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Abstract—In cybersecurity, Common Vulnerabilities and Ex-
posures (CVE) and Common Weakness Enumeration (CWE)
are the industry standard for registering a vulnerability and
categorizing a weakness, respectively. About 30% of CVEs are
not labeled with a CWE and approximately 50% of that subset
is unlabeled due to poor descriptions. A significant portion of
CVEs are not labeled with all their relevant CWEs. The existing
standards for CVE descriptions are generally not adhered,
causing issues for attempts to automate their CWE labeling.
A binary classifier could potentially flag CVE entries with
insufficient description information to properly label it to a CWE.
This work proposes exploring different binary classifiers utilizing
Natural Language Processing (NLP) models in order to assess the
viability of an automated classifier for determining the labeling
sufficiency of a vulnerability description given the available CVE
datasets. BERT and Random Forest, two vastly different models,
based on transformers and decision trees respectively, provided
similarly promising results, between 83% and 87% accuracy in
their best performing models.

Index Terms—CVE, CWE, NLP, BERT, binary classification,
random forest

I. INTRODUCTION

Common Vulnerabilities and Exposures, or CVEs, are
unique identifiers for publicly disclosed cybersecurity vulner-
abilities [1]. These identifiers are stored in conjunction with
a relevant description, provided by the registering party. The
descriptions can be of vastly varying quality and completeness,
as the existing standards are not fully adhered to [2]. This
system has been in use since 1999 and has been the industry
standard ever since, enabling fully new services such as the
NIST’s U.S. National Vulnerability Database [3].

Common Weakness Enumeration, or CWE, is an agglom-
eration of common weakness types, in terms of both software
and hardware, that can lead to exploitable vulnerabilities [4].
The MITRE Corporation, the same entity behind the inception
of CVEs in 1999, is responsible for creating the CWE list in
2006. All CVEs can be labeled with a corresponding CWE to
group them by the type of weakness to be exposed [5]. De-
spite the different coding practices of developers from varied
backgrounds, the CWE List enables them to share the same
type of common weaknesses by offering a standardized format.
In other words, labeling a CVE with an accurate CWE can
aid security researchers in eliminating or mitigating security
weaknesses [4]. Multiple CWEs can be given to a CVE,
depending on the category, as some CWE are higher level,

whilst others are more specific. Alternatively, a vulnerability
can exploit more than one weakness, also leading to multiple
CWEs labels.

A CVE does not require to be labeled manually by the
author with an adequate CWE during its registration; only a
non-standardized description of the CVE is required. Consid-
ering the added value by having a CWE category attached to a
CVE, there has been extensive research attempting to automate
the CVE to CWE labeling process. There is a plethora of
approaches. However, a common point is that all of them
rely on the CVE description as the main data input for their
algorithm of choice [2] [6] [7] [8] [9] [10] [11]. Depending on
the methodologies, dataset, and granularity, the accuracy can
range anywhere between 70%, for implementations taking
into account 130 CWE classes (MITRE View-1003) [10], to
97%, for implementations with 124 CWE classes distributed
across a three layer hierarchy. [6].

The datasets available are polluted and contain CVE entries
with CWE labels that should be, based on the descriptions
available, unlabeled. Further, the datasets can suppose addi-
tional challenges given the nature of the descriptions, with
overly specific or technical terms.

Given this context, it can be surmised that the industry could
benefit from having better, in other words, more extensive and
relevant, descriptions attached to CVEs in order to improve the
accuracy of the automated systems linking them to relevant
CWEs, ultimately allowing for improved security research.
Some entries provide little useful information by providing
generic descriptions, whilst others provides clear technical
insights [2]. Both are exemplified in Table I.

The quality of descriptions in CVE datasets could be
improved via two methods. First, the registerer of a new
CVE entry could be given instant feedback on the lack of
their description to avoid having to retroactively fix it later.
Second, filtering large dataset of CVE entries to remove the
ones deemed to have insufficient descriptions. This could
enhance the accuracy of the aforementioned automated CWE
labeling algorithms. Binary classifiers using natural language
processing techniques could be used to this end [12] [13] [14].

