
Dynamic vs Static Typing Performance for Built-In Types in GDScript in
the Godot Game Engine
DMITRY GORYACHKIN, University of Twente, The Netherlands

Modern “dynamically typed” languages such as JavaScript and Python are
praised for their accessibility and ease of use by many developers. A key
feature between all of them is type dynamicity, which allows the type of
stored data to change at run-time, which can make writing some code
easier. This, however, does not come without some significant overhead for
the interpretation and casting involved when working with these dynamic
types. The Godot game engine scripting language, GDScript, implements
both dynamic and static typing systems, where all variables are dynamic and
interpreted at runtime, unless an explicit type is given, in which case they
become static to that one given type. Official documentation recommends
static typing to eliminate overhead wherever possible. This research will first
measure the performance of common variable use cases in a high-iteration
set of loops, using dynamic and static typing for each case. This testing
will include all types. Lastly, all results will be processed via averages and
percentage-based analysis to find out what is the true impact on performance
for each type’s use cases. The research is expected to add to the scientific
body of knowledge of game development using GDScript, the impact of
dynamic typing on GDScript performance and appropriate development
practices when working in GDScript

Additional Key Words and Phrases: Godot, GDScript, gradually typed, dy-
namic typing, static typing, game development, performance, overhead

1 INTRODUCTION
In the modern landscape of programming, a trend of interpreted,
“dynamically-typed" languages has emerged. Languages like Python
and JavaScript are praised and beloved for their ease of use by many
developers [1, 6], in large part due to the ability of these languages
to dynamically choose data types on the fly and to change them
whenever it may be convenient. This eliminates the need for explicit
type declaration, and thus allowing for faster work and prototyping
by allowing programmers to focus less on the specifics of syntax
and data structures. Many other areas of software engineering fol-
lowed this trend, with game development being no exception. The
FOSS game engine “Godot" created in 2001 and made open source in
2014, implements the principle of “gradual typing" [4] into its native
scripting language GDScript. The language has relatively syntax,
and is tightly integrated with the engine, making it a popular choice
with Godot developers. Its inclusion of gradual typing, allows for
programmers to choose between dynamic and static typing by either
leaving out type annotations or by adding them in [8].
This is because GDScript requires explicit variable declaration be-
fore use in its syntax. All variables in GDScript by default are of
a special type called “Variant" when their type goes unspecified,
which then gets interpreted at runtime into the assumed correct data
type. That is, unless the variable is given an explicit type annotation

TScIT 43, July 4, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

at declaration, in which case the variable will be locked into that
one type both on compile and run time.
However the dynamic typing supposedly has a large enough impact
on performance due to the associated overhead, that the engine’s
official documentation recommends static typing for performance
improvements [5]. Except, how much of a difference this makes, and
in which situations is the overhead the worst is never made clear
in the official documentation for the project. Taking a look at their
blog, official numbers exist for the VM instruction performance dif-
ference, claiming a variety of improvements from 5% all the way up
to 150% [7]. However, as these figures are not from actual GDScript
code, they are not practical for quantifying performance benefits
from static typing.
Furthermore, there have been no studies of the impact dynamic
typing has on the performance GDScript directly at the time of
writing. The benchmarking that has been done by the Godot engine
community at large, has been rather limited in scope, with existing
community figures being limited to only a specific combination of
type and use case .
As well, even related research to this field of typing performance
and general overhead is relatively scarce, but a few relevant papers
do exist. For example in their research into optimizing the engine of
JavaScript V8, Dot et al. [2] found that a very significant part of the
execution time of JavaScript using V8 was due to all the overhead
associated with its dynamic typing system, and claimed that the
optimization they found would work for both JavaScript and other
dynamically typed languages as well.
Meanwhile Goch-Zech et al. [3] tackled the problem of optimizing
Python by looking to reduce overhead caused by various instru-
ments and performance monitors. In the process, they found that
not only is the overhead caused by instrumentation significant, but
that controlling it can result in up to 20% better performance in
their use case, illustrating the fact that there may be cases when
performance drops may occur for less apparent reasons.
Both papers together indicate that modern implementations of dy-
namic typing can not only be very costly, but also are yet to be fully
optimized. Combined, the mentioned works show that dynamicity
can and will impact performance, while at the same time indicate
that performance of the languages must be evaluated carefully to
account for other overhead not directly related to dynamicity.
The insights provided by the studies, combined with the previously
mentioned lack of concrete figures, shows modern literature has
yet to fully address the specific performance impact of using static
typing in GDScript. This absence of widely accepted figures, limits
the ability for developers using GDScript to assess and compare the
performance implications of static versus dynamic typing, under-
scoring the need for a more rigorous and comprehensive approach.
As such, this research aims to systematically evaluate the execution
time differences between static and dynamic typing in GDScript. It
benchmarks nearly all built-in GDScript data types across a defined

