
Form follows function
Editor GUIs in a functional style

Master’s Thesis

by
Sander Evers

supervised by
dr. ir. J. Kuper
dr. P.M. Achten

dr. M.M. Fokkinga

at the

Language, Knowledge and Interaction group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

March 2004

⊗ =

 9 30 (9,30)

 10 30 (10,30)

Acknowledgements

I would like to thank my supervisors: Jan for giving me the freedom and
trust to pursue my own research ideas, Peter for his helpful ideas and metic-
ulous comments, and Maarten for some valuable process reflection (and use-
ful TEXhelp). I would also like to thank my parents for never questioning
my judgement and my flatmates for a nice working environment (with just
enough occasional distraction).

ii

Abstract

Programming a graphical user interface (GUI) is often time-consuming and
boring, requires quite some knowledge about the GUI library, and is likely to
result in monolithic, badly readable and inflexible code — even for small and
simple programs like editors. These omnipresent GUI parts (for example,
all ‘Options’ and ‘Properties’ dialogs are editors) allow the user to inspect
and update a set of values.

We introduce a small abstract language for describing editors in a mod-
ular, flexible, compositional and concise way. In this language, an editor is
characterized by its subject type, the type of values it can edit. The operators
⊗, ⊕ and C are used to construct new editors with new subject types.

We implement this language as a layer of functions upon the Object I/O
Library in the purely functional language Clean. Using this functions, it is
indeed possible to quickly construct editors in a declarative way, i.e. without
defining object identifiers and event handlers.

However, the layout structure of these editors is coupled to the structure
of their subject type. We investigate two approaches to decouple these two
structures: using a monadic style and using references.

Samenvatting

Het programmeren van een grafische user interface (GUI) is vaak langdradig,
vergt veel kennis van de GUI library en resulteert meestal in monolithische,
slecht leesbare en niet-flexibele programmacode — zelfs voor simpele pro-
grammaatjes zoals editors. Deze alomtegenwoordige GUI-onderdelen (alle
windowtjes voor ‘Opties’ en ‘Eigenschappen’ zijn voorbeelden van editors)
laten de gebruiker een verzameling waarden bekijken en bewerken.

We definiëren een abstract taaltje waarmee editors beschreven kunnen
worden op een modulaire, flexibele, compositionele en compacte manier.
Hierin wordt een editor gekarakteriseerd door zijn subject type, het type
van waarden die ermee bewerkt kunnen worden. De operatoren ⊗, ⊕ en C
construeren nieuwe editors met nieuwe subject types.

We implementeren dit taaltje als een laag functies bovenop de Object
I/O Library in de puur functionele taal Clean. Met deze functies kan een
programmeur daadwerkelijk snel en declaratief editors specificeren, dus zon-
der dat hij/zij object identifiers hoeft te gebruiken of event handlers hoeft
te schrijven.

Van deze editors is echter wel de layoutstructuur gekoppeld aan het
subject type. We onderzoeken twee manieren om deze twee structuren los
te koppelen: door een monadische stijl en m.b.v. references.

iii

iv

Contents

Acknowledgements . ii
Abstract . iii
Samenvatting . iii

1 Introduction 1

2 Related work 3

3 An abstract view on defining editors 5
3.1 Editors . 5
3.2 Constructing new editors . 6
3.3 Information equivalence of subject types 7
3.4 Defining editors . 8
3.5 Properties of the abstract language 9

4 Console-based editors in Haskell 13
4.1 Console-based I/O in Haskell 13
4.2 Representation of editors . 13
4.3 Implementing ⊗ and C . 14
4.4 Implementing ⊕ . 15

5 Graphical editors in Clean 19
5.1 An editor example . 21
5.2 Representation of editors . 22
5.3 Implementing ⊗ and C . 25
5.4 Implementing ⊕ . 26
5.5 Running an editor . 28
5.6 The doorEditor example revisited 30

6 Decoupling form and functionality 33
6.1 Explicit value passing in console editors 33
6.2 Explicit value passing in graphical editors 34
6.3 Defining ⊗, C and ⊕ in terms of >>& and returnc 38
6.4 Consequences of the monadic approach 40

v

7 Decoupling with references 43
7.1 Purely functional references 43
7.2 Editors with references . 46
7.3 Editors with ×-constructed subject types 48
7.4 A convenient notation for using splitref2 51
7.5 Defining ⊗ and C with references 52
7.6 Implementing ⊕ . 54
7.7 Consequences of programming with references 55

8 Conclusions and future work 57

References 62

A Implementation of console editors with defaults 63

B Implementation of point-free graphical editors 65

C Implementation of monadic-style graphical editors 69

D Implementation of graphical editors with references 73

E The complete doorEditor example 79
E.1 Using only the Object I/O library 79
E.2 Using point-free editors . 80
E.3 Notes . 80

vi

1 Introduction

Programming a graphical user interface (GUI) is often a time-consuming
and boring task. Usually, a lot of code is spent on converting values and
passing them around; furthermore, creating even the smallest dialog requires
quite some knowledge about library functions, parameters and general ar-
chitecture. These problems become especially significant when the goal is
not to produce a professional and highly customized GUI, but rather a quick
and simple one which ‘gets the job done’.

Another problem is that GUI code tends to get monolithic, badly read-
able and tangled up with application code. As a consequence, it is difficult
to change (parts of) an existing GUI. However, with today’s rapidly increas-
ing variety of computing devices, the need for flexible interfaces—and tools
for creating them—rises [13].

In this thesis, we investigate an approach for describing GUIs in such a
way that they are

1. easy and efficient to program;

2. flexible in changing their form, while keeping their functionality.

In order to do so, we will restrict ourselves to simple GUIs with limited
functionality, which we call editors. An editor allows the user to inspect
and update a set of values. While virtually no application consists solely
of editors, they constitute a substantial part of many GUIs. For example,
the ‘Options’ and ‘Properties’ dialogs found in every desktop application are
editors; an address book can be considered an editor; and on small devices
such as mobile phones, editors take the form of menu structures.

The advantage of this restriction is that in editors almost every GUI
element has a very clear and simple meaning: it contains a value, a piece
of information. For example, a list of radio buttons specifies one out of n
possibilities, a check box answers a yes/no question and a text field contains
a string. The meaning of the whole editor is simply the sum of its parts.

Four desired properties which guide our language design are:

1. Modularity: it must be possible to divide the program into different
modules. Definitions regarding one particular subject, e.g. editing
an address, should be restricted to one particular module as much

1

as possible. Dependencies between modules should be low, so most
changes remain local.

2. Flexibility regarding form: changes which only affect the form of an
editor (and not the functionality, e.g. the values it can produce) should
be easy to make.

3. Compositionality: it should be possible to ‘glue’ editors together to
form a larger editor.

4. Conciseness: an editor definition should be short. It should not con-
tain double work.

In chapter 3, we will introduce a small abstract language for describing
editors. For the implementation of this language, we turn to functional
programming, which is known for its compact and declarative nature and
high-level program combinators. We first implement non-graphical editors
in Haskell (chapter 4), and subsequently use the language Clean[14] and
its GUI library[3] for graphical editors (chapter 5). After this, we solve a
flexibility problem of our abstract language in two different ways: using a
monadic style in chapter 6 and using references in chapter 7.

2

2 Related work

A widely recognized method to manage the complexity of a GUI and to
separate GUI and application logic is the model–view–controller (MVC)
paradigm[12]. The idea of MVC is to manage application domain data in
model objects. The graphical representation of this data is managed by one
or more view objects per model (a progress bar is a typical view object) and
the user can change the data using controller objects (a button is a typical
controller object). In practice, view and controller are often joined in one
view/controller object. An example of such an object is a text field: it can
both show data and alter it.

A model has no knowledge of how its views present the information;
when the model changes, it simply informs the view object of its new state.
All communication between different view/controller pairs is routed through
the model; this way, different view/controller pairs do not need to be aware
of (and dependent on) each other’s existence. Furthermore, when different
models communicate with each other, they do not have to be aware of each
other’s views and controllers.

Together, the models form an abstraction layer on top of a layer of user
interface objects. It hides the details about form to the rest of the program,
exposing only application-related functionality. We use the same abstraction
in our research.

On the World Wide Web, editors take the shape of forms. For program-
ming these forms, a W3C standard called XForms[1] has been developed
recently. This standard also separates application logic from presentation.
For each form, the structure of the edited data is described in the XForms
Model : every data element gets a name, an initial value, and possibly type or
value constraints. In the XForms User Interface, each GUI object is bound
to one of these data elements using the name of the element as a reference.
In section 7, we adopt a similar approach with references.

As for GUI abstractions in a functional language, the Fudgets system[7]
is worth mentioning. It features high-level combinators to connect different
GUI parts. The resulting GUI itself can also be connected to other GUI
parts, which is exactly the kind of compositionality we also seek. The con-
nections between these parts consist of information streams. However, these
streams have to be managed explicitly, which results in a loss of flexibility.

