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ABSTRACT - The increasing availability of detailed event logs
from industrial and service processes offer new opportunities to
support operational decision-making through predictive analyt-
ics. This work aims to investigate how predictive models trained
on historical event logs perform under changing process condi-
tions, such as disruptions, and to assess their generalization in
logistics environments. An empirical study based on a logistics and
manufacturing dataset is conducted, evaluating the accuracy and
robustness of Long Short-Term Memory (LSTM) models in different
scenarios, including process disruptions. The findings highlight
not only which ML models perform best under various conditions,
but also how predictive values can potentially augment logs to
support proactive decision making in operational environments
such as logistics and healthcare. This has the potential to enable
downstream use in process discovery, conformance checking, and
process enhancement.

Additional Key Words and Phrases: Process Mining, Predictive
Process Monitoring, Machine Learning, Event Logs, Operational
Decision Support

1 INTRODUCTION
The increasing digitalization of industrial and service pro-
cesses has led to the widespread adoption of process mining
techniques, which use event logs to discover, monitor, and
enhance operational workflows [5, 14]. In domains such as
logistics, manufacturing, and healthcare, event logs record
the fine-grained execution of processes, often capturing
timestamps, case identifiers, and activity names across het-
erogeneous systems. These logs offer a valuable source of
information not only for retrospective analysis but also for
forward-looking predictive insights [6].

Predictive Process Monitoring (PPM) extends traditional
process mining by using historical event data to forecast
future aspects of ongoing cases [11], such as the remaining
cycle time, next activity, or likelihood of deviations. Such
predictions are increasingly used to support time-sensitive
decision making, mitigate process inefficiencies, and an-
ticipate disruptions (e.g., [9, 12]). For instance, in logistics
settings, forecasting the impact of vehicle unavailability or
scheduling delays can help reallocate resources or prior-
itize urgent shipments. In healthcare, similar predictions
can inform triage decisions or scheduling adjustments early
on [16].
Despite promising advances, most existing predictive

models are trained and evaluated under static conditions,
assuming process stability. In practice, operational environ-
ments are dynamic and often subject to disruptions, such
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as equipment breakdowns, workload shifts, or unplanned
reconfigurations, that challenge model robustness and gen-
eralizability.
This study investigates how machine learning models,

particularly Long Short-Term Memory (LSTM) networks,
perform under both normal and disrupted operational sce-
narios using simulated event logs from logistics and manu-
facturing domains.
Although prior research (see Section 3) has focused pre-

dominantly on prediction accuracy under static conditions,
this work contributes a broader perspective by assessing
model behavior under disruptions and highlighting integra-
tion points for predictive outputs within the process mining
lifecycle. Beyond prediction, these predictive outputs could
potentially be integrated directly into event logs to support
downstream process mining tasks such as process discovery,
conformance, and enhancement.

The remainder of this paper is organized as follows. Sec-
tion 3 reviews related work on predictive process monitor-
ing and machine learning approaches. Section 4 introduces
the dataset and outlines the characteristics of the simulated
disruption scenarios. Section 5 presents the modeling ap-
proach, including feature engineering, model design, and
evaluation setup. Section 6 describes the experimental setup
used. Section 7 reports on the empirical results, comparing
predictive performance under normal and disrupted condi-
tions. Finally, Section 8 discusses key insights, limitations,
and opportunities for future work, and Section 9 concludes
the study.

2 RESEARCH DESIGN

2.1 Research Objectives and Scope
The primary objective of this research is to evaluate the
accuracy and generalization capability of predictive mod-
els trained on event logs, especially when applied under
dynamic, non-standard process conditions. By simulating
operational disruptions such as the removal of transport
vehicles, an assessment is made about whether predictive
models can maintain performance and deliver actionable
insights even when the environment shifts away from its
training distribution.

2.2 ResearchQuestions
To guide this investigation, we define the following main
research question (RQ):

• RQ: Towhat extent canmachine learningmodels gen-
eralize their predictions of process outcomes under
changing operational conditions (e.g., disruptions)?

To support this primary inquiry, two sub-questions (SQ)
are also formulated:
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• SQ1: Which features extracted from event logs are
most informative for predicting process outcomes
such as remaining cycle time?