1

TScIT 43, July 4, 2025, Enschede, The Netherlands Dmitry Goryachkin

set of common use cases and variable access patterns, in order to
establish baseline performance metrics for dynamic typing and com-
pare them against their statically typed counterparts. The objective
is to produce concrete, data-driven figures that quantify the impact
of static typing on execution time relative to dynamic typing.
To structure this investigation and maintain a focused analytical
scope, this paper poses the following research questions. These
questions are designed to explore the fundamental performance im-
plications of static versus dynamic typing within practical GDScript
contexts:

Research Question 1 (RQ1) What is the difference in perfor-
mance for built-in types?

Research Question 2 (RQ2) What are the differences in per-
formance impact between access patterns?

Research Question 3 (RQ3) Which common use cases have
the most significant performance impacts?

To answer these questions, this paper conducts an empirical investi-
gation based on systematic performance measurements within the
Godot Engine. By analyzing execution times across a range of data
types and use case, it aims to provide clear, quantifiable insights into
the impact of static versus dynamic typing in GDScript. The remain-
der of the paper details the measurement methods, presents and in-
terprets the results, and discusses their implications for performance-
conscious development in Godot.

2 MEASUREMENT METHODS
Godot is a game engine made open source in 2014. It features its
own scripting language called GDScript, which supports optional
type hints for variable declarations, allowing the interpreter to en-
force type rules when specified. This flexibility gives developers
the choice between static and dynamic typing, depending on their
needs. This section outlines the approach used to measure execution
time differences between these two typing modes. The goal is to
create controlled and repeatable benchmarks that reflect real-world
usage patterns while isolating the effects of typing. To achieve this,
the tests are designed to focus solely on performance factors di-
rectly attributable to the type system, excluding unrelated sources
of variation.
GDScript features a rich and extensive type system, comprising
38 built-in types alongside hundreds of user-defined or engine-
provided types derived from the base“Object" type, each with their
own implementations and nuances. This research limits its scope
to the built-in types, as these are implemented at the engine level
and exhibit consistent behavior across projects. In contrast, Object-
derived types often introduce performance variability due to custom
logic and implementation-specific overhead, which falls outside the
scope of this typing-focused performance analysis.
A variable defined with a specific type can behave differently de-
pending on how it is used. To accurately measure the performance
impact of dynamic typing, this research first establishes three key
concepts that form the foundation of the analysis:

• The distinct common use cases to be tested.
• The data types that will be subject to each test case.
• The way both combined will be measured and compared.

These concepts are defined prior to implementation to ensure consis-
tency across all stages of the research. Most importantly, they help
keep the focus on measuring performance differences in common,
real-world use cases.

2.1 Use Cases
Before selecting which built-in types to include in testing, it is first
necessary to define the test cases themselves. Since the objective is
to measure the relative performance impact of static typing, only
the overhead directly associated with the variable should be consid-
ered. This research assumes that the behavior of a variable can be
meaningfully represented through the following defined test cases:

Test Case Example Syntax

Declaration var variable: type = value
Setting variable = value
Getting variable
Operation variable + value
Comparison variable == value
Method Call variable.method()
Type Coercion variable as other_type

