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Abstract – Feature extraction and detection of changed topological charac-

teristics of forest structures are essential in combating illegal logging and

providing ecosystem parameters for environmental scientists. However, to

this date, most models based on UAV1 and satellite imagery, which have been

developed in this regard, are not oriented towards real-time processing and

inference. A key application of such lightweight models would be deploying

them on a UAV to predict changes and extract features in real-time during

�ight. Therefore, this research paper aims to discover, develop and deploy

semantic segmentation2 machine learning models which are lightweight

enough to run on resource-constrained systems, which could be mounted

on a real UAV to perform these tasks. Towards this end, the following paper

proposes 3 lightweight CNN3 models trained on multi-biome forest datasets,

capable of being deployed on two popular target microcontrollers. More-

over, a deployment pipeline for a drone capable of feature extraction and

topological change detection is introduced as well.

Additional Key Words and Phrases: Machine Learning, Semantic Segmenta-

tion, Convolutional Neural Networks , Computer Vision, Resource-Constrained

Systems, Image Processing.

1 INTRODUCTION

Illegal deforestation damages the ecosystem, increases soil degra-
dation and has a net negative impact on local communities near
rich woodland regions [20]. Moreover, according to the World Wide
Fund for Nature [8], in 2002, approximately 70% of countries were
a�ected by illegal deforestation, which highlights a global problem.
As a result, extracting several important features of woodlands, such
as canopy gaps, forest boundaries, and detecting area changes, re-
motely, remains of great interest to environmental scientists and
specialists in combating illegal deforestation.

Furthermore, UAV imagery has been recently used in order to extract
some of these features and detect canopy gaps and forest changes.
[14] [20] [27]. Additionally, since satellite imagery is signi�cantly
more expensive than UAV imagery, there is also a growing interest
in the deployment of on-site remote drones capable of collecting
high-resolution data and images from an orthogonal top-down view
in real-time [3] [28]. Unfortunately, currently, most UAVs act as
remote-sensing systems and no real-time processing is done mid-
�ight. The data collected either has to be sent over the cloud to a
more powerful server, which can make use of it to detect changes

1UAV: Unmanned Aerial Vehicle: Aircraft �own autonomously or via remote control
2Semantic Segmentation: A technique which assigns a class label to each image pixel
(e.g. forest vs. non-forest), which is well-suited to delineating canopy gaps or forest
boundaries.
3CNN: Convolutional Neural Network
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and patterns, or downloaded and processed when the UAV is return-
ing to the docking station. Moreover, in remote and forest-dense
regions such as the Amazon and the Congo Basin, cellular infrastruc-
ture lacks signi�cantly [10], which makes the former alternative not
even feasible. One could argue that satellite internet access could
be used in such regions. However, to this date, such a solution for a
small drone or UAV is more sophisticated, expensive, power-hungry
and feasible only with small receivers which have low bandwidth
and have been designed for telemetry and short data bursts, not
secure HTTPS connections to cloud servers.

Nevertheless, for some speci�c applications such as combating ille-
gal deforestation in remote areas, real-time inference and change
detection in the structure of forests on the edge, mid-�ight, remains
largely unexplored and a real challenge. Addressing this issue could
enable faster response times and damage minimisation [20]. All
without relying on robust internet connectivity or power-hungry
devices.

To this end, the following paper focuses on �lling this gap by explor-
ing, testing and compressing such models in order to be deployed
on two target microcontrollers, which could be mounted on a UAV
to perform edge inference, canopy gaps detection, and assess the
expansion and/or contraction of forests over collected temporal data.
Furthermore, to enhance the generalizability and expand potential
use cases of this research, the models are trained on diverse multi-
biome datasets. This is more demanding for the models in terms of
accuracy since more global features have to be learned. However,
the choice has been made in order to avoid picking an arbitrary
biome and end up with a geographically biased model.

1.1 Problem Statement

Exploring, developing and deploying lightweight and accurate se-
mantic segmentationmodels capable of detecting topological changes
of multi-biome forests in real-time. Such models should also account
for the limited space and computational resources of the two target
microcontrollers.

1.2 Target Deployment Hardware

For the scope of this research, the models have been designed to
accommodate the constraints and capabilities of two widely used,
a�ordable microcontroller platforms, which are described in terms
of their hardware resources in Table 1. However, in practice, these
models are compatible with any C/C++ microcontroller which sup-
ports the TensorFlow Lite Micro Library [6] and its corresponding
interpreter.
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Table 1. Hardware resources of targeted microcontrollers

Microcontroller Flash RAM LCFRB Clk Freq

Arduino Nano 33 BLE 1MB 256KB 200KB 64MHz

ESP32 WROOM 4MB 520KB 107KB 160MHz

Besides the limited computing power, RAM and FLASH memory,
another key limiting factor when it comes to deploying Edge ML
Models on microcontrollers is the LCFRB4 available for allocation
during compile time for a custom program. Note that even though
the ESP32 has more RAM space in comparison to the Arduino, ac-
cording to Table 1, the LCFRB (≈ 100KB) is signi�cantly smaller
since its memory is fragmented by hardware design. This will im-
pose an upper bound for the size of the tensor arena5 which can be
allocated to the interpreter at runtime. Note that this is the case for
any Edge ML interpreter since it will have to sequentially load layers
and perform intermediate operations in the tensor arena. Therefore,
layers with many parameters which require more intermediate stor-
age space for calculations cannot be used, e.g. a concatenation of
two tensors of size 64x64x16 is not feasible, nor a dense layer with
more than 1024 neurons or just a simple convolution applied to a
tensor with many channels.

