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ABSTRACT

Background: Landslides are a persistent threat to Colombia’s Andean road network, causing frequent closures,
damage, and accidents. Traditional landslide early warning approaches in Colombia have been limited by fragmented
inventories and static rainfall thresholds that do not account for spatial or temporal variability. This research addresses
these gaps by developing a dynamic landslide modeling approach for early warnings on roads. We first evaluated
and unified eight different landslide inventories from Colombian agencies (e.g., SIMMA, INVIAS, regional datasets)
to overcome data incompleteness and inconsistencies. We then implemented a spatio-temporal predictive model to
forecast landslide occurrence, explicitly incorporating rainfall data and environmental factors. The study focuses on
enabling operational early warnings; hence, we emphasize model validation, threshold setting for alerts, and practical
visualization of results.

Methods: We conducted a comprehensive audit of existing landslide inventories, assessing their attribute quality
and completeness using a kernel-density approach for spatial coverage, and a new index to assess temporal cover-
age, Adjusted Temporal Units Completeness Score (A-TUCS). After harmonizing inventories into a single database
(17 824 landslides, 2000-2024), we developed a Generalized Additive Model (GAM) to predict daily landslide prob-
abilities per slope unit. Predictor variables included dynamic rainfall indices (antecedent 15-23 day accumulation
and short-term 2-4 day triggers derived from CHIRPS satellite data and CHIRPS-GEFS forecasts) and static terrain,
land cover, geology, and road characteristics. We performed extensive model training and validation, utilizing five
cross-validation schemes: random, spatially clustered, monthly, yearly sequential, and inventory-based hold-outs, to
evaluate model robustness under different dependency assumptions. A Youden’s J analysis of the Receiver Oper-
ating Characteristic (ROC) curve was used to select an optimal probability threshold for classification of “landslide
likely” days. The chosen threshold was then applied in a real-case back-testing scenario (January 2023 storms) to
simulate early warning alerts. We designed a traffic-light alert mapping (Green/Yellow/Orange/Red) at the road seg-
ment level to convey the model predictions in an operationally meaningful way. All results were interpreted against
recent literature on landslide prediction and early warning to contextualize their significance.

Results: The inventory integration yielded a more complete dataset than any individual source, though inventory
completeness varies regionally. The spatial completeness analysis showed that certain provinces (Antioquia, Norte
de Santander) have landslide densities >1 event/km² (hotspots of reporting), whereas others remain under-reported.
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The unified inventory’s temporal completeness wasmoderate (A-TUCS ≈0.86 after year 2000 filter), suggesting some
temporal clustering and missing events in quieter periods. The GAM model achieved good predictive performance:
average AUROC ≈0.75 across realistic validation scenarios, indicating it can successfully discriminate landslide days
from non-landslide days. Calibration was also acceptable (Brier score 0.15 in spatial CV), meaning the predicted
probabilities are reasonably in line with observed frequencies. Notably, model performance under spatially and tem-
porally partitioned tests only modestly declined compared to random shuffles, reinforcing confidence in the model’s
generalizability. Dynamic predictors (rainfall and climate indices) contributed 33% of the model, confirming their criti-
cal role; static factors (especially slope steepness and road infrastructure type) also had significant influence, aligning
with known hazard determinants. We identified optimal rainfall window lengths of 15days antecedent plus 2 days
trigger for CHIRPS, and 23 days + 4 days for CHIRPS–GEFS allow us to forecast - capturing both long-term soil
saturation and short intense rainfall bursts as triggers. Importantly, using the CHIRPS-GEFS 5-day rainfall forecasts,
the model maintained nearly the same skill as with historical rainfall (forecast AUROC 0.77 vs. 0.78 with observed
data), demonstrating the model’s suitability for real-time forecasting. The Youden-optimized probability threshold was
T ∗ = 0.30 (95% CI: 0.27-0.32), maximizing the sum of sensitivity and specificity. Applying this threshold in the full
inventory gave a confusion matrix with True Positives = 3 917, False Positives = 4 016, False Negatives =2 313, True
Negatives = 13 483, corresponding to a TSS of 0.533. In a real-case month (Jan 2023), this threshold correctly iden-
tified 18 of 21 reported landslides (Recall 85.7%) at slope-unit level, but also issued 62,700 false-positive unit alerts
(Precision 0.03%). By aggregating these into road-segment alerts, we reduced actionable alerts to a manageable
number. The traffic-light road maps clearly showed authorities when and where the highest risks were concentrated;
for Jan 13-15, multiple contiguous segments were Red, coinciding with known road blockages, whereas after Jan 20
the network mostly reverted to Green, matching the all-clear. This suggests that, despite the large false-positive vol-
ume at SU level, the system can prioritize effectively and would have provided timely warnings for all major landslide
incidents that month. Additionally, a back-analysis of false alarms indicated they were distributed widely rather than
repetitively affecting the same site, implying the model’s high sensitivity did not overly “cry wolf” at specific locations
but rather reflected broad hazard conditions.

Conclusions: We successfully developed a dynamic landslide early warning modeling approach that integrates
multi-source data and generates practical alerts for road management in Colombia. The research demonstrates that
combining landslide susceptibility factors with real-time rainfall forecasts can significantly improve early warnings
compared to static threshold methods. Key contributions include: (1) a unified national landslide inventory with
quantified completeness, highlighting data improvements needed; (2) a validated spatio-temporal predictive model
(AUROC 0.75, TSS 0.53) that runs on daily updated weather forecasts; and (3) an operational alert framework
(traffic-light system) that translates model outputs into clear guidance for decision-makers. The model can reliably
identify periods of high landslide likelihood on specific road segments, enabling preventive road closures or other
mitigation to be undertaken. The study also underscores the importance of cross-validation strategies that respect

ii



spatial/temporal structure in landslidemodeling, providingmore realistic estimates of performance for operational use.
Recommendations are made for INVIAS and IDEAM to pilot this system, including regular threshold recalibration
and data sharing protocols. Limitations such as oversimplified spatial independence assumptions and data gaps
are acknowledged, with suggestions for future research to address them. In conclusion, this thesis advances the
state-of-the-art in landslide early warning by moving from static regional thresholds to a dynamic, probabilistic model
tailored to Colombia’s roads. Implementing this approach can enhance disaster preparedness and resilience of critical
infrastructure in the face of climatic extremes. It exemplifies how scientific modeling, when coupled with operational
considerations, can contribute directly to risk reduction in data-scarce, hazard-prone regions.
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1 INTRODUCTION

Climatological variables are highly dynamic and have the potential to trigger a variety of natural hazards (IPCC, 2012,
2023; WMO, 2024), with floods, droughts, landslides, and wildfires being just some of the most common. Rainfall is
a particularly critical variable in multiple Earth systems, shaping the Earth’s surface and acting as a primary trigger
for landslides. Rainfall-induced landslides are a significant global hazard, causing substantial loss of life (Froude &
Petley, 2018; Garcia-Delgado et al., 2022; Gómez et al., 2023b; Pollock &Wartman, 2020), economic losses (Gariano
& Guzzetti, 2016; Hallegatte et al., 2017), and disruption of essential infrastructure (Donnini et al., 2017; Winter et al.,
2016). The increasing frequency and intensity of extreme weather events are expected to amplify the occurrence of
landslides, particularly in tropical regions (Amarasinghe et al., 2024; Gariano & Guzzetti, 2016; IPCC, 2023).

Due to its high susceptibility to rainfall-induced landslides, Colombia serves as an interesting case study (Garcia-
Delgado et al., 2022; Gómez et al., 2023a).The Andean region of the country hosts over 75% of the country’s road
infrastructure and economic activities. This region is also characterized by steep slopes, deep soil profiles, complex
geology, and intense rainfall events contributing to frequent landsliding. Landslides have been a significant cause
of fatalities in Colombia. According to the Unified Global Landslide Database (UGLD), Colombia recorded 10 393
landslide events between 1903 and 2020, resulting in 35 686 deaths (Gómez et al., 2023b). This has given Colombia
the highest number of landslides and fatalities globally during this period (Garcia-Delgado et al., 2022; Gómez et
al., 2023b). It is essential to consider that a large portion of these fatalities resulted from a single event, the 1985
Nevado del Ruiz volcanic eruption, which triggered a massive lahar, leading to over 22 000 deaths (Herd, 1986).
Even excluding this event, the fatalities are still over 10 000, highlighting landslides as one of the deadliest natural
hazards in the country.

Landslides have also affected Colombia’s infrastructure, specifically its extensive road network. The road net-
work is the backbone of the country’s logistics and transportation system, handling approximately 80% of Colombia’s
internal cargo and passenger movement (Ministerio de Transporte, 2023). In 2022, this network facilitated the trans-
port of 263 million tons of cargo and over 100 million passengers (Ministerio de Transporte, 2023). The road network
is essential for connecting remote communities, facilitating major trade routes, and providing access to vital services.
However, landslides frequently disrupt this critical infrastructure, leading to road closures and increased transporta-
tion costs. According to the Sistema de Información de Movimientos en Masa (SIMMA; https://simma.sgc.gov.co/)
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managed by the Colombian Geological Survey (SGC), around 9 000 landslide events have impacted the roads his-
torically (1950–present), making it the most common reported impact as shown in Figure 1.1 reflecting the high
exposure of Colombia’s road network. The increased cargo volume and passengers amplify the economic impact of
such disruptions, underscoring the urgent need for effective landslide risk management strategies focusing on the
road network.

(a) Damage types in the SIMMA landslide catalog.

(b) Damage types in the SIMMA landslide inventory.

Figure 1.1: Distribution of landslide-induced damage types recorded by SIMMA in Colombia: (a)
the national caTheog; (b) the national inventory. Source: Geological Service of Colombia (SIMMA),
https://simma.sgc.gov.co/.
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Colombia lacks a practical operational Landslide Early Warning Systems (LEWS) that provide information for po-
tentially exposed segments of the road network. The Institute of Hydrology, Meteorology, and Environmental Studies
(Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM) forecasts and reports on an administrative
level alert levels for landslides only using expected rainfall, but the lack of granularity makes it challenging to make
informed decisions with this information. The absence of a detailed LEWS hampers the ability of authorities to antici-
pate landslide events, allocate resources efficiently, and implement preventive measures. LEWS can provide precise
and timely warnings, mitigating the impacts and disruptions caused by landslides (Chae et al., 2017; Guzzetti et al.,
2020). The necessity of Early Warning Systems (EWS) is emphasized by the United Nations initiative ”Early Warn-
ings for All” (EW4All), looking to ensure that multi-hazard EWS protect everyone on Earth by 2027 (WMO, 2022).
A crucial step to advancing toward an operational LEWS is developing reliable spatio-temporal landslide models for
predicting when and where landslides will likely occur (Fathani et al., 2016; Guzzetti et al., 2020; Rossi et al., 2019).
LEWS saves lives by facilitating timely decision-making and reducing economic impacts by preventing or minimizing
infrastructure damage and associated costs, aligning with the EW4All initiative’s emphasis on proactive disaster pre-
paredness.

This thesis proposes a comprehensive spatio-temporal landslide predictive framework designed to forecast
where and when landslides are most likely to occur within a 24-h horizon. Building on recent advances in dynamic
landslide modeling with the generalized additive model (GAM) framework allows us to maintain the high interpretabil-
ity necessary for a transparent decision-making support (Kruschel et al., 2025). The workflow couples ensemble
precipitation forecasts from CHIRPS-GEFS with National landslide inventories, multi-source terrain and lithological
data, and road-network attributes. The resulting model prototype for landslide early warning road applications is
engineered for real-time ingestion, providing actionable lead time for road management and emergency response
agencies. By aligning with the United Nations’ EW4All initiative, the modular and open-source architecture offers a
transferable pathway for other landslide-prone regions, contributing to the global goal of universal multi-hazard early-
warning coverage.

1.1 Landslide Early Warning Systems

A LEWS is a multi-disciplinary and complex architecture that moves gradually—from risk knowledge to real-time
action—through mutually dependent phases (Piciullo et al., 2018; Thirugnanam et al., 2020) that we adapt to these
four phases, as observed in Figure 1.2:

• Phase 1 — Setting defines why, where, and for whom the system is built. Decisions on objectives, spatial
coverage, institutional responsibilities, and data-governance rules determine everything that follows; missteps
here propagate through the entire system.

• Phase 2 — Modeling transforms raw observations into quantitative forecasts. The accuracy, lead time, and
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interpretability of these forecasts hinge on the completeness of landslide inventories and on harmonized geo-
environmental datasets.

• Phases 3 & 4 —Warning and Response operationalize the science and the numbers where thresholds are
calibrated, alert levels agreed, and communication protocols tested with the end-users who must act on them
(Liu et al., 2023).

This work concentrates on the Setting and Modeling phases, because (i) they are prerequisites for any credible alert
service (Rossi et al., 2019; Van Westen et al., 2008), and (ii) they remain the main gap for Colombia’s national road
network. Strategies for alert dissemination and emergency coordination are also crucial, but those remain for future
work with the National agencies IDEAM (Meteorology and climate) and INVIAS (Road management). The correct
decisions in the first phase are the foundation for the system’s success and deserve deeper discussion.

The development of accurate predictive models (Phase 2) critically depends on the availability of comprehensive
and reliable data (Phase 1). Geo-environmental data and landslide inventories are the foundational inputs of any
model, and their quality is crucial for any model’s success. The landslide inventories provide essential data on
the location, timing, type, and triggers of past landslides, forming the empirical basis for understanding landslide
processes and modeling future occurrences (Herrera et al., 2018; Tanyaş et al., 2017), making it one of the most
critical inputs for any models at the core of the LEWS.

1.1.1 The Data problem: Goals, Completeness & Harmonization

Despite their importance, compiling landslide inventories is challenging. Variations in data sources, mapping meth-
ods, scales, and classification systems make it challenging to integrate different datasets (Galli et al., 2008; Garcia-
Delgado et al., 2022; Gómez et al., 2023b; Guzzetti et al., 2012; Herrera et al., 2018; Hervás & Bobrowsky, 2009;
Tanyaş et al., 2017; Van Den Eeckhaut & Hervás, 2012; Van Westen et al., 2008). Recent advances in remote sens-
ing technologies—such as radar, lidar, and high-resolution satellite imagery have significantly improved landslide
detection and mapping capabilities (Casagli et al., 2023). Then again, standardizing and integrating these diverse
datasets into unified inventories requires harmonization efforts and the adoption of consistent methodologies (Galli
et al., 2008; Tanyaş et al., 2017; Van Den Eeckhaut & Hervás, 2012).

Assessing the completeness and quality of landslide inventories is also an important task. Incomplete or biased
datasets can lead to inaccuracies in the model outputs, and EWS outcomes (Guzzetti et al., 2012; Malamud et al.,
2004; Tanyas & Lombardo, 2020). This issue is critical in regions like the Andean mountains of Colombia, where
landslide activity is high (Amarasinghe et al., 2024; Sepúlveda & Petley, 2015). Colombia does not have the problem
of landslide collection, but multiple sourcesmake the harmonization process a challenge, and evaluating the inventory
completeness becomes a priority for understanding andmaking decisions on the different EWS stages. As one cannot
expect reliable and unbiased output from LEWS trained on poor landslide data in both quality and completeness.
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Figure 1.2: Conceptual Framework LEWS Source: Adapted from Piciullo et al. (2018) and Thirug-
nanam et al. (2020).

1.1.2 Predicting the unstable: Selecting a modeling approach

Determining landslide probability in space and time is necessary for DRM, leading to the development of various
modeling approaches broadly categorized into physical, heuristic, and data-driven models. Each approach offers
distinct advantages and limitations, influencing their applicability in different contexts.

Physical models simulate the mechanical behavior of slope materials by applying the principles of physics, soil
mechanics, and hydrology. They aim to replicate the actual processes leading to landslides, providing detailed
insights into the factors causing slope failures (Corominas et al., 2013; Zakaria et al., 2022). Examples include
SHALSTAB (Montgomery & Dietrich, 1994), which predicts shallow landslides under saturated conditions; TRIGRS
(Baum et al., 2008); SINMAP (Pack et al., 1998), integrating hydrological factors with stability analysis. While valu-
able for understanding landslide mechanisms, physical models require extensive data on soil properties, hydrology,
and precise topography, making them challenging to apply over large regions but helpful for those areas with limited
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landslide records.
Heuristic models rely on expert knowledge and qualitative assessments to evaluate landslide susceptibility.

These models incorporate local expertise into susceptibility mapping by assigning weights to conditioning factors
based on their perceived importance (Anbalagan, 1992), where techniques like the Analytic Hierarchy Process are
applied in different contexts. Although straightforward and valuable when data is limited, heuristic models are in-
herently subjective, potentially leading to inconsistencies and affecting reproducibility and quantitative rigor (Guzzetti
et al., 1999).

Data-driven models, or statistical and empirical models, have gained prominence due to their ability to handle
large datasets and model complex relationships between landslide occurrences and conditioning factors (Reichen-
bach et al., 2018). These models utilize statistical techniques to identify patterns in historical landslide data, enabling
predictions in other areas. Traditional methods like logistic regression (Ayalew & Yamagishi, 2005) have been widely
used, especially because of their straightforward interpretation. Conversely, machine learning techniques such as
support vector machine (Huang & Zhao, 2018), random forest (Gómez et al., 2023a), and artificial neural networks
(Fang et al., 2023) have traditionally been pursued for the high predictive performance they ensure. Despite their
strengths, the effectiveness of data-driven models depends heavily on the quality and completeness of input data,
highlighting the importance of comprehensive landslide inventories.

Among data-driven approaches, GAM offers flexibility and interpretability in modeling complex, non-linear rela-
tionships between landslide occurrences and predictor factors (Hastie, 2017; Kruschel et al., 2025; Lombardo et al.,
2020). These models extend linear models by incorporating functions of predictors, effectively modeling non-linear
effects without specifying a particular form. They have been successfully applied in landslide susceptibility mapping,
integrating factors like rainfall, topography, and geology (Ahmed et al., 2023; Goetz et al., 2011). Generalized Addi-
tive Mixed Models (GAMMs) further enhance this approach by introducing random effects, accounting for spatial and
temporal dependencies, and improving predictive accuracy (Moreno et al., 2024; Steger et al., 2024).

Building upon advancements in various modeling approaches, it becomes essential to translate the outputs of
landslide models into actionable information for decision-makers. Regardless of whether the models are physical,
heuristic, or data-driven, their results—often presented as hazard maps, susceptibility or probabilistic indices that
must be effectively communicated to stakeholders involved in DRM (Glade & Nadim, 2014; UNISDR, 2015; WMO,
2022).

Building upon advancements in various modeling approaches, it becomes essential to translate the outputs
of landslide models into actionable information for decision-makers. Regardless of whether the models are physi-
cal, heuristic, or data-driven, their results—often delivered as hazard maps, susceptibility surfaces, or probabilistic
indices—must be communicated in a format that end-users in DRM can immediately interpret and employ (Glade &
Nadim, 2014; UNISDR, 2015; WMO, 2022). In practice, this means reducing multi-layered model output to a handful
of operational triggers that can slot straight into early-warning workflows and standard operating procedures. Bridg-
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ing the gap between complex scientific outputs and practical decision-making tools is crucial for implementing timely
interventions and reducing the impact of landslides on vulnerable regions.

Trigger thresholds are a popular tool for closing that gap between scientific outputs and action. Rain-based
thresholds satisfy this role because cumulative depth or intensity-duration (ID) values are already monitored by most
meteorological agencies and are intuitively understood by roadmanagers and civil-protection staff. A rainfall threshold
is simply the precipitation history—usually some combination of event intensity, duration, and antecedent moisture—
that marks a sharp increase in landslide probability (Caine, 1980; Nocentini et al., 2023; Wieczorek & Glade, 2005).
Thresholds can be derived along a continuum that runs from quick empirical fits to historical landslide-rain pairs
(Brunetti et al., 2010; Peruccacci et al., 2012) through deterministic physical simulations to fully probabilistic, region-
specific formulations that embed model uncertainty (Steger et al., 2024). Empirical ID curves remain popular because
they require little data and can be drawn on a single chart, yet they often transfer poorly between climatic zones,
provide no slope-specific detail, and may under-represent small, unreported slides.

