
MIMO OFDM Radar for pose recognition

Tom Kroeze
Supervisors: Dr. Miao Yang and PhD. Nguyen Dao

Radio Systems (RS), University of Twente

July 15, 2025

Abstract

Orthogonal Frequency Division Multiplexing (OFDM) is a highly efficient technique of trans-
mitting data digitally by utilizing multiple orthogonal subcarriers. By applying beamforming
to OFDM it becomes achievable to focus the energy of the OFDM signal in specific direc-
tions. Performing range, Doppler and angle estimations allows the accurate estimation of
target positions, which is further improved by beamforming. In this research, OFDM and
beamforming will be jointly investigated to develop a system that is capable of accurately
determining human limb motion and body pose. Modeling the interaction between human
limbs and the OFDM signal with beamforming enables the extraction of meaningful data
for pose recognition. The system successfully detected a squatting position using a coarse
human model, showing that signal-processing applications have promising potential for pose
recognition. Results demonstrate a computationally efficient method of pose recognition
under constrained conditions. By using more advanced signal-processing techniques, current
limitations in effective range and angular resolution can be mitigated.

1. Introduction

Human pose recognition is an area of re-
search that has been growing due to the many
possible applications, such as in health care,
surveillance, behavioral monitoring and ges-
ture interpretation [2]. The research of this
thesis is part of bigger research, which in-
vestigates pose and breathing pattern recog-
nition to make it possible to track respira-
tory diseases. Current systems often make
use of regular and infra-red (IR) cameras to
perform human pose recognition. However,
the functionality of these systems depend on
proper lighting conditions and especially reg-
ular cameras invade the privacy of humans.

Unlike camera-based systems, radar based
systems are not affected by lighting condi-
tions and interfere less with the user’s pri-
vacy [2].

When utilizing radar-based systems for hu-
man pose recognition, the human body is
modeled as a set of points — hereafter re-
ferred to as targets — where each target cor-
responds to major joints such as the hips, the
elbows and the shoulders. The radar trans-
mits a signal, which will reflect off these tar-
gets and return to the receiver. The reflec-
tions of these targets can be processed to ob-
tain information about the angle, range, and
velocity of the joints.

Orthogonal frequency division multiplex-

1

ing (OFDM) is a digital modulation tech-
nique that uses many orthogonal subcarri-
ers which are closely spaced in frequency
and carry data at low symbol rates. The
orthogonality prevents any interference be-
tween the subcarriers, making it possible to
transmit many subcarriers on a specific band-
width. Because OFDM signals can transmit
efficiently on a large bandwidth, it is possi-
ble to achieve a high range resolution which
is required for detailed pose recognition.
Additional to the high spectral efficiency

of OFDM, a Multiple Input Multiple Output
(MIMO) antenna-array is used. MIMO radar
systems bring several advantages, mainly im-
proving spatial resolution and offering the
possibility to use beamforming for angle esti-
mation — essential for pose recognition.
When transmitting an OFDM signal, it is

essential that the subcarriers remain orthogo-
nal and do not interfere with each other. This
interference is called inter-carrier interference
(ICI) and can be mitigated by using an inter-
leaved structure. The technical details are
described in section 2.2.4
Signal processing is utilized to interpret the

receiver data. Fourier transforms make it
possible to estimate the range and the veloc-
ity of targets. To obtain reliable target detec-
tion, data is processed further by filtering and
Constant False Alarm Rate (CFAR) as detec-
tion method. The ability to apply signal pro-
cessing brings several advantages compared
to the data processing camera-based systems
require. This enables using relatively simple
computations to process data, resulting in a
smaller data footprint compared to the large
amount of data processing cameras rely on.
By applying beamforming techniques en-

abled by a MIMO system, it is possible to
estimate angular position of received signals
which is required for accurate target detec-
tion. Beamforming enables the radar to focus
on specific directions by electronically steer-
ing the radiation pattern towards the direc-

tion of targets, making it possible to rapidly
control it without any additional mechanical
implementation.

Literature review Radar pose estima-
tion has already been explored in literature
such as in RF-Based 3D Skeletons [6] and
Through-Wall Human Mesh Recovery Using
Radio Signals [7]. In these previous works the
benefits of using radar application are clearly
proven and functional methods of pose recog-
nition have been obtained. In this thesis the
pose recognition relies heavily on signal pro-
cessing, and does not depend on deep learn-
ing methods as described in other literature
sources creating less dependency on the us-
age of large amounts of data. Additionally, in
this thesis a dedicated OFDM radar system is
used instead of a commercial WiFi-based sys-
tem. This enables occupying a much larger
bandwidth, improving specifications such as
range- and spatial resolution.

Report structure The thesis is structured
into multiple sections.

Section 2 contains the theoretical back-
ground where relevant literature is analyzed.
Concepts such as DOA beamforming, range
and Doppler estimation are explored to create
a solid theoretical framework, which is used
in later sections to successfully create a suffi-
ciently realistic model to perform pose recog-
nition. Building on the theoretical frame-
work, section 3 contains the implementation
of the OFDM MIMO radar system in MAT-
LAB. Separate DOA estimation and range-
and Doppler estimation pipelines have been
created, both being able to function in rea-
sonable error margins. Even though full in-
tegration has not been achieved, the imple-
mentation clarified challenges in the model-
ing of a practically realistic system.In sec-
tion 4 human measurements were conducted.
Although the human measurement were not

2

used to test the radar system on, conduct-
ing the human measurements still provided
insights into what constraints would exist in
a real-life application of the system. In sec-
tion 5, validation of the DOA estimations
and the range- and Doppler estimations are
conducted. This section also investigates the
ability to perform pose recognition by detect-
ing a squatting pose of a coarse human model.
Despite the lack of a fully integrated DOA
and range-Doppler estimation pipeline, per-
forming these estimations made it possible
to detect the squatting pose within a lim-
ited range of approximately 0.9-1.3 meters
due to constraints in angular resolution. In
section 7, an overall summary of the qual-
ity and functionality of the developed pose-
recognition system is provided by reflecting
on the achieved result of estimating a squat-
ting position. Furthermore, this summary
and reflection relate to the potential future
and feasibility of signal-processing models for
pose recognition.

2. Theoretical Background

2.1 Notation

Bold symbols such as A denote matrices.
When a matrix is written as A(i, j), the low-
ercase symbols represent the indices of these
matrices. The corresponding uppercase sym-
bols indicate the dimension of the matrix, so
A ∈ CI×J , where each element of matrix A
is described by ai,j, denoting the entry at the
i-th row and the j-th column. Vectors are de-
scribed with either regular or capital letters
with an arrow, such as k⃗ and A⃗. Furthermore,
symbols with a hat such as k̂ and l̂ denote in-
dex positions of the corresponding vectors k⃗
and l⃗.

Figure 1: Visualization of OFDM subcarriers
[4]

2.2 OFDM

2.2.1 General idea of OFDM

OFDM is a technique that is used for efficient
transmission of data. By using multiple fre-
quency bins that all represent a different fre-
quency component and modulating multiple
signals on these different sampling frequen-
cies. To ensure that there is orthogonality
between the subcarriers, the equation

fn = n∆f =
n

T0

, n = 0, 1...N − 1 (1)

must hold, where n is the subcarrier index,
N is the total amount of subcarriers, ∆f is
the subcarrier spacing and fn is the frequency
of subcarrier n resulting in non-overlapping
subcarriers and symbols [4]. This is properly
depicted in Figure 1. At the peak of each in-
dividual subcarrier, all other subcarriers have
a value of 0 1.

2.2.2 QAM and OFDM signal genera-
tion

To generate M OFDM symbols all carry-
ing N subcarriers for transmission, a digi-
tal stream of bits is mapped onto a modula-
tion scheme such as Quadrature Phase Shift
Keying (QPSK) or Quadrature Amplitude
Modulation (QAM). 16-QAM is used for this
thesis which offers higher spectral efficiency
than QPSK, transmitting 4 bits per symbol
instead of 2. Modulation schemes with a
higher order such as 64-QAM are avoided,
which have increased complexity and SNR

3

demands. These QAM symbols are repre-
sented in matrix form [4].

A =


a0,0 a0,1 · · · a0,M−1

a1,0 a1,1 · · · a1,M−1
...

...
. . .

...
aN−1,0 aN−1,1 · · · aN−1,M−1

 ∈ CN×M

Where element an,m denotes subcarrier n
with n = 0, 1, ..., N − 1 of OFDM symbol m
wherem = 0, 1...,M−1. By taking an Inverse
Fast Fourier Transform (IFFT) the transmit-
table OFDM symbols are created. The time
domain signal can be written as [4]

x(t) =
M−1∑
m=0

N−1∑
n=0

an,me
j2πfntrect(

t−mT0

T0

)

(2)
Where T0 is the OFDM symbol duration.

2.2.3 Cyclic prefix

Due to reflection from surrounding objects
and the relative target positions, the trans-
mitted signal could arrive at the receiver
through multiple paths. This results in de-
lays that create interference and overlap be-
tween the OFDM symbols. This phenomenon
is called Inter Symbol Interference (ISI) and
has a more significant effect at lower symbol
durations. This is the case when OFDM sym-
bols contain many subcarriers with fixed fre-
quency spacing, which is required to obtain
high range resolution.
causing a larger ISI. This can be prevented

by adding a guard interval, by appending the
OFDM symbols with a Cyclic Prefix (CP) be-
fore transmission and removing them at the
receiver [3]. If the CP length is long enough,
ISI will remain in the guard interval and
will not distort the data-carrying part of the
OFDM symbols. However, the CP data does
not contain information thus the CP should
not be too long. Furthermore, addition of CP

does not change the signal model described in
equation 2

2.2.4 MIMO and Interleaved struc-
ture

A MIMO radar system consists of multiple
transmitters and receivers, creating a large
virtual array which improves spatial reso-
lution, required for accurate target detec-
tion. Additionally, MIMO radar enables
beamforming applications, a highly efficient
technique to perform angle estimation re-
quired to detect and localize closely spaced
body parts such as different joints. How-
ever, using MIMO radar increases the sys-
tem’s complexity. When all transmitters of a
MIMO radar transmit over the same subcar-
riers where each signal takes a different prop-
agation path, phase and timing mismatches
will occur at the receiver, distorting the or-
thogonality of the OFDM symbols. This phe-
nomenon is called Inter Carrier Interference
(ICI) and is prevented by using an interleaved
structure. The subcarriers are spectrally in-
terleaved as described in [4] so that the effi-
cient bandwidth is retained. By dividing the
N subcarriers over NCh channels which are
indexed by user index u = 0, 1, ..., NCh − 1,
each channel will be assigned Nu = N

NCh
sub-

carriers. The total subcarriers per channelNu

are assigned with the equation nu = u+iNCh,
where nu is an element of Nu where i =
0, 1, ..., N

NCh
− 1. The interleaving is visual-

ized in Figure 2

2.3 Antenna geometry

2.3.1 Virtual array

For a MIMO radar system containing P
transmitters (Tx) and Q receivers (Rx), each
transmitter’s signal is seen by each receiver,
increasing the effective number of signal
paths to P × Q [4]. Additionally, this re-
sults in a larger effective antenna array —

4

Figure 2: Visualization of subcarrier alloca-
tion for interleaved structure

Figure 3: Visualization of phase shift in-
curred based on DOA [4]

referred to as a virtual array further on—
which increases spatial resolution. The re-
sulting P × Q signal paths makes it possible
to implement beamforming which is one of
the main motivations for using a MIMO radar
system. Beamforming enables direction-of-
arrival (DOA) estimation which allows distin-
guishing between targets that are at similar
distances from the radar. The accuracy of
the DOA estimation is further improved by
the increase in spatial resolution.

