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General introduction 
Of all cancers worldwide, head and neck cancer was determined to be the sixth most common in 2018, 

with 890,000 new cases and 450.000 deaths[1]. Oral squamous cell carcinoma (OSCC) is diagnosed most 

frequently in the head and neck region, accounting for nearly half of all cancers[2]. Most prevalent 

tumour locations include the tongue and the floor of the mouth, while the gingivae, palate, and buccal 

and labial mucosa are affected less commonly (see Figure 1)[3]. 

 
Figure 1: Anatomy of the oral cavity[4] 

 

The primary choice of treatment for OSCC is complete surgical removal of the tumour[5]. Wide margins 

around the resected tumour are crucial to maximise clinical outcome[6]. However, there is a high 

incidence of inadequate margins (< 5 mm on histopathology, see also Table 1), with numbers ranging 

from 40% to 85%[7], [8], [9]. Inadequate surgical margins increase the likelihood of local recurrence, 

regional recurrence, distant metastasis, and decrease overall survival[7]. When post-surgical 

histopathological examination of the tumour shows inadequate margins, the patient is therefore 

subjected to additional treatment including (chemo-)radiotherapy (27%) and/or secondary surgery 

(12%)[10], [11], [12]. These additional treatment options contribute to higher healthcare costs and 

significantly impact the patients’ quality of life[13], [14], [15]. Furthermore, adequate margin control is 

complicated in secondary surgery as it becomes more difficult to assess the anatomical orientation 

between the original and secondary specimen[5]. 

Table 1: OSCC resection margin indication[16] 
Resection margin Indication Description 
> 5 mm Low risk Negative, clear, radical, adequate 
1 – 5 mm Intermediate risk Close, inadequate 
< 1 mm High risk Positive, involved, irradical, inadequate 

 

To overcome inadequate margins during OSCC resections, the surgeon can perform intraoperative 

assessment of resection margins (IOARM). To date, numerous IOARM methods have been proposed, 

for example Raman spectroscopy, ultrasound, autofluorescence, and optical coherence tomography 

to electromagnetically tracked ultrasound systems[17], [18], [19], [20]. 
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Magnetic resonance (MR) imaging has recently been reported to enable accurate localisation of OSCC 

in resection specimens due to its strong ability to distinguish tumour from healthy tissue[8], [21]. 

Currently at the University Medical Centre Utrecht (UMC Utrecht), the 7Tex study is being conducted 

to examine the feasibility of ex vivo high-resolution MR imaging as a means of IOARM. This MR-based 

IOARM workflow is being set up in which resected OSCC specimens are prepared and sent to a 

preclinical, small-bore 7 tesla (7T) MR scanner during surgery. High-resolution T2-weighted (T2w) scans 

are acquired of the specimens, which are then used to visualise the resection margins intraoperatively. 

The overall goal of the 7Tex study is to perform this intraoperative workflow within a time limit of 45 

minutes, as set by surgeons for a minimal disruption of the surgical process. Implementing such a 

workflow could improve margin control and thereby reduce the amount of adjuvant therapy. This 

imaging workflow includes specimen preparation, transport to the MR scanner, scan acquisition, and 

scan processing. Within these 45 minutes, the surgeon could perform a neck dissection or sentinel 

lymph node procedure, minimising the impact on the surgical process and operating time. 

A second goal of the 7Tex study is to provide surgeons with an intuitive, automatic visualisation model 

of the resected tumour and its resection margins. In 2024, a study by De Koning et al. already explored 

the possibility to create three-dimensional (3D) visualisations of the resected specimen using 7T MR 

scans[5]. The proposed workflow was however still too labour- and time-intensive for intraoperative 

implementation due to its manual nature. Spacing of slices in the 3D visualisation was also irregular 

and ranged from 1 to 10 mm, which could cause inaccuracies in measuring resection margins. A new 

and improved visualisation method should be produced quickly enough for intraoperative feasibility 

with adequate source scan resolution in all directions. 

Problem statement 

An automatic pipeline for tumour delineation and resection margin visualisation is required to reach 

IOARM within 45 minutes after specimen resection. After tumour delineation, a usable and intuitive 

designated automatic visualisation method must be developed. The main research question of this 

study is: 

How can intraoperative resection margin assessment be facilitated using ex vivo 7T MRI of oral 

squamous cell carcinoma resection specimens? 

This study proposes an IOARM method which maintains the high-resolution benefit of the preclinical 

7T MR scanner also used by De Koning et al., while eliminating the need for manual 3D visualisation 

generation. To contribute to the larger goal of executing specimen preparation and transport, scan 

acquisition, and resection margin assessment within 45 minutes, this study aims to set up a clinical 

pipeline which generates an intuitive IOARM method as quickly as possible. This pipeline will include 

automatic segmentation of the tumour using deep-learning networks, and an automatic 3D 

visualisation model of the tumour and resection margins. The total pipeline contains several essential 

components which will be thoroughly covered in this study (Figure 2). 
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Figure 2: Clinical pipeline. MR scans are acquired by a 7T scanner and imported into MIM in DICOM format. 
From here, deep-learning networks can be called to perform OSCC segmentation on a graphics processing unit 
(GPU), after which this segmentation is sent back to MIM as a binary mask. Within MIM, a radiologist reviews 
the segmentation, makes adjustments and confirms the final segmentation. This final segmentation is sent 
through along with the MR scans in RTStruct format to a personal computer (PC) at the 3D lab. Here, the 3D 
model is automatically generated based on the imported RTStruct, after which the model is uploaded to 
Mimics Viewer so that it can be presented in the operating room (OR).  

 

This study is divided into multiple subsections of which each focuses on a different component of the 

overall objective. First, automatic tumour segmentation is required to generate a viable and accurate 

3D model as quickly as possible. A workflow containing deep learning networks is set up, of which the 

segmentation performance is evaluated. The subquestion for this section is: 

How can automatic segmentation of OSCC be performed on 7T MR imaging using nnU-Net networks? 

Secondly, the focus of this study is to develop the 3D model for IOARM. It is essential that this 3D 

model generation is robust, intuitive, and automatic. The goal is to generate the model within five 

minutes. The subquestion for this section is: 

How can an intuitive, three-dimensional model be created within five minutes, which enables 

intraoperative assessment of resection margins for surgeons performing OSCC resections? 

Thirdly, it is imperative that this 3D model is objectively validated to gain an understanding of its 

usability before it is clinically implemented. The third section focuses on the following subquestion: 

What is the usability of the automatic, intraoperative three-dimensional model, according to all 

surgeons performing OSCC resections at the UMC Utrecht? 

Lastly, high-resolution MR imaging enables superior in-plane resolution but is regularly held back by 

poor relative resolution in the through-plane direction. Isotropic 3D MR scans may solve this issue, 

however clinically implementing such scanning sequences is hampered by relatively long scanning 

times, sub-optimal contrast and blurring. To improve clinical applicability of high-resolution MR 

imaging, the technique of super-resolution is investigated to gauge its feasibility in reproducing 

isotropic, 3D scans of transverse and sagittal T2w scans. As voxel anisotropy is encountered frequently 

in high-resolution MR imaging, a solution is suggested for resampling difficulties originating from highly 

anisotropic voxel dimensions. The subquestion of this section is: 
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To what extent can 3D T2-weighted scans of OSCC specimens be recovered by means of super-

resolution upsampling based on anisotropic transverse and sagittal T2-weighted MR scans with high 

in-plane resolution? 
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Chapter 1: Automatic tumour segmentation 

Introduction 

The first part of the pipeline considers the MR scan processing and the automatic segmentation of the 

OSCC (Figure 1.1). The MR scans are imported into software at the Radiotherapy department which 

enables automatic calling of deep-learning networks and manual adaptation of segmentations. 

 
Figure 1.1: Clinical pipeline: first section 

 

MR scan handling and segmentation adaptation is performed in MIM (MIM Software, Beachwood, OH, 

USA), which is imaging software frequently used by radiation oncologists at the Radiotherapy 

department. Within MIM, pretrained deep-learning networks can be called which run on graphics 

processing units (GPUs) and return segmentations of tumour tissue. Radiologists can visually check the 

proposed segmentations and make alterations slice-by-slice if necessary. The final segmentation can 

then be sent further onwards in the pipeline. 

Background 

Deep-learning is an ever-evolving technique which has become an indispensable part of medical image 

processing and segmentation. To achieve robust deep-learning networks which produce reliable 

segmentations for a clinical environment, large databases are required[22]. To ensure optimal 

segmentation performance in clinical practice, it is important that the training data reflect the 

characteristics of the scans encountered in the target clinical workflow. Deep-learning segmentation 

tasks in head and neck cancers are abundant in literature, focusing on positron emission 

tomography/computed tomography (PET/CT) scans and CT scans, as well as fluorescent confocal 

microscopy[23], [24], [25], [26]. Less prevalent are deep-learning networks trained on ex vivo MR imaging, 

especially for OSSC segmentation. Databases on which a deep-learning network could be trained to 

segment OSCC tissue on 7T ex vivo MR scans are therefore not readily accessible, which is an important 

factor when determining the most appropriate deep-learning network. 

The no-new-U-net (nnU-Net) is a deep-learning, segmentation-based method which has self-

configuration capabilities, especially designed for atypical segmentation tasks[27]. The method is 

designed to adapt to a given dataset, automatically generating a fitting U-net-based segmentation 

pipeline. The clinical pipeline in this study requires a deep-learning network which can be trained from 

scratch on ex vivo 7T MR scans of OSCC resection specimens; a highly non-standard image modality 
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for which no pretrained networks or existing segmentation pipelines are available. This makes the nnU-

Net highly suitable for this task. Automatic OSCC segmentation is essential to generate an IOARM 

method as quickly as possible. 

Building upon this, the segmentation accuracy of the deep learning networks will be assessed. In a 

paper by Wahid et al., deep-learning based segmentation of oropharyngeal primary tumours on 

multiparametric MR scans resulted in an average Dice similarity coefficient (DSC) score of 0.73, which 

was considered reasonable[28]. Therefore, the accuracy goal for this section is a DSC of ≥ 0.7. This also 

ensures correct tumour localisation despite potential boundary inaccuracies which can be accounted 

for by radiologists further down the clinical pipeline. A second focus is the segmentation performance 

of the nnU-Net networks. 
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Methods 

Specimen scanning 

Patients undergoing curative surgery for OSCC resection (cT1-T4) were included in the 7Tex study 

workflow. Once the OSCC was resected, it was retrieved from the operating room (OR) and transported 

to a utility room, where the specimen was prepared (Figure 1.2a). Here, the specimen was placed on 

a plastic holder and fixated with intravenous cannulas. Parallel lines were painted on the specimen, 

perpendicular to the longest dimension of the specimen (unless indicated otherwise by the Pathology 

department). These lines indicated the transverse scanning direction and the direction in which 

pathological sections should be made to allow validation of the MR images with histology (Figure 1.2b). 

The specimen was placed inside a plastic cylinder, which was then filled with perfluoropolyether 

(Galden, Solvay Solexis, Thorofare, NJ, USA) to account for susceptibility artifacts on the MR images. 

The cylinder was then transported to the Gemeenschappelijk Dierenlaboratorium (Universiteit 

Utrecht, Utrecht, The Netherlands) for scanning (Figure 1.2c). 

 

   
A B C 

Figure 1.2: Resected (A), fixated (B) & scanned (C) specimen 
 

Specimen scanning was performed using a preclinical, small-bore 7T MR scanner (Biospec 7T, Bruker, 

Ettlingen, Germany), interfaced with a Philips console (Philips Medical Systems, Best, The 

Netherlands). Orientation and size of the field of view were manually chosen during MR scout scanning 

and differed based on specimen dimensions. To save time, T2w Turbo Spin Echo (TSE) scans were 

acquired in only two directions for clinical implementation: transverse and sagittal. These scans had 

an in-plane resolution of 0.125 mm2 and a slice thickness of 1 mm (Figure 1.2c). 

Study population 

A total of 77 OSCC resection specimens were included in the 7Tex study, of which 55 were suitable for 

training of the nnU-Net. Exclusion criteria were: 

- Larger artifacts on the MR scans 

- Patients with a pT1 tumour, unless the tumour was clearly distinguishable on the MR scans 

The median age of this patient group was 63 years old (range 27 – 87). More patient group details are 

stated in Table 1.1. 
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Table 1.1: Patient group details 

Sex Pathological tumour staging (pTNM) OSCC origin 
Male 28 T1 15 Tongue 31 
Female 27 T2 23 Bucca 16 
 T3 11 Floor of mouth 7 
Total 55 T4 6 Gingiva 1 

  

MR scans 

Of the 55 included specimens, 55 transverse and 47 sagittal T2w scans were available. The scans were 

acquired in Digital Imaging and Communications in Medicine (DICOM) format and converted to 

Neuroimaging Informatics Technology Initiative (NIfTI) format for further processing. 