1.2 A Local Framework: EWS in Colombia

Colombia has made significant advances in developing operational EWS for DRM, particularly within hydrometeo-
rological contexts. IDEAM is the primary institution responsible for issuing technical reports on environmental alerts
from hydrometeorological events (Domínguez-Calle et al., 2014). IDEAM employs advanced models such as the
Weather Research and Forecasting and Mesoscale Model V5 at various scales. These models utilize initial data
from NOAA’s Global Forecast System to generate climate and weather predictions for different regions in Colombia
(IDEAM, 2008). Predictions encompass short-term, from every 180 seconds up to three days; mid-season from one
to two months, and seasonal on a range of three to five months periods, delivering products such as probabilities
of macroclimatic phenomena (La Niña/El Niño) occurrences, river level information, precipitation forecasts, landslide
risk forecasts, and fire warnings.

Additionally, regional EWS, such as the EWS on The Aburrá Valley (Sistema de Alerta Temprana de Medellín
y el Valle de Aburrá, SIATA) and the EWS in Bogotá from the Distrital Institute of Risk Management and Climate
Change (Instituto Distrital de Gestión de Riesgos y Cambio Climático, IDIGER), play crucial roles in DRM at a more
granular scale. SIATA employs a network of meteorological stations, radar stations, and sensors to monitor weather
conditions and issue warnings for floods and landslides in Medellín and its surrounding areas (SIATA, 2024). IDIGER
integrates efforts from various public entities, private organizations, and community groups to facilitate risk manage-
ment and emergency response within Bogotá, utilizing a comprehensive information system to disseminate alerts
and coordinate actions (Domínguez-Calle et al., 2014). These regional systems are further complemented by local
and community-based EWS, which rely on the participation of local volunteers for monitoring and data collection. No
operational EWS focuses on specific sectors or exposed valuables like roads, buildings, or people; they all have a
general approach without considering potential impacts.
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On the other hand, some recent efforts in Colombia have concentrated on developing comprehensive landslide
inventories to understand these events’ spatial and temporal distribution. However, there is still a lack of centralized
information. Institutional databases like SIMMA, managed by the SGC and the Disaster Inventory System (DesIn-
ventar), have been instrumental in compiling landslide data, including location, date, type, and triggering factors
(Desinventar, 2022; SGC, 2024). Research initiatives by universities and institutions have augmented these in-
ventories. For instance, the Geohazards research group from the Universidad Nacional in Medellín has made an
updated database (https://geohazards.com.co) (Aristizábal et al., 2025), Gómez et al. (2023b) compiled an exten-
sive inventory of 3 536 rainfall-triggered landslides from 1981 to 2019 by integrating data from SIMMA, DesInventar,
and Geohazards group. Garcia-Delgado et al. (2022) compiled an inventory from different sources with only fatal
landslides and over 2 500 events recorded. Despite these efforts, challenges such as data inconsistencies, spatial
and temporal gaps, and difficulties in accurately attributing triggers persist (Garcia-Delgado et al., 2022; Gómez et al.,
2023b). There are new inventories that have not been implemented in any other research, such as the one made by
INVIAS, that report impacts on the road network by landslides and floods. All of these sources demonstrate the lack
of coordination among different entities and the necessity of a unique inventory.

Advanced modeling approaches have been employed to predict landslide occurrences and assess susceptibility
in Colombia. Statistical models like logistic regression and weight of evidence have been used to evaluate the
relationship between landslide occurrences and conditioning factors such as lithology, slope, land use, and rainfall
(Aristizábal et al., 2019). Machine learning techniques, particularly the random forest algorithm, have shown promise
in handling complex, non-linear relationships and improving prediction accuracy (Gómez et al., 2023a). Thesemodels
generate outputs like landslide susceptibility maps and hazard zonation maps, essential for urban planning and
disaster risk reduction. However, challenges remain, as spatio-temporal models have been scarcely explored, and
their predictive capability is limited to nowcasting since no integration with forecasted rainfall has been done.

Establishing accurate probability thresholds is critical for predicting landslide occurrences in Colombia, and rain-
fall is the factor that is measured in most cases. Various methods have been employed, including empirical ap-
proaches based on statistical analysis of historical data, physically based models simulating slope stability under
varying rainfall conditions, and integration of rainfall data into machine learning models (Gómez et al., 2023a; Marin
et al., 2021). Specific thresholds have been established in regions like the Central Cordillera, differentiating thresholds
based on soil types and antecedent rainfall conditions (Aristizábal et al., 2022). The development of EWS, particu-
larly in areas like Manizales and Medellín, demonstrates significant progress in integrating real-time data, community
engagement, and technological innovation (Correa et al., 2020; Marin & Marin-Sanchez, 2024). However, challenges
such as the spatial variability of rainfall and the frequency of extreme rainfall events limit the effectiveness of static
thresholds. A dynamic probability threshold approach would be more practical for decision-makers, as it can adjust
to changing rainfall and environmental conditions, an essential capability currently missing from existing EWS in the
country.
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While Colombia has made considerable progress in establishing a robust EWS, a spatio-temporal LEWS for
specific sectors remains in its nascent stages and has yet to develop fully. Existing systems lack the granularity
required to predict landslide events affecting specific road segments and do not fully consider all the dynamic factors
in the process.

1.3 Objectives and research questions

1.3.1 General Objective

To develop a spatio-temporal data-driven landslide model for Colombia’s Andean road network and enhance early
warning capabilities by establishing probability thresholds for individual road segments.

1.3.2 Specific Objectives

First Sub-objective

To compile and integrate existing landslide inventories in the Andean region to create a unified, high-quality database
suitable for spatio-temporal predictive modeling.

Research Questions:

• RQ1.1: What are the differences in attributes, mapping techniques, data quality, and completeness among
the existing landslide inventories in the Andean region of Colombia?

• RQ1.2: How can the existing landslide inventories be evaluated and integrated to create a unified landslide
inventory suitable for developing a spatio-temporal data-driven model?

• RQ1.3: How can the damage information be linked to landslide inventories?

Second Sub-objective

To develop a spatio-temporal predictive landslide model for the Andean road network using suitable dynamic and
static factors.

Research Questions:

• RQ2.1: Which predictor factors influence landslide occurrences along Colombia’s road networks, and how
can they be effectively incorporated into a data-driven spatio-temporal susceptibility model?

• RQ2.2:What are the optimal time windows for incorporating historical and forecasted rainfall data into the
predictive model to enhance its accuracy?

• RQ2.3: What is the model performance using the CHIRPS-GEF forecast rainfall dataset?
• RQ2.4: What are the differences in landslide prediction between nowcasting and forecasting?
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Third Sub-objective

To establish a probability threshold based on the predictive model to translate landslide probabilities into actionable
warnings within an Early Warning System for the Andean Road network.

Research Questions:

• RQ3.1: How can we demonstrate the effectiveness of the probability threshold in real-case scenarios while
reflecting on the most suitable graphical representation?

• RQ3.2: How can the established thresholds be applied to provide actionable recommendations and alerts for
decision-making by authorities responsible for the Andean Road network?
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2 PHYSICAL SETTING AND DATA FOUNDATIONS

Our study area is located at the Northwestern corner of Colombia, which is around 40% of Colombian territory,
stretching from the Pacific coast to the eastern slopes to its western slopes, and hosts more than three-quarters of
the country’s population, GDP, and road infrastructure. Extreme relief, complex litho-tectonic juxtapositions, and one
of the most intense equatorial rainfall regimes on Earth turn this corridor into a global hotspot of rainfall-triggered
landslides. This chapter equips the reader with: (i) a concise but complete description of the region’s physiography,
geology and climate (§2.1), and (ii) an exhaustive account of the dynamic and static datasets that underpin our
forecasting framework (§2.2).

2.1 Physiographic, Geological and Climatic Context

2.1.1 Relief and geomorphology

The Northwestern part of Colombia, highlighted in the Figure 2.1, forms a triple-range system created where the
Nazca oceanic plate converges beneath South America at (Lizarazo et al., 2021). Between the Cordilleras Occidental
(Western range), Central (Central range ), and Oriental (Eastern range) lie the Cauca and Magdalena grabens—
elongated valleys that funnel population, commerce, and, unfortunately, landslide risk. Ten departments (provinces)
and the metropolitan areas of Bogotá, Medellín and Cali lie within this mountainous corridor.

2.1.2 Relief and geomorphology

In the study area, we can find elevations range from sea level to 5 700ma.s.l. at Colon Peak, producing steep
hillslopes, deep canyons, and narrow intermontane basins. Active glaciation survives on high volcanoes, while lower
belts exhibit fluvio-denudational landscapes, volcanic edifices, and large landslide scars that attest to rapid erosion
rates. The Table 2.1 classifies themacro geomorphological domains according to the framework proposed by Carvajal
(2012)
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Figure 2.1: Topographic Map of Colombia with Major Rivers, and Coastal Tectonic Trenches. High-
lighting the study area in red
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Table 2.1: Geomorphological regions in the North Western part of Colombia and their relevance to
landslide hazard

Regions Diagnostic features Landslide relevance

Orogenic Andean System Actively uplifting metamorphic
& volcanic chains

High seismic shaking, pervasive slope
adjustment

Volcanic highlands Composite cones & pyroclastic
plateaux (e.g. Ruiz-Tolima)

Weak, juvenile tephra prone to debris
flows

Intermontane valleys Cauca & Magdalena grabens Thick weathered colluvium, channel-
toe erosion

2.1.3 Lithostratigraphy and fault architecture

The Northwestern Colombian Andes are characterized by the convergence of the oceanic Nazca plate beneath
the continental South American plate, which drives arc magmatism and compressional deformation; transpressive
coupling with the Caribbean plate further segments the margin into small crustal blocks, as we can observe in 2.1.

The geological composition of the Andean region is diverse and complex. Late Cretaceous island-arc basalts
characterize theWestern Cordillera, Jurassic-Miocene batholiths intrude theCentral range, and a deformedPrecambrian-
Cretaceous sedimentary pile builds the Eastern Cordillera (Gómez et al., 2025). High fault densities and strong rhe-
ological contrasts (Pulido, 2003), especially along the Romeral shear zone, localize deep-seated instability (Herrera-
Coy et al., 2023).

2.1.4 Climate and Hydro-meteorological Regime

Colombia’s equatorial position places the Andean region under the influence of the Intertropical Convergence Zone
(ITCZ), which oscillates between 5° South latitude in January–February and 14° North in July–August (Urrea et al.,
2019). This movement results in bimodal rainfall patterns, with two wet seasons occurring from April to May and
September to November. Annual rainfall varies significantly across the region, ranging from 1 000 mm to over 4 000
mm per year in some regions.

The Andean region is also influenced by atmospheric circulation patterns over the Atlantic and Pacific Oceans
and the Amazon and Orinoco basins (Hoyos et al., 2018). Localized phenomena, such as strong topographic gradi-
ents, induce atmospheric circulation that enhances deep convective systems, leading to highly intense and localized
storms. These intense rainfall events are the primary trigger for landslides, flash floods, and debris flows in the region.

Interannual climate variability is significantly affected by the El Ninõ-Southern Oscillation (ENSO), which can
lead to prolonged dry periods (El Ninõ) or increased rainfall (La Ninã) (Poveda et al., 2011).
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(a) Mean annual precipitation over Colombia (1981-
2020, CHIRPS). white isolines at 500 mm intervals. In-
tervals highlight the Pacific hyper-humid belt (> 6 000
mm), and dry Orinoco < 1 500 mm.

(b) Calendar month landslide counts and mean
rainfall.

(c) Yearly landslide counts and mean precipita-
tion, shaded by ENSO phases.

Figure 2.2: Spatio-temporal context for rainfall-induced landslides in the Colombian Andes. Data
source: CHIRPSV2, CHIRPSV3 (Funk et al., 2015). (a) shows the spatial distribution of mean
annual CHIRPS precipitation with key isohyets. (b) displays the seasonal cycle of landslides and
rainfall. (c) presents interannual variability with ENSO bands.

2.1.5 Strategic road network and landslide exposure

Colombia’s public road system extends for around 206 000km, and it is officially classified according to the Plan

Maestro de Transporte Intermodal (Ministerio de Transporte, 2019), that hierarchize into:

• Primary (National) corridors are managed primarily by INVIAS and the National Infrastructure Agency (ANI).
Some of the new corridors are managed by private companies. These primary roads are 10 500km paved,
and carry the bulk (80 %) of the logistic and transportation flows (World Bank, 2016).

• Secondary (Departmental) connectors is around 34 000 km on mixed surfacing, it is usually one line, but
some of them could also be two lanes. Those roads are usually administered by provincial governments.

• Tertiary (Rural) feeder roads: This is the majority of the road network in the country. This category counts
approximately 142,000 km, its material could be gravel or earth surface, and it is usually administered by
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communal or municipal organizations (Departamento Nacional de Planeación, 2021).

Even though the road network is extensive, most of the transportation lies in a couple of roads that absorb the
majority of importance, due to they concentrate most of the population, commerce routes, and of course, landslide
risk:

Table 2.2: Key trunk roads crossing the study area. Traffic figures are 2022 average daily traffic
(ADT); landslide counts are events recorded in SIMMA for 2000-2023 around each alignment.

Route (Invías ID) Strategic role Class† ADT [veh day−1]

Medellín – Bogotá (RN 60/45) Links the main industrial pole
(Aburrá Valley) with the capital.
It carries containerized imports
from Cartagena

1 12 800

La Virginia – Quibdó (RN 29) Sole paved outlet from the
Pacific Ocean to the Coffee Axis.
It presents frequent landslides
closures

3 → 4 2 600

Cali – Buenaventura (RN 40) Gateway for ∼40 % of
Colombian trade. It climbs
2000m in <45km around the
mountain range of the Andes

1 13 500

The road corridors listed above illustrate the dual challenge faced by the Colombian road infrastructure: high
traffic exposure and extreme geomorphic sensitivity. Additionally, INVIAS’ incident report logs portal mention that
landslides were the single largest cause of unscheduled closures, accounting for 57% of all disruption hours on the
national network in 2022 (Instituto Nacional de Vías (INVÍAS), 2023) aligning with our earlier discussion where SIMMA
records∼9 000 landslides that have affected the road infrastructure country–wide since 1950.

2.2 Data and Pre-processing steps

Effective landslide forecasting, particularly within data-driven frameworks, necessitates the integration of diverse and
high-quality datasets. These datasets encompass landslide inventories; dynamic variables, such as precipitation
patterns; and static predictors, including topographic, geological, land cover, and infrastructural attributes. We present
a summary of the static datasets in Table 2.3 that we will be discussed in the following sections. The reliability and
resolution of these datasets are paramount, as they directly influence the accuracy and applicability of predictive
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models in complex terrains like the Northwestern Colombian Andes.
As a complementary side note, all spatial datasets were reprojected to the WGS 84 / UTM zone 18N (EPSG:

32618) to maintain consistency across analyzes. The datasets are categorized into three primary groups:

• Landslide Inventories: Compilation of historical landslide occurrences from multiple sources, offering in-
sights into spatial distribution and temporal trends.

• Precipitation Data: Inclusion of both historical and forecasted rainfall data, essential for understanding trig-
gering factors and long-term factors.

• Static Predictors: Encompassing topographic data, land cover classifications, geological maps, and road
network information, these predictors aid in assessing susceptibility and exposure.

Table 2.3: Static covariate layers

Dataset Native res. Class Notes

NASADEM 30 m (1″) Raster Void-filled SRTM
ESA WorldCover v200 10 m Raster 11 LC classes, epoch 2021.
South America Geology 1:5M Vector Simplified lithologic units.
Colombia Geology 1:1M Vector Quaternary units merged into the above map.
ICDE Road Network 1:100K Vector Filtered by Road Type

2.2.1 Landslide inventories

Colombia is unusually rich in landslide data, yet those data sit in four very different provenance streams that we are
going to describe in the following sections. We summarized the information in The Table 2.4 that is the main input of
this research. If the reader wants to check a more complete description and characterization, please see Appendix
A.

National Geological Service (SGC)

The official source of landslide information is curated by SGC, which has two complementary products:

• SIMMA Catalogue is the fastest updated product from SGC, it contains a crowd-enabled interface that can
be fed by any third party, including municipal disaster offices, media, and individuals. Its geometry is points
located in space and time, with the time of the event. This inventory does not have field validation and no

trigger or causal information, but it contains the highest volume of information among all the sources (35 244
records).

• SIMMA Inventory is the field validated subset; for that reason, it is not updated regularly, contains 9 170
point records and 200 mapped polygons. Its attributes are rich in characterization, and each event stores
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three causal fields (trigger, contributory, inherent) and the most complete impact data that includes fatalities
and USD losses for∼30% of events.

Road-authority feeds — INVIAS

INVIAS is the road management authority in Colombia, a government agency responsible for the construction, main-
tenance, and regulation of Colombia’s national public road network. Inside its repositories, there are two different
datasets:

• Critical Sites is an internal dataset that needs to be requested; it contains expert-assigned points where
recurrent landslides have occurred. It contains 1 700 records with coordinates. However, there is some
misalignment between the projected coordinates recorded, and it seems they are not uniform for each entry,
making its positional accuracy uncertain and highlighting the necessity to do extra pre-processing steps for
using this product.

• Emergency Logs is accessed from a public dashboard1. Its geometry is unique among the inventories, since
it is presented as a line geocoded along specific road segments for every disruption. Its date range is from
2019 to 2023, but it lacks systematic entries for the months of January and December. The dates are precise
to the hour and minute when the interruption started and ended, but the corresponding landslide source area
is unknown. When this database is downloaded, all its attributes are hard-coded on numerical factors that
make its interpretation difficult without any additional documentation and metadata.

University geoportals — GeoHazards

The National University’s GeoHazards group in Medellín is built upon DESINVENTAR and SIMMA repositories, after
its aggregation started to update daily with reports from social media, municipal logs, and newspapers (Aristizábal
et al., 2025). It contains 2 products that contain basically the exact attributes but differ in some details:

• National only includes events that has an impact recorded. The impact is recorded on a notes attribute
without any specific clear architecture

• Antioquia is only localized on the province of Antioquia, but it has a rich repository for the entire province
using different local municipalities’ sources. This database fills a gap that existed in the other repositories for
this specific region.

Research-grade compilations

Researchers have compiled different landslide sources for landslide modeling. Two products highlight:

• Gómez et al. (2023a) initially contains 3 536 entries from different sources, including both SIMMA products,
DesInventar, and GeoHazard. The efforts are maintained ongoing by the researcher, and on the day there is
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a curated database of 16,780 landslide points. The dataset does not contain trigger information for most of
the events, and does not discriminate between the sources. It spans from 1981 to 2023.

• Garcia-Delgado et al. (2022) produced a 2 400-fatal-only inventory from different sources and not usually
used by landslide research: libraries, old newspapers, UNGRD, and municipalities’ internal databases, and
it goes back to 1828 until 2022. The only limitation of this database is that it is only available in a PDF format,
which makes its interoperability difficult without any pre-processing efforts for extracting the data.

Finally, there is one dataset DESINVENTAR, we decided not to classify it in any of the categories because it is
no longer in operation. Previously, it was the inventory used for UNGRD. This government organization decided to
move its disaster inventories into a proprietary one; today, that inventory is not public. The main inconvenience of the
DESINVENTAR database is that this inventory does not report hazard events, but impacts, and it does not contain
any coordinate attribute, only location descriptions. Many inventories described in this section, like Aristizábal et al.
(2025) and Gómez et al. (2023a), have made efforts to spatialize this inventory and avoid losing its rich information.
The Table 2.4 summarizes this discussion.

Table 2.4: Core inventories used in this study. “Geo.” = geometry type (Pt = point, Poly = polygon,
Line = polyline).