2.3.2 Monostatic uniform linear array
(ULA)

A ULA antenna consists of multiple antenna
elements, lying on the same axis spaced at
distance d as shown in Figure 3. The simplic-
ity of this geometry allows straightforward
application of phase shifts across the antenna
elements and simplifies DOA estimation. Be-
cause all the elements lie on the same axis,
using a ULA can only perform azimuth an-

gle estimation which makes it impossible to
perform 3D DOA estimation. However, us-
ing a ULA is acceptable for proper range and
Doppler estimation. In this thesis it is as-
sumed that the distance between the Tx and
Rx elements can be neglected because it is
much smaller than the distance between the
radar and the human. Because the Tx and
Rx are assumed to be co-located and to have
identical physical geometries, the radar sys-
tem is considered to be monostatic [4].

2.3.3 Monostatic Uniform Planar Ar-
ray (UPA)

To perform 3D DOA recognition, the ULA
model must be extended to a more complex
model. A UPA array can be visualized as
multiple ULA antenna arrays stacked on top
of each other, creating a 2D array which is
visualized in Figure 4. Similar to the ULA,
this configuration is still easy to model, which
still allows simple DOA estimation.

2.4 System overview

Modeling Assumption on Antenna Ar-
ray Geometry In this thesis, for the range
and Doppler processing a ULA is used. The
antenna configuration does not affect these
estimations, other than that the accuracy im-
proves when using more Tx and Rx. How-
ever, because a UPA is required for DOA es-
timation, a UPA setup is used for the theo-
retical model.

2.4.1 Scenario

The system consists of a monostatic UPA,
containing 16× 16 Tx elements and 4× 4 Rx
elements with d = λ

2
= c0

2fc
, where d is the el-

ement spacing and fc is the carrier frequency.
The spacing d is chosen to avoid grating lobes
[4]. A carrier frequency of fc = 24GHz is
used as elaborated in Section 5, resulting in

5

Figure 4: Monostatic UPA antenna array
with d = λ

2
= 0.0125m spacing between el-

ements.

an element spacing of d = 3·108
2·24·109 = 0.0125m.

This antenna setup is shown in Figure 4.

As illustrated in Figure 5a and 5b, different
human poses result in different signal paths.
This results in the radar receiving different
signals depending on the pose of the human,
enabling pose recognition by evaluating the
received data. These Figures represent a
ULA antenna array, however the visualiza-
tion of the signal paths remains identical for
a UPA antenna array. The amount of points
used in estimations in visualized in Section
5. By testing with several poses and observ-
ing different outputs, it is possible to perform
pose recognition for these tested poses with-
out relying on machine learning. However,
this visualization does lack in showing the ef-
fect of dynamic poses such as jumping and
waving. In such cases, Doppler estimation
becomes essential for pose recognition.

(a) Monostatic signal reflection via human
body in standing pose with a uniform linear
array (ULA).

(b) Monostatic signal reflection via human
body in lunging pose with a uniform linear
array (ULA)

Figure 5

2.5 Channel

In this section, real-world transmission effects
will be modeled and accounted for. This is
done step by step to construct a full signal
model.

2.5.1 Propagation delay phase shift

Because the signal travels towards and away
from the target, a propagation delay phase
shift is induced, visualized in Figure 6. Be-
cause the MIMO radar system is monostatic,

6

Figure 6: Propagation delay visualization

rp = rq = rh making the total round-trip dis-
tance rp + rq ≈ 2rh. The round-trip time
can be expressed as τh = 2rh

c0
, where c0 is the

speed of light. Accounting for the subcarrier
spacing ∆f , the incurred propagation delay
phase shift is equal to

e−j2πfnτh (3)

However, due to the interleaved struc-
ture, each transmitter transmits on subcar-
riers spaced by a factor Nch. This scales the
phase shift by a factor u+iNch, providing the
following adapted phase shift

ϕτ = e−2πjfnτh(u+iNch) (4)

This can be separated into two terms where
one term depends on the user index u and the
other term depends on the subcarrier index of
the channel iNch.

ϕτ = e−j2πfnτhu ·e−j2πfnτhiNch = ϕτ,u ·ϕτ,i (5)

Because ϕτ,u is a constant phase shift over all
subcarriers in the channel, it will not affect
range estimation [4]. This makes it a valid
assumption to neglect the effect of ϕτ,u, mean-
ing ϕτ = ϕτ,i. Expressing ϕτ in vector form
enables range estimation, which is required
to determine the humans position relative to

Figure 7: Detectable Doppler shift visualiza-
tion [4]

the radar. Being able to estimate the range
of the targets is crucial for pose recognition,
as different poses will contain different range
profiles.

k⃗rh =
[
0 e−j2πNCh∆fτh . . . e

−j2π
(

N
NCh

−1
)
NCh∆fτh

]
(6)

2.5.2 Doppler phase shift

To perform accurate pose recognition, the
radar system must be able to detect veloci-
ties of targets. When targets are in motion, a
Doppler phase shift is introduced which can
be detected by the radar. This allows velocity
estimation of the parallel velocity component
v⃗∥ as shown in Figure 7, since the perpen-
dicular component can not be observed by
the radar. Since the signal travels towards
and away from the target, the radar detects
a Doppler shift corresponding to vest = 2 · v⃗∥
This Doppler shift is presented in the work of
Sit (2017) [4]

ϕD(t) = ej2π(fn+fc)
2vest
c0

t (7)

Separating this into two terms results in

ϕD(t) = e
j2πfn

2vest
c0

t · ej2πfc
2vest
c0

t
= ϕD,fn(t) · ϕD,fc(t)

(8)
Because in this thesis the carrier frequency

is in the order of GHz resulting in fn <<<

7

fc, ϕD,fn can be neglected. So the total in-
curred Doppler shift is

ϕD(t) = ϕD,fc(t) = ej2πfD,ht (9)

where fD,h = fc·2vest
c0

The problem with this
equation however, is that it assumes contin-
uous time. To correctly apply this phase
shift on each OFDM symbol, t is made dis-
crete. The symbol time Ts can be expressed
as Ts =

T
N+CP

[4], so T = TS(N + CP). Us-
ing this discrete expression of t, ϕD(t) can be
written in vector form

k⃗ϕD
=

[
0 ej2πfD,hT ... ej2πfD,h(M−1)T

]
(10)

2.5.3 Free space path loss (FSPL)

When the OFDM signal travels through
space, it suffers from FSPL, reducing the am-
plitude of the signal when arriving at the re-
ceiver. This loss can be computed with Friis
transmission equation

PR =
PTGTGRλ

2
c

(4πrh)2
(11)

Where PR and PT is the signal power at the
receiver and transmitter, and GT and GR

are the antenna gains of the transmitter and
the receiver. To model two-way path loss
(TWPL), the power of the signal at the target
is

Ptarget =
PTGTλ

2
c

(4πrh)2
(12)

And the power at the receiver after reflection
is

PR = Ptarget
σ

(4πrh)2
GR (13)

Where σ is the radar cross section (RCS) and
depends on the reflectivity of the target. Be-
cause in section 4 all the targets are modeled
with identical sensors a value of σ = 1 is as-
sumed. By substituting equation 12 in 13,
and taking the square root of this expression

Figure 8: SNR parameters [1]

to find attenuation factor αh the equation be-
comes

αh =

√
λ2
c

(4π)3r4h
GTGR (14)

2.5.4 White noise

SNR The signal to noise ratio (SNR) is
a metric that determines systems efficiency,
depending on factors shown in Figure 8 [1].
These factors are important to consider when
creating a model for the OFDM radar system.
However, full hardware and system modeling
of the antennas is outside the scope of this
thesis. This is why a fixed SNR of 30dB is
set for this research.

Modeled noise To make the theoreti-
cal model more realistic zero-mean complex
Gaussian noise is added. The value of this
noise is dependent on the noise power, ex-
pressed as

Pnoise =
Psignal

10
SNRdB

10

(15)

The Gaussian noise is then modeled as

z(t) =
√
Pnoise · w(t) (16)

Where w(t) is considered random Gaussian
noise, with zero mean and unit variance.

2.5.5 Full channel model

The full channel Hqp(nu,m) where qp rep-
resent the propagation path from p to q,

8

where p is the receiver element so that p =
0, 1..., P − 1 and q is the transmitter element
so that q = 0, 1, ..., Q − 1. The channel ac-
counts for all targets, including the range-
and Doppler phase shift and attenuation fac-
tor can be written in an equation as

Hqp(nu,m) =
K−1∑
k=0

αh ·e−j2πfnτhiNch ·ej2πfD,hmT

(17)
Where K is the total amount of targets and
k represents the individual targets.

2.6 Beamforming

2.6.1 Antenna geometry phase shift

Because of the UPA geometry of the MIMO
radar system, a phase shift depending on the
location of the Tx and Rx elements is in-
curred. An array factor is modeled where a

Figure 9: UPA Geometry visualizing both az-
imuth angle ϕ and elevation angle θ [5]

phase shift is incurred dependent on the loca-
tion of each element, visualized in Figure 9.
This array factor can be expressed as

AF (θ, ϕ) =
∑Nx−1

nx=0

∑Ny−1
ny=0 e

jkcd(nx sin(ϕ) cos(θ)+ny sin(ϕ) sin(θ))

(18)
Where Nx is the total amount of horizontal
Tx elements, Ny the total amount of vertical
Tx elements, Mx is the total amount of hor-
izontal Rx elements, My the total amount of
vertical Rx elements. Furthermore, ny, nx,

my and mx represent the individual elements
and ke = 2π

λc
is the wavenumber. The differ-

ence in phase per transmitter and receiver el-
ements enables implementation of beamform-
ing. Equation 18 can also be written as two
separate steering vectors for all the transmit-
ters and receivers, assuming P = Nx × Ny

and Q = Mx ×My. The size of these vectors
area⃗Tx(ϕ, θ) ∈ CP×1 and a⃗Rx(ϕ, θ) ∈ CQ×1.
The steering vector of the transmitter can be
written as

a⃗Tx(θh, ϕh) =


1

ejked(1·sin(ϕh) cos(θh))

ejked(2·sin(ϕh) cos(θh))

...
ejked((Nx−1)·sin(ϕh) cos(θh)+(Ny−1)·sin(ϕh) sin(θh))


(19)

Similarly, the steering vector of the receiver
can be written as

a⃗Rx(θh, ϕh) =


1

ejked(1·sin(ϕh) cos(θh))

ejked(2·sin(ϕh) cos(θh))

...
ejked((Mx−1)·sin(ϕh) cos(θh)+(My−1)·sin(ϕh) sin(θh))


(20)

2.6.2 MRT beamforming for 3D DOA
estimation

To steer the signal towards the targets, maxi-
mum ratio transmission (MRT) beamforming
is implemented. This method applies beam-
forming at the transmitter and the receiver,
and scans over a range of angles enabling vi-
sualization of the radiation pattern, allowing
DOA estimation. First, the transmit and re-
ceive steering vectors will be applied to the
channel.

Hh(nu,m) =
K−1∑
k=0

αh · e−j2πfnτh · ej2πfD,hmT

· a⃗Rx(ϕ, θ) · a⃗HTx(ϕ, θ) (21)

These steering vectors a⃗Rx(ϕ, θ) and a⃗Tx(ϕ, θ)
create a phase shift dependent on the angle of

9

the target in the channel, which can be used
for 2D DOA estimation. Introducing conju-
gate transpose steering vectors w⃗Rx(ϕs, θs) =
a⃗HRx(ϕ, θ) and w⃗Tx(ϕs, θs) = a⃗HTx(ϕ, θ), enables
plotting a channel response for different val-
ues of scanning angles ϕs and θs. This results
in a radiation pattern described by

P (ϕs, θs) = |w⃗Rx(ϕs, θs)·Hh(nu,m)·w⃗Tx(ϕs, θs)|2
(22)

By sweeping over the angles −90 < ϕs < 90
and 0 < θs < 90, the radiation pattern will
show peaks for combinations where (ϕs, θs) ≈
(ϕ, θ).