1.3 Model Constraints

In order to make the models deployable on the target hardware,
namely the Arduino Nano 33 and the ESP32, the following con-
straints have been imposed throughout the research and develop-
ment phase. The tensor arena, model size and parameter count are
hard constrains since otherwise the model cannot be physically
deployed. The others are quality constraints, such as performing
inference in a reasonable time frame.

• Model Size: < 1000Kb (Without Quantization - Float32)

• Total Parameters: < 500K

• Tensor Arena Size: < 100Kb

• Total FLOPS: < 100M

• Inference Time (64×64×3 Input Tensor): < 3s

1.4 Research�estions

RQ1: Which lightweight CNN models perform the best when it
comes to binary semantic segmentation of UAV multi-biome forest
imagery across space and time complexity, and what is the trade-o�
of each such model?

RQ2: How to detect topological changes and extract features of
forest structures on a resource-constrained device, mounted on a
UAV in real-time?

RQ3: Which techniques and architectures are the best to reduce
the size of the CNN models enough to be deployed on a resource-
constrained device while conserving the model accuracy as much
as possible?

4LCFRB: Largest Continuous Free Ram Block
5Tensor Arena: Static RAM bu�er for inputs, outputs, and intermediate tensors used
by the interpreter during inference.

2 RELATED WORK

Important contributions made by Jiahong et al. [28] in detecting
forest patches and forest coverage using CNN-like models on UAV
imagery have been done in late 2024. The results showed a 0.98%
accuracy and a precision of 0.91 using a UAV �ying at a distance of
8 meters. However, it is important to note that these models were
very large relative to the memory resources of a microcontroller and
not intended to run on resource-constrained devices, even though
the data acquisition was made with UAVs.

Similar work has been done by Htun et al. [14] in detecting canopy
gaps in uneven-aged mixed forests in Japan using the U-Net and the
ResU-Net models. The research concludes that the ResU-Net was
the superior model, achieving an accuracy of 0.96 on UAV imagery
datasets. However, similar to the previous contribution, the models
were not intended to run on resource-constrained devices. Moreover,
the data included additional dimensions from LiDAR sensors and
Trichromatic RGB cameras.

When it comes to general techniques researched for model com-
pression, such as object detection models and CNNs, Mahmoudi
et al., Alexandre et al., and Sambhav et al. [18], [17], [15] explored
key methods such as 8-bit quantization, knowledge distillation, and
block pruning.

2.1 Commentary on Related Work

The aforementioned models, developed by Jiahong et al. [28] and
Htun et al. [14], have architectures which are unfeasible to be de-
ployed on resource-constrained devices. For example, even a stan-
dard UNET [21] cannot be deployed on a microcontroller with its
default number of �lters, concatenation layers and upsampling lay-
ers. Moreover, using a backbone such as the ResNet101[11] used by
Htun et al. [14] to augment the models is not possible since such
a backbone has ≈ 44.5M parameters [7]. Therefore, the problem
statement of this paper remains largely open.

Furthermore, the dataset used for training by Jiahong et al.[28] is
relatively small (only 2000 images of size 512x512 px) while be-
ing sampled from only one region: Tieliugang, Sanya City, Hainan
Province, China. Thus, it is not a multi-biome dataset. Thus, there
is no burden of geographical generalisation for the models. For ex-
ample, identifying trees in tropical, temperate, mountain and desert
regions at the same time becomes a signi�cantly harder task..

3 METHODOLOGY

3.1 Performance Evaluation

The following formulas were used to compute the accuracy, F1
scores, precision, recall, and IoU values. Note that they are applied
pixel-wise since the predictions are made for every individual pixel.

Intersection over Union (IoU) =
ĐČ

ĐČ + ĂČ + ĂĊ

Accuracy =

ĐČ +ĐĊ

ĐČ +ĐĊ + ĂČ + ĂĊ
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Precision =

ĐČ

ĐČ + ĂČ

Recall =
ĐČ

ĐČ + ĂĊ

F1-Score = 2 ·
Precision · Recall

Precision + Recall

3.2 Data Acquisition

During the data acquisition stage, the OAM-TCD [26] Dataset of size
4,169 and the VHRTrees [24] of size 10,674 have been discovered
and inspected to train the models. Under a quality inspection, the
OAM-TCD has better mask labels, which have a higher granularity
and pixel accuracy, since a signi�cant part of the dataset has been
annotated manually. Moreover, the OAM-TCD has a higher resolu-
tion and is a more diverse dataset, if not the most diverse dataset of
forest imagery spread across multiple terrestrial biomes, according
to its authors, who compiled, labelled and curated the dataset in
2024 [26]. All 14 covered terrestrial biomes and their distribution
across the dataset can be observed in Figure 1 below.

Fig. 1. Distribution of images in terrestrial biomes, and in each of the

suggested cross-validation folds. Source: The OAM-TCD Paper [26]

The OAM-TCD dataset contains images of forests from an orthogo-
nal view of size 2048x2048 px with a resolution of 10 cm per pixel.
Since feeding such an input image and/or parts of it to a model
deployed on a microcontroller is not feasible, the images have been
downscaled by a constant of 23 in both height and width, leading to
the �nal dataset with images of size 256x256 px. While it is possible
to compress the images even further, this will reduce the �nal pixel
resolution on the ground and will provide less spatial context for
the models.