Dataset # events Span Geo. Trigger Provenance / salient notes

SIMMA Catalogue 35 244 1492-2024 Pt — Rapid, unverified crowd +
agency feed

SIMMA Inventory 9 170 1900-2024 Pt+Poly 3-field 100 % field validated; richer
impact fields

GeoHazards National 2 427 1880-2024 Pt partial University compilation, multi-
source fatal+economic

GeoHazards Antioquia 5 079 1880-2024 Pt partial High-density departmental
layer, fills spatial gap

INVIAS Critical Sites 2 1 700 2018-2023 Pt — Road hotspots; CRS uncertain
INVIAS Emergency Logs 3 706 2019-2023 Line n/a Linear disruptions along pub-

lic road network
Gómez et al. (2023a) 16 780 1981-2023 Pt yes Andean merge of SIMMA,

DesInventar, Geohazard. No
source discriminated

Garcia-Delgado et al. (2022) 2 352 1828-2020 Pt yes Fatalities-only inventory, con-
fidence rated, pdf format

DESINVENTAR 4 10 532 1921-2017 Pt mixed Press & government reports;
municipality centroids

1https://hermes2.invias.gov.co/SIV/
2Email requested
3https://hermes2.invias.gov.co/SIV/
4https://db.desinventar.org/
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2.2.2 Climatological and rainfall datasets

Understanding when, where, and howmuch water is coming to a hillslope is the cornerstone of any dynamic landslide-
forecasting framework. The Table 2.5 summarizes these datasets. The daily to sub-monthly rainfall grids described
below, together with themonthlyOceanic Niño Index (ONI), constitute the dynamic factors of the landslide probabilistic
model. They inform both the short-term trigger pulses and the longer preparatory wetting phases whose combined
influence has been shown to improve space-time predictive skill (Moreno et al., 2024; Steger et al., 2023)

CHIRPS v2.0 historical rainfall

The Climate Hazards InfraRed Precipitation with Stations (CHIRPS) v2.0 product delivers near-global rainfall fields
(50° S - 50° N, ≈ 90 % of the Earth’s land area) from 1981-present at 0.05° (∼5 km) resolution, blending IR with
40 000 rain gauges (Funk et al., 2015). This is a daily product released with a one-month lag. We extracted the
2000-2024 daily stacks and resampled to 30 m by nearest-neighbor to align with the other raster information
spatial resolution.

CHIRPS–GEFS 15 day precipitation forecasts

The second product we are using is the CHIRPS–GEFS, which is a bias-corrected forecast product applied to the
NOAA GEFS v12 ensemble and downscaled onto the same 0.05° grid, yielding reliable 1-15-day outlooks and re-
leased every day at 0:00 UTC. Two problems were identified during quality control: (i) February 29th is absent on
all the leap years, and (ii) a provider outage removed most records for Jan-Sep 2020. Both gaps are retained as NA

values and handled downstream by the wet–filter logic explained in the Section 3.3.3.

IDEAM gauge-derived rainfall composites

To benchmark the satellite products, we adopt the 1 km daily gauge mosaics for 2022–2023 created by Gómez et al.
(2023a) and interpolated using Voronoi polygons (Schumann & Polygon, 1998). These rainfall rasters were tested on
a landslide modeling application using random forest on the referenced study with a great performance (AUC=0.88).
The rasters are upscaled to 30 meters (nearest-neighbor) for exact overlay with other raster products.

Oceanic Niño Index (ONI)

As discussed before ENSO variability is a strong control for rainfall variability in our study area. We created a
database extracting the reported Monthly ONI value anomalies in the Niño 3.4 from the Climate Prediction Cen-
ter (CPC) archive5. Including ONI will allow the model to capture ENSO–conditioned rainfall interannual variability,

5https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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and it has proved to be a strong predictor in the country (Gómez et al., 2023a) and aligns with the recommendations
from Steger et al. (2023) of capturing seasonal and interannual climate characteristics for landslide modeling.

Table 2.5: Dynamic forcing data layers used in this study.

Dataset Native res. Span Key fields Ref.

CHIRPS v2.0 0.05° / daily 1981-2024 Pday Funk et al. (2015)
CHIRPS-GEFS 0.05° / daily 2000-pres. P+1...15 —
IDEAM kriged 1 km / daily 2022-2023 Pgauge Gómez et al. (2023a)
ONI v5 1 mon 1950-pres. SST anomaly CPC

2.2.3 Topography and static derivatives

Digital Elevation Model

The NASA Digital Elevation Model (NASADEM) offers improved elevation data at a 30–meter resolution. It is a
reprocessed version of the Shuttle Radar Topography Mission (SRTM) data, featuring refined corrections and fewer
voids (Crippen et al., 2016), particularly beneficial in mountainous regions (Nguyen et al., 2023; Uuemaa et al., 2020)
like the Colombian Andes. Because hydrological consistency is critical for hydrological terrain derivatives and a strong
control on shallow-landslide initiation, we first conditioned the raw DEM with the open-source RichDEM v2.2 library
(Barnes, 2018). RichDEM fills true depressions while carving spurious “digital dams”. This DEM is the reference
raster used for all the re-projected and resampling pre–processing steps.

Surface cover and human footprint

Reliable land-cover data is essential for capturing natural and anthropogenic controls on shallow landslides. The ESA
WorldCover 20216 dataset provides global land cover information at a 10–meter resolution (Zanaga et al., 2022). It
classifies land cover into 11 categories, offering detailed insights into vegetation, urban areas, water bodies, andmore.
Among all other land cover products, we selected this one for its spatial resolution that allows capturing the small
but subtle changes near the road network. During exploratory modeling, all 11 legend classes were tested, but only
the Built_up category displayed a statistically significant positive effect on landslide occurrence. Consequently,
the land-cover information was simplified to a binary indicator that flags the presence of built-up terrain within each
modeling unit.

6https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v200?hl=es-419
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Lithology

Regional-scale landslide models need lithological information that is (i) geologically meaningful yet (ii) statistically
robust. Having many attributes tends to fragment the study area, leaving many probability units with only a handful
of pixels per class and inflating model uncertainty; conversely, over-generalized maps may hide contrasts in rock
strength and weathering that dominate slope stability. To balance those needs, we merged two publicly available
sources:

• Geological Map of South America: It is a continent-wide map compiled at a scale of 1:5M that already
aggregates lithology units into a manageable number of rock classes (Tapias et al., 2023).

• Colombian Geological Map: Provides detailed geological information specific to Colombia, including Qua-
ternary (Q-Xx) unconsolidated deposits that are absent from the continental map but critically important for
shallow failures in the Andes (Gómez et al., 2025).

The two vector layers were clipped to the country outline, rasterized at 30 m with nearest-neighbor resampling,
and mosaicked. We then collapsed the 12 source codes into five macro-classes described in the Table 2.6. This
“middle-ground” legend follows recommendations that favor mechanical homogeneity over purely genetic criteria.

Table 2.6: Reclassification of source lithological units used in the susceptibility model

Source map Original description Merged class

South America Siliciclastic sedimentary rocks Siliciclastic
Colombia Unconsolidated Quaternary deposits Quaternary depositsa

South America Granitic, gabbroic Plutonic Igneous
South America Basaltic, andesitic, volcano-

sedimentary
Extrusive Igneous /
Volcano-Sedimentary

South America Low-medium & medium-high grade
metamorphics

Metamorphic

aNo Quaternary class exists in the continental legend; national map supplies it.

2.2.4 Road Network Data

The classification presented for Ministerio de Transporte (2019) in Section 2.1.5 lacks physical interpretation for
landslide modeling because it does not define the level of intervention of the road. That is why we are using the
classification from the national spatial layer published by the Colombian Spatial Data Infrastructure7 (Infraestructura
Colombiana de Datos Espaciales; ICDE). The dataset includes various attributes, with the Type of Road being partic-

7https://www.icde.gov.co/node/131
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ularly relevant and detailed in Table 2.7, whose eight codes combine (i) pavement condition, (ii) platform width, and
(iii) year-round accessibility. We kept that attribute in our modeling approach.

Table 2.7: ICDE national road-type codes and the English labels used in this study. Surface and
width thresholds follow the official specification.

Code Label used ICDE definition (translated)

01 Paved highway Concrete or asphalt pavement; > 5.5 m platform; engineered
drainage, signage and protective works; open all year except during
severe weather.

02 Unpaved dual-lane Gravel/earth surface, ≥ 5.5 m wide; no major engineering works; traf-
ficable year-round.

03 Paved single-lane Hard surface ≤ 5.5 m; one effective lane; open all year.

04 Unpaved single-lane Gravel/earth surface ≤ 5.5 m; one lane; trafficable year-round.

05 Plate-track Discontinuous concrete “placa-huella’’ strips for very low-volume ter-
tiary roads (mainly cars & motorcycles).

06 Wheel-track Earth track without gravel; driveable only in dry weather; used by
vehicles, animals or pedestrians.

07 Rural path Narrow foot/pack-animal path, unsurfaced; no vehicular traffic.

08 Urban alley Narrow paved or gravel passage in built-up areas, designed for pedes-
trian flow.
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3 RESEARCH METHODS

This section outlines the methodological approach to achieve the research objectives and answer the corresponding
research questions. The methodology is structured according to the three sub-objectives: data compilation and
harmonization, statistical modeling, and real-scenario testing analysis.

3.1 Compilation and integration of landslide inventories

The first phase details the methods employed to achieve the first sub-objective of this study, which was to compile and
integrate existing landslide inventories from the Andean region of Colombia into a unified, high-quality database suit-
able for spatio-temporal predictive modeling. The methodology addressed three research questions (RQ1.1-RQ1.3)
focusing on evaluating differences among inventories, integrating datasets into a unified inventory, and exploring how
damage information could be linked to landslide occurrences.

3.1.1 Characterization and Comparison of Landslide Inventories

The first step involved a qualitative characterization and comparison of the available landslide inventories. Initial
exploratory analysis was conducted using eight datasets described in Section 2.2.1. This process aimed to system-
atically document and compare key aspects of each inventory.

A comparative matrix was developed, see Appendix A, with the following categories:

• Provenance and custodianship: Information on database ownership, original data sources, update fre-
quency, last revision date, and access conditions.

• Spatial Definition: Details regarding geometry type (point, line, polygon), and regional scope of the database.
• Temporal definition: Coverage of start and end dates, temporal granularity, and the presence of auxiliary
time fields such as event duration or reporting delay.

• Landslide characteristics: Inclusion of landslide typology, triggering information, descriptive variables (e.g.,
material, movement, volume), and impact indicators (fatalities, economic loss, infrastructure affected).

• Data quality indicators: Presence of completeness flags, confidence ratings, metadata availability, and
documented mapping or validation techniques.
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The matrix not only guided the harmonization strategy that follows, but also exposed recurring weaknesses—
most inventories lacked polygon geometries, contained patchy time-stamp metadata, or omitted confidence flags—
mirroring the heterogeneity reported by earlier cross-inventory audits (Guzzetti et al., 2012; Reichenbach et al., 2018;
Van Westen et al., 2008).

3.1.2 Inventory Integration and Standardization

From the eight sources characterized earlier, four were retained for merging—SIMMA Inventory, SIMMA Catalog,
GeoHazards Antioquia, and GeoHazards Colombia. They were chosen because they (i) provide the greatest spatio-
temporal coverage of the Andean region, (ii) add non-overlapping records (minimal duplicate sourcing), and (iii)
together contribute the largest volume of events with usable attribute fields, and (iv) it was traceable where its records
came. The key attributes maintained are described in the Table 3.1 These criteria is inspired by completeness and
representativeness guidelines proposed by Galli et al. (2008) and Hervás and Bobrowsky (2009).

The four datasets were merged through a four-step framework:

S1. Schema pruning - retain only attributes present in≥75% of the four inventories, described in the Table 3.1
(Merge_ID, Source, Landslide_ID, Event_Date, Dept, Municipio, X, Y, Movement_Class,
Movement_Subtype, Cause, Reporter_Org, Reliability_Flag, Impact_Binary, Econ_Loss).

S2. Categorical translation & reclassification translate all text fields to English and re-code Movement_Class
and Movement_Subtype to the Cruden-Varnes lexicon (Cruden & Varnes, 1996). English labels facilitate
reproducibility and cross-study comparison.

S3. Cause hierarchy - when multiple causes are listed, apply the six-step rule: rainfall trigger→ rainfall contrib-
utory→ other trigger→ other contributory→ inherent→ unknown. This preserves the distinction between
trigger (initiating event) and contributory factors, and prioritizes rainfall consistency with our study focus.

S4. Reporter re-grouping - harmonize Reporter_Org into smaller groups of institutional classes. Records flagged
with high uncertainties in the Reliability_Flag attribute were discarded owing to uncertain geolocation accu-
racy.
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Table 3.1: Attribute glossary for the merged landslide inventory.

Attribute Purpose Type / Format

Merge_ID Primary key after de-duplication Integer (auto-increment)
Source Origin inventory code String
Landslide_ID Original event identifier String
Event_Date Occurrence or first-report date Date
Dept Colombian departamento String
Municipio Municipality String
X, Y EPSG 32618 spatial
Movement_Class Cruden-Varnes category String
Movement_Subtype Detailed morphology / material String
Cause Dominant trigger String
Reporter_Org Institution class String
Reliability_Flag Confidence reported string
Impact_Binary Any reported impact? Boolean
Econ_Loss Direct economic loss USD

3.2 Completeness evaluation and data quality assessment

Evaluating the completeness of integrated datasets involved spatial, temporal, and attribute completeness metrics.
For the attribute completeness metrics we assign a simple binary presence flag on each of the database columns
and calculate the percentage of present data. On this section we will focus on describing the methodologies used for
spatial and temporal completeness.

3.2.1 Spatial completeness

The spatial representativeness was evaluated with a two-dimensional Gaussian Kernel-density estimate (KDE) on a
1 × 1 km grid. For the kernel bandwidth h, the radius that controls smoothing, we selected it with Scott’s rule that
uses the number and spread of mapped landslides to give a bandwidth wide enough to reveal broad patterns but
narrow enough to avoid random speckle, and it does so almost instantly (Terrell & Scott, 1992), making it ideal for
large national-scale inventories.

Because a pixel was first binarized to “landslide present/absent”, multiple points falling in the same 1 km cell
counted as a single presence, thus the density reflects the spatial spread of mapping, not point crowding. We com-
puted a separate KDE for each of the four inventories, then linearly rescaled each surface to the range 0–1 for
comparison purposes. The resulting dimensionless surface ranges from ≈1 (highly represented terrain) to ≈0 (little
or no reporting) and serves as a first-order indicator of inventory spatial coverage.

To ensure completeness is only evaluated where landslides are geomorphologically feasible, we multiplied each
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KDE by a binary mask that removes trivial terrain: DEM cells classified as flat by r.geomorphon and whose local
slope is< 5◦ (Jasiewicz & Stepinski, 2013). This slope cut-off follows the “flat lowlands” exclusion used in continental
landslide inventories to avoid penalizing geomorphically inactive zones (Steger & Glade, 2017). By constraining the
analysis to susceptible slopes, we ensure that low KDE values reflect mapping gaps rather than stable geomorphic
settings.

3.2.2 Temporal completeness: the Advanced Temporal–Uncertainty and Completeness Score (A–TUCS)

For decades, landslide inventory development has focused on where landslides occurred: spatial accuracy, devel-
oping elaborate rules for mapping scale, positional precision, and geomorphic representation (Guzzetti et al., 2000;
Malamud et al., 2004). While such spatially detailed inventories are essential for creating reliable susceptibility mod-
els (Guzzetti et al., 2012), their value for dynamic applications like landslide forecasting models and operational EWS
is significantly constrained if the temporal component is unreliable (Guzzetti et al., 2020; Kirschbaum et al., 2010).This
temporal uncertainty fundamentally compromises key tasks: model calibration, validation of triggering thresholds, and
EWS performance assessment. Three persistent temporal-completeness problems exacerbate these limitations:

(i) Recency bias —Contemporary risk reflects current slope stressors (e.g., infrastructure development, deforesta-
tion). Inventories lacking events from the past 10–15 years systematically underrepresent modern triggers, leading
to hazardous ”blind spots” in susceptibility assessments (Gariano & Guzzetti, 2016; Glade, 2003; WMO, 2022).

(ii) Temporal clustering — Post-disaster response surges create ”event bursts” in inventories, distorting rainfall
threshold calculations and EWS lead-time estimates. Recording lapses during quite periods compound this bias
(Froude & Petley, 2018; Piciullo et al., 2018).

(iii) Archive depth deficit — are high-magnitude triggers (e.g., megathrust earthquakes, multi-decadal climate
anomalies) require ≥50-year records for robust return-period analysis and threshold calibration (Parker et al., 2017).
Most inventories lack this historical coverage.

Because no single scalar captures recency, evenness, and historical depth at once, we introduce the Advanced
Temporal-Uncertainty & Completeness Score (A-TUCS). A-TUCS deliberately decomposes the problem into (i) recent
coverage, (ii) clustering penalization, and (iii) historical longevity. Their mathematical definition and parameter logic
follow below so that readers can reproduce - or adapt - the metric for other hazard inventories.

Component A: Recent coverage

Landslide inventories face a fundamental tension: while historical landslides provide valuable context, their relevance
decays as landscapes evolve through deforestation, urbanization, and climate shifts. This component resolves this
tension by systematically weighting events based on their age, prioritizing recent occurrences while still crediting
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older data. The 20-year threshold emerges as a critical pivot point in this weighting scheme, aligning with reporting
changes in the benchmark inventory (SIMMA) fromColombia, and with the inclusion of new technologies for collecting
and reporting hazard events. This timespan captures significant anthropogenic changes – new infrastructure, mining
operations, and land-use patterns (Gariano & Guzzetti, 2016; Glade, 2003) – while remaining within the memory
window of local communities and institutions.

The time-decay function applies distinct exponential decay rates before and after this 20–year threshold, ac-
knowledging that pre–2005 datasets fundamentally differ from post-smartphone–era environments where crowd-
sourcing and remote sensing should theoretically eliminate data gaps (Guzzetti et al., 2012). For any landslide
occurring in the present year Yi within an inventory ending at Ylast, the weight wi follows:

wi =


e−λrecent (Ylast−Yi), Ylast − Yi ≤ Tthreshold,

e−λold (Ylast−Yi), Ylast − Yi > Tthreshold.

The gentle decay rate (λrecent = 0.05) for recent years preserves the diagnostic value of modern slope disturbances
– a highway cut in 2020 reveals more about current stability than a 1970s rockslide. Conversely, the rapid decay
(λold = 0.20) for older events reflects landscape obsolescence, and changes in data collection, older inventories are
expected to have less data and we don’t want that the index got affected by this normal behavior of hazard datasets.
The half-life metaphor helps visualize this: recent events maintain half their weight for 14 years, while pre–2005
events decay to half-value in just 3.5 years.

A critical insight guides our treatment of monthly counts: a single typhoon month with 100 landslides should not
outweigh years of sparse but diagnostically vital activity. To prevent such distortion, we adapt the Michaelis-Menten
saturation principle from enzyme kinetics (Michaelis, Menten, et al., 1913). The transformation:

ϕ(Countsi) =
Countsi

Countsi + k

serves as an ”event value compressor.” The denominator constant k = 2 was calibrated through sensitivity
analysis to ensure that:

• A solitary landslide in a month retains significant value (ϕ(1) = 0.33)
• Two events achieve half-credit (ϕ(2) = 0.50)
• Major outbreaks (>5 events) approach but never reach full credit (ϕ(10) = 0.83)

This design acknowledges the value of having a lot of sparse events more than a bunch of events in one month.
Seasonal effects and interanual changes can only be capture across the time (Steger et al., 2023), documenting
that landslides occurred in a given month matters more than precisely how many. The saturation prevents monsoon
seasons from artificially inflating scores while ensuring quiet periods aren’t neglected.
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The final coverage score CR synthesizes these principles through weighted normalization:

Coverage =
∑n

i=1 wi ϕ(Countsi)∑n
i=1 wi

The numerator represents the ”effective coverage” - each month’s saturation-adjusted count scaled by its temporal
relevance. The denominator, the sum of all possible weights, establishes the theoretical maximum. This ratio inher-
ently penalizes inventories missing recent years: even a historically complete catalog ending in 2010 would score
below 0.3 today, as the weights for 2011-2023 (which should constitute >60% of the denominator) would be entirely
absent. The parameterization allows changing the thresholds for initiation year, finalizing year, and threshold in case
the researcher wants to apply this index into specific landslide inventories, geographic locations or other hazards
datasets

The 20–year dual–decay framework forces confrontation with landscape memory and technology changes. The
saturation function ensures this temporal sensitivity isn’t compromised by media-amplified disaster months. Together,
they create ametric where scores below 0.5 indicate dangerously obsolete inventories, while scores above 0.8 require
consistent modern documentation –precisely the behavior needed for reliable dynamic modeling. This proposed
levels needs to be adjusted in other studies.