2.7 Full signal model

To be able to calculate the range and veloc-
ity of each target, the full signal model is con-
structed in this section. Because the DOA es-
timation does not have effect on the range or
Doppler, the effects of the beamsteering vec-
tors will be neglected in the full signal model.
This makes it a valid assumption to use equa-
tion 17 for the full signal model [4]. Coher-
ently summing the data of all transmitters at
each receiver gives

Yq(n,m) =
P−1∑
p=0

Xp(nu,m) ·Hqp(nu,m)

+ Z(n,m) (23)

Where Yq(n,m) is the data obtained by
receiver q, Xp(nu,m) is the transmitted data
by transmitter p, Z(n,m) is the added white
noise and Hqp(nu,m) is the channel without
any DOA effects.

2.8 Obtaining the channel effects

Based on the assumptions in [4], the follow-
ing quotient matrix —a quotient of the input
and output symbols-at antenna index p, q at

subcarrier nu, symbol m— can be realized

Dqp(nu,m) =
∑K−1

k=0 αh

(
k⃗rh ⊛ k⃗Dh

)
+Z(nu,m)

(24)
Because the Doppler shift vector is depen-
dent on phase shift along the direction of the
symbols and the range phase vector is depen-
dent on the user index, they are orthogonal to
each other described by the kronecker prod-
uct ⊛. By taking IFFT’s across the axis of
the subcarriers and FFT’s across the axis of
the symbols of Dqp, it is possible to estimate
the range and the velocity of targets [4].

2.9 CFAR

To identify targets and distinguish them
from background noise, a reliable threshold-
ing method must be implemented. For this
research, Constant False Alarm Rate (CFAR)
detection was implemented. This method of
detection will scan over each range-Doppler
bin —except the ones near to the edge—
on the RD-map by surrounding the tested
range-Doppler bin, also called Cell Under
Test (CUT) with guard- and training cells
as shown in Figure 10. The guard cells are
spaced around the CUT and are neglected
by the scan, because an actual target that
has high energy could leak energy in near fre-
quency bins. After this, the average power
of the CUT and all the training cells is com-
puted and compared. If the average power of
the CUT appears to be a certain threshold
higher than the average power of the train-
ing cells, the CUT is marked as a target.
This method becomes less effective around
the edges of the RD-map, because there will
be less available training and guard cells.
However, this is not a significant issue due
to none of the targets being able to appear
around the edge.

10

Figure 10: Representation of CFAR on a
range-Doppler map

2.10 Range and Doppler estimation

2.10.1 Range

The range can be estimated by taking the
IFFT across the axis of the frequency sub-
carriers of Dqp. This results in each target k
showing a peak at one specific subcarrier rep-
resenting a range. The subcarrier where this
peak occurs denoted by k̂k where k̂k is in the
set = {0, 1, ..., N

NCh
− 1}. This can be written

in an equation as [4]

k̂k = N∆fτh =
2N∆f

c0
rh, (25)

Expressing this in rh results in the range of
the corresponding target

rh =
c0

2N∆f
· k̂k (26)

This equation shows that range is dependent
on round trip time τh, the total amount of
subcarriers N , subcarrier spacing ∆f and the
index k̂h,

Range resolution Because k̂k is an inte-
ger, only multiples of c0

2N∆f
can be detected

as valid ranges. This means the range reso-
lution is equal to

∆rh =
c0

2N∆f
=

c0
2BW

(27)

Where BW is the total occupied bandwidth
of the system. The required value of ∆rh will
be discussed in the results.

2.10.2 Doppler estimation

The Doppler can be estimated by taking a
Fast Fourier Transform (FFT) over the sym-
bol axis of Dqp, where each target k will re-
sult in a peak at one specific OFDM sym-
bol m. The subcarrier where this peak oc-
curs denoted by l̂k where l̂k is in the set
{0, 1, ...,M−1}. This can be written in equa-
tion as [4]

l̂k = MfDT =
2MTfc

c0
vest (28)

Expressing this in vest results in the velocity
of the corresponding target

vest =
c0

2MTfc
l̂k =

1

2MTλc

l̂k (29)

The estimated velocity depends on the total
amount of OFDM symbols M , carrier fre-
quency fc and symbol duration T . Similar
to the range estimation, each object h will
give one individual peak at l̂k along the axis
of the OFDM-symbols.

Doppler resolution Similar to the range
resolution, only multiples of ∆fD = 1

MT
can

be detected as valid Doppler shifts. The re-
quired value of ∆fD will be discussed in the
results.

3. Implementation

MATLAB was used to create the model of the
OFDM beamformed radar. The used code
can be found in the section 9. MATLAB has a
lot of convenient toolboxes for signal process-
ing and radar modeling and can make com-
putations with large amount of data, which
is ideal for this application. All the written
code is given in Appendix A. The main code
is divided into multiple sections, this pipeline
contains the implementation of the range and
Doppler estimation. In this pipeline, sev-
eral functions are used. These functions are

11

the QAM-mod function, the OFDM function
and the OFDM-channel function. In an ad-
ditional script beamforming is implemented,
making use of the function beamsteering vec-
tor. The beamforming and the range- and
Doppler estimation code are discussed sepa-
rately. In section 9.11, a block diagram of
the full implementation system architecture
is shown. It should be noted that this is
an idealized representation of the block dia-
gram, because the beamforming has been im-
plemented separately and is not functional in
the complete pipeline. This block diagram
will be referred to further on in this thesis,
giving more detailed descriptions for some
blocks where possible.

3.1 Range- and Doppler estimation
code

In this subsection, the implementation of the
range- and Doppler estimation. The code
contains multiple sections, each discussed
separately. A block diagram is given to vi-
sualize what each part of the code does.

3.1.1 Main code section 1-3: Parame-
ters and signal generation

In these sections parameters are defined and
the signal to transmit will be generated. This
is done by using the QAM-mod function,
which creates 16-QAM symbols ready for
transmission. These subcarriers also get as-
signed to the right channels and transmitters
to match the interleaved structure and the
amount of Tx. Dividing the channels over the
Tx is done by using a round-robin structure.
These ready to transmit signals get passed
to the next section where the channel effects
during transmission will be modeled.

3.1.2 Main code section 4: Defining
targets and channel

For testing purposes, multiple test targets are
created in this section. This is implemented
by assigning each target a specific realistic
Doppler shift and a certain distance it is away
from the radar. For each transmitter which
contains different channels, the channel ef-
fects are applied to each target. The channel
is a separate function called OFDM-Channel.

OFDM-Channel In the channel, real
world effects are modeled as described in
section 2.5. Because the transmitted signal
is in the time domain, the Doppler phase
shift is applied first. After this the signal is
briefly converted back to the frequency do-
main where the range phase shift is applied
on the data-carrying subcarriers, after which
it gets converted to the time domain again.
Due to a time constraint in implementation
the phase shift due to the array geometry is
not applied here, because DOA estimation is
done separately. Finally, the FSPL and noise
with a fixed randomness is applied to the sig-
nal to account for the environment. The sig-
nal with the channel effects applied is then
passed onto the next section.

3.1.3 Main code section 5:9 Receiving
and processing the data

The transmitted data that passed through
the channel is received and processed in these
sections. Firstly, because there are no Rx/Tx
specific effects, the data of all the transmit-
ters will be summed at the receiver to im-
prove signal strength. A change in imple-
mentation for receiving the data was made.
Firstly, this was done by simple division as
explained in section 2.8. However, this some-
times resulted in errors because division by 0
would frequently occur. This is why matched
filtering has been implemented instead. This

12

is implemented in MATLAB by convolving
the transmitted signal and the received sig-
nal, with MATLAB’s conv2 function. How-
ever, in the event of spectral leakage where
the energy of a frequency bin leaks into
closely spaced frequency bins, regular thresh-
olding based on power after applying matched
filtering is not sufficient. Regular threshold-
ing will require frequent adjusting and will
often lead to false target detections. To en-
sure accurate detection of targets, CFAR de-
tection and range filtering is implemented.

MATLAB implementation of CFAR
In the implementation an algorithm is created
to perform CFAR. MATLAB’s CFAR func-
tion was not integrating well with the pipeline
of the already written code, which is why this
own algorithm was designed. This algorithm
properly creates a ’block’ of a CUT, sur-
rounded by guard cells and a limited amount
of training cells. An extra step is taken by
not using CFAR around the edges where it
becomes less reliable, to further prevent any
false detections.

3.1.4 Main code section 10-12: Per-
forming calculations and plot-
ting the data

Multiple plots and graphs have been utilized
to visualize the data. By performing an FFT-
shift, it ensures the Doppler bins will appear
around the center so that negative- and pos-
itive Doppler shifts can be visualized. Addi-
tionally, if this FFT-shift is not applied the
Doppler bins will appear around the edges
which will reduce the efficiency of CFAR. Ad-
ditionally, the range-Doppler map is visual-
ized in dB for a more accurate representa-
tion. These plots will be shown and analyzed
in section 5.

3.2 3D Beamforming code

This part of the code is listed in 9.7 and im-
plements 3D beamforming. In section 1 of
the code the parameters are defined, such as
the amount of uniform planar array (UPA)
antenna elements. The distance Rb is the dis-
tance of the 3D targets to the UPA. This and
the 3D position of a list of targets is used in
section 2 to compute the matching azimuth
(ϕ) and elevation angles (θ) the UPA will
see. For simplicity, a simple arbitrary chan-
nel is set up, on which the azimuth- and ele-
vation beamsteering vectors are applied with
the function steeringvector2. After this, a
full 3D angle scan is performed — so for
−90 < ϕ < 90 and 0 < θ < 90, which applies
the beamforming on the pairs of angle that
show the strongest response. This is not the
most efficient technique, however, the sim-
plicity of the channel does not make this im-
plementation too process heavy. After this, a
simple linear color map is created to visualize
these positions. After this, linear threshold-
ing is used to keep the strongest contributions
of the beamformer output, this value will be
adjusted until the output appears sufficient.
This will often occur in multiple points clut-
tered together, which is why an algorithm is
designed which only keeps the center point of
a cluster of points. This is then used to cre-
ate a set of points, which are then manually
connected to plot the reconstructed stickman.

3.3 Visualization tools

A few smaller sections of code have been used
to visualize some important specifications.
Because the implementation is not complex,
they are briefly explained in this section. The
code in appendix 9.8 plots a 2D stickman in
(ϕ, θ) angle space, identical to the implemen-
tation in the beamforming code. The code in
appendix 9.9 extends this to a 3D stickman
figure, by assigning a depth y to each (x, z)

13

Figure 11: Camera setup for the measure-
ments

point used in the creation of the 2D stickman.

4. Human Model Measure-
ments

In this section, the performed measurements
are elaborated. Due to time constraints, the
signal model has not been tested with most
of the actual measurements. However, an ex-
planation of how this would have been imple-
mented is provided to show the relevance of
these measurements.

4.1 Camera groundtruth benchmark

To create a more realistic scenario, measure-
ments with cameras were performed. These
cameras were positioned as shown in Figure
11 The measurements were carried out with
help of two assistants. They provided the
equipment and the measurement software
and setup. The measurements were executed
by the assistants wearing sensors on multiple
different limbs and joints and taking on
different poses. These were both stationary
and dynamic poses.

The cameras were able to record data of the
sensors when they were facing towards them.
Due to these measurements being planned ex-

Figure 12: Qualisys software measurement
environment

ternally, the camera setup was non-ideal be-
cause when sensors were facing away from the
camera, the sensor disappeared. This disap-
pearing of sensors happened frequently, es-
pecially when there was rotation in some of
the limbs. It still delivered meaningful data
that was sufficient to use for the research, but
it made evaluating the measurements more
time-consuming.
The data acquired by the sensors gave a real-
time human model to use the model on.