Ground truth 

The ground truth consisted of manual tumour delineations in the transverse T2w scans. All 

segmentations were performed by two researchers of the 7Tex study. First, the tumour was delineated 

on the corresponding haematoxylin and eosin (HE) histopathological slices and approved by a 

dedicated pathologist. The histopathological slices were then registered to the corresponding 

transverse MR slices via point-based registration. Subsequently, the histological delineations could be 

propagated to the transverse T2w scans. The delineations were then manually adjusted to reach the 

correct tumour segmentation on MR. The delineations could also be propagated directly to the sagittal 

scans since the transverse and sagittal scans were registered to the same image space. The 

delineations were exported as binary masks in GIPL format from in-house contouring software 

(Volumetool, version 1.30.64)[29] and converted to NIfTI format using the SimpleITK Python library. 

Each mask was resampled to its corresponding T2w scan using nearest-neighbour interpolation. 

nnU-Net architecture 

In the current study, transverse and sagittal T2w scans were available for tumour segmentation using 

the nnU-Net. One nnU-Net network required resampling of these two scan types to the same image 

space and dimensions in order to properly process both scanning directions. An inherent disadvantage 

to 7T MR imaging with a high in-plane resolution was the relatively large slice thickness compared to 

in-plane pixel size, which caused a large difference in spatial resolution between scanning directions. 

Resampling of transverse and sagittal scans to the same image space was challenging as their voxels 

were highly anisotropic. Alignment of voxel sizes across axes would require substantial interpolation 

or extrapolation which likely would introduce artifacts or lead to loss of anatomical detail[30]. A study 

by Mulder et al. explored the effects of voxel anisotropy on volume estimation in MR scans and found 

that 3-fold voxel anisotropy consistently caused a deviation to volume ground truth of more than 

50%[31]. As the voxel dimensions in this study showed 8-fold anisotropy (0.125x0.125x1 mm), 

resampling the sagittal scans to the transverse scans for use in the nnU-Net was not a viable option. 

To overcome this resampling problem, one network was trained separately on the transverse scans 

and another on the sagittal scans. Both networks were configured to output tumour predictions in the 

form of probability maps rather than binary segmentations. This approach enabled fusion of OSCC 

tumour predictions while still preserving the anatomical information of the high in-plane resolution of 

both the transverse and sagittal acquisitions (see also Figure 1.3). 

 

 



9 

 

nnU-Net hyperparameters 

All nnU-Net networks were trained using a combination of dice loss and cross-entropy loss over 1000 

epochs. Because transverse and sagittal datasets were trained on separate networks, all networks 

were trained in the two-dimensional (2D) configuration[27]. 

nnU-Net training 

nnU-Net networks were trained separately on the transverse and sagittal datasets. Table 1.2 shows 

the composition of each train and test set. 80% of each dataset was used for training, the remaining 

20% was used for testing. Seven ground truth delineations were not checked by a pathologist, which 

is why they were spread over the datasets in the same 80/20 ratio. All eight patient cases missing a 

sagittal T2w scan were placed in the training set of the transverse networks. For each scanning 

direction, two networks were trained. One was trained using 5-fold cross-validation (5-FCV) to 

estimate segmentation performance and assess network variability across different data subsets. A 

second network was trained using the entire training set (80%) to exploit all available data for inference 

on the held-out test set, following standard practice to balance robust evaluation and optimal final 

performance. 

Table 1.2: Train/test splits 

Network Training (%) Test (%) Network Training (%) Test (%) 
Transverse       
nnU-Net 

44 (80) 11 (20) Sagittal           
nnU-Net 

38 (81) 9 (19) 

Non-validated 
scans 

6 (86) 1 (14) Non-validated 
scans 

6 (86) 1 (14) 

Missing sagittal 
T2w 

8 (100) 0 (0) Missing sagittal 
T2w 

0 (0) 0 (0) 

 

Table 1.3: Trained networks 

Transverse 5-fold cross-validation Transverse 80/20 
Sagittal 5-fold cross-validation Sagittal 80/20 

 

Merging of network output 

The outputs from the transverse and sagittal deep-learning networks were probability maps 

representing predicted segmentations. These maps were saved in NPZ format and merged using a 

dedicated Python script (see Figure 1.3 for a schematic overview, and Appendix A for the script). The 

sagittal map was first resampled to match the transverse image space using linear interpolation. 
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Figure 1.3: Probability map merging workflow. After resampling of the sagittal probability map to the 
transverse image space, both maps are merged using weighting. As each probability map prediction is based 
on its corresponding MR scan, one prediction could be based on more anatomical information than the other, 
creating an imbalance in prediction certainty between the transverse and sagittal prediction. To account for 
this imbalance, weighting is applied which is based on the pixel spacing and number of slices of the 
corresponding transverse and sagittal MR scans. 

 

When merging probability maps, it is important to note that one map may hold more information 

regarding the predicted tumour than the other map, which means that this map should be assigned a 

higher weight to reflect its greater relevance in the final segmentation. 

Weighting was based on the physical depth of the corresponding transverse and sagittal MR scans 

because this depth directly correlated to the amount of information available in each scan. Weighting 

was applied as two factors together summing to one. This weighting was determined by multiplying 

the voxel spacing with the number of slices per MR scan. By multiplying these parameters, the physical 

depth of each scan was determined. Weighting of the transverse probability map was determined by 

dividing the physical depth of the transverse scan by the sum of the physical depths of both scans: 

𝑊𝑇 =
𝑁𝑇 ∗ 𝑃𝑇

𝑁𝑇 ∗ 𝑃𝑇 + 𝑁𝑆 ∗ 𝑃𝑆
 

Where 𝑊 is the weighting, 𝑁 is the number of slices per scan, and 𝑃 is the pixel spacing of each scan 

(with 𝑇 for transverse and 𝑆 for sagittal). Weighting of the sagittal probability map was determined by 

subtracting the transverse weighting from one: 

𝑊𝑆 = 1 − 𝑊𝑇  

Merging of probability maps was then achieved by applying each weighting: 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑝𝑟𝑜𝑏 𝑚𝑎𝑝 = 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙 𝑝𝑟𝑜𝑏 𝑚𝑎𝑝 ∗ 𝑊𝑇 + 𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙 𝑝𝑟𝑜𝑏 𝑚𝑎𝑝 ∗ 𝑊𝑆 

The final binary segmentation was created by assigning each voxel to the class with the highest 

probability in the combined probability maps. 

Network performance evaluation 

Predicted segmentations were measured against ground truth delineations using the DSC, sensitivity, 

specificity, 95th percentile Hausdorff distance (95HD), and the mean surface distance (MSD). Sensitivity 

and specificity were calculated within a rectangular bounding box enclosing the ground truth tumour 

volume, defined by its outer dimensions, to ensure class balance and relevance to the tumour region. 
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Results 

DSC, sensitivity, specificity, 95HD, and MSD metrics are presented of the transverse and sagittal 

networks. The average DSC for transverse networks was 0.695 ± 0.231 for the 5-FCV network and 0.659 

± 0.170 for the 80%-trained network. For the sagittal networks, average DSC scores were 0.698 ± 0.164 

and 0.478 ± 0.307 for 5-FCV and 80%-trained networks respectively. Figure 1.4 shows the interquartile 

range of DSC distributions of both networks for each scanning direction dataset, including outliers. 

Seven outliers were observed in the transverse 5-FCV-trained network with DSC scores of 0.4 or lower. 

For the sagittal 5-FCV-trained network, there were two outliers at DSC scores of 0 and 0.34. In the 80%-

trained networks only one outlier was found in the transverse network at a DSC score of 0.24. 

  
A B 

Figure 1.4: DSC score distributions for 5-FCV (A) and 80% (B) trained networks 
 

Average 95HD scores were the lowest for the sagittal 5-FCV network and highest for the sagittal 80%-

trained network. Table 1.4 shows the averaged metrics and corresponding standard deviation (SD) for 

each network, including the median 95HD. 

Table 1.4: Segmentation metrics 

Network Average 
DSC (SD) 

Average 
sensitivity 
(SD) 

Average 
specificity 
(SD) 

Average 
95HD in 
mm (SD) 

Median 
95HD in 
mm 

Average 
MSD in 
mm (SD) 

Transverse    
5-FCV 

0.695 
(0.231) 

0.676 
(0.238) 

0.959 
(0.0356) 

4.16 (3.00) 3.00 0.765 
(0.601) 

Sagittal 5-FCV  0.698 
(0.164) 

0.655 
(0.190) 

0.952 
(0.0364) 

3.34 (1.62) 3.09 0.638 
(0.258) 

Transverse 
80% 

0.659 
(0.170) 

0.658 
(0.169) 

0.959 
(0.0357) 

6.27 (8.05) 3.07 1.29 
(2.02) 

Sagittal 80% 0.478 
(0.307) 

0.444 
(0.314) 

0.970 
(0.0286) 

7.38 (9.49) 3.42 2.10 
(3.57) 

Merged 
segmentations 

0.622 
(0.218) 

0.588 
(0.227) 

0.976 
(0.0150) 

6.75 (8.57) 3.34 1.48 
(2.40) 
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Two examples of OSCC predictions (red) are given in Figures 1.5 and 1.6 against their ground truth 

(green), displaying a good segmentation (DSC = 0.91) and a poor segmentation (DSC = 0.32) 

respectively. 

 

 
 

 

 
Figure 1.5: 5-FCV OSCC prediction (red) on ground 
truth (green) on transverse scan, with a high DSC 
score of 0.91 

Figure 1.6: 80% OSCC prediction (red) on ground 
truth (green) on sagittal scan, with a low DSC score of 
0.32 

 

Figure 1.7 shows the learning curves for one fold of the transverse 5-FCV-trained network, with pseudo 

Dice in green, validation loss in red, and training loss in blue. These curves were measured over the full 

training duration of 1000 epochs. 

 
Figure 1.7: Training log of learning curves of the transverse 5-FCV network. The training loss is presented in 
blue and the validation loss in red. 
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Figure 1.8 displays a merged OSCC segmentation (green), generated from a transverse (red) and 

sagittal (blue) prediction. Overlay of all three segmentations illustrates how the merge script 

determined the final segmentation boundaries. 

  

  
Figure 1.8: Transverse (red), sagittal (blue), and merged (green) tumour predictions on a transverse MR scan 
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Discussion 

Automatic segmentation of OSCC on transverse and sagittal 7T MR scans was achieved by training two 

deep-learning networks and merging their probability map output using adaptive weighting. The 

observed segmentation accuracy was reasonable, considering the dataset size. The findings of this 

section show that automatic segmentation is applicable in the proposed clinical pipeline, which 

contributes to the IOARM method being performed as quickly as possible. 

Judging from the results, the average segmentation performance of the deep-learning networks is 

decent, apart from some outliers (Figure 1.4). Of all outliers in the predictions of 5-FCV-trained 

networks, 67% were predictions on pT1 tumours, while 22% were pT2 and 11% were pT3 tumours. 

This suggests that the network can find relative difficulty in predicting small tumours. Figure 1.9 shows 

DSC distributions for the 5-FCV-trained networks where all pT1 tumours are removed. Average DSC 

jumped from 0.695 (± 0.231) to 0.747 (± 0.172) for the transverse and from 0.698 (± 0.164) to 0.733 (± 

0.121) for the sagittal network, signifying a respective 7.5% and 5.0% increase compared to when pT1 

tumours were included. This suggests that the networks perform significantly better on tumour sizes 

bigger than pT1. 

 
Figure 1.9: DSC distributions of all tumours > pT1 

 

The distribution of the DSC scores of the network trained on 80% of the data is notably different to the 

other three DSC score distributions, most likely due to the low sample size (n = 9), in combination with 

a case where no OSCC tissue was predicted. The high specificity scores can be explained by the 

imbalance between tumour and non-tumour pixels in the analysed bounding box. The median 95HD 

values of 3 to 3.09 mm and the average MSD values of 0.765 and 0.638 mm of the two 5-FCV-trained 

networks illustrate how the networks do not perfectly delineate OSCC edges on the scans. However, 

as the main purpose of the networks is to accelerate the tumour segmentation process, the networks 

are still effective in the clinical pipeline as the radiologist can correct for such imperfections. The 

performance of the final merged segmentations falls in between that of the transverse and sagittal 

80%-trained networks, which is to be expected as they form a combination of both network’s output. 

Visual analysis of predicted segmentations by the 5-FCV-trained networks revealed that the networks 

usually predicted the correct tumour location in the scans. In some cases, the tumour volume was 

underestimated, while in other cases an overestimation of tumour tissue was observed. Specific 

anatomical structures like salivary glands did not cause misprediction of tumour tissue by the 
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networks. This suggests that the networks have a decent understanding of tumour tissue 

characteristics. 