Table 1. Test cases and their representative syntax

This classification is based on distinct syntax associated with each
test, as well as assumptions about how interpreted languages typi-
cally operate. For example, operation and comparison are treated
as separate tests despite their similar syntax, because it is assumed
that operations generally incur less overhead than comparisons. Ad-
ditionally, type checking is considered as a separate test; however,
GDScript disallows type checking on statically typed expressions
by throwing a compile-time error, making this test applicable only
to dynamic typing.
Additionally, GDScript provides two generic collection types:“Array"
and “Dictionary". Both can store values of any data type, with Dic-
tionary also supporting any data type as a key. As a result, variables
can be accessed either directly or through indexing into these collec-
tions. Furthermore, both Array and Dictionary support static typing
of their value types, and Dictionary also allows for static typing
of its key type. Taken together, this results in five distinct access
patterns: direct variable access, Array access, inner-typed Array
access, Dictionary access, and inner-typed Dictionary access. Each
test is therefore repeated across all five access patterns to address
RQ2.

2.2 Data Types
GDScript provides 38 built-in types. Of these, this research includes
36, excluding “RID" and “Signal". The RID type represents a numer-
ical resource ID used internally by the engine to manage objects
in memory, and it cannot be instantiated directly without active
objects. Similarly, Signal requires explicit declaration syntax similar
to that of functions and lacks a literal form. Due to these limitations,
neither type can be reliably tested in isolation and is therefore ex-
cluded from this research.

2

Dynamic vs Static Typing Performance for Built-In Types in GDScript in the Godot Game Engine TScIT 43, July 4, 2025, Enschede, The Netherlands

Additionally, while “null" is officially documented as a type, it sim-
ply represents the absence of a value or type. Since null has no
behavior and cannot participate in any test case, it is also excluded
from testing, despite technically being listed as a type.
Some data types are not applicable to certain test cases. In such
cases, the incompatible test is omitted for that type.
Finally, although GDScript supports static typing of Dictionary keys,
fully testing every data type as a key for every combination of inner-
typed dictionaries would produce an unmanageable volume of data,
exceeding the scope of this research. To maintain focus and feasibil-
ity, all inner-typed dictionary keys are set to the “int‘" type in this
study.

2.3 Measurement & Comparison
Each test consists of one of the seven defined actions, repeated at
least one million times to amplify any overhead introduced by the
type system. To reduce the impact of noise in the results, a mini-
mum of 10 samples is collected per test, and their average is used for
analysis. Every test is executed as a pair: once using dynamic typing
syntax and once using static typing syntax. Each pair is then run
across all five access patterns described earlier. The total number of
test cases per data type varies depending on the specific behaviors
supported by that type.
For every test run, several pieces of metadata are recorded alongside
execution times: the data type, the test action, the access method,
the collection type, and whether the test uses static or dynamic
typing. This metadata allows the analysis to precisely isolate and
compare specific types of test runs as needed. Additionally, an extra
reference test, referred to as “baseline", is always executed for all
types. This baseline run contains an identical loop structure but
omits the actions under test, allowing measurement of the loop’s
execution time alone for comparison purposes.
Once all data is collected, the samples for each test are averaged.
The baseline value for each data type is then subtracted from its
corresponding test averages to isolate the raw overhead introduced
by the code under test. Each dynamic run is paired with its static
counterpart, and the percentage difference between them is calcu-
lated. The results are then grouped by data type and test action, and
further filtered by access pattern, producing five distinct datasets,
one for each access method. Each dataset contains the percentage
difference that static typing introduces for every test case across all
supported types for the corresponding access pattern. These five
datasets are then visualized as heatmaps, with data type on one axis
and test action on the other, to illustrate how static typing affects
performance in each scenario.

3 MEASUREMENT IMPLEMENTATION
Implementation1 is carried out using the Godot Engine version 4.4.1
editor. The project is set up as a new, empty Godot project with
default settings. It contains a single saved scene with one root node
of type “Node", to which the testing script is attached. Three folders
are created for organization: “Scripts", “Scenes", and “Results". The
attached script extends the “Node" class and executes all relevant