4.2 Implementation plan

In Figure 12 the Qualisys software environ-
ment is shown. The green dots represent
the sensors, which are detected by the cam-
eras. By performing a measurement with
somebody wearing the sensors, these detected
sensor can be connected and a stickman hu-
man model can be created. This can then
be saved as a model, and constantly reap-
plied when performing measurements with
different poses. Occasionally the cameras lost
track of the sensors or anomalies showed up
on the cameras. These are represented by the
grey dots shown in figure 13.

This requires the generated data to be care-
fully reviewed and evaluated, before being
ready for use. By converting the measure-
ments to a MATLAB script, the described
signal model can be tested on a realistic hu-
man model. This brings several benefits, es-
pecially to improve the accuracy of the an-

14

Figure 13: Visualization of sensors not being
captured by the cameras

alyzed poses. This helped significantly by
specifying the required range resolution, by
being able to visualize the distance between
limbs. Due to the described time constraints,
the recorded data has not been used for im-
plementation and validation of results.

5. Results

5.1 DOA, Range and Doppler Estima-
tion Theoretical Verification

In this section. This will first be done by
defining the system parameters, after which
the verification will be presented.

5.1.1 System Parameter Design and
Selection

In this section, the parameters used for the
results are defined. The required parameters
with brief explanations are defined in a table
in appendix 9.12, where the required value is
the minimum system requirement. The pa-
rameters that were actually used are shown
in the Chosen Value column.

The minimum required range resolution
was set to ≤ 20 cm. However, the modeled
system allowed using N = 8192 subcarriers
without causing any performance issues. This
is why N is chosen to be significantly higher

than the minimum requirement. Addition-
ally, M = 2222 symbols were chosen to en-
sure that after applying the frequency shift
there still existed a Doppler bin at 0Hz. If
this number is odd, it is impossible to deter-
mine if targets are stationary.

5.1.2 Antenna Specifications for
Range- and Doppler Estimation

For the range- and Doppler estimation a ULA
antenna array is used with P = 16 Tx and
Q = 4 Rx. Using a UPA antenna array was
not feasible for the range- and Doppler esti-
mation, because this would require the use of
too many channels. This inconsistency could
not be resolved in time and is further elabo-
rated in the discussion. The amount of chan-
nels is set to the amount of transmitters to en-
sure each Tx is not transmitting any overlap-
ping data, so Nch = 16. Because the focus of
the research was more on the signal process-
ing than the actual physical implementation
of antennas, there has not been any research
conducted about the physical antenna model
and other specifications. For the 3D DOA es-
timation, a UPA antenna array is used with
P = 16 × 16 Tx and Q = 4 × 4 Rx. The
decision to use these values is motivated in
section 5.1.7.

5.1.3 Range estimation

In Figure 14 and 15, the range-Doppler map
and the distance velocity relation is visualized
of 7 different targets —parameters specified
in Figure 14—. The 7 targets can clearly be
distinguished, which is expected because the
distance between the targets is larger than
the range resolution.

5.1.4 Doppler estimation

In Figure 16a and 16b, 7 targets with identi-
cal distances but varying Doppler shifts have

15

Figure 14: Range-Doppler map visualizing
stationary targets with ranges of 48-51m (in-
crements of 0.5m)

been plotted to clearly visualize the Doppler
detection. 7 distinguishable Doppler bins
show up, all representing different targets.
In Figure 16b, these Doppler bins have been
converted to actual velocities, making it pos-
sible to detect multiple velocities between
−3.5 − 3.5m/s. This makes it possible for
the radar system to detect a limited amount
of limb motions, mainly being able to distin-
guish between faster and slower motions.

5.1.5 Range and Doppler estimation

The results also have been visualized when
multiple targets have different ranges and ve-
locities. This is shown in Figures 17a and
17b, confirms that the range-Doppler estima-
tion is performing correctly. In Figure 18 the
actual measured Doppler shift, range and ve-
locity is shown.

5.1.6 Comparison CFAR and regular
power thresholding

As an additional verification, CFAR was com-
pared with regular power thresholding im-
plemented as shown in 9.5 This lead to the

Figure 15: Ranges of targets visualized in
Figure 14

surprising result shown in Figures 17a and
19that even at a really low threshold value
such as 0.05, the regular power threshold-
ing performed a lot better than the CFAR
with a lower threshold value (10). The CFAR
showed large amounts of cluttering and the
range and Doppler estimation became ex-
tremely inaccurate. The reason this occurred
is elaborated in section 6. Because of this in-
accuracy, the previous range-Doppler maps
have been plotted by using regular power
thresholding and CFAR has been discarded.

5.1.7 3D DOA estimation

For accurate DOA estimation, only imple-
menting 2D beamforming is not enough, as
explained in 2.3.3. Therefore the 2D beam-
forming estimation was omitted later in the
research and only the verification of 3D beam-
forming remained relevant. To verify if the
3D DOA angle estimation is functioning cor-
rectly, 3 azimuth angles ϕ1 = −30◦, ϕ2 =
10◦, ϕ3 = 50◦ were plotted with a fixed ele-
vation angle θf = 30◦, shown in Figure 20a.
Furthermore, 3 elevation angles θ1 = 20, θ2 =
40, θ3 = 55 were plotted with a fixed azimuth
angle ϕf = 20, shown in Figure 20b Both of
these plots show clear peaks at the expected

16

(a) Doppler map of targets with Doppler shift
-600 - 600 Hz (increments of 200 Hz)

(b) Velocities of targets visualized in Figure 16a

Figure 16

angles, implying sufficient functionality of the
3D DOA estimation. To create a more mean-
ingful result, the Half Power Beam Width
(HPBW) can be calculated. However, this
is not included in the research due to time
constraints.

Angular resolution One of the most im-
portant specifications of the 3D beamforming
is the angular resolution in both azimuth and
elevation. This is required to properly deter-
mine positions of targets in section 5.2. There
is not a trivial formula to compute the angu-

(a) range-Doppler map of targets with
Doppler shift -150 - 150 Hz (increments of
50 Hz) and distances of 49-50.8m (incre-
ments of 0.3m)

(b) Plot of the velocities and ranges of tar-
gets

Figure 17

lar resolution of both elevation- and azimuth
angles, which is why these resolutions were
calculated by testing. By plotting a power
response of the 3D beamforming of a singular
target positioned at (ϕ, θ) = (0, 50) the width
and height in degrees of this response can be
calculated. This is visualized in Figure 21 and
shows that the angular resolution in both az-
imuth and elevation is around ∆ϕ ≈ ∆θ ≈ 8◦

These tests were also carried out by using
P = 8 × 8. However, the angular resolution
with this setup was too low which resulted
in the peaks of both plots being significantly

17

Figure 18: Actual values of range, Doppler
and velocity of the targets

Figure 19: Low CFAR thresholding

less distinct, which is why P = 16 × 16 was
used for the Tx UPA array.

5.2 Recognizing a Squat Position

This subsection of the results contains a pro-
cess where the individual data of the DOA
estimation and range- and Doppler is inte-
grated to recognize a position.

5.2.1 Pose Recognition Scenario

In this section, a scenario is created of a hu-
man in a squatting position, which will be
estimated by performing 3D DOA estimation
and range- and Doppler estimation. The cho-
sen scenario to be modeled is a human in
a squatting position, because it introduces
vertical displacement of body parts such as
the knee, head and lower torso. Additionally,
because the lower torso is positioned further
back this also creates an additional displace-
ment which can be captured by the simple

(a) Plot of DOA estimation of ϕ1 =
−30◦, ϕ2 = 10◦, ϕ3 = 50◦ with fixed eleva-
tion angle θf = 30◦

(b) Plot of DOA estimation of θ1 = 20, θ2 =
40, θ3 = 55 with fixed azimuth angle ϕf =
20

Figure 20

model. Before recognizing the squatting po-
sition, first some basic assumptions and con-
ditions will be noted. A simple human model
is constructed which is implemented by creat-
ing a stickman model. This stickman model
consists out of several 2D points, which are
then converted to an angular representation.
Afterwards, these 2D points are modeled as
3D points to receive a 3D model as shown in
Figures 22a and 22b. However, this imple-
mentation is not realistic for a real world sce-
nario. The estimation of the location of these
joints is not possible in this way because the
whole body would be seen as a cluster con-

18

Figure 21: Estimation of elevation- and az-
imuth angular resolution

taining millions of these points. This is why
for this scenario and application, a human
must wear sensors at the locations of these
modeled points for pose recognition to be per-
formed. Additionally, it is important to note
that due to an inaccuracy with coding, the
notation of the azimuth and elevation angle
has been swapped in the upcoming sections.
This means that for the results the elevation
angle is ϕ and the azimuth angle is θ

5.2.2 Pose Recognition Specifications

The chosen antenna setup is a UPA with
Tx = 16 × 16 and Rx = 4 × 4. Choosing
the 2D points to create the 3D model came
with limitations, because the angular resolu-
tion is limited. Targets could not be too far
away from the radar because at further dis-
tances their angular separation decreases. By
performing multiple tests, only distances of
around 1m ended up showing promising pos-
sibilities to perform recognition. Taking the
1m distance from the radar into considera-
tion, allowed creating the stickman visualized
in Figures 22a and 22b. The coordinates of

(a) Simple 3D stickman visualization (side
view)

(b) Simple 3D stickman visualization (front
view)

Figure 22: Simple 3D stickman visualizations

these points (x,y,z) are given in Table 1. By
trying multiple sets of coordinates, these co-
ordinates showed promising results to show
the possibilities of pose estimation with the
designed system. Because of the limitations
created by the limited angular resolution, the
model is not the most realistic and the human
is positioned on top of a small box.

The specific points are passed through the
pipeline described in 3.2. Firstly, this will
create a power map of the scanned angles by
implementing the beamforming. This is vi-
sualized in Figure 23. The crosses mark the
targets for visualization purposes.

19

Joint X (m) Y (m) Z (m)

Head 0.00 1.60 2.18
Torso (Pelvis) 0.00 1.00 1.30
L Shoulder -0.35 1.40 1.50
R Shoulder 0.35 1.40 1.50
L Knee -0.30 1.60 0.50
R Knee 0.30 1.60 0.50
L Foot -0.30 1.60 0.28
R Foot 0.30 1.60 0.28
L Hand -0.20 1.30 0.90
R Hand 0.20 1.30 0.90

Table 1: Joint coordinates for the 3D stick-
man squatting pose. The Z-axis represents
height.

Figure 23: Visualization of the 3D beamform-
ing power response

Regular power thresholding is applied to
only keep the spots that have significantly
higher power. This thresholding is not the
most ideal since at really low elevation an-
gles, the azimuth separation appears smaller
from the radars perspective, reducing the pre-
cision. This explains the less concentrated
peaks in Figures 23 and 24 at lower elevation
angles.

Figure 25: Visualization of the cluttered sig-
nals with centroids

Figure 24: Power map after thresholding

In Figure 25, the data acquired by thresh-
olding is processed. By applying these cen-
troids, a more accurate target representa-
tion which can be used for reconstructing the
stickman is acquired. This reconstruction is
visualized in Figure 26

5.2.3 Range and Doppler estimation

In a pipeline where DOA estimation and
range- and Doppler estimation are integrated,
the DOA estimation is already used for target
detection and range and Doppler shift is only
computed after these targets have been de-
tected. To reproduce this analogy, the range

20

Figure 26: Reconstructed 2D stickman model

and Doppler of a select amount of points de-
tected with the DOA estimation will be com-
puted. 2 points will be evaluated, being the
lower torso, and the right knee. Two varia-
tions of this will be considered, one where the
pose is completely stationary and one where
the lower torso is moving.

