
1

Improving the execution time of the FOCS
algorithm implementation to enable real-time

optimized EV scheduling
Loonstra, Joas
Bart, Duncan

Chen, Kuan-Hsun

Abstract—The Flow-based Offline Charging Scheduler (FOCS)
and Flow Under Local PEnalties Solver (FULPES) algorithms
were made to schedule the charging of electric vehicles (EVs). The
FOCS algorithm schedules the EVs without accounting for any
charging guarantees a parking lot might provide. The FULPES
algorithm is based on the FOCS algorithm, however it does
provide a schedule which adheres to the charging guarantees.
This increases execution times significantly. Due to the increase
in execution time, real-time implementation could not be reached.
This report details how the goal to speed-up the FOCS algorithm
by a factor 100 was met. Finally achieving a speed-up of 185
times, reducing execution time from 300 ms to 1.6 ms for 200
simultaneously charging EVs.
Methods such as porting from Python to C++, improving memory
locality and changing variable types were used. The speed-up
amount decreases as the instance size increased, due to the need
for a slower fall-back method in solving maximum flow problems.
This makes the current solution not yet applicable for larger
parking lots.

I. INTRODUCTION

Charging electrical vehicles (EVs) can have a high toll on
the electrical grid, possibly even causing power outages [1].
This suggests that the charging of EVs should be scheduled in
order to mitigate the peak power consumption of parking lots.
For this reason the Flow-based Offline Charging Scheduler
algorithm (FOCS) was developed. FOCS creates a schedule
which can be used to charge these EVs effectively and within
a timely manner [2]. However, one thing which the FOCS
algorithm does not take into account is the sudden departure
of some EVs.
Therefore the Flow Under Local PEnalties Solver (FULPES)
algorithm was created. It is based on FOCS, however the
algorithm takes the charging guarantees provided by some
parking lots into account. FULPES takes a long time to
execute, therefore we aim to aid in the real-time adaptation
of the FULPES algorithm.
In large-scale settings of 200 to 400 parking spots, the
current FULPES implementation can take up to 60 seconds
to compute a full schedule. Although no specific running
time constraint is imposed in the closing statements of the
paper on FULPES by Winschermann et al. [2], we adopt
a 1-second runtime target. This reflects the need for quick
re-evaluation in real-time EV-charging scenarios where EVs
arrive and depart at random frequencies. This means that a
minimum speed-up factor of 60 is necessary.

However, the publicly available FULPES implementation
when starting this project was not yet fully functional,
therefore the decision was made to improve FOCS instead of
FULPES. This will still aid in the improvement of FULPES
since it is based on the FOCS algorithm. To ensure robustness
under edge cases and provide performance headroom, this
research targets a 100x speed-up, reducing the total execution
time to at most 1 second for the largest instances. The original
FOCS code takes on average 300 ms to calculate a schedule.
Consequently, this corresponds to a target of 3 milliseconds
per 200-spot schedule, forming the performance benchmark
for real-time adaptation.
This research will look into how the FOCS EV-charging
algorithm can be optimized to efficiently calculate a 200-spot
EV-charging lot schedule within 3 milliseconds.

Code is publicly available at: https://github.com/JoasLoo/
FULPES

II. THEORETICAL BACKGROUND

This section covers what flow networks are, how the maxi-
mum flow can be found and how we will use them to schedule
EV charging. Then multiple methods of reducing the run-time
of the original FOCS program will be explored.

A. Flow Networks

Flow networks are a set of vertices connected via a set of
edges. All of these edges are given a capacity, through which
that amount of flow can pass. The flow is an abstract variable,
however it can be translated to a lot of things. It can mean
quantities of water, amounts of power, or anything which is
desired. For this report, the flow through the network will
correspond to the flow of power to an EV.
Each network has a designated source and sink node. The
maximum flow is the amount of flow that can be sent from the
source to the sink. In other words, a maximum flow problem
includes finding a feasible flow through a flow network, which
has the highest possible flow rate. All nodes except the source
and the sink must have the same flow going into the node
as going out. This means that nodes cannot generate or store
flow.

https://github.com/JoasLoo/FULPES
https://github.com/JoasLoo/FULPES

2

B. Maximum flow algorithms

Maximum flow algorithms try to find the maximum
flow from a source node to a sink node through vertices.
The maximum flow is found for the given capacities and
connections. These connections form a network of edges
between vertices with a capacity. The edges have a capacity
which is used to find the maximum flow from the source to
the sink. There are multiple methods of finding the maximum
flow. For example the Goldberg and Tarjan maximum flow
algorithm is based on the height of a node and the excess
flow that is situated in that node [3]. Whereas the Ford-
Fulkerson algorithm finds all paths and starts filling each path
1 unit of flow at a time, until the maximum flow is reached [4].

