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ABSTRACT 

Earthquake-induced landslides are the most common secondary hazard triggered by earthquakes, 

particularly in mountainous regions of tectonically active countries like Türkiye. Although often 

overshadowed by the primary effect of the earthquake, these landslides can cause severe damage to 

infrastructure, disrupt access to affected areas, and delay emergency response and recovery efforts. Despite 

their hazardous potential, national-scale assessments that estimate the likelihood of future earthquake-

triggered landslides and their potential impact on infrastructures remain limited. This study addresses this 

gap by developing a data-driven model to simulate earthquake-induced landslide susceptibility and estimate 

infrastructure exposure across Türkiye under different seismic hazard scenarios. 

 

Using a Generalized Additive Model (GAM) framework, the susceptibility model was trained on two co-

seismic landslide inventories, including the 2011 Van and 2023 Kahramanmaras earthquakes. A total of 17 

variables were initially evaluated in the exploratory phase to understand their relationship with landslide 

occurrence. Based on their statistical relevance, four continuous variables, including slope steepness, local 

relief (LR), peak ground acceleration (PGA), and proximity to active faults, along with two categorical 

variables, which are lithology and land cover, were selected for the final model. Using both random cross-

validation (RCV) and spatial cross-validation (SCV), the model achieved area under the curve (AUC) scores 

of 0.86 and 0.81, respectively. These results indicate that the model can predict landslide occurrence well 

despite the spatial differences.  

 

Although the model does not include runout simulation or dynamic environmental conditions, it provides 

a practical and transferable framework for scenario-based assessment at a national scale. To explore how 

landslide susceptibility might vary under different earthquake conditions, the model was simulated under 

four PGA exceedance scenarios (2%, 10%, 50%, and 68% in 50 years) derived from Türkiye’s national 

seismic hazard map. As the PGA intensity increases in rarer scenarios, the predicted susceptibility values 

also tend to rise, ranging from a maximum of 0.3 in the 68% scenario to as high as 0.82 in the 2% scenario. 

This trend shows that stronger but less frequent earthquakes have a bigger impact on slope stability.  

 

To evaluate the potential consequences, an exposure assessment was carried out to estimate the spatial 

overlap between each susceptibility map scenario and the critical infrastructure across the country. This 

assessment combined both the susceptibility values and associated uncertainties to identify the number of 

exposed elements at risk (EaRs) and assess the confidence level of the predictions. While the amount of 

exposure varied depending on how infrastructure intersected with susceptible slope units, a general trend 

was observed: exposure under the 68% scenario was predominantly concentrated in lower susceptibility 

classes, whereas the 2% scenario showed a greater proportion of exposure in the higher susceptibility classes. 

 

This study highlights the potential of integrating probabilistic seismic hazard maps with data-driven 

susceptibility models to support future prediction of earthquake-induced landslides. Enhancing data 

resolution and completeness will be essential for improving model performance and expanding its 

applicability to other regions or scenarios. In addition, combining this approach with simplified physically 

based models and promoting open data sharing could encourage broader collaboration and facilitate more 

robust, flexible, and widely applicable landslide risk assessments. 

 

Keywords: earthquake-induce landslide, susceptibility modeling, seismic hazard map, exposure, Türkiye 
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1. INTRODUCTION 

1.1. Background 

Earthquake-induced landslides are the most widespread and destructive secondary hazards triggered by 

strong seismic events, particularly for communities living in tectonically active mountainous landscapes 

(Bird & Bommer, 2004; Mousavi et al., 2011; Jesse et al., 2018). These events can significantly amplify the 

earthquake impacts, such as loss of life, infrastructure damage, and socioeconomic problem (Tanyaş et al., 

2017; Shao & Xu, 2022; Ojomo et al., 2024; Wang et al., 2024). The susceptibility of a given landscape to 

slope failures increases in the aftermath of strong earthquakes as they reduce the shear strength of hillslopes 

(Karakas et al., 2024; Xi, Lombardo, et al., 2024; Xi, Tanyas, et al., 2024). Therefore, understanding the 

spatial distribution of landslide susceptibility following major earthquakes is critical for hazard assessment 

and land-use planning (Jesse et al., 2018; Lima et al., 2022). 

 

Numerous approaches have been developed to model landslide susceptibility, including earthquake-induced 

landslide, which is generally categorized into physical-based and statistical-based methods (Lima et al., 2022). 

Physically based models, such as Newmark analysis, simulate slope failure using detailed geotechnical and 

seismic parameters, taking into account both the ground shaking that initiates the landslide and the 

mechanical response of the slope during failure (Bray & Travasarou, 2007). However, physics-based 

approaches require detailed datasets to accurately represent terrain properties, material behavior, and 

triggering conditions (Cheng et al., 2021; Z. Chen & Wang, 2023). Therefore, while they offer high accuracy, 

these approaches mainly suitable for local scale assessments, such as sub-catchment (Shao & Xu, 2022). 

 

Contrary, data-driven models rely on observed landslide inventories and their relationship with 

environmental conditioning factors to learn spatial patterns of landslide occurrences (Kritikos et al., 2015; 

Tanyas et al., 2019). This makes the model's accuracy and reliability depend on the availability and 

completeness of the data (Robinson et al., 2018; Cheng et al., 2021). This approach is often used for regional-

scale assessments as it does not need as much detailed data and can be easily applied across wide regions 

(Lima et al., 2022; Shao & Xu, 2022). 

 

In both modeling approaches, ground shaking is one of the main input variables, typically represented as 

peak ground acceleration (PGA) (Nowicki et al., 2014; Cheng et al., 2021; Alvioli et al., 2024). Most studies 

obtain PGA values from empirical Ground Motion Prediction Equations (GMPEs) or ShakeMaps derived 

from specific historical earthquakes (Nowicki et al., 2014; Allstadt et al., 2018). However, these sources are 

event-specific, which relies on the historical ground motion record, making it less reliable for higher 

earthquake magnitudes and broader distances in the future scenario analysis (Nakanishi & Takemura, 2023; 

Vandana et al., 2024).    

 

Alternatively, Probabilistic Seismic Hazard Assessment (PSHA) is another method for estimating ground 

motion parameters for future earthquakes. It provides a probabilistic estimation of expected PGA over a 

specified time window while taking into account the uncertainties of earthquake location, time, and 

magnitude (Caccavale et al., 2017; Gerstenberger et al., 2020; Shao et al., 2023). The primary output of 

PSHA is the seismic hazard map, which presents the spatial distribution of ground motion intensities at 

various exceedance probabilities (Akkar et al., 2018). These maps are especially valuable for long-term 

hazard prediction and scenario-based modeling, as they allow researchers and planners to assess the spatial 
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variation of seismic risk without relying on a single historical earthquake event. However, their integration 

into earthquake-induced landslide susceptibility remains limited.  

 

Furthermore, compared to the primary hazards such as earthquakes and rainfall-induced landslides, the 

exposure assessment of earthquake-induced landslides remains unexplored, particularly at the national scale. 

This may be due to the complexity of the earthquake-induced landslide modeling process and the availability 

of the event-specific data. However, as aforementioned, earthquake-induced landslides can cause additional 

damage, particularly in mountainous areas. Therefore, including them in exposure assessment could give a 

better hazard understanding and support proactive spatial planning (Wasowski et al., 2011; B. Zhang et al., 

2022).  

1.2. Study Case 

Türkiye is a country with frequent and damaging earthquakes. Several strong earthquakes have been 

recorded in the last three decades, and the most recent, the 2023 Kahramanmaras earthquake sequence, 

caused over 50,000 casualties and damaged about 4 million infrastructures (ADRC, 2023; Wikipedia, 2025). 

However, no national-scale data-driven model currently exists to assess earthquake-induced landslide 

susceptibility, and no known study has used PGA derived from a seismic hazard map to drive such a model. 

Most earthquake-induced landslide studies in Türkiye remain localized, focusing on individual events like 

the 2011 Van earthquake or the 2023 Kahramanmaraş earthquake (Gorum, 2016; Karakas et al., 2024).  

1.3. Research Aim 

As previously discussed, despite the destructive potential of earthquake-induced landslides, their 

susceptibility and exposure assessment, particularly on a national scale, remain limited. Moreover, no existing 

study has incorporated PGA derived from seismic hazard maps for earthquake-induced landslide 

susceptibility. To address these gaps, this research aims to develop a national-scale co-seismic landslide 

susceptibility model using data-driven methods. The model is based on co-seismic landslide inventories 

from the 2011 Van (Gorum, 2016) and 2023 Kahramanmaraş (Yılmaz, et al., unpublished) earthquake 

sequences. PGA values extracted from a seismic hazard map of Türkiye are utilized to simulate multiple 

earthquake scenarios and generate spatial predictions of landslide susceptibility across the country. 

 

Furthermore, this study integrates the resulting susceptibility maps with spatial datasets of elements at risk 

(EaRs) to assess their exposure under different seismic hazard conditions. By combining landslide 

susceptibility modeling with exposure analysis, this research is expected to enhance a better understanding 

of earthquake-triggered landslide impacts and support future scenario-based hazard assessment across the 

country. 

1.4. Research Objectives and Research Questions 

The main objective of this study is to model earthquake-induced landslides across Türkiye and assess their 

potential impact under different seismic scenarios. 

  

Based on the overall objectives, sub-objectives are identified as follows: 

1. To generate a data-driven model for the co-seismic landslides triggered by the 2011 and 2023 

Türkiye earthquake sequence 

- What environmental conditions influenced the spatial distribution of the landslides triggered 

by the earthquake sequence? 

- Which predictive factors most strongly contribute to the model? 
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2. To incorporate seismic hazard map information as an input parameter in the earthquake-induced 

landslide prediction across Türkiye  

- How can a seismic hazard map be used to estimate the spatial distribution of earthquake-

induced landslides for future events? 

- How does the earthquake-induced landslide susceptibility vary across different seismic hazard 

scenarios? 

 

3. To assess the exposure of elements-at-risk (EaR) under multiple earthquake-induced landslide 

susceptibility scenarios. 

- How does the exposure of EaR vary across different seismic hazard scenarios in Türkiye? 
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2. STUDY AREA & THE DATASETS 

This chapter provides the spatial extent and datasets used in this research. Section 2.1 introduces the 

geographical scope of the study, including its tectonic and topographic characteristics. Section 2.2 explains 

the landslide inventories utilized, derived from past co-seismic events in 2011 and 2023. Section 2.3 presents 

the seismic and environmental conditioning factors used as controlling parameters observed. Section 2.4 

describes the seismic hazard map used as the ground motion input on the simulation, and Section 2.5 

discusses the EaR considered for exposure analysis. 

2.1. Study Area  

Türkiye is formed by the tectonic collision of the Arabian and African plates, which are still actively moving 

westward and generating two major fault zones: the North Anatolian Fault Zone (NAF) and the East 

Anatolian Fault Zone (EAF) (Tatar et al., 2020), Fig 1. The active tectonic movement releases energy, 

generates various ground movements, and creates a young and steep topography with weak shear strength 

hillslope (Karakas et al., 2021).  

 
Fig 1 The tectonic setting of Türkiye. The red lines illustrate the major active faults, the North Anatolian and East Anatolian faults, while the blue 

lines represent another active fault system across the region. 

 

As shown in Fig 2, the study area covered the areas affected by the 2011 Van earthquake in the northeast 

and the 2023 Kahramanmaras earthquake in the south-central of Turkey. Although many strong earthquakes 

have been recorded in the last three decades, including 1999 Izmit, 1999 Düzce, 2011 Van, 2020 Elazig, and 

2020 Izmir earthquakes, earthquake-induced landslides are rarely investigated in the country (Görüm et al., 

2023). For the moment, there are only two landslide event inventories in Türkiye, the first one for the 2011 

Van earthquake (Gorum, 2016) and the second one for the 2023 Kahramanmaras earthquake (Yılmaz, et 

al., unpublished) sequence. Therefore, I will use these two inventories in the scope of this research to 

develop a predictive landslide model. The study area and the  

 

The 2011 Van earthquake occurred at a shallow depth on an unmapped reverse fault within the 

compressional tectonic zone of EAF (Utkucu, 2013). The earthquake ruptured approximately 60 x 20 km 

rupture with an average displacement of 2 meters and a focal depth of 10-15 km. It triggered landslides over 

a 2,480 km2 area (Gorum, 2016). 

 

On the other hand, the 2023 earthquake sequence consists of two major shocks. The epicenter of the first 

earthquake is located around 15 km east of EAF and the earthquake caused over 6 m offset, while the 

second was located approximately 90 km north of the fault with 7 m surface displacement (Mai et al., 2023; 
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Melgar et al., 2023). This earthquake sequence triggered thousands of slope failures over a 100 km2 area (U. 

S. Geological Survey, 2023a, 2023b). 

 

 
Fig 2 The study area consists of two separate areas which affected by the 2011 and 2023 Türkiye earthquakes. The picture shows the study area 

including the PGA, the source, and the fault rupture of each event.  

 

Both earthquakes happened in the EAF tectonic system with various morphometric and geological 

conditions (Gorum, 2016; Görüm et al., 2023). The Van region is dominated by sedimentary, volcanic, and 

ophiolitic rocks, whereas the Kahramanmaraş region features a more complex mixture of sedimentary, 

ophiolitic, and metamorphic rocks (Çaglayan & Yurtseven, 1998). These lithological differences influence 

the landslide mechanisms in each area and may affect how susceptible the slopes are to ground shaking.  

 

In addition to its complex geology, the climatic and topographic conditions of the country may also play 

some roles in landslide occurrences. The country has several climatic zones, including Mediterranean, 

continental, and semi-arid systems, making it have various precipitation and temperature pattern (Türkeş, 

1996). The Kahramanmaraş region is characterized by a dry summer, cold and wet winter, and semi-humid 

to semi-arid subtropical due to Mediterranean influence. In contrast, the Van region has a continental 

highland climate characterized by colder winters, drier conditions, and more extreme seasonal variations. 