• SQ2:What are the practical implications and limita-
tions of using predictive values to support operational
decision-making?

2.3 Experimental Strategy
An empirical case study was conducted using a simulated
logistics and manufacturing dataset [1] that includes both
normal and disrupted process scenarios. An LSTM model
is trained on event logs from standard settings and evalu-
ated under both familiar and perturbed process conditions.
Predictive accuracy is assessed using regression metrics,
and additional qualitative analysis is used to interpret un-
derestimation and overestimation patterns. This enables an
investigation into both predictive performance and general-
izability of the model across scenarios.

3 RELATED WORK
Process Mining (PM) has grown in the past decade and is a
relatively new technique to analyze and improve processes.
The main goal is to discover, monitor and improve real pro-
cesses using event logs generated by the system itself [13].
However, PM techniques are useful for processes that al-
ready finished (i.e., post-mortem event logs) [10]. From this
foundation Predictive Process Monitoring (PPM) emerged.

PPM combines the strengths of PM and machine learning
to forecast process attributes [11] such as the next activity,
remaining time, or the likelihood of non-compliance. In the
work by Maggi et al. [11], supervised learning techniques
were applied to runtime event streams to support early
prediction of outcomes, introducing a new class of real-
time, value-adding process mining tools. Since then, a rich
body of literature has explored the application of regression,
classification, and deep learningmodels to predict remaining
cycle time and other operational variables [4, 10].

Remaining cycle time is especially relevant inmanufactur-
ing and logistics domains, where accurate estimates enable
better planning, throughput optimization, and just-in-time
resource allocation. Recent case studies (e.g., Friederich et
al. [10]) benchmark several regression-based models, in-
cluding Decision Trees (DT), Random Forests (RF), XGBoost
(XGB), and k-Nearest Neighbors (KNN), on cycle time predic-
tion tasks in automated production settings. These models
vary in interpretability, scalability, and computational cost
(see Table 1), but are typically trained and evaluated on
static process conditions.

Table 1. Regression models comparison

Model Attributes

DT Good interpretability of results
RF, XGB Powerful ensemble machine learning
KNN Simple but large computation cost

Alongside classical machine learning approaches, deep
learning techniques, particularly Recurrent Neural Networks

(RNNs) and LSTM networks, have been proposed for captur-
ing temporal dependencies in sequential event data. LSTM-
based models have shown promise in tasks such as next
activity prediction and time-to-completion estimation [8].
These models are particularly attractive for handling com-
plex, high-variance processes, though at the cost of inter-
pretability and training time.
While most existing studies focus on prediction accu-

racy under stable process conditions, relatively few explore
how predictive models behave under process disruptions or
concept drift. Initial explorations of robustness under drift
are emerging in the literature [3], yet evaluations under
disruption scenarios (e.g., resource unavailability, dynamic
rerouting) remain sparse.
In this thesis, the focus is on a logistics and manufactur-

ing environment in which product quality degrades over
time [7]. Every product experiences a decline in quality, a
process that can be accelerated or slowed by various internal
factors within the system. However, this thesis specifically
focuses on the remaining cycle time in the system, as it is
closely related to the level of quality decay [2].

4 DATASET AND SIMULATION ENVIRONMENT
To evaluate the proposed predictive modeling approach, a
dataset [1] corresponding to the study reported in [2] is used.
The dataset was generated using a discrete event simulation
model.
The factory layout of the generated dataset is shown in

Figure 1.

Fig. 1. Factory layout for simulated logistics-manufacturing opera-
tions.

4.1 Source and Composition of Event Logs
Each event log records a series of activities for individual
process cases, capturing information such as event type,
timestamps, the vehicle involved, and product quality decay.
Table 2 provides an example of log entries. Every entry
includes a unique Event ID, a Case ID linking related events,
a categorical event label (e.g., PickUp, Transport, Deliver),
start and end timestamps, the vehicle executing the task, and
a decay score representing product quality at that moment.
The event flow pipeline is visualized in Figure 1.

