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ABSTRACT 

Accurate phenological forecasting is vital for ecological monitoring, climate adaptation, and 

agricultural decision-making. Common modelling approaches, which include Process-Based 

Models (PBMs) and Machine Learning (ML), offer contrasting strengths: PBMs provide biological 

interpretability but struggle with ecological complexity and transferability, while ML models are 

data-driven and adaptable but often lack physiological transparency. This study investigated two 

hybrid phenology modelling strategies for predicting budburst dates under climate variability. The 

first strategy applied an ML-derived parameterization of the UNIFORC Process-Based Model, 

dynamically estimating site- and year-specific parameters. The second combined multiple fixed-

parameter UNIFORC variants and machine learning regressors using a linear ensemble 

metamodel. Both approaches were evaluated over a 15-year period (2001–2015) using a year-

forward chaining strategy and windowed climate data. The ML-derived parameterization was 

found to produce ecologically meaningful parameter dynamics, such as plausible interannual shifts 

in the thermal forcing threshold (f_crit ranging from ~41 to 48) and forcing onset (t0 ranging 

from DOY 25 to 29), while maintaining relatively consistent predictive accuracy (mean RMSE = 

8.70, MAE = 6.99). In contrast, the ensemble model achieved comparable overall performance 

(mean RMSE = 8.17, MAE = 6.93), but exhibited a pronounced Regression-to-the-mean effect, 

evidenced by a lower slope (0.08) and R² (0.02) in observed vs. predicted plots. This study 

concluded that while both models offer predictive value, the ML-derived parameterization 

provides superior interpretability and biological transparency, making it more suitable for 

applications requiring ecological insight and climate adaptability. 

Keywords: ML-derived Parameterization, Hybrid Modelling, UNIFORC, Year-Forward-

Chaining, Parallel Ensemble  
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1. INTRODUCTION 

1.1 Background 

Plant phenology, the timing of recurring biological events such as budburst, flowering, and leaf 

senescence, serves as a critical indicator of ecosystem function in response to climate variability 

(Richardson et al., 2012; Menzel et al., 2020). Shifts in phenological events are among the most 

sensitive and observable biological responses to climate change, and such shifts have profound 

implications for carbon cycling, species interactions, and agricultural productivity (Inouye, 2022). 

Over the past century, warming temperatures have altered the onset of phenophases across 

temperate and boreal biomes, with flowering and leaf-out now occurring 2–5 days earlier per 

decade in many regions (Menzel et al., 2020, Zeng et al., 2024). However, these responses are 

neither uniform nor linear. Species-specific sensitivities, interacting environmental drivers, and 

legacy effects complicate predictions, particularly as climate regimes grow increasingly non-

stationary (Hänninen et al., 2019; Ponti & Sonolo, 2023; Zohner et al., 2023). 

The ecological consequences of phenological change are far-reaching. Shifts in growing season 

length directly influence net primary productivity and carbon sequestration, with earlier spring 

onset enhancing CO₂ uptake but potentially exacerbating late-season drought stress (Piao et al., 

2019; Keenan et al., 2014). Equally critical are the cascading trophic effects; phenological 

mismatches between plants and pollinators, or between budburst and herbivore emergence, can 

destabilize long-evolved ecological networks (Forrest & Miller-Rushing, 2010; Stuble et al., 2021). 

In agricultural systems, where phenology governs yield potential and frost risk, inaccurate 

predictions carry significant economic costs (Leolini et al., 2020; Devkota et al., 2023). Yet despite 

its centrality to climate adaptation, phenological forecasting remains fraught with uncertainty, in 

part because traditional modelling approaches struggle to reconcile mechanistic biological 

principles with the complexity of real-world environmental interactions (Chuine & Régnière, 2017; 

Dietze et al., 2018). 

Process-based models (PBMs) have long dominated phenological research, encoding physiological 

knowledge into mathematical frameworks that simulate events like budburst through accumulated 

temperature (growing degree days, GDD) or chilling-forcing interactions (UniChill, PhenoFlex) 

(Chuine et al., 2000; Luedeling et al., 2021).  For instance, simple models like Growing Degree Day 

(GDD) estimate budburst by summing daily temperatures above a base threshold (McMaster, 

1997), while more advanced models, such as UNIFORC, incorporate nonlinear forcing functions 

and have been applied to temperate trees and grapevines (Chuine et al., 1999; Leolini et al., 2020). 

PBMs are valued for their biological interpretability; their parameters represent physiological 

processes that can often be empirically estimated (Asse et al., 2020). This makes them well-suited 

for explanatory modelling and forecasting in data-sparse regions, provided the physiological 

assumptions remain valid (Chuine & Régnière, 2017). To better simulate spring phenology in cold 

climates, chilling-based models like Utah (E. A. Richardson et al., 1974) and UniChill (Chuine et 

al., 2000) were developed, with more recent models like PhenoFlex (Luedeling et al., 2021) unifying 

chilling and forcing phases for added flexibility. 

Despite these strengths, PBMs face several limitations. Parameter estimation often relies on 

inverse modelling, which may produce physiologically implausible values or mask unmodelled 

processes (Akhavizadegan et al., 2021). The resulting equifinality can degrade accuracy when 
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models are applied to novel conditions (Beven & Freer, 2001). Many PBMs also rely on 

oversimplified assumptions, e.g., GDD models may overlook soil moisture, complex photoperiod 

cues, or legacy effects (Piao et al., 2019; Way & Montgomery, 2015; Ogle et al., 2014). Even 

advanced models like PhenoFlex can mispredict under non-stationary climates if calibrated on 

outdated conditions, as shown in spruce forests where models overestimated budburst under 

recent warming (Gao et al., 2023). 

These limitations underscore the need for more flexible, robust, and dynamically parameterised 

phenology models that remain valid under shifting climate regimes (Hänninen et al., 2019; Asse et 

al., 2020; Pei et al., 2024). 

Machine Learning (ML) has transformed phenological modelling by identifying patterns in data 

rather than relying on predefined biological rules (Dai, et al., 2019; Garnot et al., 2025). Using 

predictors such as temperature, photoperiod, and precipitation, ML models like Random Forests 

and Support Vector Regression (SVR) have achieved budburst prediction errors as low as 7 days, 

significantly outperforming PBMs, which typically yield errors of 13–26 days (Li et al., 2023; Gao 

et al., 2023). ML can also detect non-obvious drivers, e.g., the influence of rainfall on cherry 

flowering, often missed by PBMs (Masago & Lian, 2022; Currier & Sala,  2022). 

ML captures complex, nonlinear interactions and adapts to local conditions, especially in data-rich 

contexts (Tufail et al., 2023). However, its predictive strength comes at the cost of interpretability. 

Models are often seen as “black boxes,” with outputs that may conflict with biological 

expectations, such as rainfall outweighing temperature as a key predictor, without clear mechanistic 

justification (Deng et al., 2024; Kim et al., 2025). This opacity is being addressed by explainable AI 

(XAI) techniques such as SHAP and LIME, though their adoption remains uneven (e.g. Lisboa et 

al., 2023; Patidar et al., 2024). 

ML models also require large, diverse datasets for generalisation; performance degrades with sparse 

or unrepresentative training data (Maestrini et al., 2022; Mohammed et al., 2025). They struggle in 

novel climate regimes, often underestimating phenophases under warming scenarios. For instance, 

a PhenoFormer model trained on baseline climates consistently underestimated spring and autumn 

timings during warmer years, though it still reduced nRMSE by up to 8% compared to PBMs 

(Garnot et al., 2025). 

Hybrid modelling frameworks have emerged as a promising synthesis, combining PBM’s 

interpretability with ML’s flexibility. Approaches range from using ML to parameterize PBM 

equations (Akhavizadegan et al., 2021) to embedding process-based constraints within neural 

network architectures (Willard et al., 2022). In viticulture, a hybrid model coupling grapevine 

phenology submodels with ML-derived climate projections improved harvest date forecasts by 4–

7 days compared to PBMs alone (Leolini et al., 2023). However, significant challenges persist, 

particularly in quantifying and reducing uncertainty. Few models propagate input data errors or 

parameter uncertainties through to predictions (Dietze et al., 2018), while others neglect spatial 

autocorrelation in phenological observations, risking overconfident extrapolations (Pei et al., 

2024).  

As climate change accelerates, the need for biologically grounded models that are adaptable to 

novel conditions has never been more pressing, a gap this thesis seeks to explore. This research 

also attempts to advance the field of hybrid phenology modelling by critically exploring two 

distinct hybrid strategies: a machine learning-derived parameterization approach that dynamically 
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estimates parameters of a plant phenology PBM (UNIFORC), and a parallel ensemble framework 

that integrates multiple fixed-parameter sets and machine learning regressors via a linear regression 

meta-learner. By comparing these strategies using a structured climate dataset and a year-forward 

chaining evaluation protocol, this study examines their predictive accuracy and capacity for 

biological interpretability, adaptability to climate variability, and robustness under future-like 

conditions. It contributes to the expanding body of research on hybrid phenological models that 

reconcile physiological insight with empirical performance. 

1.2 Problem Statement 

Accurate and interpretable prediction of plant phenology is essential for understanding ecological 

responses to accelerating climate change. While process-based models (PBMs) offer biological 

interpretability through mechanistic rules (Chuine et al., 2016; Hänninen et al., 2019), they are 

limited by rigid functional forms and the difficulty of parameter calibration, which restricts their 

adaptability across species, sites, and future climate scenarios (Körner & Basler, 2010; Beven & 

Freer, 2001; Vitasse et al., 2021). Conversely, ML models provide flexible, high-performing 

alternatives in data-rich settings but often sacrifice causal interpretability and struggle under 

extrapolation to novel climates or sparse datasets (Reichstein et al., 2019; Patidar et al., 2024; 

Dronova & Taddeo, 2022). 

Hybrid models have emerged to combine PBM interpretability with ML adaptability (Maestrini et 

al., 2022; Ou et al., 2025). However, many existing hybrids either bypass or oversimplify PBM 

parameterization, neglecting the opportunity for ML to inform biologically meaningful parameters 

such as forcing thresholds or chilling sensitivity (Piña-Rey et al., 2023). Additionally, few studies 

rigorously test hybrid models under changing climatic baselines or systematically compare 

parameter learning, regression, and ensemble strategies (Garnot et al., 2025; Zhu et al., 2024). 

To address these gaps, this research develops a hybrid phenological modelling framework that 

dynamically estimates PBM parameters using ML, integrates direct DOY prediction, and fuses 

outputs through interpretable ensemble models. The framework applies a window-based data 

approach and a year-forward chaining strategy to simulate real-world forecasting under shifting 

climate conditions. By incorporating iterative learning and multi-model comparisons, this work 

aims to deliver phenological predictions that are not only accurate but also biologically 

interpretable, generalizable, and resilient across diverse ecological and climatic contexts (Inouye, 

2022; Zohner et al., 2023). 

1.3 Research Aim 

This research aims to develop and evaluate a hybrid phenological modelling framework that 

integrates process-based models with machine learning to predict budburst phenophases using a 

year-forward chaining approach, thereby simulating predictive performance under evolving 

climate conditions while ensuring accuracy, interpretability, and generalizability. 

1.4 Research Objectives 

The objectives of this research study are as follows:  

1. To review and categorize existing hybrid phenological models according to their coupling 

strategies, data requirements, spatial and temporal scales, and target phenophases, to 

identify methodological trends, knowledge gaps, and opportunities for innovation. 
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2. To develop and evaluate two hybrid modelling approaches that integrate process-based 

and machine learning components for more accurate, interpretable, and generalizable 

phenological prediction 

 

3. To evaluate the hybrid model's performance under evolving climate conditions. 

1.5 Research Questions 

To achieve the stated objectives, this research will attempt to answer the following questions:  

1. What are the prevailing strategies in hybrid phenological modelling, and what 

methodological limitations and knowledge gaps remain? 

 

2. How do different hybrid strategies, such as parallel ensemble modelling and machine 

learning-driven parameter estimation with feedback, compare their ability to integrate 

PBM and ML components for accurate and interpretable budburst prediction? 

 

3. How effectively can hybrid models simulate future phenological responses under evolving 

climate conditions when evaluated using a year-forward chaining strategy and windowed 

climate data? 

1.6 Report Structure 

This report is organised in chapters with Chapter 1 providing background on phenology and its 

relevance under climate change, identifying the problems inherent in phenology modelling 

approaches, and outlining the research objectives and aim. Chapter 2 examines existing work on 

hybrid phenology models, structured using the SALSA framework (Scope, Approach, Learning, 

Scale, Applicability). Key gaps in the literature are identified to situate the current research. Chapter 

3 describes the study area, dataset and data sources. Furthermore, we describe the hybrid modelling 

approaches, including quantitative and qualitative evaluation metrics. In Chapter 4, we present the 

results from the modelling and evaluation experiments. These results are discussed in Chapter 5, 

along with limitations of the research. Also, the chapter contains a summary of the research’s 

findings and recommendations for future work. 
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2. LITERATURE REVIEW 

2.1 Review of related works  

2.1.1 Search and Appraisal 

As shown in Figure 1, Comprehensive searches were conducted on Scopus, Web of Science (WoS), 

and Google Scholar using keywords such as “phenology modelling”, “process-based phenology 

modelling”, “machine learning phenology modelling”, and “hybrid phenology modelling”. Over 

3,000 documents were initially retrieved (e.g., 1,788 from Scopus, 1,302 from WoS, and 1071 from 

Google Scholar). 

Studies were screened for relevance based on title, abstract, and full-text availability. Deep learning, 

yield-focused, and remote sensing-only, as well as stand-alone Machine Learning, Process-based 

and comparative studies were excluded to retain focus on interpretable, biologically grounded 

hybrid models. Following duplicate removal and eligibility filtering, eight studies were selected for 

detailed synthesis. 

  

Figure 1 Structured Literature Review Procedure 

2.1.2:  Research Scopes 

Reviewed studies spanned a range of objectives, primarily focusing on agricultural phenology for 

crops like rice (Zhang et al., 2024; Kawakita et al., 2023; Yu et al., 2025), soybean (McCormick et 

al., 2021), wheat (Droutsas et al., 2022), and sugarcane (Da Veiga Grubert, 2023), as well as tree 

phenology (Garnot et al., 2025). The phenological stages modelled include heading, flowering, 

maturity, leaf emergence, and yield. The common and overarching goal was to enhance prediction 

accuracy by leveraging PBMs’ mechanistic understanding and ML’s data-driven flexibility, 

addressing limitations such as nonlinearity in climate-phenology interactions or data scarcity. 

However, the scope varied in specificity: agricultural studies target actionable outcomes like 
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planting schedules. The agricultural focus is highly relevant given global food security challenges. 

The lack of focus on underrepresented crops (e.g., millets or legumes beyond soybean) and non-

crop plants highlights a gap in addressing diverse agricultural systems, particularly in vulnerable 

regions. 

2.2 Hybrid Modelling Approaches 

Six hybrid modelling approaches varying in the coupling strategies of the PBMs and ML 

components were reviewed, each with distinct mechanisms and theoretical underpinnings (See 

Table 1). The following sections describe each approach with concrete examples, followed by an 

analytical evaluation of its efficacy and limitations. 