Stationary pose The two targets were
able to be distinguished successfully as shown
in Figures 27a and 27b. When more than 2
targets were included —e.g. the knee— only
two targets showed up. This is mainly due to
the fact that some separate targets have very
similar distances from the radar, which can
not be distinguished unless the range resolu-
tion is high. However, this is not an issue, as
accurate DOA estimation makes it possible to
calculate the range and Doppler of each indi-
vidual target. This means pose recognition is
still feasible
For extra verification the amount of sub-

carriers were set to N = 16384, effectively
halving the range resolution. This finer
range resolution lead to the ranges of all
3 targets being visible, as shown in Figure 28

Moving torso For this test, a set velocity
is applied to the torso to represent movement
in the squat position. In Figures 29 and 30,

(a) Range-Doppler map of stationary lower
torso and knee

(b) Distance and velocity of stationary
lower torso and knee

Figure 27: Analysis of stationary lower torso
and knee.

this is clearly visualized and it can be seen
that the target representing the lower torso
has a specific velocity. This also confirms the
Doppler estimation is functioning correctly,
making it possible to also perform pose
estimation of mobile poses.

5.2.4 Angular resolution

The explored method of detecting a squat
position delivered useful results in contexts
of pose recognition. However, the effective
range where the DOA estimation was accu-

21

Figure 28: Distance and velocity of station-
ary lower torso, head and knee

Figure 29: Range-Doppler map of moving
lower torso and stationary knee

rate was only in between 0.9 − 1.3m. If the
distance of the human was closer or further
away than this, results became inaccurate as
visualized in Figures 32 and 31. In Figure 32
the lower torso fused together with the head
and in Figure 31 the feet fused together.
To explore why this occurred, the amount of
Tx was changed to 32×32. Even though this
value is unrealistic for real life application, it
increases the aperture size which results in an
increase in range resolution. Here, the angle
estimation remained accurate in a range of
0.7− 1.7m as shown in Figures 33a and 33b.

Figure 30: Distance and velocity of moving
lower torso and stationary knee

Figure 31: Response of beamforming for Tx
size 16x16 when distance to radar = 0.8m

6. Discussion

The main complication in this thesis was the
integration of the DOA estimation with the
range and Doppler estimation. The complex-
ity of integrating these estimations was not
anticipated which lead to prioritizing the im-
plementation instead of confirming that the
method of integration was supported by un-
derlying theory. In hindsight, this ended
up being time-consuming, which limited the
scope of the research. For complications in
integration stages in future research, it is rec-

22

Figure 32: Response of beamforming for Tx
size 16x16 when distance to radar = 1.4m

ommended to revisit the required theory in-
stead of fixating on resolving the implemen-
tation issues.
One of the main issues encountered when

coding in Matlab, was an excessive amount
of memory usage in specific sections. This
resulted in large processing times and ’out
of memory’ errors on multiple occasions.
This was mainly due to code design that
dit not prioritize efficient memory usage.
N and M were reduced to combat this
issue. However, more efficient approaches
could have been taken, e.g. clearing unused
variables during iterations or reducing the
amount of consecutive for loops.

For further research, it is recommended
to perform tests with other modulation
schemes such as 64-QAM to gain better
understanding of the effect of the modulation
technique on the overal system performance.
The decision to use 16-QAM was mostly
based on other research and basic knowledge
as it is a modulation scheme that is not
too intensive and contains an acceptable 4
bits per modulation symbol. For research
purposes however, even with time constraints
a light amount of research could have lead to
better understanding of modulation schemes

(a) Response of beamforming for Tx size 32x32
when distance to radar = 0.7m

(b) Response of beamforming for Tx size 32x32
when distance to radar = 1.7m

Figure 33

in the researched application.

The interleaved structure was implemented
as a precaution against ICI. However, this
motivation would have benefited more from
additional research instead of implement-
ing it as an precaution. The interleaved
structure made the processing pipeline more
complex, which also led to complications
with the beamforming implementation.
Another general point of discussion related
to this is the excessive amount of implemen-

23

tation without complete understanding of
the theoretical background. This approach
led to integration issues, which could have
been prevented by doing more thorough
background research before implementation.
For complications in integration stages in
future research, it is recommended to revisit
the required theory instead of merely trying
to fix the implementation.

Furthermore, a wrong assumption was
made for the chosen amount of channels NCh.
This should have been equal to P×Q = 16×4
for the range- and Doppler estimation, how-
ever the wrong assumption NCh = P was
made which is why only 16 channels were
used. This misconception did not have any ef-
fect on the range- and DOA estimation, how-
ever, it should still be noted that this model-
ing error was made.
Additionally, the motivation of using an

interleaved structure would have benefited
from a comparison with a non-interleaved
structure. This also would have clearly
visualized the effects of potential ICI.
If the effect of the ICI appeared to be
minimal, a simpler processing chain with-
out an interleaved structure could be utilized.

Implementing CFAR appeared to improve
results, however, this masked the effect of an-
other error in the MATLAB code. The main
motivation to find another detection method
such as CFAR, was that often a lot of false
targets showed up on the range-Doppler map.
However, these false detections appeared
because for some specific target distances, a
target was not assigned to an actual range
bin and were not related to the method of
detection. This was eventually resolved by
always mapping the propagation delay to a
closely spaced range bin. As shown in the
results, simple thresholding based on power
also ended up being a sufficient approach.

The research produced promising results
for using a MIMO radar system with OFDM
for pose recognition purposes. However,
the system only functioned under quite
strict conditions which makes the system
really sensitive and impractical for actual use.

The acquired angular resolution by using
beamforming ended up being quite poor,
severely limiting the effective range of the
radar as shown in the results. In future
work, finer DOA estimation techniques such
as MUSIC could be explored to improve this
and increase the effective range the pose
estimation model functions on.

Because the radar only was functional for
really near distances, the 3D DOA estimation
became inaccurate at low and high elevation
angles. By increasing the aperture size,
this problem appeared to be less signficant.
However, this increased aperture size — a
32x32 Tx grid — is extremely unrealistic
and can never be realized in real life sce-
narios. Requiring large aperture sizes to
obtain a better angular resolution is another
drawback of beamforming, creating another
reason to research DOA methods such as
MUSIC.

Additionally, the angle scanning for 3D
beamforming was not optimized. It had
to scan over a full 180◦ × 90◦, with a step
size of 0.5◦ which did not lead to too large
complexity because the DOA estimation
was implemented separately. However, when
integrated with the range- and Doppler
estimation this could lead to large computa-
tional loads. A more sophisticated method
such as fan- or pencil beamforming scanning
could have been used. These methods detect
a space containing multiple angles at the
same time, reducing the amount of required
computations. This should be considered for
further research

24

Furthermore, creating the human model
brought several complications with it. The
amount of points and the location of these
points for the human model had to be chosen
so that they were still distinguishable for
DOA estimation. This approach had to be
taken to show that pose estimation would
be possible with the system even tough this
was only under specific conditions. Creating
a more accurate human model was not
possible because of this which made the
researched method of pose recognition quite
unreliable. To be able to perform realistic
and reliable pose recognition, earlier listed
measures should be taken to enable more
precise human modeling.

7. Conclusion

Research about OFDM MIMO radar in the
context of pose recognition has been carried
out and delivered results on the use of DOA
and range-Doppler estimation in the context
of pose recognition. Even though the de-
sired outcome of full integration of DOA es-
timation and range- and Doppler estimation
has not been achieved, performing a thor-
ough amount of theoretical background re-
search and implementation led to both of
these estimations functioning well on their
own as the results proved. Multiple points
of improvement such as using more advanced
signal-processing techniques to obtain bet-
ter angular resolution have been listed in the
discussion and provided valuable insights for
future research. Several techniques such as
CFAR and MRT beamforming have been ex-
plored and their relevance to this thesis has
been addressed. For further research, the hu-
man measurements can be utilized to test
the reliability of the implementation in real
life applications. Furthermore, the thesis

also highlighted how a MIMO OFDM radar
system was able to perform pose recogni-
tion under certain constraints. The imple-
mentation stage also revealed multiple chal-
lenges, mainly between the computational
load and the system specifications, requiring
trade-offs between processing time and reso-
lution. By simulating in MATLAB, several
results proved accurate DOA and range- and
Doppler estimations. By performing several
tests, an attempt at pose estimation was con-
ducted and the DOA estimation of a squat-
ting position provided accurate and promis-
ing results. This made it possible to estimate
the range and velocity of a few data points
used for the DOA estimation, showing the
possibilities of pose recognition with this sys-
tem. Even though it was possible to detect a
squatting pose and valuable results were pro-
duced, these results remained limited by an-
gular resolution, range- and Doppler resolu-
tion and by using a coarse human model. In
future work the focus should lie on improving
the system by conducting tests on the hu-
man measurements, exploring more efficient
signal processing techniques, integrating the
estimations and fine tuning specifications to
produce a fully integrated functioning system
for pose recognition.

8. AI Statement

ChatGPT+ has been used as a tool to as-
sist with writing and coding. It should be
highlighted that this was used as an assisting
tool and everything created by chatGPT+
was evaluated critically. Non of the research
is written by chatGPT+ and it was only used
for creating ideas / creating ideas for polish-
ing up some sentences.

25

9. Acknowledgements

I would like to thank Nguyen Dao and Men-
sah Obeng Afrane for their effort and assis-
tance with the measurements. Additionally
I would like to thank Yang Miao and again
Nguyen Dao for their supervision and moti-
vation, without them this research would not
have been made possible.

References

[1] Martin Braun, Christian Sturm, and
Friedrich K. Jondral. On the single-
target accuracy of OFDM radar algo-
rithms. 2011.

[2] Ashwin Nanjappa, K K Biswas, and Sub-
hashis Banerjee. Deep learning based hu-
man pose estimation: A survey. arXiv
preprint arXiv:2012.13392, 2020.

[3] Baban Rindhe and Santosh Narayankhed-
kar. Effects of cyclic prefix on ofdm sys-
tem. pages 420–424, 02 2010.

[4] Y.L. Sit. MIMO OFDM Radar-
Communication System with Mutual In-
terference Cancellation. KIT Scientific
Publishing, Karlsruhe, 2017.

[5] Chuang Wang, Jianmin Hu, Qunying
Zhang, and Xinhao Yuan. An efficient 2d
doa estimation algorithm based on omp
for rectangular array. Electronics, 12(7),
2023.

[6] Mingmin Zhao, Ye Tian, and Hang Zhao.
Rf-pose3d: Body pose estimation using
wifi. In Proceedings of the ACM Spe-
cial Interest Group on Data Communica-
tion (SIGCOMM), pages 267–281. ACM,
2018.

[7] Mingmin Zhao, Hang Zhao, Tianhong
Wei, Shuyang Zhang, Yan Geng, Antonio

Torralba, and Dina Katabi. Through-wall
human mesh recovery using radio signals.
In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision
(ICCV), pages 10113–10122, 2019.