The dataset comprises 27 simulation scenarios, each exe-
cuted 20 times, resulting in a diverse and extensive collection
of event logs. Scenarios are defined by varying vehicle com-
positions (see Table 3) and dispatching rules. Vehicle types
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Table 2. Example event log entries showcasing the most important features (representative values).

Event ID Case ID Event Start Time End Time Vehicle Decay
001 A PickUp 08:00 08:05 UAV:1 100
002 A Transport 08:05 08:20 UAV:1 97,13
003 A Deliver 08:20 08:25 UAV:1 85,55
004 B PickUp 08:10 08:15 HDF:1 100
005 B Transport 08:15 08:30 HDF:1 98,24
006 B Deliver 08:30 08:35 HDF:1 94,76

include Unmanned Aerial Vehicles (UAVs), Human-Driven
Forklifts (HDFs), and Automated Guided Vehicles (AGVs).

Table 3. Vehicles used in experiments

Exp. Num. Vehicles used

1–9 3 UAVs; 1 HDF; 1 AGV
10–18 3 UAVs; 2 HDFs; 2 AGVs
19–27 2 HDFs; 2 AGVs

4.2 Disruption Scenarios
To simulate dynamic operational conditions, disruption sce-
narios are mimicked into the dataset. These scenarios rep-
resent interruptions such as vehicle failures, removals, or
additions, which alter the standard execution flow of cases.
For example, in one scenario, an HDF and an AGV are re-
moved from the system, leading to reassignment of trans-
port tasks to other vehicles. This simulates capacity loss and
introduces variation in cycle times and decay trajectories.
By comparing model performance on baseline (undis-

turbed) and disrupted scenarios, an assessment can be made
of how well trained models generalize under real-world
variability. This setup enables controlled experimentation
around key research themes such as robustness, transfer-
ability, and concept drift in predictive process monitoring.

4.3 Feature Engineering and Preprocessing
Before model training, event logs are preprocessed into case-
based traces suitable for supervised learning. The following
steps are applied:

• Trace structuring: each case is transformed into a
sequence of events, preserving timestamp order and
including intermediate state values (e.g., decay).

• Feature extraction: features include event duration,
inter-arrival time, event position in trace, vehicle type,
and decay. Categorical features are one-hot encoded,
and continuous values are normalized.

• Label assignment: for each partial trace, the remain-
ing cycle time is calculated relative to the final event
in the case.

Missing values are imputed using backward-fill (post-
padding) strategies, and sequences are padded to a fixed
length to accommodate batch processing in LSTM models.
An example of a process model that could be obtained is
shown in Figure 2.

Fig. 2. Event flow in single simulated run execution.

5 MODELING APPROACH
This section outlines the architecture, training configura-
tion, and evaluation methodology used to develop predictive
models for estimating remaining cycle time in process exe-
cutions. The primary focus is on an LSTM network, chosen
for its suitability in modeling sequential dependencies in
event log data.
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5.1 Model Architecture (LSTM and Baselines)
The predictive model implemented in this study is an LSTM
network, which is a specialized type of RNN designed to han-
dle long-range dependencies in time series and sequential
data. LSTM models have been widely used in predictive pro-
cess monitoring tasks for their ability to capture temporal
patterns across event traces [8].
The LSTM model architecture comprises the following

components:
• An input masking layer to handle padded values in
variable-length traces;

• A single LSTM layer with 50 hidden units, configured
to return sequences;

• A dense output layer with one neuron and a linear ac-
tivation function to perform regression on remaining
cycle time.

In addition to the LSTM model, baseline comparisons
were considered using traditional regression models, includ-
ing RF and XGB, which have demonstrated strong perfor-
mance in prior PPM studies [10]. However, given project
constraints and the sequential nature of the task, the empha-
sis remained on optimizing and evaluating the LSTM-based
solution.

5.2 Model Training and Hyperparameters
The model was implemented using the Keras API within
TensorFlow. The training process used the Adam optimizer,
a widely adopted adaptive learning algorithm, with the fol-
lowing hyperparameters:

• Batch size: 64
• Loss function: Mean Absolute Error (MAE)
• Validation split: 10% of the training data

Data scaling was applied to all numeric features, and cat-
egorical features (e.g., vehicle type) were one-hot encoded.