Therefore, by keeping the images of size 256x256 px, each com-
pressed pixel will correspond to 80 cm on the ground. Thus, each

square pixel will cover an area of 80 ∗ 80 = 6400 cm2
= 0.64 m2,

which is roughly the basal area of a mature tree. Therefore, an in-
herent trade-o� has already been encountered due to pixel interpo-
lation during the compression stage, which hinders the contribution
of sparse tree regions and edges. However, the areas which cover
relatively dense spots of pixels, either corresponding to trees or
background, are conserved. For example, if for a block of 8x8 px in
the original image more than 32 pixels are mapped to trees on the
ground, the compressed representative pixel will be mapped to a
tree as well. In the end, all 256x256 px images have been further
partitioned into 64x64 px sub-images since this will be the spatial
dimension of the input tensor fed into the models. The reason why
this input dimension has been chosen it’s because it is the largest
size tested in a sequence of powers of two, which �ts in the LCFRB
of the ESP32. Thus, the raw dataset consists of 66,704 (64x64 px)
RGB images.

3.3 Data Augmentation and Class Balancing

Since the dataset had a pixel-level imbalance, i.e. the overall number
of pixels corresponding to the background was larger, the dataset
has been balanced and augmented using a minority oversampling
technique, trying di�erent augmentation methods. In essence, a
cyclic random traversing algorithm randomly picks images from
the dataset, and if the number of white pixels of the mask (label)
which corresponds to the RGB image is at least 50% higher than the
number of black pixels in the same image, a synthetic augmentation
of the image is added to the dataset. This process is repeated until
the total ratio of white to black pixels becomes 1. In the end, the
�nal balanced augmented dataset has a size of 114,272, which means
that it has been synthetically expanded by 71.31%.

One of the augmentation methods used was the random grid shuf-
�ing technique [12] for forest datasets as described by Josh et al.
In essence, the corresponding image-mask pair have been divided
using an 8x8 grid, and using the same random seed, the tiles were
rearranged for the augmented image-mask pair result. Such a depic-
tion can be seen in Figure 2 below.

Fig. 2. Data Augmentation using the random grid shu�ling technique

With such a technique, an improvement of ≈ 2 − 3% in the accuracy
of the training dataset has been observed. However, in comparison
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to using random rotations, random horizontal �ips, and random ver-
tical �ips, the accuracy for the validation dataset has been reduced
by ≈ 1 − 2%, which means that the model started to learn unnatu-
ral patterns in the data. Therefore, only the second augmentation
method has been used in the end.

3.4 HyperParameters and Model Training

Since the augmented dataset is pixel-wise balanced, the common
loss function for all the models is the binary cross-entropy6 function.
The reason is that both predicted labels are considered to have the
same weight. In other words, it is assumed that overpredicting FN7s
(black pixels - false indication of forest loss) is as bad as overpredict-
ing FP8s (white pixels - false indication of forest grain).

During training, the Adam Optimiser with a learning rate of 0.001
was used. Additionally, the batch size has been chosen to be either
4 or 32, as it was found to provide better granularity and feature
extraction during training in comparison to other batch sizes in
powers of two. Both of these parameters have been optimally cho-
sen after performing a grid search targeting the maximisation of the
validation accuracy after 5 epochs of training. To split the dataset,
a standard 80%, 10%, 10% train, validation, test split has been em-
ployed for partitioning since the entire dataset is su�ciently large
(>100K) data points, to allow for such a split, which allocates more
data points by percentage for training purposes. In the end, the test-
ing set is of size 11,428 images, which have been randomly picked
from the balanced dataset. Additionally, the validation dataset of
11,828 is used in conjunction to evaluate the con�dence of accurate
predictions on unseen data.

The output activation function of each model is sigmoid9 since
the output tensor of each model has only 1 channel. This is the
greyscale con�dence probability map with values ranging from 0
to 1. Thus, to consider a pixel as positive or negative in the �nal
labelling, a threshold must be applied. This threshold has been
adjusted dynamically in order to maximise the accuracy for each
model after training using the testing set. The step used for adjusting
the threshold iteratively is 2.5. The best values range from 40% to
60%. This process can be referred to in Appendix A1. Moreover,
visualisations of predicted masks can be observed in Appendix B.

3.5 Development Workflow

The models have been developed, trained and validated using the
Python Keras API from TensorFlow in Jupyter Notebooks. The envi-
ronment used for development was the JupyterLab Platform hosted
by UTwente. In this way, the models have been trained using a
much more powerful GPU in the cloud - the NVIDIA 8-core A10
with compute capability 8.6 and cuDNN version 90300.