2.2.1 Sequential Hybrid 

Sequential hybrid models work by using PBM outputs as inputs or priors for ML models, 

leveraging the mechanistic foundation of PBMs while using ML to refine predictions. For example, 

Zhang et al. (2024) used a crop phenology model to predict rice heading and maturity dates, which 

XGBoost refined using climatic (temperature, rainfall, solar radiation) and varietal data. The PBM 

captured physiological processes (e.g., thermal time accumulation), while the XGBoost modelled 

nonlinear interactions, achieving RMSEs of 4.65 and 5.72 days for heading and maturity, 

respectively. Similarly, Yu et al. (2025) employed the ORYZA PBM developed by the International 

Rice Research Institute (IRRI) to simulate rice phenological stages, with a Distributed Random 

Forest (DRF) refining predictions by learning climate-phenology interactions from temperature, 

solar radiation, and soil moisture data. 

Sequential hybrids exploit PBMs’ ability to model well-understood physiological processes (e.g., 

degree-day accumulation) while using ML to capture complex, data-driven patterns (e.g., climate 

or genetic variability effects). This is particularly effective in data-rich environments, as in Zhang 

et al. (2024), where 337 locations provide ample training data for XGBoost. However, the 

approach assumes PBM outputs are sufficiently accurate to serve as reliable inputs. ML may 

propagate or amplify errors if PBMs are miscalibrated (e.g., due to poor parameterization for local 

conditions). Additionally, sequential hybrids require extensive data preprocessing to align PBM 

and ML inputs, which can be computationally intensive. 

2.2.2 Parallel Hybrid Modelling 

The parallel hybrid strategy uses independent PBM and ML predictions, combined via ensemble 

methods to produce a final output.  McCormick et al. (2021) used soybean PBMs (CROPGRO 

and SOYDEV) and an Ensemble Super Learner to generate independent predictions of flowering 

and maturity, weighted and aggregated into a final ensemble. Parallel hybrids mitigate individual 

model weaknesses by leveraging ensemble diversity. For instance, PBMs may excel in stable 

climates, while ML models adapt to anomalies, as seen in Arcomano et al. (2022). Ensemble 

weighting allows dynamic adjustment based on model performance, enhancing robustness. The 

stacking approach requires careful calibration of weighting schemes, which can be subjective or 

data-dependent. McCormick et al. (2021) do not specify how weights are determined, raising 

questions about reproducibility. Additionally, parallel hybrids increase computational complexity, 

as both models run independently. 
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2.2.3 ML-derived parameterisation 

In this hybrid strategy, ML models are used to estimate or refine key parameters of a PBM, which 

are then used to drive PBM simulations. This approach leverages ML's ability to capture complex 

relationships from data to address one of the significant limitations of PBMs, manual or site-

specific parameter calibration. 

Droutsas et al. (2022) demonstrated this method using Random Forest and XGBoost to predict 

key physiological parameters, specifically Radiation Use Efficiency (RUE) and the rate of change 

of harvest index (dHI/dt), for the GLAM-Parti model. Although the primary output of interest 

was yield, GLAM-Parti is a land surface model with a phenology module, allowing it to simulate 

various stages of plant development. By accurately predicting RUE and dHI/dt, the ML models 

significantly improved the PBM’s simulation of wheat biomass and yield under variable climatic 

conditions, capturing 98% of the observed variance. This illustrates how ML can enhance the 

PBM’s performance by overcoming limitations in parameter estimation while preserving its 

physiological basis. 

Similarly, Kawakita et al. (2023) applied an ML-derived parameterisation approach using genomic 

data to inform phenological model parameters. They focused on 11 heading date-related genes in 

rice, using haplotype combinations as predictors for calibrating parameters across four phenology 

models: the Beta model, simplified Beta model, ORYZA2000, and SIMIRIW. Various ML 

regressors, including support vector machines, random forests, and ridge regression- were used to 

predict model parameters from genotype information. These parameter-informed PBMs were then 

run to simulate heading dates, and their outputs were either used individually or combined into a 

dual-integrated ensemble. The resulting hybrid models achieved improved RMSEs of 5.9 days 

under known environments and 6.5 days under unseen test conditions, demonstrating strong 

generalisation. This work highlights the strength of using ML to account for genotype-dependent 

variability while preserving the mechanistic interpretability of PBMs. 

2.2.4 ML Guided by PBM Constraints 

In this hybrid approach, the PBM acts as a biological filter or constraint on the ML model, ensuring 

predictions remain physiologically plausible. Instead of allowing the ML model to learn freely from 

data, the PBM imposes rules based on known plant biology, for example, preventing the prediction 

of flowering before the vegetative stage. Worrall et al. (2022) applied this strategy using the 

Decision Support System for Agrotechnology Transfer (DSSAT) crop model to guide a neural 

network that predicted corn phenological stages from remote sensing data. DSSAT provided 

physiological limits and stage sequences that filter or restrict ML outputs during training or 

prediction. This helped maintain biological realism, especially in real-time in-season monitoring. 

However, this approach depends heavily on the accuracy and flexibility of the PBM. If the PBM 

is poorly calibrated or oversimplified, it may constrain the ML model too much, limiting its ability 

to detect novel patterns or improve predictions. In Worrall et al.’s case, the study did not report 

detailed performance metrics, making it difficult to assess how much the PBM constraint improved 

results. Overall, PBM-guided ML offers greater interpretability and biological coherence, but care 

must be taken not to over-restrict the ML model’s learning potential 

2.2.5 Residual Learning 

Using Residual Learning, ML refines PBM outputs by learning residuals between predictions and 

observations. For example, Garnot et al. (2025) used PhenoFormer, a transformer-based model, 
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to refine PBM outputs for tree phenology (leaf emergence, colouration) in Switzerland, achieving 

a 13% R² improvement and 1.1-day RMSE reduction.  Residual learning allows ML to focus on 

correcting PBM errors, leveraging transformers’ ability to model temporal dependencies in 

phenological data. This is particularly effective for tree phenology, where long-term observations 

(70,000 in Garnot et al., 2025) enable robust learning. The downside of this approach is total 

reliance on training data. Also, Transformers are computationally intensive and require large 

datasets, limiting applicability in data-scarce regions. The approach also assumes PBM priors are 

reasonably accurate, which may not hold for poorly parameterised models. 

2.2.6 PBM-Generated Synthetic Data 

In this hybrid approach, process-based models (PBMs) are employed to generate synthetic datasets 

that serve as pretraining inputs for machine learning (ML) models, which are subsequently fine-

tuned using observational data. Maestrini et al. (2022) applied this method by simulating crop 

growth and phenological development under diverse environmental conditions to create a rich 

training corpus. This PBM-generated data enabled the ML model to learn generalised relationships, 

which were later refined using real-world measurements to improve yield prediction. Although the 

study's primary objective was yield estimation, phenology played a critical role, as the timing of 

developmental stages strongly influences yield outcomes. The synthetic data encapsulated these 

dynamics, allowing the ML model to internalise biologically meaningful patterns even in data-

scarce contexts. 

This strategy is particularly advantageous when observational datasets are limited, as it enables ML 

to benefit from mechanistic knowledge encoded in PBMs. However, its effectiveness is contingent 

on the accuracy of PBM simulations. If the synthetic data are biased or poorly calibrated, they may 

mislead the ML model during pretraining, thereby introducing structural errors. Moreover, 

Maestrini et al. (2022) do not provide detailed performance metrics, which makes it challenging to 

evaluate the quantitative contribution of PBM pretraining. Nevertheless, the study illustrates a 

promising pathway for embedding physiological realism into data-driven models, potentially 

enhancing prediction robustness in environments where field data is sparse or variable. 

2.3 Learning Structure and Choices 

Across hybrid phenology modelling studies, the choice of process-based models is mostly coupled 

within land surface models. At the same time, the ML algorithm, on the other hand, is closely tied 

to the quantity and structure of available data and the complexity of the modelled phenological 

processes. Widely adopted algorithms included XGBoost (Zhang et al., 2024; Droutsas et al., 

2022), Random Forests (Yu et al., 2025), neural networks (Worrall et al., 2022), ensemble learners 

(McCormick et al., 2021), and advanced deep learning architectures such as transformers (Garnot 

et al., 2025). Simpler regression-based models have also been employed for relatively 

straightforward predictive tasks (Kawakita et al., 2023; Da Veiga Grubert, 2023). 

Engineered features typically reflect climatic and crop-specific variables, including temperature, 

precipitation, solar radiation, vegetation indices (e.g., NDVI), photoperiod, cultivar identity, and 

soil properties. For instance, Zhang et al. (2024) incorporated rice varietal data for genotypic 

differences. Garnot et al. (2025) included vapour pressure deficit to capture moisture stress 

dynamics in temperate forest systems. The quality and granularity of these features often depend 

on the study region’s data infrastructure. 
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Supervised learning remains the dominant paradigm, with most models trained to predict 

continuous outcomes such as flowering dates or yield levels. Ensemble strategies, like those used 

by McCormick et al. (2021), offer robustness by aggregating multiple base learners, while 

transformer models (Garnot et al., 2025) leverage temporal dependencies in high-resolution time 

series datasets. 

Critically, algorithm selection reflects both data richness and environmental complexity. Tree-

based models (e.g., XGBoost, Random Forest) perform well on structured datasets with moderate 

complexity and are resilient to missing data. Deep learning models excel where data volume 

supports parameter learning, but risk overfitting and computational inefficiency in sparse or noisy 

datasets. The absence of methodological transparency in some studies (e.g., Maestrini et al., 2022), 

such as missing architectural or training details, limits reproducibility and transferability. 

Inconsistent feature selection, such as omission of soil parameters in Zhang et al. (2024), can 

further reduce model generalizability, particularly in environmentally heterogeneous contexts. 

2.4 Current Scale of Reviewed Research 

Reviewed studies spanned diverse spatial and temporal domains, yet tend to cluster around well-

instrumented, agriculturally important, and climatically stable regions. At the global level, 

McCormick et al. (2021) evaluate soybean phenology across multiple continents, benefiting from 

extensive satellite and ground-truth datasets. Regional studies are more prevalent: Zhang et al. 

(2024) focus on 337 sites across China’s rice-growing zones, Da Veiga Grubert (2023) on 

sugarcane in Brazil, and Garnot et al. (2025) on deciduous forest phenology using 70,000 records 

from Switzerland. Even studies that appear localized often reflect data-abundant, climatically stable 

zones. For example, Worrall et al. (2022) utilize long-term remote sensing and weather data from 

the U.S. Corn Belt. Maestrini et al. (2022) build a transfer learning framework for the Netherlands, 

using broader Northern European data as the pretraining domain. These contexts offer consistent 

phenological cycles, dense sensor coverage, and rich agronomic records, enabling sophisticated 

modelling approaches.  

Underrepresented regions such as arid zones, mountainous areas, or tropical systems with complex 

multi-cropping receive little attention, despite their exposure to climate variability and phenological 

instability. This geographic imbalance introduces a contextual gap: the assumption that models 

trained in data-rich, stable systems generalise to data-sparse, highly variable contexts remains 

largely untested. Temporally, most studies aim at intra-seasonal or annual phenological predictions 

(e.g., flowering, maturity). This narrows the potential for hybrid models to inform long-term 

adaptation planning under climate change. 

2.5 Research Applicability 

Hybrid models demonstrate substantial promise across agricultural and ecological domains. High 

predictive performance is consistently reported in well-studied systems: Zhang et al. (2024) report 

RMSEs of 4.65 and 5.72 days for rice phenology, with R² values above 0.90; Droutsas et al. (2022) 

explain 98% of the variance in wheat biomass and yield using feature-augmented PBMs; and 

Garnot et al. (2025) reduce RMSE by 1.1 days for tree phenology predictions with transformer-

based residual learning. 

These applications align with practical goals: improved planting and harvesting windows (Zhang 

et al., 2024; Kawakita et al., 2023), enhanced yield forecasting (Maestrini et al., 2022), and in-season 

monitoring (Worrall et al., 2022). Notably, these studies operate in data-rich settings with access 
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to long-term meteorological and phenological archives, conditions often absent in low-income or 

climatically extreme regions. 

However, limitations persist. Several studies fail to report full evaluation metrics (e.g., Yu et al., 

2025; Worrall et al., 2022), undermining cross-study comparability and real-world validation. High-

end data requirements (e.g., satellite indices, genomic inputs) constrain model transfer to regions 

with limited infrastructure. Likewise, the computational demands of deep learning architectures 

(e.g., PhenoFormer in Garnot et al., 2025) limit scalability, particularly in operational or resource-

constrained environments. In sum, while hybrid models yield strong performance where data 

availability and environmental stability align, their applicability in low-resource or ecologically 

dynamic regions remains underexplored. Addressing this discrepancy is critical for ensuring 

equitable access to phenology forecasting tools under global climate variability. 

2.6 Gaps in Current Research 

Despite the progress made in hybrid phenology modelling, several critical gaps and limitations 

persist, both contextually and operationally. Sequential hybrid approaches, while effective in 

refining PBM outputs, are susceptible to the propagation of errors originating from poorly 

calibrated or oversimplified PBMs. This dependence on the mechanistic model’s baseline accuracy 

may limit its applicability in heterogeneous or data-sparse environments. In addition, there remains 

a lack of standardised evaluation frameworks. Studies often report different combinations of 

metrics (e.g., RMSE, R², MAE) or omit them entirely, making it difficult to benchmark model 

performance objectively. The geographical focus of existing literature is heavily skewed toward 

temperate and tropical systems, with limited attention paid to phenological modelling in arid, semi-

arid, or underrepresented agroecologies. 

Another significant gap lies in the limited crop and vegetation diversity addressed in current hybrid 

phenology modelling studies. The literature is heavily skewed toward globally dominant cereals 

such as rice, wheat, and soybean, reflecting data availability and global economic importance. 

However, this narrow focus overlooks regionally vital or climate-resilient crops, such as millets, 

pulses, sorghum, and indigenous varieties, that play a critical role in the food security and 

nutritional diversity of vulnerable populations, particularly in arid, semi-arid, and resource-

constrained regions. Furthermore, non-crop plant species, such as native forest trees, grasslands, 

and shrubs, are largely excluded from hybrid modelling efforts, despite their ecological importance. 

These species underpin key ecosystem services, including carbon sequestration, water regulation, 

pollination support, and biodiversity maintenance. Their phenological responses to climate 

variability offer vital indicators of ecosystem health and resilience, especially under climate change 

(Lindborg et al., 2023; Qiu & Mitchell, 2024; Kattel, 2022). The absence of such vegetation types 

from modelling efforts limits the applicability of current models for conservation planning, 

biodiversity monitoring, and ecosystem management. Finally, most studies remain limited to 

seasonal phenology or short-term yield prediction. Few models explicitly incorporate real-time 

sensing or long-term forecasting capabilities necessary to assess phenological responses under 

climate change scenarios. In addition, no existing hybrid phenological modelling framework 

explicitly incorporates or accounts for the fuzzy and uncertain nature of phenological transitions. 

The field currently lacks formal treatment of phenophases as fuzzy intervals, probabilistic 

transitions, or uncertain windows, despite clear biological and observational justification for doing 

so and instead focuses on predicting a rigid DOY.
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Table  1Categorization of Hybrid Modelling Approaches 

Study Title Hybrid Coupling Method PBM Used ML Algorithm Used Hybrid Modelling Specifics 

Predicting Rice Phenology Across China 
(Zhang et al., 2024) 

Sequential Hybrid - PBM 
output used as ML input 

Crop phenology 
model 

XGBoost The crop phenology model provides initial 
predictions, and ML use additional climatic and 
varietal data to refine initial predictions. 

Dual Ensemble Approach for Rice Heading 
Date (Kawakita et al., 2023) 

Sequential Hybrid - ML 
predicts genotype-specific 
priors for PBM 

Multiple rice 
phenology models 

Genetic parameter 
regression (ML-based) 

ML estimates genotype-specific parameters fed into 
PBMs; final predictions are averaged from multiple 
models. 