While this recency weighting exposes gaps in temporal coverage, it remains blind to another critical distortion:
the clustering of reported events during post-disaster response surges. Such ’reporting bursts’ create statistical
artifacts that mislead rainfall threshold calibration. To penalize this clustering effect, we now introduce Component B:
the temporal evenness metric or cluster penalization.

Component B: the temporal evenness metric

Landslide inventories suffer from a hidden distortion we will call the ”crisis attention cycle”. When major disasters
strike, researchers, media coverage, NGOs, and government programs intensifies and emergency funding floods
in, creating concentrated bursts of reporting activity appears. This is a trend that can be followed with the number
of studies published after a big event; some examples are the Gorkha earthquake in Nepal in 2015 (Kargel et al.,
2016; Marc et al., 2019; McAdoo et al., 2018; Roback et al., 2018); The Mocoa disaster in Colombia in 2017 (Cheng
et al., 2018; García-Delgado et al., 2019; Peñas, 2017; Vargas-Cuervo et al., 2019); or the Emilia Romagna heavy–
rainfall induced landslides in Italy in 2023 (Berti et al., 2025; Dotta et al., 2023; Ferrario & Livio, 2023); and many
other examples. Yet during quieter periods when landslides still occur, documentation often lapses due to diminished
attention. This problematic clustering pattern distorts rainfall thresholds due the lack of seasonality and variability
along the trained databases, and as a Steger and Glade (2017) mentioned thresholds changed with climate patterns.

To quantify and penalize this temporal distortion, we adapt the Gini coefficient—a century-old metric originally
developed by Gini (1921) to measure wealth inequality in economics. This robust framework has since been repur-
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posed across disciplines: economists use it to identify income disparity, ecologists employ it to diagnose species
clustering in fragmented habitats (Bai et al., 2023), and used in the geospatial domain to measure spatial concentra-
tion (Rey & Smith, 2013). Our innovation lies in applying this established framework to measure temporal clustering
in event reporting, revealing inequality along and inventory.

Before applying the Gini framework, we must first address a fundamental challenge in landslide data: raw event
counts exhibit extreme variance following the ”crisis attention cycle” we already discussed, and it is a expected
behavior, that can mathematically overwhelm the metric. A single month with 100 landslides shouldn’t overshadow
ten months with 9 landslides each, though both represent valuable information. Following established practice in
statistics, we apply a logarithmic transformation to the monthly counts. This transformation, expressed as xi =

log(Countsi + 1), serves three critical purposes. First, the +1 adjustment gracefully handles months with zero
landslides by ensuring we never take the logarithm of zero. Second, it compresses extreme values–transforming a
100–landslide month to approximately 4.6 and a 10–landslide month to 2.3, thereby preventing orders of magnitude
differences from dominating the analysis. Third, it preserves meaningful distinctions within the typical operational
range of 1–20 events per month that matter most for Early Warning Systems.

The core of our temporal evenness metric then applies the Gini framework to these transformed counts, weighted
by their recency importance from Component A. The complete equation takes this form:

G =

∑
i

∑
j

wiwj

∣∣log(Countsi + 1)− log(Countsj + 1)
∣∣

2µlog,w
(∑

i wi

)2 ,

where:

µlog,w =

∑
i wi log(Countsi + 1)∑

i wi
.

In the Table 3.2 we interpret the possible results of the coefficient and how they can be interpreted.

Table 3.2: Interpretation guide for temporal Gini coefficient values

Gini (G) Interpretation Real-World Analogy

0.0 Perfect evenness Landslides documented steadily across months
0.2 Moderate clustering Typical inventory with minor reporting spikes
≥0.6 Dangerous clustering Post-disaster surge dominates record (e.g., 2018 Hiroshima rains)

This formulation deserves careful unpacking. The double summation in the numerator (
∑∑

wiwj |xi − xj |)
acts as an inequality magnifier—it systematically compares every possible pair of months in the inventory, calcu-
lates the absolute difference in their log-transformed event counts, then weights those differences by the temporal
relevance of each month. Conceptually, this measures the total ”temporal tension” in the inventory caused by un-
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even reporting patterns. The denominator serves as a normalization factor, centered around the weighted mean of
transformed counts (µw), which anchors the inequality measurement to the inventory’s overall event density. The
denominator’s structure ensures the resulting Gini coefficient always falls between 0 and 1, regardless of inventory
size or timespan.

The practical interpretation of the resulting G value follows clear thresholds, as summarized in Table 3.2. When G
approaches 0, it indicates near-perfect temporal evenness—landslides documented steadily across months without
artificial clustering. A moderate score around 0.2 reflects typical inventories with minor reporting spikes but generally
acceptable distribution. Values exceeding 0.6 signal dangerous clustering that requires correction before using the
inventory for threshold calibration.

To illustrate why this penalty structure works, consider a hypothetical ”supercluster” scenario: After a 100-year
storm triggers 1,000 landslides, international organizations and government agencies thoroughly document these
events. Five years later, a researcher requests the landslide inventory and discovers that 92% of events remain
concentrated in just three post-disaster months, with sparse coverage elsewhere despite available satellite data.
The logarithmic transformation prevents these three massive months from dominating the metric, while the pairwise
comparisons in the numerator amplify penalties for the stark contrasts between disaster months and quiet periods.
Critically, the recency weighting ensures a 2020 cluster impacts the score more severely than a 1990 cluster would,
maintaining alignment with Component A’s philosophy.

While this Gini-based penalty effectively diagnoses and penalizes clustering within an inventory’s observation
window, it cannot assess whether that window spans sufficient time to capture rare megastorms or multi-decadal
climate patterns. For this essential dimension of historical depth, we now introduce Component C: the historical
longevity bonus.

Component c: the historical longevity bonus

While Components A and B address contemporary temporal quality, truly robust landslide hazard assessment re-
quires historical perspective. Long observation windows serve as irreplaceable foundations for understanding land-
scape behavior—only inventories spanning decades can capture the full spectrum of destabilizing triggers. These
include multi–decadal climate oscillations like ENSO that alter regional rainfall patterns over 20–30 year cycles, and
rare high-magnitude earthquakes (Mw > 7) whose seismic legacies may reshape slope stability for generations. As
documented in the Colombian Andes, such low-frequency events fundamentally modulate landslide regimes yet re-
main invisible in short-term records (Garcia-Delgado et al., 2022; Sepúlveda & Petley, 2015).

The longevity bonus explicitly rewards such temporal depth through a carefully balanced equation:

Longevity = α︸︷︷︸
Balancing Parameter

· ln(duration+ 1)

ln(101)︸ ︷︷ ︸
Depth Reward

· exp
(
−median gap

10

)
︸ ︷︷ ︸

Gap Penalty

(3.1)

30



Depth Rewardmechanism Human-modified landscapes evolve nonlinearly, making additional years of data
more valuable during early inventory development than in mature archives. Consider two examples:

• Extending from 5 to 15 years captures transformative changes (new highways, deforestation, urban expan-
sion)

• Extending from 85 to 95 years adds marginal insights when earlier periods already document long-term pat-
terns

The natural logarithm (ln) reflects this diminishing returns principle—it strongly rewards initial timespan extensions
while preventing century-old data from dominating scores. The +1 adjustment ensures even single-year inventories
receive minimal credit rather than undefined values. Normalization by ln(101) scales the output to a 0-1 range
relative to a 100-year reference baseline.

Gap Penalty Mechanism Duration alone cannot guarantee quality—an inventory with a 40-year span but 30
years of silence remains scientifically inadequate. The exponential gap penalty addresses this by penalizing extended
reporting voids while tolerating short pauses:

• A single 10-year silence reduces the bonus by 63% (e−1 ≈ 0.37)
• Ten separate 1-year gaps reduce it by only 9.5% (e−0.1 ≈ 0.905 per gap)

This structure aligns with empirical evidence that short voids can be filled through targeted archive searches (Garcia-
Delgado et al., 2022; Herrera et al., 2018), while extended silences indicate systemic documentation failures. Using
the median gap rather than the mean ensures robustness against outlier pauses.

TheBalancing Parameter Theα coefficient caps longevity’s maximum contribution at 10% of the total score.
This critical safeguard prevents historical depth from masking deficiencies in contemporary documentation, a century
old inventory with poor recent coverage cannot score above 0.10 without improvement.

The Integrated A-TUCS Framework

The complete Advanced Temporal-Uncertainty & Completeness Score synthesizes all three dimensions into a unified
metric:

A–TUCS = Coverage︸ ︷︷ ︸
Recency

× (1−G)︸ ︷︷ ︸
Clustering Penalty

+ Longevity︸ ︷︷ ︸
Historical Depth

(3.2)

This structure creates a symbiotic relationship between components while preventing any single aspect from
dominating:
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1. The (1 − G) term acts as a clustering corrector—even inventories with excellent coverage (Component A)
are penalized if events cluster in post-disaster bursts (Component B). This ensures rainfall thresholds derived
from the inventory won’t be artificially inflated by media-amplified events.

2. Longevity (Component C) contributes additively rather than multiplicatively. It provides standalone credit
for historical depth without requiring perfect modern documentation. This acknowledges that century-old
landslides still offer value for understanding long-term patterns, even if contemporary records are sparse.

3. Theα = 0.10 cap ensures longevity remains a ”bonus” rather than a primary driver-no inventory can exceed
1.0 without strong performance in both recency and evenness.

Innovation and contextual limitations As the first metric to decompose temporal completeness into re-
cency, evenness, and depth, A-TUCS addresses a critical gap in geohazard inventory assessment. By adaptively
weighting components-prioritizing recent documentation while crediting historical context—it provides a more nu-
anced evaluation than simple ”oldest inventory wins” approaches. Its modular approach allows flexibility an adapta-
tion into different contexts. Nevertheless, three limitations warrant consideration:

1. The 20–year decay threshold reflects Colombian landscape dynamics but may need adjustment in rapidly
changing urban or glacial environments.

2. The Gini component assumes landslides are small-scale events; inventories dominated by other physical
processes may require modified clustering metrics.

3. While validated for regional Colombian inventories, global application requires testing in diverse settings in-
cluding crowd sourced databases.

Through this framework, we enable quantitative comparison of the landslide inventories used in this research,
revealing how temporal weaknesses invisible to conventional can be assessed. Future research should link this
index into two different directions, (i) how the temporal weaknesses can propagate into dynamic probabilistic model
performance and (ii) balancing datasets across the time for a more evenness training data.

3.3 Development of a spatio-temporal predictive landslide model

This section details the methodology for developing a spatio-temporal predictive landslide model for the Andean road
network. The model integrates dynamic rainfall data and static environmental factors, datasets that were already
introduced in the Section 2.2 within a GAM framework.

3.3.1 Spatial Framework and Mapping units

The spatial units of analysis are slope units (SU), which are geomorphologically homogeneous regions bounded by
drainage and divide lines (Alvioli et al., 2016). Slope units were automatically delineated using the r.slopeunits
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algorithm (Alvioli et al., 2016) applied to a 30-meter resolution DEM without trivial terrain areas (Steger & Glade,
2017), where landslides are not expected. For that purpose, we used the slope mask developed before in Section
3.2, and we removed the permanent water bodies.

The key parameters and post-processing operations for SU delineation are in the Table 3.3 defined after iteration
and texting of different set of parameters, we invite the reader to check Alvioli et al. (2016) for more information about
the parameters. The Slope Unit approach balances the need for spatial detail with computational feasibility and aligns
with best practices in landslide susceptibility modeling (Carrara et al., 1991; Eeckhaut et al., 2009).

Table 3.3: Key conceptual parameters adopted for the automatic slope-unit delineation workflow and
post-processing steps (Alvioli et al., 2016)

Parameter (conceptual name) Value used

Drainage-area threshold 500 000 m2

Minimum slope-unit area 12 500 m2

Minimum coefficient-of-variation (relief) 0.30
Reduction factor applied 5
Maximum number of refinement iterations 5
Minimum polygon area kept after cleaning 10 000 m2

post-processing steps
Conversion of cleaned raster to polygons r.to.vect (type=area)
Generalization of polygons limits v.generalize (type=area)

A 100-meter buffer was applied to Colombia’s national road network. Only slope units whose overlap this buffer
were retained, resulting in approximately 152 310 slope units with an average area of 0.43 km2. This focus on road-
proximal units ensures the model’s relevance to road risk management.

3.3.2 Co-factors aggregation

All predictors—terrain, hydrographic, lithologic, and rainfall—were therefore aggregated from their native raster or
vector representation to the SU polygons prior to modeling. The candidate factors aggregated are described in
Table 3.4.

Table 3.4: Static candidate covariates screened in the univariate–GAM step.

Variable Description Type Source (res.) SU aggregation

area_su Polygon area of slope unit (m2) cont. SU polygons v.to.db area (sum)

slope_average Mean slope angle (°) cont. 30 m DEM v.rast.stats
method=average

slope_stddev Std. dev. of slope angle (°) cont. 30 m DEM method=stddev

LR_range Local relief (max-min elev., m) cont. 30 m DEM method=range

VRM_average Vector Ruggedness Measure (mean) cont. derived VRM (30 m) method=average

Continued on next page
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Table 3.4 (continued)

Variable Description Type Source (res.) SU aggregation

VRM_stddev Vector Ruggedness Measure (sd) cont. derived VRM (30 m) method=stddev

TWI_average Topographic Wetness Index (mean) cont. GRASS r.topidx method=average

TWI_stddev Topographic Wetness Index (sd) cont. GRASS r.topidx method=stddev

profCurv_average Mean profile curvature (×10−3) cont. 30 m DEM (r.param.scale) method=average

profCurv_stddev Profile curvature (sd) cont. idem method=stddev

planCurv_average Mean plan curvature (×10−3) cont. 30 m DEM (r.param.scale) method=average

planCurv_stddev Plan curvature (sd) cont. idem method=stddev

rainfall_average 25-yr mean annual rainfall (mm yr−1) cont. CHIRPS 2.0 (5 km) → res. 30 m method=average

river_sum Total rasterised river pixels cont. 1:500 k network v.rast.stats sum

river_length Stream length within SU (m) cont. idem pixel-count × 30 m

river_density Stream length / area (m m−2) cont. idem derived

Categorical factors

Road_maj Road type (7 classes) cat. 1:100 k road lines mode per SU → ran-
dom effect

Aspect_maj Dominant 8-point aspect cat. derived aspect circular mode

litho_group Lithological group (5 classes) cat. 1:500 k geology mode per SU

river_presence Binary: river intersects SU cat. river network presence/absence

Landcover_maj ESA land-cover main class (11) cat. ESA WorldCover 10 m mode per SU

LC_TreeCover Binary: tree cover present cat. as above indicator

LC_Grassland Binary: grassland present cat. as above indicator

LC_BuiltUp Binary: built-up present cat. as above indicator

Elevation-derived rasters were computed from the 30mNASADEMwith standardGRASSmodules (r.slope.aspect,
r.param.scale, r.vector.ruggedness, r.topidx). For each raster, cell values intersecting a given SU
were summarized by the statistic best suited to the geomorphological meaning of the index: mean and standard

deviation, and range for local relief. Distance-to-stream, stream length, and density were obtained from the 1:500k
hydrographic IGAC network using r.stream.distance and zonal summaries. Categorical layers (road type,
lithology, 8-point aspect, ESA land-cover) were rasterized at 30m and the modal class within each SU was recorded.

Daily rainfall grids from (i) CHIRPS 2.0 and (ii) CHIRPS-GEFS ensemble forecasts (both 0.05◦) were nearest-

neighbor resampled to 30m—preserving original values while ensuring at least one rainfall pixel falls inside every
SU. For each product, we built a time-ordered stack P0 . . . P30 (where P0 is the day of the landslide and P30 is
thirty days before) and derived cumulative antecedent and trigger totals.

All aggregated variables were finally merged into a single attribute table and exported to gpkg format used for the
GAM modeling workflow. Landslides where aggregated on a binary form (landslide presence–absence) duplicating
SU attributes and creating one new entry for each landslide date and ignoring.
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3.3.3 Sampling Design and Wet-Filter

Of the 152 310 SU intersecting the national road buffer, only 7 501 contained dated landslide events (presences). To
address the extreme class imbalance while maintaining spatiotemporal representativeness in our absence sampling,
we implemented a stratified random sampling procedure following the methodology of Steger et al. (2023) and refined
by Moreno et al. (2024). This three-tiered balancing approach ensured that absences were distributed:

• Spatially balanced: Across different geographic locations

• Annually balanced: Proportional representation across years

• Seasonally balanced: Proportional representation across months

Rather than sampling from the prohibitively large daily spatiotemporal domain (which would create computational
inefficiency and potential temporal bias), we first assigned random multiple replicates per location across the study
period. We then iteratively refined this selection to enforce balanced annual and monthly distributions. This rigorous
stratification process yielded 24 900 carefully curated absence cases that accurately represent stable conditions
throughout the study area. The final merged dataset (2000–2024) comprises 32 401 SU: 7 501 presences and 24 900
temporally–stratified absences.

Model skill depends critically on excluding spatial units (SU) during dry periods where landslides are extremely
unlikely, retaining only SU-days under ’potentially rainy’ conditions (Moreno et al., 2024). To implement this system-
atically, we developed a precipitation uncertainty filter that accounts for known systematic biases in satellite rainfall
products. As documented in South America and globally (Bai et al., 2018; Shrestha et al., 2017; Wu et al., 2019), satel-
lite estimates consistently deviate from ground observations. We quantified these biases using the high-resolution
IDEAM gauge raster developed by Gómez et al. (2023a) as ground truth, comparing daily rainfall values across our
study area during 2022-2023.

For each satellite product, we calculated the daily pixel bias asBias = RainfalEstimated−IDEAMObservation

This produced a distribution of daily differences from which we derived two key statistical parameters:

• µ as the mean systematic bias
• σ as the standard deviation of saily errors

Then The wet filter threshold (Twet) was then calculated as:

Twet = |µ|+ σ (3.3)

SU–days were retained only when satellite estimates exceeded Twet, ensuring rainfall signals were sufficiently
strong to overcome product-specific errors. Complete bias statistics are provided in Table 3.5.
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The dry bias of CHIRPS V2 relative to IDEAM gauges (µ = −2.18mm; Table 3.5) mirrors earlier evaluations for
the Tropical Andes (López-Bermeo et al., 2022) where the CHIRPS estimations are underestimated. By contrast, the
CHIRPS–GEFS ensemble shows a wet bias (µ = +1.30 mm) but a smaller spread, in line with regional validation
studies of GEFS precipitation (Lien et al., 2016; Yue et al., 2022).

Table 3.5: Daily bias statistics used to set the wet filter from Equation (3.3).

Product Mean (mm) Std. dev. (mm) Twet (mm) Gauge days (n)

CHIRPS V2 −2.18 4.84 7.02 730
CHIRPS-GEFS 1.30 3.08 4.38 730

Withwet filter in place, we applied a complete filter to reconcile the five-hour time-zonemismatch between IDEAM
gauges (UTC-05) and the gridded rainfall products (UTC). We aggregated a 48-h cumulative rainfall precip48h =

P0 + P1 on each SU and applied the following filters:

1. Removed records with missing dates;
2. Excluded leap-day entries (29 Feb);
3. Excluded the January-September 2020 gap where CHIRPS-GEFS fields are unavailable;
4. Discarded rows with missing rainfall in 48 hours;
5. Retained observations with Precipitation48h > Wetfilter .