After each model has been trained and validated, it has been com-
pressed into a .tfml �le. From the .tfml �le, a Python script converted

6BCE is an loss function de�ned as: BCE(~, ~̂) = −
[

~ log(~̂) + (1 − ~) log(1 − ~̂)
]

7FN: Incorrectly labelling a positive data point as negative
8FP: Incorrectly labelling a negative data point as positive
9Sigmoid is an activation function de�ned as: B86<0 (G ) = 1

1+ě−Į

Fig. 3. Development Workflow - Training and Native Deployment Process

the model into two .cc and .h �les. These C �les are publicly avail-
able and ready to be used for actual deployment. Furthermore, the
models have been tested and run natively on the Arduino Nano 33
and ESP32. Using the Arduino_TensorFlowLite and the Chirale_-
TensorFlowLite libraries for the Arduino and ESP32, respectively.
For inference, an image which was converted to a C Array as a
constant expression has been encoded in the FLASH. When burning
and running the sketch on the microcontroller, the image is fed to
the interpreter and the inference using the model’s weights is done
in a continous loop. For each inference, the time that it takes to get
a full prediction is measured using the built-in micros() function
of the microcontrollers. Note that it is enough to store only one
encoded image of size 64x64 px on 3 RGB channels to measure the
inference time since the performance is deterministic in this stage
and independent of the actual values of each pixel. This process can
be referred to in Figure 3.

4 PROPOSED MODELS

During the research phase, threemainmodels which showed promis-
ing results have been developed. All three models are based on
well-known architectures which have been progressively altered
and cropped, in order to keep most of their initial accuracy while
drastically decreasing their size such that they can be deployed on
the targeted microcontrollers, adhering to the memory limitations.

4.1 Tiny UNET with a Stacked Depthwise Convolutional

Block

This model is based on the standard UNET[21] architecture, which
has been augmented with a Stacked Depthwise Convolutional Block
before the output layer. Moreover, the model uses Add operations
instead of Concatenate operations to �t into the target tensor arena.
The activation functions for the convolutional blocks have also been
replaced with Hard Swish [13]. This decision was made based on
the insights gained from the research done by Avanash et al. [1],
who proved that this activation function leads to better performance
in the case of semantic segmentation of satellite images instead of
using ReLU or ReLU6. This change accounted to an average increase
in accuracy of ≈ 1.5%. Moreover, a Stacked Depthwise Convolutionl
Block of 3 layers with decreasing kernel sizes (3x3, 2x2, 1x1) in this
order and ReLu activation functions have been introduced at the
end to act as a feature re�nement. The reason for this is the fact that
the compressed version of the UNET lost prediction accuracy due
to replacing the concatenation layers with additive layers for the
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Fig. 4. Tiny UNET with a Stacked Depthwise Convolutional Block. Adapted

from: www.lmb.informatik.uni-freiburg.de/people/ronneber/u-ne [22]

skip connections. Thus, this measure aims to o�set this loss. The
introduced block adds minimal space and time complexity by adding
only 157 new parameters while increasing the base model’s accuracy
by ≈ 0.95%. The number of �lters has also been adjusted to range
from 3 up to 24 in the encoder and decoder. The reason is that having
more than 3 �lters during the �rst convolution when the tensor has
its full spatial dimension (64x64) will not �t into the tensor arena.
Thus, a characteristic sequence of (2 + 1, 4 + 2, 8 + 4, 16 + 8, ..., Ĥ + =

2 )

has been used to adjust the number of �lters for each double layer
in the encoder. The reserve of this sequence is used for the decoder.

4.2 Tiny DeepLabV3+ with Lightweight Encoder

This model is based on the architecture of the DeepLabV3+[5] intro-
duced by Google. The original architecture was altered by adding a
lightweight initial Encoder instead of the original Atrous Convolu-
tional Encoder, which was too heavy. This encoder is made up of
only 4 convolutional layers linked in pairs. Each pair having 24 and
58 �lters, respectively. The Output Stride, which is 4 in the original
model, has been set to 2. The reason is that the input tensors for
all the models of this paper have a very small spatial dimension of
only 64x64. Using the original Output Stride will pass a tensor of
size only 4x4 to the Atrous Spatial Pyramid Pooling ASPP10, which
is too small to bene�t from it in the �rst place. Thus, in the current
implementation, the tensor fed into the ASPP (The special block for
DeepLabV3+) is 8x8, which enhances the spacial context and the
features learned. This improved the model’s performance by ≈ 2.5%.
Moreover, the Concatenate operation has also been replaced by the
Add operation as it was previously explained why this is necessary.
To account for this loss of context across channels, a double decoder
layer with 48 �lters has been introduced at the end, but only with
a stride of 1 to avoid distorting the spatial dimension of the tensor
before the �nal upsampling layer which has also been adjusted to
upsample by only 2 before the last output layer.

10Atrous Spatial Pyramid Pooling Block: Block which uses several parallel atrous
convolutions at multiple dilation rates, all concatenated at the end for context inference.

Fig. 5. Tiny DeepLabV3+ with Light Encoder. Adapted from: www.sh-

tsang.medium.com [25]

4.3 Tiny SegNetV2 with Dense Layer Bo�leneck

This model is mainly built on the original SegNet Architecture [2]
introduced by Vijay et al. in 2015. The main di�erence, however,
is that two fully connected dense layers of 64 neurons each have
been introduced in the bottleneck. This technique proved to improve
some of the binary semantic segmentation tasks as it was discovered
by Brahmbhatt et al. in 2019 [4]. This variation has been done in an
e�ort to account for the fact that the pooling indices operations have
been removed. This addition increases the base model’s accuracy by
2.32%. Moreover, the number of �lters has also been adjusted using
the same characteristic sequence presented for the Tiny Unet.