Comparing Physics-Based, Data-Driven, and 
Hybrid Models for Rice Phenology  
(Yu et al., 2025) 

Sequential Hybrid - PBM 
outputs serve as ML features 

ORYZA Distributed Random 
Forest (DRF) 

ORYZA predicts phenological stages, and DRF 
refines predictions using learned climate-phenology 
interactions. 

Integration of ML into Process-Based 
Modelling for Complex Crop Responses  
(Droutsas et al., 2022) 

Feature Augmentation - ML 
refines key PBM variables 

GLAM-Parti Random Forest, 
XGBoost 

ML predicts key physiological parameters (Radiation 
Use Efficiency - RUE, rate of change of harvest 
index - dHI/dt), which are then used as inputs in the 
PBM. 

In-Season Crop Phenology Using Remote 
Sensing & Model-Guided ML  (Worrall et al., 
2022) 

ML guided by PBM 
constraints 

DSSAT Neural Networks (NN) DSSAT guides NN training using phenological stage 
outputs, ensuring physiological plausibility. 

Intercontinental Prediction of Soybean 
Phenology  
(McCormick et al., 2021) 

Parallel Hybrid - 
 

PBM for soybean 
phenology 

Ensemble Super Learner PBMs and ML models generate independent 
predictions, which are then weighted and combined 
into a final ensemble prediction. 

PhenoFormer: Deep Learning Meets Tree 
Phenology Modelling 
Garnot et al., 2025) 

Residual Learning - 
PBM output used as prior, 
ML refines it 

Multiple PBMs Transformer-based deep 
learning (ResNet-152) 

PBM outputs serve as priors, and PhenoFormer 
refines them dynamically by learning from real-world 
observations. 

Mixing process-based and data-driven 
approaches in yield prediction (Maestrini 
et al., 2022) 
 

PBM- generated synthetic 
data used to pre-train the 
ML model 

PBM for crop 
growth 

ML models (not 
specified) 

PBM simulations generate synthetic training data, 
which ML models use for pre-training before fine-
tuning on observational data. 
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3. STUDY AREA, DATASETS AND METHODOLOGY 

3.1 Study Area 

This study focused on 229 points spread across Germany, a temperate country located in Central 

Europe, spanning latitudes 47°N to 55°N and longitudes 5°E to 15°E. The region experiences a 

predominantly temperate seasonal climate, with moderate winters, warm summers, and substantial 

interannual variability in temperature and precipitation (Zhu & Siebert, 2024; Deutscher 

Wetterdienst [DWD], 2023). Germany hosts a range of forest ecosystems, with Fagus sylvatica 

(European beech) being one of the dominant and ecologically significant deciduous species across 

its natural range. The species' sensitivity to thermal cues makes it an ideal candidate for phenological 

modelling under changing climatic conditions (Hacket-Pain et al., 2025; Vitasse et al., 2021). 

3.2 Datasets and Sources 

This study integrated phenological and climate datasets to develop and evaluate hybrid budburst 

prediction models. Table 2 summarises the key sources and datasets used, including phenological 

observations of Fagus sylvatica and associated climate variables.  

3.2.1 Phenological Observations 

Phenological records for Fagus sylvatica were obtained from the PEP725 database, aggregating 

harmonized phenological observations from national European networks. The dataset used in this 

study spans 2000 to 2015, covering multiple years of spring budburst observations across numerous 

German monitoring sites from which 229 were isolated for this research. All records were quality-

checked and pre-filtered to exclude missing, inconsistent, or outlier values based on established 

phenological criteria (Templ et al., 2018). 

3.2.2 Climate Data 

Daily climate data for each of the 229 points were derived from the ERA5-Land Hourly Reanalysis 

dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) and 

accessed via the Google Earth Engine (GEE) platform from the Copernicus Climate Data Store. 

The dataset provides hourly climate variables at approximately 9 km spatial resolution and includes 

core surface meteorological drivers relevant to phenology. For this study, the data were aggregated 

to daily means or totals for 1969–2015 using the GEE JavaScript API (Muñoz Sabater, 2019; 

Gorelick et al., 2017). 

Table  2: Datasets and Sources 

Dataset Source Temporal 
Coverage 

Spatial 
Resolution 

Key Variables Purpose 

ERA5-
Land 

ECMWF 
Copernicus 
Climate Data 
Store 

1969 - 
2015 

~9 km 
(0.1°) 

Daily air temperature, 
dewpoint temperature, 
precipitation, soil moisture, 
pressure, solar and thermal 
radiation, latent heat flux, 
wind, VPD 

Environmental 
drivers for 
phenology 
modelling 

PEP725 
Phenology 

Pan European 
Phenology 
Network 
(PEP725) 

1969 - 
2015 

Point-based 
(site-level) 

Budburst dates (BBCH 11) for 
Fagus sylvatica, with site ID and 
geographic coordinates 

Ground truth for 
model training and 
evaluation 
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3.3 Exploratory Data Analysis and Preprocessing 

Prior to model development, the structure and quality of the phenology and climate datasets were 

assessed. This process involved data cleaning, outlier detection, temporal alignment, and 

standardization to ensure all variables were coherent and appropriately scaled for machine learning 

and process-based modelling. 

Phenological data, obtained from the PEP725 database, consisted of ground-based observations of 

budburst (BBCH Stage 11) for Fagus sylvatica across Germany. From the initial dataset, 230 sites were 

selected based on their temporal completeness and spatial coverage. These sites represented those 

with consistent and uninterrupted observations from 1969 to 2015. Observations reflecting data 

entry errors or extreme departures from long-term trends were removed after manual inspection. 

The goal was to retain only phenological records that reflect natural, biologically realistic interannual 

variability. 

The corresponding climate data were extracted from the ERA5-Land reanalysis archive via the 

Google Earth Engine platform. Daily values were computed by aggregating hourly measurements 

for each variable throughout the study period. Climate data were extracted from each phenology 

site's nearest ERA5-Land grid cell, offering an approximate spatial resolution of 9 km. Climate 

variables included daily mean air temperature, dewpoint temperature, surface pressure, precipitation, 

soil moisture, wind speed and direction, shortwave and longwave surface radiation, and latent heat 

flux. All variables were converted into standard units. For example, temperature values were 

Figure 2: Study Area Map 
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converted from Kelvin to degrees Celsius, precipitation from meters to millimetres, and pressure 

from hectopascals to kilopascals. Energy and radiation fluxes were standardized to daily average 

W/m². 

Data completeness was verified, and years with extensive missing values were excluded from further 

analysis. Derived metrics, including growing degree days (GDD), chilling hours, and vapour pressure 

deficit, were calculated from the cleaned variables to characterize temperature and energy dynamics 

relevant to plant development. These variables were selected due to their physiological relevance to 

dormancy break and spring phenology in temperate deciduous species (Basler & Körner, 2023; 

Zohner et al., 2023). 

No further standardisation was applied as the ERA5-Land climate variables were pre-normalized 

and aggregated in Google Earth Engine using consistent methods and units. Finally, the phenological 

and climate datasets were temporally aligned site-yearly. Climate windows were extracted for each 

phenological event, ensuring that daily records preceding budburst were retained for feature 

extraction. The final dataset consisted of matched, cleaned, and unit-standardized records for 229 

sites over 47 years, ready for use in the hybrid modelling frameworks. In Figure 3, a line plot shows 

the yearly average temperature distribution. 

 

Figure 3Time Series of Mean Annual Temperature distribution across observed stations 

The line plot illustrates annual mean temperature trends across all sites from 2000 to 2015. 

Considerable interannual variability can be seen, with temperatures fluctuating between just under 

8.0°C and over 10.5°C. The lowest point occurs in 2010, followed by a sharp rebound and a 

noticeable warming trend leading up to 2014, the warmest year in the series. Although the pattern is 

not uniformly linear, the latter years, particularly from 2012 onward, suggest a possible shift toward 

higher average temperatures compared to the early 2000s. This may reflect a broader trend of recent 

warming. 
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Figure 4Box plots of Budburst DOY distributions over the years 

In Figure 4, the boxplot reveals notable budburst timing shifts corresponding to interannual 

temperature variation. In 2010, which recorded the lowest average temperatures, the distribution of 

budburst days is relatively delayed, with a higher median and a concentration of values later in the 

season. Conversely, 2014, identified as the warmest year, shows the earliest budburst timing in the 

entire period, with a markedly lower median DOY and a compressed distribution. This contrast 

underscores the sensitivity of budburst phenology to temperature, with warmer conditions generally 

advancing the onset of budburst and colder years delaying it. 

3.4 Methodology 

This chapter outlines the methodologies employed in this study. Data was structured using a sliding 

window approach and partitioned using a year-forward chaining strategy. Two hybrid modelling 

pipelines were developed. The first hybrid model adopts a data-driven parameterization strategy, 

where an ML model predicted PBM (UNIFORC) parameters, which were then used to simulate 

DOY. This pipeline included a feedback loop that triggered re-optimization of the parameters and 

re-simulation when certain conditions were met. The second combined the same PBM as the first,  

(UNIFORC)  with five fixed parameter sets running simultaneously with three ML regressors 

(Random Forest, XGBoost, and Support Vector Regression), each independently predicting 

budburst DOY. Predictions from each base model were fused using a linear regression 

ensemblemodel to produce a single stacked output. 

3.4.1 Temporal Data Splitting 

A year-forward chaining strategy was employed for data splitting to simulate realistic forecasting 

conditions (Roberts et al., 2017). For each test year ytest ∈ {2001, 2002, …,2015}, the model was 

trained on all preceding years {y: y < ytest}. Formally, for each fold: 

Trainy = {(xi,yi) ∣ Yeari < ytest}, Testy = {(xi,yi) ∣ Yeari = ytest}    (1) 

In equation (1), x is the covariates (climate variables) used to model phenology, while 𝑦 is the Target 

variable (Budburst Day of year (DOY)). 
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This approach resulted in 15 temporally ordered folds, where training windows expanded over time 

(e.g., training on 2000 - 2004 to predict 2005). Unlike random or stratified splits, this method avoids 

data leakage by respecting the temporal sequence of climate phenology interactions. It also enables 

an evaluation of temporal generalizability, assessing how well models trained on historical data 

perform under potentially novel climatic conditions (evaluation procedure is explained in section 

3.4.6). While this strategy may introduce class imbalance across folds, it remains consistent with the 

seasonal and interannual variability inherent to ecological time series. 

3.4.2 Data Preparation and Feature Engineering 

Cleaned and split climate and phenology data, including daily temperature, precipitation, latitude, 

photoperiod, and Budburst DOYs, were aggregated into 14-day sliding windows (Dai et al., 2022). 

These windows preserve the temporal dynamics leading up to budburst and allow the models to 

learn context-specific responses. Each sliding window comprised a multivariate time series that 

included mean temperature, precipitation, soil moisture, growing degree days (GDD), and chilling 

units. Features were explicitly labelled from day 1 to day 14 (e.g., tmean_day1, precipitation_day5, 

etc.), resulting in a high-dimensional feature space. Additionally, static variables such as latitude and 

photoperiod were appended to provide location-specific context. In total, the feature space 

comprised 72 features. The dependent variable for all modelling tasks was budburst's observed day-

of-year (DOY), drawn from validated phenological records. This target variable served as the ground 

truth for model training and evaluation. 

3.4.3 Process-Based Modelling Using the UNIFORC Model 

The UNIFORC model defined in equation (2) served as the foundation for the process-based 

component of the hybrid frameworks. It simulates budburst timing by accumulating daily forcing 

units derived from a sigmoid function of mean temperature. For each day t, the forcing unit is defined 

as: 

𝐹𝑈𝑡 = 
1

1+exp (𝑑∙(𝑇𝑡−𝑒))
              (2) 

where Tt is the daily mean temperature, d determines the steepness of the response curve, and e is 

the inflexion point representing the critical temperature at which bud development accelerates. 

Budburst is assumed to occur on the earliest day when the cumulative forcing units exceed a species-

specific threshold, fcrit. (Chuine, 1999). This threshold is accumulated from a fixed starting day-of-

year t0, leading to the condition modelled by equation (3): 

∑ 𝐹𝑈𝑡 ≥ 𝑓𝑐𝑟𝑖𝑡
𝐷𝑂𝑌
𝑡=𝑡0  

𝑦𝑖𝑒𝑙𝑑𝑠
→     𝐵𝑢𝑑𝑏𝑢𝑟𝑠𝑡 𝑜𝑛 𝐷𝑂𝑌      (3)       

The UNIFORC model requires a continuous daily temperature series for each site-year combination. 

A custom function consolidates temperature data from sliding windows into a full-year series (DOY 

1 to 366). The resulting temperature series, T = [T1, T2,..., T366], is input to the UNIFORC model. 

The model’s sigmoid temperature response offers a biologically grounded tool for modelling Fagus 

sylvatica budburst in the study area, where spring temperatures between 2000 and 2015 showed 

considerable variability, but chill accumulation rarely fell below critical thresholds. The key 

parameters, slope (d), inflexion (e), and forcing threshold (fcrit), allow flexible response across cooler 

years like in 2010 and warmer springs such as in 2014. Although UNIFORC omits chilling, studies 

show that its forcing-only structure often outperforms more complex models in European beech 
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phenology (Roberts et al., 2015). Additionally, field observations within the study area confirmed 

that temperature strongly governs Fagus sylvatica budburst: a long-term analysis across 405 German 

sites found that years with slower spring warming, such as 2010, corresponded with delayed and 

more variable budburst timing (Malyshev et al., 2022).  

While the model's sensitivity to parameter estimates and its neglect of photoperiod or drought cues 

can limit predictions under novel climates, its integration into a hybrid framework, complemented 

by ML in this study, offers a promising approach to validating UNIFORC as a physiologically 

grounded backbone for reconstructing and forecasting budburst under historically observed 

temperature regimes. 

3.4.4 The Parallel (Ensemble) Hybrid Model Architecture 

The model architecture described in Figure 5 has the ML component running independently of the 
PBM, with its outputs stacked by a Linear Regression ensemble model (Dai, et al., 2022). In the 
following sections, the distinct components of the strategy are explained. 

3.4.4.1 The Process-Based Component 

Five fixed parameter set options were tested in this strategy (See Table 3). They varied in terms of 

temperature sensitivity (via d) and thermal threshold (via fcrit), although a common accumulation 

onset date (t0) was set. Based on literature and prior modelling work, each parameterization was 

chosen to represent a plausible ecophysiological regime. The UNIFORC model was run 

deterministically for each site-year, yielding multiple candidate DOY predictions per parameter 

set. 

Table  3Parallel Hybrid- Process-based Parameters 

Set d e fcrit t0 (start DOY) 

UN_1 -0.01 5.96 41.0 26.5 

UN_2 -0.0 5.98 42.5 26.5 

UN_3 -0.01 6.0 44.0 26.5 

UN_4 -0.01 6.02 45.0 26.5 

UN_5 -0.02 6.04 46.5 26.5 

 

The selection of the five UNIFORC parameter sets was guided by the need to capture a range of 

phenological responses to interannual climate variability, particularly as reflected in the fluctuating 

temperature patterns observed between 2000 and 2015. As illustrated in Figure 3, the period featured 

considerable year-to-year variation, with colder anomalies such as 2010 and significantly warmer 

episodes in 2007, 2011, and 2014. The parameter sets were therefore not arbitrarily defined but were 

intentionally constructed to span a gradient of thermal sensitivity, each bringing distinct interpretive 

value to the ensemble framework. 