Different algorithms have been created in order to reduce
the running time of finding the maximum flow. The worst-case
running time of the Edmonds-Karp algorithm is denoted as
O(ve2) [3, 5] where v is the number of vertices and e is the
number of edges. The Shortest Augmenting Path algorithm
(SAP) has a worst-case time complexity of O(v2e) [6]. The
older Ford-Fulkerson algorithm has a time complexity of
O(vf) where f is the maximum flow in the graph [4].

Figure 1 shows an example graph as initially constructed
by FOCS. The Edmonds-Karp algorithm uses a Breadth First
Search (BFS) method to find paths to fill in. It searches for all
possible neighbour nodes from the current node. From node
s it puts nodes j1, j2, j3, j4 and j5 in a queue, from these
nodes it repeats the process until it encounters the sink (t in
the example) then it exports the path from the source to the
sink. Eventually the first path it finds is s → j1 → i1 → t, it
will find the limiting capacity along this path, which is 3.36
in this case. After which it fills in this flow for all edges in
the path. This search then continues until there are no more
paths available for additional flow.
The Shortest Augmenting Path (SAP) algorithm works differ-
ently. It starts by assigning a height label to each node, with
the sink set to height 0. The heights increase as you move
away from the sink. For example, in the graph in figure 1, all
nodes i are given height 1, nodes j get height 2, and the source
node s is assigned height 3.
Using these heights, the algorithm searches for augmenting
paths. From the starting node, it looks for a neighbor with a
lower height—this indicates that flow can be pushed in that
direction. If there is residual capacity on the edge and the
neighbor’s height is exactly one less than the current node’s,
then that edge can be added to the path. SAP uses Depth
First Search (DFS) to explore the graph along these available
edges and construct valid paths for pushing flow. The search
starts at s, finds j1, and from j1 continues, to find i1 and then
to t. After which a path is found, the flow is filled in and
the search continues. If a dead end is found, where there is
no residual capacity to any edge, the height of that node is
increased by one in an attempt to include backward edges in
the next search. Once no more path can be found using SAP,
it finishes by having another algorithm as a fallback, this fills
in the last few remaining edges.

Fig. 1. Graph created during FOCS, using the first 5 entries of the data
file DEMSdata_FOCS_v1 as provided by L. Winschermann. Drawn using the
Graphviz Preview application.

C. FOCS

The Flow-based Offline Charging Scheduler algorithm
(FOCS), is an algorithm which aims to find the optimal EV
charging schedule for a parking lot filled with EVs. The graphs
consist of 4 layers, the source and sink and 2 layers in-between
which determine the power output to each EV [2], see figure
1. The edges indicate the maximum power flow that can reach
each state within the graph. With this set-up a maximum flow
algorithm can be used to effectively schedule the charging of
electric vehicles. The solving phase of the FOCS algorithm
utilizes a sub-algorithm, for solving maximum flow problems.
This sub-algorithm is executed in multiple rounds in order to
achieve the required result. The entire FOCS algorithm has a
worst-case time complexity of O(v2x). Here v is the amount of
vertices in the digraph and x is the worst-case time complexity
of the used maximum flow algorithm [2]. The main innovative
aspects of FOCS are the generation and updates of the graph.
Where the generation happens in the setup phase and the
updates and solving happen in the solving phase. The FOCS
algorithm takes 5 rows of input from a dataset to calculate the
power to each EV. First a job-list is created, where each job
is an EV. This list is used to create the first layer connected to
the source. The capacity from the source to each job is equal
to the "total_energy_Wh" variable, which is the total amount
of energy the car is requesting. In figure 1 this is the j-layer.
The second layer is the time intervals which the jobs are in,
seen as the i-layer in the example graph. Time is divided into
slots of 900 seconds, the arrival and departure time of each
EV is measured in these timeslots. The edges are then created
between the jobs and the timeslots they are in. The capacity
of these edges is based on the maximum amount of energy
that can be charged in that time interval. The last edges, from
each timeslot to the sink, are initiated to 0 and later updated
during the solving phase of FOCS.