To assess potential overfitting in the trained nnU-Net networks, training and validation loss trajectories 

were monitored during training over all folds for each network. The trajectories of the training and 

validation loss functions of fold 1 of the transverse 5-FCV network in Figure 1.7 are representative of 

all trained networks. The training loss exhibited a gradual decline while validation loss either steadily 

decreased or plateaued, with no sudden increases or deviations signifying overfitting. This indicates a 

healthy convergence and suggests the absence of classic overfitting behaviour[32]. The average DSC 

scores from all five folds was 0.696 (± 0.077) for the transverse and 0.698 (± 0.051) for the sagittal 

network. This acceptable variability in standard deviations was another sign that the networks are 

stable and that overfitting was not evidently present. The average DSC scores of the networks on the 

held-out test set were 0.659 for transverse and 0.478 for sagittal (Table 1.4). While the average 

transverse DSC score is a promising sign of robust performance on unseen data, the relatively low 

average sagittal DSC score could mean that the sagittal network indeed struggles on unseen data. 

However, these results should be interpreted with caution due to the small test set size (n = 9), which 

limits statistical reliability and increases sensitivity to outlier cases. Also, while the training and 

validation loss learning curves showed persistent improvement, a large gap remained between the 

two (Figure 1.7). This may signify a shortage of data for the network to sufficiently carry out the 

segmentation task[33]. While suspicion of overfitting is low, further testing on a larger dataset will be 

necessary to more conclusively assess the network’s susceptibility to overfitting and its true 

generalisation capacity. 

Furthermore, in terms of the ground truth, discrepancies could occur during the point-based 

registration of histopathological slices to the transverse MR scans. When adjustment of the ground 

truth delineations was required as a result, this was performed manually by two researchers of the 

7Tex study. Ideally, the delineations should be performed by radiologists, however this has not been 

done due to two reasons. Firstly, the radiologists are not trained to delineate OSCC tissue on ex vivo 

MR scans, while the researchers had significantly more experience delineating OSCC tissue on the MR 

scans. Secondly, validation of all delineations by a radiologist was not logistically possible. 

The ground truth delineations were also based on the transverse scans because they corresponded to 

the histopathological slices and because the tumour was best visible in this direction. The delineations 

were therefore slightly pixelated on the sagittal scans, which will have impacted the segmentation 

performance of the deep-learning networks trained on sagittal slices. This will explain some of the 

difference in DSC scores between the transverse and sagittal networks (Figure 1.4), together with the 

fact that the training set for the sagittal network was slightly smaller. 

Looking ahead, given the significant impact of tumour size on segmentation performance, extra 

attention by the radiologist should be given to cases where a small tumour is delineated in the clinical 

pipeline. Nevertheless, the clinical impact of this will be limited as pT1 tumours will be excluded from 

the MARGIN study, in which the proposed pipeline will be clinically tested. 

Conclusion 

This study demonstrated that automatic segmentation of OSCC on ex vivo 7T MR scans is feasible 

using a dual-network approach with merged probability maps. The integrates well into the proposed 

clinical pipeline, supporting quick intraoperative assessment of resection margins. 
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Chapter 2: 3D model 

Introduction 

The second part of the pipeline considers the automatic 3D visualisation model of the resected OSCC 

specimens including the resection margins (Figure 2.1). Once the tumour segmentations are 

completed, they are imported along with the corresponding transverse MR scans to a computer which 

automatically generates a 3D model based on these data. 

 

 
Figure 2.1: Clinical pipeline: second section 

 

Background 

To date, little is known in literature about the use of ex vivo MR imaging in intraoperative assessment 

of resection margins during OSCC resections. In a literature review by Barroso et al. (2021), of the 

eighteen found IOARM methods, none of them involved the use of MR imaging[34]. By 2023, a 

systematic review analysing IOARM methods by Carnicelli et al. found four studies describing the use 

of ex vivo MR imaging during OSCC surgery[35]. Of these four studies, none featured a logistically viable 

3D visualisation method for resection margins, while all of them questioned the feasibility of ex vivo 

IOARM during OSCC resections[8], [36], [37], [38]. In the cases where 3D visualisation was in fact proposed, 

it was either based on pathological slices, or it was a manual method[5], [39]. Therefore, an automatic 3D 

visualisation method for OSCC specimen and resection margins is yet to be developed. 

The goal of this section is to develop an intuitive 3D visualisation model of OSCC specimen and 

resection margins which can be automatically generated from ex vivo T2w MR scans. This automatic 

3D model should be created within five minutes to support its intraoperative use. The model should 

also be robust, ensuring it can work with any given MR scan of an OSCC specimen. 
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Methods 
Materials 

The 3D model was developed using Mimics 26.0 and 3-matic 18.0 (Materialise NV, Leuven, Belgium). 

Scripting was performed in Python 3.10 using the Mimics Innovation Suite API (see Appendix B), and 

the final visualisation of the model was realised with Materialise Mimics Viewer (Materialise NV, 

Leuven, Belgium). 

The script was tested on ten randomly selected transverse T2w MR scans from the dataset described 

in Chapter 1, ensuring unbiased selection. The tumour segmentations used for testing the 3D model 

were created manually in Mimics and were processed in STL format. In the actual clinical pipeline, 

these tumour segmentations will be generated by the nnU-Net networks. 

Runtime duration 

To obtain an accurate estimation of the average runtime of the model, the script was executed on ten 

different patient scans while the runtime was recorded using the time library in Python. 

3D model process 

Importing necessary files 

The script initialises directories and selects and stores the relevant scans. The input scans for the model 

are transverse T2w MR scans, saved in DICOM format and acquired by the 7T MR scanner (Figure 2.2). 

These scans are extracted by means of DICOM tag criteria, separating them from other scans present 

in the same directory (see Table 2.1). Next, the tumour segmentation is imported, which was created 

manually in this study but will be created by the nnU-Net network and validated by a radiologist when 

clinically implemented (see also Figure 2.3). This segmentation is turned into a 3D part. 

  
Figure 2.2: Transverse T2w MR scan of resected specimen Figure 2.3: Tumour segmentation 

 

Table 2.1: DICOM tag criteria 

DICOM tag Tag description Required value 
0002,0060 Modality ‘MR’ 
0018,0020 Scanning Sequence ‘SE’ 
0018,0021 Sequence Variant ‘SK’ 
0018,0022 Scan Options ‘SP’ or ‘OTHER’ 
2001,100B Acquisition Plane ‘TRANSVERSAL’ 
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Segmentation of specimen 

To enable visualisation of the resection margins relative to the resection plane, the entire resection 

specimen must be segmented from the scan. The automatic segmentation of the specimen is achieved 

using K-means clustering, which is a classical unsupervised learning algorithm that partitions data into 

k clusters based on feature similarity. This method is well-suited for this segmentation task because it 

effectively separates foreground structures from the background. Voxel intensity data is extracted 

from the scan and reduced to a single dimension before being clustered using K-means. The number 

of clusters is determined by the intensity range of the specific MR scan. To identify the appropriate 

number of clusters per scan, the script analyses the standard deviation of the voxel intensities in 

grayscale units. If the standard deviation is below 38, n=4 clusters are used; if the standard deviation 

is 38 or above, n=3 clusters are applied. This prevents inclusion of the background in the segmentation 

mask. The initialisation step, which controls the number of algorithm iterations, is set at ten. This 

enables reliable segmentation performance without significantly increasing runtime. Finally, the top 

two clusters are selected to define the threshold values for segmentation. 

 

 

 
 

→ 

 

 

 A  B  
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        → 

 
C  D  E 

Figure 2.4: Specimen segmentation using K-means. The specimen in the original scan (A) is segmented using 
K-means (B). Morphological closing (C) and filling of holes is performed to reach the final specimen 
segmentation (D). This segmentation is then turned into a 3D part (E). 

 

Once the K-means clustering is completed, the resulting threshold values are used to create a 

segmentation mask (Figure 2.4b). The morphological operation of closing for ten pixels and a 

connectivity of eight is then executed, filling small cavities in the mask (Figure 2.4c). Afterwards, any 

leftover holes in the mask are filled (Figure 2.4d) and the mask is turned into a 3D specimen part (Figure 

2.4e). A transparency of 20% is added to the specimen part, so that the tumour part is visible inside 

the specimen part in the final 3D model. Smoothing is applied to the specimen part during 500 

iterations. Shrinkage of the part is compensated using a specialised function so that the outer edges 

of the part are not affected. This is essential to preserve the exact edges of the specimen, as this will 

directly determine the resection margin status in the final 3D model. 

Exporting parts from Mimics and importing them into 3-matic 

The tumour and specimen parts are exported from Mimics and imported into 3-matic. Here, a 

validation step assures that exactly two parts were provided by the script. 
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Orientation (3-matic) 

Clear visualisation of the orientation of the specimen is an essential part of the final 3D model to enable 

adequate assessment of resection margins. The visualised components in the 3D model should be 

easily translatable to the real-life situation in the OR. As the orientation of the specimen in relation to 

the patient may differ from the orientation of the specimen in the 7T scanner, an interactive console 

is built into the script to account for these potential discrepancies. A dialog window appears in which 

the researchers link each scan direction to the anatomical direction inside the patient (Figure 2.5). 

Table 2.2: Anatomical and scan directions 

Anatomical directions in patient 

Medial Cranial Anterior 

 

Scan directions 

X -X Y -Y Z -Z 

 

 
Figure 2.5: Dialog window for direction input 

 

The direction input is used to create orientation arrows, which point in each of the three anatomical 

directions (Figure 2.6). In the final 3D model, the red arrow points towards medial, the green arrow 

points towards cranial and the blue arrow points towards anterior. These colour and direction 

combinations are always kept the same so that the surgeon can quickly determine each direction by 

means of the colours of the arrows. Nevertheless, the anatomical direction is also printed on the side 

of each arrow for added clarity. 

 
Figure 2.6: Orientation arrows 

 

Remeshing and 5 mm margin creation (3-matic) 

Before geometric operations can be applied to the tumour part, the tumour part is uniformly remeshed 

to create a more robust surface mesh. During remeshing, a target triangle edge length of 0.2 mm is 
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applied. This value is chosen because it serves as an acceptable trade-off between surface mesh 

precision and efficient script runtime. Additionally, surface contours are preserved so that geometry 

along surface contours is unchanged. 

The 5 mm resection margin surface mesh is created using a wrapping function on the tumour part. This 

function applies a 5 mm margin around the tumour and forms the resection margin part (Figure 2.7). 

Within this function, a gap closing distance of 0.5 mm is applied while the smallest detail is also set at 

0.5 mm. These values are based on the slice thickness of the original MR scan and prevent irregularities 

in the created resection margin. 

 

 
 
 

 
 
→ 

 
Figure 2.7: 5 mm margin around tumour part 

 

Detection of irradical or close margins (3-matic) 

To determine whether inadequate margins are present, the specimen part is subtracted from the 

resection margin part. This operation returns all sections of the resection margin part which were 

situated outside of the specimen part and could therefore be classed as inadequate margins (Figure 

2.8). Each of these sections is saved as an individual part. The first, largest inadequate margin is 

assumed to always be the side of the tumour closest to the mucosal layer, which is where OSCC 

originates. While the tumour will always be within 5 mm of the tissue edge on this side, it is not part 

of the resection plane and will therefore not be classed as inadequate. This ‘inadequate’ margin is 

singled out and saved as ‘mucosal margin’, while the other remaining margins are saved as inadequate. 

 
Figure 2.8: Subtracting specimen (red) from 5 mm resection margin (green) 
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Max distance calculation (3-matic) 

The maximum depth of each inadequate margin is quantified and displayed in the 3D model, to inform 

surgeons about how much tissue should still be removed to reach an adequate margin. To calculate 

this maximum depth, the triangle vertex data are first extracted from the specimen and the vertices 

are structured using a k-d tree for fast processing. Next, the triangle vertex data of each inadequate 

margin is retrieved, and its corresponding triangle centroids are calculated to be used as sample points 

per triangle. The distance between each specimen point and each individual inadequate margin point 

is then calculated to find the maximum distance per inadequate margin in mm. This indicates the 

maximum depth of each inadequate margin and therefore the minimum thickness of tissue which 

should be removed during re-resection. The maximum distance is visualised with a label displaying the 

distance in mm and a red line within each inadequate margin (Figure 2.9). 

 
Figure 2.9: Depth per inadequate margin 

 

Exporting parts from 3-matic and importing them into Mimics 

The inadequate margins are exported back to Mimics (if they exist), together with the orientation 

arrows, margin thickness visualisation parts and a duplicate part displaying the complete resection 

margin. 

Final visualisation 

The maximum distance visualisation and orientation arrow parts are processed and edited to enable 

similar visualisation in Mimics. Inadequate margins (if present) are given a yellow colour. The tumour 

part is given an orange colour so that it is easily distinguishable from the margin parts. If no inadequate 

margins are found, the tumour is given a green colour, and a message will be displayed saying that all 

margins were adequate. The specimen part is given a blue colour and maintains its 20% transparency 

set during its segmentation (Figure 2.10). 
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Figure 2.10: 3D model with specimen (blue), tumour (orange), inadequate margin (yellow), & complete 
resection margin (transparent yellow) 

 

In the final 3D model, an additional part is created of the complete resection margin to provide extra 

clarification for the surgeons if needed. This part is given a yellow colour, and its transparency is set to 

80% so that the other 3D parts are still visible. Lastly, all parts are given Dutch names for maximum 

clarity for the surgeons. 
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Results 

The average script runtime was 4.2 minutes, with a median of 4.3 minutes (range 2.5 – 6.3 minutes). 