UN_1, for instance, was defined with a low forcing threshold (fcrit = 41.0) and a relatively early 

inflexion point (e = 5.96°C), making it highly responsive to limited thermal accumulation. 
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Figure 5Conceptual diagram of the Ensemble Model 

This responsiveness is particularly useful in colder years, such as 2010, where temperatures may not 
consistently exceed higher activation thresholds; it allows the model to still register budburst events 
under constrained conditions, albeit with a risk of premature triggering under transient warming. 
Option 2, featuring a near-zero slope (d = –0.00), was included to represent a biologically smoother, 
less reactive forcing response. Though less precise, this variant helps the ensemble model to avoid 
erratic or overly aggressive predictions in noisy, ambiguous, or ecologically diffuse systems. It adds 
stability and realism where phenological cues are weak, indirect, or broadly distributed over time. 
Options 3 and 4 reflect a gradual tightening of the thermal requirements, with increasing fcrit and e 
values designed to delay budburst until more consistent warming is achieved. These configurations 
were calibrated to align with warmer years, such as 2007 and 2011, where their conservative settings 
improve fit by avoiding premature predictions. Option 5 represents the upper bound of thermal 
selectivity, with a steeper slope (d = –0.02) and the highest fcrit (46.5), making it particularly suitable 
for capturing delayed phenological responses in high-temperature years like 2014 
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Its sharp activation profile ensures that budburst is simulated only when warming is sustained and 

sufficient, thus avoiding overestimation in scenarios where early thermal spikes are not followed by 

continued heat accumulation. 

Collectively, these parameter sets were intended to simulate plausible biological responses across a 

climatic gradient and strategically populate the ensemble model space with functionally diverse 

behaviours. In doing so, they enhance the parallel model’s ability to generalize across species and 

years, allowing it to accommodate both early and late budburst tendencies and to capture the full 

range of ecological responses to shifting climate signals. 

3.4.4.2 The Machine Learning Component 

Three regression algorithms, Random Forest, XGBoost, and Support Vector Regression (SVR), 
were selected to form a diverse ensemble of machine learning models, each offering distinct 
advantages for modelling budburst under variable environmental conditions. These models, selected 
through GridSearchCV and trained on the same 72-feature input matrix, serve complementary roles 
in the hybrid pipeline. Hyperparameter configurations for each model ensured that each was 
optimally tuned for the training dataset rather than arbitrarily or heuristically defined. This 
methodological rigour enhances not only predictive performance but also comparability across 
algorithms. 

The Random Forest Regressor, optimized with 150 estimators, a maximum depth of 15, and 
constrained splitting criteria (minimum samples split = 5, leaf = 3), was selected for its robustness 
in handling noisy, nonlinear ecological datasets. Its capacity for ensemble averaging enables it to 
generalize well in the presence of missing or collinear features, a common challenge when modelling 
climate-driven phenology using many interacting predictors (Li et al., 2023; Zhang et al., 2023). This 
model serves as the ensemble’s stabilizer, reliably capturing broader trends while buffering against 
outliers and irregular seasonal signals. 

In contrast, the XGBoost Regressor, fine-tuned with 200 estimators, a learning rate of 0.05, 
maximum depth of 6, and subsampling ratios of 0.7, contributes both bias reduction and high-
resolution pattern detection through its gradient-based boosting mechanism (Ma et al., 2023). These 
hyperparameters were selected not only for optimal fit but also to enforce regularization and stable 
convergence, critical in modelling phenological events, which are often temporally clustered and 
governed by interacting environmental thresholds that require fine-scale discrimination without 
overfitting. 

The SVR, configured with an RBF kernel, penalty parameter C = 10.0, and ε = 0.2, was included for 
its capacity to map non-linearly separable input-output relationships in high-dimensional feature 
spaces. While more computationally intensive and sensitive to hyperparameter tuning, SVR offers 
flexibility in scenarios where phenological responses follow curved or diffuse relationships, 
particularly in marginal climate zones where linear models or decision-tree-based splits may struggle 
(Rahimi et al., 2023). Its kernel approach allows the ensemble to account for latent interactions that 
might otherwise go undetected. 
 

3.4.4.3 Hybrid Modelling via Stacked Linear Regression 

The hybrid component of this methodology integrated the predictions from both the process-based 
and machine learning models through a stacked linear regression model. The meta-model takes as 
input the outputs of each base model, including all UNIFORC variants and ML regressors, and 
learns an optimal weighted combination that best approximates the true budburst DOY.  

Formally, let 𝑦𝑖
𝑗
   denote the prediction for instance i from model j. The hybrid model predicts DOY 
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using equation (4):   

𝑦𝑖
𝐻𝑦𝑏𝑟𝑖𝑑

= 𝛽0 + ∑𝛽𝑗𝑦𝑖
𝑗

𝑝

𝑗=1

 

Where βj are the coefficients learned through ordinary least squares regression, and β0 is the intercept. 
The training of the meta-model was restricted to only instances where all component predictions 
and actual DOY values were available, ensuring data integrity during fusion. This approach offers 

two main advantages. First, it allowed for interpretability; the learned coefficients 𝛽𝑗 reveal how 
much each base model contributed to the final prediction. A higher weight indicates that the meta-
model relied more heavily on that model’s output, offering insight into model relevance and 
reliability (Zhang & Ma, 2022). By combining multiple predictive sources, the stacked model can 
buffer against poor performance by any single base model. If one model underperforms in certain 
conditions, the meta-model can downweigh its influence, thereby reducing prediction error and 
improving generalization to new, unseen data. 

3.4.5 ML-Derived Parameterization with Feedback Loop 

This hybrid strategy frames phenological modelling as a parameter-learning task. ML models 

(LightGBM) are trained to predict physiological parameters (d, e, fcrit, t0) of the UNIFORC model 

from environmental features. Rather than directly predicting budburst DOY, the ML model infers 

the internal structure of the process-based model PBM, which is then used to simulate budburst 

DOY. The prediction error between the simulated and actual DOY is minimized through numerical 

optimization using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) (Zhu et 

al., 1997) algorithm, and the improved parameters are used to retrain the ML model. This feedback 

loop iterates until error convergence, thereby gradually aligning ML-inferred parameters with 

biologically plausible outputs. Figure 6 shows the conceptual flow of the strategy. This hybrid 

architecture estimates the internal parameters of the UNIFORC process model, specifically 𝑑, 𝑒, and 

𝑓crit from environmental features using ML. This reframes phenological modelling as a parameter 

inference task, wherein machine learning predicts the biological response parameters that control 

the timing of budburst. Although L-BFGS-B is used in both stages, its roles are distinct: initial 

refinement to generate training targets vs. feedback correction of ML-predicted parameters. 

3.4.5.1 Initial Parameter Derivation 

Initial UNIFORC parameters (d, e, f_crit, t0) are derived heuristically from literature. These initial 

values are loosely optimized using the L-BFGS-B algorithm (Zhu et al., 1997) for up to 20 iterations, 

constrained within biologically plausible bounds. The goal is not fine-tuning but rather to generate 

reasonable targets for supervised learning. This step avoids arbitrary assignments and ensures 

empirical observations inform the starting parameters. 

 

(4) 
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Figure 6Conceptual diagram of the ML-derived parameterization hybrid model strategy 

3.4.5.2 Machine Learning Parameter Prediction 

LightGBM regressors are trained to map climate features (mean temperature, photoperiod, GDD, 

etc.) to the initial parameter estimates. Separate models are trained for each parameter. These 

regressors are then used to predict site-specific UNIFORC parameters, which are input into the 

PBM to simulate Budburst DOY. This indirect modelling ensures predictions remain constrained 

by the mechanistic structure of UNIFORC, grounding them in plant physiology.  
LGBM was selected for predicting UNIFORC parameters due to its speed and scalability, which are 

critical in the iterative feedback process involving multiple rounds of re-training and optimization. 
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Its leaf-wise tree growth enables fine-grained learning of site- and climate-specific interactions 

influencing UNIFORC’s parameters, while maintaining low computational cost compared to 

XGBoost or Random Forest. This efficiency ensures faster convergence in the looped structure of 

the hybrid phenology model without sacrificing predictive accuracy (Ke et al., 2017). 

3.4.5.3 Parameter Re-optimisation  

After predicting DOY using the ML-derived parameters, the model evaluates the difference between 

simulated and observed budburst dates. If the error exceeds acceptable limits, the predicted 

parameters are again refined via numerical optimization using L-BFGS-B, minimizing the squared 

error between predicted and actual DOY. This optimization uses the ML predictions as initial 

guesses and is constrained by clipping them within biologically reasonable parameter bounds (d ∈ 

[−0.13, 0.13], e ∈ [4.5, 9.5], f_crit ∈ [20.0, 100.0]). This step corrects ML-induced errors by aligning 

predictions with actual plant responses. 

3.4.5.4 Iterative Refinement  

The newly optimized parameters are used as updated targets to retrain the ML regressors. This closes 

the feedback loop, where each iteration incrementally improves the ML models' ability to infer 

biologically meaningful parameters. In each repeat cycle: 

1. Initial parameters are heuristically generated and lightly optimized 

2. ML predicts parameters using lightly optimized parameters. 

3. UNIFORC simulates DOY using these parameters. 

4. Prediction errors are minimized via re-optimization. 

5. Updated parameters serve as new targets and are passed back to ML. 

This loop continues until one of the following stopping criteria is met: 

• A maximum of five iterations was reached. (Five is selected for convenience, since a larger 

part of the parameter is optimized in the first iteration.) 

• Change in RMSE falls below a threshold (ΔRMSE < 0.1) 

• Training RMSE reaches a predefined target (RMSE ≤ 7.0) 

This iterative design ensures convergence by reducing error while preserving physiological realism 

through repeated PBM grounding. 

3.4.5.5 Prediction and evaluation of DOY on Test data 

Once convergence is achieved, or a stopping criterion is met, the final iteration's ML models are 

used to predict parameters on held-out test data. These parameters are input into UNIFORC to 

simulate budburst DOY for unseen samples. Performance is assessed using RMSE, MAE, and R², 

evaluating both the accuracy and generalizability of the final hybrid model. By merging ML's 

predictive flexibility with PBM's mechanistic structure, this architecture yields interpretable and 

adaptive phenological forecasts suited to varying environmental conditions and long-term climate 

shifts. 
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3.4.6 Model Evaluation and Visualisation 

To assess model performance, three standard regression metrics were used: Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R²) (See 

equations (5), (6) and (7) respectively). These metrics were computed year by year, allowing 

performance evaluation across temporal variability, after which values were averaged across years to 

obtain an overall summary metric for each model. This ensured that no year disproportionately 

influenced the final assessment and supported fair comparison across hybrid strategies. 

𝑀𝐴𝐸 = 
1

𝑛
∑ |𝑦𝑖
𝑛
𝑖=1 − �̂�𝑖|         (5)

   

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛
𝑖=1          (6) 

𝑅2 = 1 − 
∑ (𝑦𝑖−�̂�𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

          (7) 

The Mean Absolute Error (MAE) estimates the average deviation in day-of-year (DOY) between 

predicted and true budburst DOY. It is robust to moderate outliers, making it suitable for datasets 

with local variability (Karunasingha, 2022). In contrast, the Root Mean Squared Error (RMSE) 

penalizes larger errors more heavily, thus highlighting the impact of substantial prediction deviations, 

critical for phenology models used in time-sensitive decisions like planting or harvest (Hodson, 

2022). The coefficient of determination (R²) quantifies the model’s ability to explain interannual and 

temporal variability, with higher values indicating better generalization (Fu et al., 2014). 

In addition to these metrics, scatter plots of predicted versus observed DOY were plotted and saved 

for visual inspection, enabling detection of systematic bias (deviation from the 1:1 line), clustered 

errors, or residual patterns not evident in aggregate statistics (Zhang et al., 2023). These visual 

diagnostics complement numerical evaluation by revealing spatial or temporal inconsistencies that 

may inform further model refinement. 
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4. RESULTS 

4.1 Results Overview 

This section presents the outputs and performances of the two hybrid phenological modelling 

approaches explored in this research: (1) an ML-parameterized UNIFORC model, which 

dynamically tunes physiological parameters, and (2) a parallel hybrid ensemble, integrating multiple 

fixed-parameter PBM sets with multiple ML regressors. Predictive accuracy, generalization, 

parameter interpretability, and ensemble component contributions across 2001 - 2015 were assessed, 

using year-forward validation, with root mean squared error (RMSE), mean absolute error (MAE), 

and coefficient of determination (R²) as metrics.  

4.1.1 Predictive Accuracy Across Years 

To assess the temporal robustness of both hybrid phenology modelling strategies, we evaluated their 

predictive accuracy across the 15-year (2001–2015) study period using Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²). These metrics, 

summarized in Table 4, offer insight into annual model behaviour under realistic forecasting 

conditions using year-forward validation.  

Table  4Regression metrics of both modelling approaches 

S/No Year RMSE(days) MAE(days) R2 RMSE(days) MAE(days) R2 

ML-derived Parametrisation Metamodel 

1 2001 8.62 7.39 -0.67 8.74 7.84 -0.72 

2 2002 9.38 7.37 -0.41 7.91 5.70 0.00 

3 2003 8.51 6.53 -1.02 6.52 4.86 -0.19 

4 2004 8.81 7.4 -1.34 5.91 4.60 -0.05 

5 2005 8.35 7.01 -0.6 11.71 10.31 -2.14 

6 2006 11.05 9.56 -2.85 6.83 5.37 -0.47 

7 2007 6.71 4.95 -0.55 6.83 5.54 -0.60 

8 2008 7.25 5.6 -0.45 6.15 4.91 -0.04 

9 2009 10.16 8.64 -1.56 13.86 12.89 -3.78 

10 2010 8.88 7.37 -0.99 7.34 5.42 -0.36 

11 2011 12.81 11.26 -3.41 11.94 10.72 -2.83 

12 2012 7.54 5.49 -0.11 8.07 6.54 -0.28 

13 2013 7.45 5.94 -0.86 8.23 6.40 -1.27 

14 2014 12.19 12.19 -2.02 10.56 8.92 -1.27 

15 2015 6.58 5.28 -0.47 6.46 5.07 -0.42 

Average 8.95 7.47 -1.15 8.47 7.01 -0.96 
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Model performance dynamics, illustrated in Figure 7, provide a visual expression of each model’s 

trend. Contrary to a uniform trend, neither model exhibited consistent dominance across all years. 

The parallel ensemble model outperformed 8 of the 15 years, while the ML-derived parameterisation 

model led in 7. For instance, in 2004, a year of relatively stable climatic conditions, the ensemble 

model achieved an RMSE of 5.91 compared to 8.81 from the ML-derived model, suggesting superior 

responsiveness to low-noise signals. Similarly, in 2010 and 2012, the ensemble model showed lower 

MAE values, although the ML-derived model slightly outperformed in RMSE during 2012 (7.54 vs. 

8.07). In 2013, the ML-derived model again posted better RMSE and MAE, indicating better 

adaptation during moderate variability. 

In contrast, during highly anomalous years, performance varied. In 2011, the ML-derived model 

performed worse across all metrics (RMSE: 12.81 vs. 11.94; MAE: 11.26 vs. 10.72), while in 2014, 

both models struggled (negative R² values), but the ensemble model still outperformed the ML-

derived model in RMSE (10.56 vs. 12.19) and MAE (8.92 vs. 12.19), suggesting better resilience to 

extreme conditions. 

Interestingly, 2015 marked a convergence point. Both models recorded their lowest RMSEs (ML: 

6.58; Ensemble: 6.46) and their least negative R² values (-0.47 and -0.42, respectively), suggesting 

favourable environmental signals that both approaches could interpret effectively. 