1The full Godot project implementation used in this research is archived on GitHub
and can be accessed at: https://github.com/Dmitry-Gor/dynamic-vs-static-test-impl

code within the “_ready()" function, ensuring that the benchmark-
ing begins automatically when the project is run.
The tests are implemented using code generation, which allows the
script to dynamically include or exclude type annotations as each
test is run. This is achieved through the “GDScript" class, which
enables the creation of new scripts at runtime by assigning a string
containing the source code. Each test is constructed by format-
ting a code template using string substitution, where placeholders
(denoted by curly braces) are replaced with the appropriate code
segments. Each test is implemented as a newly generated function,
and all functions are executed in the order they are generated. The
template used for generating test functions is as follows:

1 static func {func_name }(repetitions: PackedInt32Array) ->

Dictionary[StringName , Variant]:

2 var results: PackedFloat64Array = []

3 for loop_count:int in repetitions:

4 var iter_arr: Array = range(loop_count)

5
6 {outer}

7
8 var start_time: float = Time.get_ticks_usec ()

9 for i: int in iter_arr:

10
11 {inner}

12
13 results.append ((Time.get_ticks_usec () - start_time))

14 return {

15 &\" name \":\"{ func_name }\",

16 &\" type \": {type},

17 &\" test_type \": {test_type},

18 &\" in_collection \": {in_collection},

19 &\" collection_type \": {collection_type},

20 &\" dynamic \": {dynamic},

21 &\" results \": results ,

22 }

As shown in the template, each test receives an array of integers
and iterates over it once in an outer loop. For each element, it per-
forms an inner loop a number of times equal to the integer value
from the outer array. The execution time of this inner loop is then
measured and recorded. To avoid including unrelated overhead in
the results, the generation of the iterator array using “range()" is
placed outside the timed section of the loop. The most important
template placeholders are {outer} and {inner}, which are gener-
ated dynamically for each test, all other parts of the test template
are filled in automatically based on the test configuration. These
sections are constructed based on the data type, the specific test
action, the access pattern, and the collection type. A dedicated func-
tion assembles each test by combining predefined code snippets and
metadata specific to each type. These snippets and data include:

(1) A default value - a string snippet containing a value of the
current type.

(2) A loop-based variable declaration - a string snippet of a
value of the current type derived from the loop index, included
in all tests to ensure consistency across types.

(3) An operation - a string snippet containing a valid operation
for the type.

(4) A comparison - a string snippet containing a valid compari-
son for the type.

3

https://github.com/Dmitry-Gor/dynamic-vs-static-test-impl

TScIT 43, July 4, 2025, Enschede, The Netherlands Dmitry Goryachkin

(5) A coercible type - a string snippet containing a type into
which the variable can be explicitly cast.

(6) A method call - a string snippet that calls a method applica-
ble to the variable’s type.

(7) Applicable tests - an array of integers indicating which test
types are valid for this data type; only tests whose indices
appear in the array are executed.

Each test constructs its {outer} and {inner} sections with test-
specific logic. In most cases, the outer segment is responsible for
declaring the variable under test, and it is formatted to optionally
include a type annotation when the test is using static typing. One
part of {inner} remains consistent across all tests: it always in-
cludes a variable derived from the current loop index, known as
i_based, which is inserted as follows:

1 # ... {outer} above here

2
3 var start_time: float = Time.get_ticks_usec ()

4 for i: int in iter_arr:

5 var i_based: float = i + 0.1 # example for float

6
7 # ... rest of {inner} below

This i_based is included in every loop because some tests rely
on it to behave consistently and avoid being treated as constant
expressions. Godot evaluates any expression that lacks a variable
as a constant at compile time, as part of an optimization, an engine
behavior discovered during implementation.
Beyond the shared elements, each test is constructed using a unique
combination of the code snippets andmetadata described above. The
logic for generating the inner and outer sections varies depending
on the test, with outer defaulting to a simple variable declaration
unless otherwise noted. The approach for each test case is as follows:

Baseline Both {inner} and {outer} are left empty, containing
only the aforementioned i_based variable declaration (2) to
establish a timing baseline.

Declare The outer variable declaration is moved into {inner},
while {outer} remains empty. The variable is assigned its
default value (1).

Set The {inner} contains an assignment where the variable is
set to i_based.