The 3D models of only two out of the ten patients exceeded the five-minute goal, which was due to 

larger inadequate margin volumes requiring more computational power. These cases had runtimes of 

5.3 and 6.3 minutes. 

Figure 2.11 provides an overview of what the final model looks like when presented in the OR in Mimics 

Viewer. As well as the 3D model, all 2D views of the specimen are presented with each 3D volume 

superimposed as a mask. On the right-hand side, each anatomical direction can be found with each 

corresponding colour for convenience. Also, each separate component of the 3D model can be shown, 

hidden or made transparent to the user’s liking. 

 
Figure 2.11: 3D model presentation as seen in the OR 
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Discussion 

This study proposes an automatic, intuitive 3D visualisation method of OSCC specimens and resection 

margins which can generally be created within five minutes. This model can be used intraoperatively 

by surgeons to determine the location of potential re-resections for proper margin control. The model 

only requires an OSCC segmentation and MR scan and is set up using imaging software with CE Marking 

approval, which makes it feasible for clinical implementation. 

Looking at the results, the average script runtime of 4.2 minutes remained well within the predefined 

five-minute goal to ensure clinical applicability of the 3D model. The two cases out of then that 

exceeded the target threshold (5.4 and 6.3 minutes), involved specimens with relatively large volumes 

of inadequate margins. This likely increased required computational power and thereby prolonged the 

runtime. Even though they exceeded the threshold, the two cases still fell within an acceptable range 

for clinical applicability and would still be a dramatic increase in efficiency compared to manually 

created 3D models. Future perspectives could focus on finding more efficient maximum margin depth 

calculations than the method presented in this section, the further accelerate 3D model creation. 

An added value of use of the model is not only where margins were inadequate, but also where too 

much healthy tissue might have been resected. This is not reversible during re-resections, however it 

may help the surgeons to be more conservative in certain anatomical regions for future patients. 

Though the proposed 3D model seems promising for clinical implementation, there are still several 

limitations that should be considered. First, as the inadequate margins in the model are determined 

by subtracting the specimen from the 5 mm resection margin, the first, largest margin near the 

mucosal layer (mucosal margin) will always be a factor. At the mucosa, the 5 mm margin will always 

extend past the specimen. However, this location is not part of the resection plane, meaning that the 

mucosal margin cannot be ‘inadequate’. In the model, it is assumed that this mucosal margin will never 

involve the resection plane. Though not encountered during this study, in theory it could be possible 

that this mucosal margin extends through the resection plane. In the current model, these inadequate 

margins would be missed. To overcome this, a future model would indicate the transition of mucosa 

to resection plane and solve the problem of assuming that the largest margin is always located near 

the mucosal layer. 

Currently, it is assumed that a 5 mm margin on MR is sufficient to achieve the 5 mm histopathological 

margin needed for an adequate resection. However, the specimen can shrink and deform during 

pathological fixation and cutting. Consequently, it could be possible that a larger margin should be 

applied on MR to compensate for this tissue shrinkage. Both the degree of tissue shrinkage and the 

optimal margin to be applied on MR will still be quantified in the 7Tex study. An advantage of the 

current 3D model is that the margin is easily adjustable if necessary. 

Between specimen scanning and resection, deformation of the specimen is negligible. The specimen 

is fixated in the cylinder with careful attention as to not stretch the specimen in any way. Deformation 

during scanning could happen if the specimen is too large to fit properly in the cylinder and the top of 

the specimen presses again the top of the cylinder. This too is carefully checked before including the 

specimen in the study. 

The anatomical direction input is the only manual process required in this 3D model pipeline, which 

introduces a risk of error and possible increase in runtime. This step is however crucial for reliable 

orientation preservation. As the scanned OSCC specimens consist of irregularly sized, soft tissue 

masses without any anatomical landmarks, it is not feasible to determine specimen orientation based 

on its dimensions. For example, the longest side of the specimen might usually be anterior/posterior, 
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however for some cases it will be medial/lateral, depending on indication of the Pathology 

department. The specimen shape is also not a reliable factor, as OSCC specimens can have highly 

irregular shapes, while other specimens may appear completely circular. These factors impede any 

form of automatic recognition of specimen orientation, which is why the decision is made to complete 

this step manually. 

Future perspectives 

3-matic offers functionality which visualises the depth of the inadequate margins using a colour map 

(see Figure 2.12). This would grant the surgeons a more intuitive and complete picture of how much 

tissue needs to be removed during re-resection, compared to the current workflow where only the 

maximum depth is calculated. This functionality is however not translatable to Mimics Viewer, which 

means that it can not be used intraoperatively. This issue has been communicated to Materialise and 

future updates might enable this approach. Implementation of this functionality would result in a more 

robust, intuitive and detailed 3D model and give surgeons an even better understanding of how to 

approach their re-resections. 

 
Figure 2.12: Colour map functionality in 3-matic 

 

Adding a HoloLens (Microsoft Corp., Redmond, WA, USA) to the clinical workflow could improve 

resection margin feedback to the surgeons in the future. Instead of gauging their resection margins via 

a screen in the OR, the surgeons could visualise the 3D model near the resection plane with real-life 

scaling of the specimen. This could further improve the usability of the model as surgeons would get a 

more realistic representation of the exact resection margins, contributing to more accurate re-

resections. 

Conclusion 

This study presents an intuitive and clinically feasible method for 3D visualisation of OSCC specimens 

and resection margins. By enabling automatic 3D model generation of resection margins based on 7T 

MR scans, it contributes directly to the development of a clinically implementable IOARM pipeline. 
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Chapter 3: 3D model evaluation 

Introduction 

 
Figure 3.1: Clinical pipeline: 3D model usage 

 

The 3D model presented in the previous chapter will be integrated into the clinical pipeline proposed 

in this study. Because the model is developed from the ground up and lacks comparable tools currently 

used during OSCC resections, surgeon’s perceptions of its usability remain unknown. Evaluating the 

model’s usability from the end-user’s perspective is crucial as it may highlight potential shortcomings 

or practical implications before clinical implementation. Additionally, such an evaluation helps 

surgeons to familiarise themselves with the model prior to clinical implementation, thereby facilitating 

a smoother implementation process. 

The goal of this section is to establish an objective benchmark of the model’s usability. This is achieved 

through consultation of all surgeons performing OSCC resections at the UMC Utrecht. Their feedback 

enables a reliable assessment of the model prior to its clinical implementation. 
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Methods 

The 3D model’s usability was evaluated through demonstrations. Each demonstration was performed 

one-on-one with each surgeon and started with a short presentation about the project and the 

essential components in the 3D model. 

Two clinical cases were created to simulate real situations in the OR, where the 3D model was used to 

determine the re-resection (see Appendix C). Both cases supplied tumour location and dimensions. In 

a schematic drawing of the tongue and mouth, different wound beds were presented for each case 

(Figure 3.2). The tumours and wound beds differed in dimensions to simulate a realistic variety in case 

characteristics. Usage instructions like zooming and hiding components in Mimics Viewer were also 

included in the demonstration. 

 
Figure 3.2: Schematic drawing of tongue and wound bed (red) of Case 1 

 

The surgeon was instructed to assess the resection margins using the 3D model, after which they had 

to mark on the drawing where they would perform the re-resection. For both cases, the surgeon filled 

in the depth they would apply during this re-resection. After the surgeon completed both cases, they 

filled in the System Usability Scale (SUS) based on their experience with the 3D model. 

The SUS has been a popular measurement of perceived usability for more than forty years[40]. It is the 

most widely used standardised questionnaire to assess usability of a great number of applications. The 

SUS features ten statements, five positive and five negative, on which the user rates their rate of 

agreement (Table 3.1). 
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Table 3.1: System Usability Scale 
 Strongly 

disagree 
   Strongly 

agree 

   1 2 3 4 5  

1 I think that I would like to use this system frequently.  ⃝ ⃝ ⃝ ⃝ ⃝  

2 I found the system unnecessarily complex.  ⃝ ⃝ ⃝ ⃝ ⃝  

3 I thought the system was easy to use.  ⃝ ⃝ ⃝ ⃝ ⃝  

4 I think that I would need the support of a technical 
person to be able to use this system. 

 ⃝ ⃝ ⃝ ⃝ ⃝  

5 I found the various functions in this system were well 
integrated. 

 ⃝ ⃝ ⃝ ⃝ ⃝  

6 I thought there was too much inconsistency in this 
system. 

 ⃝ ⃝ ⃝ ⃝ ⃝  

7 I would imagine that most people would learn to use this 
system very quickly. 

 ⃝ ⃝ ⃝ ⃝ ⃝  

8 I found the system very cumbersome to use.  ⃝ ⃝ ⃝ ⃝ ⃝  

9 I felt very confident using the system.  ⃝ ⃝ ⃝ ⃝ ⃝  

10 I needed to learn a lot of things before I could get going 
with this system. 

 ⃝ ⃝ ⃝ ⃝ ⃝  

 

The SUS score is calculated by the following formula: 

𝑆𝑈𝑆 𝑠𝑐𝑜𝑟𝑒 = ((𝑋 − 5) + (25 − 𝑌)) ∗ 2.5 

Where 𝑋 equals the sum of points for all odd-numbered questions and 𝑌 equals the sum of points for 

all even-numbered questions. The result is a score between 0 and 100 which denotes the perceived 

usability. 

After the SUS was filled in by the surgeon, additional feedback was asked about what improvements 

could be made to the 3D model. 
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Results 

The SUS scores of all eight demonstrations are presented in Figure 3.3. The average was 74.4 (dashed 

line) (range 60 – 90). Table 3.2 features each individual scoring per statement. 

 

Table 3.2: Individual SUS statement results 

Statement Surgeon 1 Surgeon 2 Surgeon 3 Surgeon 4 Surgeon 5 Surgeon 6 Surgeon 7 Surgeon 8 
1 4 4 4 4 5 5 4 5 
2 2 2 2 2 2 2 2 1 
3 2 4 4 3 4 4 4 5 
4 3 2 3 3 2 2 1 1 
5 4 3 4 4 4 4 4 3 
6 4 2 2 1 2 2 2 1 
7 3 4 4 5 4 4 4 4 
8 2 2 2 2 4 2 2 1 
9 4 2 3 4 5 4 4 5 

10 2 2 2 2 2 2 1 2 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: SUS scores of all eight surgeons 
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Discussion 

The usability of the 3D model was positively evaluated by all surgeons performing OSCC resections at 

the UMC Utrecht. None of the surgeons suggested adjustments which would improve the 3D model. 

The findings in this study indicate that there are no major shortcomings in the 3D model hampering 

implementation in the clinical pipeline. 

To interpret SUS scores like those observed in this section, Bangor et al. proposed an adjective rating 

scale to give meaning to and enable interpretation of individual SUS scores[41]. The adjective rating to 

the SUS score of the 3D model (74.4) is classed as ‘good’, nearing the category of ‘excellent’ (see Figure 

3.4). This suggests that the 3D model is suitable for immediate, practical use in the intraoperative 

setting. 

 
Figure 3.4: Adjective ratings vs. SUS scores[41] 

 

SUS scores of computer-assisted surgical navigation ranging from 43 to 64 are reported in literature[42], 

[43]. A direct comparison is however challenging as evaluation of 3D visualisation or resection margins 

for OSCC surgery is not described in literature. 

The most agreement was found in the second and tenth statement of the SUS (see Table 3.2). This 

shows that the model is not considered complex and that the model can be used without requiring 

much training. The first statement about whether the surgeons would like to use the 3D model 

frequently received the strongest agreement. This result shows that the surgeons value the 3D model 

as a valid addition to their practice. 

A point of feedback which was offered by all of the eight questioned surgeons, was that usability would 

increase significantly after they gained more experience with it. The orientation arrows were most 

often described as the aspect which needed the most time to get accustomed to. 

To continue, data was gathered from all surgeons performing OSCC resections at the UMC Utrecht, 

which means that the SUS score of the 3D model can be viewed as a comprehensive and reliable 

judgement of its usability. Also, the demonstrations were designed to simulate the real-life, 

intraoperative situation as closely as possible. However, the representation of the wound bed in 2D on 

a piece of paper made it more difficult to approach it as a 3D patient. This disconnect between the 3D 

model and the 2D wound bed could have accounted for slightly lower SUS scores, compared to if the 
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demonstrations were performed in the OR instead with for example a 3D-printed tongue. This was also 

confirmed by some of the surgeons. 