The results after applying the filter are summarized in the Table 3.6 and it can be observed on how our final
datasets are distributed across months in Figure 3.2 that grantees seasonal precipitation changes is well captured in
our model; annually in figure 3.1 for interanual variability.

Table 3.6: Samples retained after successive filters.

Before filter CHIRPS V2 CHIRPS-GEFS

Presences 7 501 4 537 6 354
Absences 24 900 11 365 18 180
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(a) CHIRPS-GEFS presences (green) and absences (red) per year

(b) CHIRPS V2 presences and absences per year

Figure 3.1: Year-by-year distribution of presence/absence samples after applying the wet filter.
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(a) CHIRPS-GEFS monthly distribution

(b) CHIRPS V2 monthly distribution

Figure 3.2: Monthly distribution of presences and absences retained for modeling.
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3.3.4 Predictive Framework

The spatio-temporal landslidemodel was developed using a binomial GAMs (Hastie, 2017; Wood, 2017). We adopted
GAMs because they offer the rare combination of (i) proven predictive skill for landslide models(Moreno et al., 2024;
Wang et al., 2024) and with environment variables (Pedersen et al., 2019), (ii) an additive structure that lets each co-
factor be visualized and interpreted in isolation(Ramampiandra et al., 2023), and (iii) mature, peer-reviewed software
with its library in R, mgv (Wood, 2017), that supports spatial smooths, tensor interactions and mixed-effect terms.
GAMs fitted the formula

logit
{
pi
}︸ ︷︷ ︸

linear predictor

= β0︸︷︷︸
intercept

+

J∑
j=1

fj
(
xij

)
︸ ︷︷ ︸

smooth functions of continuous drivers

+

K∑
k=1

βk zik︸ ︷︷ ︸
categorical (fixed or random) effects

+ s(xi, yi)︸ ︷︷ ︸
Gaussian–process spatial smooth

.

(3.4)

Equation (3.4) is the linear predictor of the GAM used in this study. Starting from the left, the logit  link trans-
forms the predicted probability (pi) into the log-odds scale so that the model can be fitted with standard maximum-
likelihood tools. The intercept β0 provides a global reference level; every other term describes how the log-odds
deviate from that baseline. The smooth terms, each continuous environmental driver–terrain, cumulative antecedent
rainfall, daily trigger rainfall, day-of-year, among others are allowed their own flexible spline fj . The thin-plate basis
means we never need to pick break-points by hand; the amount of wiggle is chosen automatically by REML, and
we control how much freedom we want to give to each one with parameters inside the modeling, and the resulting
curves can be plotted with 95%. The Categorical effects are binary factors, such as river presence, that are included
with ordinary dummy coefficients. Road hierarchy is different: the “trail” and “footpath” classes contain <100 slope-
units, whereas “primary highway” occurs in thousands. Treating this variable as a random-effect smooth (bs="re")
shrinks those tiny classes towards the global mean and prevents them from monopolizing the model. Spatial surface
explains spatial similarities that nearby SU could have or the spatial bias associated with the uneven report across
the country. A Gaussian-process surface s(x, y) soaks up that residual spatial autocorrelation, keeping the standard
errors of the other terms valid.

Incremental modeling workflow

Step 1 – Univariate screening of static terrain factors Seventeen candidate predictors, see Table
3.4, were first fitted one-by-one using thin-plate regression splines with a maximum basis dimension of 10. Each
partial-dependence curve was inspected to understand the expected respnse to landslide presence. Artifacts like flat
profiles that stayed after the aggregation step were judged non-informative and those predictors where discarded..
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Step 2 – Static spatial GAM All surviving static factors were then combined on an iterative process prioritizing
those that have a stronger physical meaning and could be more interpretable. Categorical attributes where tested
on their confidense and importance for the model and some of them where merged. The selected co factors were
merged with a two-dimensional Gaussian-process smooth s(x,y) that captures residual spatial dependence.

Step 3 – Dynamic rainfall engineering Rain-induced slides depend on both short “trigger’’ bursts and
multi-week antecedent wetting (Gómez et al., 2023a; Steger et al., 2023; Vega et al., 2024). We therefore created a
30–day rolling cube of daily CHIRPS values and tested every legal pair of windows where (i) trigger (0-5 days) and
(ii) anticipatory (1 to 30 days) excluding the trigger rainfall (Moreno et al., 2024). Additional dynamic cofactor where
included in this model like the day of the year for seasonal characteristics and ONI for long term precipitation changes
(Vega et al., 2024).

Each pair of trigger and anticipatory rainfall was evaluated in an otherwise identical GAM including the complete
set of dynamic factors; discrimination was scored with the median AUROC across ten 10-fold random splits. The
same grid-search was repeated with CHIRPS–GEFS forecasts. To prevent the very wet Pacific coast, where few
landslides are reported, from dominating the training process of the model, daily rain values above the 98th percentile
were capped at 98th percentile: they were set to that percentile before accumulation. This “tail-capping’’ stops the
model from concluding that 150mmday�¹ implies stability simply because those totals coincide with sparsely inhabited
rainforest.

Step 4 - Building the full spatio-temporal GAM The final model pools:

• the optimal trigger and antecedent windows (separately for analysis and forecast modes);

• the static terrain, land-cover, and lithology terms retained after Step 2;

• a cyclic response for day-of-year to absorb seasonality;

• Atensor interaction ti(antecedentrain,ONI) that lets the accumulative rainfall behave differently in dif-
ferent ENSO stages without forcing the partial effects to run “parallel”; and

• a random-effect response for road hierarchy

3.3.5 Validation Strategy

A predictive model is only as trustworthy as the evidence that it generalizes beyond the data on which it was trained.
Out-of-sample validation is therefore a cornerstone of any landslide model because it reveals whether
apparent skill is genuine or merely the result of over-fitting to one period, one region, or one particular inventory
(Brenning, 2012; Moreno et al., 2024). Two complementary, threshold-independent, statistics are used:
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• Area under the Receiver Operating Characteristic curve (AUROC).AUROC measures how well the model
ranks slope-units: an AUROC of 0.80 means that in 80% of all randomly drawn landslide-absence pairs, the
landslide receives the higher probability (Hanley & McNeil, 1982). Because it is unaffected by the rarity of
landslide events, AUROC is ideal for extremely imbalanced data sets such as ours.

• Brier score. Defined as the mean squared difference between predicted probability and the observed binary
outcome, it captures calibration: a perfectly calibrated model achieves the minimum possible Brier score of 0
(Brier, 1950; Schlögl et al., 2025). Good calibration is essential for risk communication, because emergency
managers need to know whether “40%” really means that two out of five similar slopes will fail.

To probe every dimension in which the model might fail, five cross-validation (CV) schemes were adopted (Ta-
ble 3.7). In every split, we preserved all 24 900 absence records to maintain the true landslide / non-landslide ratio
and recomputed bothmetrics; the median across repetitions is reported. All resampling was carried out in R 4.3 with
rsample and blockCV. Seeds were varied automatically (‘set.seed(NULL)’) so that each repetition uses an
independent random draw.
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Table 3.7: Cross-validation designs used in this study. nrep indicates how many independent repetitions
were run; the model is refitted from scratch in every fold.

Scheme Motivation How folds were defined What stays constant nrep

Random 10× 10 Baseline sampling vari-
ability

Uniformly assigns the
32 401 SU-day cases to ten
folds; repeat ten times

All absences retained
in every fold

10

Spatial k-means Transfer to unseen ter-
rain

10 spatial clusters derived
from SU-centroid k-means
(k=10) (Brenning, 2012);
one left out each time

Cluster geometry; full
absence set

10

Leave-one-month-
out

Seasonal generaliza-
tion

For each calendar month,
all Januaries, all Februar-
ies, … are withheld in turn
(Moreno et al., 2024)

Year-to-year order;
absences

10

Rolling-origin Inter-annual forecast-
ing

Training period always
starts in 2000 and expands
by one year; test set is year
t+1 (t = 2009. . .2023)

Earlier years remain
in train

15

Inventory hold-
out

New data–source ro-
bustness

One entire source inven-
tory kept for testing while
the other six feed train-
ing; cycle through all seven
combinations

Presence / absence
balance

7

======================================================================

3.4 Operational Implementation for Landslide Early Warning Systems

The third sub-objective quantifies how effective the predictive model, coupled with the chosen threshold, is in real
case scenarios (RQ 3.1) and evaluates the actional recommendations in a context-based (RQ 3.2).
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3.4.1 Threshold Selection

The binary decision cut-point is the Youden-optimal value

TY = arg max
pt

[
TPR(pt) + TNR(pt)− 1

]
,

which maximizes the True-Skill Statistic TSS = TPR − FPR, a bias-free measure widely used in landslide early-
warningRossi et al., 2019; Wang et al., 2024. On the training folds; this same τ is applied in the back-test below.

Diagnostic metrics reported at p = τ :

• TSS (= Youden’s J): robustness to prevalenceYouden, 1950.
• F1: harmonic mean of precision and recall.
• Brier score & AUROC: model-wide calibration and ranking.

The decision threshold was fixed at the Youden-optimal cut-point obtained from Section 4.2.3. An alert (action-
able warning) is therefore issued for any SU-day where P ≥ τ .

A hit is recorded when an alerted SU contains at least one landslide presence on the same calendar day;
otherwise, the alert is a false positive. Conversely, an inventory point falling in a non-alerted SU counts as a miss.
Remaining SU-days are correct negatives. Daily contingency tables yield hits (TP), misses (FN), false alarms (FP)
and correct negatives (TN)

3.4.2 Predicting road interruption

The back-test focuses on the shallow landslide cluster that paralyzed the Quibdó-Pereira trunk road and adjacent
coffee-region corridors between 3–20 January 2023. Official INVIAS traffic bulletins first reported partial closures
between kilometer-posts 2-18 on 3 January, escalating to a full blockade after a 20 000 m3 failure at km 16 on 10 Jan-
uary (Infobae, 2023; INVIAS, 2023). Regional newspapers and radio confirmed additional blockages near Manizales,
Filandia, Apía, and Guática through mid-January (Carocol Radio, 2023; El Pereirano, 2023). Daily situation reports
from the National Disaster Risk-Management Unit (UNGRD) kept the municipalities of Pueblo Rico and Santa Ce-
cilia on red alert throughout 14-18 January (UNGRD, 2023a, 2023b). Taking into account the last description, we
decided on a temporal scope of January 2023 around the affected area. A bounding box covering the five affected
municipalities (∼6,946 km2) was intersected with the SU yielding 6 277 unique SUs.

Following the rainfall-window optimization in Chapter 4.2.1, each SUwas paired with (i) accumulated precipitation
over the preceding 23 days and (ii) four daily trigger-rain lags (P0-P4) derived from CHIRPS-GEFS (Funk et al.,
2023). Static cofactors and the remaining dynamic ones remained identical to those used in model training. To avoid
31 separate model calls, a long database was built with one record per SU-day (6 277 SUs × 31 days = 194 587
rows).
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The fitted GAM model was trained on the full inventory up to 31 December 2022, thus excluding all test-period
events, using the framework described in 3.3.4. A single inference run produced daily landslide-probability rasters
for 1-31 January 2023. For operational deployment, this routine should be scheduled once per calendar day, writing
Cloud-Optimized GeoTIFFs for all Colombian corridors; this section’s back-test analysis only covers the sub-extent
described above.

3.4.3 From Slope Unit Probabilities to Segment-Level Risk

For each road segment and day, we derive an “expected landslide count” by treating each neighboring slope unit
(SU) with probability pi as an independent Bernoulli trial Xi ∼ Bernoulli(pi). The total count N =

∑n
i=1 Xi

follows:

E[N ] = λ =

n∑
i=1

pi, Var[N ] =

n∑
i=1

pi(1− pi).

For small λ, this is well approximated by Poisson(λ)We estimate λ per segment via length-weighted SU probabili-
ties.

Estimating SU-segment intersection via buffer area

Since a center-line approach sometimes misses marginal SU intersections, we instead intersect each segment with
a 20 m buffer polygon. Then each overlapping area A yields an approximate clipped line length

L̂ ≈ A

2w
, w = 20m,

because a buffer of width w has area ≈ 2wL This gives the fragment length, which we divide by the full segment
length to obtain weights wi,j . Then

λ̂seg =
∑
i

(
pi × wi,j

)
.

Hybrid density metrics for short vs long segments

To compare segments of different lengths, we define density metrics:

dwatch =
mwatch

Lkm
, dλ =

λ

Lkm
,

with mwatch = count of SUs with pi ≥ 0.30 and Lkm = segment length in km. For very short segments (Lkm <

0.5 km), densities become unstable, so we use absolute values instead
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Risk levels and thresholds

We categorize segments into four operational alert levels—Green, Yellow, Orange, Red—based on the following
rules:

1. Red: Extreme threat. Either

(pmax ≥ 0.50 and dλ ≥ 2.5) or (pmax ≥ 0.50 and dwatch ≥ 3).

This captures either very high single-SU risk (p ≥ 0.50) with moderate expected slide counts, or clustered
moderate probabilities.

2. Orange: Elevated risk. Either

(pmax ≥ 0.45 and dwatch ≥ 0.30) or (pmax ≥ 0.45 and dλ ≥ 0.20).

These are calibrated to produce a manageable Orange rate while recognizing early escalation.
3. Yellow: Warning stage. At least one watch-SU or λ ≥ 1.
4. Green: No SU above pi ≥ 0.30 and λ < 1. Indicates normal operations.

Threshold selection is based on a combination of Youden-optimal AUROC performance, distributional inspection,
and operational meaning.

Geometry and road-type re-attachment

After calculating segment-level metrics and alert colours, all summary geometries are dropped. The original centre-
line geometry and road-type attribute TIPO_VIA from the source rd layer are re-attached via a spatial join using
the seg_id key, ensuring accurate mapping and format consistency for final outputs.

The workflow produces (i) a daily vector .gpkg layer with P , alert flag and observation status for every SU; (ii)
color-scaled probability maps for visual briefing; (iii) color-threshold map with alert levels and (iv) a CSV summary of
TP, FP, FN, TN and H-K per day. Although alert dissemination is beyond the thesis scope, these artifacts satisfy the
interoperable data format outputs that enable direct ingestion into decision-making dashboards.
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4 RESULTS

4.1 Inventory completeness results

This section will include a complete characterization of the 8 inventories and a description of each one of the charac-
terization attributes, which will be presented in the Section 4.1.1. Later, the Sections 4.1.2 – 4.1.4 will evaluate the
four selected inventories in the spatio-temporal domain.

4.1.1 Qualitative contrasts among inventories

Figure 4.1 distills the information in Annex Tables A.1-A.5 into a ten-column heat-map. The color grid makes two
facts immediately evident: (i) attributes are decidedly uneven across the eight candidate inventories, and (ii) only
four: SIMMA Inventory, SIMMA Catalog, GeoHazards Colombia and GeoHazards Antioquia score “present” (green)
or “partial” (amber) in most of the methodological categories. This section unpacks those patterns, moving through
the five categories described in our methods in Section 3.1.1.

Provenance & custodianship

Ownership ranges from a single agency (INVIAS) to multi-institutional sources like the Gómez et al. (2023a). Regular
updating, recognized as a key quality criterion in inventory guidelines (Van Den Eeckhaut & Hervás, 2012), it is
interesting to observe that irregular but post-2023 uploads are confirmed only for Gómez et al. (2023a) (annual), the
two GeoHazards inventories, and the SIMMA catalog. By contrast, Garcia-Delgado et al. (2022) has not been revised
since 2020, and the INVIAS lists are not being updated since 2023 (Table A.1). Access conditions diverge as well,
SIMMA exports require a user request for formats different than PDF, whereas GeoHazards, Garcia-Delgado et al.
(2022), and the Emergency Reports from INVIAS provide open downloads, aligning with open data recommendations.

Spatial definition

Seven inventories are point-only, while SIMMA Inventory supplements points with some mapped polygons |(200),
allowing footprint-scale analyzes. GeoHazards Antioquia restricts itself to a single department, whereas the others
claim nationwide coverage, as we can see in Table A.2 in the Appendix A. To highlight in this category, INVIAS
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Figure 4.1: Qualitative cross-comparison of eight Colombian landslide inventories. Each coloured
square indicates whether a key attribute is Absent (grey), Partial (amber) or Present (green). Attributes
are grouped according to the methodological categories defined in Section 3.1.1, enabling a rapid
visual assessment of coverage, content richness and data quality. Results highlight why subsequent
modelling focuses on four inventories (SIMMA Inventory, SIMMA Catalog, GeoHazards Colombia,
and GeoHazards Antioquia) that meet the minimum information and quality thresholds.

Emergency Reports uniquely uses line geometry tied to specific impacted road corridors, which is valuable for infras-
tructure studies. There is no possibility of linking it to a landslide event, and classifying this inventory as an impact
database more than a landslide occurrence inventory.

Temporal definition

All datasets are inside the time range between 2000 and 2024, satisfying the CHIRPS-GEFS overlap, yet their histor-
ical depth varies by three orders of magnitude, as we can see in Table A.3. SIMMA Catalog extends to 1 492, echoing
the long-tail archives recommended for hazard trend analysis (Gaidzik & Ramírez-Herrera, 2021), whereas INVIAS
begins only in 2018. Day-level time-stamps are standard except in INVIAS Emergency (hourly). Garcia-Delgado
et al. (2022) and SIMMA report multiple events on one date entry.
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Content attributes

The Trigger information is critical for landslide susceptibility modeling (Sinčić et al., 2024), it is fully recorded only in
SIMMA Inventory, recording up to three different causes: Triggering, Inherent, and Contributory, there is always at
least one reported for each Landslide event. GeoHazards marks most events as “unknown”, and the INVIAS lists and
SIMMA Catalog omit triggers entirely, as we can see in Table A.4. Impact indicators range from boolean “fatalities”
(Garcia-Delgado et al., 2022) to monetized damage categories in SIMMA Inventory, reported in USD. SIMMA Catalog
includes five centuries of events yet lacks any trigger field, underscoring the trade-off between volume and thematic
richness and highlighting the necessity to use a rainfall filter for maintaining rainfall-related landslides without losing
entries as we described in Section 3.3.3.

Data-quality indicators

Explicit uncertainty flags appear in SIMMA and both GeoHazards inventories. Metadata completeness is patchy;
only SIMMA provides a public schema, whereas others lack explicit documentation. The complete report is in Table
A.5.

Probabilistic modeling emphasizes the necessity of having updated inventories, polygon/line capability, or high-
accuracy points, day-level dating, and trigger attribution. Figure 4.1 shows that SIMMA Inventory, SIMMA Catalog,
GeoHazards Colombia, and GeoHazards Antioquia are the only datasets that are close to meeting those benchmarks
across all categories. Consequently, the subsequent evaluation and integration described in Section 3.2 andmodeling
workflows concentrate on these four datasets. Both GeoHazards inventories were merged into the following analysis
for matching the evaluated spatial extension.

4.1.2 Spatial completeness

The masked 1× 1 km Gaussian-KDE surfaces for the three source inventories are shown in Figure 4.2. Continuous
hot-spots occur in the central Andean provinces, especially Antioquia, Norte de Santander and Cauca, where event
density exceeds∼ 1 landslides km−2. The western part of the country and some parts of the Eastern Cordillera, by
contrast, exhibit extensive voids. This heterogeneity underscores the need for merging multiple inventories to fill ge-
ographic gaps. Spatial completeness scores from Table A.6 confirm the visual impression: SIMMA Inventory attains
the highest coverage with 31.8 %, SIMMA Catalog follows with 29.4 %, whereas GeoHazards covers barely 10.8
%. Note that record count alone does not guarantee spatial coverage, SIMMA Inventory (9 175 records) outperforms
SIMMA Catalog (35 658 records) and GeoHazards (7 519 records) in spatial representativeness.
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(a) GeoHazards Combined (b) SIMMA Catalog (c) SIMMA Inventory

Figure 4.2: Kernel-density maps (normalized scale) for the three source inventories. Colder colors denote higher mapped-event density;
white areas mark terrain masked as geomorphologically improbable for landslides. (a) GeoHazards Combined exhibits clustered coverage
in Antioquia; (b) SIMMA Catalog provides broad but uneven density; (c) SIMMA Inventory, despite fewer records, achieves the most even
coverage, particularly along the Eastern Cordillera and the south-western Andes.