Get The {inner} contains only the variable access.
Operation The {inner} contains an expression that performs

an operation (3) involving the variable and i_based.
Compare The {inner} contains a comparison (4) between the

variable and i_based.
Method The {inner} includes a method call (6) on the variable.
Type Coerce The {inner} contains an explicit type cast of the

variable to another type (5) using as.
Once the {inner} and {outer} segments are constructed for a
given test case, two versions of the test are generated: one using
dynamic typing and one using static typing. The only difference
between the two lies in the declaration of the subject variable. A
typical pair of tests differ as follows:

1 ## DYNAMIC typing version:

2 # ... rest of the function above

3
4 var thing = 0.05 # no type hint for dynamic test

5
6 var start_time: float = Time.get_ticks_usec ()

7 for i: int in iter_arr:

8 # ... {inner} here and below that uses the "thing

" variable

1 ## STATIC typing version:

2 # ... rest of the function above

3
4 var thing: float = 0.05 # type hint present , float

for this example

5
6 var start_time: float = Time.get_ticks_usec ()

7 for i: int in iter_arr:

8 # ... {inner} here and below that uses the "thing

" variable

Each new test pair is added to the complete source code being
generated. The same test configuration is then repeated for each
of the remaining access patterns. In these cases, the key difference
is that, for container types, the value is accessed via indexing into
the collection variable, rather than using the variable directly as the
value itself. Continuing from the previous example, the difference
between access patterns appears as follows:

1 ## STATIC typing version with an inner -typed Dictionary:

2 # ... rest of the function above

3
4 var thing : Dictionary[int ,float] = {} # static or

dynamic affects if the hint appears here

5 for i: int in iter_arr:

6 thing[i] = 0.05 # filling the collection variable

7
8 var start_time: float = Time.get_ticks_usec ()

9 for i: int in iter_arr:

10 # ... {inner} here and below that uses "thing[i]"

access in stead of "thing" directly

Once the full source code is assembled with all test cases in place,
the tests are executed using the specified repetitions parameter, and
the results are recorded. After execution completes, the resulting
data file is copied and transferred to RStudio for processing.
In RStudio, the processing script begins by averaging the sample
values for each test case. It then subtracts the baseline value for
each data type, taken from the corresponding baseline test, from
its related test averages. This step eliminates the influence of the
i_based variable and default loop overhead specific to each type.
The adjusted averages are then split into two sets: one for dynamic
tests and one for static tests, with baseline entries excluded. These
two sets are joined by matching rows based on shared type, test
case, and access pattern. A percentage difference in execution time
is computed between each dynamic-static pair and added as a new
column to the metadata.
Finally, the results are grouped by data type and test case, producing
value matrices suitable for heatmap visualization. One heatmap is
generated for each of the five variable access patterns, illustrating
how static typing affects performance across different operations
and types.

4 RESULTS
Running the tests for ten samples of 100k iterations each, then
plotting the heatmaps, we get 5 figures that each correlate to an

4

Dynamic vs Static Typing Performance for Built-In Types in GDScript in the Godot Game Engine TScIT 43, July 4, 2025, Enschede, The Netherlands

access pattern: Fig.1 for direct access, Fig.2 and Fig.4 for Array access,
and Fig.3 and Fig.5 for Dictionary access.

Fig. 1. Test Type vs. Type percent execution time difference (direct access)

For direct access (Fig.1), declaration, setting, and getting all show
mixed results. Most types exhibit only minuscule performance dif-
ferences that could be attributed to noise, but a few notable excep-
tions are that Callable, Projection, PackedVector2Array, and
PackedColorArray all experience execution time increases above
70% from baseline in at least one of these three cases. By contrast,
Object, StringName, and Basis each see execution time decreases
exceeding 50% in one of the aforementioned cases. Type coercion,
on the other hand, shows no anomalous cases outside what is plau-
sibly noise, except for perhaps StringName and NodePath, which
show both slight increases and decreases.
The remaining three test cases, operation, comparison, and method
calls, are at worst unaffected by static typing, with the majority of
cases benefiting substantially, ranging from approximately 10% up
to 80%. Notably, operation changes the least of the three, with 11
types showing benefits, while method calls benefit the most, with a
minimum 15% decrease in execution time across all but one type.
This pattern of mixed results continues for Array and Dictionary
without inner typing (Fig. 2 and Fig. 3). Both access patterns exhibit
a trend of inconsistent outcomes across several test categories, with
certain types standing out in performance, and other categories
showing more consistent benefits from static typing.
For Array, the most variable categories are declare and set. Note-
worthy performance loss appears in the types of Transform3D, Ba-
sis, bool, PackedInt32Array, and PackedColorArray, all show-
ing over a 10% increase in execution time during setting. Callable
and PackedFloat32Arraymeanwhile see performance gains above
10% in the same test. In the declare test, PackedInt32Array and
Transform2D both show more than 10% improvements. The remain-
ing test cases, by contrast, tend to benefit consistently from static
typing, with performance improvements reaching up to 45% in some
cases, and most gains falling in the 10-30% range.