The updating of the graph is done in two steps, the first is
defining critical and subcritical jobs in the j-layer. If the energy
demand can be fulfilled for a job, then that job is set as critical.
After all jobs have been flagged as either critical or subcritical,
all critical jobs are removed from the graph, thereby shrinking
the graph. After this step, an extensive formula, which can be
found in the original work of Winschermann et al [2], is used

3

to calculate the new capacities of all edges.

D. FULPES

The FOCS algorithm functions as expected, however park-
ing lots have charging guarantees which need to be met. These
charging guarantees can sometimes be visible when entering
a parking lot. They often state how much power is guaranteed
to have charged by a certain time. These charging guarantees
were not accounted for in the FOCS algorithm, therefore
another iteration of FOCS was created, namely the Flow
Under Local-PEnalties Solver algorithm (FULPES). FULPES
is based on FOCS, however with extra requirements. These
charging guarantees are implemented in the algorithm as dif-
ferent sub-graphs with their own specific charging guarantees
and limits per time interval. These sub-graphs are instantiated
by adding an additional layer next to the j- and i-layer, which
will be set as the sink. This new implementation made the
time complexity a lot larger, since it has become O(|v||e|x).
The difference between FOCS and FULPES lies only in
the charging guarantees. For the algorithm this means; the
initiation of the graph to be solved. The FULPES graph has an
additional layer before reaching the sink. This extra layer adds
extra vertices and edges, and needs to be solved independently.
Thereby requiring the algorithm to solve multiple sub-digraphs
per iteration, increasing the execution time.

III. IMPROVING EXECUTION TIME

Improving the execution time of a program can be done
in a few steps. Some of the more straightforward ones are
porting the code to a faster language and using Compressed
Sparse Row (CSR) format for storing graphs. These will be
the first steps to be discussed in this section. After applying
those, a few other optimizations are discussed, tested and
added to further improve performance. Subjects that will be
discussed are Multithreading, Memory locality and Algorithm
changes.

A. Porting to C++

At the time of starting the project, the newest publicly
available algorithm of FULPES was not fully functional,
therefore the decision was made to improve the execution
speed of the FOCS algorithm. Once the FULPES algorithm
is available to be implemented with a shorter execution
speed in mind, the FOCS implementation can be adapted to
include charging guarantees. This effectively turns the FOCS
implementation into FULPES.

The available code for FOCS was written in Python, this
code utilizes the NetworkX library. Python is a high-level cod-
ing language which means that there is very little optimization
capabilities in terms of improving execution times, therefore
the whole FOCS code was ported to C++. In C++, there are
many options for fine-tuning performance, particularly when it
comes to memory management, loop execution, and compiler
settings. While many performance tweaks require changes

Fig. 2. Computer memory access pyramid including rough time estimates
[9].

inside the code itself, compile options are applied externally
in the compile command.
These compile commands can be used in C++ since the code is
converted from the original code into an executable file, where
the compiler sees all of the code and can selectively improve
parts. In Python, the code is directly run from the coding file,
meaning it performs a lot of checks whilst executing.

B. Memory access

Optimizing memory hierarchy is crucial for enhancing sys-
tem performance and efficiency [7]. By improving cache uti-
lization and therefore reducing the cache miss rate, execution
times can be reduced. Figure 2 displays the different levels
of memory including rough estimates of the time it takes to
read data from these memory levels. Copying data to these
different levels happens in blocks. This means that data which
is located next to one another is copied to higher level storage
at the same time. This can be done in C++ by pre-allocating
memory. When memory is pre-allocated, it attempts to include
all of the adjacent memory locations in the storage of that
array. As a result, when pulling a block of memory into L1
Cache, it contains a larger portion of the needed data. Once
this data is located in the L1 Cache, the memory access time
decreases, increasing performance. The better memory locality
increases not only the access time, however also decreases the
cache miss rate. The miss rate is when a core attempts to find
data in a cache layer, which that specific data is not stored in.
Each cache miss results in a miss penalty, which can take up
to 20 ns. Therefore, reducing the miss rate directly lowers the
total execution time [8].

The original FOCS code utilizes strings of characters as
vertex names, however this is generally slower than using
integers since integers are stored as 4 Byte numbers. Whereas
an array of ASCII characters, string variables, can be any
length of bytes which is not always pre-defined. However, the
variable length isn’t the only disadvantage, string variables
in C++ take up at least 32 Bytes as seen in our tests. Since
it is not pre-defined, more checks and conversions need to
happen when processing string variables. Since it takes up
more storage, it thereby reduces the cache efficiency.