The findings of the study show that surgeons are positive about the use of the 3D model for OSCC 

resections. This serves as validation that using an automatic 3D visualisation model is a feasible method 

to perform IOARM. In the MARGIN study, the 3D model will be used in the clinical setting to test the 

viability of the 7Tex clinical workflow. Performing a second evaluation of the 3D model using the SUS 

when this study finishes will objectively quantify how the usability will have improved as a result of the 

surgeons having got fully accustomed to the 3D model. 

Conclusion 

The automatic 3D model created for intraoperative assessment of resection margins during OSCC 

resections has been evaluated as ‘good’ by all surgeons performing OSCC resections at the UMC 

Utrecht. Continued use of the 3D model in the clinical setting will increase this usability rating even 

further. 
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Chapter 4: Super-resolution 

Introduction 
High-resolution MR imaging is clinically relevant because it enables detailed assessment of anatomical 

structures[44]. MR scanning using high magnetic field strengths (such as 7T) provides enhanced signal-

to-noise ratio (SNR), contrast-to-noise ratio (CNR), and excellent spatial resolution[45]. A major 

drawback to high resolution MR imaging is the increase in slice thickness relative to the in-plane 

resolution. Increased resolution is therefore only provided in two out of three scanning directions, 

which can complicate visualisation of small anatomical details[30]. To overcome this, isotropic 3D T2w 

scans can be acquired which feature high resolution in all scanning directions. However, their 

acquisition time is significantly greater than that of anisotropic multislice T2w scans, and therefore not 

suitable for the clinical pipeline in this project. To save time, the current clinical pipeline relies on 

multislice scans in only two orientations (transverse and sagittal). 

To enable high resolution in all scanning directions, using super-resolution algorithms might be a 

solution[46]. Therefore, this section explores a workflow in which isotropic 3D T2w scans are 

reconstructed from transverse and sagittal multislice T2w scans using super-resolution. 

Such a workflow is clinically relevant as it surpasses the need for time-intensive acquisition of 3D T2w 

scans. In particular, it may improve deep-learning-based tumour segmentation. The clinical pipeline 

proposed in Chapter 1 employs two deep-learning networks, one for transverse and one for sagittal 

scans, trained in a 2D configuration. This means each network cannot learn from 3D anatomical 

context. By incorporating isotropic 3D scans, the segmentation network can better learn complex 

anatomical features of OSCC and surrounding healthy tissue. 

This section evaluates the feasibility of reconstructing 3D T2w scans from anisotropic input using 

super-resolution methods. 
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Methods 

An overview of the super-resolution workflow is presented in Figure 4.1. The Python script can be 

found in Appendix D. To simulate the reconstruction of isotropic 3D T2w scans, acquired coronal 

multislice T2w scans were used as reference. These coronal scans had high in-plane resolution in the 

coronal direction, making them suitable for evaluating the quality of super-resolution reconstructions. 

The coronal scans served as a benchmark to assess how well the low-resolution coronal information 

from the transverse and sagittal scans could be used to recover the true anatomical detail in the 

acquired coronal slices. 

Transverse, sagittal, and coronal scans from the 7Tex dataset described in Chapter 1 were used for this 

section. Raw DICOM files were transformed into NIfTI format using the dcm2niix Python library. 

Further image processing steps were performed using the Advanced Normalization Tools (ANTs) 

library, a state-of-the-art medical image processing toolbox with suitable functionality for super-

resolution upsampling of MR image data[47]. 

 
Figure 4.1: Super-resolution workflow. Sagittal, transverse and coronal MR scans were preprocessed, after 
which the sagittal and transverse scans were resampled to an isotropic pixel spacing based on the in-plane 
resolution of the coronal scan. After registering the sagittal scan to the transverse scan, both scans were fused 
and the end result was compared to the coronal scan using the structural similarity index measure and the 
root mean squared error. 

 

Transverse, sagittal and coronal scans were preprocessed by scan orientation alignment, N4 Bias field 

correction and denoising[48]. The transverse and sagittal scans were resampled to match isotropic pixel 

spacing based on the coronal scan. If the coronal scan for example had dimensions of 0.08x0.08x1 mm, 

the transverse and sagittal scans were resampled to pixel spacing of 0.08x0.08x0.08 mm. After 

resampling, the sagittal scan was registered to the transverse scan using rigid registration. Fusion of 

both scans was performed by averaging the pixel values: 

𝑓𝑢𝑠𝑒𝑑 𝑠𝑐𝑎𝑛 =
(𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑐𝑎𝑛 + 𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙 𝑠𝑐𝑎𝑛)

2
 

The reconstructed voxels of the transverse and sagittal scan were compared to the reference voxels of 

the coronal scan to quantify to what extent the coronal slices could be recovered. The reconstructed 

3D scan and the coronal scan were compared using the structural similarity index measure (SSIM) and 

the root mean squared error (RMSE) to quantify structural and absolute differences respectively. The 

RMSE was also expressed as the percentage of the signal intensity of the coronal scan to also obtain a 

normalised metric: 

𝑅𝑀𝑆𝐸% =
𝑅𝑀𝑆𝐸

𝑚𝑎𝑥 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑚𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
∗ 100 
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Results 

55 MR patient scan sets were used for analysis in this section. The average SSIM between the original 

coronal scans and the reconstructed 3D scans was 0.766 (± 0.0842), with a median of 0.781 (see also 

Figure 4.2). The SSIM score distribution showed no statistical outliers. 

Distribution of absolute RMSE scores is presented in Figure 4.3. The apparent outlier at RMSE = 141 

corresponds to a RMSE% of 5.85%, indicating that this case does not represent a true outlier when 

normalised to the scan’s overall intensity. 

The average RMSE% of the reconstructed 3D scans and the original coronal scans was 4.16% (± 1.54), 

with a median of 3.84% (see also Figure 4.4). One outlier with an RMSE% of 8.56% was found, 

corresponding to a case in which the sagittal and transverse scans had a mismatched field of view. The 

SSIM for this case was 0.702, which was below the average but within the normal distribution range. 

   
Figure 4.2: SSIM distribution Figure 4.3: Absolute RMSE distribution Figure 4.4: RMSE% distribution 

 

These results indicate a decent structural similarity between the reconstructed and original coronal 

scans, with SSIM scores generally exceeding 0.75. The low average RMSE% further supports the 

accuracy of reconstruction, suggesting minimal voxel-wise intensity deviation. The single outlier is 

likely a result of scan acquisition mismatch rather than a methodological error. 

Figure 4.5 shows the reference coronal scan (A), the reconstructed 3D scan of this same slice (D), and 

the transverse and sagittal scans on which the reconstructed 3D scan was based (B and C). The SSIM 

and RMSE scores of this patient scan set were 0.854 and 3.36% respectively. 
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C D 

Figure 4.5: Coronal planes scanned in coronal direction (A), transverse direction (B), sagittal direction (C) and 
reconstructed using super-resolution (D). A notable difference in resolution is seen between the coronal scan 
and the transverse and sagittal scans. The reconstructed scan shows recovery of several anatomical structures 
which were hardly visible on the transverse and sagittal scans. 

 



36 

 

Discussion 

This section demonstrated that isotropic 3D T2w scans can be adequately recovered through super-

resolution upsampling of high-resolution transverse and sagittal multislice T2w scans. Using the ANTs 

Python library, promising SSIM and RMSE results were achieved on resected OSCC specimens scanned 

at 7T, suggesting meaningful anatomical detail can be recovered without the need for dedicated 3D 

acquisitions. 

To the best of our knowledge, super-resolution reconstruction metrics on 7T MR scans of resected 

OSCC tumour specimens are not found in literature. Papers by Du et al. and Jiang et al. investigated 

super-resolution-based reconstruction of 3 tesla brain MR scans[49], [50]. The observed SSIM scores in 

these papers are particularly higher than those found in this section. This could however be explained 

by their more advanced and deep-learning based algorithms. Nevertheless, although our SSIM scores 

are lower, they still reflect substantial image consistency and contrast recovery. 

The SSIM metric measures image similarity based on image luminance, contrast and correlation, and 

is considered a consistent metric with human visual system and perception[49]. The observed average 

SSIM score in this section (0.766 ± 0.0842) illustrates how image contrast is decently recovered through 

the proposed super-resolution method. This is supported by visual assessments (see Figure 4.5), where 

improved contrast is evident compared to the individual transverse and sagittal inputs. The RMSE% 

scores paint a similar picture with an average of 4.16% (± 1.54), and only one case exceeding 8%, likely 

due to a mismatch in fields of view between transverse and sagittal scans. These observed findings 

highlight the potential of super-resolution techniques to reduce scanning time and increase clinical, 

intraoperative feasibility. 

With the transverse, sagittal, and reconstructed 3D scans, high resolution is provided in all three 

scanning directions. These three scan types must be merged to reach a definitive isotropic 3D scan 

which is fit for clinical use. 

The perceived increased contrast in the reconstructed 3D scans means that radiologists will be able to 

delineate OSCC tissue more confidently in all three directions, compared to if only the transverse and 

sagittal scans would be visible. Also, isotropic 3D scans of OSCC specimens will enable deep-learning 

networks to predict tumour tissue more accurately than if only the transverse and sagittal scans are 

provided, as such networks then have anatomical depth information available to learn 3D patterns as 

well as 2D. Future studies must explore the effect of reconstructed 3D scans on tumour delineation 

accuracy, both for radiologists and for deep-learning networks. 

The super-resolution methodology applied in this section is based on fundamental image processing 

tools from the ANTs library. This library also features deep-learning functionalities which may yield 

improved performance. Future studies should explore these capabilities to approach the quality of 

acquired 3D T2w scans, as the extensive scanning time of these scans impedes clinical applicability. 

Conclusion 

This study demonstrates that isotropic 3D T2w scans can be reconstructed from high-resolution 

multislice MR scans using super-resolution techniques. These findings highlight the potential of super-

resolution to enhance MR image quality for IOARM applications without relying on time-intensive 3D 

acquisitions. 
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General discussion 
This study presents a clinical pipeline for intraoperative assessment of resection margins using 

automatic tumour segmentation and 3D-visualisation based on ex vivo 7T MR scans of OSCC resection 

specimens. This pipeline provides a technical foundation for the 7Tex study leading up to the MARGIN 

study, where this pipeline will be evaluated in the clinical setting. 

Application of nnU-Net deep-learning networks produced acceptable segmentation results for the 

proposed clinical pipeline. These automatic segmentations will support the radiologist to quickly 

delineate OSCC tissue on MR. Also, the automatic 3D model for resection margin visualisation can on 

average be generated within five minutes to further speed up the clinical pipeline. The 3D model is 

considered decently usable by all surgeons performing OSCC resections at the UMC Utrecht, which 

further improves the potential of the clinical pipeline. Lastly, super-resolution is proven to be a 

promising technique to reconstruct isotropic 3D scans from transverse and sagittal MR scans. This 

highlights the potential to increase OSCC delineation performance by a radiologist as well as deep-

learning networks, while overcoming the long scanning duration associated with isotropic 3D MR 

scans. 

The use of 7T MR scanning comes with logistical challenges, as can be seen in the Methods section of 

Chapter 1. An important consideration is whether using a 3T MR scanner would be a better fit to the 

pipeline as it eliminates the need to transport the specimen outside the hospital for scanning. For large 

tumours, this could be the preferred option, however smaller tumours likely require the improved 

resolution and SNR achieved through the 7T scanner for proper assessment of resection margins. 

Before the pipeline can be properly tested clinically, some logistical challenges must still be resolved. 

First, a secure connection must be established to send the MR scans from the scanner to the hospital 

network. Next, adjustments must be made within the MIM software so that the scans can be easily 

imported and the nnU-Net framework can be accessed to perform the segmentation tasks. Once the 

segmentation is reviewed and finalised by the radiologist, an automatic workflow is required to import 

the scan and segmentation into the 3D model generation script. Once these technical steps are 

completed, the full pipeline can be tested. This will show whether the whole workflow meets the time 

constraints necessary for intraoperative use. 

Along with the T2w scans, diffusion-weighted (DWI) MR scans of the specimen are also acquired in the 

current setup. Studies by Carcinelli et al. and Heidkamp et al. have shown how these DWI scans 

provided the highest contrast between OSCC and healthy tissue on ex vivo 3T scans[8], [35]. This suggests 

that incorporating DWI scans into the nnU-Net framework may significantly enhance segmentation 

accuracy in the future. This is particularly relevant given the limited size of the 7Tex dataset, as it will 

be difficult to improve the observed segmentation accuracy in this study with just the T2w scans alone.  