These climatic differences can influence vegetation cover, erosion rates, and weathering processes, which 

could affect long-term slope stability and the spatial patterns of landslide susceptibility. 

 

As for the topographic characteristics of the country, it is mostly mountainous and rugged, which can be 

grouped into three classes based on its origin, including tectonic, volcanic, and erosion (Deniz Ekinci, 2012). 

Kahramanmaraş is dominated by the Southeastern Taurus Mountains and features a highly mountainous 

terrain, with nearly 60% of its area covered by rugged slopes. In contrast, Van Province in Eastern Anatolia 

lies within a high-altitude plateau surrounded by mountainous ridges, including volcanic peaks. The area’s 

rough terrain, combined with its location within a tectonically active zone. Together, these contrasting 

landscapes represent different geomorphological settings, offering useful insights into how topography 

influences the spatial distribution of landslide susceptibility across Türkiye. 

2.2. Landslide Inventories 

To study earthquake-induced landslides in Türkiye, this research utilized the co-seismic landslide inventories 

of the 2011 Van and 2023 Kahramanmaraş earthquakes. The 2011 inventory, published by Gorum (2016), 

contains 82 documented landslides, which mostly consist of falls and slides.  However, different landslide 

types were not indicated for each polygon in the inventory.   
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The 2023 inventory, developed by Yılmaz, et al., is currently unpublished. Over twenty thousand co-seismic 

landslides are stored in the inventory. The smallest landslide in inventory covers an area of 4 m2, while the 

largest exceeds 1 km2. Over 8,000 of the cases happened in areas larger than 1,000 m2. These landslide cases 

are generally classified into six categories based on their movement type, which are fall, flow, avalanche, 

slide, lateral spread, and complex.  

 

The following descriptions of landslide movement type are based on the classification proposed by Varnes 

(1978). A fall-moving landslide is characterized by a very rapid to extremely rapid movement that occurs on 

a steep slope or cliffs, typically involving little or no shear displacement. The detached material, either rock 

or debris, falls freely from the slope in various sizes. An avalanches-type landslide is a rapid movement 

downslope, typically associated with snow and ice. This landslide movement type in the inventory has two 

types of material, debris and rock. In debris avalanches, the movement is progressive yet rapid, involving 

the entire mass of unconsolidated material. On the other hand, rock avalanches involve fragmented rock 

masses, often triggered by structural failure or intense ground shaking.  

 

Slide-movement landslide is a progressive rock or debris movement down the slope, driven by the intense 

shear strain and displacement along the well-defined surface. This movement type is classified into rotational 

and translational slides according to the failure geometry and the nature of the movement. In contrast, a 

flow-moving landslide is a fluid-like debris or earth material downslope movement, influenced by the water 

contained in the material. The transition from slide to flow behavior in debris material depends on factors 

such as water content, material mobility, and movement character.  

 

Lateral spread movement refers to the displacement of soil or rock driven by shear or tensile fracturing, 

predominantly occurring in bedrock. It is often considered as complex-type landslide due to its mechanism, 

which may involve elements of rotational, translational, and even flow movement. Lateral spreads typically 

develop progressively, beginning in a localized area and expanding outward to a broader area. As 

aforementioned, complex-type landslides are also present in the inventory. These involve a combination of 

two or more types of landslide movement, either occurring in different parts of the moving mass or at 

different stages of landslide development. Two types of complex movements identified in the inventory are 

earth slide-earth flow and rock slide-debris avalanche. 

 

Most landslides triggered by the Türkiye 2023 earthquake occurred in steep terrain, with slope angles 

exceeding 20 degrees. Therefore, nearly half of the inventory consists of rockfalls, followed by avalanches, 

which account for approximately one-quarter of the cases. Flows and slide landslide types have similar 

proportions, while the complex-type landslide is the least, with only 99 out of the total 20,270 cases. 

However, although rockfall-type landslides have the largest portion of the inventory, they are excluded from 

further analysis due to their distinct movement mechanism, leaving the remaining five categories. A detail 

of the inventory is displayed in Table 1. 

 

Table 1 Co-seismic landslides inventory of Türkiye's February 2023 earthquake event. 

Movement Type Material Type Total cases Total area (km2) 

Fall Rock 9,286 28.58  

Avalanche Rock 1,158 8.05 
Debris 3,617 10.48 

Slide Rock 59 1.59 
Earth 2,884 4.51 

Flow Debris 3 0.12 



Seismic Landslide Exposure Analysis for Türkiye 

7 

 

Movement Type Material Type Total cases Total area (km2) 

Earth 2,843 0.74 

Lateral spread Earth 321 4.25 

Complex Rock and debris 73 7.42 
Earth 26 0.28 

Total  20,270 66.02 

 

The polygons of the landslide inventory are later converted into raster format to construct the data matrix 

used as an input for the model. The detailed process of this conversion is explained in Section 3.1 (data 

matrix). This step ensures spatial alignment between the inventory and the controlling parameters used in 

the analysis. 

2.3. Controlling Parameters 

Earthquake-induced landslides happen cause of the complex interaction between the controlling parameters, 

such as seismic parameters, terrain parameters, and slope materials. Understanding the interaction 

mechanism between these parameters might improve earthquake-induced landslide distribution predictions 

(Gorum et al., 2011). However, there is no universal guideline to determine which parameter should be 

included in the model due to the complexity and spatial heterogeneity in different regions (Ayalew & 

Yamagishi, 2005). Thirteen controlling parameters are utilized in this study, selected based on a literature 

review of previous landslide research. These parameters include DEM derivatives (slope steepness, local 

relief, vector ruggedness measure (VRM), and topographic wetness index (TWI), northness, eastness, plan 

curvature, and profile curvature), proximity to fault lines, PGA, lithology, and land cover (Fig 3). They were 

then used to build the data matrix through zonal statistics analysis using GIS software. The detailed 

methodology for generating the data matrix is further explained in Section 3.1 (Data Matrix). 
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Fig 3 The spatial distribution of the controlling parameter explored in this research, including the DEM that then derived into slope 
steepness, the aspects, the curvatures, LR, TWI, and VRM (a), PGA of each earthquake (b), the geology condition including lithological 
type and the active faults (c), and the land cover type (d).  

 

DEMs are an essential tool in landslide prediction models, as they provide the basic information for deriving 

terrain parameters, such as slope steepness and aspect. This research utilized the DEM provided by NASA, 

which is a modernized version of SRTM DEM with a medium spatial resolution of 30 meters. The dataset 

is open-source and was easily accessed and imported through the OpenTopography plugin in QGIS 

software. The terrain parameters derived from the DEM for this model include slope steepness, aspect, 
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curvature, LR, VRM, and TWI. All DEM derivatives were processed using modules in GRASS GIS 

software, such as r.slope.aspect, r.mapcalc, and r.vector.ruggedness. 

 

Slope steepness indicates how steep the slope is. Generally, steeper slopes have a higher probability of 

landslide occurrence because the driving force acting downslope increases as the slope gets steeper, while 

the resistance shear strength does not proportionally increase (S. Lee & Min, 2001). Therefore, slope 

steepness is one of the most important control parameters for landslide prediction. The slope steepness 

values in the study area range from 0 to 81.5 degrees, with most pixels concentrated within the 0 - 30o range, 

indicating a gentle to moderate slope. 

 

Aspect, or slope orientation, relates to several environmental factors, such as sunlight exposure, 

discontinuities, wind direction, soil moisture, and saturation level, which affect the degree of weathering and 

erosion on a slope (Ayalew & Yamagishi, 2005). Therefore, studies have shown a tendency for slope failure 

occurrence to align with a specific aspect, indicating a directional failure distribution (S. Lee & Min, 2001; 

Khazai & Sitar, 2004; Ayalew & Yamagishi, 2005). To simplify the modeling process, the aspect was 

decomposed into two continuous variables: northness and eastness. Each is calculated using the cosine and 

sine of the aspect angle, making both values range from -1 to 1. 

 

Curvature values represent the shape of the terrain in both horizontal and vertical dimensions. A positive 

curvature value indicates a convex shape, while a negative value corresponds to a concave form. The value 

near zero value commonly reflects a flat or planar slope (S. Lee & Min, 2001; W. Chen et al., 2014). Concave-

shaped slope tends to accumulate and retain water, which potentially reduces the material’s shear strength 

and increases the slope failure likelihood (S. Lee & Min, 2001). The profile curvature within the study area 

ranges from -0.12 to 0.08, while the planar curvature values are near 0. This indicates that most slopes in 

the area have relatively gentle curvature in both vertical and horizontal directions.  

 

Local relief corresponds to the topographic change, which is defined as the difference between the minimum 

and maximum elevation in a certain area (Schmidt & Montgomery, 1995). It is often associated with 

structural discontinuities on the slope, such as joints and faults, which tend to indicate higher permeability 

and potentially increase the slope susceptibility to failure (Conforti et al., 2014). Several studies showed a 

correlation between landslide frequency and local relief value, particularly in earthquake-induced landslide 

cases (X. Chen et al., 2017; Qin et al., 2023). The LR in this study area ranges from 0 – 1327, with most of 

the pixels concentrated within the 100 to 500 range, which indicates a wide elevation variation within the 

localized area.   

 

VRM is a rugged terrain measurement using the three-dimensional orthogonal dispersion of vectors 

perpendicular to the terrain surface (Sappington et al., 2007). It reflects the slope and aspect heterogeneity 

within a given area. Higher VRM values indicate more rugged and complex terrain, which often correlates 

with slope instability and landslide frequency (He et al., 2021). In the study area, VRM values range from 0 

to 0.6, with most of the pixels gathered in 0 and 0.02. This indicates that the terrain likely has a smooth and 

uniform surface. However, the presence of high VRM values reflects the localized complex topography. 

 

TWI represents water flow accumulation within a watershed and is commonly used to capture the 

topographic control over hydrological processes. A high TWI value indicates an area with a higher water 

accumulation, which could increase the landslide likelihood, especially when combined with a steep slope 

(Ghasemian et al., 2022). The TWI value within the study area ranges from -1.3 to 27.8, with most pixels 

concentrated between 0 and 15. This indicates that the majority of the area has moderate wetness conditions, 

although some areas show a high potential for water accumulation. 
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As a triggering factor in an earthquake-induced landslide event, ground motion is considered to have a 

significant contribution to the landslide distribution (Khazai & Sitar, 2004). Although there are three seismic 

parameters in every earthquake event, including PGA, PGV, and MMI, this study only utilizes PGA, as is 

commonly used in previous studies. Moreover, according to (Omine et al. (2008), PGA is more sensitive to 

slight damage. The PGA dataset used in this research is a composite of PGA values from both epicenters 

of the 2023 Türkiye earthquake event, sourced from USGS ShakeMap. The values range from 0 to 1.27g, 

with the highest value concentrated near the fault rupture zones, reflecting areas that experienced the most 

intense ground shaking. 

 

Geological settings, such as the type of lithology, play a significant role in the distribution of earthquake-

induced landslides, as each lithological unit has varying levels of susceptibility to failure (Chigira & Yagi, 

2006; Khazai & Sitar, 2004). The geological map used in this research was sourced from Türkiye’s General 

Directorate of Mineral Research and Exploration Institute. The dataset has various types of geological 

formations from different ages, but it was generalized into five lithological types, including plutonic, 

volcanic, metamorphic, ophiolitic, and sedimentary. The dominant lithological type within the study area is 

sedimentary, while plutonic is the least. 

 

The presence of faults along hillslopes significantly influences landslide distribution as it generates fractures 

and discontinuities within the slope materials, creating a weak shear strength condition (Chigira & Yagi, 

2006; Keefer, 2000; Khazai & Sitar, 2004). Studies highlighted that landslide tends to accumulate near the 

fault line on the steep slope, and their frequency generally decreases as the distance to the fault increases 

(W. Chen et al., 2014; Basharat et al., 2016; Shafique, 2020). The fault dataset utilized in this research was 

obtained from the same source as the geological map. Rather than using the presence of active faults as a 

categorical variable, this study utilized the distance to the nearest fault as a continuous parameter. The 

Euclidean Distance tool in ArcGIS Pro was used to generate the proximity-to-fault raster, resulting in a 

value ranging from 0 to 0.7. The majority of the pixels fall within the 0 - 0.2 range, indicating the dense 

presence of active faults around the study area. 

 

Land cover refers to biological and physical features present on the earth's surface, which includes both 

natural and anthropogenic features such as vegetation, soil, and water bodies (Herold et al., 2006). While 

the influence of land cover on landslide occurrence might vary and sometimes be ambiguous, it remains an 

important factor, as the mass-wasting processes are often influenced by the surface cover (Basharat et al., 

2016). This research utilizes land cover data from ESA WorldCover 2021, which provides a 10-meter 

resolution land cover map derived from Sentinel 1 and 2. The dataset includes 11 land cover classes, but 

only 8 are present in the study area, which are tree cover, shrubland, grassland, cropland, built-up, bare land, 

herbaceous wetland, and moss and lichen. The dominant land cover types in the study area are grassland 

and cropland, while moss and lichen are the least.   

 

Rainfall is one of the most common landslide triggers (Johnston et al., 2021). High rainfall amounts in steep 

slope areas significantly increase the landslide frequency because the accumulated water increases the pore 

pressure and changes the slope stability (Tetteh et al., 2025; K. Zhang et al., 2019). However, including 

rainfall would require event-specific timing and intensity data, which will limit the model transferability to 

future earthquake events or broader regions. Therefore, rainfall is excluded from this research due to its lack 

of applicability, particularly for future predictions. 
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2.4. Seismic Hazard Map 

A seismic hazard map is a map that visualizes the potential ground-shaking intensity at a given location, 

which has been considered an important tool for hazard estimation, mitigation, and preparedness action 

(Sreejaya et al., 2022). According to USGS (2019), the seismic hazard map is usually pictured as contours 

that store the ground movement information, including the PGA, with a chance of exceedance in a specific 

return period. In earthquake-induced landslides, ground motion intensity is considered the triggering factor, 

making its integration significant for earthquake-induced landslide distribution (Khazai & Sitar, 2004). 