3

Closely related to our own approach are Graphical Editor Components[4]
(GECs). These are editors in Clean which can be automatically derived from
a datatype by generic progamming, but can also be customized. Their most
recent extension is called Abstract GECs or AGECs[5] and also incorpo-
rates the model–view–controller paradigm to increase flexibility. AGECs
distinguish between a Data Model and a View Model. The correspondence
between the two models consists of a bijection in a very similar way that
our C-transformation uses a bijection (see section 3.3). With AGECs, highly
customizable editors can be built, but they are also more complex to pro-
gram than our editors, which provide only simple functionality.

4

3 An abstract view on defining editors

In this chapter, we will provide an abstraction for defining editors. We intro-
duce a small mathematical language which exhibits the desired properties
of modularity, flexibility, compositionality and conciseness. This language
will guide us in writing combinators in a functional programming language
(in chapters 4 and 5).

3.1 Editors

The objects of interest in our language are called editors. An editor can be
any process or object in the user interface that is able to display and alter
a certain value. Some examples of simple editors are: a text entry field, a
drop-down list for selecting a single value out of a few possibilities, a slider
to denote a numerical value on some scale, a check box to denote a truth
value. Combinations of editors are also regarded as editors themselves; a
window with a text entry field and a check box edits a composite value (in
this case, a tuple containing a text string and a truth value). We define:

An editor is a part of the user interface which allows the
user to view any value of a certain type and change it
into any other value of this type. This type is called the
subject type of the editor.

There can be many different editors with the same subject type. Although
their form may be different, they all share the same functionality.1 One can
also say that their user interface is different, but their program interface is
not. We capture this shared property with a set definition:

[[A]] is the set of all editors with subject type A.

Every editor has exactly one subject type, i.e. if e ∈ [[X]] and e ∈ [[Y]] then
X = Y . We denote editors with lowercase and subject types with uppercase
letters.

Subject types can be constructed in the following way:

• Unit is a subject type. There is exactly one value of this type.
1or, in terms of the model–view–controller paradigm, the same model

5

• If X and Y are subject types, then X × Y is a subject type. X × Y is
the Cartesian product of X and Y . Values of this type correspond to
ordered pairs.

• If X and Y are subject types, then X + Y is a subject type. X + Y
is the disjoint union of X and Y . Values of this type correspond to
tagged values of X or Y .

Although these three are theoretically sufficient for most purposes, we also
introduce some convenience types:

• Bool to represent booleans. There are two values of this type.

• Intn..m (n ≤ m) to represent integers ranging from n through m (in-
clusive). There are m − n + 1 values of this type.

• Int to represent integers when we don’t care about the range.

• String to represent strings of characters.

3.2 Constructing new editors

Assuming some given atomic editors, we would like to express ways to con-
struct new editors out of less complex editors. To this end, we introduce
two operators on editors: ⊗ and ⊕. Because we are defining an abstract
language, these do not go into details about the form of the constructed
editor, but regarding its functionality (i.e. its subject type), the following
properties hold. Assume x ∈ [[X]] and y ∈ [[Y]]. Then

x ⊗ y ∈ [[X × Y]]
x ⊕ y ∈ [[X + Y]]

So, the editor x⊗ y allows the user to edit a value of type X × Y . This can
be accomplished by deconstructing the ordered pair, editing a value of type
X and editing a value of type Y separately, and combining the result in an
ordered pair again. For this separate editing, we can make use of the editors
x and y, and this is exactly what we are going to do when we implement ⊗
in a programming language.

There are many conceivable ways to join the concrete editors x and y
into x ⊗ y. Some examples are:

• first present x; when the user is done with it, present y

• first present y; then x

• present the objects x and y next to each other in a window

6

• present the questions x and y in a ‘wizard’-type dialogue with ‘previ-
ous’ and ‘next’ buttons

• ask the user which values to edit; as a response present x, y, both, or
none

While these are all different ways to construct a user interface for x ⊗ y,
depending on the user interfaces of x and y, it should be noted that the
program interface of x ⊗ y remains identical.

In fact, these different possible concrete semantics for ⊗ do not have to
exclude each other. Each one can be regarded as a different variant of ⊗.
When we want to use several different variants of ⊗ in the definition of an
editor, we denote those variants ⊗1, ⊗2, ⊗3, etc.

Although x ⊗ y edits a value of type X and one of type Y , x ⊕ y does
not simply edit a value of type X or one of type Y . It should allow the user
to change any value of type X + Y into any other value of that type, so it
must also be possible to change a (tagged) value of type X into a (tagged)
value of type Y , and vice versa.

Considering this, some concrete ways to join x and y into x ⊕ y are:

• present the objects x and y next to each other with one of them
marked; the user can toggle the mark between them at any time to
indicate the final value of the editor

• first show the user the current ‘tag’ and allow switching (i.e. first edit
the tag); then present either x or y

In each case, both x and y have to be provided with a default value, which
they can use as their initial value in case the initial value for x ⊕ y has the
other ‘tag’. In section 4.4, we will discuss this in more detail.

3.3 Information equivalence of subject types

Some types can contain exactly the same amount of information; they are
said to be information equivalent. For example, to store a person’s name
and age, one can use the type String×Int as well as Int×String . We denote
this equivalence

String × Int ∼ Int × String .

Any value of type String × Int can be mapped to a distinct corresponding
value of type Int × String , and vice versa. This is the property we use to
formally define information equivalence:

A ∼ B iff there exists a bijection between the values of
A and the values of B.

7

Clearly, ∼ is an equivalence relation. Also, it is easily verified that the
following laws hold:

X ∼ X

X × Y ∼ Y × X

X + Y ∼ Y + X

(X × Y) × Z ∼ X × (Y × Z)
(X + Y) + Z ∼ X + (Y + Z)
X × (Y + Z) ∼ (X × Y) + (X × Z)

X × Unit ∼ X

Bool ∼ Unit + Unit
Intn..m ∼ Unit + (Unit + (Unit + . . .))

(where Unit occurs m − n + 1 times)

Editors with information equivalent (but different) subject types almost have
the same functionality, but not quite: the interface to the rest of the program
represents the same information in a different way. However, it is easy to
adapt this interface; we can, for example, adapt an editor with subject type
Int×String so that it behaves like an editor with subject type String×Int to
the rest of the program, while the user interface stays the same. We define
the unary operator C on editors to carry out this transformation.

Assume b ∈ [[B]] and A ∼ B, so there exists an bijection f :A ↔ B. Then

Cf applied to b yields an editor which, supplied by its
program environment with initial value α of type A,
behaves to the user like b supplied with initial value
β = f(α). When the user changes this value into β′,
the editor passes the value α′ = f−1(β′) of type A to its
program environment.

Now we can use the editor Cfb to change any value of type A into any other
value of that type. Therefore Cfb ∈ [[A]].

3.4 Defining editors

So far, our language consists of the binary operators ⊗ and ⊕ (with their
variants ⊗1,⊗2, . . . ,⊕1,⊕2, . . .) and the unary operator C. When needed,
we can assume that there are some atomic editors. With these constructs,
we can denote a large range of editors.

However, we also want to model the definition of these editors explicitly,
so we add a definition statement to our language. It allows the ‘programmer’
to give a name to an editor, and use this name in other definitions. The
ability to name values occurs in every practical programming language, and
is used to:

8

• avoid doing the same work twice

• clarify the meaning of a sub-program

• create modularity: the definition of a sub-program is separated from
its use; this definition can be changed without changing the code which
is using it

It is mainly the last point that is of interest to us. We denote an editor
definition like this:

name := value

To distinguish programmer-defined names from other editor values, we write
them in a sans-serif font. We do not trouble ourselves with scope rules or
(mutually) recursive definitions.

3.5 Properties of the abstract language

By means of a very simple editor, we will show that our abstract language
now exhibits the properties of modularity, flexibility, compositionality and
conciseness. The editor we define allows the user to change a date, which is
a value of type Int1..31 × Int1..12, where the first element represents the day
and the second element represents the month.

We assume the existence of the atomic intEditorn..m, displaying an in-
teger in the range n–m, which the user can change. Our first definition of
dateEditor will be

dayEditor := intEditor 1..31

monthEditor := intEditor 1..12

dateEditor := dayEditor ⊗1 monthEditor

As seen from the last line, we can use a ‘divide–and–conquer’ strategy to
define editors with a composite subject type. We just compose the editor in
the same way its subject type is composed, only having to choose a variant
of ⊗ or ⊕.