5.3 Evaluation Metrics and Strategy
The performance of the model was evaluated using two
widely accepted regression metrics:

• Mean Absolute Error (MAE): Measures the aver-
age magnitude of errors in predictions, offering high
interpretability.

• Mean Squared Error (MSE): Captures error vari-
ance and penalizes large deviations more severely
than MAE.

To assess generalizability, the model was trained on event
logs from non-disrupted scenarios and tested on both reg-
ular and disrupted traces. This allowed us to analyze how
performance degrades (or persists) under process variabil-
ity. Comparative evaluations in vehicle removal provided
insight into the robustness of the LSTM architecture.

5.4 Modeling Tools and Implementation Setup
All model development and evaluation activities were con-
ducted in Python, primarily within the Jupyter Notebook
environment. The following libraries were used:

• TensorFlow/Keras: For deep learning model con-
struction and training.

• pm4py: For event log preprocessing and conversion
into case-based sequences suitable for ML input.

• Scikit-learn: For baseline model implementation and
metric computation.

• Matplotlib: For visualizing model performance and
comparative error plots.

Figure 3 illustrates the overall data flow from event logs
to prediction and downstream process integration.

6 EXPERIMENTAL SETUP
This section outlines how the predictive modeling experi-
ments were designed and executed to evaluate the robust-
ness of the model under stable and disrupted operational
conditions.

6.1 Train-Test Split and Disruption Strategy
To simulate realistic training and evaluation scenarios, the
structure of the simulation dataset was used, which includes
27 experiments varying in vehicle composition (Table 3).

• Training and Testing (Non-disrupted): Experi-
ments 10–18, each comprising 20 simulation runs,
were used to train and evaluate the model under sta-
ble conditions. Data from 18 runs were used for train-
ing, and the remaining 2 runs per experiment were
reserved for testing.

• Disruption Scenario Evaluation: Experiments 1–9
were used to evaluate the generalization of the model
under disruptions, where one HDF and one AGV are
removed compared to the training composition.

This configuration allows us to test the model’s ability
to maintain predictive accuracy when applied to unfamiliar
and capacity-reduced scenarios.

6.2 Feature Extraction and Preprocessing
Event logs were parsed and transformed into case-based
sequences using pm4py and pandas. Each sequence includes
engineered features such as:

• Event duration and position in trace
• Inter-arrival times and vehicle type
• Product quality decay (numeric)

Categorical features were encoded and numeric features
normalized. Remaining cycle time was used as the regres-
sion target and computed relative to the final event in each
case. Padded sequences ensured fixed input lengths for the
LSTM model, accommodating flow variability and early ter-
minations.

6.3 Model Training and Data Volume
Training was carried out in batch mode, combining all event
traces from 180 runs (10–18) into a unified training and
testing set. Each file contains approximately 100, 000 event
logs, resulting in a substantial training volume. This batch
setup was preferred over incremental file-wise training for
stability and convergence speed.
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Fig. 3. Prediction using machine learning models in the PPM lifecycle.

6.4 Evaluation Metrics and Interpretation
Predictive performance was assessed using MAE) — for
average prediction deviation
RootMean Squared Error (RMSE)— for penalizing larger
errors
Scatter plots and summary tables (e.g., Table 4) comple-

ment these metrics by visualizing error distributions across
normal and disrupted settings. Classification metrics were
not used, as the prediction task is continuous in nature.

Vehicles Target
UAV HDF AGV AMAE ARMSE

Normal 3 2 2 20 s 33 s
Disruption 3 1 1 32 s 49 s

Table 4. Average MAE and RMSE under normal vs. disrupted vehi-
cle configurations.

This setup enables systematic investigation of predictive
robustness and highlights how operational changes (e.g.,
vehicle removal) affect model accuracy.

7 EXPERIMENTAL RESULTS
The final goal is to show that machine learning can be used
to predict disruption outcomes in logistics processes in a
way that helps decision makers act earlier and more effec-
tively, especially when the system is too complex to establish
rule-based fail safes solely.