However, the use of seismic hazard maps as the source of ground motion intensity in the landslide 

susceptibility model has never been done before. 

 

As a novelty, this research utilized Türkiye’s seismic hazard map (Akkar et al., 2018) to derive the ground 

motion intensity value as an input for model simulation. The dataset consists of both PGA and PGV values 

for 2%, 10%, 50%, and 68% exceedance probability in 50 years. However, this research utilized only the 

PGA for all four exceedance rates for model simulation. The PGA spatial distribution of 68% exceedance 

is displayed in Fig 4, while the rest is in Appendix A.1. 

 

The exceedance rate in a specific return period means there is a chance that the ground shaking at a location 

will exceed a certain intensity at least once within the return period (USGS, 2019). This means that the 2% 

exceedance scenarios cause a very strong ground motion which rarely happens. In contrast, the 68% 

exceedance causes minor shaking and happens frequently. This behavior is reflected in the PGA value of 

each scenario, where the 68% scenario only ranges from 0.02 to 0.2, while the rarest scenario ranges from 

0.15 to 1.33. Despite the contrast range, overall the scenarios show similar patterns where the high PGA 

values are concentrated along the major fault zones. 

 

 
Fig 4 PGA of 68% exceedance probability in 50 years, derived from Türkiye’s seismic hazard map 

2.5. Element at Risks 

According to van Westen et al., (2006), EaRs refer to the elements that are at risk, including population, 

building, and economic activities. EaRs are an important factor in hazard risk estimation, as it is included in 

its calculation formula. Although this research is not going to do a risk analysis, however, overlay the EaRs 

with the susceptibility map might give some insight to the stakeholders.   

 

The selection of which EaR to analyze depends on multiple factors, including the type of hazard, the 

vulnerability of the assets, the spatial extent of the study area, and the availability of the data (van Westen et 
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al., 2006). Moreover, EaR can be characterized in various ways, including spatial, temporal, population, and 

thematic, depending on the purpose of the research. This research focuses on spatial EaRs, which are 

generally divided into three types: EaRs measured by length, by area, and by count (Table 2). 

 

Road networks, railways, gas pipelines, and electricity lines were selected as the EaRs measured by length. 

These elements are critical components of the national infrastructure system. However, their elongated 

nature is often transversed across various terrains, including mountainous regions, making them exposed to 

hazards, including landslides (van Westen et al., 2006; E. M. Lee et al., 2016; Marchesini et al., 2024). The 

railway and road datasets were downloaded from the open street map (OSM) on May 26th, 2025. The railway 

dataset was used directly, while the road network was filtered to include only the trunk, primary, and 

secondary road types for the relevance of national-scale analysis. The gas pipeline dataset was obtained from 

the Global Energy Monitor, which is regularly updated but permission-based data. The electricity 

distribution line dataset was sourced from the World Bank ESMAP Gridfinder platform. Both pipeline and 

electricity line datasets were accessed on April 9th, 2025.  

 

The EaRs measured by areas included agricultural land, and commercial and industrial zones. These 

elements represent critical economic and assets that may be directly and indirectly disturbed by the landslide 

impacts(van Westen et al., 2006; Francesco Caleca et al., 2025). The spatial extent of the agricultural land 

was derived from the CORINE Land Cover 2018. This dataset categorizes agricultural areas into four main 

classes: arable land, permanent crops, pastures, and heterogeneous agricultural areas. Each is further 

subdivided into specific agricultural land use types. Similar to the road and railway datasets, the commercial 

and industrial zones were downloaded from OSM. Both datasets were accessed on May 26, 2025. These 

land use categories were selected for their economic relevance and their potential to be impacted by ground 

movement, especially in regions where they overlap with medium to high landslide susceptibility zones. 

 

Building and critical infrastructure were selected as the EaRs measured by count. These point-based 

elements represent population density, economic investment, and essential services, which are potentially 

impacted by earthquake-induced landslide events (van Westen et al., 2006; Uzielli et al., 2008; Francesco 

Caleca et al., 2025).  Both building footprint and critical infrastructure data were obtained from OSM on 

May 26th, 2025. While the building footprint data can be directly used, the critical infrastructure data were 

extracted from the POIS layer. For the purpose of this study, only infrastructure relevant to transportation, 

finance, government, health, education, and emergency services was selected.  

 

Table 2 EaRs used in this research 

Measurement Types EaRs Sources 

Line Road network OSM 
Railway OSM 
Gas pipeline Global Energy Monitor 
Electricity transmission line World Bank ESMAP Gridfinder  

Area Agriculture area CORINE Land Cover 2018 
Commercial and industrial area OSM 

Feature count Building  OSM 
Critical infrastructure OSM 

  

https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
https://globalenergymonitor.org/wp-content/uploads/2024/12/GEM-GGIT-Gas-Pipelines-2024-12.xlsx
https://energydata.info/dataset/derived-map-global-electricity-transmission-and-distribution-lines
https://land.copernicus.eu/en/products/corine-land-cover/clc2018
https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
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3. METHODOLOGY 

This chapter outlines the methodological framework applied in this study. Section 3.1 explains how the data 

matrix was constructed by integrating landslide inventory data with the controlling parameters. Section 3.2 

describes the development of the co-seismic landslide model using a Generalized Additive Model (GAM). 

Section 3.3 presents the scenario-based simulations using different PGA values derived from the seismic 

hazard map to generate national-scale susceptibility predictions. Section 3.4 details the process of estimating 

the exposure of EaRs under each susceptibility scenario. 

3.1. Data Matrix 

A data matrix was created to combine the landslide occurrence as the target variable (y) and landslide 

controlling parameters as independent variables or predictors (x) for model development. Both the landslide 

inventories and their controlling parameter layers were partitioned into slope units as the mapping unit for 

the analysis. A slope unit is one kind of mapping unit that is made by partitioning terrain by drainage and 

dividing lines, making it represent the slope characteristic better, and more suitable for geomorphological 

use (Alvioli et al., 2016; Woodard et al., 2024). The landslide inventory polygons were converted into point 

features by extracting their centroids, which were then used to count the number of landslides occurring 

within each slope unit. This process was done in ArcGIS Pro. Afterward, the landslide counts within each 

slope unit were classified into binary categories, landslide (1) and no landslide (0), using presence or absence 

structure. This process was done in R once the data matrix was built and ready to be used to initiate the 

model.  

 

Unlike landslide presence, different methods were applied to assign controlling parameter values to each 

slope unit. Although all variables were extracted using the Zonal Statistics function in ArcGIS Pro, the 

statistical methods varied depending on the parameter type. The following approach was used in  Moreno 

et al., (2023). Both mean and standard deviation were calculated for terrain parameters, such as slope 

steepness, aspects, curvatures, TWI, and VRM. Additionally, each slope unit's range of slope steepness was 

used to compute local relief.  

 

The mean value within each slope unit was calculated for proximity to the active fault. In contrast, the 

maximum value was extracted using the Zonal Statistic function for PGA. For categorical parameter values, 

including geology and land cover, the majority statistic function was used to identify the dominant 

categorical class within a single slope unit. The complete process for generating the data matrix is shown in 

Fig 5. Although the variable layers had various spatial resolutions, resampling was unnecessary, as the 

analysis was conducted at the slope unit level rather than the pixel level. 
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Fig 5 The flowchart illustrates the data matrix development process, detailing each step involved in extracting parameter values and 
assigning them to slope units. 

 

3.2. Landslide Prediction Model with GAM 

This study adopted the Generalized Additive Model (GAM) framework to build the co-seismic landslide 

model. GAM is an extension of the classic linear model which allows the model to predict both linear and 

non-linear relationships between the predictors and response variables, making it more flexible and useful 

for a data-driven model (Moreno et al., 2023). Additionally, it can handle various types of covariates, 

including continuous and categorical variables, using smooth functions or splines (Wood & Augustin, 2002).  
 

In this study, the Bayesian version of GAMs is applied using the Integrated Nested Laplace Approximation 

(INLA) approach (Rue et al., 2009). The GAM was implemented as a binomial family and logit link due to 

the binarized setup of the response variable. This method allows the model to estimate the model parameters 

and their uncertainty efficiently.  

 

Several steps were performed to develop the co-seismic landslide model, including the pre-processing and 

exploratory analysis, model configuration, model evaluation, and model extraction. A detailed explanation 

of each step is provided in Sections 3.2.1 to 3.2.4. The complete framework of the model is illustrated in 

Fig 6.  

 

 
Fig 6 The flowchart illustrates the co-seismic susceptibility development process, including the preprocessing process, 

exploratory analysis, model development, model evaluation, and susceptibility & uncertainty mapping 
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3.2.1. Data preprocessing and exploratory analysis 

Prior to modeling, the dataset underwent several pre-processing steps. First, all slope units with missing 

values (NA) were removed from the dataset to avoid errors caused by miscalculations during the modeling 

process. Then, the landslide occurrence was binarized using a presence and absence setup, where 1 indicates 

landslide and 0 indicates no landslide. Continuous variables were rescaled using mean-zero and unit variance 

to ensure comparability across scales and improve the model convergence. 

 

An exploratory analysis was conducted to support the covariate selection of the continuous variables, 

including boxplot and Variance Inflation Factor (VIF). Boxplot helps to visualize the distribution of each 

variable, roughly describing how each variable might influence the landslide occurrence.  VIF was calculated 

to check the multicollinearity between variables, where a value higher than 10 was considered a high 

multicollinearity, and the value below was considered acceptable.   

3.2.2. Model Development 

Covariate regression using INLA was conducted as an exploratory nonlinear model. This is the final filter 

of the covariate selection process. Each predictor was modeled individually against the response variable to 

see how it affected the landslide occurrence.  Only the variables that show a clear and meaningful pattern 

were kept for the final model. The selected predictor variables were then used to build the final GAM model 

using the INLA package in R. The GAM was constructed with the following general formulation: 

 

𝜂(𝑃) = 𝛽0 + 𝑓𝑠𝑙𝑜𝑝𝑒(𝑧𝑠𝑙𝑜𝑝𝑒) + 𝑓𝐿𝑅(𝑧𝐿𝑅) + 𝑓𝑓𝑝𝑟𝑜𝑥(𝑧𝑓𝑝𝑟𝑜𝑥) + 𝑓𝑃𝐺𝐴(𝑧𝑃𝐺𝐴) + 𝑓𝑙𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 + 𝑓𝑙𝑎𝑛𝑑𝐶𝑜𝑣𝑒𝑟 

 

Where 𝜂(𝑃) is the logit-transformed probability of landslide occurrence, 𝑓𝑥(𝑧𝑥) represent the smooth 

function of each continuous variable and 𝑓𝑥 is the categorical effect modeled as independently and identically 

distributed (iid). Continuous predictors were modeled using smooth functions to allow for non-linear 

relationships, while lithology and land cover were used as fixed categorical effects. The outcome is modeled 

as Bernoulli probability distribution, which fits the binary nature of the response variable.  

3.2.3. Model Evaluation 

The model performance was evaluated using Random Cross-validation (RCV) and Spatial cross-validation 

(SCV). These methods were implemented using caret and sperrorest packages R respectively (Kuhn, 2008; 

Brenning, 2012) and run repetitively for 10 folds. The RCV was built using createfold(), which allows it to 

randomly split the dataset into k folds. Each fold is used once as the test, by setting the data as NA, while 

the rest are used to predict the model. The predicted probabilities from the training dataset were then 

compared to the actual labels in the test fold using the Receiver Operating Characteristic (ROC) curve. The 

Area Under the Curve (AUC) was calculated using the pROC package (Robin et al., 2011) simultaneously 

during this process. This process was repeated across all folds, and the mean of AUC values was reported 

to summarize overall performance. The RCV method assesses how well the model can predict when the 

train and test data are spatially mixed. It provides a general overview of model accuracy but may have a bias 

due to its spatial autocorrelation, making it overestimate the performance (Valavi et al., 2019). 

 

On the other hand, SCV was generalized by spatially clustering the dataset using k-means clustering based 

on the slope unit’s centroid coordinates. The outcomes were used as spatial folds, where slope units in one 

geographic region were held out for testing while the remaining clusters were used for training. This 

approach helps to address the optimistic bias of the RCV method (Valavi et al., 2019). Combining both 

RCV and SCV performance evaluation will ensure a robust assessment of the model’s ability to predict the 

unseen data, especially in a spatial context where autocorrelation may bias model performance (Ahmed et 

al., 2023; Moreno et al., 2023).  
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3.2.4. Susceptibility and Uncertainty Mapping 

After model validation, the fitted GAM was used to generate national-scale landslide susceptibility maps. 

The maps represent the mean predicted landslide probability for each slope unit. Alongside susceptibility, 

uncertainty maps were also generated using the 95% credible interval of the predicted probabilities. The 

uncertainty was calculated as the range between the 2.5th and 97.5th percentiles of the predicted posterior 

distribution. These maps provide both a quantitative estimate of landslide probability and confidence in 

each prediction, which is essential for informed interpretation and decision-making. 

3.3. Model Simulation 

To assess how the co-seismic landslide susceptibility model varies under different seismic hazard levels, the 

validated model was simulated and projected for the whole of Türkiye. In the simulation setup, all other 

covariates were kept constant using values from the national-scale dataset. Only the PGA variable was 

changed for each simulation. Four different PGA values were substituted to the model based on the 

exceedance probability derived from Türkiye’s national seismic hazard map. These scenarios correspond to 

2%, 10%, 50%, and 68% exceedance probabilities in 50 years, which represent the earthquake intensities 

from the rarest to the most frequent events. This substitution allowed a controlled analysis of how landslide 

susceptibility shifts under varying levels of seismic input. 