In this research, five binary classifiers are implemented,
extensively trained, and tested to determine whether a CVE’s
description is sufficient to be labeled with CWE categories.



TABLE I: CVE examples

Description

CVE
CVE-2015-9067

Quality
Inadequate,

In all Qualcomm products with

Android releases from CAF using | no CWE
the Linux kernel, a potential com- | labels.
piler optimization of memset() is
addressed.

CVE-2017-17067 Splunk Web in Splunk Enterprise | Adequate,
7.0.x before 7.0.0.1, 6.6.x before | contains
6.6.3.2, 6.5.x before 6.5.6, 6.4.x | CWE label.

before 6.4.9, and 6.3.x before
6.3.12, when the SAML authType
is enabled, mishandles SAML,
which allows remote attackers to
bypass intended access restrictions
or conduct impersonation attacks.

II. PROBLEM STATEMENT

There has been ample research done on both NLP-based bi-
nary classifiers, as well as, automating CVE to CWE labeling,
independently. However, there is little to no research on the
use of one to enhance the other, meaning the use of binary
classifiers in the field of CVE labeling. This paper will delve
into different NLP based methods for binary classification and
attempt to find the most suitable implementation for the needs
of the research questions stated below.

A. Research Question

How reliably can a binary classifier determine whether a
CVE description contains enough information to be mapped
to an accurate CWE category?

The following questions can be used to help answer the
main Research Question:

1) Sub-RQI: How do different Machine Learning models
perform on the CVE datasets?

2) Sub-RQ2: To what extent is the available CVE dataset
suitable to machine learning tasks?

3) Sub-RQ3: How well can a model perform on synthetic
samples unrelated to cybersecurity?

III. RELATED WORK

The search for related works has been conducted in two
rounds. The first round consisted of exploring research con-
ducted on binary classifiers that used NLP methods, in order to
gauge where they stand in terms of complexity, explainability,
and accuracy. The second round delved into recent literature
on attempts to automate CVE labeling with CWEs.

A. Classifiers

There is a plethora of classification methods that offer
different results. Udin et al. [13] showed promising numbers,
namely a 94% accuracy, in their 2022 paper when using the
random forest’ method for binary classification on a drug
review dataset. This method has a moderate complexity as
well as interpretability. XGBoost was selected as a more
sophisticated decision tree based model that could theoretically
offer higher accuracy due to boosting and regularization.

Two bi-directional transformer based models were also
chosen, " BERT’ and ’XLNet’, the latter of which offers a 96%

accuracy, as stated by Arabadzhieva et al. [12] in a 2022 paper,
assessing a dataset of 50,000 reviews in English. Furthermore,
’CNN’ was also chosen based on the example by Bao et
al, where they achieved a 88.53% accuracy when classifying
medical literature [15].

The aforementioned methods were selected due to all of
them having a high reported or expected accuracy level, whilst
different in the other relevant aspects, namely complexity and
computation, as well as technical implementation.

B. CVE to CWE labeling

Most of the works explored on the subject of labeling
automation outlined how CVE descriptions were a potential
limiting factor [11] [9] [10] [6]. According to Oostveen’s 2024
paper [9], CVE descriptions are frequently incomplete, leading
to labeling inconsistencies, by, for instance, assigning a single
CWE to a vulnerability to which multiple CWE categories
applied. In their 2024 paper, Sun et al. [11] argued that the
descriptions could be short and full of technical jargon, making
algorithms more prone to mislabeling them due to focus on
irrelevant tokens. In the same year, Kota et al. [10] plainly state
that many CVEs remain unlabeled due to the lack of detail in
their descriptions to assign them a CWE label with certainty.
Finally, Das et al. [6] identified in their 2021 paper that the
gap in the CVE descriptions and CWE definitions could make
fine-grained CWE categories harder to get assigned to. What
all these papers have in common is the they point at the CVE
descriptions as a shortcoming to be overcome.

Notably, no research has been conducted on applying the
previously stated classifiers on CVE descriptions, making it a
potential area of interest for exploration.

