Embedded Person Detection on an STM32F7
with Dynamic Vision Sensor

Pierluigi Gatt
53014940

Abstract—Event-based vision sensors offer an alternative
to RGB cameras by capturing the changes in a scene.
This thesis investigates the optimisation of a convolutional
neural network (CNN) for real-time person detection on
an STM32F7 microcontroller with a neuromorphic vision
sensor, specifically Prophessee’s GenX320. Neuromorphic
vision sensors offer advantages such as low latency, low
power consumption, and the preservation of the recorded’s
anonymity. However, they pose unique challenges for im-
plementation with a CNN due to their event-based data
rather than traditional frame-based outputs. The STM32F7
microcontroller also introduces limitations for CNN deploy-
ment, such as its limited internal RAM and Flash and a
lack of dedicated hardware acceleration for CNN inference.
This thesis reviews and implements various optimisation
techniques, such as post-training quantisation, architectural
simplification and input size reduction. These efforts aim to
minimise resource usage while maintaining detection accu-
racy. Preexisting CNN models for person detection on RGB
datasets like COCO were adapted to fit on the STM32F746G-
DISCO’s limited 1024 KB and 320 KB of internal RAM
and Flash, respectively, alongside processes dedicated to the
sensor and display. These optimised models were then trained
for inference with a neuromorphic vision sensor using the
PEDRo dataset. The applied improvements resulted in a
model with an inference time of 422 ms and an AP of
75% (@0.5 ToU on the PEDRo dataset). This study shows
that object detection using a neuromorphic vision sensor is
feasible on ultra-low-power hardware without significantly
compromising accuracy.

I. INTRODUCTION

Neuromorphic vision sensors like Prophessee’s
GenX320 feature low power consumption, excellent
low-light performance, and an event-driven operation.
Rather than capturing continuous frames, these sensors
record changes in the scene. Such an approach makes
them highly beneficial for applications requiring motion
detection and presence monitoring without compromising
user anonymity. However, developers typically train
off-the-shelf machine learning models for object detection
with more feature-rich RGB frame-based datasets such
as COCO. COCO (Common Objects in Context) is a
widely-used large-scale object detection, segmentation,
and captioning dataset comprising over 200,000 labelled
entries across 80 object categories [1]. Consequently, these
models require significant modification and optimisation
for adequate performance with neuromorphic sensors. The
STM32F746G-DISCO (F746G) microcontroller board
from STMicroelectronics (ST) offers a good pairing
with the GenX320 sensor due to its small footprint
and low power draw. Despite these advantages, using
a microcontroller comes with extra constraints: only
320KB of internal RAM and 1024KB of internal flash,
an ARM Cortex-M7 processor running at 216MHz, and,

Fig. 1: STM32F746G-DISCO with GenX320 sensor at-
tached

critically, the absence of dedicated hardware acceleration
for CNN inference. Although additional external memory
(16MB RAM and 16 MB Flash) is available, its use is
discouraged due to potential latency and power efficiency
loss. This project, therefore, aims to adapt and optimise
a CNN-based person detection model to function within
these constraints while achieving a reasonable detection
speed. Since ST trained their standard models on the
COCO dataset, there is no direct comparison to the new
model’s performance. Therefore, a significant loss in
accuracy refers to a substantial reduction in the system’s
effectiveness for practical, real-time applications.

II. BACKGROUND AND RELATED WORK

Microcontroller-based object detection models require
extensive model optimisations to meet memory and flash
constraints while retaining real-time performance. There-
fore, deploying a standard object detection model like
YOLO (You Only Look Once) [2] without reduction is im-
possible A prior survey for deep neural networks has found
that post-training quantisation (PTQ) is highly effective at
compressing CNN detectors with minimal accuracy losses.
Quantising from float32 to int§8 (or lower) can reduce
inference speed significantly [3]. For example, Tinissi-
moYOLO used quantisation-aware training to reduce its
442k parameter YOLO-derived model to less than 0.5MB
of space while retaining reasonable accuracy (=55.9%
AP@0.5 ToU on the VOC dataset)[4]. The optimisation
enabled deployment on various microcontrollers, such as
the STM32H7 and Apollo4b. Notably, their most signif-
icant efficiency increase came from using a microcon-
troller with a dedicated CNN hardware accelerator (Maxim
MAX78000), which allowed TinissimoYOLO to achieve



180FPS. However, even on general-purpose hardware, like
the STM32H7, the model achieved ~2.7 FPS by utilising
int8 quantisation [4].