Fig. 6. Tiny SegNet with Dense Layer Bo�leneck. Adapted from: The original

2015 SegNet paper [2]

4.3.1 Notable Metions. Two standard Unet Architectures have been
tested aswell for completeness during the exploratory phase. Namely,
the Attention Unet introduced by Oktay et al. [19] in 2018 and the
Unet++ introduced by Zongwei et al. [29] in the same year. Unfortu-
nately, both architectures yielded modest results. Thus, no e�ort was
made to extend them. The architectures have been deployed using a
classic hour-glass pattern of 6 layers, made up of (2,4,8,16,32,64) �l-
ters and ReLu activation functions for each layer in the encoder and
the same order of �lters, but reversed in the decoder. Both models
yielded an accuracy between 84% to 87%.
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5 PROPOSED DEPLOYMENT PIPELINE

The Deployment Pipeline can be captured completely in 5 stages,
which are also depicted in Figure 8.

Prerequisites: Before deploying the drone with the mounted mi-
crocontroller and camera, the region of interest should �rst be tes-
sellated into square cells. A tessellation is a division of a surface
into adjoining shapes (tiles) that completely cover the area with no
gaps or overlaps. This process is described by Gri�th et al.[9] in
their paper on this subject. In practice, this can be done by using
already-made software such as the DGGS [16].

Moreover, a GPS module such as the u-blox ZED-F9P compatible
with the Arduino 33 Nano and the ESP32 should be mounted on the
drone in order to asses the geographical tile over which is hovering
during the �y. For ease of use, the drone could �y in a deterministic
path. In the end, it should be noted that in reality, there are some
limitations and errors to be considered if this tiling process is used
due to the Earth’s curvature. However, most drones and UAVs �y
at a relatively low altitude, and these errors for this scope can be
largely ignored.

Stage 1: During the �rst stage, an RGB image over a particular
geographical tile is captured by the drone’s camera during �ight.

Stage 2: The second stage corresponds to partitioning the original
image into (D x D) smaller sub-images and sequentially feeding then
as input tensors with three RGB channels into the model. For the
scope of this research, the D parameter is 64 since it is the largest
power of two which �ts in the available LCFRB of the ESP32 as an
input tensor.

Stage 3: The third stage is the inference stage, which takes the input
tensor, computes all the intermediate convolutions and outputs a
tensor with the same spatial dimension but with only 1 channel,
which are con�dence values for each pixel ranging from 0 to 1 (the
greyscale probability map).

Stage 4: In the fourth stage, the image is thresholded using the best-
performing threshold, which was dynamically discovered after the
training of each model. However, this is static during deployment.
Thus, each pixel will have a binary value in the end. Moreover, for
the same snapshot (in case this is not the �rst snapshot for the corre-
sponding geographical tile), there should exist in the memory of the
microcontroller at least one most recent snapshot (saved only as a
binary mask in the �ash memory of the microcontroller). The image
di�erencing function in this stage will detect topological changes
with a double-pass linear complexity in terms of the stored spatial
dimension (D x D).

Stage 5: Topological change detection — such as forest loss or
gain and gap detection, are identi�ed at this stage remotely by
the microcontroller using the simple image di�erencing technique
previously described. Note that for this, it is enough to store only
the binary masks since they occupy less space due to the fact that

Fig. 7. Example of geographical tesselation covering Tuscany with square

tiles of size 10x10 Km. Source: www.gaia-gis.it [23]

they have only 1 channel and can be e�ciently compressed. The
way how these characteristics are determined is detailed in the
Post-Processing section at the end.

Fig. 8. Deployment Pipeline in 5 stages

6 DATA ACQUISITION, AUGMENTATION AND

BALANCING

7 OPTIMIZATIONS

7.1 8-Bit �antization

In order to compress the models and keep them deployable while
adhering to the Tensor Arena Size constraint, a uniform a�ne 8-bit
quantization has been applied as it was introduced by Sambhav et
al. [15] in 2020.

Quantized: @ = round
( A

B

)

+ / =⇒ A ≈ (@ − / ) × B

where:
• Ĩ : original real (�oating-point) value

• ĩ: scale factor (ĩ = �oatmax−�oatmin
intmax−intmin

)

• Ė : zero-point (maps Ĩ = 0 to the integer zero-value, ensuring
exact representability)

• ħ: quantized integer in the 8-bit range [intmin, intmax]

• round(·): nearest-integer rounding operation
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Performance drop after quantization: During the quantization
stage, an average performance drop of no more than ≈ 2% for accu-
racy, ≈ 2.5% for the F1 score, ≈ 3% for IoU and ≈ 3% for precision and
recall has been recorded for each model. This still makes the mod-
els feasible for deployment without a signi�cant drop. The overall
performance of the best model in terms of accuracy (DeepLabV3+)
is decreased by only ≈ 1.5%, which is reasonable considering that
all the weights have been trimmed from Float3211 values to UInt812

values. All models have been successfully quantized and deployed
on the target microcontrollers, since without it, the deployment is
not possible.

7.2 Manual Micro Operator Selection

Manually con�guring the operators required by the model when
con�guring the TensorFlow Lite Micro (TFLM) interpreter greatly
reduced the tensor arena requested size. This approach replaces
the use of a default interpreter (such as AllOpsResolver) that loads
support for all available operations, regardless of whether they are
needed. By limiting the interpreter to only the necessary operators
for each model during loading, the memory footprint of the ten-
sor arena used by the interpreter during inference is signi�cantly
reduced.

