tree-like manner. We observe that only after correctly
powering on the printer, followed by loading a document, pressing
the print button and receiving the printing, the test is a success, all
other possibilities lead to failure. This simple example showcases
the structure of a test case, as well as the conditions to pass one,
having exactly one pass, but may have multiple failure points.

Figure 5 presents a test case on the boundaries of the updated
printer (Figure 2), where the functionality of the printer is missing,
but a stub implementation would allow this test to pass, as the tested
feature is not the print itself, but rather the connection between
uploading a 3D file and receiving an output from the system. At
every step where an input is given, the system may produce an
output or just continue its execution. The figure denotes a fail for
every single output that is given at the wrong time, as it correlates to

TSclT 43, July 4, 2025, Enschede, The Netherlands

LED, Red! printing! 3Bprinted:

¥ poweron? 4

Fail Fail Fail

LED_Red! printing!

load3DFile?
Fail Fail Fail

3DPrinted!

LED_Red! printing!

3DPrinted!
Fail ¢ Fail

Pass

Fig. 5. Manual Test Case for 3D Printing in the Updated Model

a wrong implementation. The correct sequence is the following: the
printer is powered on, a file is uploaded (unimplemented currently,
only a placeholder exists), and a 3D printed file is created (also a
stub in this case). This test case may seem redundant because no
functionality is added, both file checking and printing are just stubs,
but it does hold the information of the possibility of expansion in the
future, once the features are integrated. Figure 2 represents how the
system boundary performs when a feature is not yet implemented,
but a placeholder is in its place, and Figure 5 is the test case for the
connected links, making abstraction of absent elements.

autoStart! St
LED_Red! printing' 3pprinted:
powerOn? %
Fail Fail Fail Fail

autoStart!) -
LED_Red! printing! 3pprinted:
load3DFile? 4

Fail Fail Fail Fail

LED_Red! printing!
W autosta %
Fail Fail Fail

3DPrinted!

autoStart_{p glg it
3DPrinted! A
Fail Fail Fail

Pass
Fig. 6. Hand-Crafted Test Case the Implemented 3D Printing Functionality

Figure 6 displays a test case for the complete, implemented 3D
printing feature. The increased number of possibilities is directly
tied to the multitude of possible outputs that the system can produce,
with all of them having to be accounted for. The main difference
between this test case and the previous one is the availability of
the system’s functionality. Now, the 3D printing and file checking
are no longer stubs in the code, but are working and should lead
to the expected results. Similar to the previous test cases, for the
test to pass, after it is turned on, a 3D file is input. After the file
is successfully checked, the auto-start function starts the printing

TScIT 43, July 4, 2025, Enschede, The Netherlands

process. At the end, the correct output is the created object. For
systems where output behaviour depends on feature toggles (e.g.,
3D_printing_feature_enabled), test cases should be conditionally
generated based on those flags, allowing flexible execution across
multiple development stages. This increases reusability and reduces
test maintenance overhead. By reusability we mean the system
becomes more modular due to the addition of new parts or func-
tionalities. The core structure remains the same, it is just expanded
on and it can grow as much or as little as the system requires. It
accommodates both complex and simple systems, the difference
being the overall size of the project.

6 EVALUATION AND DISCUSSION

Our results so far have demonstrated that Model-Based Testing
can be adapted to systems that are under development, through
the combined use of formal modelling, boundary definitions, and
carefully constructed stubs. Modelling with LTS provides a robust
framework to represent both current functionality and anticipated
features, while clearly separating testable paths from speculative
ones. This refers to modelling the parts of the system that exist or
that have stubs, as they can be directly tested in different conditions
(existence, performance, etc.), and it eliminates the need to model
completely missing features, as they cannot be tested yet anyway:.

One key insight is the importance of interface-level contracts
when modelling unimplemented features. Even without execution
logic, well-defined I/O specifications enable the model to simulate
interactions and define expected behaviours. These placeholders
are instrumental in maintaining model continuity and allowing
early-stage test generation.

Furthermore, test generation tools such as TorXakis and JTorX
support extensions for quiescence, unobservable transitions, and
conditional behaviours. This enables testers to generate test suites
that are both comprehensive and realistic, avoiding unexecutable
paths.

However, the approach is not without limitations. Stub behaviour
(in the code implementation) may diverge from future implementa-
tions if design assumptions change, which can invalidate previously
generated tests. Additionally, the boundary between stubs and ac-
tual logic must be managed with precision to prevent false positives
or negatives during test execution.

The integration of MBT into agile development cycles also re-
quires cultural and procedural shifts. Teams must align on modelling
practices and maintain synchronised documentation to prevent drift
between implementation and test models.