Another way to fit complex detectors onto tiny devices
is to simplify the machine learning model’s architecture.
Removing unwanted or redundant heads is a common
strategy with a YOLO model. Since YOLO’s multiple
heads target objects at different scales, even single-scale
models can be sufficient for detecting a single type of
object. Researchers found that removing one of YOLO’s
three output heads had little effect on output accuracy
while significantly reducing inference speed and memory
footprint [5]. Other tiny models like TinissimoYOLO only
use one output grid to shrink the model even further [4].

Another optimisation explored is reducing the input
size, which can occasionally be the largest layer in a
model. Converting the input from a typical RGB image
to greyscale reduces the input size by 3x. For person
detection, greyscale could perform similarly to RGB since
the task relies heavily on shape, contrast, and texture [6].
Typically, the main disadvantage of using greyscale images
rather than RGB images is that the model can sometimes
use colour to distinguish between objects that are very
similar in shape. Since a neuromorphic vision sensor does
not output colour information, the colour must be artifi-
cially generated to utilise each RGB channel. If trained on
this data, the model could pick up on unintentional colour
data, resulting in worse real-world performance.

A smaller input also simplifies preprocessing the neuro-
morphic vision sensor’s output. Unlike typical RGB cam-
eras, which are frame-based, neuromorphic vision sensors
output asynchronous events whenever a pixel’s brightness
changes [7]. Typically, these asynchronous events only
convey binary information, indicating whether a specific
pixel’s brightness increases or decreases. One common
approach to using an event-based output with a CNN is to
combine events over a short time interval into a frame. The
prior group working with this camera also took advantage
of this approach by using Prophesee’s pre-made starter
kit for the GenX320 [8]. The starter kit is a repository
containing pre-made drivers and example code for using
the camera on an STM32F7. It utilises these “frames” to
show the camera output on the integrated screen. While
the previous group used this output for MNIST detection,
studies have shown that machine learning models can use
frames created from such event streams in scenarios where
the camera is in motion [7].

Finally, the MNIST model the previous group developed
had a few issues that made it unusable in real-world
scenarios. The main two problems were that the characters
shown to the camera had to be in a specific place in the
frame and at a particular size and rotation to be detected.
By randomly transforming any training data so that the
model does not become too dependent on the relevant
objects’ size and location, these effects can be mitigated

[9].
III. MODEL SELECTION

Typically, CNNs made for object detection are large
and slow. Researchers have recently tried to shrink these
networks to make them more efficient and fit onto small

devices. ST provides a repository called ModelZoo, which
contains many different machine learning models for vari-
ous tasks, as well as services to help use and maintain them
[10], [11]. These machine-learning models are already
relatively compact. Moreover, ST have tested them to
ensure they work on many STM microprocessors. While
they offer models that can do various things, such as image
classification and hand posture recognition, this paper will
only focus on the models concerning object detection.

ModelZoo provides six models specifically for object
detection: SSD Mobilenet v1/v2, YOLO LC v1, YOLOX
Nano, Tiny YOLO V2, and YOLOv8n. Each model comes
with two variants. One is trained on and can detect all
80 classes in the COCO dataset. The other is optimised
for single-class inference and pre-trained for person de-
tection. Removing the other 79 classes from the model
significantly reduces its size and inference latency [12].
There is also a slight boost in Average Precision (AP%),
as training can optimise the model from the earliest stages
to detect a single class rather than deferring class-specific
learning to the final layers. Throughout the remainder of
this work, unless stated otherwise, all models mentioned
refer specifically to their single-class variant pre-trained
for person detection.