C. Algorithm improvements

During the execution of the FOCS algorithm, a very specific
graph is made which always has the same shape. For this

4

reason, spending more time researching the fastest maximum
flow algorithm for that specific shape could significantly
improve the algorithm runtime. At the start Edmonds-Karp
is used as a maximum flow algorithm due to the simplicity of
the algorithm, however switching to the SAP algorithm can
significantly increase the execution time of the FOCS algo-
rithm. Researching these different maximum flow algorithms
could be the key to improving execution time further.

D. Multithreading

The last discussed method of improving execution time is
multithreading. When using multithreading, the workload is
divided over multiple threads on the processor. For example
when dividing the work-load over two cores, at most the
execution time is almost halved. It does not entirely divide
the execution time by the amount of cores, since the overhead
of spawning and securing cores can take up a lot of time. This
can even result in slowing down the execution. Securing data
means that it is protected from reading whilst writing to that
data slot. It also prevents multiple cores from writing to that
register at the same time.
To make multithreading successful in the case of FOCS, a
maximum flow algorithm should be chosen which supports
parallelization. Edmonds-Karp and Dinitz’s algorithm do not
support parallelization because of their recursive nature. The
next iteration of the algorithm is dependent on the last it-
eration’s results. An algorithm which supports parallelization
is the push-relabel algorithm. This algorithm sets heights to
nodes and then looks per node how much flow can be sent
to neighbours. The algorithm can parallelize pushing the flow
and setting heights. Every thread starts at a node and attempts
to push flow to all neighbours. This will result in a great
speed-up, if the amount of vertices is much greater than the
amount of nodes. Which is not the case for FOCS, however
multithreading will still be tested.

IV. EXPERIMENTS

For the experiments the Edmonds-Karp algorithm was im-
plemented first, since it was necessary before an attempt at
Shortest Augmenting Path could be made. The SAP algorithm
used in the original FOCS implementation is from the Python
NetworkX library. This implementation uses a fall-back to the
Edmonds-Karp algorithm, and therefore needs a functional
Edmonds-Karp algorithm. This means that all of the imple-
mentations in C++ use Edmonds-Karp as a maximum flow
algorithm, except if stated otherwise. But first the experimental
setup will be provided in order to achieve reproducibility.

A. Experimental setup

All tests were performed on the same computer. The proces-
sor used is a Ryzen 7 5800X, which has 64 kB of L1 cache
per core and 512 kB of L2 cache per core and 32 MB of
shared L3 cache [10]. All tests were repeated 500 times using
loops, then the execution time was averaged over all of the
tests. During the tests the computer was not being used for
other active programs.

Fig. 3. Original FOCS Python implementation different maximum flow
algorithm, FOCS execution time comparison. Execution time is averaged over
100 repetitions. All instance sizes set to 200, on a linear scale.

B. Base tests

Using the original Python implementation of the FOCS
algorithm, a few different maximum flow algorithms can be
compared for the graphs used in FOCS. This list of algorithms
was the list as included in the Python NetworkX library. Figure
3 shows the 3 different algorithms on the x-axis and the
execution time in milliseconds on the y-axis. As can be seen
in the figure, from the tested algorithms Shortest Augmenting
Path turns out to be the fastest for FOCS graphs. Therefore
the SAP algorithm will be used as a benchmarking tool to test
the relative speed-up.

All C++ code was made from the start onwards, where
only inspiration was taken from online sources, no code was
directly copied. This explains why the basic and CSR [11]
steps, in figure 4, are slower than the original implementation
in Python. The code was not optimized, it was purely made
to achieve the correct result. Optimizations that were made
to improve this unoptimized code, lied mostly in the addition
of CSR. Since at first the edge array existed, however there
was no edge pointer array. This meant it was looping over
the entire array until it found the edge it was looking for.
CSR made the look-up time a lot shorter. However, once CSR
was implemented the C++ implementation was still slower
than the original implementation. This can be seen in figure
4. Despite using a faster programming language, the lack of
memory optimization and the use of a slower maximum flow
algorithm still resulted in longer execution times.