 

In the simulation, a combined dataset was constructed by merging the training data and simulation data into 

a single data frame. Each subset was labeled according to its respective PGA exceedance scenario (2%, 10%, 

50%, and 68%) and associated with a "Source" identifier. The INLA model was fit using a binomial 

likelihood with a logit link function. The model was implemented using the inla.posterior.sample function, 

with computation configured to include posterior mean estimates of susceptibility. The output of the 

simulation includes the mean probabilities and the credible interval for each slope unit under four PGA 

scenarios, which represent the predicted susceptibility under different levels of earthquake intensities. 

Finally, to give spatial understanding, the outputs were extracted and mapped for each PGA scenario, 

resulting in national-scale susceptibility maps.  

3.4. Exposure 

Exposure analysis was performed to measure the potential consequences of each earthquake-induced 

landslide scenario. It was conducted by intersecting selected EaRs to each susceptibility and uncertainty map 

and quantifying the potential damage under four seismic scenarios. Prior to the overlaying process, both 

landslide susceptibility and uncertainty outputs were reclassified into categorical classes using quantile 

classification. The classification process was carried out using the Arcpy library within a Python script in 

ArcGIS Pro. This process divided both susceptibility and uncertainty automatically into four categorical 

classes, including very low (VL), low (L), moderate (M), and high (H), making them uniform, more 

interpretable, and easier to combine. Combining these two dimensions ensures that the exposure metrics 

reflect both the intensity and reliability of the hazard estimation.  

 

The reclassified susceptibility and uncertainty maps for each seismic hazard scenario were then spatially 

overlaid with the EaR layers using ArcGIS Pro. The overlay process was carried out separately for each 

scenario. The exposed EaR is then quantified within each combination class by calculating the total length, 

area, or count, depending on the EaR type mentioned in Section 2.5.    
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4. RESULTS 

This chapter presents the results of the modeling and discusses the implications of the findings. Section 4.1 

explores the statistical distribution and correlations of the parameters through exploratory data analysis. 

Section 4.2 presents the results of the co-seismic landslide model and interprets the effect of each variable. 

Section 4.3 evaluates the national-scale susceptibility maps generated through scenario-based simulation 

using varying PGA inputs. Lastly, Section 4.4 discusses the spatial distribution of earthquake-induced 

landslide exposure and compares the impact across multiple hazard scenarios. 

4.1. Exploratory Analysis of the Parameters 

As mentioned in Section 3.4, an exploratory analysis was conducted prior to the modeling process to 

determine which predictor variable should be used as predictor variables based on their contribution to 

landslide occurrence and their potential collinearity. The exploratory analysis involved assessing the 

distribution of the parameters through boxplots and checking for collinearity among variables. This process 

only examines the continuous predictors such as slope steepness, LR, proximity to the active fault, and 

PGA. Detailed outcomes of each step are presented sequentially in Sections 4.1.1 to 4.1.2. 

4.1.1. Boxplot 

Boxplots were used to visually assess and compare the distribution of predictor variables between the 

binarized landslide occurrence, which was encoded as 0 (no landslide) and 1 (landslide). The boxplot showed 

the central tendency of the parameters through its median and interquartile range, while the outliers, the 

whiskers, and the box represent the general spread of the data. It provided some insight into how each 

variable might influence the landslide occurrence. The boxplot of the predictor variables observed in this 

research is shown in Fig 7.  

 

Typically, significant differences in the median values between groups and minimum overlap between boxes 

indicate a significant influence of the parameters on the landslide occurrence. Several parameters presented 

clear differences in the median values, such as slope, LR, VRM, proximity to the active fault (fprox), and 

PGA, which indicate a potential relevance to landslide occurrence. Higher median values of the predictor 

variable in areas that experience landslides indicate that the parameters tend to correlate positively with the 

landslide occurrence, suggesting that increased values contribute to a higher potential of slope failure. This 

pattern is clearly seen in the slope steepness, LR, VRM, and PGA. On the contrary, lower median values 

correspond to lower susceptibility. An inverse relationship is observed in proximity to the active fault and 

rainfall, where the lower value contributes to the landslide occurrences.  

 

The remaining parameters, including eastness, northness, profile curvature, and planar curvature, showed 

minimal differences in median value between the landslide and no-landslide groups. Their boxplots 

significantly overlap, making it hard to distinguish the data distribution between the groups. Additionally, 

these variables contain numerous outliers, which may indicate specific localized parameter conditions. This 

pattern suggests that both the aspects and curvature parameters have a weaker influence on the landslide 

occurrence.   
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Fig 7 Boxplot of each predictor variable against the landslide occurrence. 0 value means no landslide, and 1 means landslide. 

4.1.2. Collinearity Check with VIF 

A Variance Inflation Factor (VIF) was performed to quantitatively assess the collinearity among the 

predictor variables. VIF value measures how much the variance of coefficient regression increases due to 

collinearity with other variables. The higher the VIF, the more the variable is correlated with others, which 

makes it hard to ensure its individual effect. Generally, a VIF value higher than 10 is considered high 

multicollinearity and will considered to be removed, while the collinearity value between 5 and 10 indicates 

moderate collinearity, which needs additional analysis before removal (Kutner et al., 2004). The VIF value 

of each parameter is displayed in Table 3.  
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Table 3 VIF value of each predictor variable. 

Variables VIF Value Label 

Slope average 10.86 High collinearity 

Slope stddev 3.16 Acceptable  

Profile curvature average 1.28 Acceptable  

Profile curvature stddev 9.86 Moderate collinearity 

Planar Curvature average 1.18 Acceptable  

Planar Curvature stddev 10.34 High collinearity 

Eastness average 40.44 High collinearity 

Eastness stddev 37.12 High collinearity 

Northness average 41.20 High collinearity 

Northness stddev 36.23 High collinearity 

LR 3.45 Acceptable  

TWI average 3.12 Acceptable  

TWI stddev 2.64 Acceptable  

VRM average 10.16 High collinearity 

VRM stddev 7.63 Moderate collinearity 

Proximity to fault 1.19 Acceptable  

PGA 1.10 Acceptable  

 

The VIF result shows that some variable exceeds the acceptance threshold, including planar curvature 

stddev, the aspect variables, and the VRM average. Several variables have moderate collinearity, including 

the standard deviation of profile curvature and VRM. Although slope steepness is the most important 

variable for landslide prediction, its high VIF value became a concern. However, removing one of the slope 

steepness variables might help reduce the VIF value. Therefore, the slope steepness standard deviation will 

be removed to improve the VIF value of the slope steepness average.  

4.2. Co-seismic Landslide Model 

This section presents the modeling phase of this research, which includes the development of the co-seismic 

landslide model, performance evaluation, and model simulation. The model was constructed based on 

categorical predictors and selected continuous predictor variables as an outcome from the covariate 

regression (4.2.1) in combination with section 4.1. GAM was utilized to capture the non-linear relationships 

between predictors and landslide occurrence. The model was simulated in 4 scenarios to predict the 

earthquake-induced landslide in Türkiye. Detailed outcomes of each step are presented sequentially in 

Sections 4.2.1 to 4.2.4. 

4.2.1. Covariate Regression 

To assess the importance of each predictor variable, Covariate regression analysis was conducted. In this 

step, each predictor was individually regressed against the binary landslide as the response variable to 

evaluate their relationships.  The regression coefficient plots of each variable are presented in Fig 8. The 

plots help to visualize the influence of each variable and its relationship behavior. In each plot, the solid line 

represents the estimated mean effect of the covariate, while the dashed lines indicate the 95% credible 

intervals.  
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Fig 8 Covariate regression of the predictor variables against the response variable. X-axis values show the predictor 
value, while the Y-axis represents the regression coefficient. The mean regression coefficient is shown by the middle 
solid line, meanwhile, the upper and lower dashed lines indicate the confidence interval. 

Several predictors on the plot show a strong positive trend, with extremely narrow confidence intervals, 

including slope, LR, and PGA, indicating high certainty in their positive trend. Even though the VRMs have 

similar upward trends, they exhibit a wider credible interval and more curved response lines.  The positive 

trend observed across these variables indicates a likely contribution to higher landslide probability, while the 
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width of the credible intervals reflects the degree of certainty in how strongly the predictor affects the 

landslide occurrence.  

 

Conversely, the proximity to the active fault shows a mild decreasing trend with a wide credible interval 

range, which indicates a negative influence on the landslide occurrence, although the relationship is relatively 

weak. In contrast, the remaining predictors, including the curvatures, aspect variables, and TWIs, show flat-

shaped response lines centered around zero. This indicates no meaningful relationship between the 

predictors with the landslide occurrence and suggests that there is no significant contribution of these 

variables. 

 

Combining the analysis with other exploratory plots, it can be concluded that slope steepness, LR, and PGA 

are the variables that have a strongly significant relationship to the landslide occurrence. Additionally, there 

is no indication of multicollinearity between variables, which would minimize the redundancy within the 

model. Another variable considered as a consistent input for the model is proximity to the active fault, 

which, although it has a weaker influence on the landslide, theoretically has significance for earthquake-

induced landslide events. Therefore, keeping this variable expected will give an insight into the model.  

 

Although they show a relatively positive influence on the landslide probability, VRMs are removed from the 

model. These variables were removed due to their potential multicollinearity, which potentially caused 

redundancy. On the contrary, the unclear relationship shown by the TWIs, aspects, and curvature variables 

supported the former exploratory methods and strengthened the removal decision of these parameters. 

 

In conclusion, the continuous variables selected as inputs for the final model are slope steepness average, 

LR, PGA, and proximity to fault. These variables are modeled using a non-linear approach through GAM 

due to their skewed distribution and to more effectively capture complex patterns within the dataset. On 

the other hand, categorical variables, including lithology and land cover, were not included in the exploratory 

plots. Instead, they will be directly evaluated on the final model. 

4.2.2. Final Model Development 

The model was developed using a random walk (rw) structure to capture the nonlinear relationships between 

continuous predictor variables and the response variable. In contrast, categorical variables were modeled 

using an independent and identically distributed (iid) structure, allowing each class to be estimated 

independently without assuming any order or trend among them. The marginal effect plots shown in Fig 9 

illustrate the individual contribution of each predictor variable to the landslide prediction that is captured 

and estimated by the GAM. They show the estimated effect of each predictor on the log odds of landslide 

probability. The continuous predictor variables are represented by the solid regression line with the dashed 

lines indicating the 95% confidence interval, while the categorical effect is represented using point estimates 

with error bars. Both illustrate the posterior mean and the credible intervals, giving insight into the estimated 

effect and the uncertainty of each predictor. 

 

Most of the continuous variables show similar behavior to the plot in Section 4.2.1. Covariate Regression, 

slope steepness, LR, and PGA exhibit an increasing non-linear regression line with a narrow confidence 

interval. These predictors' regression coefficient plots indicate a strong positive non-linear relationship with 

the landslide probability and a high level of confidence in their relationship. This outcome aligns with 

theoretical expectations, as theoretically, the slope steepness and LR are contributors to landslide 

occurrence, while PGA is the triggering factor for earthquake-induced landslides. 
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Fig 9 Marginal effect plots of the predictor variable input in GAM. The continuous predictors are treated as non-linear smooth functions 
while the categorical treated as fixed effects. A positive coefficient indicates a higher contribution to the landslide probability. 

However, unlike other predictors, proximity to the active fault shows a relatively flat trend with a narrow 

confidence interval. Although this variable was theoretically expected to have a negative influence on 

landslide occurrence, the flat trend suggests that changes in proximity do not significantly affect the 

predicted landslide probability. The narrow confidence interval reflects that the model is confident in this 

assessment.  

 

As categorical predictors, both lithology and land cover consist of multiple classes, as previously described 

in Section 2.3 (Controlling Parameters). However, only a few of these classes showed a notable influence 

on the model. The class is considered to have a positive influence on landslide probability if its estimated 

effect lies above the zero mean line, and a negative influence if it lies below. The vertical error bars represent 

uncertainty around each estimate and function similarly to credible intervals. Shorter bars indicate greater 

certainty in the estimated effect, while longer bars suggest higher uncertainty. 

 

Among the five lithology classes, Class 2 (volcanic) and 5 (sediment) showed a clear positive influence on 

the landslide occurrence as indicated by their positive model estimates and relatively narrow error bars, 

reflecting high confidence in their contribution. Although slightly crossing the zero line, class 4 (ophiolitic) 

exhibited a positive estimate point and narrow error bar, indicating high confidence and positive influence 

on the landslide occurrence. Class 1 (plutonic) and Class 3 (metamorphic) showed negative effects, but only 

Class 3 presents a narrow error bar, suggesting greater certainty in its negative contribution. In contrast, the 

estimate for Class 1 had a wide error bar, indicating high uncertainty.  

 

As shown in Fig. 2, although both the 2011 and 2023 co-seismic landslide inventories span all five 

lithological classes, the proportion of each class varies across the two earthquake-affected regions. These 

spatial differences likely influence the overall predictive strength and consistency of each lithological class 
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in the model. Nevertheless, the marginal effect plots suggest consistent and confident effects across 

lithological classes, regardless of their regional distribution.  

 

Opposite to lithology, all land cover classes had estimated effects that crossed the zero line, indicating a 

statistically insignificant influence on landslide occurrence. However, some of them still show visible trends. 

For example, land cover class 10 (tree cover) showed a tendency towards a negative effect, while class 30 

(grassland) and 60 (bare land) exhibited a positive trend. These results align with theoretical expectations, 

where the presence of tree cover is known to enhance slope stability by reinforcing soil and reducing surface 

runoff, whereas grassland and bare land lack such protective vegetation, increasing the likelihood of slope 

failure. 

 

The relationship between predictors and landslide occurrence is supported by the random effect values 

presented in Appendix A.2. These random effects are derived from the posterior distribution and reflect 

the model’s ability to adjust the prediction baseline for different groups of predictors by accounting for local 

conditions. Each random effect comes with a range of likely values, where the posterior mean represents 

the average estimated effect, and the deviation between the confidence intervals reflects the level of 

uncertainty. 