Each model’s performance needs to be analysed to
select between the models provided by ST. Due to the
constraints caused by using the F746G, the most critical
metrics are RAM size, Flash size, inference latency and
AP%. The ST Edge Developer Cloud can be used to
determine these values [13]. This online tool allows for
testing machine learning models in the ModelZoo (and
others) on specific STM microcontrollers and gives de-
tailed performance reports. While it provides most metrics,
it cannot provide any data regarding the accuracy of a
model. Therefore, the AP% reported in the ModelZoo
model description was used for evaluation [12]. Table I
compares all models, with an input size of 192x192x3
and an AP@0.5 ToU on the COCO person dataset, quan-
tised to int8.

Flash RAM Inference
Model (KB) (KB) (ms) AP (%)
SSD Mobilenet V1 591 303 274 35.8
SSD Mobilenet V2 1290 662 1101 40.7
YOLO LC V1 336 178 318 39.0
YOLOX Nano 1087 231 630 45.1
Tiny YOLO V2 10240 263 7670 33.7
YOLOV8n 3144 382 2229 56.9

TABLE I: Benchmarks for all models [13]

Upon examining Table I, several models can be ruled
out based on resource constraints. Tiny YOLO V2 has a
substantial flash footprint and inference latency, making
it unsuitable for this use case. Although SSD Mobilenet
V2 and YOLOv8n achieve relatively high AP%, their
initial flash size, RAM usage, and inference times greatly
exceed the acceptable limits for this context. On the other
hand, SSD Mobilenet V1 has a flash and RAM size
that would immediately fit into the constraints. However,
efficiency comes at the cost of accuracy, with an AP%
approximately 20% less than the most accurate remaining
model, YOLOX Nano.



The remaining two models both show promise. Both
fit or are close to fitting into the tight memory and flash
constraints of 320KB and 1024KB, respectively, and are
close in AP%. While YOLO LC V1 may seem like the
obvious choice due to its much lower Flash footprint
and RAM size, in real-world testing, it was noted that it
had significantly worse performance in identifying people.
This reduced performance is likely due to the original
YOLO LC model being optimised for detecting small
objects such as UAVs, making it less suited for person
detection [14]. As a result, YOLOX Nano was selected
for this project.

Moreover, the architecture of YOLOX Nano is based
more on modern design principles, making it more adapt-
able and better suited for further optimisation. The model
contains three sections: a backbone for feature extraction,
a neck for multi-scale feature fusion and three detection
heads to output the result.

One of YOLOX Nano’s key features is its decoupled
detection heads, meaning the classification and bounding
box regression predictions are made in separate branches,
as shown in Figure 2. YOLOX implements these heads
on three scales, where each head outputs at a different
scale (1/8, 1/16, 1/32 referred to as P3, P4, and PS5,
respectively). After receiving the three feature maps from
the neck, each head splits into three parallel branches: a
regression branch in charge of determining the centre x,y
coordinate of the object, as well as its width and height
in the frame; an objectness branch used to assess the
probability of an object being in this bounding box; and a
classification branch, which predicts the class of the object.
Decoupled heads dramatically improve convergence speed
and allow it to achieve a much better speed-accuracy trade-
off compared to prior YOLO models [15].
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Fig. 2: Comparison between YOLOv3-v5 coupled head
and YOLOX decoupled head [15]

YOLOX Nano also uses an anchorless design. Tra-
ditional YOLO models (v3/v4/v5) would predict scales
for multiple preset anchor boxes per cell [2]. However,
YOLOX utilises centre sampling, meaning that only pre-
dictions whose centre cell falls into the middle of a ground
truth box are considered positive samples. Removing the
need for preset anchors allows the output layer to be
simpler (since it has fewer boxes to predict) and permits
the model to generalise better to different object sizes
without manually tuning the anchor boxes’ sizes [15].