IV. METHODOLOGY

Considering how this research involves exploring aspects of
accuracy with binary classification methods, experimentation
with numerous implementations is be required. First, Random
Forest, XGBoost, BERT, CNN and XLNet will be explored
with the CVE dataset. Exploring plurality of options allows
for an educated answer to be developed for the main research
question.

A. Data selection and processing

A CVE dataset was obtained directly from the MITRE
organization, organized in json files. There is a file for each
year from 1999 to 2024, containing all the CVEs registered in
that year. Each entry contains a CVE 1id, its description, and
its respective CWE labels. For entries without a known CWE
tag, a No-Info label is attached in the field.

The dataset is rather polluted. Some entries contain the
No-Info label in the CWE column, whilst also offering
an actual CWE tag, which is conflicting. In these cases, it
is assumed that the description is not sufficiently rich to
assign a CWE tag, but a relevant entity with more background
information assigned the corresponding tag. For the purposes
of this research, these conflicting entries were treated the same
as all the other No-Info entries. An example of both a



regular No—Info entry mentioned prior, as well as this edge

case can be seen in Table II.

TABLE II: Sample JSON file CVE entry

CVE ID

Description

CWE

CVE-2003-
0789

mod_cgid in Apache before
2.0.48, when using a threaded

NVD-CWE-noinfo

MPM, does not properly handle
CGI redirect paths, which could
cause Apache to send the output
of a CGI program to the wrong
client.

CVE-2003-
1422

NVD-CWE-noinfo;
CWE-16

Multiple unspecified vulnerabil-
ities in the installer for SYS-
LINUX 2.01, when running se-
tuid root, allow local users to
gain privileges via unknown vec-
tors.

For the sake of having a standardized dataset for training
different models, all the data files were unified into one large
csv file. Consequently, all the CWE labels were encoded
into either a 0 for No—Info or 1 for entries with CWE
tags. The file was, thereafter, processed to remove duplicate
entries. Approximately 9000 entries were removed, about 3000
No-Info entries, and about 6000 labeled ones.

At this stage, the resulting csv had approximately 220000
labeled entries, and about 28000 No—-Info entries, meaning
only 11% of entries were unlabeled. Considering this heavy
imbalance, two new subsets were made. Both subsets contain
the full number of No-Info entries and randomly select a
matching amount of labeled entries, as well as a x2 ratio of
labeled entries. Ultimately, 3 datasets were chosen to train
models with - 1:1 ratio subset, 1:2 ratio subset, and the full
dataset. Refer to Table III for more clarification.

TABLE III: Datasets

Set Entries Ratio
Subset 1 53992 1:1
Subset 2 80988 1:2
Full dataset 248824 1:9.2

In order to make the descriptions more uniform for the
machine learning tasks at hand, the descriptions were prepro-
cessed with basic steps. These steps include: removing markup
(HTML tags), links, non-standard characters, and whitespace,
as well as lower-casing the entire text. In the manual testing
scripts for the models, which will be explained later on, the
same text preprocessing steps are used, to ensure uniformity
across results.

Lastly, depending on the model, which is clarified in their
respective sections, the dataset is further split into subsets for
training and testing, in a 80/20 ratio, for most models except
CNN and BERT, which used a training, testing, and validation
sets in a 70/15/15 ratio.

B. Model selection

The objective of this research is to use machine learning
for natural language processing. Textual descriptions have to

be processed to make inferences. In order to get a deeper
understanding of what might suit the given dataset, a variety
of models was chosen, namely XGBoost, XLNet, BERT, CNN,
and Random Forest.

Random forest and XGBoost were chosen as the more
basic decision tree-based options, XLNet and BERT as the
bidirectional transformer-based models, and lastly CNN as the
in between, being more sophisticated at finding patterns though
its neural network than the decision tree-based models, but
lighter than transformers.

C. Model implementation

All models train separately on each of the established
datasets. Each training run performs a grid search trying to
optimize parameters relevant to that specific model, before
selecting and saving the best one. The trained model is
exported for future testing and all relevant metadata such as
testing accuracy is saved for reference and comparison. Except
for BERT and CNN, an 80/20 train/test split is used.