Similarly, Dictionary access shows significant variance in the de-
clare and set tests. For example, Basis sees a 15% increase in
execution time, while PackedFloat64Array and Quaternion each
show reductions exceeding 20%. Unlike direct or array access, how-
ever, the purely beneficial categories are less distinct. The most
consistent gains appear in the method test, where all but one type
benefit. The other test cases, set, get, operation, comparison,
and coercion, also mostly show improvements, though these are
generally more modest, typically peaking around 16%.

Fig. 2. Test Type vs. Type percent execution time difference (array access)

Fig. 3. Test Type vs. Type percent execution time difference (dictionary
access)

For Array and Dictionary access with defined inner types (Fig. 4
and Fig. 5), the results are significantly more definitive. Both access

5

TScIT 43, July 4, 2025, Enschede, The Netherlands Dmitry Goryachkin

patterns exhibit substantial performance degradation during de-
clare, with most cases requiring roughly twice as long to declare as
their dynamic counterparts, and some Dictionary cases reaching
up to three times the execution time. In the set test, results show
a wide variance, with both gains and losses observed across types.
However, all remaining test cases consistently benefit from static
typing. Performance improvements for these cases typically range
from 20-50% for Array, and 10-30% for Dictionary.

Fig. 4. Test Type vs. Type percent execution time difference (subtyped array
access)

Fig. 5. Test Type vs. Type percent execution time difference (subtyped dic-
tionary access)

5 DISCUSSION
A plausible explanation for the mixed results, particularly in the
declare and set tests, is that the interpreter may lack sufficient
low-level optimizations to fully capitalize on the presence of static
type annotations. In many cases, especially for really specific opera-
tions, the cost of executing the action may not differ meaningfully
between dynamic and static contexts, as the interpreter may still fol-
low the same execution path regardless of type hints. Additionally,
instances where performance slightly degrades, most notably in
direct access or non-inner-typed Array and Dictionary use, could
be due to implicit type coercion. Some built-in types may require
conversion from input literals into internal representations before
performing an action, and increased specificity in a statically typed
context might trigger extra conversion steps, introducing marginal
overhead. The most severe performance regressions, observed dur-
ing declaration of inner-typed collections, may stem from how the
GDScript engine handles type-specific memory allocation. When
declaring a container such as Array[int], the engine could be con-
verting the literal (e.g., []) into a form explicitly structured to store
int values, instead of the default generic Variant, introducing a
cost that dynamic declarations avoid.
These findings highlight an important consideration for developers
working with GDScript: the performance implications of static typ-
ing are not uniformly positive, and in certain edge cases, particularly
with inner-typed collections or coercion-prone types, static typing
may introduce unexpected overhead. This underlines the need for
caution and attention to anomalies when optimizing performance-
critical code. However, when viewed in the broader context, the
results strongly support the use of static typing. The consistent and
often substantial performance gains observed in common opera-
tions such as method calls, comparisons, and arithmetic suggest that,
in most practical scenarios, static typing offers clear advantages.
As such, developers are encouraged to adopt static typing where
possible, especially in parts of the codebase that are performance-
sensitive or rely heavily on these frequently used operations.
It is also important to recognize that the usefulness of static typing
in GDScript extends well beyond performance considerations. Type
annotations help catch mismatches and misuse at the time of writ-
ing, significantly reducing the likelihood of runtime errors caused
by unexpected values or incorrect assumptions about data types.
This is particularly valuable in large or long-term projects, where
code is maintained by multiple developers and system complexity
increases over time. By enforcing clearer interfaces and enabling
better tooling support, static typing improves maintainability and
readability, key factors in reducing technical debt. These benefits,
combined with the observed performance improvements in many
typical use cases, make a strong case for the consistent use of static
typing in GDScript development.