7.3 Overfi�ing Mitigation

Furthermore, when it comes to avoiding over�tting, the following
measures have been taken:

• Random batch shu�ing during each epoch

• Early Stopping with a patience of 10 epochs and tolerance value for the

validation accuracy of 0.001

• Introduced 4 to 8 uniformly distributed dropout layers in each architec-

ture with a drop probability of 20% as a regularisation technique

8 RESULTS - PERFORMANCE ANALYSIS

8.1 Model Performance - The winner for each category is

highlighted in light green

When it comes to accuracy and overall performance, the Tiny
DeepLabV3+ with the Lightweight Encoder performs the best when
it comes to all evaluation metrics. On the second spot comes the
Tiny Unet with the SDC Block, with an accuracy drop of only 2.5%
and a more signi�cant F1 Score drop of 3.61%. Unfortunately, the
Tiny SegNetV2 underperformed in every category. These compar-
isons can be directly observed in Table 2 below, while the learning
curves can be referenced in Appendix C .

Table 2. Performance over the testing dataset a�er training the models and

adjusting the best-performing threshold for each of them.

Model Loss Acc F1 IoU Recall Prec

Tiny DeepLabV3+ 0.2299 0.9085 0.8817 0.8074 0.8888 0.8907

Tiny UNet 0.2977 0.8835 0.8456 0.7624 0.8581 0.8625

Tiny SegNetV2 0.3694 0.8537 0.8064 0.7098 0.8127 0.8399

11Float32: 32-bit �oating-point format for precise real numbers in ML models.
12UInt8: is an 8-bit unsigned integer data type ranging from 0 to 255.

8.2 Native Model Space and Time Complexity

When it comes to time complexity, the Tiny Unet wins when it
comes to inference time, as it can be seen in Tables 4 and 5. While
the di�erence on the Arduino Platform is marginal, on the ESP32,
it is two times faster in terms of inference time. Furthermore, the
Tiny Unet is 5.03 times smaller when it comes to FLASH Memory
Size, which makes it �t for memory-constrained microcontrollers.

Table 3. Comparison of Models Native Size and Theoretical Computational

Requirements

Model Parameters Memory Size Total FLOPs

Tiny U-NET 49,223 192.28KB 10,344,854

Tiny DeepLabV3+ 247,993 968.72KB 98,061,088

Tiny SegNetV2 104,562 408.45KB 13,777,646

Last but not least, the tensor arena allocated for each model has
been measured as well. This is the reserved RAM space during run-
time for the interpreter to load the most computationally intensive
intermediate layer. This is a crucial aspect for deploying models on
microcontrollers since most of them have limited allocatable RAM
space during runtime, and using a model which does not require
too much RAM is necessary if other tasks and jobs have to be done
on the microcontroller as well, besides just running the model. In
this department, the Tiny SegNetV2 wins by a small margin of 4KB
and 7KB relative to the Tiny Unet and the Tiny DeepLabV3+, re-
spectively. However, the Tiny SegNetV2 has the largest inference
time on both platforms, while being the least accurate model. In
consequence, this makes the memory gain obsolete.

Table 4. ESP32 Inference Performance by Model: Inference Time and Tensor

Arena Size

Model Inference Time Tensor Arena Size

Tiny UNET 0.87s 86KB

Tiny DeepLabV3+ 1.64s 89KB

Tiny SegNetV2 1.852s 82KB

Table 5. Arduino Nano 33 Inference Performance by Model: Inference Time

and Tensor Arena Size

Model Inference Time Tensor Arena Size

Tiny UNET 2.56s 87KB

Tiny DeepLabV3+ 2.68s 90KB

Tiny SegNetV2 5.91s 83KB

8.3 Comparative Analysis - Benchmarking

Unfortunately, a direct comparative analysis on the OAM-TCD
Dataset with lightweight models is not possible since no public
models lightweight enough to �t on a microcontroller are known
as of June 2025. However, the authors published benchmarks of
large generic semantic segmentation models as they can be seen
in the table below. However, it should be noted that these models

TScIT 43, 4 July, 2025, Enschede, The Netherlands.



8 • Author

have been trained using random crops of 1024x1024 px instead of
64x64 to provide more spatial context. Under a simple inspection, it
seems like the proposed Tiny DeepLabV3+ Model exceeds most of
the authors’ models in terms of Accuracy and F1 Scores while being
much lighter and having less spatial context. However, as previously
stated, since the original images are compressed to 256x256 px and
sub-images of 64x64 px are extracted, �ne-grained details are lost
due to interpolation. Therefore, the models have to some extent
an easier and more coarse task to accomplish in comparison to the
models introduced by the authors of OAM-TCD. However, it should
be noted that even though the task is more coarse, the proposed
models in this paper have to work with a spatial context two times
smaller than the one used by the authors (16 sub-images instead of
4). This increases the di�culty of correct pixel classi�cation.

Table 6. Semantic segmentation model performance on the OAM-TCD

holdout set [26]. These baseline models have been tested and benchmarked

by the authors on the dataset OAM-TCD.