3.5.1 Modularity

Now assume we want to change the month-editing part of our date editor
into another atomic editor, with the same functionality but a different form.
We change the second line into

monthEditor := otherIntEditor 1..12

We have only made a local change, without the need to change other parts of
the program: a simple example of modularity. This modularity is a triviality

9

in our abstract language; here, it stems from the fact the name monthEditor
can refer to any element of [[Int1..12]]; they all have the same interface to the
rest of the program and can all be used as an operand to ⊗.

3.5.2 Flexibility

How easy is it to change the form of a composite editor without changing
its functionality? We take dateEditor as an example, and distinguish four
cases:

1. We want to change an operand into a different editor, but with the
same subject type. We have already seen an example of this in sub-
section 3.5.1.

2. We want to change an operand into a different editor with a different,
but information equivalent, subject type. Say we want to replace the
intEditor 1..12 for months with a drop-down list in which we can pick a
month, and this drop-down list specifies this choice with the integers
0 through 11. Now we have to write a bijection

f : Int1..12 ↔ Int0..11

f(x) = x − 1

and replace intEditor 1..12 with Cf dropdownlist .

3. We want to change the operator variant. Say we replace ⊗1, which
places the first editor to the left of the second, with ⊗2, which places
the first above the second.

4. We want to change the order of the operands to achieve certain ef-
fects in the user interface. However, the resulting editor monthEditor⊗
dayEditor has subject type Int1..12×Int1..31, which is information equiv-
alent but different. To keep the functionality the same, we must change
the subject type back, so we apply a C-transformation:

dateEditor := Cf (monthEditor ⊗1 dayEditor)
where f{ (δ, µ) } = (µ, δ)

In the cases (1) and (3), the changes are easy to make. In case (2), a
conversion function has to be specified, but this seems unavoidable (this
information has to be specified somewhere) and could be relatively easy,
like in the example. The changes in case (4), however, feel awkward. We
need to make a similar change in two2 distinct places. The cause of this is

2In an implementation in a functional language, we specify a bijection f with the tuple
(f, f−1), containing both the function itself and its inverse; this results in yet another
place to make the change.

10

that the operators ⊗ and ⊕ are actually too strong: they construct both
the user interface and the program interface. We only wanted to change the
user interface, so we undo the other change with the C-transformation. In
chapters 6 and 7 we investigate ways to decouple both structures.

3.5.3 Compositionality

The property of compositionality is also achieved trivially, because we in-
tended ⊗ and ⊕ for that purpose: we can use any editor to construct other
editors. For example, we could construct

dateEditor ⊗ timeEditor

to let the user specify a date and a time for an alarm to go off, and

(optionDaily3 ⊕ dateEditor) ⊗ timeEditor

to include the possibility for the alarm to go off every day.

3.5.4 Conciseness

We can be short about this point: our language is very concise, but of
course it is still only an abstract language. We should be careful not lose
this conciseness in our implementations.

3optionDaily ∈ [[Unit]]

11

12

4 Console-based editors in Haskell

In this chapter, we show that the abstract language can be made executable
in a functional language. Before turning to graphical editors in chapter 5, we
start with a simple implementation of console-based editors. In a functional
language with a built-in I/O monad such as Haskell[10], this proves to be
quite straightforward. Only the implementation of ⊕ causes some trouble.

4.1 Console-based I/O in Haskell

For now, we restrict ourselves to editors which only use a simple two-way
communication channel over which they can transmit and receive charac-
ters. The most widely used way of dealing with such an I/O channel in a
functional language is representing operations on this channel by monadic
values. We use Haskell as our implementation language for these editors,
since it provides standard support for monads (in particular the I/O monad).

Haskell’s standard library functions

putStrLn :: String -> IO ()
print :: Show a => a -> IO ()
readLn :: Read a => IO a

take care of console input and output; putStrLn is an operation which
prints a string on the console (terminated by a newline character), print is
a similar operation, but able to handle any value which can be converted to
a string, and readLn is an operation which takes one line of input from the
console. Operations are sequenced with the monadic bind operator, which
is invisibly applied if we use Haskell’s do notation.

4.2 Representation of editors

An editor with Haskell subject type a corresponds to a monadic function of
type a -> IO a . It takes as an argument the initial value for the editor, and
its result is a monadic computation which uses the I/O channel to produce
the changed value.

type Editor a = a -> IO a

13

As an example we construct an atomic editor with subject type Int :

intEditor :: Editor Int
intEditor initval =

do
putStrLn "Current value:"
print initval
putStrLn "Input new value:"
readLn

This very simple editor prints the initial value to the console and subse-
quently prompts for a new value. As readLn is the last operation in the
do-sequence, the monadic value of the whole editor corresponds to the input
that the user has given.

At this point, we would like to mention that we do not focus on the
usability or attractiveness of our editors here. Rather, we construct editors
with only the bare functionality that makes them editors, in order to keep
our function definitions as readable as possible. A more attractive design
alternative for intEditor would have customizable prompts (so we can
keep the user aware of what s/he is editing), the ability to increase and
decrease the current value with the + and − keys, the option to leave the
initial value unchanged with one keypress, etc. These improvements are
all possible within our general framework; the type of the editor remains
Editor Int .

4.3 Implementing ⊗ and C
As a variant of ⊗, we implement andthen , an infix function which takes
two editors as its arguments. It runs the first editor, followed by the sec-
ond. Conforming to the definition of ⊗, editor1 ‘andthen‘ editor2 is
an editor itself, with a tuple as its subject type.

andthen :: Editor a -> Editor b -> Editor (a,b)
editor1 ‘andthen‘ editor2 =

\(initval1, initval2) ->
do

changedval1 <- editor1 initval1
changedval2 <- editor2 initval2
return (changedval1, changedval2)

The reason why this definition is so short is that the actual work of sequenc-
ing two I/O operations is already done for us in the I/O monad; the only
thing we add is the (de)construction of the subject type tuple. Defining
convertF , the implementation of C, is just as easy. This function takes a
bijection as its first argument, which we represent with a tuple containing

14

both the function itself and its inverse. The second argument is the editor
we want to adapt:

convertF :: (a->b, b->a) -> Editor b -> Editor a
convertF (forth,back) editorB =

\initvalA ->
do

changedvalB <- editorB (forth initvalA)
return (back changedvalB)

Using intEditor and andthen , we can already write the date editor ex-
ample from section 3.5.1 Its definition exactly mimics the abstract language:

monthEditor = intEditor
dayEditor = intEditor
dateEditor = dayEditor ‘andthen‘ monthEditor

4.4 Implementing ⊕
Implementing alt , a variant of ⊕, is more difficult. This function should
take an Editor a and an Editor b as its arguments, and produce an
Editor (Either a b) as its result. Its näıve definition would be

alt :: Editor a -> Editor b -> Editor (Either a b)
editorL ‘alt‘ editorR = editorE

where
editorE (Left initval) =

do
changedval <- editL initval
return (Left changedval)

editorE (Right initval) =
do

changedval <- editR initval
return (Right changedval)

but this would only allow the user to make a change within one alternative,
e.g. from Left "foo" into Left "bar" or from Right 3 into Right 4 .
However, it should also be possible to change Left "foo" into Right 4 .
To accomplish this, we will let the user edit the Left/Right tag first. We de-
fine the editor tagEditor , which shows the current tag using the character
L or R . The user can then choose a new tag by pressing L or R:

1The only difference is that this editor does not restrict the integer range. To remedy
this, we could define an intEditor n m , which checks whether the user input falls between
n and m ; if it does not, it could ask the user for a different value, or it could just return
the initial value or one of the boundary values.

15

tagEditor :: Editor Char
tagEditor initval =

do
putStrLn "Current tag: "
putStrLn [initval]
putStrLn "Input new tag: "
c <- getChar
putStrLn ""
return c

Now the decision which of the two editors to run can depend on user input,
rather than on the initial value. However, this creates a problem. Say we
combine the editors

stringEditor :: Editor String
intEditor :: Editor Int

into

stringEditor ‘alt‘ intEditor :: Editor (Either String Int)

and this editor is run with the initial value Left "foo" . When the user
chooses to leave the Left tag unchanged, we run stringEditor and supply
it with the initial value "foo" . However, when the user changes the tag
into Right , we need to run intEditor , but we have got no initial value to
supply it with!

We can solve this problem by requiring the programmer to supply a
default value for both editors. Using those, we determine the initial values
for both editors, given the initial value for the composite editor: one will be
this initial value without its tag, the other one will be the default value for
that editor. The definition of alt becomes:

alt :: (a, Editor a) -> (b, Editor b) -> Editor (Either a b)
(defaultL,editorL) ‘alt‘ (defaultR,editorR) = editorE

where
editorE initvalE =

do
changedtag <- tagEditor inittag
chooseEditor changedtag

where

(inittag, initvalL, initvalR) = det_inits initvalE
det_inits (Left val) = (’L’, val, defaultR)
det_inits (Right val) = (’R’, defaultL, val)

chooseEditor ’L’ =

16

do
changedval <- editorL initvalL
return (Left changedval)

chooseEditor ’R’ =
do

changedval <- editorR initvalR
return (Right changedval)

However, this definition of alt violates the design of our abstract op-
erator ⊕: it does not work on editors anymore, but on tuples of type
(a, Editor a) . This has serious repercussions for the usability of the edi-
tor language:

• We cannot use the same type of operands to ⊗ and ⊕ anymore, which
is confusing. One could say that we are creating two subclasses of
editors: with and without a default value.