 

The random effects provide a detailed understanding of how each predictor influences landslide occurrence 

across its range of categories. Continuous predictors such as slope steepness, local relief, and PGA show 

clear increasing trends across their ranges, with the means rising from negative to positive values. These 

patterns, combined with small deviation values, indicate a strong and confident positive influence on 

landslide probability. In contrast, proximity to fault exhibits a nearly flat trend around zero with narrow 

intervals across all bins, suggesting that this variable has no significant effect in the current model. 

4.2.3. Performance Evaluation 

The model performance was evaluated using the ROC curve, which illustrates the balance between the true 

positive (sensitivity) and false positive (1-specificity) rate of landslide occurrence. The closer the curve is to 

the top-left corner of the graph indicates a better model performance, while the closer it is to the midline 

shows the opposite. It is stated as an AUC value that ranges from 0 to 1. The closer the AUC value is to 1, 

the better the prediction. On the other hand, a value of 0.5 suggests a random prediction.  

 

As mentioned in Section 3.2 (Landslide Prediction Model with GAM), this study utilized both RCV and 

SCV techniques to evaluate the model’s performance. RCV was used to assess how well the model fits the 

training data through random sampling, while SCV assessed the model's ability to generalize to spatially 

independent regions. The spatial distribution of the data splits for each method is visualized in Appendix 

A.3, and the resulting ROC curves are presented in Fig 10.  

 

The RCV gained a mean AUC of 0.86, suggesting that the model performs very well when the data is 

randomly divided into training and test data. On the other hand, the SCV achieved a slightly lower mean 

AUC value of 0.81. This might be due to the difficulty of generating accurate predictions in a completely 

different area of training and test data. The RCV has a tiny confidence interval, presented as the shaded 

area, which indicates a small uncertainty in the model's prediction when tested on the random split dataset. 

Compared to the RCV, the SCV curve has a wider shaded area, which suggests more uncertainty when the 

model is applied to spatially independent test data. However, the AUC of the SCV remains within an 

acceptable range to confirm that the model performs well and can make reliable predictions in completely 

different areas. The relatively high AUC values from both methods show that the chosen input variables 

and model structure are reliable. The SCV result, in particular, suggests that the input data is general enough 
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and that the model is not overfitting to specific locations, meaning it can still make good predictions in areas 

it hasn't trained before. 

 

 

Fig 10 10-fold ROC curve of the RCV (blue, left) and SCV (red, left) technique with the corresponding mean AUC values. 

 

To further evaluate the model performance, confusion maps were created for both RCV and SCV 

predictions (Fig 11), which spatially displayed the true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN). To classify the continuous predicted probabilities of each evaluation method into 

binary outcomes (landslide/no landslide), the Youden Index was applied to determine the optimal threshold. 

The Youden Index selects the threshold that maximizes the sum of sensitivity and specificity, providing an 

optimal cut-point that balances true positive and true negative rates for effective classification (Youden, 

1950; Luo & and Xiong, 2013). 
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Fig 11 The confusion map of RCV (a) and SCV(b) methods to enhance the ROC and AUC findings.  

The SCV confusion map showed a slightly lower TP compared to the RCV. This might be due to the weaker 

prediction ability, expressed by the lower AUC value of the SCV test. Even so, the overall result and pattern 

remain consistent. In both cases, TN dominates the study area, reflecting a high number of correctly 

identified no-landslide slope units.  In contrast, FN is the least appear on the map. The presence of FP is 

concentrated near the high susceptibility zones, which may reflect the area with a high chance of landslide 

occurrence due to the covariates, despite there being no landslide recorded yet. The spatial distribution of 

FP illustrated in Fig 11 indicates the model's tendency to overestimate landslide susceptibility in some areas. 

4.2.4. Susceptibility Maps 

The final landslide susceptibility map was made to verify the spatial distribution of landslide susceptibility 

based on the combined 2011 and 2023 co-seismic landslide inventory. The mean probability of the fitted 

values from the GAM model was assigned to each slope unit and visualized continuously with a green-to-

red color scale to spatially present susceptibility, as shown in Fig. 12. The green indicates low mean 

probability, and the red color tells the opposite. Meanwhile, the orange to red color indicates a moderate 

mean probability value. 

 

 
Fig 12 Landslide Susceptibility Map based on co-seismic landslide inventory of 2011 and 2023 earthquake events in Türkiye. 

Most of the slope units are colored green, reflecting the lower susceptibility.  This dominance of low values 

suggests the generally stable conditions of many slope units across the study area, particularly in the relatively 

flatter areas. On the contrary, the susceptibility map highlights clear spatial trends of high-probability zones 
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with the red color, which are concentrated near the steep topographic regions and fault rupture zones, 

especially those affected by the 2023 Kahramanmaraş and 2011 Van earthquakes.  

 

To complement the susceptibility map, an uncertainty map was made to visualize the prediction confidence 

of the model. It was derived from the difference between the 97.5% and 2.5% quantiles of the fitted values 

for each slope unit. The map and the uncertainty plot are shown in Fig 13. The uncertainty values are 

illustrated continuously with a greyish-blue-to-yellow color scale. Slope units with lower uncertainty appear 

in a greyish-blue color, indicating that the model has higher confidence in its predictions for those units. On 

the other hand, the yellow color marks higher uncertainty. 

 
Fig 13 Landslide uncertainty map of the co-seismic landslide susceptibility model.  

Overall, the uncertainty map had a similar pattern to the susceptibility map, where the orange to yellow 

color concentrated in the steep zone, particularly near the rupture line. This indicates that slope units with 

higher susceptibility values most likely have quite a big uncertainty as well, suggesting that the model is less 

certain about the prediction. However, the uncertainty pattern doesn’t always follow the susceptibility 

values. Some areas with high mean probability may still have low uncertainty, suggesting high confidence in 

their prediction. Combining both susceptibility and uncertainty maps provides an extensive view of potential 

hazards, as the uncertainty map adds a layer of interpretability and further investigation.   

4.3. Model Simulation 

To assess future landslide susceptibility under different seismic scenarios, the final landslide susceptibility 

model was simulated using four PGA exceedance probability scenarios over 50 years. This section presents 

the outcome of the simulation phase of this research, including the landslide susceptibility and uncertainty 

of each scenario and the susceptibility difference between scenarios. Detailed descriptions are presented 

sequentially in Sections 4.3.1 and 4.3.2. 

4.3.1. Landslide Susceptibility under different seismic hazard scenarios 

A spatial simulation was conducted to predict earthquake-induced landslide susceptibility across the entire 

Türkiye under four seismic hazard scenarios based on the 2%, 10%, 50%, and 68% PGA exceedance 

probability in 50 years. These scenarios represent different chances of an earthquake happening. The 2% 

exceedance means a very strong earthquake but is rare, while the 68% tells the opposite. The outcome of 

the simulation is presented as the landslide susceptibility maps, which are shown in Appendix A.4, except 

for the 68% scenario in Fig 14. 
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Fig 14 Earthquake-induced landslide susceptibility maps for 68% PGA exceedance probability in 50 years. 

The susceptibility values derived from mean probability are illustrated in a uniform green-to-red color scale, 

ranging from 0 to 0.82 across all scenarios. Focusing on the 68% scenario, the susceptibility value ranges 

from 0 to 0.3. The high susceptibility slope units, represented by the orange to red color, are primarily 

clustered along major fault zones and mountainous regions, particularly across northern, eastern, and 

southwestern Türkiye. On the contrary, the central regions are dominated by lower susceptibility slope units. 

Nevertheless, as shown in Appendix A.4, the other scenarios exhibit similar spatial patterns, with high-

susceptibility slope units consistently clustered along the same regions. However, the susceptibility values 

within these slope units increase under rarer seismic scenarios. As a result, the 2% exceedance scenario 

demonstrates a broader extent of high susceptibility compared to the 68% scenario, indicating a heightened 

landslide risk under more extreme seismic events. 

 

Besides the susceptibility map, the uncertainty map was made to complement the simulation analysis. While 

the susceptibility maps captured the spatial likelihood of landslide occurrence, the uncertainty maps revealed 

where the model is more or less confident in those predictions. The uncertainty map under the 68% scenario 

is displayed in Fig 15, and the rest are in Appendix A.5.  

 

 
Fig 15 Earthquake-induced landslide uncertainty map for 68% PGA exceedance probability in 50 years. 

The uncertainty is derived from the deviation value between the 2.5 and 95 quantiles. Similar to the 

susceptibility maps, the uncertainty maps are also illustrated on a uniform scale, colored greyish-blue to 

yellow, ranging from 0 to 0.164. The greyish-blue color represents low uncertainty, while the yellow tells the 

opposite. Taking a sample of the 68% scenario, the uncertainty value ranges from 0 to 0.12. The map is 
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dominated by a grey color, indicating that most of the slope units have low uncertainty values. Higher 

uncertainty values are presented as an orange-to-yellow color, which is clustered near the active faults and 

mountainous areas. As shown in the appendix, areas with high uncertainty are primarily concentrated near 

active faults and mountainous regions. However, the uncertainty values within slope units tend to increase 

under scenarios with lower exceedance probabilities. This is reflected by the emergence and expansion of 

higher-uncertainty areas, illustrated in orange-to-yellow colors in the uncertainty maps of rarer seismic 

scenarios. 

 

Visual inspection of the maps reveals that high susceptibility does not always equal to high uncertainty. 

Some of the high probability areas (red-color slope units in the 68% scenario) show moderate to low 

uncertainty (greyish-blue color). This difference emphasizes the importance of reporting both maps together 

as the susceptibility shows where landslides are likely to occur, while uncertainty highlights how much trust 

can be placed in those predictions.  

4.3.2. Susceptibility difference between scenarios 

The susceptibility differences were made to evaluate the spatial sensitivity of various seismic scenarios. These 

maps were generated by subtracting the susceptibility outputs between seismic scenarios, specifically 

between the rarest (2%) and the most common (68%) scenarios, as well as between consecutive exceedance 

probabilities: 2% vs. 10%, 10% vs. 50%, and 50% vs. 68%. The difference between 2% and 68% scenarios 

is displayed in Fig 16, while the rest is in Appendix A.6. 

 

 
Fig 16 The susceptibility differences between the 2% and 68% scenarios indicate the model's sensitivity to the seismic level change 

For comparability, the maps are displayed using a uniform color scale ranging from 0 to 0.66. The light 

orange color represents the minimum susceptibility difference value between scenarios, and reddish orange 

shows the opposite. The difference map of the 2% and 68% scenarios was dominated by a light orange 

color, which indicates that most of the slope units between 2% and 68% have similar susceptibility values. 

However, there are some high differences concentrated near the NAF and EAF areas, suggesting the 

susceptibility value of the 2% scenario is way higher than the 68% in a particular area.  

 

Unlike the 2% vs 68% scenarios, the consecutive difference map showed a very limited diversity. Overall, 

the maps showed a relatively homogeneous light orange color across the pairs, particularly between the 50% 

and 68% scenarios. Although the differences are not drastic, the consecutive difference map shows a similar 

pattern, where the higher difference values are gathered near the active fault and mountainous area.  
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4.4. Earthquake-Induced Landslide Exposure 

This section presents the exposure analysis of eight EaR, evaluated under four landslide susceptibility 

scenarios. The exposure analysis was generated by overlaying the landslide susceptibility and uncertainty 

with each EaR to quantify the amount of element exposed across different scenarios. Prior to this overlay, 

both susceptibility and uncertainty values were reclassified into four quantile-based categories. Susceptibility 

was categorized from very low susceptibility (VLS) to high susceptibility (HS), while uncertainty ranged 

from very low uncertainty (VLU) to high uncertainty (HU). This classification made it easier to combine 

susceptibility and uncertainty values for the exposure assessment.  

 

Exposure analysis under different scenarios was aimed at measuring how the change in seismic scenarios 

could impact the infrastructure and assets across the country. In doing so, the exposure analysis can provide 

insight into which assets may be vulnerable under varying scenarios. Detailed outcomes of each exposure 

analysis are presented separately in sections 4.4.1 to 4.4.8. 

4.4.1. Road Exposure  

Fig 17 and 18 illustrate the exposure of Türkiye’s Road network to earthquake-induced landslides under 

68% seismic hazard scenarios. The exposure map displayed in Fig 17 is an example of how the EaR is 

overlaid with the susceptibility slope units to estimate the exposure of a certain EaR. The susceptibility is 

presented in green to red colors. Meanwhile, the uncertainty is presented as a transparency gradation of each 

slope unit, where the higher transparency means high uncertainty, and the opaque color means the opposite. 

The exposure map for other EaR and scenarios is provided in the appendix. 

 

 
Fig 17 Road network exposure map under 68% PGA exceedance probabilities 
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Fig 18 Road network exposure bar plots under 68% PGA exceedance probabilities.  

The bars in Fig 18 represent the total length of trunk, primary, and secondary roads intersecting with each 

susceptibility class (VLS to HS) combined with the uncertainties (VLU to HU). The exposure is expressed 

in both kilometers and percentage of the length of the road network. Focusing on the 68% scenario, as the 

most relevant to the real condition, the majority of the road network is exposed to slope units classified as 

very low susceptibility-very low uncertainty (VLS-VLU), followed by low susceptibility-low uncertainty (LS-

LU) and moderate susceptibility-moderate uncertainty (MS-MU). On the other hand, the amount of road 

exposed to high susceptibility slope units (HS-MU and HS-HU) is very limited, suggesting most of the road 

network is located in safe areas.  

 

Besides the 68% scenario, other scenarios were assessed and provided in Appendix A.7. Overall, the changes 

in the scenario resulted in different exposure patterns on the road network. For example, opposite to the 

68%, most of the roads in the 2% scenario are exposed to the HS-HU class, while their exposure to the 

lower susceptibility classes is limited. 