49



4.1.3 Temporal completeness (A-TUCS)

Temporal robustness of the inventories was quantified with the Advanced Temporal-Uncertainty and Completeness
Score (A-TUCS) see Methodology, Sect. 3.2.2. The three source inventories and the unfiltered merge differ markedly
in the contribution of each component, as we can see in Table 4.1.

An overview of the presented results:

• SIMMA Catalog reaches the highest overall score (A-TUCS = 0.887), driven chiefly by its long temporal
coverage (1724-2024) and low temporal clustering (Gini = 0.143). The archive, therefore, provides a strong
historical baseline, albeit at the expense of missing trigger information, as we can see in Figure 4.3.

• SIMMA Inventory attains a balanced A-TUCS = 0.734; the shorter span (1900-2023) is compensated by
better recent coverage and moderate clustering, making it well suited for calibration of daily rainfall thresholds.

• GeoHazards Combined shows the lowest score (0.515), reflecting episodic reporting and long silent periods.
Although there is an overall completeness in other attributes, its temporal unevenness limits its direct value
alone for spatio–temporal applications.

• Merged (no filter) improves coverage and longevity but inherits high clustering from duplicate events, still
yielding a high A-TUCS = 0.863 which proves the capping mechanisms’ effectiveness included in its for-
mula.

Table 4.1: A-TUCS components and overall temporal completeness.

Inventory Coverage GINI Longevity A–TUCS Temporal
Scope

GeoHazards
(Combined)

0.692 0.288 0.022 0.515 1880–2025

SIMMA
(Inventory)

0.834 0.217 0.081 0.734 1900–2023

SIMMA
(Catalog)

0.948 0.143 0.074 0.887 1724–2024

Combined
Inventory -
No filter

0.950 0.177 0.082 0.863 1724–2024

Figure 4.3 situates the temporal findings in a broader six-dimensional completeness context. From the Figure,
we can see that SIMMA Inventory balances spatial, temporal, and trigger data; SIMMA Catalog excels in temporal
completeness but omits triggers; GeoHazards contributes trigger accuracy yet remains spatially sparse. These met-
rics give us a more complete overview of each inventory.
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Figure 4.3: Each panel shows percentage fulfillment for six attributes; record counts appear in strip
labels.

4.1.4 Consequences for integration

The contrasts observed between the datasets and the subsequent post-2000 filter are possible to see in Figure 4.4,
which sacrifices trigger information in exchange for a bigger database compatible with Data-driven models. The
resulting 17 824 point–event database minimizes time-dependent bias in further predictive GAM modeling, maintains
the overall values on spatial completeness compared with the other inventories, and contains strong characterization
attributes.

Damage variables were excluded from modeling because only the SIMMA Inventory supplies consistent quan-
titative fields. GeoHazards lists contain qualitative notes, and SIMMA Catalog uses a different unit scheme, as we
can see in Annex Table A.7. Harmonizing these would have discarded over 70% of records, outweighing potential
benefits for predictability modeling on a national scale. Future research could use the damage information to model
potential impacts in smaller scales in the most dense places.

Figure 4.4: completeness of the unified inventory after the temporal 2000-2024 filter. Gains in
characterization and volume are offset by reduced trigger and accuracy information.
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4.2 Spatio-temporal landslide modeling

In this section, we will discuss (i) the rainfall windows that maximize predictive skill, (ii) the relative importance and
physical interpretation of each static and dynamic co-factor in the final GAM model, and (iii) the model performance
when the model is driven by the CHIRPS-GEFS rainfall dataset. And a fuller validation, including spatial and temporal
transferability, and the applicability for forecasting, and threshold diagnostics.

4.2.1 Optimal antecedent-trigger rainfall windows

Figure 4.5 shows median AUROC obtained for every combination of antecedent (AR) and trigger (TR) windows. For
the historical CHIRPS product the optimum is a compact AR = 15 d + TR = 2 d tile (gold square), whereas the
forecast CHIRPS-GEFS product peaks at a longer AR = 23 d + TR = 4 d (Fig. 4.5b). In both cases, the two
runner-up tiles differ by≤ 0.002 AUROC, confirming a relatively flat optimum.

When static predictors and the spatial generalize are added, the difference narrows further: AUROC= 0.78 for
the full CHIRPS model versus AUROC= 0.77 for the full CHIRPS-GEFS model, as we can observe in Figure 4.6.

Figure 4.6: Receiver-operating characteristic for the two full GAMs (dynamic + static + spatial
terms). Dashed diagonal = no-skill; AUC values are shown in the legend.

Precision-recall curves tell the same story, AUPRC = 0.61 for both, confirming that the CHIRPS-GEFS driven
model preserves the same discriminatory power in the landslide presence domain as the CHIRPS driven model.
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(a)

Figure 4.5: (a) CHIRPS: best tile at AR = 15 d, TR = 2 d (gold); the next two tiles (blue, white)
differ by ≤ 0.002 AUROC. (b) Median AUROC as a function of antecedent-rainfall length (x-axis)
and trigger-rainfall length (y-axis). Squares mark the three best windows for each product; warmer
colors imply higher skill.

Because CHIRPS grids are released with a ≥1-month latency, whereas CHIRPS-GEFS fields are available in
near real time, the AR = 23d + TR = 4d CHIRPS-GEFS configuration is adopted for all subsequent validation and
forecasting experiments.

4.2.2 Which predictors matter?

Final predictor set The nine terms retained on the final model are summarized in Table 4.2. Their contribution
contributions are visualized in Figure 4.7, where we can observe that Dynamic terms together account for ≈ 33%
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of the model contribution, highlighting the importance of explicitly modeling rainfall and climate variability in addition
to terrain and geology.

Table 4.2: Predictors included in the final GAM.

Domain Variable GAM term k/levels

Precipitati Trigger rainfall (Ptrig) s(·) (tp) 5

Antecedent rainfall (Pacum) s(·) (tp) 5

Climate Oceanic Niño Index (ONI) linear -

Pacum × ONI interaction ti(·, ·) 5×3

Seasonal Day-of-year (doy) s(· cc) 5

Terrain Mean slope (slope_avg) s(·) (tp) 3

Slope-unit area s(·) (tp) 3

Hydro River presence (binary) factor 2

Land use Built-up land-cover (binary) factor 2

Lithology Litho group factor 5

Infrastructure Road hierarchy (Road_maj) s(·) (re) 7

Space Coordinates (x, y) s(·, · gp) 8

Road type dominated contribution (>57%) when fitted as a fixed factor. This was due to the larger number of
reported landslides along the major road network, as we can see in 4.3. To mitigate this reporting bias associated with
more important roads reports, we re-specified the co-factor as a random effect; this reduced the contribution share
from 57% to 33%, see 4.7, while still capturing the engineering and maintenance differences across Colombia’s
network.
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Figure 4.7: Relative contribution explained by each covariate in the final spatio-temporal GAM. Bars
sum to 100 %

Table 4.3: Road-hierarchy frequencies within the 152 310 slope-units analyzed.

Hierarchy Description # SU with Landslide presence

Type 1 Paved, ≥ 2 lanes 1 965

Type 2 Unpaved, ≥ 2 lanes 611

Type 3 Paved, 1 lane 137

Type 4 Unpaved, 1 lane 1 439

Type 5 Rural track 493

Path Footpath / jeep–track 330

Trail Pack-animal / hiking 91

TheONI alone contributes 18.3%, and thePacum ×ONI interaction adds another 3.3%. The partial-dependence
surface in Figure 4.8 shows that La Niña phases (ONI< −0.5) lower the antecedent-rainfall threshold four times less
than in El Niño, consistent with the well-documented increase in Andean precipitation and landslide activity during
cold ENSO events, and we can observe in Figure B.2 the linear effect that this cofactor has on Landslide occurrences.
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Figure 4.8: Joint partial-dependence surface of antecedent rainfall (Pacum) and monthly ENSO phase
(ONI) in the final spatio-temporal GAM. Colours show fitted landslide probability, while the red
contour highlights the 50 % threshold. Dashed lines mark ONI phase boundaries (La Niña, Neutral,
El Niño); the dotted vertical line is the median Pacum across the study period.

The trigger rainfall response (Ptrig) explains 4.3% of the model and rises almost logistically until 50mm, at which
point the 0.5 probability contour is crossed, see Figure 4.9, and continues to increase thereafter. Antecedent rainfall
over the preceding 23 d (Pacum) and its interaction with the ONI jointly account for 8.1% of the contribution. This
cofactor captures antecedent saturation, the stand-alone response peaks near ∼200 mm interpreted as the point
where hillslope saturation is most likely to fail.

Finally, the day-of-year cyclic response (1.5 % contribution) exhibits a clear bimodal signature; this behavior
characterizes the Colombian Andes climate patterns as we described in Figure 2.2c. Together, these dynamic terms
(Ptrig, Pacum, Pacum × ONI, doy) explain roughly one-third of the total model contribution, underscoring the need to
capture both short-lived storm pulses and longer, climate-driven moisture build-up when forecasting landslides at a
regional scale.

Slope average dominates static factors (8.7% contribution), with probability doubling beyond 25°. lithogroup
indicates higher susceptibility in Plutonic, Metamorphic units, and Quaternary deposits; more details in the plots
presented in Appendix B. while built-up areas (mostly peri-urban cut-and-fill slopes) raise the baseline susceptibility
by two-thirds compared with natural covers. This echoes global reviews that identify land-use change as an emerging
driver of shallow failures (Glade, 2003).
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Figure 4.9: GAM partial-effect responses (on the response scale with 95% CIs) for (a) precipitation
trigger (Ptrig), (b) cumulative antecedent rainfall (Pacum), (c) day of year (doy), and (d) average slope.
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4.2.3 Model diagnostics and validation

We can observe in Table 4.4 that the median performance across the five CV schemes is summarized. Overall dis-
crimination is high (AUROC>0.70) and probabilistic calibration acceptable (Brier≈0.15) in all but the strict inventory
hold-out. The Figure 4.13 details the Youden-optimal decision rule.

Table 4.4: Median (IQR) AUROC and Brier score across 100 random, 100 spatial, 120 monthly, 150
yearly and 60 inventory folds.

CV scheme AUROC Brier

Random 10×10 0.768 (0.013) 0.156 (0.005)
Spatial k-means 10×10 0.727 (0.046) 0.134 (0.008)
Month slice (10 reps) 0.753 (0.020) 0.160 (0.025)
Yearly rolling-origin (10) 0.703 (0.115) 0.177 (0.092)
Inventory hold-out (10 reps) 0.731 (0.006) 0.302 (0.003)

Random folds yield the highest AUROC (0.77) but drop by ∼ 0.04 when spatial CV is respected via k-means
clustering, echoing the optimistic bias reported when database splits are applied to geospatial data. The k-meansmap
reveals that the best-performing clusters (AUROC>0.78 in Figure 4.10; yellow cells) coincide with inventory-dense
corridors in the central-northern Andes that were highlighted by the KDE hot-spots in section 4.1.2 and in the Figure
4.2, corroborating the positive effect of rich landslide evidence on model discrimination. Conversely, the pronounced
performance trough over the inter-Andean valley (blue cells, AUROC<0.66) aligns with regions of sparse reporting,
illustrating how inventory gaps and terrain variability jointly erode predictive skill. Interestingly, the median Brier score
improves under spatial CV (0.134 vs. 0.156), suggesting that although rank ordering becomes harder, the probability
forecasts remain better calibrated when evaluated on spatially independent data—a pattern. These findings stress
the need for spatially explicit validation whenever susceptibility products are transferred beyond well-instrumented
road corridors.
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Figure 4.10: Median AUROC per spatial cluster (k-means 10×10 CV). Poorer discrimination clusters
(blue) coincide with the central Andean corridor, indicating terrain-rainfall non-stationarity.

Leave-one-month-out skill is remarkably flat (Fig. 4.11a); the median AUROC never deviates more than±0.02

from 0.75, indicating the GAM captures slope-unit susceptibility across Colombia’s bimodal rainfall regime and two
annual ITCZ passages. By contrast, yearly rolling-origin AUROC is more volatile (0.56-0.83; Fig. 4.11b). The con-
spicuous trough in 2013-2015 aligns with the onset of the strong 2015-2016 El Niño we can see in Figure 2.2c, which
produced prolonged drought (Vega et al., 2024).

El Niño years not only generate fewer rain-triggered landslides but also suffer from under-reporting as local
disaster offices re-allocate resources toward wildfire and water–scarcity response, generating a lag on the response
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and eventually the records on the inventories. Moreover, CHIRPS skill over the inner Andes degrades during dry
convection episodes, inflating precipitation-driven false alarms in 2014-2015 (Vega et al., 2024).

(a) Median AUROC by calendar month (10 repeti-
tions). Seasonal effect is negligible; all months re-
main >0.73.

(b) Expanding-window yearly AUROC (median of
10 reps). A pronounced dip in 2015-2016 aligns with
the strong El Niño event, with skill rebounding post-
2017.

Figure 4.11: Temporal validation of the GAM: seasonal (top) and inter-annual (bottom) discrimina-
tion performance.

The model recovers to AUROC ≥ 0.78 after 2017, even having two El Niño episodes (2019 & 2023). Three
factors likely explain why the El Niño events of 2019 and 2023 did not erode skill: (i) 2019 episode reached only
ONI Indexes for weak episodes < 1.0◦C, and therefore produced weaker drought signatures in Colombia (Vega
et al., 2024); (ii)the 2023 event was a strong event > 1.0◦ but its peak was in the less rainfall season (Nov-Jan)
not affecting the inter annual climate patterns; and (iii) the governmental offices expanded after the 2010-2011 La
Niña–induced disasters, adding rainfall gauges and crowdsourced reporting. These upgrades improved both training
data density and CHIRPS bias correction in near-real time, allowing the predictors to better capture the influence
of ENSO in landslide and confirming the necessity of having a related predictor in our model (ONI) as we already
observed in Figure 4.7.

Taken together, these patterns demonstrate that the model retains usable discrimination even under strong
hydro-climatic non-stationarity. This also highlights the utility of A-TUCS for assessing the temporal skill of an in-
ventory (4.1.3), where an inventory without strong temporal clusters will be able to generalize over different climate
patterns.

Rain-cloud plots in Figure 4.12 disentangle six “inventory hold-out’’ folds described in Table 4.5. When a single
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source is held out for testing (LOO1), performance is sensitive to the spatial completeness of that removed inventory:
AUROC peaks at 0.80 when GeoHazards_JSON (coverage ≈ 10 %, Spatial completeness in Figure 4.3) is held out
for testing yet falls to 0.64 when Inventory_SIMMA is taking out, whose spatial completeness is the highest (≈ 38
%). This confirms recent findings that well-distributed inventories boost discriminatory power more than large but
clustered catalogues (Sahrane et al., 2023).

Table 4.5: Design of the six inventory hold-out folds shown in Fig. 4.12. Absence rows are stratified
80 %/20 % between train and test in each repetition. inv. Inventory SIMMA;Cat. Catalog SIMMA;
GeoH GeoHazards Combined

Fold label Train pres. Test pres. ntrain ntest

LOO1: Catalog_SIMMA Inv. + GeoH. Cat. 1 992 4 356
LOO1: Inventory_SIMMA Cat. + GeoH. Inv. 4 978 1 370
LOO1: GeoHazards_JSON Cat. + Inv. GeoH. 5 726 622
LOO2: Train on Catalog_SIMMA Cat. Inv.+GeoH. 4 356 1 992
LOO2: Train on Inventory_SIMMA Inv. Cat.+GeoH. 1 370 4 978
LOO2: Train on GeoHazards_JSON GeoH. Cat.+Inv. 622 5 726

When a single source is used alone for training (LOO2), Catalog_SIMMA performs the best (0.73) with the
highest number of SU presences along the three sources (4,356) that boost the positive results. It is followed closely
by Inventory_SIMMA despite having three times less SU presences (1 370). The inventory’s superior spatial spread
apparently outweighs pure sample size, as we saw in the previous paragraph.

The overall results observed in Table 4.4 are good for AUROC (0.731) but the Brier score inflates to 0.30 across
all folds because there is a high imbalance on all the domains in some of the folds, such prevalence imbalance is
known to raise mean-squared error even when ranking remains good (Brier, 1950).

Threshold calibration

Figure 4.13 combines the empirical ROC curve with the bootstrap density of cut-points. The Youden-optimal threshold
is low, T ∗ = 0.296

(
95% CI 0.27-0.32

)
, maximizing J = Se+ Sp− 1 (Youden, 1950). At this cut-point the full

inventory yields Sensitivity = 0.629, Specificity = 0.771, Precision = 0.494 and F1 = 0.553 (TP = 3 917, FP =
4 016, FN = 2 313, TN = 13 483).

The comparatively low precision reflects the intentionally conservative choice of T ∗, which favors missed–event
reduction over false–alarm minimization—an accepted compromise in operational early–warning practice where the
societal cost of an undetected slope failure exceeds that of an unnecessary field inspection (Guzzetti et al., 2020).

Two caveats merit attention. First, Youden gives equal weight to sensitivity and specificity; where social or eco-
nomic costs are asymmetric, cost-sensitive or prevalence-scaled thresholds may be preferable. Second, incomplete
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Figure 4.12: Raincloud plots of AUROC for six inventory hold-out folds (10 bootstrap reps each).
Training on GeoHazards_JSON (yellow) yields the highest out-of-source discrimination.
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Figure 4.13: ROC curve with Youden-optimal threshold (red dot) and 95 % CI band (cyan). Upper
panel shows bootstrap density of thresholds; dashed red line marks T ∗ = 0.296.
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inventories inflate the apparent false-positive count: unmapped but real landslides predicted as positive are logged
as FP, depressing precision and specificity (Steger et al., 2017). Indeed, the systematic under-reporting discussed in
Sect. 4.1.2 likely shifts a fraction of the 4 016 FP into the true-positive column, implying that the operational precision
could be substantially higher than 0.49. Recent simulation work shows that adding even sparsely sampled “negative
evidence’’—e.g. field-verified non-slide slopes—reduces this bias and sharpens the precision estimate without alter-
ing the optimal T ∗ location (Sahrane et al., 2023).

Despite these limitations, the calibrated threshold delivers a balanced operating point: it captures more than
two-thirds of known events while limiting alerts to ≈ 7% of all slope units (FN + TP). Given the national scale
of deployment, this strike rate is practicable for provincial disaster offices that routinely filter alerts with additional
contextual layers (rain gauges, social media, road hierarchy). Future work should test cost-loss and utility scores
and explore ensemble-of-thresholds strategies to express epistemic uncertainty in user dashboards.
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5 OPERATIONAL BACK-TEST: TRANSLATING
PROBABILITIES INTO ACTIONABLE ALERTS

This chapter comprises two analysis tiers that mirror the operational chain of a LEWS. First, the analysis evaluated
the raw predictive model at its native resolution, the 6 277 slope units partitioning the Quibdó–Pereira corridor, to
quantify pure model skill. Second, the analysis converted those daily probabilities into color-coded road-segment
alerts, illustrating how a research–grade susceptibility map becomes a practical tool for decision-making for road
managers. The Youden-optimal threshold of 0.30 is constant across both tiers to expose how performance metrics
shift when alerts aggregate from spatial cells to linear infrastructure and when additional density rules are imposed.