• Because (d1,e1) ‘alt‘ (d2,e2) itself is in the latter class, we can-
not simply write ((d1,e1) ‘alt‘ (d2,e2)) ‘alt‘ (d3,e3) .

• When adding a default value to (d1,e1) ‘alt‘ (d2,e2) , we could
in principle specify an entirely new value, but in practice it will always
be (Left d1) or (Right d2) . This means double work, and an extra
dependency: if we later decide to swap the two operands, we must also
change the default value from Left x to Right x or vice versa.

• The default value for editors with subject type Unit will of course
always be the unit value, but we still need to specify it.

Therefore a better choice is to include a default value in all our editors, even
if it is never used. It requires the following changes to our implementation:

• The type Editor a :: a -> IO a
changes into Editor a :: (a, a -> IO a) .

• All atomic editors are provided with reasonable default values.

• The default value of editor1 ‘andthen‘ editor2 is defined to be
the tuple containing the default value of editor1 and the default
value of editor2 .

• The default value of convertF (forth,back) editorB is defined to
be back applied to the default value of editorB .

• alt is replaced with two variants: altL and altR , with respective
default values Left d1 and Right d2 (where d1 and d2 are the
default values of the left and right operand)

17

• We define the function setDefault :: a -> Editor a -> Editor a
to alter the default value of any editor.

Note that most of these changes are invisible to the programmer. The
dateEditor example even remains exactly identical. The only visible effect
is that altL and altR can now be used in the same way as then , just as
in the abstract language.

The implementation of altL , altR and setDefault , as well as the
changed versions of intEditor , andthen and convert , can be found in
appendix A.

18

5 Graphical editors in Clean

We now take the step from the simple world of console-based user interfaces
into the complex world of graphical user interfaces. Not only does the inter-
action take place through different hardware components (graphical display,
pointing device), but also through abstract ‘software devices’ such as win-
dows, menus, buttons, icons, check boxes, etc. In the 1990s, interfaces using
these concepts have become the established standard, at least from a user’s
perspective.

From a programmer’s perspective, there are several ‘standards’ for build-
ing these GUIs; these are known as GUI toolkits. Some more or less widely
used toolkits are Microsoft Foundation Classes (MFC) for Windows, Swing
(part of Java Foundation Classes) and GTK (cross-platform, mostly used on
Unix variants). An important common factor is that they all use an object
oriented framework.

In the functional world, a standard toolkit does not exist yet. There
are several libraries in existence which form an interface between a func-
tional language and existing object oriented toolkits. The Clean Object I/O
Library[3] is one of them. Using this library feels a lot like object oriented
programming:

• One can define windows (or dialogs) and populate them with controls,
such as an EditControl (for entering text), a PopUpControl (to
select an option from a drop-down list) and a ButtonControl .

• Every control has certain static and dynamic properties, like its cap-
tion, select state (whether the control is enabled or disabled), visibility
and current selection (for controls like radio buttons and drop-down
lists).

• During the execution of the program, the dynamic properties can be
read and changed using get and set functions.

• One can define event handlers which are invoked when the user in-
teracts with a control. These event handlers change the state of the
program (and specifically the GUI).

However, all these concepts are expressed in the purely functional language
Clean:

19

• A dialog or control is defined by a value of an elaborate algebraic type
(a different type for every kind of control). This value determines the
static properties of the object, and the initial value for the dynamic
properties. Some of these properties are a compulsory part of the
value; others are not, and assume certain default values when left
unspecified. For example, the control type for an EditControl is:

:: EditControl ls pst
= EditControl String ControlWidth NrLines

[ControlAttribute *(ls,pst)]

In this type, ls and pst are two free variables which have to do with
state management (see below). The data constructor is EditControl ,
which is followed by four arguments: the initial text in the control, the
width, the number of lines and a list of optional properties.

• One of these properties is the ControlFunction , which acts as an
event handler. It is a state transition function, defined by the program-
mer: it takes a current state (of the whole program) as an argument
and its result is a new state.

• This program state, which has type (ls, PSt ps) , contains a custom
local state (ls) and a global process state (PSt ps). The latter is a
combination of a custom global state (ps) and a GUI state (IOSt ps).
Both custom local and global states can be used to store information
(of arbitrary types ls and ps , respectively) between event handlers.
The local state is used to encapsulate (i.e. hide) information which is
only relevant for certain controls or dialogs.1

• The GUI state has quite a complex type, but this remains hidden
from the programmer since it is only accessed using library functions
(mainly also state transition functions, restricted to the GUI state).
The get and set functions we mentioned are in fact such functions.

• Controls (i.e. the values that define controls) can be joined together
using the infix data constructor :+: . The resulting value itself is also
a control, so multiple controls can be glued together this way. The
order in which controls are glued together affects the layout of the
composite control.

• Every dialog contains exactly one control, but this can of course be
a composite control.2 The value defining this control is a compulsory
part of the value defining the dialog.

1An explanation of Object I/O state management can be found in [3].
2There is also an ‘empty’ control available, so it is possible to create an empty dialog.

20

Figure 5.1: Door information editor

• When a dialog definition is run, the dialog is shown on the screen
in its initial state. When the user interacts with it, the concerning
ControlFunction s are invoked on the current program state and the
dialog is updated accordingly.

The Clean Object I/O Library gives the programmer a medium level of
abstraction; e.g. s/he does not need to bother about screen pixel positions,
drawing the controls or keeping track of the input focus. The level of ab-
straction we seek with our editor language lies higher: we do not want the
programmer to spend time on naming the objects, writing state transition
functions and passing values around using get and set functions.

5.1 An editor example

As an example of programming with the Clean Object I/O Library, we con-
struct a simple composite editor. It edits information about a certain door:
the name of the person who works behind it and whether s/he can be dis-
turbed or not. This is done by a small dialog with three controls (see fig. 5.1):
an EditControl to show and alter the name, a PopUpControl showing ei-
ther ‘come on in’ or ‘do not disturb’ and an OK button (a ButtonControl)
to close the dialog and save the changes. The code that produces this dialog
looks like this:

mydialog (name,disturb) =
Dialog "" controls [WindowId idDialog]
where

controls =
EditControl name (PixelWidth 80) 1 [ControlId idEdit]
:+: PopUpControl labels (bool2int disturb) [ControlId idPopUp]
:+: ButtonControl "OK"

[ControlFunction okfun, ControlPos (Center,zero)]

okfun (ls1,pst1) = (ls2,pst3)
where
(Just wstate, pst2) = accPIO (getWindow idDialog) pst1
(_, Just newtext) = getControlText idEdit wstate
(_, Just newint) = getPopUpControlSelection idPopUp wstate

21

ls2 = (newtext, int2bool newint)
pst3 = closeActiveWindow pst2

bool2int b = if b 1 2
int2bool i = (i==1)
labels = zip2 ["come on in","do not disturb"] (repeat id)

Explained from the top down, this has the following meaning: we are defin-
ing the function mydialog . When provided with an argument of type
(String,Bool) , which specifies the initial value for this editor, this func-
tion yields a dialog definition. This dialog contains a composite control
consisting of an EditControl , a PopUpControl and a ButtonControl .

• The EditControl has initial value name , is 80 pixels wide, one line
high and can be referred to by other controls with the identifier idEdit .
(This value is defined somewhere in scope; see the next section for some
more details about these identifiers.)

• The PopUpControl has two labels (defined below by labels). The
initially selected label is given by (bool2int disturb) ; i.e. when
disturb is True the first label is initially selected, and when it is
False , the second label is selected. This control can be referred to
with idPopUp .

• The ButtonControl has the text ‘OK’ on it, uses event handler okfun
and is positioned in the center of a new line. (By default, :+: posi-
tions controls on a line from left to right.) It does not need a control
identifier because it is not referred to in any other place.

The event handler okfun transforms the current3 program state (ls1,pst1)
into a new program state (ls2,pst3) . The local state will be used to store
the changed value (the reason for this is explained in section 5.5). The pro-
cess state contains the current GUI state, which is accessed with accPIO .

From this GUI state, okfun reads the current states of the two controls
indicated by the control identifiers idEdit and idPopUp , using the library
functions getWindow , getControlText and getPopUpControlSelection .
It combines them into a tuple (with the second element converted back into
a Bool) and stores this value in the dialog’s local state. Finally, it closes
the dialog using closeActiveWindow .