 

Generally, the secondary roads show the highest exposure levels in every class combination, demonstrated 

by their highest black-colored bar in each class. In contrast, primary roads show significantly lower exposure 

than secondary or trunk roads across all scenarios. For example, in the VLS-VLU class, the secondary road 

exposure reaches more than 20% of the total length, followed by the trunk (>15%) and primary road 

(<10%). It reflects the spatial extent of the road class in the datasets, where the secondary road distribution 

dominates the dataset, followed by the trunk and primary roads. 

 

4.4.2. Railway Exposure 

Fig 19 presents the exposure of Türkiye’s railway network to earthquake-induced landslide susceptibility 

across the 68% exceedance probability scenario. The bar graphs display the total length of railway lines 

intersecting with different susceptibility–uncertainty class combinations. Exposure is shown in both 

kilometers and as a percentage of the overall railway network. 
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Fig 19 Railway exposure bar plots under 68% PGA exceedance probabilities. 

Compared to other linear infrastructure types, railway exposure is relatively low in absolute numbers, 

reflecting the smaller total extent of the railway system in Türkiye. However, even with limited length, 

exposure in critical zones can pose high operational and safety risks. Generally, heavy rail has the highest 

exposure levels in every class combination, followed by urban transit. In contrast, alternative rail and special 

transit don’t really show on the bar plot, indicating their small spatial distribution. 

 

Under the 68% exceedance scenario, the overall exposure levels are at very low to low susceptibility levels. 

Its exposure to moderate to high susceptibility classes is very limited, suggesting most of the railway is 

distributed in safer areas. Besides the 68% scenario, railway exposure under different scenarios is assessed 

and provided in Appendix A.8. Each scenario results in a different exposure pattern, for example, in the 2% 

scenario, half of the heavy rail exposed to moderate to high susceptibility, while the 50% and 10% scenario 

shows more diverse exposure distribution.  

4.4.3. Gas Pipeline Exposure 

Fig 20 shows the exposure of Türkiye’s gas pipeline network to earthquake-induced landslides under 68% 

seismic hazard scenarios. The plots display the total length of pipelines that intersect with slope units 

categorized by combining landslide susceptibility and uncertainty classes. The exposure is presented in both 

km and percentage of the total network. 

 

 

 

 

 

 

Fig 20 Gas pipeline exposure bar plots under 68% PGA exceedance probabilities. 

Focusing on the 68% scenario, over half of the gas pipeline is exposed to the very low to low susceptibility 

classes, suggesting most of the gas pipeline is laid in safer areas. Even so, more than 10% of the pipeline is 



Seismic Landslide Exposure Analysis for Türkiye 

32 

 

exposed to moderate to high susceptibility classes, which may become a concern. Since gas pipelines are 

high-value and high-risk infrastructure, even minimal exposure to hazardous terrain could lead to serious 

consequences.   

 

Exposure under 2%, 10%, and 50% was also assessed and provided in Appendix A.8. Opposite to the 68% 

scenario, the 2% scenario shows a significant amount of moderate to high susceptibility slope units. 

Although such events are rare, the extent of exposure under this scenario could pose serious concerns for 

infrastructure safety and disaster preparedness. On the other hand, the exposure distribution under the 10% 

and 50% scenarios is more varied. Even so, the 10% is dominated by moderate to high classes, while the 

50% shows greater exposure in the lower susceptibility classes. 

 

4.4.4. Electricity Network Exposure 

Fig 21 presents the exposure of Türkiye’s electricity transmission lines to earthquake-induced landslides 

under four seismic hazard scenarios. The charts show the total length of exposed electricity lines in 

thousands of kilometers, grouped by combinations of landslide susceptibility and uncertainty classes. This 

analysis helps to understand how much of the electricity network is located in areas that are potentially at 

risk under different landslide susceptibility scenarios. 

 

 

 

 

 

Fig 21 Electricity transmission line exposure bar plots under 68% PGA exceedance probabilities. 

Focusing on the 68% scenario, half of the electricity line is located within very low susceptibility classes, and 

gradually decreases as susceptibility gets higher. Over 10% of electricity networks are exposed to moderate 

susceptibility slope units, and only less than 10% are in the higher classes. Despite its limited exposure, the 

number of electricity lines intersected with moderate to high susceptibility may become a concern, as this 

infrastructure is one of the most crucial infrastructures in the country.   

 

Besides the 68% scenario, railway exposure under different scenarios is assessed and provided in Appendix 

A.10. The exposure trends are varied depending on the scenarios. For example, the electricity network 

exposure in the 2% scenario is gradually increased as susceptibility gets higher. Meanwhile, although most 

of the line was exposed to moderate to high susceptibility classes, the 10% scenario didn’t show a constant 

increase as the 2% scenario did. On the other hand, the 50% scenario shows a similar decreasing trend to 

the 68% scenario. However, the distribution amount is more even, resulting in a higher amount of exposure 

in moderate to high susceptibility classes. 
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4.4.5. Agriculture exposure 

Fig 22 exhibits the exposure of agricultural land to earthquake-induced landslide susceptibility across four 

different seismic hazard scenarios. The chart breaks down the total agricultural area exposed to 

susceptibility, combined with the uncertainty, allowing an understanding of both potential impact and 

prediction reliability. The exposures are presented in both thousand hectares and percentages, making it 

easier to compare and analyze.  

 

 

 

 

 

Fig 22 Agriculture area exposure bar plots under 68% PGA exceedance probabilities. 

The 68% exceedance scenario is particularly useful for guiding planning decisions. In this scenario, a major 

portion of the agricultural area is exposed to low to very low susceptibility classes, approximately ranging 

from 2,500 to 4,500 ha or around 20% - 35% of the total agricultural area. In contrast, its exposure to 

moderate to high susceptibility classes is less than 10% of the total area. 

  

The agricultural area exposure under other scenarios was assessed and provided in Appendix A.11. Despite 

the different scenarios, the general exposure pattern can be observed. Overall, the number of agricultural 

areas exposed to the high susceptibility classes decreases as the exceedance probability increases. As a result, 

most of the high susceptibility exposure is concentrated in the 2% scenario, while the 68% scenario is 

dominated by exposure in the very low susceptibility classes.   

 

Generally, heterogeneous agriculture shows the highest exposure levels in every class combination, 

demonstrated by its highest peach-colored bar in each class. In contrast, pastures show lower exposure than 

other agricultural types across all scenarios. For example, in the VLS-VLU class, the heterogeneous 

agriculture exposure reaches over 25% of the total area, followed by arable land with more than 20%. 

Meanwhile, both pastures and permanent contribute less than 10%. It reflects the spatial extent of the 

agricultural type in the datasets, where heterogeneous agriculture and arable land occupy a larger proportion 

of the total land cover, while pastures and permanent crops are more limited in extent. 

 

 

4.4.6. Commercial and Industrial Area Exposure 

Fig 23 displays the exposure of commercial and industrial areas to earthquake-induced landslide 

susceptibility under the four seismic hazard scenarios. The exposure is presented in hectares and categorized 

into combinations of susceptibility and uncertainty classes, offering a detailed picture of potential hazard 

implications for economically important zones. Compared to the industrial area, the commercial area 

proportion within the dataset is nearly negligible, as most of the commercial areas are built in densely 

populated areas, which have relatively stable terrain. 
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Fig 23 Commercial and industrial area exposure bar plots under 68% PGA exceedance probabilities. 

Focusing on the 68% scenario, the major distribution of industrial area was exposed to the VLS-VLU class, 

which was almost 60% of the total area, followed by LS-LU and MS-MU. In contrast, the spatial distribution 

of the commercial area was very limited, less than 1000 ha in every susceptibility-uncertainty class, and only 

appeared in very low to low susceptibility classes. 

 

Besides the 68% scenario, the exposure under other scenarios was assessed and provided in Appendix A.12. 

Each scenario shows a different exposure pattern, depending on the susceptibility classes intersected with 

the commercial and industrial areas. In general, the exposure under the 2% scenario is dominated by 

moderate to high susceptibility classes, where more than 25% of the commercial area is exposed to both 

MS-MU and HS-HU classes. On the other hand, most of the areas are exposed to low to moderate 

susceptibility classes in the 10% scenario and very low to low susceptibility classes in the 50% scenario.  The 

findings could be relevant for land-use regulation and industrial development planning. However, areas with 

moderate to high susceptibility and overlapping uncertainty may need more detailed site-specific 

investigations before any decision-making. Additionally, as commercial and industrial areas are tied closely 

to economic resilience, ensuring their protection could reduce long-term disruption in the aftermath of 

future seismic events. 

4.4.7. Building Exposure 

Fig 24 presents the exposure of buildings to earthquake-induced landslide susceptibility under the four 

seismic hazard scenarios. The graphs show the number of exposed buildings, in thousands, across 

combinations of susceptibility (VLS to HS) and uncertainty (VLU to HU) classes. This provides an overview 

of how potential hazard levels may affect built-up areas. 

 

 

 

 

 

Fig 24 Bar plots of the building feature exposure bar plots under 68% PGA exceedance probabilities. 
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Other exposure analyses under other scenarios are assessed and provided in Appendix A.13. The exposure 

trends are varied across scenarios. For instance, under the 2% exceedance scenario, more than 50% of 

buildings are located within the HS-HU class, with very limited exposure in the lower classes. In contrast, 

the 10% scenario shows a more balanced distribution, though the highest exposure still falls within the MS-

MU class with over 30% exposure. The 50% scenario, on the other hand, is primarily concentrated in the 

very low to low susceptibility classes, with less than 5% of buildings exposed to high susceptibility zones. 

These findings emphasize the importance of integrating landslide susceptibility into urban planning and 

housing policies. Identifying where buildings are located in high-susceptibility slope units can support better 

land-use decisions, prioritize refinement programs, and reduce disaster impact on residential communities 

in the long term. 

4.4.8. Critical Infrastructure Exposure 

Fig 25 displays the exposure of critical infrastructure to earthquake-induced landslide susceptibility across 

the four seismic hazard scenarios, including transportation, education, government, bank, health, and 

emergency services infrastructures. The graph summarizes the number of exposed critical infrastructure 

features intersecting with each susceptibility and uncertainty class combination. 

 

 

 

 

 

Fig 25 Bar plots of critical infrastructure exposure bar plots under 68% PGA exceedance probabilities. 

Focusing on the 68% scenario, the highest number of exposed critical infrastructure features is found in the 

very low to low susceptibility classes. Meanwhile, its exposure within moderate to high susceptibility is 

limited. Overall, education infrastructure dominates the spatial distribution of critical infrastructure, as its 

exposure number is the highest in every susceptibility-uncertainty class. In contrast, the spatial distribution 

of the remaining critical infrastructure types is limited, as the exposed number is less than 500 features in 

each class.  

 

The exposure of critical infrastructure under different scenarios was assessed and provided in Appendix 

A.14. As with other EaRs, the overall exposure patterns are varied across scenarios. In the exposure under 

the 2% scenario, the number of critical infrastructures exposed to moderate and high susceptibility classes 

is similar, while exposure within the lower classes is limited. In contrast, the 10% scenario shows the lowest 

exposure in the very low susceptibility class, followed by a gradual decrease in exposure from low to high 

susceptibility. Similarly, a decreasing trend is also observed in the 50% where most of the critical 

infrastructure is concentrated in the very low and low susceptibility classes, with minimal exposure to higher 

susceptibility zones.  
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5. DISCUSSION 

This research aimed to model earthquake-induced landslides across Türkiye and assess their potential impact 

under different seismic hazard scenarios. The study utilized a data-driven approach using the landslides 

triggered by the 2011 Van and 2023 Kahramanmaras earthquakes. The overall workflow was structured into 

four main components, including exploratory data analysis, model development, scenario-based simulation, 

and exposure assessment.  

5.1. Exploratory and Model Development Phase 

In the initial exploratory phase, 17 continuous variables were assessed, derived from 12 controlling 

parameters commonly associated with landslide susceptibility. The exploratory analysis showed that slope 

steepness, LR, and PGA were the strongest factors influencing landslide occurrence. These predictors 

demonstrated statistically positive relationships with landslide occurrences. Proximity to active faults also 

showed a mild negative influence, which aligns with physical expectations and previous studies (W. Chen et 

al., 2014; Basharat et al., 2016; Shafique, 2020) showing a high landslide concentration near fault zones. 

 

The final model retained four continuous variables, including slope steepness, LR, PGA, and proximity to 

faults, alongside the lithology and land cover. The susceptibility model was constructed using a GAM 

framework, allowing it to capture non-linear relationships between predictors and the probability of 

landslide occurrence. The decision to treat these variables as non-linear smooth functions was appropriate, 

as their influence on landslide probability is not necessarily linear across their entire range. 

 

Although this data-driven approach provided useful insights, it also has some important limitations. One of 

the main issues is the imbalance in the landslide inventories used. The 2011 Van earthquake inventory 

included only 42 slope units with landslides, while the 2023 Kahramanmaras earthquake had over 1,000. 

Because of this large difference, the Van inventory had very little influence during both the exploratory 

analysis and the model development. As a result, the model may not fully capture the conditions in the Van 

region and could treat them as outliers. 

 

Another limitation is related to the slope units. Using slope units as the mapping unit is practical, especially 

for handling different data sources and scales. However, this approach simplifies the terrain and aggregates 

the characteristics of the covariates into each slope unit, which may miss localized high-risk features like 

isolated steep patches or localized lithology. As a result, the model might underestimate susceptibility in 

some areas. This limitation is especially noticeable in the marginal effects of categorical variables like land 

cover (see Fig. 9), where most land cover types appear to have an uncertain or weak influence on landslide 

susceptibility. This may be because land cover features often vary over small areas, making them difficult to 

capture accurately when data is averaged across large slope units. As a result, important surface conditions 

that affect slope stability may be lost during this generalization process. 

 

Additionally, this model does not include the dynamic and time-related processes involved in landslides, 

such as gradual slope weakening over time (progressive failure) (Ai et al., 2022), material fatigue from 

repeated stress (Preisig et al., 2015), or delayed landslide responses after an earthquake (Song et al., 2022). 