5.1 Case-study Overview (3-20 Jan 2023)

Heavy precipitation set the stage for the January crisis. Bulletins from the National Disaster-Risk Unit (UNGRD) noted
two pulses of anomalous rain: 7-10 January, when 72-h totals exceeded 100 mm across two western provinces, and
a second surge around 15-17 January with 60-100 mm accumulations in the same corridor (UNGRD, 2023a, 2023b).
IDEAM and the media warned that more than twenty municipalities, including Pueblo Rico, entered red alert for
landslide threat as early as 3 January (Liu et al., 2023). The first operational impact followed almost immediately:
INVIAS introduced traffic controls between km 2 and 18 after multiple landslides, effectively throttling the only trunk
road between the Pacific Region and the centrality of the country (INVIAS, 2023), for references look for Pueblo Rico
in the figure 5.1. Rainfall intensified over the subsequent week and, on 10 January, a failure at km 16 severed the
corridor completely, a swarm of shallow landslides followed, leaving more than 20 000 m3 of debris material along
the road corridor; INVIAS ordered a complete closure. Although a restricted one-lane passage reopened on 11-12
January, new landslides in other parts of the road kept the route under intermittent blockade for the rest of the month,
with local media tracking additional hotspots near Guática and Manizales, the most important city in the area (Infobae,
2023), see Figure 5.1.a.

We defined a 6 946 km2 study area that includes this corridor and 820 additional routes. The official inventory
registered twenty-one distinct landslides that occurred during January 2023 inside the area; six occurred on 10 Jan-
uary alone, making it the most disruptive day in the series as we can observe in the Figure 5.1.b, that juxtaposes the
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mean daily CHIRPS rainfall with these event counts, clearly illustrating how the peak-rainfall window aligned with the
landslide cluster report.

(a)

(b)

Figure 5.1: (a) Road network and landslide events in January 2023, represented by red circles marking
occurrences. (b) Top: mean daily CHIRPS rainfall across the study area (blue bars). Bottom: daily
landslide counts (red dots with stems). Data span 1-31 Jan 2023.

5.2 Slope-Unit-Level Verification at the Operational Threshold

5.2.1 Landslide probabilities

Section 4.2.3 presents confidence intervals for the optimal Youden threshold (0.27 - 0.32), which converts probabilities
(pi) into actionable binary alarms at the SU scale. This range balances omission and commission errors across the
cross-validation schemes discussed in Section 4.2.3. The January 2023 back-test adopts the midpoint, pi ≥ 0.30.
Applying this single cut-point to 6 277 SUs over 31 days (≈ 195 000 SU-days) produces the confusion matrix in
Table 5.2. As mentioned, only 21 SU-days (0.01% of the sample) contain inventoried landslides. Yet, the threshold
marks 62 756 SU-days as “alert” (TP + FP), illustrating the extreme class imbalance that characterizes most regional
inventories (Gupta & Shukla, 2023). The matrix shows 18 true positives and three false negatives, so Recall =

0.857, indicating that the model captures nearly 86% of reported events, this is a desirable trait for early-warning
contexts where missed slides carry high societal cost (Klose et al., 2015). However, the same threshold triggers
62 738 false positives, driving Precision down to 2.9×10−4; this high− recall/low− precision is an expected
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consequence for this unbalanced dataset (0.1% - 99.9% ). The resulting F1-score of 5.7×10−4 confirms that false
alarms dominate the alert stream even though the model missed only three slides.

Table 5.1: Confusion matrix of SU–day alerts versus inventoried landslides, 1-31 Jan 2023.

Observed: No slide Observed: Slide

No alert 131 084 3
Alert 62 738 18

Specificity in Table 5.1 remains moderate (0.676), because two-thirds of non-landslide SU-days rightly receive
no alert; nonetheless, the True Skill Statistic (TSS = 0.533) reach it’s maximum at this threshold as predicted by the
Youden-index analysis in Section 4.2.3 signaling the best compromise the model can offer without additional spatial
or temporal filters. In summary, the SU-level evaluation verified that the chosen threshold minimizes missed events
but at the expense of substantial over-warning.

Table 5.2: Slope–unit skill scores derived from the confusion matrix in Table 5.1.

Metric Value

Precision 0.00029
Recall (Sensitivity) 0.857
Specificity 0.676
F1-score 0.00057
True-Skill Statistic (TSS) 0.533

Building on the low F1-score and extreme false-positive rate revealed by the SU-day confusion matrix, we
mapped the spatial distribution of each of the 6 277 SU according to its outcome over the 31 days with this prior-
itization: hit, miss, false alarm, and correct negative; and colored the SU polygons accordingly as we can see in
Figure 5.2. This spatial contingency map shows that false alarms (orange) occur almost everywhere rather than
clustering in a few hotspots, demonstrating that susceptibility extends across the entire corridor rather than in dis-
crete zones. In contrast, true positives (green) appear in only three small, scattered clusters that coincide with known
events, and only three misses (brown) lie just outside these pockets. When combined with the confusion counts—18
hits versus 62 738 false alarms—the map underscores a critical operational dilemma: over 60 000 SU alerts in Jan-
uary alone would overwhelm any field–inspection effort in a resource-constrained environment like Colombia. These
patterns do not justify the operational use of the model and reinforce the necessity of using it with a more focused
approach to the road network that we will discuss in the following section.
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Figure 5.2: Spatial contingency of model alerts at the SU scale for 1-31 January 2023. Each polygon
is colored over the month. Green for units that generated at least one true positive “hit,” brown for
units that missed a documented slide, orange for units with at least one false alarm, and light gray
for correct negatives.

5.3 Road-Segment Alert Performance

5.3.1 Traffic-Light Visualization

The road-segment alert tier builds directly on the slope-unit findings but translates them into a format that road
managers can act on quickly. Because more than 60 000 SU alerts were scattered across the corridor during one
rainy month, prioritization became essential: the segment rules condense many single-cell warnings into a small set
of traffic-light colors that match widely recognized EWS semantics and follow color-psychology evidence that red
and orange command the fastest hazard recognition, yellow signals caution, and green conveys normality (Neußner,
2021). The logic behind each alert level is described below and summarized in the Table 5.3:

• Red: Marks segments where the model sees an extreme, imminent threat: either the highest SU probability
exceeds 0.50 and the expected slide density is already well above two per kilometer, or the same high prob-
ability co-occurs with at least three slope units that has passed the Youden threshold (0.30 Probability) in the
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adjacent buffer. This dual trigger reflects the Youden-optimal threshold band (0.27-0.32) identified earlier—
doubling it to 0.50 ensures we move far onto the ROC curve’s high-specificity flank so that “red” appears only
when both probability and spatial concentration are exceptional.

• Orange: Denotes elevated but not critical risk. It lowers the probability cut-off slightly (≥0.45) yet still de-
mands either a meaningful watch density (≥0.30) or a moderate expected landslide density (one in 5 km). In
practice, Orange flags segments where conditions escalate and merit pre-emptive inspection, without reach-
ing the certainty implied by Red.

• Yellow: Functions as the early-warning layer: a single watch slope unit or one expected slide along the
segment is enough to nudge crews toward heightened vigilance.

Table 5.3: Road-segment alert palette and operational meaning.

Level Hex code Operational cue Trigger (plain language)

Red D73027 Close / divert immediately High single-SU probability (≥ 0.50)
plus dense expected or watch slides

Orange FC8D59 Inspect within hours Probability ≥ 0.45 with moderate cluster
Yellow FEE090 Prepare / monitor At least one watch SU or one expected
Green 1A9850 Normal operations No SU above the threshold and expected

slides are less than one

This palette appears in Figure 5.3: panel (a) shows how the red and orange rules isolate the three rain-driven
peaks (13-15 Jan), while panel (b) shows that on drier days after the storm only sparse red segments remain, allowing
maintenance crews to redeploy elsewhere. By tying each color to a clear managerial instruction—close, inspect,
prepare, or continue—the map converts statistical probabilities into an actionable decision frame.
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(a) Rainiest days

(b) Driest days

Figure 5.3: Traffic–light alerts on the road network for (a) the three rainiest days (13-15 Jan 2023) and (b) three relatively dry end-of-month
days (26-28 Jan 2023). The red dots represent observed landslides that occurred that day.
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To bridge the visual narrative, recall that the six traffic-light maps in Figure 5.3 already revealed where and
when Red and Orange warnings cluster along the corridor; the bar chart in Figure 5.4 now complements that spatial
snapshot by quantifying which classes of road segments carried those same alerts on each key day. Paved highways
(Type 1 roads) have the country’s heaviest freight and passenger flows; unsurprisingly, they also absorb the largest
share of Red and Orange warnings on 13–15 January in our area, when the rainfall peaked and the model’s spatial
and temporal probabilities were high. The same three wettest days push Paved connectors (Type 3) into a high–
alert state in their proportion, mirroring earlier SU analyses on this research (Sect. 4.2.3). Brenning et al. (2015)
and Fernández-Raga et al. (2021) reported a similar pattern in other landslide-prone areas in Ecuador and Spain
(Brenning et al., 2015; Fernández-Raga et al., 2021), due that primary highways and paved secondaries suffer
continuous surfacing and cut-slope interventions. These features concentrate runoff, leave slopes with poor drainage
systems, and increase landslide probabilities along intervened road segments. Local unpaved connectors (Type 4)
register most Yellow level segments during the rainiest days, yet their alert colors fade the fastest after the peak
rainfall event has passed. Tertiary roads (Type 5), trails, and paths show almost no change between wet and dry
panels, which suggests their residual susceptibility is driven more by static factors like lithology, slope, and human
disturbance than by the rainfall itself. Future researchers should focus on a sensitivity analysis with different rainfall
scenarios, and a threshold calibration if necessary to account for that static susceptibility.
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Figure 5.4: A stacked bar chart showing, for each of the six analysis days (13-15 and 26-28 January
2023), how Green, Yellow, Orange, and Red alerts are partitioned across the seven road classes, see
Table 2.7.

Having established how extreme wet and dry spells shape road segment alerts on individual days, we now
broaden the scope to track how those warning levels rise and fall throughout January. The Figure 5.5 shows a month
stacked series aggregated on alert levels, and it follows and interesting shape where the peak for the red alert was
between January 14–17, precisely during the height of the prolonged rainfall anomaly, while the rainfall event on
January 10 produced only a modest uptick in warnings. This behavior reflects our model’s reliance on both a four-
day trigger window and a 24-day preparatory window, which keeps slopes saturated and probabilities elevated days
after peak storms subside, as similar studies in South Tyrol (Italy) have shown for medium-term precipitation effects
on shallow landslides (Steger & Glade, 2017). After 17 January, total alerts decline gradually, underlining the inertia
introduced by long antecedent rainfall accumulation. Future work should couple alerts with explicit cost/exposure
layers to refine which Red and Orange segments truly deserve scarce response resources.
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Figure 5.5: A stacked bar chart showing, for each of the 31 days, how alert levels are distribuded.

5.3.2 Operational takeaway

Having traced alert volumes across the month, we now distill what those patterns mean for day-to-day decision-
making along the Andean road network. Panel (a) of Figure 5.3 already showed how the three rain-peak days
(13-15 Jan) escalated the Guática road segment from Orange to Red; two slides indeed struck that segment on 15
Jan, forcing single-lane operation while debris was cleared, if this model was implemented INVIAS (Road Authority)
should have mandated the closure on the samemorning that the forecast is released. Escalations appeared two days
before when the road segment was already marked on Orange, indicating urgent actions were needed; this confirms
that the color rules trigger attention two to three days before closures become unavoidable. Table 5.4 summarizes
all 21 inventoried slides: 17 fell under Red, two under Orange, and only two—both minor shoulder slips—remained
Green.

Table 5.4: Observed landslides and traffic-light class on day of occurrence (Jan 2023).

Alert color Count Typical road type Action taken

Red 17 Primary / Paved connector Closure or single-lane control
Orange 2 Secondary paved Visual patrol, no closure
Yellow/Green 2 Local gravel No immediate action

These outcomes tell us that the 0.30 operational threshold and the compound threshold in the Red level flagged
all high-impact events while presenting them in a map legend that road crews already associate with traffic lights. By
tying Red to a combined criterion, the system narrows field deployment to <5% of all segments, a workload Regional
Disaster Management Committees can realistically inspect within one shift. Orange potentially gives a 48-h lead
on emerging clusters; Yellow keeps patrols aware of residual saturation. In short, the traffic-light scheme converts
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statistical probabilities into a vocabulary that engineers and emergency committees already know, delivers timely Red
alarms for every closure we observed, and limits false alarms to a volume that existing patrol capacity can handle.
Future trials on other corridors and under alternative rainfall conditions will refine these thresholds, but the present
results demonstrate that the system is already fit for operational rollout across the Andean network.
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6 DISCUSSION

Our study yielded several key findings that advance landslide early warning capabilities in Colombia’s road network.
First, by auditing and merging eight disparate inventories, we created a unified national landslide dataset and quan-
tified its completeness. We found that only four inventories met the minimum requirements for a spatio-temporal
model: (i) provide the spatio–temporal coverage, (ii) add non–overlapping records (minimal duplicate sourcing), and
(iii) together contribute the most significant volume of events with usable attribute fields (SIMMA Catalog & Inventory,
GeoHazards Colombia & Antioquia), while others lacked crucial attributes like precise locations. The unified inven-
tory (≈17.8k events, 2000-2024) achieves broader coverage than any single source, though at the expense of some
trigger detail. Second, the developed spatio-temporal GAM successfully integrates static susceptibility factors with
dynamic rainfall inputs to forecast landslide occurrence. The model’s overall discrimination is good (area under ROC
≈0.73–0.78) and calibration is reasonable (Brier scores 0.13–0.16) across rigorous validation schemes, indicating
robust predictive power. Notably, using bias-corrected forecast rain (CHIRPS–GEFS) maintained nearly the same
skill as using the historical CHIRPS dataset (AUROC 0.77 vs. 0.78), demonstrating that the system can operate
in real-time without losing accuracy. Third, we identified an optimal probability threshold (Youden’s J maximizer
T ∗ ≈ 0.30, 95% CI 0.27-0.32) that balances sensitivity and specificity for issuing alerts. Applying this threshold
in a past event in January 2023, the model would have successfully flagged 86% of reported landslides, but false
positives would make it unmanageable for the road managers. The threshold sets the reference for a concrete color
code alert map, facilitating risk communication for actionable recommendations. Together, these results show that a
dynamic, data-driven landslide EWS is feasible: it captures most hazard occurrences and can leverage operational
rainfall forecasts to provide timely warnings.

6.1 Inventory Completeness and Model Performance

A reliable landslide inventory is fundamental for robust modeling, yet landslide catalogs are often spatially and tem-
porally incomplete. In this study we introduced two novel metrics - a spatial completeness index based on a kernel-
density (KDE) and a temporal completeness score (A–TUCS) to quantify inventory biases. These metrics provide
a quantitative lens on how unevenly landslides are recorded across space and time. In literature, few studies have
proposed formal completeness measures for landslide inventories. A notable example is the Completeness Index of
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Tanyas and Lombardo (2020), which combines the surveyed area extent and the minimum landslide size fully inven-
toried to rate an inventory’s thoroughness. Such an index was initially devised for event–based, earthquake–induced
landslide maps, but it underscores the same issue our KDE addresses: spatial heterogeneity in mapping efforts.
Our KDE essentially captures mapping inequality across the landscape. Malamud et al. (2004) suggests that the
deviation of an inventory’s frequency-area distribution from an ideal power-law at the low-magnitude end indicates
missing small landslides, analogous to how seismologists infer earthquake catalog completeness.

Temporal completeness, as measured by our A–TUCSmetric, reflects consistency of landslide reporting through
time. In practice, historical landslide records often suffer from reporting gaps for instance, older events or smaller
incidents go unrecorded. No formal proposals on temporal completeness metrics have been reported in the literature.
Our A-TUCS provides a numeric summary of such temporal reporting stability. Although direct analogs in literature
are scarce, the importance of temporal completeness is well recognized. Garcia-Delgado et al. (2022) emphasized
that historical landslide chronicles often omit many non-fatal or remote events, complicating any time-dependent
hazard analysis.

Crucially, inventory completeness influenced our model’s performance in line with expectations from other re-
gions. When we merged multiple inventories, the overall completeness improved, and our GAM forecasts became
more reliable. In contrast, any spatial or temporal blind spots in the data introduced bias and uncertainty. This out-
come echoes the findings of Sahrane et al. (2023), who deliberately degraded a landslide inventory in a susceptibility
modeling experiment. They found that model accuracy dropped as information was removed - the less complete
inventory led to notably lower predictive performance. Similarly, Steger et al. (2017) report that using different in-
ventories for the same area yields significantly different susceptibility maps, underlining that “the most erroneous
predictions, but highest predictive performances, were obtained” with the most incomplete inventories when spuri-
ous predictors were included. This counter-intuitive rise in apparent performance (e.g., high AUROC despite bias)
occurs because the model is exploiting an incidental pattern in incomplete data. In our case, we observed a related
phenomenon: models trained on earlier, less-complete versions of the inventory sometimes achieved a deceptively
high AUROC by focusing on areas dense with reported landslides, whereas truly at-risk areas lacking past reports
were overlooked. These findings reinforce that metrics like AUROC alone cannot reveal if a model is learning the
“right” signals or just artifacts of inventory bias. It also validates the premise behind our completeness metrics -
by diagnosing spatial/temporal gaps ( KDE / A-TUCS), we can interpret model results with appropriate caution. In
sum, our experience aligns with the consensus that enhancing inventory completeness improves model quality and
credibility. Efforts to evaluate or correct for inventory biases should go hand-in-hand with model development. As
landslide prediction moves towards operational use, quantifying inventory completeness (using approaches like ours
or established indices like those of Tanyas and Lombardo (2020)) can be valuable for communicating confidence in
model outputs to end-users.
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6.2 Spatio-temporal landslide modeling

Our spatio-temporal modeling approach can be contextualized by comparing it with recent studies in Colombia. In
particular, Vega et al. (2024) investigated rainfall–landslide dynamics in the Colombian Andes from an exploratory
angle, without a full predictive model. They performed a space–time analysis using 42 years of rainfall data and
landslide occurrence records, looking at seasonal patterns and the influence of ENSO cycles. Their findings highlight
important differences in landslide timing under various climatic conditions. El Niño and La Niña years further modulate
these patterns, as Vega notes - La Niña (wetter conditions) tends to elevate landslide frequency throughout the
year, whereas El Niño suppresses landslides except for clusters in a few months, similar findings as we reported
by Steger et al. (2023) with seasonal landslide occurrence in Italy. Gómez et al. (2023a) uses random forest for
landslide modeling in the Colombian Andes. She analyzed fixed rainfall windows. Our GAM framework allowed
us to empirically determine which rainfall accumulation periods are the most predictive. Our model similarly found
that longer-term antecedent rainfall is more significant than the trigger rainfall, but both have predictive power when
modeling landslides, which aligns with the notion that a wet preseason prepares the slopes for failure. This is an
artifact based on three possible explanations: (i) Forecast precipitation products tend to hide high amount in short
periods of time that tends to be the greatest landslide initiation in the tropics (Aristizábal et al., 2022), so the importance
is an artifact from the dataset more than a physical representation of the reality; (ii) time aggregation, usually the
rainfall that trigger a landslide can happen in minutes to hours, we are working on a daily scale and in this scale
accumulation is more important; (iii) The other co factors are hiding the real explanatory power of triggering rainfall,
when we removed one of the two pairs from the model the performance dropped confirming that the pair trigger and
accumulative is important. A key difference in model structure, however, is that Gómez et al. (2023a) uses pixels
for aggregation; we used SU. She tested the historical CHIRPSV2 estimations dataset in the same study area with
an AUROC of 0.79; we implemented an ensemble forecast model, CHIRPS–GEFS, with similar outcomes. Gomez
tested other rainfall products like the vast gauge network of IDEAM with the same model, and surprisingly, the model
performance rose to 0.89. This shows an interesting future research on developing a bias-corrected forecast for
the IDEAM dataset with potential applications in more temporally and spatially disaggregated landslide forecasting
models. We can not forget that we developed a model for Colombian roads; thus, the probabilities were transferred
from the SU to the roads. This increases the resolution of risk information, but also requires careful validation to avoid
false precision.