5.2 Representation of editors

There is a rough correspondence between controls and editors. For exam-
ple, an EditControl would make an editor with subject type String and

3at the moment the button is pushed

22

a PopUpControl with four items would edit an Int1..4. If we glue them
together, the composite control’s subject type would be String × Int1..4 or
Int1..4 × String .

However, we cannot directly identify an editor with a control definition.
The problem is that some of the behaviour and effect of a control is defined
in the event handlers of other controls. In our example, this only hap-
pens in the event handler of the OK button: we use getControlText and
getPopUpSelection to extract the updated values from the two controls.

Furthermore, the ButtonControl itself cannot be considered an editor.
Unlike the EditControl and the PopUpControl , there is no notion of a
current value4 (which the user can change). Rather than a third independent
control, it is more a part of the environment that the other two controls are
in; it ends the editing process of those controls.

We will therefore consider our example as some nameEditor⊗disturbEditor
which is run in a dialog with an OK button. In general, we consider any
editor to be run in such an environment. That is why we represent an editor
with two main parts:

1. The opening code, which describes everything needed when the control
is created, i.e. its static properties and initial value. (Note that the
word control can also mean a composite control!)

2. The closing code, which provides the necessary means for the event
handler of the OK button to get the updated value from the control.

When joining editors with ⊗ or ⊕, we combine the opening code of both
operands as well as their closing code, but still keep both parts separate.
Only at the moment that we construct the environment to actually run
an editor in, we combine them. The editor’s opening code will then be
part of the dialog definition code, together with the definition code of an
OK button. The editor’s closing code is used in the event handler of this
button. (All this is carried out by the function run in dialog , which we
explain in section 5.5.)

This leads to the following schematic type definition of an editor:

:: Editor a :== a -> (opening code type, closing code type)

Just as with the console editors, the editor type is parameterized with its
subject type a , and we make a functional abstraction from the initial value
(which is of this type). This initial value occurs only in the opening code;
however, we include the closing code in the function result for better read-
ability, because we are now going to add another functional abstraction with
the same scope.

The reason for this second abstraction is the control identifier mechanism
of the Object I/O Library. In the opening code, we give id values to our

4although theoretically, this could be a value of type Unit

23

controls, and in the closing code, we refer to the controls using these values.
Id values are of type Id and are dynamically assigned; at the moment that
we create the dialog, we can obtain a list of n ids using openIds n pst
(the last argument is the current program state).

To take care of these ids, we make two adaptations to the editor type:
we add an integer to keep a record of the number of ids needed and make
a functional abstraction with argument type [Id] . When we construct the
dialog, we retrieve the ids with openIds and apply the function to that list.

The last addition we make to the Editor type is a default value for
each editor. It has exactly the same purpose as with console editors (see
chapter 4). The type now looks like this:

:: Editor a :==
(a [Id] -> initial value; list of ids

(opening code type, closing code type)
, a default value
, Int number of ids
)

Note that Clean function type definitions are not in a curried style; if a
function has two arguments they are simply separated by a space. In Haskell,
we would need an extra -> between a and [Id] . To give a concrete
example of an editor, we implement a simple stringEditor :

stringEditor =
(to_code, "", 1)

(its default value is the empty string, and it needs one id value;
to_code is a function from initial value and list of ids to the opening
and closing code, which is defined below:)

where
to_code initval [cid] =

(EditControl initval (PixelWidth 80) 1 [ControlId cid]
, to_closingval
)

(its EditControl has initial value initval , is 80 pixels wide and
1 line high, and gets an id value which is used in the closing code
to_closingval:)

where
to_closingval wstate = text

where (_, Just text) = getControlText cid wstate

24

The editor’s closing value depends on a value of type WState , which de-
scribes the state of a window (dialog) and all its controls. When the OK but-
ton is pushed, this WState is obtained from the GUI state using getWindow ;
the string contents of this particular control are extracted from it using the
function getControlText . Note the use of the control’s id (cid).

We can now explain the exact types for the opening and closing code
of an editor. The closing code maps a WState to the closing value of the
particular editor, so its type should be WState -> a . The opening code is
a control definition; as each kind of control has its own type, we include it
in the Editor type as a type variable. Therefore, the actual Editor type
now has two type variables: its subject type a and its control type c . Its
definition is:

:: Editor a ct :==
(a [Id] -> initial value; list of ids

(ct, WState -> a) control definition; closing value
, a default value
, Int number of ids
)

As an example, the type declaration of our stringEditor is

stringEditor :: Editor String (EditControl ls pst)

where ls and pst are two free type variables representing custom local
state and global process state, respectively.

5.3 Implementing ⊗ and C
Implementing the ⊗ operator is a little verbose, but actually almost trivial.
Its main function is to combine the controls from its two operands, so that
they appear next to each other in the dialog. This work is done for us by
the data constructor :+: from the Object I/O library. The rest is simply
administration:

• Just like with the console editors, the initial value (a tuple) is split up
into the two initial values for the operands, and their closing values
are combined into a tuple again.

• The default values are also combined into a tuple.

• The list of ids is split up (the split position is determined by the id
count of the first operand) into two lists.

• The id counts from both operands are added.

For the reader familiar with the concept, this can be seen as a nonterminal
production in an attribute grammar [11], where

25

• the two operands are other (non)terminals,

• initial value and list of ids correspond to inherited attributes,

• control definition, closing value, default value and id count correspond
to synthesized attributes.

Johnsson[9] shows how to evaluate an attribute grammar in a functional
language, using function arguments to pass inherited attributes and the
function result to pass synthesized attributes.

We use an adaptation of this idea (using a different function for every
production allows us to work with more than one type). The implementation
of :&: reads:

(:&:) editor1 editor2 = (to_code, (def1,def2), nr1+nr2)
where
(to_code1, def1, nr1) = editor1
(to_code2, def2, nr2) = editor2
to_code (initval1,initval2) ids =

(control1 :+: control2, to_closingval)
where
(control1,to_closingval1) = to_code1 initval1 ids1
(control2,to_closingval2) = to_code2 initval2 ids2
(ids1,ids2) = splitAt nr1 ids
to_closingval wstate =

(to_closingval1 wstate, to_closingval2 wstate)

The implementation of C also consists mainly of administration. The essence
of the code is that the bijective function forth is applied to the initial value,
and its inverse back to the closing value and default value.

convertF (forth,back) editorB = editorA
where
(to_codeB, defB, nrB) = editorB
editorA = (to_codeA, back defB, nrB)
to_codeA initvalA ids =

(controlB, back o to_closvalB)
where
(controlB, to_closvalB) = to_codeB (forth initvalA) ids

5.4 Implementing ⊕
Basically, the graphical ⊕ implementation is very similar to the console
implementation: we add an extra editor to edit the Left/Right tag, and for
one of the operand editors we take its default as the initial value. The main

26

editor1

editor2

Figure 5.2: Ideal layout for editor1 ⊕ editor2

difference is that we now always show both operand editors, along with the
tag editor; the user interacts with all three at the same time.

As a tag editor, we use a RadioControl with two options. Only one of
them can be selected at a time: this way the user makes a choice between
the values in the operand editors. We would like to create a layout with
the second editor below the first one, and a radio button to the left of each
editor, aligned with its top (see fig. 5.2).

However, we run into a cosmetic problem with the Object I/O Library.
A group of two radio buttons is considered to be a single item, and we have
little control over its internal layout. Although it destroys the usability and
attractiveness of our interface, we decide to put the two editors beside each
other, with the two radio buttons in between. A doubtful advantage of
this approach is that the interface now exactly reflects the structure of the
expression editor1 ⊕ editor2.5

The actual implementation is again quite verbose and does not introduce
any new concepts. For that reason, it is left out here; it can be found in
appendix B. We have named the left- and right-defaulting variants :.|:
and :|.: respectively, with :|: as a slightly shorter synonym for the first
one. All are defined in term of the more general function altD , which takes
a boolean argument indicating whether it should default to the left or to the
right.

As a small example, we construct a dialog with which we can either
choose yes or no. In the latter case, we must also state a reason why not
(see fig. 5.3). Its implementation is:

yesnoEditor = yesEditor :|: noEditor
yesEditor = unitLabel "yes"
noEditor = (unitLabel "no, because") :&: stringEditor

Note the use of unitLabel : it is an editor with subject type Unit which
appears as a static text label. The subject type of our composite editor is
Unit +(Unit ×String); if we want it to be just Unit +String we could apply
a C-transformation to noEditor :

5Unfortunately, it becomes ambiguous when more editors are involved, because we
cannot see parentheses in the layout!