Lastly, to properly evaluate the clinical benefit of the proposed pipeline in this study, a randomised 

controlled trial would ultimately be required. Such a study could assess the effect on OSCC recurrence 

rates and adjuvant therapy for patients having undergone OSCC resection thereby providing evidence 

for its true clinical benefit. 
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Conclusion 
This study presents a clinical pipeline for IOARM in OSCC surgery, combining automatic segmentation 

and intuitive 3D visualisation of ex vivo 7T MR scans. While not yet part of the core pipeline, the 

positive evaluation of the 3D visualisation by head and neck surgeons along with the promising results 

from super-resolution reconstruction further support the clinical potential and future implementation 

of the IOARM workflow.  
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provide suggestions during the writing of this thesis to improve text clarity, and during the writing of 

the Python scripts provided in the appendices of this thesis. Contents of each output was carefully 

checked and was only used as inspiration. 
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Appendix A: Probability map merging script 

## Guus Versteeg - TM MII M3 3D lab/Radiotherapy - UMC Utrecht  

 

import numpy as np 

import SimpleITK as sitk 

import os 

 

def load_npz_prob_map(npz_path): 

    data = np.load(npz_path) 

    return data['probabilities'] 

 

def resample_to_reference(input_np, input_ref_nii, output_ref_nii): 

    input_itk = sitk.GetImageFromArray(input_np.astype(np.float32)) 

    input_itk.CopyInformation(input_ref_nii) 

 

    resample = sitk.ResampleImageFilter() 

    resample.SetReferenceImage(output_ref_nii) 

    resample.SetInterpolator(sitk.sitkLinear) 

    return sitk.GetArrayFromImage(resample.Execute(input_itk)) 

 

def save_segmentation(pred, reference_nii_path, output_path): 

    ref_nii = sitk.ReadImage(reference_nii_path) 

    pred_itk = sitk.GetImageFromArray(pred.astype(np.uint8)) 

    pred_itk.CopyInformation(ref_nii) 

    sitk.WriteImage(pred_itk, output_path) 

 

def combine_probability_maps( 

        probmap_transversal_path, probmap_sagittal_path, 

        img_transversal_path, img_sagittal_path, 

        output_segmentation_path 

): 

    # Load probability maps 

    probs_trans = load_npz_prob_map(probmap_transversal_path) 

    probs_sag = load_npz_prob_map(probmap_sagittal_path) 

 

    # Retrieve number of slices for weight determination 

    slices_trans = probs_trans.shape[1] 

    print(f"Number of slices in transversal: {slices_trans}") 

    slices_sag = probs_sag.shape[3] 

    print(f"Number of slices in sagittal: {slices_sag}") 

 

    weight_trans = slices_trans / (slices_trans + slices_sag) 

    weight_sag = 1.0 - weight_trans 

    print(f"Weighting: Transversal = {weight_trans:.2f}, Sagittal = 

{weight_sag:.2f}") 
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    # Import MR scans 

    img_trans = sitk.ReadImage(img_transversal_path) 

    img_sag = sitk.ReadImage(img_sagittal_path) 

    spacing_trans = img_trans.GetSpacing() 

    spacing_sag = img_sag.GetSpacing() 

 

    # Confirm transversal probability map matches image shape 

    trans_shape = sitk.GetArrayFromImage(img_trans).shape  # (Z, Y, X) 

    assert probs_trans.shape[1:] == trans_shape, ( 

        f"Mismatch between transversal prob map {probs_trans.shape[1:]} and 

image {trans_shape}" 

    ) 

     

    # Resample sagittal prob map to match transversal space 

    resampled_probs_sag = np.zeros_like(probs_trans) 

    for c in range(probs_trans.shape[0]): 

        resampled_probs_sag[c] = resample_to_reference( 

            probs_sag[c], img_sag, img_trans 

        ) 

 

    # Apply weighting 

    combined_probs = weight_trans * probs_trans + weight_sag * 

resampled_probs_sag 

 

    # Create final segmentation 

    seg_final = np.argmax(combined_probs, axis=0) 

 

    # Save segmentation 

    save_segmentation(seg_final, img_transversal_path, 

output_segmentation_path) 

    print(f"Saved combined segmentation to: {output_segmentation_path}") 

 

# Usage 

combine_probability_maps( 

    probmap_transversal_path=r"/local_scratch/gverste2/Probability 

maps/Data/transv_OSCC_051_IS_P031.npz", 

    probmap_sagittal_path=r"/local_scratch/gverste2/Probability 

maps/Data/sagitt_OSCC_051_IS_P031.npz", 

    img_transversal_path=r"/local_scratch/gverste2/Probability 

maps/Data/transv_scan_P031.nii.gz", 

    img_sagittal_path=r"/local_scratch/gverste2/Probability 

maps/Data/sagitt_scan_P031.nii.gz", 

    output_segmentation_path=r"/local_scratch/gverste2/Probability 

maps/Output/final_combined_segmentation_P031X.nii.gz" 

) 
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Appendix B: 3D model script 

## Guus Versteeg - TM MII M3 3D lab/Radiotherapy - UMC Utrecht 

 

######## Import required libraries ######## 

import time 

import json 

import shutil 

import pydicom 

import numpy as np 

from typing import Dict, Tuple, Union 

from sklearn.cluster import KMeans 

 

start_time = time.time() 

 

######## Part names to share between Mimics and 3-matic ######## 

SHARED_OBJS = ["Tumour part", "Specimen part"] 

 

 

######## Environment check (Mimics vs. 3-matic) ######## 

try: 

    import trimatic 

except ImportError: 

    in_3matic = False 

else: 

    in_3matic = True 

 

 

######## Full processing in Mimics ######## 

def run_mimics_pipeline(): 

    # Import required libraries     

    import mimics 

    import os 

    import subprocess 

    import json 

     

     

    #### Setting up ####     

    # Initialise directories 

    input_dir = 

r'\\ds.umcutrecht.nl\DATA\BENO\Radiotherapie\Research\Project\hoofdhals\7Tex\G

uus\Data\P032\MR' 

    output_dir = r'C:\Users\gverste2\OneDrive - UMC Utrecht\Guus Versteeg - 3D 

Lab Stages\M3\Mimics\PatientdXXdyeseXdX\Output' 

    os.makedirs(output_dir, exist_ok=True) 
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    # Set predefined answers for dialog windows during import 

    mimics.dialogs.set_predefined_answer("ChangeOrientation", "default") 

    mimics.dialogs.set_predefined_answer("SelectPixelSize", "X") 

    mimics.dialogs.set_predefined_answer("VariableSliceDistanceCorrection.Appl

y", "Yes") 

     

    # Create function which uses DICOM tag criteria to find the transversal T2 

scan from the MRI dataset 

    def check_dicom_tags_MRI(dicom_file, criteria: Dict[Tuple[int, int], 

Union[str, set, list, tuple]]) -> bool: 

        try: 

            dicom_data = pydicom.dcmread(dicom_file) 

            for tag, expected_value in criteria.items(): 

                if tag not in dicom_data: 

                    return False 

                actual_value = dicom_data[tag].value 

                 

                # If expected value is list/set/tuple, check if actual value 

matches any 

                if isinstance(expected_value, (set, list, tuple)): 

                    # Handle multi-valued DICOM elements 

                    if isinstance(actual_value, (list, tuple, 

pydicom.multival.MultiValue)): 

                        if not any(val in expected_value for val in 

actual_value): 

                            return False 

                    else: 

                        if actual_value not in expected_value: 

                            return False 

                else: 

                    if actual_value != expected_value: 

                        return False 

            return True 

        except Exception as e: 

            print(f"Error reading {dicom_file}: {e}") 

            return False 

     

    # Set DICOM tag criteria to select the right MRI scans 

    tag_criteria_MRI = { 

        (0x0008,0x0060): 'MR', 

        (0x0018,0x0020): 'SE', 

        (0x0018,0x0021): 'SK', 

        (0x0018,0x0022): {'SP', 'OTHER'}, 

        (0x2001,0x100B): 'TRANSVERSAL' 

    } 

     

    # Create variable to check the number of selected MRI DICOM files 

    selected_MRI = [] 
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    # Iterate through database to find all MRI scans meeting the tag criteria 

    for root, dirs, files in os.walk(input_dir): 

        for file in files: 

            file_path = os.path.join(root, file) 

            if check_dicom_tags_MRI(file_path, tag_criteria_MRI): 

                shutil.copy(file_path, output_dir) 

                selected_MRI.append(file_path) 

                print(f"Selected MRI file: {file_path}") 

    print(f"Selected {len(selected_MRI)} DICOM files based on the specified 

criteria.") 

         

    # Import selected scans 

    try: 

        mimics.file.import_dicom_images(source_folder=output_dir) 

        print(f"Loaded {len(selected_MRI)} DICOM files into Mimics from 

{output_dir}.") 

    except Exception as e: 

        print(f"Error loading DICOM files into Mimics: {e}") 

     

    # Define function for naming the image series and execute it 

    def rename_image_series(): 

        for image_series in mimics.data.images: 

            try: 

                new_name = 'Unknown_series'             

                dicom_tags = image_series.get_dicom_tags() 

                 

                modality_tag = (0x2001, 0x100B) 

                if modality_tag in dicom_tags: 

                    modality = dicom_tags[modality_tag].value             

             

                    if modality == 'TRANSVERSAL': 

                        new_name = 'Transversal T2 7T' 

                 

                    elif modality == 'SAGITTAL': 

                        new_name = 'Sagittal T2 7T' 

                         

                    elif modality == 'CORONAL': 

                        new_name = 'Coronal T2 7T' 

                 

                image_series.name = new_name 

                print(f"Renamed series to {new_name}") 

                 

            except Exception as e: 

                print(f"Error processing series {image_series.name}: {e}") 

     

    rename_image_series() 

     

    # Import tumour part (TEMPORARY) 
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    tumour_part_path = r'C:\Users\gverste2\OneDrive - UMC Utrecht\Guus 

Versteeg - 3D Lab Stages\M3\Mimics\Tumour_Guus_demo_1.stl' 

    tumour_part = mimics.file.import_stl(filename=tumour_part_path) 

    tumour_part.name = "Tumour part" 

     

    #### Specimen segmentation #### 

    # Create segmentation function for specimen using K-means 

    def specimen_segmentation(image_data: mimics.ImageData, n_clusters: int = 

4):       

        # Get voxel intensity data 

        voxel_buffer = np.array(image_data.get_voxel_buffer(), dtype=np.uint8) 

        voxel_data = voxel_buffer.flatten().reshape(-1, 1) 

             

        # Apply K-means clustering 

        kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) 

        labels = kmeans.fit_predict(voxel_data) 

             

        # Sort clusters by intensity and select top two 

        cluster_means = kmeans.cluster_centers_.flatten() 

        sorted_clusters = np.argsort(cluster_means)     

        specimen_clusters = sorted_clusters[-2:] 

         

        # Determine threshold values for segmentation by combining selected 

clusters 

        specimen_voxels = voxel_data[np.isin(labels, specimen_clusters)] 

        lower_threshold = np.min(specimen_voxels) 

        upper_threshold = np.max(specimen_voxels) 

     

        # Create a mask using the identified cluster 

        mask = mimics.segment.create_mask()    

        mimics.segment.threshold(mask=mask, threshold_min=lower_threshold, 

threshold_max=upper_threshold, \ 

        bounding_box=None) 

        mimics.segment.morphology_operations(input_mask=mask, 

operation='Close', number_of_pixels=10, connectivity=8, \ 

        target_mask_name="Target mask", limited_to_mask=None) 

        target_mask = mimics.data.masks.find("Target mask") 

        final_mask = mimics.segment.keep_largest(mask=target_mask) 

        mimics.segment.fill_holes(mask=final_mask) 

        final_mask.color = (0.33, 0.66, 1.0) 

        final_mask.name = "Specimen mask" 

        mimics.data.masks.delete(mask) 

         

        # Convert mask to a part for further processing 

        part = mimics.segment.calculate_part(mask=final_mask, 

quality='Optimal') 

        part.color = (0.33, 0.66, 1.0) 

        part.transparency = 0.20 
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        final_part = mimics.tools.smooth(part=part, smooth_factor=1, 

iterations=500, compensate_shrinkage=True, \ 

        keep_originals=False) 

        final_part.name = "Specimen part" 

         

        print(f"Segmentation complete using K-means. Created part: 

{final_part.name}") 

        return final_part 

             

    # Perform segmentation function 

    IMAGE_DATA = mimics.data.images.find("Transversal T2 7T") 

    # Determine standard deviation of voxel values for appropriate number of 

clusters     

    voxel_buffer = np.array(IMAGE_DATA.get_voxel_buffer(), dtype=np.uint8) 

    voxel_data = voxel_buffer.flatten().reshape(-1, 1) 

    print(f"STD DEV IS {np.std(voxel_data)}") 

    if np.std(voxel_data) >= 38: 

        NUM_CLUSTERS = 3 

    else: 

        NUM_CLUSTERS = 4 

    print(f"Chosen number of clusters for segmentation: {NUM_CLUSTERS}") 

    specimen_segmentation(IMAGE_DATA, NUM_CLUSTERS) 

     

    ## Enable transparency view    # Only in Mimics 26.0    

    mimics.view.enable_transparency() 

     

    ## Show reference planes (optional)   

    #mimics.view.show_reference_planes() 

 