7.1 Prediction Performance under Stable
Conditions

The model was trained on 162 files and tested on 18 files.
The average MAE and RMSE values were calculated from
the test file results, and Table 5 shows the predictions of the
remaining cycle time.

Table 5. Baseline prediction error metrics

Metric Value

MAE 19.85 s
RMSE 32.73 s

Meaning, the average absolute difference between the
predicted and actual remaining cycle time is around 20 sec-
onds, while if larger errors are taken more heavily then it

is around 33 seconds. Scatter plots showcase the accuracy,
where each spike represents a flow and each sample repre-
sents an event on figure 4. On figure 16 individual flows can
be seen on each plot to see how accurately the model can
predict the reamining time and capture trends in the data.

Fig. 4. Results snippet of remaining cycle time predictions of events,
testing on similar vehicle composition as training data.

This shows that the model predicts somewhat precisely
with data that is familiar to its algorithm.

7.2 Generalization to Disruptions
However, when it comes to testing the model on data where
the vehicle composition changed (number of HDFs and
AGVs decreased from 2 to 1), the results are shown in Ta-
ble 6.

Table 6. Disruption prediction error metrics

Metric Value

MAE 32.04 s
RMSE 49.49 s

It is visibly worse by approximately 10-20 seconds (See
Table 4) than testing the data with the same vehicle com-
position as its training data. But this does not mean that
the model breaks, since it is clearly visible on figure 5 and
17 that the model still predicts the correct trends, just with
worse accuracy.
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Fig. 5. Results snippet of remaining cycle time predictions of events,
testing on disruption files where vehicle composition is different
than training data.

7.3 Error Analysis and Failure Cases
Error analysis markers were incorporated into figure 4. and
5., resulting in enhanced figures 6. and 7. In these figures,
red points indicate events where the model predicted a non-
zero remaining cycle time, whereas the actual remaining
cycle time was zero. Green points highlight instances where
the absolute difference between the predicted and actual
values exceeds 100 seconds. In particular, these larger errors
occur more frequently when the model is tested on data
that differs from the data it was trained on, illustrating the
efficiency of the model in the event of a disruption.

Fig. 6. Baseline Figure 4, with
error analysis markers.

Fig. 7. Disruption Figure 5,
with error analysis markers.

7.4 Error Distribution Analysis
In figures 8. and 9. both distribution error plots are centered
around 0, which means that the model is generally unbiased
in both cases.

Fig. 8. Distribution of predic-
tion errors at a normal test

Fig. 9. Distribution of predic-
tion errors at a disruption test

However, figures 10. and 9. are more informative in the
sense of underestimation and overestimation. The model un-
derestimates the high remaining times in both normal and
disruption scenarios, but this effect is stronger in the disrup-
tion test. The prediction accuracy is better for lower actual
values in both cases. The disruption test shows larger and
more scattered errors, indicating that the model generalizes
less well to disrupted or out-of-distribution data.

Fig. 10. Predicted vs. Actual
Scatter Plot at a normal test

Fig. 11. Predicted vs. Actual
Scatter Plot at a disruption
test

Overall, the model is reasonably accurate for low remain-
ing times but tends to underestimate when the actual re-
maining time is high, especially under disruption.

7.5 Special Cases
7.5.1 Rare Overestimation at Normal Testing. As discussed
earlier, the model tends to underestimate the remaining
cycle time. However, on rare occasions an overestimation
can happen (See Figure 12). This flow may have unusual
values for features (e.g., current decay level, event types,
vehicle, etc.) that are rare or not well represented in the
training data. The model may not have learned to generalize
well for such rare combinations, leading to overestimation.

Fig. 12. Rare overestimated flow.

7.5.2 Rare Highly Underestimation at Disruption Testing.
During testing on disruption data, results occasionally re-
veal significant underestimation errors, as an example is
illustrated in Figure 13. This pattern primarily stems from
the model’s lack of exposure to disrupted vehicle composi-
tions during training, as previously discussed.