Capturing these types of behaviors would require more complex models, such as physically based models, 

which were beyond the scope of this study. As a result, the model focuses only on the conditions present at 

the time of the earthquake, without considering how slopes may change or deteriorate over time. 
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5.2. Model simulations 

 

In this simulation, the fitted model structure was applied to new data by changing only the PGA values 

while keeping all other predictors constant. This allowed the model to estimate susceptibility under each 

seismic scenario using the same learned relationships from the original training process. More specifically, 

to assess potential landslide risk in future earthquakes, PGA values were extracted from Türkiye’s national 

seismic hazard maps and used to simulate four different seismic scenarios. These values were used as 

dynamic inputs for model simulation while keeping all other covariates constant. This substitution enabled 

a scenario-based assessment of landslide susceptibility to reasonable future earthquake intensities.  

 

The results showed that high-susceptibility areas remained concentrated along Türkiye’s major fault zones 

and mountainous terrain. As shown in Fig. 14 and Appendix A.4, susceptibility values increase and become 

more spatially concentrated as PGA intensity rises. This pattern supports the underlying assumption that 

landslide susceptibility generally increases with higher levels of ground-shaking (Khazai & Sitar, 2004), which 

is also reflected by the PGA covariance regression in Fig. 9. This is also supported by the difference between 

the scenarios, where areas with higher difference values are primarily concentrated near active fault zones, 

and it tends to be more pronounced as the paired scenario reflects more intense earthquakes.   

 

Projecting the model across Türkiye also introduced limitations. The model was trained using data from 

only two earthquake events, which represent specific environmental and geological conditions. Applying 

the model to a much broader landscape increases uncertainty, as many areas may possess very different 

terrain, lithology, or land cover not captured in the training data. This limitation is compounded by the 

incomplete spatial coverage of some predictor datasets. For example, lithology data were missing in certain 

parts of the country, resulting in no-data areas in the simulation outputs.  

 

Nonetheless, this challenge is common for data-driven prediction. For example, despite its near-real-time 

landslide hazard assessment, the USGS global empirical model for near-real-time assessment of seismic-

induced landslides also relies on sparse and incomplete landslide inventories, particularly in data-scarce 

regions (Jesse et al., 2018). Despite these constraints, it remains a valuable tool for identifying broad patterns 

of hazard. Although the use of a more comprehensive and spatially distributed landslide inventory would 

undoubtedly enhance the model prediction, limited data availability is a common constraint in data-driven 

landslide modeling. In this context, the current approach remains a reasonable and practical compromise. 

 

5.3. Exposure 

To complement the susceptibility analysis, the study estimated the exposure of several infrastructures under 

the four seismic scenarios. This analysis comes with several limitations. First, exposure was calculated based 

on slope units, which are relatively large spatial areas. While this is practical for regional-scale analysis, it 

does not provide the exact location where a landslide might occur or how far it might extend. As a result, 

the analysis only estimates how much infrastructure overlaps with susceptible slopes, not whether the 

landslide would actually reach and damage it. This limitation is important, as real landslide impacts often 

depend on the runout distance. Without runout modeling, the exposure estimates can only represent 

possible hazard zones rather than actual damage. More detailed impact assessments would require physically 

based models that simulate landslide movement, which were beyond the scope of this study. 

 

Second, the availability and resolution of some EaR datasets also affect the results. In some areas, especially 

rural or rapidly changing regions, the EaR data may be outdated or incomplete, making it difficult to 
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accurately estimate exposure. In addition, missing or low-quality predictor data in certain regions may reduce 

the reliability of the susceptibility map, which influences the exposure estimates. 

 

Despite these limitations, the exposure analysis still provides useful insights into which infrastructures are 

most often located in high-susceptibility zones across different seismic scenarios. It helps identify priority 

areas for disaster preparedness and risk reduction. The findings also offer a starting point for integrating 

landslide risk into broader national-scale earthquake risk planning and spatial decision-making.  
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6. RECOMMENDATION & CONCLUSION 

6.1. Recommendation 

This study provides a national-scale assessment of earthquake-induced landslide susceptibility and exposure 

using a data-driven modeling approach. While the results offer useful insights, the model also has some 

limitations that may affect its future applicability. Based on these limitations, several recommendations can 

be made to support future research and improve the applicability of similar models. 

 

First, improving the spatial resolution and completeness of predictors and infrastructure datasets is essential, 

as it would enhance the quality of both susceptibility and exposure maps. High-resolution predictors can 

better capture terrain variability, allowing the model to detect local conditions that may influence landslide 

susceptibility.  Similarly, improved infrastructure data in rural or rapidly developing areas would provide 

more reliable exposure estimates.  

 

Second, although physically based runout modeling is not practical at a national scale due to its high data 

and computational cost, future studies could explore hybrid approaches as simplified alternatives. These 

approaches combine the strengths of data-driven susceptibility models with simplified runout estimation 

methods, such as empirical rules (Roman Quintero et al., 2024) or GIS-based tools like flow=R (Horton et 

al., 2011) and Topflowdf (Scheild & Rickenmann, 2011). While not as detailed as full physical simulations, 

these methods can still estimate potential landslide travel distances. This would make the exposure 

assessment more realistic by identifying not just where landslides may be triggered, but also where they are 

likely to reach. Incorporating even basic runout logic would be especially valuable in densely populated or 

infrastructure-critical areas. 

 

Lastly, promoting open data sharing and collaborative research across institutions would help address the 

limited availability of earthquake-induced landslide inventories and fill gaps in national datasets. Partnerships 

between researchers, government institutions, and data providers can help improve inventory coverage, 

ensure consistent data quality, support the development of more comprehensive landslide inventories, and 

improve the consistency and quality of national datasets. Establishing common data standards and 

encouraging the sharing of methodologies would make it easier to compare and combine results from 

different studies and regions. In the long term, such collaboration would not only enhance the reliability of 

future models but also contribute to building a unified national framework. This would give decision-makers 

a stronger foundation for risk-informed development planning, emergency preparedness, and decision-

making at both regional and national levels. 

6.2. Conclusion 

This study developed a national-scale assessment of earthquake-induced landslide susceptibility and 

exposure in Türkiye using a data-driven approach. Utilizing the GAM framework, the model was built by 

integrating landslide inventories from the 2011 Van and 2023 Kahramanmaras earthquakes with geospatial 

predictors. The model was then used to simulate future landslide susceptibility based on four PGA 

exceedance scenarios derived from the national seismic hazard map. An exposure assessment was conducted 

to estimate the potential overlap between susceptible areas and critical infrastructure. Among the predictors, 

slope steepness, LR, and PGA were identified as the most influential predictors. Across the different seismic 

scenarios, susceptibility values get higher as the PGA intensity rises, and exposure results show various 

exposure patterns across scenarios. These outcomes reflect the strong role of PGA in shaping earthquake-

induced landslide susceptibility. 
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The findings of this research provide a useful starting point for understanding the spatial distribution of co-

seismic landslides and their potential impact across Türkiye. By using seismic hazard maps to simulate 

different future earthquake scenarios, the model provides a flexible tool that can support long-term planning 

and disaster preparedness. The use of slope units also enables the practical integration of varied datasets, 

helping ensure consistency across a large and complex study area. Although simplified, the model still offers 

meaningful insights into where landslides are more likely to happen, and which infrastructures may be 

exposed. This kind of information can support decision-making in disaster risk reduction and land-use 

planning.  

 

Further research should focus on improving data quality, exploring simplified runout modeling, and building 

modular frameworks that allow for easier updates and broader applications. Enhancing data resolution and 

promoting collaborative data sharing will be essential for improving model reliability and usability. By 

addressing these areas, future research can deliver more detailed and practical tools to support earthquake-

induced landslide risk management in earthquake-prone regions. 

 

6.3. AI Statement 

During the writing process of this research, Grammarly and ChatGPT were used to prevent grammatical 

errors and improve fluency. All suggestions provided by these tools were carefully reviewed, edited, and 

used by the author, who is responsible for the final output of this research. 
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APPENDIX 

A.1 Seismic Hazard Map 

 

Figure 1 PGA 2%, 10%, and 50% exceedance probability in 50 years, derived from Türkiye’s seismic hazard map  
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A.2 Random Effect Value 

Tab 1 The random effect value of the model represents the relationship between the predictors and landslide occurrence 

 RANDOM EFFECTS IN THE GAM 
  Mean Sd 0.025sq 0.5sq 0.975sq 

Slope average  
1 -1.92 0.45 -2.81 -1.92 -1.04 
2 -1.85 0.23 -2.30 -1.85 -1.39 
3 -1.28 0.14 -1.55 -1.28 -1.01 
4 -0.86 0.12 -1.09 -0.86 -0.64 
5 -0.25 0.11 -0.46 -0.25 -0.04 
6 0.26 0.11 0.05 0.26 0.47 
7 0.77 0.11 0.55 0.77 0.99 
8 1.32 0.13 1.05 1.32 1.58 
9 1.86 0.18 1.50 1.86 2.22 
10 1.95 0.28 1.40 1.95 2.50 
      
Local Relief  
1 -1.35 0.20 -1.74 -1.35 -0.95 
2 -0.90 0.12 -1.14 -0.90 -0.66 
3 -0.51 0.10 -0.72 -0.51 -0.31 
4 -0.09 0.10 -0.29 -0.09 0.10 
5 -0.01 0.11 -0.22 -0.01 0.20 
6 0.30 0.12 0.08 0.30 0.53 
7 0.32 0.14 0.04 0.32 0.60 
8 0.62 0.17 0.28 0.62 0.95 
9 0.81 0.23 0.36 0.81 1.27 
10 0.82 0.33 0.17 0.82 1.46 
      
PGA (g)      
1 -2.53 0.17 -2.86 -2.53 -2.19 
2 -1.14 0.10 -1.34 -1.14 -0.94 
3 -0.46 0.10 -0.66 -0.46 -0.26 
4 -0.20 0.11 -0.41 -0.20 0.01 
5 0.40 0.10 0.20 0.40 0.60 
6 0.38 0.12 0.15 0.38 0.61 
7 0.66 0.16 0.35 0.66 0.97 
8 0.87 0.24 0.39 0.87 1.35 
9 0.98 0.29 0.41 0.98 1.55 
10 1.04 0.30 0.45 1.04 1.63 
      
Proximity to Fault      
1 0.14 0.21 -0.27 0.14 0.55 
2 -0.22 0.21 -0.63 -0.22 0.19 
3 -0.11 0.21 -0.53 -0.11 0.30 
4 -0.32 0.22 -0.76 -0.32 0.12 
5 0.03 0.21 -0.38 0.03 0.44 
6 0.22 0.21 -0.18 0.22 0.63 
7 0.10 0.22 -0.34 0.10 0.54 
8 0.06 0.27 -0.48 0.06 0.59 
9 0.05 0.35 -0.62 0.05 0.73 
10 0.05 0.42 -0.78 0.05 0.89 
      
Lithology  
Plutonic -0.83 0.16 -1.15 -0.83 -0.51 
Volcanic 0.73 0.10 0.54 0.73 0.91 
Metamorphic -0.21 0.08 -0.37 -0.21 -0.05 
Ophiolitic 0.15 0.09 -0.02 0.15 0.32 
Sedimentary 0.17 0.06 0.04 0.17 0.29 
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 RANDOM EFFECTS IN THE GAM 
  Mean Sd 0.025sq 0.5sq 0.975sq 
      
Land use  
Tree cover -0.17 0.11 -0.39 -0.17 0.05 
Shrubland -0.09 0.19 -0.46 -0.09 0.28 
Grassland 0.19 0.11 -0.02 0.19 0.40 
Cropland -0.08 0.18 -0.42 -0.08 0.27 
Built-up -0.04 0.20 -0.43 -0.04 0.35 
Bare land 0.19 0.15 -0.10 0.19 0.48 
Herbaceous wetland 0.00 0.20 -0.40 0.00 0.40 

 
A.3 Spatially illustrated RCV and SCV fold 

 

Figure 2 The spatial distribution of the data split for both RCV (a) and SCV(b) methods. Each fold is presented in different 

colors as shown in the legend. 
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A.4 Model Simulation – Susceptibility 

 

Figure 3 Earthquake-induced landslide susceptibility maps for 2%, 10%, and 50% PGA exceedance probability in 50 years 
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A.5 Model Simulation – Uncertainty 

 

Figure 4 Earthquake-induced landslide uncertainty maps for 2%, 10%, and 50%  PGA exceedance probability in 50 years 
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A.6 Model Simulation – Difference 

 

Figure 5 The susceptibility differences between 2% and 10% scenarios, 10% and 50% scenarios, and 50% and 68% 

scenarios. 
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A.7 Road Exposure 
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Figure 6 Road network exposure map under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

Tab 2 The length of the road network exposed to susceptibility under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

 

 

VLU LU VLU LU MU HU LU MU HU MU HU
Primary 3229 337 167 1642 491 146 723 277 42 542 7596
Secondary 8907 626 600 4653 1035 542 1879 689 178 817 19926
Trunk 7359 591 569 3043 600 3 571 1311 290 202 405 14941
Grand Total 19494 1554 1336 9339 2126 3 1259 3912 1256 422 1763 42463

Grand Total68% Scenario 
HSMSLSVLS

VLU LU VLU LU MU HU LU MU HU MU HU
Primary 2063 522 245 1879 477 329 980 285 108 709 7596
Secondary 5986 822 909 5027 1005 993 2664 700 434 1387 19926
Trunk 4972 639 865 3613 653 3 839 1864 314 392 787 14941
Grand Total 13021 1983 2019 10519 2135 3 2161 5508 1298 934 2883 42463

50% Scenario 
VLS LS MS HS

Grand Total

VLU LU VLU LU MU LU MU HU MU HU
Primary 179 152 82 1392 428 291 1982 492 354 2246 7596
Secondary 664 387 255 4007 850 1088 5244 894 1131 5405 19926
Trunk 521 289 155 3288 653 909 4257 678 670 3522 14941
Grand Total 1363 828 492 8687 1931 2288 11483 2064 2155 11172 42463