Appendix

9.1 Main code

clear all

%Section 1: Parameters

N = 2048*2^2; %Amount of subcarriers

CP = 1/8*N; %Cyclic prefix length

Nch = 16; %Amount of channels

Nu = N / Nch; %Amount of subcarriers

per channel

M = 2048; %Amount of OFDM symbols

M_o = 16; %Modulation order

SNR_dB = 30; %SNR: Still needs a

precise calculation

vrel_h = 1; %Relative velocity of the

target, not used a.t.m.

delta_f = 120e3; %Subcarrier spacing

c0 = 3e8; %Light speed

f_c = 28e9; %Center frequency

lambda_c = c0 / f_c; %Center frequency

wavelength

p = 8; %Amount of Tx

q = 4; %Amount of Rx

params.N = N;

params.Nch = Nch;

params.M = M;

params.M_o = M_o;

params.CP = CP;

params.delta_f = delta_f;

params.vrel_h = vrel_h;

params.SNR_dB = SNR_dB;

params.f_c = f_c;

%Section 2: Pre-allocating antennas and

signal space

bits_per_user = Nu * log2(M_o);

26

channel_to_tx_map = mod(0:Nch-1, p) +

1;

A_p = cell(p, 1);

for tx = 1:p

A_p{tx} = zeros(N, M);

end

%Section 3: Generating interleaved QAM

symbols to improve ICI

for m = 1:M

qamSymbols = cell(Nch, 1);

for ch = 1:Nch

qamParams.bits = bits_per_user;

qamParams.M_o = M_o;

qamParams.N = Nu;

qamSymbols{ch} = QAM_mod(

qamParams);

end

for ch = 0:Nch-1

tx = channel_to_tx_map(ch+1);

for i = 0:(Nu - 1)

subcarrier_index = i * Nch

+ ch;

A_p{tx}(subcarrier_index +

1, m) = qamSymbols{ch + 1}(i + 1);

end

end

end

% === Section 4: Target and Channel

Setup (3D) NEW

K = 1; % Number of targets

% 3D positions of each target [x, y, z]

in meters

R_vec = [90, 0, 0];%Example of tested

values

f_D_vec = 0; % Doppler shifts [

Hz]

alpha_vec = ones(1,K);

% Reflection coefficients

%

% theta_deg = 45;

% theta_rad = deg2rad(theta_deg); %

Will use later for steerin

OFDM_tx_CP = cell(p, 1); % Output

after channel (for each Tx)

% Antenna array geometry

% d_ant = lambda_c / 2;

% tx_pos = (0:p-1) * d_ant; % Tx

ULA along x-axis

% rx_pos = (0:q-1) * d_ant; % Rx

ULA along x-axis

% tx_pos_3D = [tx_pos(:), zeros(p,1),

zeros(p,1)]; % 3D coords: [x, y, z]

% rx_pos_3D = [rx_pos(:), zeros(q,1),

zeros(q,1)];

% Simulate per-Tx

for tx = 1:p

[OFDM_tx_CP_raw] = OFDM(params, A_p

{tx});

total_rx = zeros(size(

OFDM_tx_CP_raw));

params.tx = tx;

for k = 1:K

pos_k = R_vec(k, :)

% 3D position

R_k = norm(pos_k)

% Actual range

params.R = R_k;

% Range for delay calc

params.f_D = f_D_vec(k);

% Doppler

% Angle computation for

steering

% Vector from origin (array

center) to target

% unit_vec_k = pos_k / R_k;

% Unit direction vector

% Call channel with geometry-

aware input

27

OFDM_rx_k = OFDM_Channel2(

params, OFDM_tx_CP_raw);

% ,

tx_pos_3D, rx_pos_3D, unit_vec_k);

total_rx = total_rx + alpha_vec

(k) * OFDM_rx_k;

end

OFDM_tx_CP{tx} = total_rx;

end

%Section 5 Receiving the signal

received_signal = cell(q, 1);

for rx = 1:q

received_signal{rx} = zeros(N+CP, M

);

for tx = 1:p

received_signal{rx} =

received_signal{rx} + OFDM_tx_CP{tx

};

end

end

%Section 6 Stripping signal of CP and

converting it back to f-domain

Y = cell(q, 1);

for rx = 1:q

received_signal_noCP =

received_signal{rx}(CP+1:end, :);

Y{rx} = fft(received_signal_noCP, N

, 1);

end

%Section 7 Receiving desired data

D_qp = cell(Nch, q);

for ch = 1:Nch

tx = channel_to_tx_map(ch); % Get

which Tx sent on this channel

for rx = 1:q

D_qp{ch,rx} = zeros(N, M); %

Preallocate

for m = 1:M

for i = 0:(Nu - 1)

n_u = i * Nch + (ch -

1); % Actual subcarrier index

%matched filter by

multiplying with conjugate

tx_sym = A_p{tx}(n_u+1,

m); % Transmitted symbol

rx_sym = Y{rx}(n_u+1, m

); % Received symbol (FFT output)

D_qp{ch,rx}(n_u+1, m) =

rx_sym * conj(tx_sym);

% Correlation, high

value if Tx and Rx symbol match

end

end

end

end

%Section 8: Combined Range-Doppler

Processing

R_sum = zeros(Nu, M);

range_win = kaiser(Nu,5);

for ch = 1:Nch

used_indices = (0:(Nu - 1)) * Nch +

(ch - 1);

R_combined = zeros(Nu, M);

for rx = 1:q

R_temp = zeros(Nu, M);

for m = 1:M

d_used = D_qp{ch,rx}(

used_indices + 1, m);

d_used_win = d_used .*

range_win;

R_temp(:, m) = ifft(

d_used_win);

end

R_combined = R_combined +

R_temp;

end

win = kaiser(M,5).’; % Apply along

time axis

R_combined = R_combined .* win; %

Element-wise multiplication

28

R_doppler = fftshift(fft(R_combined

, [], 2), 2);

R_sum = R_sum + R_doppler;

end

R_sum = abs(R_sum);

R_sum_dB = 10*log10(R_sum / max(R_sum

(:)) + 1e-10);

%Section 9: CFAR-Based Detection

% Normalize power map

R_power = R_sum.^2;

R_power = R_power / max(R_power(:));

% CFAR parameters

guard_cells = 2;

training_cells = 8;

alpha = 10 ; % CFAR scaling factor

% Total CFAR window size

total_cells = guard_cells +

training_cells;

win_size = 2 * total_cells + 1;

% Create CFAR mask: 1 for training

cells, 0 for guard + CUT

cfar_mask = ones(win_size);

cut_pos = total_cells + 1;

cfar_mask(cut_pos-guard_cells:cut_pos+

guard_cells, ...

cut_pos-guard_cells:cut_pos+

guard_cells) = 0;

% Normalize the mask

num_training_cells = sum(cfar_mask(:));

cfar_kernel = cfar_mask /

num_training_cells;

% Estimate noise level via 2D

convolution

noise_est = conv2(R_power, cfar_kernel,

’same’);

% Threshold calculation

threshold = alpha * noise_est;

% Suppress edges (where CFAR is

unreliable)

valid_mask = zeros(size(R_power));

valid_mask(cut_pos:end-cut_pos+1,

cut_pos:end-cut_pos+1) = 1;

% Apply CFAR detection

detection_mask = (R_power > threshold)

& valid_mask;

%Keep only local maxima (remove blobs/

duplicates)

fprintf(’\n==== R_power DIAGNOSTICS

====\n’);

disp([’Class: ’, class(R_power)]);

disp([’Size: ’, mat2str(size(R_power))

]);

fprintf(’Min: %.4e | Max: %.4e\n’, min(

R_power(:)), max(R_power(:)));

fprintf(’Any NaNs? %d\n’, any(isnan(

R_power(:))));

fprintf(’Any Infs? %d\n’, any(isinf(

R_power(:))));

fprintf(’Any complex values? %d\n’, ~

isreal(R_power(:)));

local_max = imregionalmax(R_power);

detection_mask = detection_mask &

local_max;

% Extract indices of detected targets

[range_idx, doppler_idx] = find(

detection_mask);

peak_vals = R_sum(sub2ind(size(R_power)

, range_idx, doppler_idx));

disp("Detected peaks (range bin,

doppler bin, value):");

disp([range_idx, doppler_idx, peak_vals

]);

% Limit number of reported peaks

num_peaks = min(length(peak_vals), 30);

[~, top_idx] = maxk(peak_vals,

num_peaks);

range_idx = range_idx(top_idx);

doppler_idx = doppler_idx(top_idx);

29

% %Section 10: Convert indices to

physical units

range_res = c0 / (2 * N * delta_f);

T_sym = (N + CP) / (N * delta_f)

T_test = T_sym*(CP+N)

f_d_res = 1 / (M * T_sym);

r_vals = (range_idx - 1) * range_res;

v_vals = (doppler_idx - (M / 2 + 1)) *

f_d_res * (lambda_c / 2); %Present

to maybe be implemented with doppler

filtering.

%Section 11: Calculating the range and

velocity

fprintf("Range resolution: %.3f m |

Doppler resolution: %.2f Hz\n",

range_res, f_d_res);

for t = 1:length(range_idx)

k_hat = range_idx(t);

d_hat = doppler_idx(t);

r_est = range_res * (k_hat - 1);

d_bin_offset = d_hat - (M / 2 + 1);

f_D_est = f_d_res * d_bin_offset;

v_est = (f_D_est * lambda_c) / 2;

fprintf("\t Target %d: Range = %.2f

m | f_D = %.2f Hz | v = %.2f m/s\n

", ...

t, r_est, f_D_est, v_est);

end

figure;

imagesc(R_sum_dB);

xlabel(’Doppler Bin’); ylabel(’Range

Bin’);

title(’Range-Doppler Map with Power

Threshold Detections (dB)’);

colorbar; caxis([-30 0]);

hold on;

scatter(doppler_idx, range_idx, 50, ’r

’, ’filled’);

ylim([5, 30]);

xlim([1100, 1130]);

% Define axes

doppler_axis = ((1:M) - (M/2 + 1)) *

f_d_res;

velocity_axis = doppler_axis * (

lambda_c / 2);

range_axis = (0:Nu-1) * range_res;

% Compute physical values for detected

peaks

r_vals = (range_idx - 1) * range_res;

v_vals = (doppler_idx - (M / 2 + 1)) *

f_d_res * (lambda_c / 2);

% Plot detected targets

figure;

scatter(v_vals, r_vals, 80, ’filled’);

xlabel(’Radial Velocity (m/s)’);

ylabel(’Range (m)’);

title(’Detected Target Positions’);

grid on;

% Autoscale with padding

xlim([min(v_vals)-0.5, max(v_vals)

+0.5]);

ylim([min(r_vals)-1, max(r_vals)+1]);

for i = 1:length(r_vals)

text(v_vals(i) + 0.1, r_vals(i),

sprintf(’T%d’, i));

end

figure;

imagesc(10*log10(R_sum)); colorbar;

xlabel(’Doppler Bin’); ylabel(’Range

Bin’);

title(’Range-Doppler Power Map’);

T_sym = (N + CP) / (N * delta_f);

f_d_max = 1 / (2 * M * T_sym);

fprintf("Max unambiguous Doppler: %.2f

Hz\n", f_d_max);

30

9.2 OFDM

function [OFDM_symbols_CP] = OFDM(

params, pre_interleaved_QAM)

%Parameters

CP = params.CP; %Cyclic prefix length

N = params.N; %Amount of subcarriers

X = pre_interleaved_QAM;

OFDM_symbols = ifft(X,N,1); %Taking

IFFT of each column

% Normalize for power per active

subcarrier

active_bins = sum(any(X ~= 0, 2));

scale = sqrt(N / active_bins); %

Boost to preserve energy

OFDM_symbols = scale * OFDM_symbols

;

OFDM_symbols_CP = [OFDM_symbols(end-CP

+1:end, :); OFDM_symbols]; %Taking

last CP subcarrier symbols,

concatinating them in front of the

OFDM symbol.

end

9.3 steering-vector

function a = steering_vector(N, d,

lambda, theta_deg)

theta_rad = deg2rad(theta_deg);

n = 0:N-1; % element indices

a = exp(1j * 2 * pi * d / lambda *

n * sin(theta_rad)).’; % column

vector

end

9.4 TestBeamforming

% Parameters

p = 16; % Number of Tx

antennas

q = 8; % Number of Rx

antennas

f_c = 28e9; % Carrier frequency

c0 = 3e8; % Speed of light

lambda_c = c0 / f_c;

d_ant = lambda_c / 2; % Half-

wavelength spacing

% Define multiple targets

theta_targets = [30, 46]; %

AoAs in degrees

rcs_targets = [1, 1]; %

Reflection coefficients

K = length(theta_targets);

% Number of targets

% Construct the total channel matrix

H = zeros(q, p);

for k = 1:K

theta_k = theta_targets(k);

rcs_k = rcs_targets(k);

a_tx_k = steering_vector(p, d_ant,

lambda_c, theta_k); % p x 1

a_rx_k = steering_vector(q, d_ant,

lambda_c, theta_k); % q x 1

H = H + rcs_k * (a_rx_k * a_tx_k’);

% Accumulate target contributions

end

% Beamforming angle sweep

angles = -90:0.5:90;

beam_response = zeros(size(angles));

for i = 1:length(angles)

theta = angles(i);

a_tx = steering_vector(p, d_ant,

lambda_c, theta);

a_rx = steering_vector(q, d_ant,

lambda_c, theta);

R_theta = a_rx’ * H * a_tx;

beam_response(i) = abs(R_theta)^2;

end

% Normalize and plot

beam_response = beam_response / max(

beam_response);

31

figure;

plot(angles, beam_response, ’LineWidth

’, 2);

xlabel(’Angle (degrees)’);

ylabel(’|Response|^2’);

title(’Beamforming Response vs. Angle’)

;

grid on;

% Mark true target angles

hold on;

for k = 1:K

xline(theta_targets(k), ’--r’,

sprintf(’Target %d: %d’, k,

theta_targets(k)), ...