IV. OPTIMIZING THE CNN

Even when using the most miniature version of the
model, with an input size of 192x192x3, its flash foot-
print exceeds the internal flash of the F746G by ~30 KB.
Moreover, even though the RAM usage of 231 KB appears
to be comfortably under the 320 KB internal limit, the
actual usable memory is significantly lower (around 230
KB) due to RAM allocation to other system sections, such
as processing the neuromorphic sensor’s output and the
display. With this in mind, the RAM usage must also be
reduced by at least 1 KB. To decrease YOLOX Nano’s
size, further refinement is needed.

A. Grayscale Input

One of the most memory-intensive components is the
input image. Even though it is not part of the model,
with an input size of 192x192x3, it occupies ~110 KB
of RAM, making it an essential factor when assessing
memory budget.

Typically, traditional RGB cameras require the input to
have a depth of 3 to encode proper colour data for the
model to use. However, with a neuromorphic vision sensor,
colour information is already lost. Therefore, a grayscale
implementation is preferred and can reduce the input size
by ~74 KB.

To achieve greyscale input, the input tensor was
changed from shape (batch sizex192x192x3) to (batch
sizex 192x192x1), and the first convolution was mod-
ified accordingly to accept this new input. Initially, the
kernel had dimensions (3x3x3x12). While the first two
elements represent the width and height of the kernel,
the third and fourth elements represent the input and
output channels, respectively. Therefore, the shape of the
kernel was changed to (3x3x1x12), adjusting the number
of input channels but retaining the number of output
channels to maintain compatibility with the rest of the
model. To retain some data from training, the three input
channels were combined using the standard luminance-
based grayscale conversion method [16].

B. Head Removal

Internally, YOLO models have three output heads opti-
mised for objects at different scales. P3 typically detects
small objects like animals or fruits, P4 targets medium-
sized objects like people or bikes, while P5 focuses
on large objects like buildings and occasionally people
[17]. This bias to the P4 head can be seen in Figure 3.
Even though the pre-trained model is only trained on the
“person” class, detections are seen solely on P4, even at
small object scales.

Removing the unused P3 and P5 heads could lead
to significant performance and memory improvements
without sacrificing accuracy. Notably, operations dedicated
to the P3 head and P5 head contribute approximately
25k and 225k parameters to the model’s 900k parameter
total, making them substantial contributors to the model’s
complexity.

C. Class Probabilities

Another way to optimise the detection heads is to
remove any unnecessary components. YOLO models are



Fig. 3: Detections made by STMicroelectronics’ YOLOX
Nano labelled with detection head

typically designed for multi-class detection and, therefore,
include a dedicated classification branch to predict the
most likely class associated with a given bounding box.
Classification usually uses a softmax layer, which outputs
a probability distribution summing to 1 over every class.
With only one class, this probability distribution is always
1, meaning that the classification branch is no longer
needed for this use case and was removed. Since the class
is always known, the model uses the objectness score
(IoU) alone to determine whether an object ("person”) is
recognised within the designated bounding box.

D. Profiling-based Optimisation

Resource usage analysis tools like Netron were used
to delve deeper into what is causing the model to use
up so much memory space. It was observed that the
activations of the first three convolutional blocks used up
a significant amount of memory space (~153 KB) and
contributed to =17% of the total inference time, making
them the most significant contributors. Reducing these
layers would result in a clear performance improvement.
On the other hand, the memory savings will not be one-
to-one as optimisation tools often use in-place memory
reuse. This technique reuses a minimal activation buffer
rather than allocating a separate memory buffer for each
intermediate layer.

These first few layers focus the input, reducing its res-
olution while increasing its channel depth. Then, a “’stem”
convolution expands the channel count to the desired
width. The output is then sent to the CNN’s backbone.
Since a neuromorphic sensor captures less variation and
detail than an RGB camera due to its sparse output, layer
fusion can be used to combine these layers.

The original layers use 3x3 convolutional kernels, with
two layers configured with a stride of 2 and one with a
stride of 1. These were replaced with a kernel of size 7x7
with a stride of 4. This size allows the same input data to
represent each output feature.