    #### Exporting to and launching 3-matic #### 

    # Define script path & temporary communication file 

    root_path_of_script = os.path.split(os.path.abspath(__file__))[0] 

    temp_file_path = os.path.join(root_path_of_script, "my_temp.txt") 

    json_path = os.path.join(root_path_of_script, "annotations.json") 

     

    # Write STL export paths to the temp file and export each part 

    with open(temp_file_path, "w") as f: 

        f.write("STL export paths:\n") 

        for part_name in SHARED_OBJS: 

            part = mimics.data.parts.find(part_name) 

            if not part: 

                raise ValueError(f"Part '{part_name}' not found") 

            path_of_stl = os.path.join(root_path_of_script, part.name + 

".stl") 

            mimics.file.export_part(object_to_convert=part, 

file_name=path_of_stl, output_format='STL_ASCII') # Mimics 26.0             

            #mimics.file.export_objects_as_parts(objects=[part], format="ASCII 

STL", filename=path_of_stl)    # Mimics 27.0 
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            f.write(path_of_stl + "\n") 

         

    # Launch 3-matic with correpsonding arguments     

    trimatic = mimics.file.get_path_to_3matic() 

    command = trimatic 

    args = ("-run_script", __file__, temp_file_path) 

    process = subprocess.Popen((command,) + args, shell=False, 

stdout=subprocess.PIPE) 

    process.wait() 

     

     

    #### Importing 3-matic results and finalising visualisation ####     

    # Read and import result STL files exported from 3-matic     

    with open(temp_file_path, "r") as f: 

        output_paths = [line.strip() for line in f.readlines() if 

line.strip()] 

    os.remove(temp_file_path) 

     

    for path in output_paths: 

        if os.path.isfile(path): 

            mimics.file.import_stl(path) 

             

    # Create irradical margin mask for 2D view     

    irradical_margin = mimics.data.parts.find("Irradical margin")   

    if irradical_margin: 

        masks = mimics.segment.calculate_mask_from_part(part=irradical_margin, 

target_mask=None)  # Mimics 26.0        

        #masks = 

mimics.segment.calculate_masks_from_objects(objects=[irradical_margin])       

   # Mimics 27.0 

        irradical_margin_mask = masks    

        irradical_margin_mask.name = "Irradical margin" 

        irradical_margin_mask.color = (1.0, 1.0, 0.0) 

    else: 

        print("No irradical margin found!") 

        irradical_margin_mask = None 

     

    with open(json_path, "r") as f: 

        annotations = json.load(f) 

 

    # Make annotations visible in Mimics     

    for ann in annotations: 

        name = ann["name"] 

        max_point = ann["max_point"] 

        closest_point = ann["closest_point"] 

        distance = ann["distance_mm"] 

 

        # Create a distance measurement (this also includes a text label) 
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        pt1 = mimics.analyze.create_point(point=max_point, 

name=f"{name}_max_point", color=(1.0, 0.0, 0.0)) 

        pt2 = mimics.analyze.create_point(point=closest_point, 

name=f"{name}_closest_point", color=(0.0, 0.0, 1.0)) 

        measurement = 

mimics.measure.create_distance_measurement(point1=max_point, 

point2=closest_point)         

        print(f"Created distance annotation for {name}: {ann['distance_mm']} 

mm") 

         

        # Clean up unnecessary measurement parts         

        mimics.data.parts.delete(pt1) 

        mimics.data.parts.delete(pt2) 

     

    # Set complete margin colour and transparency 

    complete_margin = mimics.data.parts.find("Complete margin") 

    complete_margin.color = (1.0, 1.0, 0)     

    complete_margin.transparency = 0.8     

     

    # Define colour mapping based on directional keywords 

    colour_map = { 

        "anterieur":  (0,0,1),    # Blue 

        "craniaal":   (0,1,0),    # Green 

        "mediaal":    (1,0,0)     # Red 

    } 

     

    # Apply colours based on name content 

    for part in mimics.data.parts: 

        for direction, colour in colour_map.items(): 

            if direction in part.name: 

                part.color = colour 

                break 

     

    # Change colour for tumour and irradical margins 

    if irradical_margin: 

        mimics.data.parts.find("Irradical margin").color = (1.0, 1.0, 0.0) 

    mimics.data.parts.find("Tumour part").color = (1.0, 0.68, 0.0) 

     

    # Clean up temporary visualisation parts after annotation 

    for part in mimics.data.parts: 

        if any(keyword in part.name for keyword in ["MaxMarginPoint", 

"ClosestSpecimenPoint", "MaxDistanceVector"]): 

            mimics.data.parts.delete(part) 

     

    # Name parts in Dutch for maximum clarity 

    mimics.data.parts.find("Specimen part").name = "Preparaat" 

    mimics.data.parts.find("Tumour part").name = "Tumor" 

    if irradical_margin: 

        mimics.data.parts.find("Irradical margin").name = "Irradicale marge" 
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    mimics.data.parts.find("Complete margin").name = "Complete marge"     

    mimics.data.parts.find("mediaal_arrow_cylinder").name = "Mediaal" 

    mimics.data.parts.find("mediaal_arrow_cone").name = "Mediaal" 

    mimics.data.parts.find("craniaal_arrow_cylinder").name = "Craniaal" 

    mimics.data.parts.find("craniaal_arrow_cone").name = "Craniaal" 

    mimics.data.parts.find("anterieur_arrow_cylinder").name = "Anterieur" 

    mimics.data.parts.find("anterieur_arrow_cone").name = "Anterieur" 

     

    if not irradical_margin: 

        mimics.data.parts.find("Tumor").color = (0.0, 1.0, 0.0) 

        print("All margins are radical!") 

 

 

######## Full processing in 3-matic ######## 

def run_3matic_pipeline(): 

    # Import required libraries      

    import trimatic 

    import os 

    import json 

    import tkinter as tk 

    from tkinter import simpledialog 

    from scipy.spatial import KDTree 

     

     

    #### Part import from Mimics ####     

    # Read STL paths passed from Mimics     

    temp_file_path = sys.argv[1] 

    with open(temp_file_path, "r") as f: 

        lines = [line.strip() for line in f.readlines()]   

    stl_paths = lines[1:] 

 

    # Validate that exactly two parts were provided     

    if len(stl_paths) != 2: 

        raise ValueError("Expected exactly 2 STL paths, but got: " + 

str(len(stl_paths))) 

         

    # Import and assign parts     

    part1 = trimatic.import_part_stl(stl_paths[0]) # Tumour part 

    part2 = trimatic.import_part_stl(stl_paths[1]) # Specimen part  

     

     

    #### Orientation arrow creation #### 

    # Create GUI prompt for direction mapping 

    root = tk.Tk() 

    root.withdraw() # Hide main window     

    dir_map = {} 

    for label in ["mediaal", "craniaal", "anterieur"]: 
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        direction = simpledialog.askstring("Invullen richting", f"Welke kant 

is {label}? (Kies uit: X, -X, Y, -Y, Z, -Z)") 

        if direction not in ["X", "x", "-X", "-x", "Y", "y", "-Y", "-y", "Z", 

"z", "-Z", "-z"]: 

            raise ValueError(f"Incorrecte input voor richting {label}: 

{direction}") 

        dir_map[label] = direction.upper() 

     

    # Dictionary to hold all arrow parts with their axis 

    vector_map = { 

        "X":  (1,0,0), 

        "x":  (1,0,0), 

        "-X": (-1,0,0), 

        "-x": (-1,0,0), 

        "Y":  (0,1,0), 

        "y":  (0,1,0), 

        "-Y": (0,-1,0), 

        "-y": (0,-1,0), 

        "Z":  (0,0,1), 

        "z":  (0,0,1), 

        "-Z": (0,0,-1), 

        "-z": (0,0,-1)     

    } 

     

    # Arrow dimensions     

    origin = (-50,0,-50) 

    arrow_length = 100 

    cone_length = 10 

 

    # Build arrows and assign colours 

    arrow_parts = []     

    for label, direction in dir_map.items(): 

        vec = vector_map[direction] 

 

        end = tuple(origin[i] + arrow_length * vec[i] for i in range(3)) 

        cone_tip = end 

        mid_point = tuple((origin[i] + end[i]) / 2 for i in range(3)) 

     

        cyl = trimatic.create_cylinder_part(point_1=origin, point_2=end, 

radius=5, tolerance=0.01) 

        cyl.name = f"{label}_arrow_cylinder"         

        arrow_parts.append(cyl) 

 

        cone = trimatic.create_cone_part(origin=cone_tip, direction=vec, 

height=cone_length, bottom_radius=10, top_radius=0,\ 

        tolerance=0.01, target_edge_length=0.1) 

        cone.name = f"{label}_arrow_cone"         

        arrow_parts.append(cone) 
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        # Add label in the same direction 

        try: 

            trimatic.quick_label( 

                entity=cyl, 

                text=label.capitalize(), 

                point=mid_point, 

                direction=vec, 

                follow_surface=False, 

                font='Arial', 

                font_height=5, 

                label_height=1, 

                bold=True, 

                italic=False 

            ) 

        except RuntimeError as e: 

            print(f"Failed to label {label} arrow: {e}") 

    print("Orientation arrows created succesfully!") 

     

     

    #### Part remesh and resection margin creation ####     

    # Remesh tumour part     

    remeshed = trimatic.uniform_remesh(entities=part1, 

target_triangle_edge_length=0.2, preserve_sharp_edge_angle=None,\ 

    preserve_surface_contours=True, skip_bad_edges=False) 

     

    # Create 5 mm resection margin     

    margin = trimatic.wrap(entities=remeshed, gap_closing_distance=0.5, 

smallest_detail=0.5, protect_thin_walls=False,\ 

    resulting_offset=5, reduce=False, preserve_sharp_features=False, 

preserve_surface_structure=True) 

    margin_duplicate = trimatic.duplicate(margin) 

    margin_duplicate.name = "Complete margin" 

     

    #### Subtracting specimen from resection margin and part handling #### 

    # Duplicate specimen part for analysis step 

    specimen_part = part2 

    specimen_duplicate = trimatic.duplicate(specimen_part) 

    

 

    # Boolean subtract specimen from margin to isolate tumour overlap     

    subtracted_margin = trimatic.design.boolean_subtraction(margin, 

specimen_part) 

    subtracted_margin.name = "Subtracted margin" 

 

    # Split into shells and label mucosa & irradical margins     

    parts = trimatic.shells_to_parts(subtracted_margin) 

    if not isinstance(parts, (list, tuple)): 

        parts = [parts] 

    mucosa_part = parts[0] 
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    mucosa_part.name = "Mucosa margin" 

    irradical_parts = [] 

    for index, part in enumerate(parts[1:], start=1): 

        part.name = f"Irradical margin {index}" 

        irradical_parts.append(part) 

         

    # Check if there is an irradical margin 

    if not irradical_parts: 

        print("\nNo irradical margins found! Only mucosa margin exists.") 

    else: 

        print(f"\n{len(irradical_parts)} irradical margin(s) found.")  

     

     

    #### Maximum margin calculation ####     

    # Assign duplicate specimen for max margin calculation 

    specimen_max = specimen_duplicate 

    if not specimen_max: 

        raise Exception("Specimen not found.") 

     

    # Get triangle vertices and build KD-tree for fast nearest-point lookup 

    specimen_points, specimen_tris = specimen_max.get_triangles() 

    specimen_vertices = [tuple(pt) for pt in specimen_points] 

    kdtree = KDTree(specimen_vertices) 

 

    # Create data lists     

    visualisation_parts = [] 

    annotation_data = [] 

     

    # Loop through each margin part 

    for part in irradical_parts: 

        print(f"\nProcessing margin: {part.name}") 

     

        # Get triangle data for margin 

        margin_points, margin_tris = part.get_triangles() 

     

        # Compute triangle centroids as sample points 

        sampled_margin_centroids = [] 

        for tri in margin_tris: 

            p1, p2, p3 = margin_points[tri[0]], margin_points[tri[1]], 

margin_points[tri[2]] 

            centroid = ( 

                (p1[0] + p2[0] + p3[0]) / 3.0, 

                (p1[1] + p2[1] + p3[1]) / 3.0, 

                (p1[2] + p2[2] + p3[2]) / 3.0 

            ) 

            sampled_margin_centroids.append(centroid) 

 

        # Find maximum distance from margin to specimen 

        max_dist = -1 
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        max_point = None 

        closest_point = None 

 

        for margin_pt in sampled_margin_centroids: 

            dist, idx = kdtree.query(margin_pt) 

            specimen_pt = specimen_vertices[idx] 

 

            if dist > max_dist: 

                max_dist = dist 

                max_point = margin_pt 

                closest_point = specimen_pt 

       

        print(f"Max distance: {max_dist:.2f} mm") 

 

       # Visualise result 

        if max_point and closest_point: 

            # Create red spheres at the max and closest points 

            max_margin_point = 

trimatic.design.create_sphere_part(point_center=max_point, radius=0.3, 

tolerance=0.01) 

            max_margin_point.name = f"MaxMarginPoint_{part.name}" 

            closest_specimen_point = 

trimatic.design.create_sphere_part(point_center=closest_point, radius=0.3, 

tolerance=0.01) 

            closest_specimen_point.name = f"ClosestSpecimenPoint_{part.name}" 

 

            # Create a red line (cylinder) between the points 

            biggest_distance = 

trimatic.design.create_cylinder_part(point_1=max_point, point_2=closest_point, 

radius=0.2, tolerance=0.01) 

            biggest_distance.name = f"MaxDistanceVector_{part.name}" 

 

            # Create annotation showing the value 

            anchor_point = trimatic.analyze.create_point(max_point) 

            text_point = trimatic.analyze.create_point(( 

                (max_point[0] + closest_point[0]) / 2, 

                (max_point[1] + closest_point[1]) / 2, 

                (max_point[2] + closest_point[2]) / 2 + 3, 

            )) 

     

            annotation = trimatic.measure.create_annotation( 

                point_anchor=anchor_point, 

                point_text=text_point, 

                text=f"{max_dist:.2f} mm", 

                alignment=trimatic.TextAlignment.Center 

            ) 

            trimatic.data.delete(anchor_point) 

            trimatic.data.delete(text_point) 
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            print("Visualisation created: spheres, cylinder and annotation!") 