27

Figure 5.3: yesnoEditor

noEditor2 = convertF unitTimes noEditor
unitTimes = (forth,back)

where
forth x = (UNIT,x)
back (UNIT,x) = x

5.5 Running an editor

Once we have constructed a complete editor using :&: , :|: and convertF ,
we can use it in a Clean Object I/O program by running it with the func-
tion run in dialog . When applied to an editor with subject type a , this
function yields a state transition function of type (a, PSt ps) -> (a, PSt
ps) . The first value in these tuples represents the value which is edited, the
second is the process state (with an arbitrary global custom state ps).

If we apply this state transition function, e.g. in an event handler some-
where in our program, to (initval, initpst) , a modal dialog is opened,
containing the editor, an OK button and a Cancel button. Modal means
that all user interaction is restricted to that particular dialog, until it is
closed. When this happens, the state transition function terminates; a new
value and process state are returned in a tuple (newval, newpst) .

The editor dialog can be closed in three ways: the user pushes the OK
button, the Cancel button or the X button in the upper right corner. In
the first case, newval contains the altered value from the editor. In the
other cases, the user cancels the whole editing operation, so newval equals
initval .

To implement this behaviour, we use the Object I/O library function
openModalDialog , which opens a modal dialog. Its arguments are:

1. a dialog definition

2. an initial local state for the dialog

3. the initial process state

Its result becomes available when the dialog is closed or when an error
occurs while opening the dialog. It consists of a tuple ((err,mls),pst)

28

where pst is the new process state, err is an error report and mls can
be either Nothing (when an error occurred) or Just ls (otherwise)— ls
is the dialog’s final local state. For simplicity’s sake, we assume in our code
that no error occurs.

The dialog’s local state is used to communicate the edited value to and
from the environment: that is why we use initval as the second argument
to openModalDialog , and the pattern ((, Just newval), pst) as its
result. During its lifetime, this local state is only changed when the OK
button is pushed. At that point, the altered value from the editor is copied
into it. When the user cancels the operation, the OK button is never pushed,
so this copying never happens; the local state is returned unchanged.

The function application run in dialog editor (initval,pst) per-
forms the following tasks:

• It uses the id count in editor to request the necessary number of ids
for the editor controls, and one extra for the dialog, with openIds .
This function returns an id list of the proper length.

• The first element of the editor tuple is applied to initval and the
id list. This yields the editor’s control definition and closing code.

• The control definition is joined with two buttons: an OK button and
a Cancel button, positioned in the center of a new line.

• The event handler of the OK button transforms the current local and
process state tuple (ls,pst) into a new one:

1. It obtains a WState value from the current process state using
getWindow and the dialog id.

2. It applies the editor’s closing code to this value, yielding the
closing value of the editor. The dialog’s local state is replaced by
this value.

3. It closes the dialog with closeActiveWindow .

The event handler of the Cancel button just closes the dialog.

• A dialog is built using the control definition and the dialog id. It has
an empty string for a title.

• This dialog is run using openModalDialog .

• The result ((, Just newval), pst) is converted into (newval,pst) .

The implementation of this function can be found in appendix B. In ap-
pendix E.2, the function can be seen in action. Using the editor doorEditor ,
we can simply edit initval like this:

(newval,newpst) = run_in_dialog doorEditor (initval,initpst)

29

Figure 5.4: Original doorEditor Figure 5.5: Altered doorEditor

5.6 The doorEditor example revisited

We can now create the doorEditor from the beginning of this chapter (see
fig. 5.4) using this small program fragment:

doorEditor = stringEditor :&: disturbEditor
where
disturbEditor =

convertF (bool2int,int2bool)
(dropdownEditor ["come on in","do not disturb"])

where
bool2int d = if d 1 2
int2bool i = (i==1)

This makes use of the atomic dropdownEditor , which takes a list of n
strings as an argument and has Int1..n as its subject type. We use n = 2
and convert the subject type to Bool using convertF .

When used in combination with run in dialog , this new doorEditor
has the same functionality as the old one; its code is shorter and more under-
standable. See appendix E for a comparison of the two complete programs
including all overhead to import libraries and start up the GUI.

Now let’s decide to change the user interface; we want to use a check
box for the do–not–disturb option (see fig. 5.5). To produce this check box,
we use the atomic checklistEditor , which encapsulates a CheckControl .
This control produces a list of n check boxes, so checklistEditor ’s subject
type is a list of Bool (with fixed length n), indicating for all the checkboxes
whether they are checked. Like dropdownEditor , checklistEditor takes
a list of n labels as its argument.

We only need one check box, so we use the singleton label list ["do not
disturb"] . The resulting checklistEditor has a value [True] when the
person can not be disturbed. Our disturbEditor should have value False
in this case; we make this conversion (singleton to its opposite ordinary
value) with convertF . We replace the definition of disturbEditor with:

disturbEditor =
convertF (a2b,b2a)

(checklistEditor ["do not disturb"])

30

where
a2b a = [not a]
b2a [b] = not b

Compare this to the changes we would have to make to the example program
in section 5.1:

• The PopUpControl definition is replaced with a CheckControl def-
inition, which takes slightly different parameters. For example, to-
gether with each label it takes an initial state which can be Mark
(checked) or NoMark (not checked).

• The initial Bool value has to be converted to Mark / NoMark .

• In the button’s event handler, we use getCheckControlSelection
instead of getPopUpControlSelection . This function yields a list of
integers, indicating which checkboxes are checked.

• This list of integers has to be converted to a Bool value: [1] maps
to False and [] to True .

Clearly, our editor language keeps the changes more local and presents a
more consistent manner of dealing with the two different editors. Moreover,
this manner also transfers to our composite editor.

31

32

6 Decoupling form and functionality

In the previous sections, we have shown that it is possible to create imple-
mentations of the abstract editor language for crude textual and graphical
editors. These little languages are very concise and ‘high-level’; concrete
values are passed implicitly to and from the editors in a sort of point-free
style. This imposes a limitation, which we already mentioned in section 3.5:
only editors with the same user interface structure as their subject type
structure can be directly defined. Theoretically, this limitation can be over-
come by defining C-transformations on the subject type, but in practice, this
is a cumbersome solution. In this chapter, we investigate the possibility of
naming the edited values, so the programmer can explicitly couple them to
editors in an independently defined user interface structure.

6.1 Explicit value passing in console editors

First, we take a step back to the console editors without default values from
section 4.2. We were able to define

dateEditor = dayEditor ‘andthen‘ monthEditor

with the andthen operator distributing the initial values, sequencing the
editors and collecting the new values for us. If we want more control, we
can simply choose to ignore this operator and do everything ourselves. First
we rewrite dateEditor (its effect and type remain the same):

dateEditor (day,month) =
do

day’ <- dayEditor day
month’ <- monthEditor month
return (day’, month’)

Now we are able to reverse the sequence while maintaining the right subject
type:

dateEditor (day,month) =
do

month’ <- monthEditor month

33

day’ <- dayEditor day
return (day’, month’)

We made a transition from a point-free style to a point-ful style, where we
can control the plumbing of the edited values ourselves, regardless of the
sequencing of the editors. In fact, this transition consists of two changes
which complement each other:

• Changing the type of our building blocks from a -> IO a to IO a
makes function arguments1 explicit, in this case: the initial day and
month values.

• Using the monadic bind operator makes function results2 explicit, in
this case: the changed day and month values.

6.2 Explicit value passing in graphical editors

We now attempt to adopt a similar point-ful approach for graphical editors.
The first step, making function arguments explicit in our building blocks,
is easy to accomplish. We just leave out a functional abstraction from the
Editor type, so the control definition includes the initial value again:

:: Editor a ct :==
([Id] -> list of ids

(ct, WState -> a) control definition; closing value
, a default value
, Int number of ids
)

Our atomic editors, however, should not contain a built-in initial value; they
should be able to handle any initial value. Therefore, our new stringEditor
will not have type Editor . . . , but String -> Editor . . . ; its definition
stays the same, except that the functional abstraction moves from inside of
the editor to outside:

stringEditor :: String -> Editor String (EditControl ls pst)
stringEditor initval =

(to_code, "", 1)
where
to_code [cid] =

(EditControl initval (PixelWidth 80) 1 [ControlId cid]
, to_closingval
)
where

1or: inherited attributes
2or: synthesized attributes

34

to_closingval wstate = text
where (_, Just text) = getControlText cid wstate

Note that while we made the initval argument (inherited attribute) ex-
plicit by moving the functional abstraction out of the editor, we still keep
the [cid] argument inside the editor. The reason for this is that we do not
want the programmer to pass around lists of ids.

With this new kind of atomic editors, our basic building blocks will no
longer be of the form stringEditor or intEditor , but rather of the form
stringEditor s and intEditor i .