E. Quantisation

The float32 version of the machine learning model must
be used to implement optimisations and perform training.
Therefore, quantisation must be applied after training to
reduce the model size. The current, most popular way of
performing PTQ is by quantising the weights from float32
to int8. Developers perform PTQ with a representative
dataset for more accurate activations and weight mapping.

Going a step further, int4 PTQ, a new and experimen-
tal technique for ultra-low-bit quantisation, could further
halve the size of the weights at the cost of accuracy.

V. EXPERIMENTAL SETUP

Before evaluating the optimised models, a suitable
testing environment must be created. It must support all
the custom models and train, quantise, and assess them
properly. The University of Twente’s development envi-
ronment, JupyterLab, was used for training and evaluation
[18]. This service provides multiple GPUs, which can
speed up training and inference.

A. Tool Modification

ST provides various tools for training, evaluating, quan-
tising, and testing different machine learning models for
their hardware. These are contained in the ModelZoo
services repository [11].

The ModelZoo training service can only run on a single
GPU by default. To speed up training times by utilis-
ing multiple GPUs, the training function in Python was
wrapped in a MirroredStrategy. The implementation
allows TensorFlow, the main package used by the service
to train and evaluate models, to use all available GPUs.

Even though YOLOX Nano models are already sup-
ported in the repository, many files need to be modified to
support the optimisations made. Notably, both RGB and
greyscale model variants are already supported. However,
the trainer, evaluator, and quantiser expect the model to
have three separate heads and a class confidence output.
A fully modified version of the ModelSoo services can be
found in Appendix B, which removes these restrictions.

The quantisation tool supported by default in the Mod-
elzoo services is the TensorFlow Lite (TFLite) Converter.
However, as of this writing, the TFLite Converter does not
support int4 PTQ, a relatively new and experimental tech-
nique. Therefore, an alternative optimisation library must
be implemented. While Intel’s Neural Compressor does
not natively support int4 quantisation by default, it can ac-
commodate new data types like int4 with minimal modifi-
cations [19], [20]. By installing the neural_compressor
package and modifying the tensorflow.yaml file,
int4 quantisation can be enabled. A custom function
(_quantize_neurComp_model) within quantise.py
then provides the ModelZoo service with the functionality
to perform int4 quantisation.

B. Dataset Preparation

With all modifications, the training, validation and test-
ing datasets can be sourced and adapted for the project’s
needs. A COCO dataset subset containing only entries
with the “’person” class will be used to validate STMicro-
electronics’ accuracy claims. To extract this subset, Mod-
elzoo services include a tool called dataset_converter,
which converts the COCO dataset into the proper YOLO
format and handles subset selection.

A greyscale version of the subset of the COCO dataset
needs to be created to fine-tune models when converted
to greyscale. The modification was done with a Python
script (convertrgbtogreyscale.ipynb, included in
Appendix B), which goes through all JPGs in a directory



and converts them to greyscale. Since the positions and
classes of the objects do not change, the conversion tool
does not need to modify the labels.

Finally, the PEDRo dataset is the basis for fine-tuning
the model for use with the neuromorphic sensor [21]. PE-
DRo is a dataset containing over 43000 entries specifically
designed for person detection. The DAVIS346, an event
camera with a similar output as the GenX320, was used to
collect it. One limitation of this dataset is that the camera
outputs at a resolution of 346x260. Since the input of the
YOLO model has a square aspect ratio, these images must
be scaled and stretched to fit. These distortions could result
in worse real-world performance with pictures from the
GenX320.