 

Figure 7: Year-wise RMSE comparison between both hybrid strategies 

On average, the ensemble model achieved a marginally better RMSE (8.47 days vs. 8.95) and MAE 

(7.01 vs. 7.47) than the ML model. Despite this, both models recorded negative averageR² values, 

suggesting they generally explained less variance than a baseline climatology, as illustrated in Figure 

8. 
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Figure 8: Average performance metrics for both models 

To assess statistical significance, a Wilcoxon signed-rank test (See Table 5) was conducted comparing 

year-wise RMSE and MAE values. The resulting p-values 0.30 for RMSE and 0.42 for MAE indicate 

that performance differences between the ML-derived parameterisation model and the ensemble 

model are not statistically significant at the 5% or even 10% level. Although the ensemble model 

shows slightly lower error metrics, the differences are not strong enough to rule out chance variation. 

The Wilcoxon test was selected because it makes no assumptions about the normality of the error 

distribution and is more robust to outliers and small sample sizes, conditions common in interannual 

phenological evaluations (Wilcoxon, 1945; Demšar, 2006). This reinforces the interpretation that 

both models perform comparably across years, with observed differences likely reflecting specific 

temporal or climatic contexts rather than consistent structural superiority. 

Table  5: Wilcoxon test results and confidence intervals for RMSE/MAE averages 

Metric ML 
Mean 

ML 95% 
CI 

En-model 
Mean 

En-model 
95% CI 

Wilcoxon 
p-value 

RMSE 8.95 (8.00, 9.91) 8.47 (7.24, 9.70) 0.30 

MAE 7.47 (6.38, 8.55) 7.01 (5.71, 8.30) 0.42 

 

To complement this year-wise evaluation, average RMSE and MAE were computed across all years 

and visualised with 95% confidence intervals (Figure 9). The ensemble model showed slightly lower 

mean RMSE (8.47 days) and MAE (7.01 days) compared to the ML-derived parameterisation model 

(RMSE: 8.95 days, MAE: 7.47 days). However, overlapping confidence intervals and the non-

significant p-values confirm that these differences lack statistical robustness. Notably, the ML model 

exhibits greater interannual variability, suggesting it is more sensitive to specific environmental 

conditions, whereas the ensemble model displays more stable performance. This complementary 

behaviour strengthens the case for hybrid or model-switching strategies in operational phenology 

forecasting. 
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Figure 9: RMSE vs MAE error bars; 95% CI overlay 

4.1.2 Prediction Error Distributions and Structural Biases 

To gain deeper insight into model performance beyond summary statistics, this section evaluates the 

distribution and structural characteristics of prediction errors across all site-year combinations. 

Specifically, we examine the error spread, skewness, temporal patterns, and alignment of predicted 

vs. observed DOY values. 

4.1.2.1 Histogram and Density of Residuals 

Figure 10 displays histograms and kernel density estimates (KDEs) of residuals (predicted DOY 

minus observed DOY), aggregated across all years for both the ML-derived and ensemble models. 

Table 6 shows the summary statistics of the residual analysis. While both distributions centre loosely 

around zero, the ML model shows a visibly wider and right-skewed error spread, reflecting its 

positive bias (mean error = 3.10). In contrast, the ensemble model exhibits a more peaked 

distribution near zero (mean error = 0.53), with narrower tails. 

Though skewness values (ML = 0.14, Ensemble = 0.28) suggest only slight asymmetry in both 

models, the KDE curves clearly show that the ML-derived model produces more extreme 

overpredictions. This visual evidence overrides the minor statistical skew difference, highlighting the 

importance of combining quantitative and graphical diagnostics. 
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Figure 10: Histogram and KDE plots of residuals per model 

Table  6: Residual Summary Statistics 

Model Count Mean 
Error(days) 

Median 
Error 
(days) 

Std Dev 
(days) 

Skewness Kurtosis Min 
Error 
(days) 

 Max 
Error 
(days) 

Ensemble 3166 0.53 -0.25 8.79 0.28 -0.22 -26.31 29.89 

ML-
derived 

3166 3.1 3 9.58 0.14 -0.04 -27 38 

 

Overall, the ML-derived model exhibits broader error dispersion and a heavier upper tail, while the 

ensemble model is more concentrated around the mean with fewer extreme deviations. 

4.1.2.2 Scatterplots and Structural Deviations 

Figures 11 and 12 present combined scatterplots of predicted versus observed budburst DOY values 

for the ML-derived and ensemble models, respectively. Notably, these scatterplots aggregate 

predictions across a 15-year period, encompassing substantial inter-annual climatic variability. While 

this aggregation enables a holistic view of model behaviour, it can also obscure temporal nuances, 

such as year-specific strengths or weaknesses in prediction accuracy. 

For the ML-derived model (Figure 11), the R² value of 0.04 indicates that only 4% of the variance 

in observed budburst DOY is explained by the fitted linear relationship over the aggregated dataset. 

The associated trendline, with a slope of 0.18, is markedly flatter than the ideal 1:1 line, revealing a 

strong regression-to-the-mean effect. This implies that the model consistently predicts within a 

narrow DOY range and struggles to reflect interannual extremes, particularly early or delayed 

phenological events that deviate from climatological norms. 
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Figure 11: ML-Parameterised Scatter plots of predicted vs observed Budburst DOY across 2001 - 2015 

The ensemble model (Figure 12) performs even more weakly in structural terms, with an R² of just 

0.02 and an even flatter slope of 0.08. The dense vertical clustering of predictions indicates a strong 

central bias, suggesting the model emphasizes stability over responsiveness. This behaviour is 

consistent with ensemble averaging, which tends to dampen predictive variance, potentially at the 

cost of reduced sensitivity to environmental anomalies. 
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Figure 12: Ensemble Model Scatter plots of predicted vs observed Budburst DOY across 2001 - 2015 

Both models exhibit clear limitations in capturing phenological variability at the distribution tails. 

The observed flattening of trendlines and predictive compression at early and late DOY extremes 

highlight their underperformance under atypical climatic conditions. This is especially concerning in 

the context of long-term climate change, where the ability to track shifting phenological baselines is 

critical. 

When interpreted in the context of temporal aggregation, the ML-derived model's slightly steeper 

slope suggests marginally better responsiveness to observed variation compared to the ensemble. 

However, both trendlines ultimately underscore the limited discriminatory power of these models 

across a diverse climatic range. 

While these aggregated scatterplots offer a useful overview of average performance, they mask 

temporal dynamics and evolving model biases. Therefore, they should be interpreted alongside 

complementary diagnostics such as temporal residual trajectories or year-wise error decomposition, 

which more effectively expose sensitivity to interannual variability and systematic drift. 
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4.2 Regression Fit and Granularity 

While Figures 11 and 12 offer model-specific performance assessments, Figure 13 presents a critical 

overlaid perspective, enabling direct visual and quantitative comparison of the ML-derived and 

ensemble models across the 15-year aggregated dataset. 

This comparative view immediately highlights fundamental structural differences in predictive 

behaviour. The ML-derived model (red) retains its previously observed characteristics, with a 

regression slope of 0.18, intercept of 95.52, and an R² of 0.043. Its red data points form a more 

dispersed and continuously distributed cloud, suggesting higher flexibility in capturing site-year DOY 

variability. This reflects the adaptive nature of its parameter inference, which allows it to adjust 

predictions across a broader phenological range. 

In contrast, the ensemble model (blue) exhibits a markedly flatter trendline (slope = 0.084, intercept 

= 103.79) and a lower R² of 0.020, confirming a stronger regression-to-the-mean tendency. A notable 

artefact in this overlaid view is the horizontal banding of blue points, indicative of output 

quantisation. This likely arises from its fusion methodology, where combining predictions from base 

learners yields a limited set of discrete outcomes, reducing resolution and limiting the model’s ability 

to respond to fine-scale phenological signals or capture extremes. 

 

Figure 13: Predicted vs. Observed DOY with regression lines per model 

Both models deviate substantially from the ideal 1:1 line yet do so in distinct ways. The ML-derived 

model, while noisier, demonstrates a more flexible alignment with the phenological gradient. The 

ensemble model, by contrast, sacrifices responsiveness for stability, leading to predictive 
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compression around climatological norms. This structural comparison underscores the inherent 

trade-offs between the dynamic expressiveness of ML-derived parameterisation and the conservative 

averaging behaviour typical of ensemble approaches. 

4.3 Model Robustness Under Climatic Extremes 

This section evaluates how each hybrid modelling approach performs under extreme climatic 

conditions, using years with marked deviations from the climatological mean, specifically 2002, 2010, 

and 2014, as case studies. These years were selected based on annual temperature dynamics and the 

resulting challenge they pose to phenological prediction systems. 

Figure 14 shows the RMSE values for both the ML-derived parameterisation model and the 

ensemble model in these years. In all three cases, the ensemble model demonstrated lower RMSEs: 

7.91 vs. 9.38 in 2002, 7.34 vs. 8.88 in 2010, and 10.56 vs. 12.19 in 2014. These consistent outcomes 

indicate that the ensemble model had a performance stability under both warm and cool anomalies. 

The ensemble’s structure, based on fixed physiological variants and model fusion, appears to have 

conferred robustness by preventing overreaction to anomalous inputs. In contrast, the ML-derived 

model, though theoretically more adaptive, may have miscalibrated its parameter estimates in 

response to extreme or non-stationary thermal cues. This underlines a potential limitation of data-

driven models in extrapolative scenarios where input-output relationships deviate from historical 

norms. 

 

Figure 14: Model RMSEs during extreme years [2002, 2010, 2014] 

These findings indicate that the ensemble model is comparatively stabilising during climatic volatility 

in years where climatic conditions diverge from the norm.  
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4.4 Model Interpretability and Structural Transparency 

This section evaluates the potential of each model to produce interpretable outputs, a critical 

criterion in ecological modelling, The ML-derived parameterisation model generates predictions by 

learning site-specific values for core phenological parameters, including the base growth rate (d), 

shape factor (e), forcing threshold (f_crit), and thermal accumulation start (t₀). In contrast, the 

ensemble model produces its predictions through a weighted combination of multiple machine 

learning models. These weights, learned via a linear regressor meta-learner, reflect the statistical 

influence of each base model in the final prediction. The following sections analyse the temporal 

dynamics of both the learned phenological parameters and the ensemble model weights, with the 

aim of evaluating their stability, interpretive value, and implications for model transparency over 

time. 

4.4.1 Comparative Dynamics of Parameter Behaviour 

In Table 7, the mean and standard deviation of each ML-derived parameter are presented, 

summarising the distribution of site-specific parameter estimates.  

Table  7: Mean and standard deviation of d, e, fcrit across models and selected years 

Year d_mean d_std e_mean e_std f_crit_mean f_crit_std t0_mean t0_std 

2001 -0.01 0.01 6.01 0.02 43.62 1.34 26.24 0.37 

2002 0 0.01 6 0.07 42.1 1.61 28.79 0.53 

2003 0.01 0 5.98 0.03 46.03 1.86 25.56 0.47 

2004 -0.01 0 6.05 0.01 46.2 1.94 26.27 1.04 

2005 0 0.01 6.04 0.03 43.44 1.86 26.62 0.6 

2006 0.01 0.01 6.02 0.03 43.21 1.96 26.31 0.47 

2007 0.01 0.01 5.99 0.04 41.41 2.81 25.65 0.78 

2008 -0.02 0.01 6.02 0.03 43.74 1.65 26.82 0.91 

2009 0.01 0.01 5.95 0.02 45.42 1.31 27.82 0.35 

2010 0 0.01 6.01 0.01 43.3 1.85 26.28 0.25 

2011 0 0 6.03 0.01 45.47 0.72 26.5 0.26 

2012 -0.02 0.01 6.04 0.02 44.96 1.19 26.15 0.55 

2013 0.01 0.01 5.97 0.02 45.24 2.03 26.44 0.5 

2014 0 0 5.99 0.02 43.45 0.69 25.97 0.3 

2015 0.01 0.01 6 0.01 44.67 0.96 26.29 0.36 

 

Figure 15 complements this by illustrating the interannual dynamics of the ML-derived model’s 

predicted UNIFORC parameters (d, e, f_crit, t₀). These trends provide insight into the model’s 

internal decision logic and its responsiveness to climatic variability. The slope parameter d fluctuates 

around zero, with steeper negative values in years such as 2008 and 2012, potentially reflecting 

accelerated forcing responses under cooler spring conditions. The inflexion parameter e remains 

tightly clustered around 6.0, aligning with established thermal responsiveness in temperate species. 
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Meanwhile, variation in f_crit and t0 across years points to shifts in forcing thresholds and the onset 

of accumulation, respectively, suggesting that the model dynamically adjusts to interannual 

environmental signals. Collectively, these parameter trajectories support the ecological plausibility 

and interpretability of the ML-derived approach. 

 

Figure 15: Line plot of parameter distributions for d, e, fcrit across both models 

Yet, as shown in Table 8, these changes do not strongly correlate with prediction error, reinforcing 

that the ML-derived model maintains accuracy without sacrificing transparency.  

Table  8: Parameter-to-prediction correlations 

Parameter RMSE_corr RMSE_p MAE_corr MAE_p 

d_mean 0.12 0.66 0.12 0.66 

e_mean 0.02 0.94 0.00 1.00 

f_crit_mean 0.10 0.71 0.08 0.79 

t0_mean 0.16 0.58 0.09 0.76 

4.4.2 Ensemble Composition and Weighting Dynamics 

The Ensemble model integrates predictions from three ML regressors (XGBoost, Random Forest, 

SVR) and five UNIFORC variants using a linear regression-based weighting. Weights assigned to 

the individual models by the Linear Regression ensemble learner are illustrated in Figure 16. 
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Figure 16:  Line plot of model weights across cross-validation folds 

XGBoost consistently received the highest weight (>0.5), reflecting the ensemble model’s reliance 

on its strong performance. However, several UNIFORC variants, despite performing better than 

some ML models in certain years, received negligible or negative weights. This suggests the ensemble 

model prioritised variance reduction over physiological interpretability. 

Such bias may compromise long-term generalisability, particularly under novel climates. Future work 

should explore constrained or regularised weighting to preserve mechanistic contributions within 

ensemble learning. 

To understand the basis of the ensemble model’s weighting behaviour, we examined the Pearson 

correlation between RMSE values of all constituent models (five UNIFORC variants and three 

machine learning models) and the final metamodel across all test years. The resulting correlation 

matrix (Figure 17) reveals three major insights. First, UNIFORC models 3 and 4 show near-perfect 

mutual correlation (r = 0.97) and exhibit strong correlation with UNIFORC_5 (r = 0.85 and r = 

0.95, respectively). This cluster of high mutual similarity suggests that these models often carry 

overlapping signal content. Consequently, the ensemble model may suppress one or more of them 

to avoid redundancy even when their standalone performance is strong. This aligns with ensemble 

learning principles that prioritize diversity over raw accuracy to reduce correlated errors and enhance 

generalization (Ganaie et al., 2021). 
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Figure 17: Pearson correlation heatmap of all base model predictions across 2001–2015 

Second, the machine learning models (Random Forest, XGBoost, and SVR) display strong 

correlations with each other (r > 0.85) and with the metamodel (r = 0.92 for Random Forest, r = 

0.97 for XGBoost). Their generally superior RMSE values (relative to most UNIFORC variants) and 

higher orthogonality to the UNIFORC models likely increase their utility as independent sources of 

predictive power, thereby securing them higher weights in the ensemble. Lastly, while UNIFORC 1 

and 2 showed only moderate correlations with other models and the metamodel (r ≈ 0.0–0.3), they 

sometimes received modest weighting due to offering slightly distinct error distributions. However, 

UNIFORC 1, which frequently exhibited the worst RMSE, remained downweighted across nearly 

all years. Taken together, the metamodel’s weighting strategy appears performance-sensitive but also 

redundancy-aware. 