’LabelOrientation’, ’horizontal

’);

end

9.5 Regular power thresholding

%Section 9 (Alternative): Regular

Power Thresholding

% Normalize power map

R_power = R_sum.^2;

R_power = R_power / max(R_power(:));

% Set a fixed threshold (adjust as

needed)

power_thresh = 0.05; % Try 0.30.5 for

tuning

% Apply simple threshold

detection_mask = R_power > power_thresh

;

% Keep only local maxima

local_max = imregionalmax(R_power);

detection_mask = detection_mask &

local_max;

% Extract indices of detected targets

[range_idx, doppler_idx] = find(

detection_mask);

peak_vals = R_sum(sub2ind(size(R_power)

, range_idx, doppler_idx));

disp("Detected peaks (range bin,

doppler bin, value):");

disp([range_idx, doppler_idx, peak_vals

]);

% Limit number of reported peaks

num_peaks = min(length(peak_vals), 30);

[~, top_idx] = maxk(peak_vals,

num_peaks);

range_idx = range_idx(top_idx);

doppler_idx = doppler_idx(top_idx);

9.6 OFDM-Channel

function [rx_OFDM_symbols_CP] =

OFDM_Channel2(params, OFDM_tx_CP)

%Parameters

M = params.M;

CP = params.CP;

N = params.N;

f_c = params.f_c;

delta_f = params.delta_f;

SNR_dB = params.SNR_dB;

R = params.R;

f_D = params.f_D;

% Constants

c0 = 3e8;

f_s = N * delta_f;

% --- Doppler shift in time domain ---

total_samples = (N + CP) * M;

t = (0:total_samples - 1).’ / f_s;

doppler_phase_shift = exp(1j * 2 * pi *

f_D * t);

% Apply Doppler effect

tx_vector = reshape(OFDM_tx_CP, [], 1);

rx_vector = tx_vector .*

doppler_phase_shift;

rx_OFDM_symbols_CP = reshape(rx_vector,

N + CP, M);

% --- Range shift in frequency domain

% Remove CP to get symbols

32

rx_OFDM_noCP = rx_OFDM_symbols_CP(CP+1:

end, :);

% FFT to convert to frequency domain

Y = fft(rx_OFDM_noCP, N, 1);

%Propagation phase shift

n = 0:N-1;

f_n = n * delta_f;

T_s = 1 / (N * delta_f);

tau = 2 * R / c0;

tau_quantized = round(tau / T_s) * T_s;

range_phase_shift = exp(-1j * 2 * pi *

f_n * tau_quantized).’;

Y = Y .* range_phase_shift;

% Back to time domain

rx_OFDM_noCP = ifft(Y, N, 1);

rx_OFDM_symbols_CP = [rx_OFDM_noCP(end-

CP+1:end, :); rx_OFDM_noCP];

lambda = c0 / f_c;

G_tx = 1; % linear gain (0 dBi)

G_rx = 1; % linear gain (0 dBi)

% One-way distance (squared below for

round-trip)

% Radar: Round-trip loss (R^4), so

Friis becomes:

amplitude_loss = (G_tx * G_rx * lambda

^2) / ((4 * pi * R)^2);

rx_OFDM_symbols_CP = rx_OFDM_symbols_CP

* amplitude_loss;

% --- Add AWGN ---

rng(42);

signal_power = mean(abs(

rx_OFDM_symbols_CP(:)).^2);

SNR_linear = 10^(SNR_dB / 10);

noise_power = signal_power / SNR_linear

;

noise = sqrt(noise_power / 2) * (randn(

size(rx_OFDM_symbols_CP)) + 1j *

randn(size(rx_OFDM_symbols_CP)));

rx_OFDM_symbols_CP = rx_OFDM_symbols_CP

+ noise;

end

9.7 2D Beamforming

clc; clear; close all;

%Beamforming: Sec1

%% Parameters

f_c = 28e9; % Carrier

frequency (Hz)

c0 = 3e8; % Speed of

light (m/s)

lambda_c = c0 / f_c; % Wavelength

d_ant = lambda_c / 2; % Half-

wavelength antenna spacing

% Transmit UPA: 16x16 = 256 elements

Nx_tx = 16; Ny_tx = 16; p = Nx_tx *

Ny_tx;

% Receive UPA: 4x4 = 16 elements

Nx_rx = 4; Ny_rx = 4; q = Nx_rx * Ny_rx

;

Rb = 1.1; % Distance to stickman

%Beamforming: Sec2

x_vals = [...

0, 0, -0.35, 0.35, -0.3,

0.3, -0.3, 0.3, -0.2, 0.2]; %

lateral [m]

z_vals = [...

2.08, 1.20, 1.40, 1.40, 0.40,

0.40, 0.18, 0.18, 0.80,

0.80]+0.1; % height [m]

K = length(x_vals);

% Convert stickman points to azimuth

and elevation angles (degrees)

theta_targets = atan2d(x_vals, Rb); %

Azimuth angle

33

phi_targets = atan2d(z_vals, Rb); %

Elevation angle

% Assign rcs

rcs_targets = ones(1, K);

% Construct channel matrix H

H = zeros(q, p);

for k = 1:K

a_tx_k = steering_vector2(Nx_tx,

Ny_tx, d_ant, lambda_c,

theta_targets(k), phi_targets(k));

% (p x 1)

a_rx_k = steering_vector2(Nx_rx,

Ny_rx, d_ant, lambda_c,

theta_targets(k), phi_targets(k));

% (q x 1)

H = H + rcs_targets(k) * (a_rx_k *

a_tx_k’);

end

%Full 2D Beamforming Sweep

angles_theta = -90:0.5:90; % Azimuth

sweep (columns)

angles_phi = 0:0.5:90; %

Elevation sweep (rows)

R_2D = zeros(length(angles_phi), length

(angles_theta)); % (phi x theta)

for ti = 1:length(angles_theta)

theta = angles_theta(ti);

for pi = 1:length(angles_phi)

phi = angles_phi(pi);

a_tx = steering_vector2(Nx_tx,

Ny_tx, d_ant, lambda_c, theta, phi);

% (p x 1)

a_rx = steering_vector2(Nx_rx,

Ny_rx, d_ant, lambda_c, theta, phi);

% (q x 1)

R = a_rx’ * H * a_tx;

R_2D(pi, ti) = abs(R)^2;

end

end

R_2D = R_2D / max(R_2D(:)); %

Normalize

%2D Beamforming Power Heatmap

figure;

imagesc(angles_theta, angles_phi, R_2D)

;

xlabel(’Azimuth Angle ()’);

ylabel(’Elevation Angle ()’);

title(’2D Beamforming Power Response’);

colorbar;

set(gca, ’YDir’, ’normal’);

% Mark true target positions

hold on;

for k = 1:K

plot(theta_targets(k), phi_targets(

k), ’rx’, ’MarkerSize’, 10, ’

LineWidth’, 2);

text(theta_targets(k)+2,

phi_targets(k), ...

sprintf(’P%d (%.1f, %.1f)’, k,

theta_targets(k), phi_targets(k)),

...

’Color’, ’r’, ’FontWeight’, ’

bold’);

end

%Beamwidth est

[max_val, max_idx] = max(R_2D(:));

[row_peak, col_peak] = ind2sub(size(

R_2D), max_idx);

% Azimuth cut (fixed elevation)

az_slice = R_2D(row_peak, :);

peak_power = max(az_slice);

mask_theta = az_slice >= 0.5 *

peak_power;

beamwidth_theta = max(angles_theta(

mask_theta)) - min(angles_theta(

mask_theta));

% Elevation cut (fixed azimuth)

el_slice = R_2D(:, col_peak);

peak_power_el = max(el_slice);

mask_phi = el_slice >= 0.5 *

peak_power_el;

beamwidth_phi = max(angles_phi(mask_phi

)) - min(angles_phi(mask_phi));

34

% print beamwidths

fprintf(’\nMeasured Azimuth Beamwidth (

FWHM): %.2f degrees\n’,

beamwidth_theta);

fprintf(’Measured Elevation Beamwidth (

FWHM): %.2f degrees\n’,

beamwidth_phi);

%% 2D Azimuth and Elevation Cuts of

Beam Pattern

% Azimuth slice plot (fixed elevation)

figure;

plot(angles_theta, az_slice, ’LineWidth

’, 2);

xlabel(’Azimuth Angle ()’);

ylabel(’Normalized Power’);

title(’Azimuth Beam Pattern Slice (

Fixed Elevation)’);

grid on;

ylim([0 1.1]);

% Elevation slice plot (fix azimuth)

figure;

plot(angles_phi, el_slice, ’LineWidth’,

2);

xlabel(’Elevation Angle ()’);

ylabel(’Normalized Power’);

title(’Elevation Beam Pattern Slice (

Fixed Azimuth)’);

grid on;

ylim([0 1.1]);

%Beamforming: Sec3

threshold = 0.3; % normalize power

threshold (0 to 1)

figure;

hold on;

grid on;

xlabel(’Azimuth Angle ()’);

ylabel(’Elevation Angle ()’);

title(sprintf(’Targets with Beamforming

Response >= %.2f’, threshold));

% Loop over targets

plotted_any = false;

for k = 1:length(theta_targets)

% Find closest angle indices in

grid

[~, idx_theta] = min(abs(

angles_theta - theta_targets(k)));

[~, idx_phi] = min(abs(angles_phi

- phi_targets(k)));

% Check if power response passes

threshold

if R_2D(idx_phi, idx_theta) >=

threshold

plot(theta_targets(k),

phi_targets(k), ’ro’, ’MarkerSize’,

10, ’LineWidth’, 2);

text(theta_targets(k)+1,

phi_targets(k), sprintf(’P%d’, k), ’

Color’, ’r’, ’FontWeight’, ’bold’);

plotted_any = true;

end

end

if ~plotted_any

warning(’No targets exceed the

threshold of %.2f.’, threshold);

end

%Beamforming: Sec 4

%Only keep points above threshold

threshold = 0.55; % normalize power

threshold (0 to 1)

%find indices of points above threshold

[row_idx, col_idx] = find(R_2D >=

threshold);

% Convert indices to angles

theta_vals = angles_theta(col_idx);

phi_vals = angles_phi(row_idx);

power_vals = R_2D(sub2ind(size(R_2D),

row_idx, col_idx));

% --- Plot ---

figure;

scatter(theta_vals, phi_vals, 30,

power_vals, ’filled’); % color by

power

35

colorbar;

xlabel(’Azimuth Angle ()’);

ylabel(’Elevation Angle ()’);

title(sprintf(’Beamforming Points with

Power %.2f’, threshold));

ylim([0, 80]);

grid on;