Moreover, the pictures in the dataset do not come in the
needed JPG format but as many different numpy samples,
each representing a frame that contains all of the events
within 40 milliseconds. Each event comprises four fields:
a timestamp of when the camera took the event, its x
coordinate, its y coordinate and the polarity of the event
(either O for negative or 1 for positive) [21]. A Python
script (convertNumpyToImage.ipynb, included in Ap-
pendix B) was created to convert these frames into JPG
greyscale images. The program read each numpy sample
and processed all events within it. If no sample were in a
specific xy coordinate, that pixel would be pure black (0).
However, if there were an event of either polarity, it sets
the pixel as pure white (255). No distinction was made
between the polarities, as polarity only represents whether
the light in that region is getting brighter or dimmer and
only depends on how the object is moving relative to the
camera and not the object’s shape. This effect can be seen
in Figure 4. While the different polarities (represented as
white and dark blue) have different polarities, both provide
the same information for the edge of an object.

(b) Uniformly coloured po-
larities

(a) Different coloured polar-
ities

Fig. 4: Image from GenX320 comparing two different
colour modes

C. Configuring the Environment

The ModelZoo service has a configuration file that
defines how various operations function. ST provides an
example configuration that can be used out of the box.
However, some changes were made to fit the requirements
of the intended training setup.

Since the images in the PEDRo and COCO datasets are
not perfectly square, some configuration needs to be done
for resizing. The process was set to “fit” the aspect ratio,

which would stretch the image rather than crop it. This
choice was made to preserve all of the information in the
picture, but it does come with the downside of stretching
the input, which could lead to inadequate training.

Data augmentation can also be defined to avoid over-
fitting. Many different parameters can be set to transform
and change the brightness of the images used in training.
These include cropping, rotating, translating, flipping hor-
izontally and adjusting the brightness and contrast.

For the training step, models were trained with a batch
size of 800, selected based on empirical testing to optimise
training speed. Each model was trained on the grayscale
COCO dataset and then fine-tuned on the PEDRo dataset.

Moreover, an early stopping patience was used to help
mitigate overfitting. This patience stops training early if
the model’s loss on the validation data does not decrease
after a certain number of epochs. The check was done
on the loss of the validation dataset instead of the train-
ing dataset to ensure that performance improvements are
generalised outside the training set. Due to its wide array
of scenarios and contexts, the patience was set to 60
epochs for the COCO dataset. On the other hand, the
PEDRo dataset comprises many images of people in the
same context. So that the model does not “forget” the
information gained from the COCO dataset, the patience
was set much lower (18 epochs).

By default, the TFLite converter was used for PTQ.
TFLite quantises the weights to int8 and the activations to
int32. If quantisation to int4 was preferred, Intel’s Neural
Compressor was used. In both cases, the quantisation input
type was set to uint8 to accept image luminance values
from 0O to 255, and the output type remained float32 since
all outputs are between 0 and 1. All evaluations were
performed with an IoU evaluation threshold of 0.5.

Benchmarking the model’s inference time was done
using the ST Edge AI Developer cloud to ensure a consis-
tent testing environment [13]. Since the final deployment
will be on the F746G, this specific platform was selected
on the Developer Cloud. To use the model on a local
F746G, the camera input of 320x320 was downsampled
to 192x192 through average pooling. In order to extract
the outputs, non-max suppression was used to prevent
duplicate detections for the same object.

VI. RESULTS AND ANALYSIS

After all optimisations were implemented and proper
training was performed, each optimisation was tested.
Table II details specifications about the different models.
Optimisations were introduced sequentially, building upon
the previous one so that the final performance reflects their
cumulative impact. The exception to this is for the final
two models labelled "No Head 1&2” and "No Head 1&3.,”
which are both derivatives of the "Layer Comb” model
with different heads removed. Int4 quantisation was not
performed due to Intel’s Neural Compressor expecting a
more modern version of TFLite to create and train the
models. It was not possible to update the TFLite version
due to the dependencies of the ST ModelZoo Services
[11]. Therefore, its performance could not be measured.