We now want to make a similar change for the components of the func-
tion result (i.e. synthesized attributes): the closing values should be made
explicit, without exposing the control definition, default value and number of
ids. Inspired by the monadic style, we attempt to define a binding function.
It should have the type signature

(>>&) :: (Editor a _) (a -> Editor b _) -> (Editor b _)

with some control definition types filled in at the underscores. The intention
is that this function joins an editor with subject type a and an editor with
subject type b . Therefore, the control definitions from the two editors
are joined with :+: again. This implies that the type variables at the
underscores should be c1 ls pst , c2 ls pst and :+: c1 c2 ls pst ,
respectively, but we will not elaborate on this.3

Meanwhile, the closing value of the first editor is made explicit. The
idea behind this is that we can use >>& several times in a row, at the end
of which we construct a closing value for the whole editor. We do this with
returnc , our equivalent of the monadic return function. As an example, we
would like to construct an editor with subject type (String,Int) in the
following way:

myEditor (s,i) =
intEditor i >>& \new_i ->

(stringEditor s >>& \new_s ->
(returnc (new_s, new_i)))

Since returnc x must also be an editor, it must contain a control definition
which can be joined to the other editors with :+: . However, it must not
have a representation on the screen; it must be some kind of empty control.
Fortunately, the Object I/O Library provides such an empty control. It
is denoted NilLS and is of type NilLS ls pst (with the two free type

3For the interested reader: c1 and c2 are of kind � → � → � and are applied to
types ls (local state) and pst (global state). The type constructor :+: is of kind
(� → � → �) → (� → � → �) → � → � → � and ensures that the two controls have the
same local and global state types. An explanation of Object I/O state management can
be found in [3].

35

variables signifying that it does not impose any restrictions on the local and
global state type). This leads to the following type for returnc :

returnc :: a -> Editor a (NilLS ls pst)

Although we have determined the types for >>& and returnc , their func-
tion definitions are not so simple. There is a problem with the binding
function: at the moment that we construct a dialog for

editor1 >>& \x -> editor2

we need to know the static properties of this editor, i.e. the control defini-
tions, the number of ids needed and its default value (see also section 5.5).
Half of this information comes from editor2 , but we cannot reach it be-
cause we should fill in the closing value of editor1 for x , which we do not
know yet.

On the other hand, we know that there should not be any x in the
control definition of editor2 . Therefore, it would be perfectly all right to
fill in any value of the right type, even the undefined value ⊥,4 as long as
we are only extracting the control definition—due to lazy evaluation, this
value is never evaluated.

Only at the moment that we construct the composite editor’s closing
value, we need the real closing value of editor1 to substitute for x (con-
sider the closing value (new_s,new_i) from the above example). But at
that time, it is not a problem anymore: we have a WState from which to
obtain it. In our definition of >>& we therefore apply its second argument
twice: the first time to obtain the static properties of editor2 and the
second time to obtain the closing value, a dynamic property.

Instead of using ⊥ for obtaining the static properties, however, we use
the default value of editor1 . Not only is it a conveniently available value
of the right type, but this also spontaneously solves the problem of how to
construct a default value for the composite editor: we do it in the same way
that the closing value is constructed! To see how this works, first consider
our definition of returnc :

returnc val =
(to_code, opening & closing code
, val default value
, 0 nr of ids
)
where
to_code [] = only applied to an empty id list

(NilLS control definition
, \wstate -> val closing value
)

4especially ⊥, because it is always of the right type

36

When used on its own, returnc val is an invisible ‘editor’ which always
has closing value val , the same as its default value (which is a somewhat
meaningless notion here). When used in the expression

stringEditor "foo" >>& returnc

the argument of returnc is actually bound twice: first to "" , the default
value of stringEditor "foo" , then to its closing value σ (which depends
on the user and can be any string). The consequence of this and the way
>>& works will be that the composite editor also gets default and closing
values "" and σ. In fact, the only difference between the composite editor
and its first operand is an extra NilLS control, which is invisible to the
user.

It starts getting interesting when we do something extra with the argu-
ment to returnc . We could, for example, join it in a tuple with the number
42 :

stringEditor "foo" >>& \x -> returnc (x,42)

This composite editor gets default value ("",42) and closing value (σ,42) .
When we bind the second element of the tuple to an intEditor instead of
using the constant 42 , we have almost returned to our previous example:

intEditor 88 >>& \i ->
(stringEditor "foo" >>& \s ->

(returnc (s,i)))

The default value of this composite editor is ("",0) : a combination of the
default values of its components, which is constructed in the same way as
the closing values are combined into (σ,ι) . Both have the string first,
then the integer—regardless of which editor comes first in the user interface
structure. (This happens to be intEditor here.)

We now give the implementation of >>& . Its essence is:

• The control definitions from the two editors (including initial values)
are combined with :+: .

• Their id counts are added and the id list is split up.

• Applying the second operand to the default value of the first editor
yields a second editor; the default value of the composite editor is the
default value of this editor. This second editor is also used to obtain
the above control definition and id count.

• Applying the second operand to the closing value of the first editor
yields another second editor; the closing value of the composite editor
is the closing value of this editor.

37

(>>&) editor1 to_editor2 = (to_code, def2, nr1+nr2)
where
(to_code1, def1, nr1) = editor1
(to_code2s, def2, nr2) = to_editor2 def1

(use def1 to obtain the static properties of editor2)

to_code ids =
(control1 :+: control2, to_closingval)
where
(ids1,ids2) = splitAt nr1 ids
(control1, to_closingval1) = to_code1 ids1
(control2, _) = to_code2s ids2
to_closingval wstate = to_closingval2 wstate

where
closingval1 = to_closingval1 wstate
(to_code2d,_,_) = to_editor2 closingval1
(_,to_closingval2) = to_code2d ids2

(use closingval1 to obtain a dynamic property of editor2)

6.3 Defining ⊗, C and ⊕ in terms of >>& and returnc

Probably the best evidence of the expressive power of >>& and returnc is
the fact that we can use them to redefine :&: , convertF and :|: (our
implementations of ⊗, C and ⊕ from the previous chapter). Moreover, these
new definitions are shorter and more readable, because all the ‘administra-
tion’ is taken care of by >>& . All three functions now operate on arguments
of type a -> Editor a ct . The first one is defined like this (we leave out
the control definition types for readability):

(:&:) infixr 5 :: (a -> Editor a _) (b -> Editor b _)
-> ((a,b) -> Editor (a,b) _)

(:&:) to_editor1 to_editor2 =
\(initval1,initval2) ->

to_editor1 initval1 >>& \closingval1 ->
to_editor2 initval2 >>& \closingval2 ->
returnc (closingval1,closingval2)

Note the exact similarity to our first implementation of ⊗ for console-based
editors (see chapter 4.3). This is also the case for convertF :

convertF :: (a->b, b->a) (b -> Editor b _) -> (a -> Editor a _)
convertF (forth,back) to_editorB =

\initvalA ->
to_editorB (forth initvalA) >>& \closingvalB ->
returnc (back closingvalB)

38

Like in the previous chapter, we define :|: , :.|: and :|.: in terms of
the more general altD . This function’s first argument is isLeftDefault ,
a boolean value indicating whether the composite editor should have its
left default value as its own default value. Using isLeftDefault , we first
define choiceEditor , producing the two radio buttons in the middle of the
composite editor:

choiceEditor =
setDefault isLeftDefault

(convertF bool2int2bool (radioEditorRow ["",""]))
bool2int2bool = (\b -> if b 1 2, \i -> i==1)

This editor is built from a (more general) radioEditorRow with two empty
labels. After the Cf -transformation (f : Bool ↔ Int), it expresses the choice
between left and right using True and False , respectively. It defaults to
the tag that we want the composite editor to default to.

To determine the initial values for the two operand editors, we need a
little trick. We have an operand of type a -> Editor a ct which we must
apply to an initial value to turn it into an Editor a ct . However, this
initial value must be its default value—which we can only discover after
applying the function! This problem is similar to the one in the previous
section, and we can also solve it by first using ⊥, but again we have a better
alternative. We use circular definitions5 for initL and initR , and let the
lazy evaluation mechanism do the rest:

(initL,initC,initR) = det_inits initE
det_inits (LEFT val) = (val, True, defR)
det_inits (RIGHT val) = (defL, False, val)
editorL = to_editorL initL
(_,defL,_) = editorL
editorR = to_editorR initR
(_,defR,_) = editorR

The whole altD definition reads:

altD isLeftDefault to_editorL to_editorR = to_editorE

where
to_editorE initE =

editorL >>& \closvalL ->
editorC >>& \closvalC ->
editorR >>& \closvalR ->
returnc (if closvalC (LEFT closvalL) (RIGHT closvalR))

5Unfortunately, this causes a cycle–in–spine error when extracting a default value from
e1 :&: e2 . It can be solved by using a lazy pattern match on (initval1,initval2) in
the definition of :&: .