1) Random Forest: The Scikit—-learn python modules
were used to implement Random Forest. A TF—-IDF vectorizer
is used to extract features from the text, with a hard limit of
2000 features. For the grid search, the number of estimators,
as in, the number of trees in the forest, could be either 100
or 200. The maximum depth each tree could go was set to
either 10 or 20. The weight class could be set to None or
balanced, which can make up for unbalanced datasets. Each
run with a dataset ended up saving the best combination of
each parameter to be saved based on the best accuracy offered.

2) XGBoost: Scikit-learn modules were used for
splitting the dataset and grid search. XGBoost classifier was
used for the training and joblib for saving the model and
vectorizer. For consistency, 2000 word TF-IDF word limit
was used too. To expand on Random Forest, not only the
estimators (100 or 200) and the depth were tuned (4, 6, or 8),
but also the learning rate (0.01 or 0.1) and the subsample (0.8
or 1.0).

3) XLNet: The XLNet implementation from the
transformers library was used, in conjunction with
Scikit—-learn and Torch for data and model handling.
All descriptions are tokenized using the pretrained XLNet
tokenizer x1lnet-base-cased. Parameters tuned for are
learning rate (2e-5 or 3e-5) and patch size (16 or 32). Given
the computational demand of the model and the relatively
large scale of the dataset, the grid search is limited to few
parameters.

4) BERT: Once more, transformers, for BERT the
tokenizer, Scikit—learn, for data handling, and Torch,
for deep learning. The data split is done differently here. The
data is split in a training set (0.7), a test set (0.15), and a
validation set (0.15). The parameters that the grid search is
optimizing are learning rate (2e-5, 3e-5, or 5e-5) and batch
size (8, 16, or 32).

D. Model training and evaluation

The computational demand of the models being trained in
conjunction with the datasets is large, thus, XGBoost, XLNet,



and BERT, the most computationally heavy ones, were trained
on the HPC cluster of the University of Twente. The Random
Forest and CNN models were trained on a base Macbook Pro
14, equipped with the M1 Pro chipset.

To have a second layer of verification, a batch test is
performed on the models with a 50 entry file generated by
ChatGPT with the instruction to make the entries as random
as possible, meaning they are not cybersercurity related. This
provides insight into how the model would perform in real
world cases where the input given can be unpredictable.
Further, it can help give some insight into wether the model
learned the wrong rules or simply memorized the entries.
Henceforth, the entries generated by ChatGPT will be referred
to as the synthetic entries.

For a more visual step by step of the Methodology, refer
to Figure 5 in the Appendix. The data-related, blue steps
apply universally, where as the green, model-related steps are
repeated for each different model.

V. RESULTS
Refer to Table III for clarification on the subsets.

A. Random Forest

Random forest was computationally light, relative to the
other models. Figure 1 illustrates the findings. It provided
acceptable levels of accuracy, over 80% across all three
datasets. It handled the synthetic entries incredible well for
both of the subsets, but abysmally for the full dataset.

The best result was seen in Subset2, with a 83% accuracy
with the CVE dataset, and 98% with the synthetic one. The
parameters that generated the best model with this subset were:
200 estimators, max depth of 20, and balanced class weight
enabled.
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Fig. 1: Random Forest Model Performance

B. XGBoost

XGBoost was computationally more intense than Random
Forest, but still light for the cluster. Overall, the results for this
model are less than ideal, as seen in Figure 2. The accuracy
however around 60% for both the subsets and only breaches
80% with the full set. However, the model has been incapable

of handling the synthetic set, mislabeling it in its entirety.
Within that context, the best model was the one generated by
the full dataset, with 100 estimators, max depth of 4, a learning
rate of 0.1, and a sub-sample of 0.8.
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Fig. 2: XGBoost Model Performance
C. XLNet

Figure 3 shows the results of the XLNet models. All three
models are rather accurate, ranging between 87% and 94%,
but in spite the high accuracy, the performance with the
synthetic dataset shows a decreasing trend as the training
datasets increase. The best XLNet model is the one generated
by Subsetl, with an accuracy of 87% on the CVE set and 50%
on the synthetic set. The best parameters for this model were
learning rate 3e-5 and a batch size of 32.
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Fig. 3: XLNet Model Performance