Model IoU Accuracy F1 Parameters

UNet ResNet34 0.838 0.883 0.871 24.4M

UNet ResNet50 0.849 0.881 0.880 35.5M

SegFormermit-b0 0.865 0.892 0.882 3.72M

SegFormermit-b1 0.870 0.897 0.891 13.7M

SegFormermit-b2 0.871 0.889 0.898 27.3M

SegFormermit-b3 0.875 0.884 0.875 47.2M

SegFormermit-b4 0.875 0.891 0.901 64M

SegFormermit-b5 0.876 0.890 0.902 84.6M

9 POST PROCESSING

9.1 Topological Change Detection

The �nal prediction is a binary mask (white pixel = tree, black pixel
= background) delineating forest cover for each drone-captured
snapshot. Topological change detection is performed through sim-
ple image di�erencing of consecutive masks. If a pixel transitions
fromwhite to black, it indicates forest loss in that region; conversely,
a black-to-white transition signals gain. This per-pixel comparison
naturally highlights areas of deforestation or reforestation.

In order to extract correct topological features, it is assumed that
the UAV Vehicle that is capturing the images is �ying consistently
at the same altitude. In this fashion, depending on the aperture and
resolution of the camera, it is possible to compute a direct mapping
between a digital pixel to an (N × N) square meter tile on the ground,
i.e. �nding the space resolution of the image.

9.2 Topological Features Extraction

Once the binary masks are generated, several topological and geo-
metric metrics can be computed using only the binary predicted
values:
• Forest sparsity: the ratio of black to white pixels, re�ecting canopy

fragmentation.

• Centroid: the geometric centre of white regions, useful for tracking

forest patch displacement or expansion.

Fig. 9. Example of feature extraction a�er applying image di�erencing over

two temporal images covering the same geographical tile.

• Connected components: counts of discrete forest patches and their

individual areas.

• Perimeter-to-area ratio: a shape descriptor indicating edge complexity

(e.g. compact vs. irregular forest patches).

• Change area: total count of newly black or white pixels, quantifying

net loss or gain.

10 CONCLUSION

The Tiny DeepLabV3+ performed the best in terms of inference time
on all platforms. However, it is the heaviest model (968.72 KB). For
a small performance drop of ≈ 2-3% across all metrics, if signi�cant
FLASH memory limitations exist during deployment, the Tiny Unet
can be used with much con�dence as well since it still maintains
most of the accuracy of Tiny DeepLabV3+ while being �ve times
smaller (192.28KB) and faster in terms of inference time on both
platforms. In this case, it could be argued that the Tiny Unet delivers
more performance per parameter count, and it is the most e�cient
model if equal weights are put on time and space e�ciency. The
Tiny SegNetV2 model can be discarded since it doesn’t outperform
the other two models in any department, except for a negligible
advantage in the tensor arena, while severely lacking in terms of
space and computational e�ciency.

In the end, the results are overall satisfying when it comes to the
performance of the proposed models relative to their tiny size and
the other models’ benchmarks provided by the authors of OAM-
TCD[26]. However, a direct comparison still cannot be done due
to di�erent input tensor spatial dimensions. Moreover, all default
implementations of the original architectures of the proposed mod-
els use over 1M total parameters, which have been greatly reduced
without sacri�cing too much performance for the proposed Tiny
ML variations. The models also have a good F1-score, balancing the
False Positives and False Negatives well.

11 PRACTICAL REMARKS

In the public GitLab repository of this project: (https://gitlab.utwen
te.nl/s2995735/reserachprojectforestsegmentation), all results can be
reproduced and all model weights are provided in standard formats:
.weights.h5 (trained weights), .t�m (quantized TFLite Micro model),
and the correspoding conversions to C source/header �les (model.cc,
model.h) for embedded deployment on C/C++ microcontrollers.
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A EVALUATION TABLES