The foregoing showed that the ensemble model’s weights only represent the statistical contribution 

of each base learner to the final prediction. However, these weights do not encode any biologically 

interpretable or mechanistically grounded information. As such, despite the ensemble approach’s 

competitive predictive performance in certain years, it lacks interpretability. Its internal decision 

process remains relatively opaque. It remains difficult to trace or decompose the model’s predictive 

behaviour in terms of phenological mechanisms or physiological parameters. This limitation hinders 

its utility for ecological inference, where understanding the why behind a prediction is often as critical 

as the prediction itself. 
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4.5 Performance Trends across Base Models 

The RMSE trends across 2001-2015 for all the representative models (both stand-alone and hybrid) 

illustrated in Figure 18 highlight nuanced distinctions in how each model responds to varying climatic 

regimes. The ML-derived model shows high flexibility, performing well in many years but faltering 

in anomalous ones like 2011 and 2014, likely due to over-adjustment to noisy forcing cues. Its 

dynamic parameter learning enables adaptability but may suffer from overfitting in climatically 

volatile years. 

 

Figure 18: Performance metrics of the stand-alone models 

The ensemble model offers greater stability, avoiding extreme errors through conservative averaging. 

However, its underperformance in certain years, such as 2009, suggests a limited capacity to adjust 

when sharp shifts in climate occur, revealing the trade-off between robustness and responsiveness. 

The UNIFORC model (UN_3) was selected as the best-performing variant among five physiological 

configurations, consistently yielding competitive RMSEs in stable years. This underscores the 

potential of well-tuned process-based models to achieve high accuracy under typical climatic 

conditions, despite their relative rigidity. 

Among the machine learning baselines, XGBoost maintained strong overall performance across 

years, likely due to its capacity to model complex interactions without excessive variance. Random 

Forest showed more erratic behaviour, possibly due to overfitting from unpruned trees, while SVR 

struggled in highly variable years, reflecting its limitations in capturing non-linear seasonal patterns. 
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Overall, these results confirm that no model is universally optimal. Each demonstrates context-

specific strengths, supporting the rationale for hybrid approaches that combine physiological 

interpretability with statistical flexibility. 

An interesting performance paradox is, however, observed between the ML-derived model and the 

UN_3: although the UN_3 model merely uses fixed parameters inferred from the ML-derived 

pipeline, it consistently outperforms the ML model across most years (See Figure 19). The ML-

derived model, despite its adaptability, exhibits erratic RMSE behaviour, peaking in years like 2006 

and 2011, where it underperforms by margins exceeding 4–5 days. 

 

Figure 19: RMSE comparison between ML-derived parameterization and UN_3 

What this suggests is that the iterative feedback loop in the ML model may be introducing instability 

rather than improving generalization. The retraining steps, while intended to refine parameter 

estimation, may in fact be reinforcing noise or overfitting to subtle variations in the training labels, 

especially in climatically variable years. 

In contrast, the UN_3 model's static formulation appears to regularise performance, acting as a 

stabiliser that preserves the signal from ML-derived parameters without accumulating feedback 

error. The fact that UN_3 was not retrained but still outperformed its dynamic source model implies 

that the value lies more in stabilising the learning loop than in the parameter estimates themselves. 

This insight challenges common assumptions about ML superiority in hybrid modelling. It 

underlines that carefully constrained, biologically grounded process models, even when seeded by 

data-driven approaches, can outperform ML when iterative feedback is poorly managed. Therefore, 

future improvements might focus on stabilising the feedback mechanism or adopting hybrid 

decoupling strategies that retain ML’s flexibility without compromising PBM consistency. 

4.7: Base Models’ Response to Erratic Temperature Dynamics 

The bar chart in Figure 20 reveals contrasting behaviours of the models under thermal extremes. In 

the coldest year (2010), the UNIFORC model achieved the lowest RMSE, closely followed by the 
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RF and XGB models, suggesting that fixed, well-calibrated physiological thresholds can offer 

stability in cooler conditions.  

 

Figure 20: Stand-alone model adaptability to temperature extremes 

Conversely, in the warmest year (2014), ML-derived models like RF and XGB outperformed both 

the UNIFORC and ensemble approaches, indicating that adaptive parameterization may better 

capture accelerated phenological responses. The ensemble model performed moderately in both 

years, reinforcing its role as a conservative average rather than a specialist under extremes. These 

patterns highlight the complementary strengths of static and adaptive modelling strategies. 

4.8 Convergence of the ML-derived Parameterisation Loops 

The ML-derived parameterisation model adopts an iterative hybrid modelling framework in which 

machine learning predicts site-specific PBM parameters, and these are used to simulate budburst 

DOY. To assess the stability and efficiency of this iterative process, RMSE trajectories from four 

representative years (2002, 2006, 2010, and 2015) were examined. 

As shown in Figure 21, a consistent pattern emerges: RMSE decreases sharply after the first iteration, 

followed by a plateau in subsequent steps. This behaviour indicates that most of the predictive error 

is corrected early in the loop, as the ML models rapidly adjust to PBM-informed parameter feedback. 

In many cases, just one or two iterations are sufficient to achieve near-optimal performance, thereby 

enhancing computational efficiency. 

 



Hybrid Phenological Modelling for Enhancing Plant Phenology Prediction 

 

40 
 
  

 

 

Figure 21: RMSE trajectory by iteration of the ML-derived parameterisation model 

While minor improvements persist beyond the first iteration, they tend to yield diminishing returns. 

This highlights the importance of stabilising the learning loop, as later iterations may introduce noise 

or overfitting rather than meaningful refinement. Consequently, the current stopping criteria, though 

functionally correct, may be overly permissive, especially regarding the number of iterations. 

Tightening them could reduce redundant computation without sacrificing model accuracy. 
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5. DISCUSSION AND CONCLUSIONS 

5.1 Overview 

This discussion addresses the core research objectives of this study: (1) to review existing hybrid 

phenological frameworks, (2) to implement and compare two modelling strategies, and (3) to 

evaluate model adaptability using year-forward chaining. In doing so, it responds directly to the 

research questions posed in Section 1.5 

Drawing from the two hybrid strategies, this section reflects on methodological strengths, trade-offs, 

and structural limitations inherent in each approach. It situates these findings within the broader 

context of hybrid phenological modelling literature, highlighting key gaps, such as the lack of 

dynamic parameter adaptation, limited model interpretability, and insufficient validation under 

realistic ecological variability and future climate conditions.  

5.1 Common Modelling Strategies, Their Drawbacks, and Unaddressed Gaps 

Hybrid phenological modelling has emerged as a promising avenue to leverage the mechanistic 

understanding of process-based models (PBMs) with the predictive power of ML (Basler & Körner, 

2023; Chuine & Régnière, 2017). This study contributes to this growing field by implementing and 

evaluating two distinct hybrid frameworks: an ML-derived Parameterization Strategy for the 

UNIFORC model, and a Parallel Hybrid Model with Metamodel Fusion. 

Common strategies in the literature include sequential hybrids (PBM predictions feed into ML); 

parallel hybrids (ML and PBM predictions are combined); data-driven parameterization (ML predicts 

PBM parameters); ML guided by PBM constraints; residual learning (ML corrects PBM errors); and 

PBM-generated synthetic data (for ML pre-training). This study implemented the parallel hybrid 

approach (fusion of fixed-parameter UNIFORC and ML regressors using a linear metamodel) and 

data-driven parameterization (ML-predicted UNIFORC parameters). 

Each method presents trade-offs. Sequential hybrids risk error propagation. Parallel hybrids demand 

careful calibration of weighting schemes and can be computationally heavy. Data-driven 

parameterization relies on a robust PBM structure and feature engineering. ML constrained by PBMs 

may sacrifice flexibility. Residual learning and synthetic data generation require high data quality and 

strong PBM realism. 

Across the literature and this study, several gaps persist. Research is biased toward well-studied crops 

and temperate systems, neglecting less-monitored ecosystems. Evaluation frameworks remain 

inconsistent, complicating cross-study comparison. Studies do not incorporate the fuzziness that 

indicates the gradual nature of climate-driven events like phenology. There is also limited support 

for long-term or real-time forecasting under climate change scenarios, which constrains the practical 

utility of hybrid models. 

5.2 Hybrid Modelling for Dynamic Parameter Adjustment, and Feedback 

Two modelling strategies were implemented, each offering unique fusion characteristics. Between 

the two strategies explored in this research, ML-derived parameterization proved most effective in 

enabling feedback and adaptability. In this study, LightGBM was used to predict four UNIFORC 

parameters (d, e, fcrit, t0), which were iteratively optimised via a feedback loop. This approach helped 
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align model predictions with observed DOY, ensuring adaptability to site- and year-specific 

conditions. 

For example, t0, typically fixed, was modelled dynamically, with values ranging from DOY 25 to 29. 

This better accounted for interannual variation in chilling completion. Temporal parameter 

summaries (Figure 15) confirmed biologically plausible interannual variability, enhancing realism and 

responsiveness to climatic anomalies. 

In contrast, the Ensemble Model fused predictions from static PBMs and ML regressors using a 

linear metamodel. While this improved aggregate performance, it did not allow physiological 

parameters to adapt annually. Coefficient plots (Figure 16) showed that XGBoost often dominated 

the metamodel, with weights exceeding 1.0 (e.g., 1.395 in 2004). However, these weights offered no 

insight into biological mechanisms and were primarily statistical corrections. 

This distinction highlights a core limitation of fusion strategies using fixed PBMs: they may correct 

for biases statistically, but do not dynamically adjust in biologically meaningful ways. However, when 

properly tuned as seen in Figure 19, they have the potential to challenge common assumptions about 

ML superiority in hybrid modelling 

5.3 Validation for Robustness, Adaptability, and Interpretability 

Validation under realistic conditions is crucial. While the year-forward chaining strategy adopted in 

this study emulates realistic forecasting by leveraging past observations to predict future years, it 

does not constitute true scenario-based forecasting. Specifically, no simulations were conducted 

under externally defined climate projections such as CMIP6 or Representative Concentration 

Pathways (RCPs). Future work should incorporate downscaled climate scenario data to evaluate 

model robustness under long-term warming trends and extreme event regimes. 

However, despite overall robust performance, all base models struggled in 2014, a year with 

unusually high error (ML RMSE: 12.19, Metamodel RMSE: 10.56; R²: -2.02 and -1.27, respectively). 

This suggests shared limitations, possibly due to data quality or climatic anomalies, such as 

insufficient chilling followed by rapid warming (Zohner et al., 2023). 

Interpretability was another key focus. The ML-derived parameterization offered high 

interpretability by estimating ecologically meaningful parameters (e.g., more negative d in colder 

years, stable e near 6.0). These patterns directly tied physiological understanding to model outputs. 

The ensemble model, by contrast, provided statistical transparency (via weights) but limited 

physiological insight. Correlation matrices showed UNIFORC variants (e.g., UNIFORC 3 and 4) 

were downweighed despite low RMSE due to high mutual correlation (r = 0.97), suggesting the 

ensemble model prioritized diversity over raw performance (Ganaie et al., 2021). 

To improve interpretability, future hybrid designs should integrate parameterized PBMs within 

ensemble frameworks and explore nonlinear meta-learners (e.g., gradient boosting or neural nets). 

Climate-aware regularization could prevent over-reliance on dominant models. Lastly, robust 

diagnostic tools and visualization methods should be developed to facilitate a clearer understanding 

of model mechanics and error sources. 

5.4 Study Limitations and Implications 

Despite the methodological rigour and comparative breadth of this study, several limitations must 

be acknowledged. 
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First, the dataset was geographically and climatically constrained to temperate environments in 

Central Europe, characterized by moderate thermal variability. While this choice enabled focused 

model calibration, it limits the generalizability of results to more extreme or variable biomes such as 

Mediterranean, boreal, or arid systems (Piao et al., 2022). Expanding spatial coverage would be 

necessary to ensure broader ecological relevance. 

Second, although the ML-derived parameterization enabled dynamic adjustment of UNIFORC 

parameters, it depended heavily on the quality and completeness of engineered environmental 

covariates, particularly thermal indices. Any omission, redundancy, or collinearity among features 

may have influenced parameter plausibility, convergence, and model stability (Dormann et al., 2012). 

The absence of chilling and photoperiod variables also restricts physiological completeness, 

particularly in years with decoupled thermal signals. 

Third, the ensemble model fusion relied on a linear regression framework, selected for transparency. 

However, this structure may not have adequately captured non-linear dependencies or synergistic 

interactions among model outputs and environmental drivers. As a result, high-performing yet 

correlated models like UNIFORC 3 and 4 were occasionally assigned negligible or negative weights 

due to multicollinearity, undermining their ecological relevance (Dai et al., 2022). Incorporating more 

flexible fusion strategies (e.g., kernel-based or tree-based metamodels) could mitigate this issue. 

Fourth, while the year-forward chaining validation was realistic and temporally robust, the models 

were not tested for spatial transferability. This represents a key limitation for ecological forecasting, 

where models must generalize across heterogeneous landscapes. Without spatial cross-validation, 

the models’ extrapolation capacity remains uncertain (Tang et al., 2023). 

Lastly, this study did not explicitly assess computational scalability. The iterative feedback loop in 

the ML-derived parameterization model and the multi-model architecture of the metamodel pose 

non-trivial runtime demands. For real-time applications such as operational forecasting or resource-

constrained decision systems, optimizing computational efficiency remains an open priority. 

5.5 Conclusions 

5.5.1 Summary of Findings 

This research explored two distinct hybrid phenological modelling strategies: an ML-derived 

Parameterization Model and a Parallel Hybrid Ensemble Model. The ML-derived model dynamically 

estimated physiological parameters of the UNIFORC process-based model using LightGBM, 

integrating iterative feedback to enhance adaptive learning. The ensemble model fused outputs from 

five fixed-parameter UNIFORC variants and three ML regressors through a linear regression meta 

learner, aiming to balance predictive diversity. 

Key findings showed that the ML-parametrised model demonstrated greater physiological 

interpretability and temporal adaptability, with parameters such as t0, d, e, and f₍cᵣᵢₜ₎ fluctuating 

within biologically plausible ranges in response to interannual climatic variability. The ensemble 

model excelled in some statistical accuracy metrics, especially in years where certain base learners 

(notably XGBoost) dominated. However, it lacked the capacity to adjust process parameters, leading 

to rigidity in years with anomalous climate behaviour.  

A comparative analysis revealed no consistent superiority across all years. For instance, in 2011 and 

2014, years marked by phenological anomalies, both models struggled, underscoring the limitations 
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of each framework under stress conditions. The correlation analysis revealed a weak relationship 

between prediction error (RMSE) and mean annual temperature (Pearson’s r ≈ 0.08 - 0.16), 

suggesting that performance is governed more by other complex interactions and model architecture 

than by warming trends alone. The ensemble model exhibited selective weighting behaviour, often 

suppressing well-performing mechanistic models (e.g., UNIFORC 3 and 4) due to high collinearity 

with other base learners, favouring statistical decorrelation over ecological relevance. 

5.5.2 Conclusion on Research Questions 

This section revisits the core research questions posed at the outset, drawing on empirical evidence, 

modelling outputs, and theoretical insights to provide concise, evidence-based conclusions. 