C. Memory allocation tests

The aforementioned cache layout is one of the main reasons
why memory locality and data representation were the next
steps for optimization. These improvements resulted in a
speed-up of 42 times. This makes execution times go from
more than 1600 milliseconds to just below 40 milliseconds, as
is visualised in figure 4. A key speed-up factor was in creating
multiple value- and row pointer-arrays for different purposes.
The improved memory locality meant that the cache was better
used, reducing lookup times and more than halving the cache
miss rate.
Another important improvement was switching from strings
to integers for node identifiers. Integers take up less space

5

Fig. 4. Comparing different steps taken to improve execution time, all using
the same test file, 200 instance size and 200 repetitions. Execution time is
the average over the amount of repetitions. Plotted on a logarithmic scale.
X-axis displays the average execution time in milliseconds. Y-axis shows the
different steps taken where ’Python’ is the original FOCS implementation.

in memory, allowing more data to fit in the L1 cache and
reducing the frequency of cache evictions. Strings are stored
as ASCII characters on standard computers, however in C++,
std::string has an overhead. Storing a string consisting of 1
character takes up 32 Bytes. This can be tested using the
‘sizeof’ command in C++. Another advantage of integers is
that less checks are required when using them, since they are
always the same length.
For example, forward and reverse name maps were created
specifically to speed-up Breadth-First Search. The neighbours
of nodes were put into vectors, which were then organized in
a vector where the index corresponds to the node ID. This way
nodes are stored in such a way that chunks of memory often
include multiple nodes. The vectors were ordered by node ID,
in order to achieve easier access in the cache layers.
One of the concerns with this approach was the memory
usage, since multiple large vectors could take up too much
space. While this approach increased the number of large
vectors, the total memory usage (excluding test data) remained
within 1 to 2 MB for instance sizes of 200, depending on
the stage of the FOCS algorithm. For reference, the original
Python implementation used approximately 50 times more
memory during execution. As a result, memory usage was
not considered a bottleneck.

D. Multithreading

The push-relabel algorithm was tested on a standard graph
created when solving FOCS for an instance size of 200. The
test was done in a benchmarking tool as provided by D. Bart
[12], as well as a benchmark for the Shortest Augmenting Path
algorithm. For the created graphs, the push-relabel algorithm
was always three orders of magnitude slower than the SAP al-
gorithm. The tests were performed with combinations between
1 and 16 threads. For this reason no further attempts were
made at implementing a different, parallelizable algorithm.
This, as discussed earlier, only yields a significant speed-up if
the number of neighbours is high. However, in FOCS, the
number of neighbours per node relative to the number of
nodes is very low. On average, for an instance size of 200,

there are 254 nodes with a total of approximately 5800 edges.
This means that each node in the j-layer has approximately 28
neighbours in the i-layer. Therefore, parallelizing the execution
of very little work results in a slower execution time due to
the overhead.
Parallelizing does not only apply to the maximum flow algo-
rithm, but can also be done on single loops. This was tested,
but showed slower results due to the overhead of spawning
threads and securing data, which outweighs the benefit when
dealing with relatively small loop bodies.

E. Final results
The final code was then tested using a test data file.

In this final code, all improvements discussed before are
implemented, this means optimal memory locality, the SAP
algorithm and more. Different instance sizes were compared in
relative execution time to the original Python implementation.
This is displayed in figure 5, with the execution time in
logarithmic scale, measured in microseconds on the y-axis.
The x-axis depicts the different instance sizes tested. The
speed-up factor decreases from 185 times, at an instance
size of 200 to 40 times with an instance size of 2000. This
change is deducted from figure 6, which displays the speed-up
amount on the y-axis and the instance size on the x-axis. This
means that the improved code becomes relatively slower when
instance size increases.
This decrease in efficiency is mainly due to the need for a
fallback to the Edmonds-Karp algorithm for clearing up. When
the instance size increases, so does the flow obtained from
the fallback method. Although our SAP and Edmonds-Karp
implementations are faster for smaller instance sizes they have
not been thoroughly optimized. Whereas the Python imple-
mentation uses the highly optimized NetworkX library. This
results in the SAP implementation from NetworkX becoming
relatively faster for larger flow graphs.
In the end, the execution time for instance size 200 is, on
average, 1.6 milliseconds.

Fig. 5. Final implementations compared with different instance sizes, com-
paring the FOCS Execution time. FOCS execution time is the average over
500 repetitions of different instance groups.

6

Fig. 6. Final implementation relative speed-up of SAP over Python. Com-
paring FOCS execution time.