A.1 Evaluation Tables - Performance Measuring with

Dynamic Thresholding

Table 7. Tiny DeepLabV3+ performance for di�erent thresholds

Thr Loss Acc F1 Score IoU Recall Precision

0.400 0.2299 0.9059 0.8834 0.8091 0.9161 0.8676

0.425 0.2299 0.9068 0.8835 0.8094 0.9109 0.8725

0.450 0.2299 0.9076 0.8833 0.8093 0.9056 0.8773

0.475 0.2299 0.9081 0.8829 0.8089 0.9002 0.8819

0.500 0.2299 0.9084 0.8826 0.8085 0.8946 0.8863

0.525 0.2299 0.9085 0.8817 0.8074 0.8888 0.8907

0.550 0.2299 0.9084 0.8805 0.8059 0.8828 0.8949

0.575 0.2299 0.9081 0.8789 0.8040 0.8765 0.8989

0.600 0.2299 0.9076 0.8770 0.8016 0.8698 0.9028

0.625 0.2299 0.9069 0.8752 0.7992 0.8628 0.9068

0.650 0.2299 0.9059 0.8726 0.7959 0.8555 0.9105

0.675 0.2299 0.9047 0.8696 0.7920 0.8475 0.9143

0.700 0.2299 0.9032 0.8661 0.7875 0.8391 0.9182

Table 8. Tiny Unet performance for di�erent thresholds

Thr Loss Acc F1 Score IoU Recall Precision

0.400 0.2977 0.8528 0.8392 0.7480 0.9457 0.7767

0.425 0.2977 0.8585 0.8426 0.7533 0.9395 0.7863

0.450 0.2977 0.8645 0.8462 0.7586 0.9315 0.7975

0.475 0.2977 0.8702 0.8491 0.7631 0.9219 0.8096

0.500 0.2977 0.8750 0.8510 0.7663 0.9111 0.8217

0.525 0.2977 0.8787 0.8517 0.7680 0.8994 0.8332

0.550 0.2977 0.8814 0.8511 0.7680 0.8867 0.8438

0.575 0.2977 0.8829 0.8491 0.7661 0.8730 0.8538

0.600 0.2977 0.8835 0.8456 0.7624 0.8581 0.8625

0.625 0.2977 0.8831 0.8409 0.7572 0.8422 0.8716

0.650 0.2977 0.8816 0.8348 0.7501 0.8249 0.8797

0.675 0.2977 0.8791 0.8271 0.7410 0.8063 0.8885

0.700 0.2977 0.8753 0.8177 0.7299 0.7863 0.8970

Table 9. Tiny SegNetV2 performance for di�erent thresholds

Thr Loss Acc F1 Score IoU Recall Precision

0.400 0.3694 0.8537 0.8064 0.7098 0.8127 0.8399

0.425 0.3694 0.8530 0.8005 0.7038 0.7967 0.8484

0.450 0.3694 0.8516 0.7937 0.6967 0.7806 0.8553

0.475 0.3694 0.8496 0.7860 0.6888 0.7634 0.8602

0.500 0.3694 0.8465 0.7760 0.6783 0.7441 0.8670

0.525 0.3694 0.8418 0.7630 0.6645 0.7214 0.8736

0.550 0.3694 0.8363 0.7489 0.6495 0.6986 0.8766

0.575 0.3694 0.8305 0.7347 0.6346 0.6773 0.8776

0.600 0.3694 0.8245 0.7204 0.6196 0.6568 0.8765

0.625 0.3694 0.8177 0.7053 0.6037 0.6362 0.8763

0.650 0.3694 0.8101 0.6888 0.5864 0.6146 0.8758

0.675 0.3694 0.8017 0.6708 0.5678 0.5920 0.8719

0.700 0.3694 0.7922 0.6511 0.5476 0.5681 0.8689

A.2 Evaluation Tables - HyperParameter Grid Search

Table 10. Validation Accuracy for di�erent combinations of Batch Size

and Learning Rates for the Tiny DeepLabV3+ Model using a Grid Search

approach

Learning Rate Batch Size Validation Accuracy

0.001 2 0.7952

0.001 4 0.8539

0.001 8 0.8175

0.001 16 0.8504

0.001 32 0.8318

0.0001 2 0.8114

0.0001 4 0.8240

0.0001 8 0.8100

0.0001 16 0.8275

0.0001 32 0.8104

1e-05 2 0.7639

1e-05 4 0.7873

1e-05 8 0.7960

1e-05 16 0.7915

1e-05 32 0.7886

Table 11. Validation Accuracy for di�erent combinations of Batch Size and

Learning Rates for the Tiny SegNetV2 Model using a Grid Search approach

Learning Rate Batch Size Validation Accuracy

0.001 2 0.7753

0.001 4 0.6862

0.001 8 0.7648

0.001 16 0.7574

0.001 32 0.7833

0.0001 2 0.7538

0.0001 4 0.7428

0.0001 8 0.7099

0.0001 16 0.6500

0.0001 32 0.6051

1e-05 2 0.6813

1e-05 4 0.6397

1e-05 8 0.6210

1e-05 16 0.5587

1e-05 32 0.4539
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Table 12. Validation Accuracy for di�erent combinations of Batch Size and

Learning Rates for the Tiny SegNetV2 Model using a Grid Search approach

Learning Rate Batch Size Validation Accuracy

0.001 2 0.7990

0.001 4 0.8371

0.001 8 0.7780

0.001 16 0.8444

0.001 32 0.8523

0.0001 2 0.8060

0.0001 4 0.7976

0.0001 8 0.7923

0.0001 16 0.8200

0.0001 32 0.7919

1e-05 2 0.5808

1e-05 4 0.6803

1e-05 8 0.7163

1e-05 16 0.5489

1e-05 32 0.5268

B MODEL PREDICTION VISUALIZATIONS - INPUT

IMAGE, GROUND TRUTH, GREYSCALE PREDICTION,

BINARIZED PREDICTION

Fig. B.1. Examples of predictions done using Tiny DeepLabV3+ on 4 images.

Each row contains the input image, the ground truth, the greyscale predic-

tion and the binarized prediction using the optimal threshold (0.5)

Fig. B.2. Examples of predictions done using Tiny Unet on 4 images. Each

row contains the input image, the ground truth, the greyscale prediction

and the binarized prediction using the optimal threshold (0.5)

Fig. B.3. Examples of predictions done using SegNetV2 on 4 images. Each

row contains the input image, the ground truth, the greyscale prediction

and the binarized prediction using the optimal threshold (0.5)
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C LEARNING CURVES - TRAINING VS VALIDATION

ACCURACY METRICS

Fig. C.1. Training vs Validation Accuracy during training for Tiny

DeepLabV3+

Fig. C.2. Training vs Validation Accuracy during training for Tiny Unet

Fig. C.3. Training vs Validation Accuracy during training for Tiny SegNetV2
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