Figure 5 shows a gradual decrease in flash size, whereas
the RAM footprint remains somewhat constant with a



Model

| Details of Optimisation Added

int8
geryscale
No Head 1
No Class
Layer Comb
No Head 1&2
No Head 1&3

Quantised model to int8

Changed input to greyscale

Removed the first head (P3)

Removed the classification branch
Combined first three layers

Removed the first and second head (P3, P4)
Removed the first and third head (P3, P5)

TABLE II: Model Details
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Fig. 5: Flash and RAM footprint of each optimised model

slight downward trend. Significant improvements to flash
size come from removing detection heads and the clas-
sification branch. Removing P5 alone (model "No Head
1&3”) reduces the flash footprint by roughly 200 KB, far
more than removing the other two heads. This significant
reduction can be associated with the additional layers in
the neck needed to perform feature extraction for PS5.
Moreover, this model is the only exception to the RAM
footprint’s downward trend, increasing from 212 KiB to
221 KiB. This slight increase in RAM usage is most likely
due to the memory optimisation performed by ST’s tools
before the model is loaded onto the board, as it is trying
to find a balance between RAM usage and inference time.
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Fig. 6: Inference Time and AP (PEDRo dataset @0.5 IoU)
of each optimised model

Figure 6 shows that one of the most significant drops in
inference time is the removal of P3. P3 needs to predict 4x
as many bounding boxes as P4 and 16x as many bounding

boxes as P5. As a result, the omission of the P3 head
leads to a much larger reduction in inference time. In
contrast, removing the P5 head leads to slightly better
performance than removing P4, despite P5 operating at
a lower resolution. The observed performance gain is due
to the considerable parameter reduction from removing the
PS5 head.

Another significant decrease in inference time is caused
by the layer reduction, yielding a drop of roughly 12%.
However, due to the aforementioned memory optimisation
tool, the improvement does not come with much RAM
savings, only dropping the memory usage by around 3
KB.

The AP of each model remains relatively constant. The
most prominent improvement in accuracy comes from
using the P4 detection head rather than the P5 head as
the sole output. This increase stems from the fact that the
P4 head is much more optimised to classify objects at the
scale of a person.

With a significant decrease in Flash footprint and infer-
ence time while retaining AP, the model using P4 as the
sole detection head best fits the defined use case.

(b) Man walking, empty
background, still camera

(a) Man standing, empty
background, still camera

(c) Man sitting in an envi-
ronment with lots of objects,
moving camera

(d) Two people waving at the
camera, moving camera

Fig. 7: Model inferences on images from the GenX320
sensor

To test accuracy further, inferences were run on a few
sample images, as shown in Figure 7. The model handles
detecting people well in environments where the camera is
not moving due to little background information, such as
in Figure 7a and 7b. However, when the camera moves, the
sensor picks up more details in the environment since the
lighting constantly changes. The model seems to struggle
in such complex scenes, especially in environments with
multiple objects or people. In Figure 7c, the model gets
confused by the bottle on the table, and even though it
detects the sitting person, it does so with relatively low



confidence, and the bounding box is not wide enough
to contain the whole person. In Figure 7d, the model
only detects one person with reasonably high accuracy but
also detects their arm as another person. These struggles
with detecting people in complex environments can be
attributed to insufficient training data in diverse scenarios.
Most of the images in the PEDRo dataset are similar since
they usually come from a continuous video of a person
walking.

Lastly, the finalised model was tested on the F746G. The
model was successfully integrated alongside the existing
camera and display code, fitting into the RAM and Flash
constraints on the microcontroller. The inference time of
the model was measured to be 422 ms, a slight increase
from the 383 ms measured on the cloud platform. This
reduction in performance could be due to multiple factors.
First, to support the GenX320 camera, the F746G must run
at a slower clock speed of 200 MHz instead of the 216
MHz at which the model was tested using St Edge Al
Developer Cloud. Moreover, the Cloud environment tests
models alone, without any interference. In actuality, the
model shares processing resources with the neuromorphic
sensor and display, reducing overall inference speed.

The inference time of 422 ms does not consider input
or output processing, both necessary elements to use the
model. Testing with these two elements gave a total
inference time of 462 ms, allowing the model to achieve
2 FPS.