7 CONCLUSION AND FUTURE WORK

This paper has explored the application of Model-Based Testing to
systems that are still in development, with an emphasis on formal
modelling using LTS, handling unimplemented features through
boundary-aware stubbing that prevent the need for adapting gener-
ating test cases algorithms, thus adhering to the existing tools.

A small-scale prototype model—a printer with partially imple-
mented 3D printing functionality—was used to demonstrate the
viability of these techniques. By defining expected I/O behaviour
and modelling future states as model boundaries, we maintained

Author

model integrity and test generation capability throughout the de-
velopment lifecycle.
Future work could involve:

e Automating the identification of model boundaries and stub
implementations, and allowing for a preview of the complete
system from the early implementation.

e Extending the prototype to a possible real-world scenario,
using MBT in a future project, and utilising the techniques
and methods found during the research period.

e Integrating MBT into CI/CD pipelines with dynamic model
updates as features are implemented.

The findings of this research support the position that MBT, when
adapted with formal strategies for partial systems, can play a crucial
role in improving software quality even before the system is fully
implemented.

REFERENCES

[1] Bernhard K. Aichernig and Tanja T. Gschwind. 2004. Formal Test-Case Generation
from Timed I/O-Automata. Electronic Notes in Theoretical Computer Science 111
(2004), 3-20. https://doi.org/10.1016/j.entcs.2004.01.001

[2] Cyrille Artho, Klaus Havelund, and Armin Biere. 2012. Using Stubs to Improve
Model-Based Testing of Concurrent Programs. In Proceedings of the 7th Workshop on
Model-Based Testing (MBT). ACM, 1-12. https://doi.org/10.1145/2103222.2103223

[3] Axel Belinfante. 2010. JTorX: A Tool for On-Line Model-Driven Test Derivation
and Execution. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (Lecture Notes in Computer Science, Vol. 6015). Springer, 266—-270. https:
//doi.org/10.1007/978-3-642-12002-2_21

[4] Liang Cao. 2022. Estimating Efforts for Various Activities in Agile Software
Development: An Empirical Study. IEEE Access 10 (Aug. 2022), —. https:
//doi.org/10.1109/ACCESS.2022.3196923

[5] Jan Tretmans. 2008. Model Based Testing with Labelled Transition Systems. Formal
Methods and Testing 4949 (2008), 1-38. https://doi.org/10.1007/978-3-540-78917-
8_1

[6] Jan Tretmans. 2017. On the Existence of Practical Testers. In ModelEd, TestEd,

TrustEd, Joost-Pieter Katoen, Rom Langerak, and Arend Rensink (Eds.). Lecture

Notes in Computer Science, Vol. 10500. Springer, Cham, 87-106. https://doi.org/10.

1007/978-3-319-68270-9_5 Introduces TorXakis as an industrially practical tester

based on LTS and ioco theory.

Mark Utting and Bruno Legeard. 2007. Practical Model-Based Testing: A Tools

Approach. Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-372501-1.X5000-

5

Muhammad Nouman Zafar, Wasif Afzal, Eduard Paul Enoiu, Athanasios Stratis,

Aitor Arrieta, and Goiuria Sagardui. 2021. Model-Based Testing in Practice: An

Industrial Case Study using GraphWalker. Innovations in Software Engineering

Conference (ISEC) (2021), 1-11. https://doi.org/10.1145/3452383.3452388

=

)

Al disclosure. Text generative Al was used during the research
project. The instances where it was used were only for clarifying and
explaining key concepts in the initial parts of the research, and for
finding synonyms or similar expressions during the documentation
and writing sections of the paper. Generative or other types of Al
were not used to generate sentences or paragraphs for the written
section of the project.

https://doi.org/10.1016/j.entcs.2004.01.001
https://doi.org/10.1145/2103222.2103223
https://doi.org/10.1007/978-3-642-12002-2_21
https://doi.org/10.1007/978-3-642-12002-2_21
https://doi.org/10.1109/ACCESS.2022.3196923
https://doi.org/10.1109/ACCESS.2022.3196923
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-319-68270-9_5
https://doi.org/10.1007/978-3-319-68270-9_5
https://doi.org/10.1016/B978-0-12-372501-1.X5000-5
https://doi.org/10.1016/B978-0-12-372501-1.X5000-5
https://doi.org/10.1145/3452383.3452388

	Abstract
	1 Introduction
	2 Problem Statement and Research Objectives
	3 Example Prototype Implementation
	4 Modelling the System
	5 Test Case Generation
	6 Evaluation and Discussion
	7 Conclusion and Future Work
	References