However, when a further detailed analysis of the trends of
product decay is performed, product quality can be closely
connected to the characteristics of the model in its predic-
tion nature. In figure 14 shows an abnormal value drop
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Fig. 13. Rare highly underestimated flow from disruption data.

from one event to another, which likely contributes to the
observed almost 400-second underestimation in remaining
time prediction. This abrupt decay pattern contrasts with
the gradually decreasing decay progression over multiple
events visible in normal operational flows (Figure 15). It is
also important to note that flows where the product decay
drops below 60 after concluding its journey over the stations
are discarded.

Fig. 14. Product decay decline
(from 100 to 40) over events in
the same flow as Figure 14.

Fig. 15. Normal product de-
cay decline (from 100 to 90)
over events in another flow.

8 DISCUSSION
This study set out to evaluate the robustness of predictive
processmonitoringmodels under process disruptions. LSTM
networks enabled the analysis of predictive performance in
dynamic settings using simulated event logs.

8.1 Key Findings
The main contribution lies in demonstrating that LSTM
models can maintain reasonable predictive accuracy even
when applied to unseen and disrupted process configura-
tions. Trained on stable scenarios, the model generalized to
altered vehicle compositions, showing trend-aligned predic-
tions despite increased error margins. This finding under-
scores the potential for predictive models to provide opera-
tional foresight even in the absence of disruption-specific
training data.

8.2 Limitations
Two main limitations emerged. First, the model exhibited
a consistent tendency to underestimate longer remaining
times, likely due to a training distribution skewed toward
shorter durations and the use of symmetric loss functions

(MAE/MSE). These functions are known to bias predictions
to the mean, particularly in the presence of rare or extreme
values [15]. Second, the study tested only a single type of
disruption (vehicle removal), limiting the scope of general-
izability. Other forms of variability, such as speed changes
or routing faults, remain unexplored. Lastly, as the data is
simulation-based, external validity is constrained, though
the simulation design closely mirrors real logistics environ-
ments.

8.3 Implications for Decision Support
The results hold practical relevance for predictive decision-
making in logistics and manufacturing. By embedding pre-
dictive outputs into operational workflows, organizations
can detect the early onset of disruptions, assess alternative
scenarios, and make proactive adjustments. For instance,
predictive cycle times under vehicle shortages can inform
scheduling strategies or resource reallocation.

Moreover, such models can serve as the basis for what-if
simulations, enabling the anticipation of disruption effects
before they materialize, supporting both planning and re-
silience in volatile environments.

8.4 Future Work
Future research should expand the range of tested disrup-
tions, integrate real-world event logs, and explore adaptive
models capable of learning from concept drift. Incorporat-
ing weighted [15] or asymmetric loss functions may further
improve predictions for rare events. A promising direction
involves embedding predictive outputs into event logs for
downstream tasks such as process enhancement and confor-
mance checking—realizing the vision of prediction-as-input
in the process mining lifecycle.

9 CONCLUSION
This study demonstrates that machine learning models, par-
ticularly LSTM networks, can effectively predict remaining
cycle times from event logs, even under previously unseen
disruptions in operational environments. While accuracy
diminished under shift conditions, models retain sufficient
predictive power to potentially support early warning and
proactive decision making. Prediction errors increase when
test data differs from the training data, especially for rare
or high remaining time values.
By shifting the focus from static to dynamic process set-

tings, this work contributes to a more resilient and adaptive
vision of PPM. Limitations related to scope and data realism
provide opportunities for future research, including more
varied types of disruption, real-world deployments, and
integration into process-aware decision support systems.
Ultimately, this work underscores the potential of predictive
analytics to extend the value of event logs beyond monitor-
ing, toward intelligent, forward-looking process control in
complex environments.

A APPENDIX: USE OF AI TOOLS
Throughout this paper, artificial intelligence tools were uti-
lized to improve clarity and flow, while ensuring that the
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originality and integrity of the ideas remained intact. The
entiremanuscript was carefully revised and refined by Zsom-
bor Ivanyi, who takes complete responsibility for the final
content.

B APPENDIX: ADDITIONAL PLOTS

Fig. 16. Results of remaining cycle time predictions at 3 specific
flows, testing on similar vehicle composition as training data.

Fig. 17. Results of remaining cycle time predictions at 3 specific
flows, testing on disruption files where vehicle composition is dif-
ferent than training data.
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