V. CONCLUSION

The FOCS algorithm is accelerated more than a hundred
times, from 300 ms in Python to well under 3 ms in an
optimized C++ version for a 200 instance size. This feat
was achieved by refining memory accesses, and implementing
maximum flow algorithms based on the refined memory.
Larger instance sizes do not reach the goal of 100x speed-up
due to the inefficiency of the Edmonds-Karp fallback method,
which along with the SAP implementation have not been
thoroughly optimized. The next step would be to adjust the
FOCS integration to include charging guarantees, making it
into the FULPES algorithm. Other improvements could be
made by finding better maximum flow algorithms, or optimize
those used to achieve a greater speed-up for larger graphs.
Although no faster alternative has been found so far for
FOCS. This work enables practical, real-time EV charging
management in parking lots.

REFERENCES

[1] CNN, “Spain says april blackout was caused by grid
failures and poor planning, not a cyberattack,” 2025.
Accessed: 2025-06-20.

[2] L. Winschermann, M. E. T. Gerards, A. Antoniadis,
G. Hoogsteen, and J. Hurink, “Relating electric vehicle
charging to speed scaling with job-specific speed limits,”
2025.

[3] A. V. Goldberg and R. E. Tarjan, “A new approach to
the maximum-flow problem,” Journal of the Association
for Computing Machinery, vol. 35, no. 4, pp. 921–940,
1988.

[4] WsCube Tech, “Ford-fulkerson algorithm,” 2025. Ac-
cessed: 2025-03-20.

[5] J. Edmonds and R. M. Karp, “Theoretical improvements
in algorithmic efficiency for network flow problems,”
Journal of the ACM, vol. 19, no. 2, pp. 248–264, 1972.

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network
Flows: Theory, Algorithms, and Applications. Prentice-
Hall, 1993. See pages 218–219 for the Shortest Aug-
menting Path algorithm time complexity.

[7] M. Vaithianathan, “Memory hierarchy optimization
strategies for highperformance computing architectures,”
International Journal of Emerging Trends in Computer
Science and Information Technology, vol. 6, p. 24–35,
Jan. 2025.

[8] M. Hugue, “Cache memory.” https://www.cs.umd.edu/
~meesh/cmsc311/cache/node4.html, 2002. Accessed:
2025-06-16.

[9] Spin-transfer torque magnetoresistive random-
access memory technologies for normally off
computing (invited), “Layered structure of computer
systems: Typical access times for smartphone,
personal computer, and high-performance computing
systems.” https://www.researchgate.net/figure/
Layered-structure-of-computer-systems-Typical-access-times-for-smartphone-personal_
fig1_263004188, 2025. Accessed: 2025-06-02.

[10] TechPowerUp CPU Database, ““AMD Ryzen 7 5800X
Specs”.” https://www.techpowerup.com/cpu-specs/
ryzen-7-5800x.c2362, 2025. Accessed: 2025-06-19.

[11] Y. Saad, Iterative Methods for Sparse Linear Systems.
Philadelphia, PA: Society for Industrial and Applied
Mathematics, 2 ed., 2003.

[12] D. Bart, “Maxflow benchmark.” https://github.com/
dbart-utw/max_flow_benchmark, 2025. Accessed: 2025-
06-19.

https://www.cs.umd.edu/~meesh/cmsc311/cache/node4.html
https://www.cs.umd.edu/~meesh/cmsc311/cache/node4.html
https://www.researchgate.net/figure/Layered-structure-of-computer-systems-Typical-access-times-for-smartphone-personal_fig1_263004188
https://www.researchgate.net/figure/Layered-structure-of-computer-systems-Typical-access-times-for-smartphone-personal_fig1_263004188
https://www.researchgate.net/figure/Layered-structure-of-computer-systems-Typical-access-times-for-smartphone-personal_fig1_263004188
https://www.techpowerup.com/cpu-specs/ryzen-7-5800x.c2362
https://www.techpowerup.com/cpu-specs/ryzen-7-5800x.c2362
https://github.com/dbart-utw/max_flow_benchmark
https://github.com/dbart-utw/max_flow_benchmark

	Introduction
	Theoretical background
	Flow Networks
	Maximum flow algorithms
	FOCS
	FULPES

	Improving execution time
	Porting to C++
	Memory access
	Algorithm improvements
	Multithreading

	Experiments
	Experimental setup
	Base tests
	Memory allocation tests
	Multithreading
	Final results

	Conclusion