RQ1: What are the prevailing strategies in hybrid phenological modelling, and what methodological limitations and 

knowledge gaps remain? 

This study identified six dominant hybrid strategies: Sequential coupling, Parallel ensemble fusion, 

Data-driven parameterisation, Constraint-guided ML, Residual learning, and PBM-generated 

synthetic data. Each varies in its balance between interpretability, adaptability, and computational 

cost. Despite progress, the literature remains skewed toward temperate systems and lacks 

standardised evaluation protocols. There is also limited support for dynamic parameter tuning or 

real-time simulation under future climate scenarios. 

RQ2: How do different hybrid strategies, such as parallel ensemble modelling and machine learning-driven parameter 

estimation with feedback, compare in their ability to integrate PBM and ML components for accurate and interpretable 

budburst prediction? 

The ML-derived parameterisation strategy, which predicts and iteratively refines process-based 

parameters (e.g., d, e, f_crit, t₀), outperformed the parallel ensemble in terms of interpretability and 

adaptability. It allowed the model to maintain biological transparency while dynamically adjusting to 

climatic variability. Conversely, the ensemble model—though occasionally more accurate—relied on 

metamodel weights that lacked ecological meaning, offering limited insight into the underlying 

biological processes. 

RQ3: How effectively can hybrid models simulate future phenological responses under evolving climate conditions when 

evaluated using a year-forward chaining strategy and windowed climate data? 

The year-forward chaining framework approximated real-world forecasting by simulating prediction 

under non-stationary temporal conditions. Both models showed resilience across most years, but 

struggled during climatically extreme periods (e.g., 2014). Notably, only the ML-derived model 

retained explanatory clarity through biologically interpretable parameters. While no external climate 

scenario simulations (e.g., RCPs) were conducted, this study lays a foundation for future integration 

of scenario-based projections to test long-term model robustness under changing climates. 

RQ3: How effectively can hybrid models simulate future phenological responses under evolving climate conditions when 

evaluated using a year-forward chaining strategy and windowed climate data? 

5.6 Recommendations for Future Work 

To advance the robustness, adaptability, and interpretability of hybrid phenology models, several 

strategic directions are recommended: 

1. Incorporate Climate Scenario-Based Testing (e.g., Representative Concentration 

Pathways [RCPs] or Shared Socioeconomic Pathways [SSPs]): Future research should 
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evaluate hybrid model robustness under long-term climate change scenarios by simulating 

responses to projected shifts in chilling requirements, spring warming patterns, and extreme 

event frequencies. 

2. Advance Hybrid Models with Interpretable and Adaptive Structures: Improve the ML-

derived parameterisation approach through multi-objective optimisation and cross-site 

generalisability testing. Simultaneously, embed biologically meaningful constraints into 

ensemble meta-models to balance predictive power with ecological interpretability. 

3. Expand Hybrid Modelling to Underrepresented Ecosystems, Phenophases, and 

Species: To increase generalizability and ecological applicability, future work should apply 

hybrid frameworks to less-monitored ecosystems (e.g., tropical forests, drylands), 

phenophases beyond budburst (e.g., senescence, flowering), and a wider range of plant or 

crop species. 
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APPENDICES 

APPENDIX 1 

 

Figure 22: Yearly scatterplots of Predicted vs Observed Budburst DOY using ML-derived Model 
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APPENDIX 2 

 

Figure 23: Yearly scatterplots of Predicted vs Observed Budburst DOY using Ensemble Model 
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APPENDIX 3: Site specific parameters predicted by the ML-derived Model for Year 2001 

Table  9: Site specific parameters predicted by the ML-derived Model for Year 2001 

site_id year d e f_crit t0 
94 2001 -0.01 6.00 42.19 26.25 

103 2001 -0.01 6.01 42.10 26.24 
106 2001 -0.01 6.01 42.38 26.30 
124 2001 -0.01 5.98 42.89 26.83 
152 2001 -0.01 6.00 42.59 26.76 
199 2001 -0.01 6.00 42.95 26.83 
213 2001 -0.01 5.98 42.49 26.69 
244 2001 -0.01 5.99 42.99 26.83 
280 2001 -0.01 5.98 42.49 26.55 
291 2001 -0.01 5.99 42.24 26.23 
317 2001 -0.01 5.98 43.01 26.61 
427 2001 -0.01 6.00 43.25 26.40 
450 2001 -0.01 5.98 43.08 26.09 
502 2001 -0.01 6.02 42.40 26.56 
531 2001 -0.01 6.02 42.78 26.58 
532 2001 -0.01 6.02 42.78 26.58 
638 2001 -0.01 6.00 42.76 26.16 
656 2001 -0.02 5.99 42.81 26.25 
680 2001 -0.01 5.98 42.24 26.39 
765 2001 -0.01 6.00 43.01 26.21 
766 2001 -0.01 6.01 42.45 26.33 
799 2001 -0.01 5.98 43.05 26.22 
810 2001 0.01 6.08 41.69 26.71 
855 2001 -0.01 5.98 42.18 26.42 
911 2001 -0.01 5.97 44.60 26.21 
975 2001 -0.01 5.98 44.89 25.95 
977 2001 -0.01 5.98 44.60 25.87 

1072 2001 -0.02 5.99 42.68 26.24 
1074 2001 -0.01 6.03 42.39 26.55 
1076 2001 -0.02 6.02 42.42 26.46 
1111 2001 -0.02 5.99 42.68 26.23 
1119 2001 -0.02 6.00 42.53 26.19 
1127 2001 -0.02 5.99 42.52 26.21 
1129 2001 -0.01 5.97 44.41 25.96 
1203 2001 -0.01 5.98 44.04 26.00 
1324 2001 -0.01 5.99 44.92 25.94 
1326 2001 -0.01 5.99 44.93 26.03 
1358 2001 -0.02 5.99 44.47 25.94 
1469 2001 -0.01 6.02 42.05 26.39 
1537 2001 -0.01 5.98 44.98 25.95 
1539 2001 -0.01 5.98 44.98 25.95 
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1619 2001 -0.01 6.00 44.09 26.45 
1690 2001 -0.01 6.00 43.26 26.31 
1713 2001 -0.02 6.01 42.40 26.59 
1723 2001 -0.01 5.99 44.10 26.46 
1758 2001 -0.01 6.01 43.07 26.63 
1759 2001 0.00 6.04 43.14 26.69 
1771 2001 0.00 6.04 42.23 26.81 
1821 2001 -0.01 6.03 41.81 26.74 
1851 2001 0.00 6.04 41.99 26.82 
1872 2001 -0.01 5.99 42.19 26.71 
1876 2001 -0.01 5.98 43.13 26.68 
1887 2001 -0.01 5.99 44.23 26.49 
1920 2001 -0.02 5.98 43.91 26.03 
1969 2001 -0.02 5.97 44.46 25.64 
1974 2001 -0.02 5.98 44.52 25.64 
1980 2001 -0.02 5.98 43.15 25.64 
1981 2001 -0.02 5.98 44.52 25.64 
2009 2001 -0.02 5.99 43.14 26.03 
2023 2001 -0.02 6.03 42.38 25.85 
2024 2001 -0.01 6.04 42.78 26.18 
2038 2001 -0.02 5.98 44.33 25.57 
2075 2001 0.00 6.04 41.97 26.59 
2112 2001 -0.02 6.04 42.40 26.13 
2126 2001 0.00 6.04 43.93 25.90 
2140 2001 -0.02 6.02 42.39 25.95 
2153 2001 -0.02 6.03 42.39 25.87 
2164 2001 -0.02 6.02 42.41 25.93 
2168 2001 -0.02 6.02 42.39 25.95 
2170 2001 -0.02 6.03 42.38 25.86 
2182 2001 -0.02 6.01 42.41 26.15 
2203 2001 -0.02 6.02 42.38 25.87 
2216 2001 -0.02 6.03 42.39 25.84 
2217 2001 -0.02 6.02 42.40 25.77 
2225 2001 -0.02 6.02 42.41 25.73 
2241 2001 -0.01 6.03 42.41 26.24 
2250 2001 -0.01 6.03 42.48 26.57 
2286 2001 -0.02 6.02 42.39 25.94 
2294 2001 -0.02 6.03 42.40 25.92 
2295 2001 -0.01 6.03 42.52 25.93 
2296 2001 -0.01 6.02 42.46 26.15 
2327 2001 -0.01 6.03 41.73 26.70 
2360 2001 -0.02 6.00 42.17 26.21 
2390 2001 -0.02 5.98 44.26 25.84 
2415 2001 -0.02 5.99 42.96 26.26 
2432 2001 -0.02 5.99 42.81 26.19 
2444 2001 -0.02 6.00 42.40 26.13 
2489 2001 -0.01 5.99 43.53 26.35 
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2545 2001 -0.02 6.00 42.46 26.32 
2552 2001 -0.02 5.98 44.07 26.04 
2561 2001 -0.01 5.99 43.81 25.77 
2566 2001 -0.01 5.98 43.32 26.32 
2602 2001 -0.01 6.01 42.43 26.23 
2615 2001 -0.01 6.02 42.47 26.54 
2674 2001 -0.02 5.98 44.07 26.10 
2698 2001 -0.02 6.08 42.99 25.95 
2739 2001 -0.02 5.98 44.14 25.66 
2761 2001 -0.02 5.98 43.55 26.01 
2763 2001 -0.02 5.98 43.60 26.00 
2808 2001 -0.02 5.98 46.45 25.64 
2831 2001 -0.02 5.97 43.74 26.16 
2842 2001 -0.02 6.01 46.08 26.00 
2852 2001 -0.01 6.01 46.33 26.07 
2853 2001 -0.01 6.01 44.78 26.35 
2867 2001 -0.02 5.99 44.60 26.10 
2869 2001 -0.01 6.02 46.20 25.97 
2886 2001 -0.01 6.06 41.49 26.22 
2893 2001 -0.01 6.07 41.70 26.46 
2899 2001 -0.02 6.00 46.06 26.04 
2909 2001 0.00 6.07 43.67 26.62 
2937 2001 -0.02 5.98 43.28 25.79 
2953 2001 -0.02 5.99 46.52 25.62 
2958 2001 -0.02 5.98 46.56 25.70 
2976 2001 -0.02 5.98 42.54 25.67 
3014 2001 -0.01 6.06 41.53 26.37 
3018 2001 -0.01 6.01 44.70 26.56 
3023 2001 -0.02 5.98 46.75 25.51 
3053 2001 -0.02 5.98 44.75 25.59 
3063 2001 -0.02 5.98 44.74 25.58 
3065 2001 -0.02 5.98 42.58 25.71 
3068 2001 -0.02 5.98 42.54 25.62 
3069 2001 -0.02 5.98 42.62 25.86 
3076 2001 -0.02 5.98 42.58 25.67 
3082 2001 -0.02 5.98 43.32 25.68 
3091 2001 -0.02 5.97 44.01 25.58 
3099 2001 -0.02 5.98 46.58 25.74 
3100 2001 -0.02 5.99 47.01 25.53 
3105 2001 -0.02 5.99 45.25 25.89 
3124 2001 -0.02 5.98 42.71 25.67 
3127 2001 -0.02 5.98 42.57 25.67 
3173 2001 -0.02 5.99 45.02 25.92 
3213 2001 -0.02 6.08 41.72 26.15 
3230 2001 0.00 6.01 44.36 26.88 
3248 2001 -0.01 6.02 41.61 26.62 
3264 2001 0.00 6.01 42.81 26.89 
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3284 2001 -0.01 6.01 44.67 26.05 
3290 2001 -0.02 5.99 45.02 25.92 
3332 2001 0.00 6.01 42.63 26.93 
3346 2001 0.00 6.07 41.82 26.88 
3366 2001 -0.01 6.02 46.05 25.99 
3378 2001 0.00 6.02 42.73 26.77 
3417 2001 0.00 6.01 42.99 26.71 
3422 2001 0.00 6.07 43.62 26.94 
3438 2001 0.00 6.02 43.10 26.90 
3482 2001 0.00 5.99 44.90 26.68 
3484 2001 0.00 6.01 43.08 26.68 
3486 2001 0.00 6.02 44.90 26.30 
3515 2001 0.01 6.03 44.03 26.74 
3520 2001 0.00 5.99 44.88 26.68 
3526 2001 0.00 6.01 44.90 26.36 
3534 2001 0.00 6.02 45.06 26.53 
3542 2001 0.00 6.02 43.14 26.74 
3589 2001 0.00 6.03 44.83 26.64 
3628 2001 0.01 6.03 44.92 26.52 
3630 2001 0.01 6.03 44.91 26.52 
3633 2001 0.00 6.01 44.46 26.54 
3656 2001 0.00 5.99 44.85 26.72 
3659 2001 0.00 5.99 44.95 26.49 
3693 2001 0.00 6.03 45.27 26.85 
3694 2001 0.00 6.03 44.87 26.80 
3723 2001 0.00 6.03 45.30 26.63 
3744 2001 0.00 6.03 45.01 26.86 
3750 2001 0.00 6.02 45.03 26.55 
3798 2001 0.00 6.03 44.90 26.88 
3824 2001 0.00 6.03 44.73 26.38 
3827 2001 0.00 6.03 44.57 26.44 
3852 2001 0.00 6.03 46.10 26.42 
3876 2001 -0.01 6.03 44.18 26.19 
3884 2001 -0.01 6.06 41.85 26.66 
3893 2001 -0.01 6.03 44.80 26.33 
3911 2001 -0.01 6.03 45.95 26.61 
3918 2001 -0.01 6.03 45.89 26.60 
3945 2001 0.00 6.02 46.08 26.55 
3959 2001 -0.01 6.03 46.06 26.31 
3983 2001 -0.01 6.03 44.83 26.43 
3984 2001 0.00 6.03 44.79 26.80 
3986 2001 0.00 6.04 45.89 26.53 
3993 2001 -0.01 6.02 44.32 25.80 
3995 2001 -0.01 6.03 44.77 26.28 
3997 2001 -0.01 6.03 44.74 26.07 
4015 2001 -0.02 6.02 43.46 25.89 
4046 2001 -0.02 6.03 42.61 25.92 
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4054 2001 -0.01 6.03 43.77 26.08 
4055 2001 -0.01 6.03 42.26 26.41 
4057 2001 -0.01 6.02 42.32 26.36 
4080 2001 -0.01 6.03 44.25 25.93 
4098 2001 -0.01 6.03 44.08 25.98 
4121 2001 -0.01 6.03 44.47 26.05 
4146 2001 -0.02 6.02 41.95 26.38 
4156 2001 -0.01 6.03 44.56 26.26 
4157 2001 -0.01 6.03 44.39 26.13 
4172 2001 -0.02 6.01 43.22 25.85 
4198 2001 -0.01 6.08 41.51 26.45 
4223 2001 -0.01 6.03 44.72 26.79 
4230 2001 -0.02 6.01 42.03 26.20 
4239 2001 -0.01 6.01 42.88 26.50 
4240 2001 -0.02 6.01 41.93 26.27 
4256 2001 -0.02 6.01 41.93 26.27 
4260 2001 -0.02 6.00 42.54 25.68 
4263 2001 -0.01 6.02 46.26 26.43 
4266 2001 -0.01 6.02 44.78 26.79 
4268 2001 -0.01 6.02 46.26 26.43 
4317 2001 -0.02 6.03 42.64 25.91 
4333 2001 -0.02 6.02 42.57 25.80 
4340 2001 -0.02 6.00 42.53 25.67 
4364 2001 -0.02 6.02 41.77 26.18 
4386 2001 -0.02 5.99 42.53 25.65 
4415 2001 -0.01 6.03 43.54 25.88 
4419 2001 -0.02 6.03 42.86 25.80 
4445 2001 -0.02 5.98 42.52 25.68 
4456 2001 -0.01 6.01 46.13 26.28 
4492 2001 0.00 6.03 42.98 26.57 
4495 2001 -0.01 6.01 46.12 26.28 
4506 2001 0.00 6.02 44.10 26.42 
4517 2001 0.01 6.03 42.88 26.61 
4519 2001 0.01 6.03 43.04 26.56 
4539 2001 0.00 6.02 43.01 26.47 
4615 2001 -0.02 5.98 44.74 26.31 
4632 2001 -0.02 5.97 43.31 26.19 
4641 2001 -0.02 5.97 45.10 26.30 
4643 2001 -0.02 5.97 45.10 26.30 
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APPENDIX 4 : Budburst DOY predictions for year 2001 using the Ensemble Model 