5.1 Threats to Validity
One significant limitation of this study lies in the computational
constraints imposed by the scale of the test suite. Due to the high
number of test combinations across types, access methods, and test
actions, each individual test run is limited to 100,000 iterations per

6

Dynamic vs Static Typing Performance for Built-In Types in GDScript in the Godot Game Engine TScIT 43, July 4, 2025, Enschede, The Netherlands

sample, with only 10 samples per configuration. While this is suffi-
cient to expose general trends, it introduces a considerable amount
of statistical noise. Even after averaging across samples, the results
can still reflect fluctuations that obscure the true impact of static
typing, particularly for operations where the execution time differ-
ences are small.
Another threat to validity arises from the simplicity of the analysis
approach. This research relies on percent increases and decreases rel-
ative to a baseline, followed by visual inspection through heatmaps.
While effective at highlighting broad trends, this method lacks the
statistical rigor needed to detect or account for outliers, variance,
or potential correlations between type characteristics and perfor-
mance outcomes. As a result, subtle interactions or anomalies may
be either exaggerated or completely missed, which can compromise
the strength of the conclusions drawn.
Finally, the absence of prior studies or published performance analy-
ses specifically focused on static versus dynamic typing in GDScript
presents a significant limitation. The broader topic of type system
performance in dynamic languages is itself underexplored, and vir-
tually no research exists in the context of the Godot engine. This lack
of reference material makes it difficult to benchmark the methodol-
ogy or validate the results against established findings, limiting the
ability to situate this work within a broader academic or practical
context.
Compounding this issue is the limited understanding of the internal
behavior of Godot’s interpreter on the part of the researcher. While
the interpreter is open-source and theoretically accessible for inspec-
tion, gaining the depth of insight required to trace and explain the
performance impact of type annotations would demand extensive
familiarity with the engine’s C++ implementation. Given the time
constraints and scope of this project, such an investigation would
be infeasible for a single researcher to undertake in parallel with
the testing and analysis, leaving many of the observed performance
behaviors largely up to speculation.

5.2 Further Work
There are several promising directions for future research that could
expand on the findings and address the limitations of this study. No-
tably, while this work includes PackedInt32Array, PackedFloat-
64Array, and other packed-array types in the overall benchmarks,
their unique memory handling and internal representation merit a
dedicated performance investigation. Packed arrays are designed
specifically for efficiency and low-level data access in Godot, yet the
impact of static typing on their behavior remains largely unexplored
beyond surface-level trends observed here. Future studies could iso-
late these types and test them across a broader set of operations to
determine whether their performance profile is distinct from other
built-in types.
Additionally, the current study simplifies the testing of typed

dictionaries by using int as the static key type across all configura-
tions. A more exhaustive investigation into the performance impact
of varying key types, especially those more complex or expensive
to compare, like StringName, Object, or Vector2, would provide
deeper insights into how static typing interacts with dictionary

internals. Similarly, the analysis treats each access pattern indepen-
dently, but future research could explore the relationships between
patterns, identifying whether static typing benefits or penalizes cer-
tain sequences of access (e.g., retrieving a value immediately after
setting it) differently depending on context.
Finally, replicating this study under more favorable conditions

could yield more precise and generalizable results. The use of a more
powerful machine, larger iteration counts, and more sophisticated
statistical methods, such as hypothesis testing, variance analysis, or
confidence interval modeling, would reduce noise and increase the
reliability of findings. In parallel, a deeper dive into Godot’s inter-
preter and its optimization strategies would allow future researchers
to better explain anomalous or counterintuitive performance results.
With Godot’s interpreter being open-source, such an investigation
is feasible, though time-intensive. Understanding its memory al-
location patterns, type resolution mechanisms, and JIT behaviors
(if any) would be essential to uncovering the root causes of per-
formance variability, ultimately turning current speculation into
well-supported conclusions.