             

            visualisation_parts.append(max_margin_point) 

            visualisation_parts.append(closest_specimen_point) 

            visualisation_parts.append(biggest_distance) 

            annotation_data.append({ 

                "name": part.name, 

                "distance_mm": round(max_dist, 2), 

                "max_point": max_point, 

                "closest_point": closest_point 

            }) 

 

    print("\nFinished processing all margins.") 

 

    #### Part combination and export to Mimics ####     

    # Combine irradical margins into one unified part (if they exist) 

    if not irradical_parts: 

        parts_to_export = visualisation_parts + arrow_parts 

    else: 

        if len(irradical_parts) > 1: 

            unified_irradical = trimatic.boolean_union(irradical_parts) 

            unified_irradical.name = "Irradical margin" 

        elif len(irradical_parts) == 1: 

            irradical_parts[0].name = "Irradical margin" 

            unified_irradical = trimatic.data.find_part("Irradical margin") 

        parts_to_export = [unified_irradical] + visualisation_parts + 

arrow_parts   

             

    # Add complete margin for export 

    parts_to_export.append(margin_duplicate)  

     

    # Export analysis geometry back to Mimics     

    exp = trimatic.export_stl_ascii(parts_to_export, 

os.path.split(os.path.abspath(__file__))[0]) 

     

    with open(temp_file_path, "w") as f: 

        for path in exp: 

            f.write(path + "\n") 

     

    json_path = os.path.join(os.path.split(os.path.abspath(__file__))[0], 

"annotations.json")     

     

    with open(json_path, "w") as json_file: 

        json.dump(annotation_data, json_file, indent=4) 

    print("Process complete. To continue, please close 3-matic") 
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######## Script execution ######## 

if __name__ == "__main__": 

    if in_3matic: 

        run_3matic_pipeline() 

    else: 

        run_mimics_pipeline() 

 

 

end_time = time.time() 

total_time = end_time - start_time 

print(f"\nTotal runtime: {total_time:.2f} seconds") 
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Appendix C: Clinical cases for 3D model demonstrations 
Casus 1 

Op de preoperatieve MRI van deze patiënt is een cilindervormige OSCC in de tong te zien van 3.5 cm 

lang (A-P), 2.7 cm breed (L-R) en 2.4 cm diep (C-C). Deze tumor bevond zich vlak onder het dorsale 

oppervlak van de tong, aan de rechter kant lateraal vanaf het mediale vlak. De gereseceerde tumor is 

inmiddels gescand in de 7T-MRI en het 3D-model op basis van deze scan verschijnt op het scherm 

voor u op OK. 

In de figuur hieronder ziet u een schematische weergave van de tong, met daarop in het rood het 

wondbed weergegeven. Geef op dit figuur aan waar u, met behulp van het 3D-model, de naresectie 

toe zou passen. Noteer hierbij welke diepte u bij het snijden aan zou houden. 

 

 

 

 

 

 

 

 

 

 

 

 

Naresectiediepte:  

 

Instructies Mimics Viewer 

3D-model roteren   -> Vasthouden rechter muisknop 

3D-model vergroten   -> Scrollen 

Model/scans op groot scherm  -> Muis op beeld naar keuze houden + spatiebalk 

Doorlopen slices in scans  -> Scrollen 

Contrast aanpassen scans  -> Vasthouden rechter muisknop + naar rechts/links 

Contrast resetten   -> ‘Reset contrast’ knop linksonder -> 

Locatie aanpassen   -> Klikken rechter muisknop 

Onderdelen verbergen/tonen  -> Oogje naast onderdeel rechter menu ->  
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Casus 2 

De preoperatieve MRI en echo van deze patiënt laten een langwerpige tumor zien met een lengte 

van 1.0 cm (A-P), een breedte van 0.7 cm (L-R) en een diepte van 0.6 cm (C-C). De tumor bevond zich 

lateraal links op de tong (zie ook de figuur hieronder). U bent begonnen met de resectie van deze 

tumor, om vervolgens verder te gaan met een halsklierdissectie. In de tussentijd is het gereseceerde 

preparaat naar de 7T-scanner gebracht en wordt het 3D-model inclusief resectiemarges getoond op 

het scherm voor u. 

In de figuur hieronder ziet u wederom een schematische weergave van de tong, met daarop in het 

rood het wondbed weergegeven. Geef op dit figuur aan waar u, met behulp van het 3D-model, de 

naresectie toe zou passen. Noteer hierbij welke diepte u bij het snijden aan zou houden. 

 

 

 

 

 

 

 

 

 

 

 

 

Naresectiediepte:  

 

Instructies Mimics Viewer 

3D-model roteren   -> Vasthouden rechter muisknop 

3D-model vergroten   -> Scrollen 

Model/scans op groot scherm  -> Muis op beeld naar keuze houden + spatiebalk 

Doorlopen slices in scans  -> Scrollen 

Contrast aanpassen scans  -> Vasthouden rechter muisknop + naar rechts/links 

Contrast resetten   -> ‘Reset contrast’ knop linksonder -> 

Locatie aanpassen   -> Klikken rechter muisknop 

Onderdelen verbergen/tonen  -> Oogje naast onderdeel rechter menu ->  
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Appendix D: Super-resolution script 

## Guus Versteeg - TM MII M3 3D lab/Radiotherapy - UMC Utrecht 

 

import ants 

import os 

import numpy as np 

import matplotlib.pyplot as plt 

import csv 

from skimage.metrics import structural_similarity as ssim 

 

# Configuration 

root_dir = r"/local_scratch/gverste2//Super-resolution/Super-resolution data" 

output_csv = os.path.join(root_dir, "metrics_summary.csv") 

 

# Visualisation helper function 

def show_slice_pair(img_before, img_after, title_before, title_after, 

slice_index=None): 

    fig, axes = plt.subplots(1, 2, figsize=(10, 5)) 

    arr_b = img_before.numpy() 

    arr_a = img_after.numpy() 

    if slice_index is None: 

        slice_index = arr_b.shape[2] // 2 

    axes[0].imshow(arr_b[:, :, slice_index], cmap='gray') 

    axes[0].set_title(title_before) 

    axes[0].axis('off') 

    axes[1].imshow(arr_a[:, :, slice_index], cmap='gray') 

    axes[1].set_title(title_after) 

    axes[1].axis('off') 

    plt.show() 

 

## Step 1: Preprocessing 

def preprocess_scan(path, outpath): 

    print(f"Preprocessing: {path}") 

    img = ants.image_read(path) 

    img = ants.reorient_image2(img, orientation="RAI") 

    img_bc = ants.n4_bias_field_correction(img) 

    img_dn = ants.denoise_image(img_bc) 

    ants.image_write(img_dn, outpath) 

    #show_slice_pair(img, img_dn, "Original", "Bias corrected + denoised") 

    return img_dn 

 

## Step 2: Resample to match coronal ground truth spacing 

def resample_to_spacing(img, target_spacing, outpath): 

    print(f"Resampling image to spacing: {target_spacing}") 

    img_resampled = ants.resample_image(img, target_spacing, use_voxels=False, 

interp_type=3) 

    ants.image_write(img_resampled, outpath) 
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    #show_slice_pair(img, img_resampled, "Original preprocessed", f"Resampled 

to {target_spacing}") 

    return img_resampled 

 

# Loop over all subjects 

with open(output_csv, 'w', newline='') as csvfile: 

    writer = csv.writer(csvfile) 

    writer.writerow(['Subject', 'SSIM', 'RMSE']) 

 

    for subject_id in os.listdir(root_dir): 

        subject_dir = os.path.join(root_dir, subject_id) 

        raw_dir = os.path.join(subject_dir, "NIfTI") 

        pre_dir = os.path.join(subject_dir, "Preprocessed") 

        recon_dir = os.path.join(subject_dir, "Reconstructed") 

 

        if not os.path.isdir(raw_dir): 

            continue 

 

        os.makedirs(pre_dir, exist_ok=True) 

        os.makedirs(recon_dir, exist_ok=True) 

 

        print(f"\n=== Processing {subject_id} ===") 

 

        try: 

            trans = preprocess_scan(os.path.join(raw_dir, "T2_t.nii.gz"), 

os.path.join(pre_dir, "T2_t_pre.nii.gz")) 

            sag = preprocess_scan(os.path.join(raw_dir, "T2_s.nii.gz"), 

os.path.join(pre_dir,"T2_s_pre.nii.gz")) 

            cor = preprocess_scan(os.path.join(raw_dir, "T2_c.nii.gz"), 

os.path.join(pre_dir,"T2_c_pre.nii.gz")) 

 

            # Define isotropic spacing based on coronal in-plane resolution 

            cor_spacing = cor.spacing 

            iso_spacing = (cor_spacing[0], cor_spacing[0], cor_spacing[0]) 

            #print(f"Target isotropic spacing from coronal scan: {iso_spacing} 

(from coronal spacing {cor_spacing})") 

 

            trans_iso = resample_to_spacing(trans, iso_spacing, 

os.path.join(pre_dir, "T2_t_iso.nii.gz")) 

            sag_iso = resample_to_spacing(sag, iso_spacing, 

os.path.join(pre_dir, "T2_s_iso.nii.gz")) 

 

            ## Step 3: Register sagittal scan to transversal 

            print("\n--- Registering sagittal to transversal ---") 

            reg = ants.registration(fixed=trans_iso, moving=sag_iso, 

type_of_transform='Rigid') 

            sag_reg = reg['warpedmovout'] 

            ants.image_write(sag_reg, os.path.join(recon_dir, 

"T2_s_registered_rigid.nii.gz")) 
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            #show_slice_pair(sag_iso, sag_reg, "Sagittal Iso", "Registered to 

Transversal") 

 

            ## Step 4: Fuse volumes 

            print("\n--- Fusing registered scans ---") 

            fused_raw = (trans_iso + sag_reg) / 2 

            #fused = ants.denoise_image(fused_raw) 

            fused_aligned = ants.resample_image_to_target(fused_raw, cor) 

            ants.image_write(fused_aligned, os.path.join(recon_dir, 

"fused_iso_aligned_to_coronal.nii.gz")) 

             

            print("--- Image Metadata ---") 

            #print("trans_iso shape:", trans_iso.shape, "spacing:", 

trans_iso.spacing) 

            #print("sag_reg shape:  ", sag_reg.shape, "spacing:", 

sag_reg.spacing) 

            #print("cor shape:   ", cor.shape, "spacing:", cor.spacing) 

            #show_slice_pair(fused, fused_aligned, "Fused raw", "Fused 

aligned") 

 

            ## Step 5: Compare to ground truth 

            fused_np = fused_aligned.numpy() 

            cor_np = cor.numpy() 

 

            common_shape = tuple(min(fused_np.shape[i], cor_np.shape[i]) for i 

in range(3)) 

            fused_np_cropped = fused_np[:common_shape[0], :common_shape[1], 

:common_shape[2]] 

            cor_np_cropped = cor_np[:common_shape[0], :common_shape[1], 

:common_shape[2]] 

 

            ssim_val = ssim(cor_np_cropped, fused_np_cropped, 

data_range=cor_np_cropped.max() - cor_np_cropped.min()) 

            rmse_val = np.sqrt(np.mean((cor_np_cropped - fused_np_cropped) ** 

2)) 

 

            print("\n--- Evaluation Metrics ---") 

            writer.writerow([subject_id, f"{ssim_val:.4f}", 

f"{rmse_val:.4f}"]) 

            #print(f"SSIM: {ssim_val:.4f}") 

            #print(f"RMSE: {rmse_val:.4f}") 

            #show_slice_pair(cor, fused_aligned, "Ground truth", "Fused 

result") 

         

        except Exception as e: 

            print(f"Failed to process {subject_id}: {e}") 
 