D. BERT

The BERT models were the most computationally intense
and took even the cluster some time to process. They provided
high accuracy levels across all three models, as seen in
Figure 3. The synthetic dataset proved to be a challenge for
the model trained on the full dataset, making its 94% accuracy
dubious. The model outputted by Subset2 is the best one, with
an accuracy of 87% on CVE entries and 92% on synthetic



ones. The best parameters for Subset2 were a learning rate of
2e-5 and batch size of 16.
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Fig. 4: BERT Model Performance

VI. DISCUSSION

Even though it may not be immediately apparent, when
making a decision on which models perform better in the
context of this paper, the synthetic entry test is relevant to
assess how the model reached its claimed accuracy percentage.
To illustrate this point, refer back to the contrast between
the accuracy of the trained models on the full dataset and its
performance on the synthetic dataset. The full dataset provided
the highest accuracy on CVE testing, whilst the offering the
lowest in the synthetic tests compared to the models trained
with the two subsets.

This peculiarity can be attributed to the fact that the dataset
distribution is so skewed that even if a model always predicting
1 would be correct 89% of the time. Due to this, it was
essential to test with reduced sets too. The original dataset
was sufficiently large that even a reduced subset was more
than adequate to train a model.

A. Model Evaluation: Inadequate models

XGBoost can be categorically stated as the worse per-
forming model of the ones trained and tested, as the results
suggest that the model mostly attempted make very biased
rules towards the 1 classification, making it unusable in real
world scenarios. Its extremely high accuracy in in the full
model is misleading.

XLNet, given provided high accuracy and low, but not
totally unredeemable synthetic testing accuracy. Even though
this contrast proves it to be unreliable for the use case of binary
CVE description classification, it could imply that the model
itself could be suitable to this application given a different
approach, with either data preprocessing or parameter tuning.

Lastly, even though CNN was originally drafted as a model
to be explored, after testing one configuration with Subset2
which outputted an accuracy of 85.1%, it was discarded due
to the vocabulary limitation. The way the used implementation
operates is through making a vocabulary of the entire training,

testing and validation sets before proceeding with the model
training. This means that any future inference with this model
has to be used with the vocabulary used to train the model,
making it rather limiting in certain use cases.

B. Model Evaluation: Suitable models

Random Forest and BERT both performed remarkably well
with the CVE dataset. In spite their vast differences in ap-
proach, implementation, and computation, they both offered
similar reliability. BERT offered a marginally higher accuracy
with CVE sets, whilst Random Forest was better at seething
through the synthetic dataset.

Based on these tests, both can be considered reliable enough
to assess whether a CVE description contains enough infor-
mation to be labeled, whilst also avoiding falling for random
strings - types of sentences it has not been trained on.

VII. CONCLUSION

CVE descriptions do not always contains sufficient infor-
mation to be labeled with the appropriate CWE categories,
but it is not currently possible to determine that automatically
without expert input. From the findings in this paper, it is
safe to state that CVE descriptions are suitable for binary
classification through machine learning models. Not all models
seem to be a good match, as seen with XLNet and XGBoost,
but there are other that offer promising results, such as
Random Forest and BERT, both in the range of 83% - 87%
in terms of accuracy, whilst avoiding overfitting and learning
appropriate rules that avoid being spoofed with by generic
input.

In conclusion, natural language processing binary classifi-
cation models could stand to aid in the assessment of CVE
descriptions in order to facilitate further automation with the
CVE datasets, such as automatic CWE labeling.

VIII. FUTURE WORK

This work could have been enhanced by seeking input
from a professional in the industry registering CVEs and their
respective descriptions. They could offer insights into how
the descriptions are composed and later assessed manually.
Meaningful insights for the model design and data processing
could have been drawn from it. Additionally, applying a
training-testing-validation data splits to all explored models
could make the results more comparable. Only some models
were explored with this split in this research due to time
constraints.

Furthermore, it a next step could be following up on some
applications for being able to categorize CVE as labelable or
not. One instance of this could be in cleaning the pre-existing
but polluted CVE datasets. Another example could be offering
feedback on why a certain CVE description is either adequate
or insufficient.
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