Table  10: Site-specific Budburst DOY Predictions for 2001 using Ensemble Model 

site_id year true_budburst_doy Ens_model_predicted_doy 

94 2001 123.0 112.0 

103 2001 123.0 112.4 

106 2001 119.0 112.1 

124 2001 130.0 112.8 

152 2001 127.0 114.9 

199 2001 130.0 119.1 

213 2001 123.0 117.5 

244 2001 129.0 116.3 

280 2001 120.0 117.5 

291 2001 123.0 115.5 

317 2001 125.0 110.8 

427 2001 98.0 114.1 

450 2001 123.0 112.1 

502 2001 116.0 113.6 

531 2001 124.0 115.2 

532 2001 123.0 115.1 

638 2001 122.0 113.6 

656 2001 105.0 112.8 

680 2001 115.0 113.8 

765 2001 123.0 113.2 

766 2001 117.0 110.8 

799 2001 122.0 114.3 

810 2001 123.0 110.3 

855 2001 121.0 113.8 

911 2001 112.0 115.9 

975 2001 122.0 114.3 

977 2001 123.0 115.3 

1072 2001 121.0 112.6 

1074 2001 122.0 114.4 

1076 2001 121.0 114.1 

1111 2001 120.0 112.5 

1119 2001 120.0 112.2 

1127 2001 121.0 111.8 

1129 2001 122.0 114.4 

1203 2001 124.0 115.3 

1324 2001 118.0 112.5 

1326 2001 117.0 112.9 

1358 2001 107.0 112.0 

1469 2001 128.0 114.1 



Hybrid Phenological Modelling for Enhancing Plant Phenology Prediction 

 

62 
 
  

 

1537 2001 123.0 111.5 

1539 2001 120.0 110.6 

1619 2001 122.0 113.8 

1690 2001 122.0 114.5 

1713 2001 126.0 114.5 

1723 2001 119.0 113.8 

1758 2001 120.0 115.2 

1759 2001 131.0 114.6 

1771 2001 122.0 117.1 

1821 2001 124.0 116.2 

1851 2001 124.0 116.0 

1872 2001 122.0 115.1 

1876 2001 128.0 114.0 

1887 2001 119.0 110.8 

1920 2001 101.0 111.7 

1969 2001 115.0 112.3 

1974 2001 112.0 111.7 

1980 2001 99.0 113.2 

1981 2001 114.0 111.7 

2009 2001 125.0 111.5 

2023 2001 123.0 114.4 

2024 2001 123.0 114.5 

2038 2001 117.0 111.5 

2075 2001 121.0 114.9 

2112 2001 126.0 114.2 

2126 2001 126.0 113.8 

2140 2001 122.0 114.9 

2153 2001 122.0 113.8 

2164 2001 122.0 114.5 

2168 2001 106.0 114.1 

2170 2001 123.0 114.0 

2182 2001 122.0 114.5 

2203 2001 119.0 114.4 

2216 2001 121.0 114.7 

2217 2001 120.0 114.6 

2225 2001 121.0 113.9 

2241 2001 120.0 114.7 

2250 2001 121.0 115.2 

2286 2001 121.0 114.2 

2294 2001 117.0 114.7 

2295 2001 122.0 113.7 

2296 2001 120.0 114.4 

2327 2001 122.0 115.9 

2360 2001 114.0 115.6 

2390 2001 98.0 112.1 

2415 2001 122.0 113.8 

2432 2001 126.0 114.1 
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2444 2001 120.0 114.3 

2489 2001 120.0 114.0 

2545 2001 105.0 114.9 

2552 2001 118.0 111.9 

2561 2001 128.0 113.0 

2566 2001 122.0 115.2 

2602 2001 118.0 114.7 

2615 2001 118.0 114.8 

2674 2001 122.0 113.2 

2698 2001 113.0 111.8 

2739 2001 118.0 113.7 

2761 2001 121.0 113.4 

2763 2001 120.0 111.9 

2808 2001 123.0 114.4 

2831 2001 99.0 112.9 

2842 2001 118.0 113.2 

2852 2001 122.0 111.2 

2853 2001 120.0 111.4 

2867 2001 115.0 113.4 

2869 2001 120.0 112.9 

2886 2001 118.0 113.0 

2893 2001 121.0 111.8 

2899 2001 106.0 113.4 

2909 2001 122.0 110.9 

2937 2001 104.0 112.8 

2953 2001 110.0 112.4 

2958 2001 121.0 113.3 

2976 2001 122.0 112.5 

3014 2001 114.0 113.6 

3018 2001 126.0 110.8 

3023 2001 116.0 110.5 

3053 2001 100.0 110.6 

3063 2001 119.0 111.4 

3065 2001 116.0 112.8 

3068 2001 115.0 112.8 

3069 2001 117.0 114.1 

3076 2001 118.0 113.3 

3082 2001 118.0 113.2 

3091 2001 131.0 112.0 

3099 2001 115.0 111.5 

3100 2001 110.0 110.6 

3105 2001 119.0 111.6 

3124 2001 119.0 112.7 

3127 2001 115.0 112.4 

3173 2001 92.0 113.5 

3213 2001 118.0 112.4 

3230 2001 98.0 109.0 
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3248 2001 111.0 109.6 

3264 2001 122.0 109.3 

3284 2001 110.0 112.6 

3290 2001 103.0 113.1 

3332 2001 122.0 109.6 

3346 2001 121.0 111.2 

3366 2001 122.0 112.9 

3378 2001 121.0 110.6 

3417 2001 114.0 109.6 

3422 2001 126.0 109.5 

3438 2001 120.0 111.4 

3482 2001 108.0 112.1 

3484 2001 121.0 111.9 

3486 2001 120.0 110.6 

3515 2001 121.0 111.2 

3520 2001 120.0 111.6 

3526 2001 115.0 112.1 

3534 2001 116.0 111.5 

3542 2001 118.0 110.1 

3589 2001 120.0 111.5 

3628 2001 121.0 111.4 

3630 2001 120.0 111.2 

3633 2001 118.0 110.9 

3656 2001 119.0 112.2 

3659 2001 120.0 111.8 

3693 2001 118.0 110.2 

3694 2001 116.0 110.9 

3723 2001 114.0 111.3 

3744 2001 119.0 112.2 

3750 2001 117.0 111.5 

3798 2001 124.0 111.6 

3824 2001 115.0 111.9 

3827 2001 117.0 111.6 

3852 2001 108.0 112.1 

3876 2001 121.0 111.5 

3884 2001 115.0 111.8 

3893 2001 130.0 111.1 

3911 2001 116.0 111.3 

3918 2001 111.0 110.6 

3945 2001 121.0 111.5 

3959 2001 120.0 111.3 

3983 2001 119.0 111.2 

3984 2001 119.0 111.5 

3986 2001 122.0 111.5 

3993 2001 119.0 111.5 

3995 2001 123.0 110.4 

3997 2001 126.0 112.1 



Hybrid Phenological Modelling for Enhancing Plant Phenology Prediction 

 

65 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4015 2001 129.0 113.3 

4046 2001 121.0 115.8 

4054 2001 118.0 113.1 

4055 2001 123.0 114.0 

4057 2001 120.0 113.9 

4080 2001 122.0 112.4 

4098 2001 120.0 113.2 

4121 2001 124.0 112.7 

4146 2001 106.0 114.7 

4156 2001 122.0 110.8 

4157 2001 128.0 113.2 

4172 2001 119.0 112.0 

4198 2001 121.0 112.6 

4223 2001 124.0 112.1 

4230 2001 112.0 113.4 

4239 2001 117.0 111.0 

4240 2001 112.0 113.1 

4256 2001 116.0 113.9 

4260 2001 108.0 112.6 

4263 2001 122.0 110.8 

4266 2001 117.0 112.4 

4268 2001 124.0 110.8 

4317 2001 120.0 113.3 

4333 2001 102.0 112.5 

4340 2001 109.0 112.3 

4364 2001 119.0 113.8 

4386 2001 106.0 112.3 

4415 2001 122.0 114.0 

4419 2001 120.0 113.9 

4445 2001 117.0 112.5 

4456 2001 119.0 110.9 

4492 2001 105.0 109.2 

4495 2001 121.0 111.5 

4506 2001 118.0 111.0 

4517 2001 123.0 110.8 

4519 2001 122.0 110.2 

4539 2001 123.0 111.0 

4615 2001 124.0 113.5 

4632 2001 111.0 112.0 

4641 2001 129.0 112.6 

4643 2001 122.0 113.1 
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APPENDIX 5: Budburst DOY predictions for year 2001 using the ML-derived Model 

Table  11: Site specific Budburst DOY Predictions for 2001 using ML-derived Parameterization Model 

site_id year true_budburst_doy predicted_budburst_doy 

94 2001 123 119 

103 2001 123 119 

106 2001 119 120 

124 2001 130 130 

152 2001 127 118 

199 2001 130 121 

213 2001 123 122 

244 2001 129 125 

280 2001 120 122 

291 2001 123 120 

317 2001 125 120 

427 2001 98 123 

450 2001 123 121 

502 2001 116 124 

531 2001 124 125 

532 2001 123 125 

638 2001 122 124 

656 2001 105 123 

680 2001 115 124 

765 2001 123 122 

766 2001 117 122 

799 2001 122 120 

810 2001 123 124 

855 2001 121 124 

911 2001 112 128 

975 2001 122 124 

977 2001 123 124 

1072 2001 121 119 

1074 2001 122 123 

1076 2001 121 123 

1111 2001 120 119 

1119 2001 120 121 

1127 2001 121 121 

1129 2001 122 128 

1203 2001 124 123 

1324 2001 118 126 

1326 2001 117 126 

1358 2001 107 126 

1469 2001 128 123 

1537 2001 123 127 

1539 2001 120 127 

1619 2001 122 123 
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1690 2001 122 124 

1713 2001 126 123 

1723 2001 119 124 

1758 2001 120 124 

1759 2001 131 120 

1771 2001 122 121 

1821 2001 124 124 

1851 2001 124 122 

1872 2001 122 129 

1876 2001 128 127 

1887 2001 119 124 

1920 2001 101 117 

1969 2001 115 116 

1974 2001 112 115 

1980 2001 99 116 

1981 2001 114 115 

2009 2001 125 122 

2023 2001 123 110 

2024 2001 123 113 

2038 2001 117 113 

2075 2001 121 123 

2112 2001 126 114 

2126 2001 126 113 

2140 2001 122 123 

2153 2001 122 111 

2164 2001 122 113 

2168 2001 106 123 

2170 2001 123 112 

2182 2001 122 122 

2203 2001 119 111 

2216 2001 121 112 

2217 2001 120 112 

2225 2001 121 112 

2241 2001 120 122 

2250 2001 121 125 

2286 2001 121 113 

2294 2001 117 110 

2295 2001 122 112 

2296 2001 120 120 

2327 2001 122 124 

2360 2001 114 123 

2390 2001 98 124 

2415 2001 122 123 

2432 2001 126 123 

2444 2001 120 121 

2489 2001 120 129 

2545 2001 105 124 
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2552 2001 118 120 

2561 2001 128 124 

2566 2001 122 128 

2602 2001 118 123 

2615 2001 118 127 

2674 2001 122 120 

2698 2001 113 117 

2739 2001 118 113 

2761 2001 121 118 

2763 2001 120 117 

2808 2001 123 113 

2831 2001 99 129 

2842 2001 118 120 

2852 2001 122 120 

2853 2001 120 121 

2867 2001 115 124 

2869 2001 120 119 

2886 2001 118 121 

2893 2001 121 122 

2899 2001 106 121 

2909 2001 122 121 

2937 2001 104 121 

2953 2001 110 122 

2958 2001 121 121 

2976 2001 122 118 

3014 2001 114 124 

3018 2001 126 122 

3023 2001 116 122 

3053 2001 100 120 

3063 2001 119 117 

3065 2001 116 120 

3068 2001 115 119 

3069 2001 117 119 

3076 2001 118 118 

3082 2001 118 119 

3091 2001 131 117 

3099 2001 115 119 

3100 2001 110 121 

3105 2001 119 124 

3124 2001 119 121 

3127 2001 115 121 

3173 2001 92 122 

3213 2001 118 123 

3230 2001 98 117 

3248 2001 111 125 

3264 2001 122 119 

3284 2001 110 122 
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3290 2001 103 122 

3332 2001 122 120 

3346 2001 121 120 

3366 2001 122 120 

3378 2001 121 122 

3417 2001 114 117 

3422 2001 126 121 

3438 2001 120 116 

3482 2001 108 108 

3484 2001 121 122 

3486 2001 120 115 

3515 2001 121 114 

3520 2001 120 108 

3526 2001 115 119 

3534 2001 116 118 

3542 2001 118 123 

3589 2001 120 112 

3628 2001 121 114 

3630 2001 120 114 

3633 2001 118 119 

3656 2001 119 108 

3659 2001 120 110 

3693 2001 118 115 

3694 2001 116 116 

3723 2001 114 114 

3744 2001 119 115 

3750 2001 117 119 

3798 2001 124 114 

3824 2001 115 111 

3827 2001 117 113 

3852 2001 108 118 

3876 2001 121 116 

3884 2001 115 123 

3893 2001 130 116 

3911 2001 116 117 

3918 2001 111 116 

3945 2001 121 118 

3959 2001 120 116 

3983 2001 119 115 

3984 2001 119 117 

3986 2001 122 112 

3993 2001 119 112 

3995 2001 123 115 

3997 2001 126 115 

4015 2001 129 117 

4046 2001 121 111 

4054 2001 118 119 
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4055 2001 123 123 

4057 2001 120 121 

4080 2001 122 112 

4098 2001 120 116 

4121 2001 124 114 

4146 2001 106 120 

4156 2001 122 114 

4157 2001 128 117 

4172 2001 119 118 

4198 2001 121 122 

4223 2001 124 122 

4230 2001 112 123 

4239 2001 117 120 

4240 2001 112 121 

4256 2001 116 121 

4260 2001 108 118 

4263 2001 122 118 

4266 2001 117 122 

4268 2001 124 118 

4317 2001 120 111 

4333 2001 102 111 

4340 2001 109 113 

4364 2001 119 116 

4386 2001 106 119 

4415 2001 122 113 

4419 2001 120 112 

4445 2001 117 118 

4456 2001 119 120 

4492 2001 105 112 

4495 2001 121 120 

4506 2001 118 120 

4517 2001 123 115 

4519 2001 122 114 

4539 2001 123 120 

4615 2001 124 132 

4632 2001 111 128 

4641 2001 129 128 

4643 2001 122 128 

 

  

 

 

 

 