VII. FUTURE DIRECTIONS

While the person detection model managed to reach
2FPS with only 221 KB of RAM and 761 KB of flash, with
an inference time of 422 ms, various optimisations can
still be made to increase its efficiency. If int4 quantisation
is successfully implemented, it could significantly reduce
RAM, Flash and inference time. Its drawbacks in accuracy
would have to be carefully assessed. However, further
quantisation of the model might be viable due to the
observed small accuracy drop from float32 to int8.

Another optimisation that can be made is to remove
any unnecessary elements from the RGB implementation
further. While adjusting the first layer of the model was
the only necessary step, the depth of later layers could be
reduced to save space and inference time.

Currently, the neck of the model contains the layers
which take up the most inference time and storage space.
Targeting optimisations to this area could significantly
decrease inference latency while reducing the size of the
weights.

Furthermore, model training was done with the PEDRo
dataset. While this dataset is made from a neuromorphic
vision sensor, the camera used to record the dataset did
not have a square aspect ratio. This meant the pictures
needed to be stretched to train the model with the dataset,
which skewed the data. While this resulted in adequate
real-world performance, using a dataset created from the
GenX320 could give much more accurate results.

To take better advantage of the benefits that come
from using a neuromorphic sensor, like the GenX320,
an adaptive frame rate could also be implemented. The
camera would only generate a frame for inference if it

detected several events over a certain threshold. Therefore,
this implementation would save energy consumption since
it would not process frames unnecessarily.

Finally, an easier way to improve performance is to use
a more up-to-date STM board with higher clock speeds
and more RAM/Flash storage. Most of the tests made
by STMicroelectronics for their machine learning models
are done either on an STM32H7 board or an STM32N6.
While the STM32H7 is only an improvement on the
STM32F7 [22], having a higher clock speed as well as
a larger RAM and Flash size, the STM32N6 contains
their neural-processing unit (NPU), designed explicitly for
neural network inference in computer vision applications
[23].

VIII. CONCLUSION

Neuromorphic vision sensors provide many benefits
compared to traditional RGB cameras, such as improved
power efficiency, low latency and preserved anonymity.
However, these event-based cameras pose significant com-
plications when used with typical CNNs made for ob-
ject detection, as they are generally optimised for and
trained with RGB datasets, such as COCO. Moreover,
to take advantage of the neuromorphic sensor’s low-
power performance, they must be paired with low-powered
hardware, such as a microcontroller. Despite their benefits,
using microcontrollers also comes with many limitations
in processing power and memory. Therefore, this thesis
aimed to optimise and train a CNN for inference on an
STM32F746G-DISCO microcontroller using a GenX320
neuromorphic vision sensor as an input. Reductions to
the RAM and Flash footprint were achieved by shrinking
the model’s input size, removing multiple of the model’s
output heads, removing the classification branch and per-
forming layer fusion. With these optimised layers in place,
the model achieved an inference time of 422ms, with an
accuracy of 75% (@0.5 IoU) on the PEDRo dataset. In
addition, the model ended with a flash and RAM size
of 761 KB and 221 KB, respectively, allowing it to be
used in the internal flash and RAM of the microcontroller
alongside additional processes. While other optimisations
could be made to the model for increased improvements,
the finalised model achieved all requirements necessary for
deployment without compromising real-world accuracy.
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APPENDIX A
Al STATEMENT

During the preparation of this work, I used Grammarly to perform spell and grammar checking as well as improve
the work for readability. ChatGPT was used to aid in coding. After using these tools/services, I thoroughly reviewed
and edited the content as needed, taking full responsibility for the final outcome.

APPENDIX B
CODE REPOSITORIES

The following links lead to various repositories that were important to this project.

Used to optimise the models and prepare the datasets:
https://github.com/piergatt/YoloOptimiseTools

Used to train, quantise and evaluate the models:
https://github.com/piergatt/stm32ai-modelzoo-services-generalised_object_detection

Used to test and deploy model on STM32F746G-DISCO (Request access with a.yousefzadeh @utwente.nl):
https://gitlab.utwente.nl/s3014940/objectdetectiononf746g
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