6 CONCLUSIONS
This study set out to explore the execution time differences between
static and dynamic typing in GDScript by benchmarking nearly all
built-in data types across common operations and access patterns.
Through automated testing and analysis, the research revealed sev-
eral key insights into the performance implications of using static
typing within the GDScript.

In response toRQ1, the performance impact of static typing varies
by type and operation; while the results are mixed in some areas,
most common use cases, particularly method calls, comparisons, and
arithmetic operations, consistently benefit from static typing. For
RQ2, differences between access patterns are notable: non-direct
patterns such as array and dictionary access generally show greater
performance gains with static typing, though inner-typed declara-
tions in these patterns suffer from significant slowdowns. As for
RQ3, the tests indicate that method calls, comparisons, and opera-
tions benefit the most from static typing across all patterns, while
actions like variable declaration and assignment remain inconsistent,
especially when used with inner-typed containers.
Ultimately, despite some anomalies and edge cases, the findings

support the practical use of static typing in GDScript, not only for
its runtime benefits in most scenarios but also for the additional
advantages in code clarity and error prevention.

REFERENCES
[1] Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Laurent

Réveillère. 2013. Popularity, Interoperability, and Impact of Programming Lan-
guages in 100,000Open Source Projects. In 2013 IEEE 37th Annual Computer Software
and Applications Conference. 303–312. https://doi.org/10.1109/COMPSAC.2013.55

[2] Gem Dot, Alejandro Martínez, and Antonio González. 2015. Analysis and Opti-
mization of Engines for Dynamically Typed Languages. In 2015 27th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).
41–48. https://doi.org/10.1109/SBAC-PAD.2015.20

[3] Andreas Gocht-Zech, Alexander Grund, and Robert Schöne. 2021. Controlling the
Runtime Overhead of Python Monitoring with Selective Instrumentation. In 2021
IEEE/ACM International Workshop on Programming and Performance Visualization
Tools (ProTools). 17–25. https://doi.org/10.1109/ProTools54808.2021.00008

[4] Ariel Manzur Juan Linietsky and Godot contributors. 2025. GDScript refer-
ence. https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_

7

https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1109/SBAC-PAD.2015.20
https://doi.org/10.1109/ProTools54808.2021.00008
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html

TScIT 43, July 4, 2025, Enschede, The Netherlands Dmitry Goryachkin

basics.html. Documentation for the engine itself, version at time of writing is 4.4.1,
future versions may be subject to change..

[5] Ariel Manzur Juan Linietsky and Godot contributors. 2025. Static typing in
GDScript. https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/
static_typing.html. Documentation for the engine itself, version at time of writing
is 4.4.1, future versions may be subject to change..

[6] Dongdong Lu, Jie Wu, Yongxiang Sheng, Peng Liu, and Mengmeng Yang. 2020.
Analysis of the popularity of programming languages in open source software
communities. In 2020 International Conference on Big Data and Social Sciences

(ICBDSS). 111–114. https://doi.org/10.1109/ICBDSS51270.2020.00033
[7] George Marques. 2020. GDScript progress report: Typed instructions. https:

//godotengine.org/article/gdscript-progress-report-typed-instructions/. Official
article from the Godot engine development team, but quite old since this pre-dates
4.0 by almost 2.5 years..

[8] Jeremy Siek. 2014. What is Gradual Typing. https://jsiek.github.io/home/
WhatIsGradualTyping.html. Personal github page, link may change, date of
access is 30-Apr-2025..

8

https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/static_typing.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/static_typing.html
https://doi.org/10.1109/ICBDSS51270.2020.00033
https://godotengine.org/article/gdscript-progress-report-typed-instructions/
https://godotengine.org/article/gdscript-progress-report-typed-instructions/
https://jsiek.github.io/home/WhatIsGradualTyping.html
https://jsiek.github.io/home/WhatIsGradualTyping.html

	Abstract
	1 Introduction
	2 Measurement Methods
	2.1 Use Cases
	2.2 Data Types
	2.3 Measurement & Comparison

	3 Measurement Implementation
	4 Results
	5 Discussion
	5.1 Threats to Validity
	5.2 Further Work

	6 Conclusions
	References