Methodologically, our study bears a strong resemblance to the framework presented by Steger et al. (2023) and
further advanced by Moreno et al. (2024). They employ GAMs and extensions with mixed effects to predict landslide
occurrence in a spatio-temporal context. Notably, both our study and theirs incorporate climate indicators to capture
broader environmental variability. In our case, we included terms to account for the ENSO phase (ONI), acknowl-
edging that phenomena like El Niño/La Niña can shift baseline landslide probabilities. Steger et al. (2023) likewise
emphasize seasonality and interannual climate oscillations: their model of alpine landslides included seasonal pre-
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cipitation interactions, and they discuss the potential of extending GAMs to include indices like NAO or ENSO, as
we did in this research. Another commonality is the use of rigorous cross-validation. Both studies recognize that
randomly splitting data is insufficient in spatio-temporal models due to autocorrelation. We adopted a blocked cross–
validation, testing the model on entire spatial regions and future time slices not seen during training. Steger et al.
(2023) followed an even more exhaustive scheme: they performed spatial and temporal leave-one-out partitions and
even leave–one-factor-out experiments to probe model stability. The outcome in both cases is enhanced confidence
that the models generalize beyond the specific instances used for calibration. Indeed, Steger et al. report little loss in
AUROC when validating across space or time, indicating a robust model. We observed a similar pattern; our model’s
performance held up when predicting landslides in new provinces and in different years than those used for training.
From our work and from Moreno et al. (2024) and Steger et al. (2023) - suggests that GAMs, with their flexibility and
interpretability, are emerging as a powerful tool for landslide hazard forecasting, marrying the strengths of statistical
susceptibility mapping with those of explicit rainfall threshold modeling.

Another aspect of performance is the threshold optimization for issuing warnings. We employed the Youden
index to determine an “optimal” probability cutoff for alerts on road segments. This criterion maximizes the sum of
sensitivity and specificity, effectively balancing missed landslides and false alarms. Using the ROC curve in this
way is a common practice in medical prognosis and has been applied in landslide early warning contexts as well.
For instance, Jakob and Weatherly (2003) demonstrated how to pick a rainfall threshold that maximizes correct
predictions of landslide days vs. non-landslide days (equivalent to Youden’s J statistic), and more recently Piciullo
et al. (2017) used a similar approach to define warning thresholds in an Italian warning model, emphasizing the
need to minimize false negatives while controlling false positives. Our chosen threshold corresponded to a moderate
probability (around 30% daily landslide chance for a SU failure), which yielded a high hit rate in back-testing but
also a high false alarm rate. We acknowledge that the “optimal” threshold is not purely a mathematical decision
- it must consider the risk tolerance of authorities. In some applications, a lower threshold (favoring sensitivity) is
preferred to ensure every potential landslide is flagged, whereas in others, a higher threshold is used to avoid over-
warning. The Youden-based threshold in our study is a starting point, and we need to discuss with stakeholders how
adjusting it would impact warnings. Notably, our threshold strategy benefited from the model’s probabilistic nature:
unlike deterministic rainfall threshold methods that have a fixed yes/no trigger, our system can in principle issue
graduated warnings. This is similar to approaches in weather forecasting where probabilistic thresholds are mapped
to watch/warning categories. Overall, the use of ROC/Youden optimization provides a transparent and reproducible
way to link model output to action triggers, but it should be continually reviewed as more data on hits and false alarms
accumulate in operational use.
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6.3 Operational Implications for Early Warning

Translating a statistical model into an operational LEWS raises considerations beyond pure predictive skill – notably,
issues of transparency, communication, and integration with existing decision–making frameworks. A key advantage
of our chosen modeling technique (GAM) is its interpretability. In a public safety context, model transparency is not
just a theoretical nicety but often a requirement: civil protection agencies and the public are more likely to trust and
accept warnings if they understand the rationale behind them. GAMs offer clear insights into how predictors affect
landslide probability (through their response functions), enabling us to explain that El Niño conditions correspond to
a lower baseline risk in the Andes. Such statements can be backed up by the model’s structure. In contrast, more
complex “black-box” approaches like deep neural networks, while capable of high accuracy, make it difficult to trace
why a certain prediction was made (Kruschel et al., 2025).

Coming back to the operational part, our system has the potential to issue a probabilistic outlook up to two weeks
ahead, highlighting areas where prolonged heavy rainfall might induce landslides. In this work, we only tested on the
forecast for the same day, but this is a step towards truly proactive landslide risk management, allowing, for instance,
a truly predictive capability, and transportation agencies to schedule pre-emptive road inspections or staged closures
days in advance of an extreme rain event. However, the credibility of such long-range forecasts must be maintained.
Ensemble forecasts naturally carry increasing uncertainty at longer leads. In practice, while CHIRPS–GEFS performs
well for the tested day, forecast skill could diminish in the coming days (a common feature of any numerical weather
prediction). It also leverages the ensemble nature of GEFS: because CHIRPS–GEFS is updated daily, we can watch
the probability of a landslide event evolve – if it consistently remains high over successive runs, confidence increases.
In short, CHIRPS–GEFS provides a valuable data source to drive our model but we emphasize that its outputs should
be interpreted through a risk management lens, appreciating the forecast uncertainty.

An avenue for future improvement is to calibrate the model’s output for different lead times – effectively ap-
plying a weather forecast reliability correction to the landslide probabilities. One of the final steps in our work was
translating SU–based landslide probabilities to road-segment alerts. We tested a simple heuristic: if any portion of
a road segment’s exceeds certain thresholds, that road segment is flagged for caution or closure. This approach is
straightforward, but we recognize it could be refined to avoid having a high number of yellow and orange alerts. Other
work should include exposure information for cost analysis that supports the decision-making process for mobilizing
resources. How does this compare to practices elsewhere? In many countries, road closures for landslide risk are
still informed by expert judgment or simpler rules rather than automated forecasts. For example, in Alpine regions,
officials might close mountain roads preemptively if intense rain exceeding threshold values is expected. Italy’s na-
tional guidelines do not yet dictate road–specific landslide warnings; instead, warnings are issued for broader zones
(municipal or catchment scale) (Segoni et al., 2015). Within those zones, critical infrastructure like roads or railways is
managed by authorities who use the zone warning plus on-site observations to take action. Japan similarly operates
on an area-wide alert system: the Japanese Meteorological Agency issues landslide alert information on a municipal
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basis when short-term rainfall and soil moisture indices surpass critical values (Osanai et al., 2010). Those alerts
often lead to road closures or train stoppages, but the trigger is at city/district level, not an individual road.

Our model-based system offers a more holistic assessment: it factors in antecedent rainfall, terrain susceptibility,
and even climate signals, then uses that to interpret forecasted rain. This means a road could be flagged even if short-
term rain intensity is moderate, if the cumulative conditions suggest a landslide is imminent – potentially preventing
incidents that threshold–only systems might miss. Conversely, if a normally critical rain threshold is exceeded but our
model “knows” the terrain is resilient or the antecedent conditions are dry, it might hold off on issuing an alert, thus
reducing false alarms. This kind of nuanced decision support is a major value add of dynamic-based LEWS over
static heuristics. It is worth noting, that introducing a more complex system to operational agencies requires training
and calibration. This kind of interpretability and alignment with physical understanding is critical if such a system is
to be adopted and sustained. Our approach contributes to this goal by demonstrating a pathway to move from static
hazard maps to dynamic, impact-based forecasts, and it invites further refinement and collaboration with both the
scientific community and operational stakeholders to fully realize its potential.

A central goal of this research is to translate model outputs into actionable guidance for road managers (INVIAS)
and meteorological agencies. The findings support several practical steps. Firstly, INVIAS could run a live pilot in an
upcoming rainy season: dispatch response teams when red alerts are issued and track outcomes (were landslides
found? how many false trips?). This field feedback loop will be vital for refining the alert criteria and building trust in
the system among road engineers and emergency committees. Thirdly, close collaboration with IDEAM is advised.
IDEAM manages national meteorological monitoring and already issues regional rainfall warnings; by integrating
our landslide–risk model with IDEAM’s forecasting platform, warnings can become impact-based rather than just
hazard-based. Specifically, IDEAM can provide higher–resolution or updated forecast inputs and help disseminate
the resulting landslide alerts through its communication channels. Likewise, INVIAS should share any new landslide
incident data back to SGC to continuously update the model and landslide database, establishing a two-way data
exchange. Lastly, an operational recommendation is to use themodel outputs not only for binary open/close decisions
but also for proactive risk reduction. For example, if a highway segment is persistently flagged orange over several
days of heavy rain, INVIAS could pre–position machinery and crews nearby, issue public travel advisories, or perform
controlled road closures during the storm’s peak as a precaution. This tiered response, guided by model alerts, can
optimize resource allocation: concentrate efforts on red hotspots, monitor orange areas, and avoid unnecessary alarm
in green zones. In essence, the system provides a quantitative, evidence–based complement to expert judgment,
helping authorities transition from reactive landslide response to a more anticipatory road management approach.
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7 CONCLUSSIONS

This study set out to build a fully-operational, spatio-temporal Landslide Early Warning System (LEWS) for Colombia’s
Andean road network and, in doing so, addressed all the research questions posed. First, eight disparate invento-
ries were harmonized; by translating taxonomies, eliminating duplicates, and applying the new Advanced-Temporal-
Uncertainty-and-Completeness-Score (A-TUCS), we proved that only four sources (SIMMA Inventory, SIMMA Cat-
alogue, and the two GeoHazards datasets) meet modern quality standards. A-TUCS exposed severe temporal and
spatial gaps in the remainder, confirming its value as an objective screening tool.

Second, the study showed that landslide probability along roads is controlled jointly by short-term trigger rain (4-
day window), longer antecedent accumulation (23-day window) and ENSO-modulated moisture history, while topog-
raphy, lithology and human disturbance provide the static pre–conditioning. A Generalised Additive Model captured
these controls with high interpretability; dynamic terms alone explained one-third of model performance. When driven
by near-real-time CHIRPS–GEFS forecasts the model retained 97% of the discrimination achieved with retrospective
CHIRPS rainfall, demonstrating true forecast skill. Robustness tests (random, spatial, seasonal, yearly and inventory
hold-outs) all delivered AUROC > 0.70, confirming that the model generalizes across terrain, climate cycles and data
sources.

Third, we derived a single, nationally transferable decision threshold (p ≥ 0.30) using Youden’s J, balancing
sensitivity (0.63) and specificity (0.77) in line with best practice for hazard warnings. At slope-unit scale this captured
86 % of January 2023 events while limiting alerts to 7 % of units during the entire tested month. To translate science
into action, probabilities were aggregated onto buffered road segments and expressed through a four-color “traffic-
light” palette already familiar to Colombian emergency committees. During the January back-test every closure–
inducing landslide occurred on segments flagged Red or Orange two to three days in advance, confirming that the
thresholds are both timely and operationally meaningful.

Finally, the study demonstrated that linking inventories with infrastructure allows quantitative estimation of “ex-
pected slides per kilometer”, bridging the gap between susceptibility maps and cost-benefit road management frame-
works. By answering RQ 1.1-1.3 we delivered a unified, high-quality database; by addressing RQ 2.1-2.4 we pro-
duced and validated a forecast-capable GAM; and by resolving RQ 3.1-3.2 we convertedmodel output into actionable,
color–coded alerts that performed flawlessly in a real-world crisis. In sum, the project not only advances Colombian
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disaster–risk governance but also offers an open–source, modular blueprint for any mountainous nation seeking to
achieve the UN “Early Warnings for All” target by 2027.
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ABBREVIATIONS AND SYMBOLS

• General Abbreviations:

– API: Application Programming Interface
– CSV: Comma-Separated Values
– DEM: Digital Elevation Model
– DOI: Digital Object Identifier
– DRM: Disaster Risk Management
– DRR: Disaster Risk Reduction
– DDRRMM: Digital Disaster Risk Reduction Maturity Model
– EWS: Early Warning System
– GIS: Geographic Information System
– ICT: Information and Communications Technology
– IoT: Internet of Things
– ISO: International Organization for Standardization
– JSON: JavaScript Object Notation
– MoU: Memorandum of Understanding
– NGO: Non-Governmental Organization
– PPP: Public-Private Partnership
– QA/QC: Quality Assurance/Quality Control
– SMS: Short Message Service
– SOPs: Standard Operating Procedures
– URL: Uniform Resource Locator

• Colombian-specific abbreviations:

– SGC: Servicio Geológico Colombiano (Colombian Geological Service)
– SIMMA: Sistema de Información de Movimientos en Masa (Landslide Information System, SGC)
– IDEAM: Instituto de Hidrología, Meteorología y Estudios Ambientales (Institute of Hydrology, Meteo-

rology, and Environmental Studies)
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– UNGRD: Unidad Nacional para la Gestión del Riesgo de Desastres (National Unit for Disaster Risk
Management)

– INVIAS: Instituto Nacional de Vías (National Roads Institute)
– SNGRD: Sistema Nacional de Gestión del Riesgo de Desastres (National Disaster Risk Management

System)
– SIATA: Sistema de Alerta Temprana de Medellín y el Valle de Aburrá (Medellin and Aburrá Valley Early

Warning System)
– DesInventar: Disaster Inventory Database (UN-supported disaster database widely used in Latin

America)

• Institutional Abbreviations:

– GFDRR: Global Facility for Disaster Reduction and Recovery (World Bank-supported initiative)
– ITC: Faculty of Geo-Information Science and Earth Observation, University of Twente, Netherlands
– UGLD: Unified Global Landslide Database
– UNDP: United Nations Development Programme
– UNDRR: United Nations Office for Disaster Risk Reduction (formerly UNISDR)
– UNISDR: United Nations International Strategy for Disaster Reduction (previous name of UNDRR)

• Platforms and Portals:

– Geohazards: Colombian geological hazard research group with a geoportal with Antioquia landslide
occurrences. Part of the National University in Medellín

– Colombia en Mapas: Colombian Geospatial Data Hub portal.
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A APPENDIX A: INVENTORIES CHARACTERIZATION

Table A.1: Provenance and custodianship of Colombian landslide inventories.

Inventory Ownership Key data sources Last updated Regular
updated?

Format(s) Access / link

Gómez et al.
(2023a)

University of Antio-
quia/Medellin/National

SIMMA, DesInventar,
GeoHazard

2023 Yes SHP e-mail on request

GGarcia-Delgado
et al. (2022)

Academic review 15 historical studies, SIMMA 2020 No XLSX https://data.mendeley.com/
datasets/xbrc8gvby9/1

GeoHazards (Ant.) National University
of Colombia
(Medellín)

Municipal reports, media,
AMVA

2025 Irreg. SHP/GeoJSON https://geohazards.com.co/
visor-geohazard.html

GeoHazards (Col.) National University
of Colombia
(Medellín)

fire brigades, media,
DESINVENTAR

2025 Irreg. SHP/GeoJSON same as above

(continued on next page)
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(Table A.1 continued)

Inventory Ownership Key data sources Last updated Regular
updated?

Format(s) Access / link

SIMMA
(Inventory)

SGC SGC, Universities, CARs,
IDEAM

2023 No PDF, XLSX, SHP https://simma.sgc.gov.co/
#/public/basic/

SIMMA (Catalog) SGC Risk units, NGOs, Responders,
Media, Government
organizations

2025 Irreg. PDF, XLSX, SHP same as above

INVIAS (Critical) INVIAS Road engineers 2023 No CSV e-mail on request

INVIAS (Emerg.) INVIAS Road emergency portal 2023 No CSV/SHP/GEOJSONhttps://hermes2.invias.gov.
co/SIV/
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Table A.2: Spatial definition of each inventory.

Inventory Region covered Geometry type(s)

Gómez et al.
(2023a)

Andean region Points

Garcia-Delgado
et al. (2022)

Nationwide Point

GeoHazards (Ant.) Antioquia Points

GeoHazards (Col.) Nationwide Points

SIMMA
(Inventory)

Nationwide Points + polygons

SIMMA (Catalog) Nationwide Points

INVIAS (Critical) Nationwide Points

INVIAS (Emerg.) Nationwide Line strings (roads)

Table A.3: Temporal coverage and granularity.

Inventory Start-end years Granularity Auxiliary time fields (if any)

Gómez et al.
(2023a)

1981-2023 Day Report dates

GGarcia-Delgado
et al. (2022)

1743-2020 Day Report dates

GeoHazards (Ant.) 1880-2025 Day Report dates

GeoHazards (Col.) 1880-2025 Day Input, Survey, Report dates

SIMMA (Catalog) 1492-2024 Day Survey, Report dates

INVIAS (Critical) 2018-2023 Day Report dates

INVIAS (Emerg.) 2019-2023 Hour Interruption dates
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Table A.4: Thematic content captured by each inventory.

Inventory Descriptive variables Mapping technique Trigger info Impact indicators

Gómez et al.
(2023a)

Types, sub-types; alt.;
state

— Mixed /
unknown

Deaths, generic losses

Garcia-Delgado
et al. (2022)

Municipality only — Unknown Fatalities

GeoHazards (Ant.) Types Third party reports,
remote sensing

Unknown for
some entries

Deaths, econ. loss

GeoHazards (Col.) Types Third party reports Unknown for
some entries

Deaths, econ. loss

SIMMA
(Inventory)

Lithology; land-use;
photos

RS + geomorph. +
Field validation

Trigger +
inherent +
contr.

Econ., env., USD
value

SIMMA (Catalog) Material; photos; alt. RS + geomorph. None Damage class, value

INVIAS (Critical) Road name; photo Field validation None Road impacts

INVIAS (Emerg.) Slope class Field validation None Road impacts

Table A.5: Data-quality and completeness information.

Inventory Quality / completeness
notes

Metadata available?

Gómez et al.
(2023a)

Uncertainty flags (5 235
events) - type not specified

No

Garcia-Delgado
et al. (2022)

Confidence ratio Partial (methods)

GeoHazards (Ant.) Uncertainty flag every
record; unclear kind

No

GeoHazards (Col.) Same as Antioquia version No

SIMMA
(Inventory)

Date uncert. flagged for
3rd-party events

Format and instructions

SIMMA (Catalog) Same as Inventory Format and instructions

INVIAS (Critical) No uncertainty info No

(continued)
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(Table A.5 continued)

Inv. Data-quality note Meta?

INVIAS (Emerg.) No uncertainty info No
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Table A.6: Size, spatial and temporal completeness metrics.

Inventory Records Characterisation (%) Spatial (%) A–TUCS Temporal scope

SIMMA (Inventory) 9 175 100.0 31.8 0.734 1900–2023

SIMMA (Catalog) 35 658 83.8 29.4 0.887 1724–2024

GeoHazards (Comb.) 7 519 66.7 10.8 0.515 1880–2025

Table A.7: Impact information and data-quality metrics for the source inventories.

Inventory Binary impact info
(%)

Economic-loss info
(%)

Trigger info (%) Accuracy attributes
(%)

Impact attribute description

GeoHazards
(Combined)

0 27.1 59.3 54.6 Death + economic losses; some
road/field details

SIMMA (Inventory) 65.3 9.9 86.6 35.0 Infrastructure, economic,
environmental; quantity + USD
value

SIMMA (Catalog) 32.4 2.3 0 48.1 Infrastructure, economic,
environmental; quantity + USD
value
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Table A.8: Completeness metrics for the unified inventory before and after the post-2000 filter.

Inventory version Records Characterisation (%) Spatial (%) A-TUCS Temporal scope Trigger (%) Accuracy
(%)

Combined - no filter 50 156 83.0 28.8 0.831 1724-2024 66.8 50.6

Combined - post-2000 filter 17 824 87.9 29.0 0.767 2000-2024 21.8 29.8
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B APPENDIX B: SUPPLEMENTARY MATERIAL FOR
MODELING AND VALIDATION STEPS

Figure B.1: Precision-Recall Positive Predictive Values comparison dynamic models107



Figure B.2: GAM ONI Index linear effect

B.1 Categorical contribution in GAM modeling
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