10% Scenario 
VLS LS MS HS

Grand Total

VLU LU MU VLU LU MU HU LU MU HU MU HU
Primary 7 18 428 348 69 1765 648 216 4097 7596
Secondary 33 54 0 6 1295 758 286 5101 1351 752 10291 19926
Trunk 24 18 1 1030 688 1 240 4154 1163 455 7168 14941
Grand Total 64 90 0 6 2753 1794 1 595 11020 3162 1423 21556 42463

HSMSLSVLS
Grand Total2% Scenario 
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Figure 7 Road network exposure bar plots under 2%, 10%, and 50% PGA exceedance probabilities 
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A.8 Railway Exposure 
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Figure 8 Railway exposure map under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

Tab 3 The length of the railway exposed to susceptibility under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

 
 

 
 

 
 

LS MS
VLU LU VLU LU MU LU MU HU MU HU

Special Transit 3.31 0.10 3.42
Urban Transit 178.19 7.93 24.60 6.07 0.76 1.34 218.89
Alternative Rail 2.82 0.64 3.46
Heavy Rail 2049.61 73.44 123.75 672.28 17.92 68.20 274.52 6.63 36.36 109.44 3432.15
Grand Total 2233.94 81.37 123.75 696.99 23.99 68.96 275.86 6.63 36.36 110.08 3657.93

68% scenario
HSVLS

Grand Total

VLU LU VLU LU MU LU MU HU MU HU
Special Transit 0.06 1.62 1.74 3.42
Urban Transit 90.79 74.60 0.41 36.21 6.08 1.24 9.55 218.89
Alternative Rail 1.29 1.53 0.64 3.46
Heavy Rail 1462.30 106.58 136.04 850.36 21.41 175.40 376.55 7.61 94.73 201.19 3432.15
Grand Total 1554.44 184.32 136.45 888.31 27.49 176.63 386.10 7.61 94.73 201.83 3657.93

50% Scenario
HSVLS

Grand Total
MSLS

VLU LU VLU LU MU LU MU HU MU HU
funicular 0.94 1.47 1.01 3.42
Urban Transit 2.31 5.31 119.69 40.81 34.33 8.07 2.05 6.32 218.89
Alternative Rail 2.82 0.64 3.46
Heavy Rail 178.03 87.05 102.43 949.38 78.30 218.64 929.65 39.97 177.36 671.35 3432.15
Grand Total 180.34 92.35 102.43 1072.83 120.58 218.64 964.98 48.04 179.42 678.31 3657.93

10% Scenario
VLS LS MS HS

Grand Total
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Figure 9 Railway exposure bar plots under 2%, 10%, and 50% PGA exceedance probabilities 

 
  

VLU LU VLU LU MU LU MU HU MU HU
funicular 3.01 0.31 0.10 3.42
Urban Transit 24.52 41.70 100.58 27.35 0.56 24.17 218.89
Alternative Rail 1.29 1.53 0.64 3.46
Heavy Rail 6.00 22.04 2.90 323.44 185.59 101.74 1070.59 182.41 128.78 1408.67 3432.15
Grand Total 6.00 22.04 2.90 347.96 228.58 101.74 1175.71 210.07 129.34 1433.59 3657.93

2% Scenario
VLS LS MS HS

Grand Total
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A.9 Gas Pipeline Exposure 
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Figure 10 Gas pipeline exposure map under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

Tab 4 The length of the gas pipeline exposed to susceptibility under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

 

 

VLU LU VLU LU MU LU MU HU MU HU
68% Scenario 1657 39 118 678 21 94 265 2 33 55
50% Scenario 1120 57 131 686 21 248 444 3 94 157
10% Scenario 164 62 48 684 91 151 857 21 204 680
2% Scenario 11 17 6 255 143 42 822 126 79 1459

HSMSLSVLS
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Figure 11 Gas Pipeline exposure bar plots under 2%, 10%, and 50% PGA exceedance probabilities 

 
 
A.10 Electricity Network Exposure 
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Figure 12 Electricity network line exposure map under 2%, 10%, 50%, and 68% PGA exceedance probabilities 
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Tab 5 The length of the electricity network line exposed to susceptibility under 2%, 10%, 50%, and 68% PGA exceedance 

probabilities 

 

 
Figure 13 Electricity network line  exposure bar plots under 2%, 10%, and 50% PGA exceedance probabilities 

 
  

VLU LU MU VLU LU MU HU LU MU HU MU HU
68% Scenario 46193 2700 0 3429 23640 3617 1 3146 9625 2473 1173 3758
50% Scenario 31368 3054 0 4846 26152 3567 1 5553 13697 2611 2459 6448
10% Scenario 3732 1733 0 1243 20023 3192 0 5968 27847 3237 6064 26716
2% Scenario 186 381 0 39 6699 3552 0 1492 26524 5566 3745 51570

HSMSLSVLS
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A.11 Agriculture Exposure 
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Figure 14 Agriculture areas exposure map under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

Tab 6 The amount of the agricultural areas exposed to susceptibility under 2%, 10%, 50%, and 68% PGA exceedance 

probabilities 

 

VLU LU VLU LU MU HU LU MU HU MU HU
Arable Land 2798163 91430 100090 506861 28571 58377 94198 4884 7777 7232 3697584
Permanent Crops 358457 47365 23403 163055 117974 21727 69751 109117 11470 98705 1021026
Pastures 397480 30062 27355 155243 26107 17475 48092 15914 2329 14203 734261
Heterogenous Agri 3892171 223590 294488 1880268 261411 132 231032 681770 151266 74569 203113 7893809
Grand Total 7446271 392448 445337 2705427 434064 132 328612 893811 281180 96144 323254 13346679

Grand Total68% Scenario
HSMSLSVLS

VLU LU VLU LU MU HU LU MU HU MU HU
Arable Land 2182433 125777 166775 792638 36413 120903 218050 5327 23919 25348 3697584
Permanent Crops 201429 49834 61524 179199 116444 59238 104932 109431 22818 116176 1021026
Pastures 331058 31517 23676 172684 27342 28030 73613 16053 10067 20220 734261
Heterogenous Agri 2608987 236405 411015 2079015 255858 132 496864 1061205 161072 182154 401102 7893809
Grand Total 5323908 443534 662990 3223536 436057 132 705035 1457800 291883 238958 562846 13346679

50% Scenario
HSMSLSVLS

Grand Total

VLU LU VLU LU MU LU MU HU MU HU
Arable Land 447994 168806 76112 1262474 176459 215475 951652 50473 98026 250112 3697584
Permanent Crops 28267 23502 4448 167652 38086 56944 179595 75831 51868 394833 1021026
Pastures 73483 17299 9673 146718 33046 31371 210491 28665 27923 155592 734261
Heterogenous Agri 344136 149393 109433 1662277 230997 523183 2291282 242260 483696 1857150 7893809
Grand Total 893880 359001 199666 3239121 478588 826973 3633020 397230 661514 2657687 13346679

10% Scenario Grand Total
HSMSLSVLS

VLU LU MU VLU LU MU HU LU MU HU MU HU
Arable Land 29988 55419 2694 664926 303704 105 79800 1354459 237614 105286 863587 3697584
Permanent Crops 551 3503 194 47655 35601 0 6712 212192 68390 19998 626230 1021026
Pastures 6412 6413 1017 90992 29606 6 13106 186904 49089 21724 328991 734261
Heterogenous Agri 15776 35245 11 2380 551266 280438 94 129085 2264561 409293 321300 3884359 7893809
Grand Total 52727 100581 11 6285 1354840 649349 205 228704 4018116 764386 468308 5703167 13346679

2% Scenario
HSMSLSVLS

Grand Total
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Figure 15 Agriculture areas exposure bar plots under 2%, 10%, 50%, and 68% PGA exceedance probabilities 
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A.12 Commercial and Industrial Exposure 
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Figure 16 Commercial and industrial areas exposure map under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

Tab 7 The amount of the commercial and industrial areas exposed to susceptibility under 2%, 10%, 50%, and 68% PGA 

exceedance probabilities 

VLU LU VLU LU MU LU MU HU MU HU
Commercial 419.3 12.0 25.7 302.0 7.2 12.6 36.3 5.8 1.5 1.5 823.9
Industrial 13228.4 927.1 766.6 3524.0 406.8 403.5 916.6 133.2 41.6 54.8 20402.6
Grand Total 13647.8 939.0 792.2 3826.1 414.0 416.1 953.0 139.0 43.2 56.3 21226.6

68% Scenario Grand Total
HSMSLSVLS

VLU LU VLU LU MU LU MU HU MU HU
Commercial 315.3 39.6 32.1 330.2 7.0 29.0 58.8 5.6 4.5 1.9 823.9
Industrial 9353.9 1165.3 969.6 5449.7 500.0 1058.3 1482.9 132.6 126.5 164.0 20402.6
Grand Total 9669.2 1204.9 1001.6 5779.8 507.0 1087.3 1541.6 138.2 131.0 165.9 21226.6

Grand Total50% Scenario
VLS LS MS HS

VLU LU VLU LU MU LU MU HU MU HU
Commercial 15.9 41.2 7.7 308.8 101.2 6.3 273.6 14.9 1.7 52.7 823.9
Industrial 2104.2 495.0 147.0 6297.4 1729.2 851.7 5709.9 575.4 406.1 2086.8 20402.6
Grand Total 2120.1 536.2 154.7 6606.2 1830.3 858.0 5983.5 590.2 407.9 2139.5 21226.6

Grand Total
HSMS

10% Scenario
LSVLS

VLU LU VLU LU MU LU MU HU MU HU
Commercial 1.2 79.5 110.3 8.0 347.1 110.0 2.9 165.0 823.9
Industrial 49.4 32.0 1.5 3492.7 1319.8 204.7 6840.1 1805.8 302.5 6354.1 20402.6
Grand Total 49.4 33.2 1.5 3572.1 1430.1 212.7 7187.2 1915.8 305.4 6519.1 21226.6

Grand Total
HSMSLSVLS

2% Scenario
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Figure 17 Commercial and industrial areas exposure bar plots under 2%, 10%, and 50% PGA exceedance probabilities 
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A.13 Building Exposure 
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Figure 18 Buildings exposure map under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

Tab 8 The amount of the buildings exposed to susceptibility under 2%, 10%, 50%, and 68% PGA exceedance probabilities 

 

 

VLU LU VLU LU MU HU VLU LU MU HU VLU LU MU HU
68% Scenario 498388 45092 33303 233641 70915 0 885 31718 85919 12482 89 650 9479 26002
50% Scenario 259829 78438 55461 295338 71464 0 993 78194 136154 13124 105 1102 20862 37499
10% Scenario 18809 28139 6140 214269 92895 0 92 50067 316795 69982 13 1009 57732 192621
2% Scenario 369 4524 47 58322 63986 1 2 6541 247003 115108 0 152 19101 533407

HSMSLSVLS
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Figure 19 Buildings exposure bar plots under 2%, 10%, and 50% PGA exceedance probabilities 

 
A.14 Critical Infrastructure Exposure 
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Figure 20 Critical infrastructures exposure map under 2%, 10%, 50%, and 68% PGA exceedance probabilities 



Seismic Landslide Exposure Analysis for Türkiye 

73 

 

Tab 9 The amount of the critical infrastructure exposed to susceptibility under 2%, 10%, and 50% PGA exceedance 

probabilities 

 

 

VLU LU VLU LU MU VLU LU MU HU VLU LU MU HU
Transport 279 20 36 120 6 4 35 61 6 1 5 13 586
bank 30 5 2 1 4 1 3 46
Government 126 8 2 16 3 2 2 1 160
Health 391 33 31 84 40 1 19 18 10 1 1 7 636
Education 2432 194 195 557 230 21 107 154 36 2 5 28 24 3985
Emergency 146 12 13 45 10 2 10 15 5 3 3 264
Grand Total 3404 272 277 822 291 28 172 254 60 2 7 37 51 5677

68% Scenario Grand TotalHSMSLSVLS

VLU LU VLU LU MU VLU LU MU HU VLU LU MU HU
Transport 171 37 43 150 9 4 54 73 6 1 18 20 586
bank 16 10 1 7 2 1 5 1 3 46
Government 100 17 20 3 2 14 2 2 160
Health 239 67 33 145 35 2 41 44 12 2 5 11 636
Education 1611 453 203 857 204 20 192 271 57 2 11 59 45 3985
Emergency 101 26 18 49 10 12 28 5 3 4 8 264
Grand Total 2238 610 298 1228 263 26 302 435 83 2 17 86 89 5677

Grand TotalHSMSLSVLS50% Scenario

VLU LU VLU LU MU VLU LU MU HU LU MU HU
Transport 13 13 2 117 49 33 179 11 46 123 586
bank 1 7 11 2 7 5 2 11 46
Government 9 43 1 45 14 26 2 10 10 160
Health 17 31 8 188 72 1 26 157 33 4 36 63 636
Education 185 186 68 1263 396 2 208 874 175 20 189 419 3985
Emergency 14 5 9 75 28 10 50 12 2 16 43 264
Grand Total 239 285 88 1699 561 3 277 1293 238 26 299 669 5677

Grand TotalHSMSLSVLS10% Scenario

VLU LU VLU LU MU VLU LU MU HU LU MU HU
Transport 1 2 1 33 28 7 147 64 22 281 586
bank 8 3 10 8 1 16 46
Government 1 2 58 5 4 44 15 31 160
Health 4 53 67 10 206 63 1 16 216 636
Education 4 41 2 420 434 1 92 1224 385 7 162 1213 3985
Emergency 1 3 28 22 9 79 23 8 91 264
Grand Total 7 52 3 600 559 1 122 1710 558 8 209 1848 5677

Grand TotalHSMSLSVLS2% Scenario
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Figure 21 Critical infrastructures exposure bar plots under 2%, 10%, and 50% PGA exceedance probabilities 