%Beamforming: Sec 5

eps_clustering = 3; % cluster max

distance in degrees

%Find points above threshold

[row_idx, col_idx] = find(R_2D >=

threshold);

% Convert indices to angles

theta_vals = angles_theta(col_idx);

phi_vals = angles_phi(row_idx);

% To use cluster, combine angles

points = [theta_vals(:), phi_vals(:)];

% Cluster points using DBSCAN

cluster_labels = dbscan(points,

eps_clustering, 2);

% Only use unique clusters

clusters = unique(cluster_labels);

clusters(clusters == -1) = [];

%Compute cluster by taking mean of

points in cluster

centroids = zeros(length(clusters), 2);

for i = 1:length(clusters)

cluster_points = points(

cluster_labels == clusters(i), :);

centroids(i, :) = mean(

cluster_points, 1);

end

% Plot original points and cluster

centers

figure; hold on;

scatter(points(:,1), points(:,2), 20, ’

b’, ’filled’); % all points above

threshold

scatter(centroids(:,1), centroids(:,2),

100, ’r’, ’filled’); % cluster

centroids

xlabel(’Azimuth Angle ()’);

ylabel(’Elevation Angle ()’);

title(’Clustered Beamforming Points and

Centroids’);

legend(’Points’, ’Cluster Centers’);

grid on;

hold off;

%Beamforming: Sec 6

figure; hold on; grid on;

scatter(centroids(:,1), centroids(:,2),

100, ’r’, ’filled’);

xlabel(’Azimuth Angle ()’);

ylabel(’Elevation Angle ()’);

title(’Stickman Points’);

for k = 1:size(centroids,1)

text(centroids(k,1) + 0.5,

centroids(k,2), sprintf(’P%d’, k),

...

’FontWeight’, ’bold’, ’FontSize

’, 12, ’Color’, ’k’);

end

connections = [

1 2; % L Foot to L Knee

2 5; % L Knee to Torso

3 5; % L Shoulder to Torso

5 6; % Torso to Head

5 10; % Torso to R Shoulder

10 7; % R Shoulder to R Hand

5 9; % Torso to R Knee

8 9; % R Knee to R Foot

3 4; % L Shoulder to L Hand

];

% Plot with lines

figure; hold on; grid on;

scatter(centroids(:,1), centroids(:,2),

100, ’r’, ’filled’);

36

xlabel(’Azimuth Angle ()’);

ylabel(’Elevation Angle ()’);

title(’Estimated angles of 2D stickman

’);

% Draw connections

for i = 1:size(connections,1)

p1 = connections(i,1);

p2 = connections(i,2);

plot([centroids(p1,1), centroids(p2

,1)], [centroids(p1,2), centroids(p2

,2)], ’b-’, ’LineWidth’, 2);

end

% Label

for k = 1:size(centroids,1)

text(centroids(k,1) + 0.5,

centroids(k,2), sprintf(’P%d’, k),

...

’FontWeight’, ’bold’, ’FontSize

’, 12, ’Color’, ’k’);

end

hold off;

9.8 2D Stickman

%% Adjustable Range to Radar

Rb = 1; % (meters)

%% x: lateral, z: vetical

% Points: head, waist, shoulders, hands

, knees, feet

x_vals = [...

0, 0, -0.35, 0.35, -0.3,

0.3, -0.3, 0.3, -0.2, 0.2]; %

lateral [m]

z_vals = [...

2.08, 1.20, 1.40, 1.40, 0.40,

0.40, 0.18, 0.18, 0.80,

0.80]+0.1; % height [m]

K = length(x_vals); %Plot K points

%% Convert to azimuth and Elevation

Angles

theta_deg = atan2d(x_vals, Rb); %

Azimuth: -90 to +90

phi_deg = atand(z_vals ./ Rb); %

Elevation: 0 to 90

% Round to remove noise

theta_rounded = round(theta_deg, 2);

phi_rounded = round(phi_deg, 2);

% Extract unique sorted values

theta_unique = sort(unique(

theta_rounded));

phi_unique = sort(unique(phi_rounded)

);

% Compute differences of theta and phi

pairs

theta_diffs = diff(theta_unique);

phi_diffs = diff(phi_unique);

% Get minimum nonzero spacing

min_az_spacing = min(theta_diffs);

min_el_spacing = min(phi_diffs);

% Display result

fprintf(’\n--- Verified Angular

Spacings ---\n’);

fprintf(’Azimuth angles used: %s\n’,

mat2str(theta_unique));

fprintf(’Elevation angles used: %s\n’,

mat2str(phi_unique));

fprintf(’Minimum Azimuth Spacing: %.2

f\n’, min_az_spacing);

fprintf(’Minimum Elevation Spacing: %.2

f\n’, min_el_spacing);

%% Print Angles for Each Point

fprintf(’--- Stickman Point Angles at R

= %.2f m ---\n’, Rb);

for k = 1:K

fprintf(’P%-2d: Azimuth = %+6.2f,

Elevation = %6.2f\n’, ...

k, theta_deg(k), phi_deg(k));

end

37

%% Plot in Azimuth-Elevation Angle

Space

figure;

plot(theta_deg, phi_deg, ’bo’, ’

MarkerSize’, 10, ’LineWidth’, 2);

grid on;

xlabel(’Azimuth Angle ()’);

ylabel(’Elevation Angle ()’);

title(sprintf(’Stickman Point Angles at

R = %.1f m’, Rb));

xlim([-30 30]);

ylim([0 90]);

% Label each point as P1, P2, ..., P9

hold on;

for k = 1:K

text(theta_deg(k) + 1, phi_deg(k),

sprintf(’P%d’, k), ...

’FontSize’, 10, ’Color’, ’b’, ’

FontWeight’, ’bold’);

end

for k = 1:K

text(theta_deg(k) + 1, phi_deg(k),

sprintf(’P%d’, k), ...

’FontSize’, 10, ’Color’, ’b’, ’

FontWeight’, ’bold’);

end

%Create connections

connections = [...

1 2; % Head to chest

2 3; % Chest to left shoulder

2 4; % Chest to right shoulder

2 5; % Chest to left knee

2 6; % Chest to right knee

7 5; % Left knee to left hand

8 6;

3 9;

4 10]; % Right knee to right hand

% Draw lines connecting points

for i = 1:size(connections, 1)

p1 = connections(i, 1);

p2 = connections(i, 2);

plot([theta_deg(p1), theta_deg(p2)

], [phi_deg(p1), phi_deg(p2)], ...

’k-’, ’LineWidth’, 2);

end

9.9 3D Stickman

% Joint coordinates

x = [0, 0, -0.35, 0.35, -0.3, 0.3,

-0.3, 0.3, -0.2, 0.2]; % lateral

z = [2.08, 1.20, 1.40, 1.40, 0.40,

0.40, 0.18, 0.18, 0.80, 0.80] + 0.1;

% height

y = [1.6, 1.0, 1.4, 1.4, 1.6, 1.6, 1.6,

1.6, 1.3, 1.3]; % depth

% Connections between joints

connections = [

1 3; % Head to left shoulder

1 4; % Head to right shoulder

3 9; % Left shoulder to left hand

4 10; % Right shoulder to right

hand

3 2; % Left shoulder to hip

4 2; % Right shoulder to hip

2 5; % Hip to left knee

2 6; % Hip to right knee

5 7; % Left knee to left foot

6 8; % Right knee to right foot

];

figure;

hold on; grid on; axis equal;

xlabel(’X (Lateral)’); ylabel(’Y (Depth

)’); zlabel(’Z (Height)’);

title(’3D Stickman of Squatting Pose’);

view([-30, 20]);

% Plot platform (to account for 0.28m

height difference)

fill3([-0.4, 0.4, 0.4, -0.4], [1.6,

1.6, 1.6, 1.6], [0, 0, 0.18, 0.18],

[0.85 0.85 0.85], ’FaceAlpha’, 0.4,

’EdgeColor’, ’none’);

38

% Plot joints

scatter3(x, y, z, 100, ’r’, ’filled’);

% Plot joint connections

for i = 1:size(connections,1)

idx1 = connections(i,1);

idx2 = connections(i,2);

plot3([x(idx1), x(idx2)], [y(idx1),

y(idx2)], [z(idx1), z(idx2)], ’b’,

’LineWidth’, 2);

end

9.10 steeringvector2

function a = steering_vector2(Nx,

Ny, d, lambda, theta_deg, phi_deg)

theta = deg2rad(theta_deg);

phi = deg2rad(phi_deg);

nx = 0:Nx-1;

ny = 0:Ny-1;

[nx_grid, ny_grid] = meshgrid(nx,

ny);

phase = 2 * pi * d / lambda * ...

(nx_grid .* sin(phi) .* cos(

theta) + ny_grid .* sin(phi) .* sin(

theta));

a = exp(1j * phase);

a = reshape(a, [], 1); % column

vector

end

39

9.11 System Block Diagram

9.12 Simulation Parameters

Table 2: Parameter requirements and selected simulation values

Parameter Formula
/ De-
scrip-
tion

Required Value / Target Chosen Value

N (Number of subcarriers) N = BW
∆f

≥ 6250 8192

∆f (Subcarrier spacing) Set by
FR2
standard
(5G NR)

120 kHz 120 kHz

BW (Bandwidth) N ·∆f ≥ 750MHz 983.04MHz

∆r (Range resolution) c0
2·BW

≤ 20 cm 15.26 cm

CP (Cyclic prefix length) 1
8
N Literature-based (typical) 1024

T (OFDM symbol duration) N+CP
N ·∆f

– 9.39µs

M (OFDM symbols) c0
2Tfcvmin

≥ 2221 2222

∆fD (Doppler resolution) 1
MT

≤ 48.01Hz 48.01Hz

fc (Carrier frequency) Based on
5G FR2
band

24.25− 52.6GHz 28GHz

40

Figure 34: Full System Architecture (Idealized Implementation)

41

	Introduction
	Theoretical Background
	Notation
	OFDM
	General idea of OFDM
	QAM and OFDM signal generation
	Cyclic prefix
	MIMO and Interleaved structure

	Antenna geometry
	Virtual array
	Monostatic uniform linear array (ULA)
	Monostatic Uniform Planar Array (UPA)

	System overview
	Scenario

	Channel
	Propagation delay phase shift
	Doppler phase shift
	Free space path loss (FSPL)
	White noise
	Full channel model

	Beamforming
	Antenna geometry phase shift
	MRT beamforming for 3D DOA estimation

	Full signal model
	Obtaining the channel effects
	CFAR
	Range and Doppler estimation
	Range
	Doppler estimation

	Implementation
	Range- and Doppler estimation code
	Main code section 1-3: Parameters and signal generation
	Main code section 4: Defining targets and channel
	Main code section 5:9 Receiving and processing the data
	Main code section 10-12: Performing calculations and plotting the data

	3D Beamforming code
	Visualization tools

	Human Model Measurements
	Camera groundtruth benchmark
	Implementation plan

	Results
	DOA, Range and Doppler Estimation Theoretical Verification
	System Parameter Design and Selection
	Antenna Specifications for Range- and Doppler Estimation
	Range estimation
	Doppler estimation
	Range and Doppler estimation
	Comparison CFAR and regular power thresholding
	3D DOA estimation

	Recognizing a Squat Position
	Pose Recognition Scenario
	Pose Recognition Specifications
	Range and Doppler estimation
	Angular resolution

	Discussion
	Conclusion
	AI Statement
	Acknowledgements
	Main code
	OFDM
	steering-vector
	TestBeamforming
	Regular power thresholding
	OFDM-Channel
	2D Beamforming
	2D Stickman
	3D Stickman
	steeringvector2
	System Block Diagram
	Simulation Parameters