39

where
(initL,initC,initR) = det_inits initE
det_inits (LEFT val) = (val, True, defR)
det_inits (RIGHT val) = (defL, False, val)
editorL = to_editorL initL
(_,defL,_) = editorL
editorR = to_editorR initR
(_,defR,_) = editorR
editorC = choiceEditor initC

choiceEditor =
setDefault isLeftDefault

(convertF bool2int2bool (radioEditorRow ["",""]))
bool2int2bool = (\b -> if b 1 2, \i -> i==1)

This is still somewhat lengthy, but a lot clearer than our previous definition
(which can be found in appendix B). We do not need to bother about id
counts and lists, so we can concentrate on distributing the initial values
and constructing the closing value. Even the composite editor’s default
value is constructed automatically (in the same way that its closing value is
constructed) once we have given choiceEditor the right default value.

As for the implementation of run in dialog , it remains almost identical
for our new editors. It only has an argument of type a -> Editor a c now,
so this is directly applied to initval (this application first took place inside
the editor). The code can be found in appendix C.

6.4 Consequences of the monadic approach

Using >>& and returnc makes it easy to specify some C-transformations
which result from the following information equivalences:

X ∼ X

X × Y ∼ Y × X

(X × Y) × Z ∼ X × (Y × Z)
X × Unit ∼ X

For example, to transform the subject type of the editor

editorA ⊗ (editorU ⊗ (editorC ⊗ editorB))

editorA ∈ [[A]]
editorB ∈ [[B]]
editorC ∈ [[C]]
editorU ∈ [[Unit]]

into (A × B) × C, we write a definition like:6

6This is not correct Clean; the identifiers with an apostrophe are invalid and () is not
a value.

40

newEditor ((a,b),c) =
editorA a >>& \a’ ->

(editorU () >>& _ ->
(editorC c >>& c’ ->

(editorB b >>& b’ ->
(returnc ((a’,b’),c’)))))

This way, the user interface structure is built with the >>& operator; the
subject type structure is visible in the formal function argument at the top
and the result at the bottom.

We get another advantage for free: using this monadic construction (sev-
eral instances of >>& ending in a returnc), we can just as well put any
Clean pattern in the function argument and any Clean value in the result.
This way we can define an editor with an arbitrary Clean type as its subject
type, for example (Int,String,String) , a user-defined algebraic type7

like

:: Vector3D = Vector3D Int Int Int

or a record type:

:: MyRecord = {name :: String, age :: Int}

However, there are also some disadvantages to this monadic approach:

1. We have to write down the same subject type structure twice: once at
the top (as a pattern) and once at the bottom (as a result value).

2. We can only easily define editors of the form

Cf (e1 ⊗ (e2 ⊗ (e3 ⊗ . . .))).

If we want to define an editor of the form

Cf ((editorA ⊗ editorB) ⊗ editorC),

for example, we have to keep track of intermediate result values like
this:

editor (a,(c,b)) =
(editorA a >>& \a’ ->

(editorB b >>& \b’ ->
(returnc (a’,b’)))) >>& \(a’,b’) ->

(editorC c >>& c’ ->
(returnc (a’,(c’,b’))))

7Note that the editing is always restricted to one alternative data constructor, just as
with our first näıve definition of alt in section 4.4.

41

3. We can only use one variant of ⊗, which combines the control defini-
tions of its operands using :+: . If we want ⊗ to do something else,
we would have to define a new binding function, which is not an easy
task.

4. To make use of the information equivalences concerning the + oper-
ator (without resorting to convertF), we would have to write whole
customized variants of altD , which is a lot of work. The same is true
if we want to define editors for user-defined algebraic types with two
or more alternative data constructors.

In the next chapter, we will discuss a second approach to decoupling subject
type and user interface structure, which does not possess the first two of
these disadvantages (see section 7.7).

42

7 Decoupling with references

The style of programming we propose in this chapter lies somewhere in
between the point-free style from chapter 5 and the monadic style from
chapter 6. The subject type is made explicit in the function arguments, but
not in a result value. As an example, the dateEditor with reversed interface
structure looks like this:

dateEditor =
declare2 \(day,month)->

monthEditor month :++: dayEditor day

Despite the absence of some returnc clause, the closing value and default
value of this editor are constructed in the right way: a tuple with the day
value first and then the month value. That this is possible is due to the fact
that the values day and month in the above example—although they are
used like the initial values in the monadic style—are actually not ordinary
integer values but references to integer values.

7.1 Purely functional references

A reference value acts as a pointer to a value in a larger structure of values.
This larger structure of values can be seen as a collection of memory cells:
using the pointer one can get or set a value of a certain cell. Although
this suggests an imperative style, references can be incorporated easily in
a purely functional language like Clean. The key to this implementation is
the following type for references:

:: Ref cx a =
{ val :: cx -> a
, app :: (a->a)->(cx->cx)
}

It is a polymorphic record type with two type variables. Type variable cx
denotes the type of the context, i.e. the larger structure of values (collection
of memory cells). Type variable a denotes the type of the value which is
referenced.

43

Within the record, val (for value) is a function which retrieves the value
from the context and app (for apply) is a function which updates the value
in the context by applying a function to it (this value update function of
type a->a is given as an argument to app). We will show how they are
used in an example.

Say we have a context of type (String,Int) . This can be seen as a
memory structure with two cells: one for values of type String and one for
values of type Int . These two cells are referenced by the respective values
ref1 and ref2 of type:

ref1 :: Ref (String,Int) String
ref2 :: Ref (String,Int) Int

Now let’s say our context initially contains the values "foo" and 49 :

c1 = ("foo",49)

To retrieve the string value from it, we apply the val function in ref1 . It
reduces to "foo" :

ref1.val c1
⇒ "foo"

To retrieve the integer value, we use ref2 :

ref2.val c1
⇒ 49

To update the integer value, in this case subtract 7 from it, we use ref2.app .
It has two arguments: a value update function of type Int->Int and the
initial context. Its result is the updated context:

ref2.app (\x->x-7) c1
⇒ ("foo",42)

To set a complete new value for the string, e.g. "bar" , we simply use
_->"bar" as a value update function:1

ref1.app (_->"bar") c1
⇒ ("bar",49)

Now we know what ref1 and ref2 are supposed to do, we can understand
how we should define them:

ref1 = {val=fst, app=appfst}
ref2 = {val=snd, app=appsnd}

1This function can also be written as const "bar" .

44

This definition makes use of the well-known tuple projection functions fst / snd
and their counterparts appfst / appsnd which we have defined ourselves:

fst (x,y) = x
snd (x,y) = y
appfst f (x,y) = (f x , y)
appsnd f (x,y) = (x , f y)

Note that these functions work on all types of tuples, so the type definitions
of ref1 and ref2 are actually more general than what we first gave:

ref1 :: Ref (a,b) a
ref2 :: Ref (a,b) b

Now suppose we are dealing with a general context of type (a,b) where
a itself is a tuple type (a1,a2) . We want to create a reference ref12 to
the value of type a2 . This is the second element of the first element of
the whole context, so we can define ref12 like this (o denotes function
composition2 in Clean):

ref12 :: Ref ((a1,a2),b) a2
ref12 = {val = snd o fst, app = appfst o appsnd}

However, we can also derive ref12 from ref1 using the function splitref2 :

(ref11,ref12) = splitref2 ref1

The function splitref2 splits a reference to a tuple into two references: a
reference to the first element of the tuple and one to the second element of
the tuple. All references have the same context type. It is defined like this:

splitref2 :: (Ref cx (t1,t2)) -> (Ref cx t1, Ref cx t2)
splitref2 ref = (r1,r2)

where
r1 = {val = fst o ref.val, app = ref.app o appfst}
r2 = {val = snd o ref.val, app = ref.app o appsnd}

We can now derive references to the elements of the second element of the
first element of the context with

(ref121,ref122) = splitref2 ref12

. . . and so on. This way we can create references to any element in any
context of nested tuples. Note that we could also have defined ref1 and
ref2 using the identity reference idref and splitref2 :

idref :: Ref a a
idref = {val = id, app = id}

(ref1,ref2) = splitref2 idref

2 (f o g) x = f (g x)

45

7.2 Editors with references

In our new editor language variant, we use these references to construct the
subject type of an editor. An editor is now parameterized by a reference
instead of an initial value. It uses this reference to:

1. get its initial value from the initial context, which is passed to the
editor as an inherited attribute;

2. set its default value in the default context

3. set its closing value in the closing context

The last two operations are represented by context update functions of type
cx -> cx (where cx is the type of the context). They are the result of
applying the app function in the reference to a value update function, and
constitute synthesized attributes of the editor; these functions replace the
default and closing values. This has the following consequences for the
Editor type:

:: Editor cx ct :==
(cx [Id] -> initial context; list of ids

(ct control definition
, WState -> (cx -> cx) closing context update function
)

, (cx -> cx) default context update function
, Int number of ids
)

Note that the editor’s subject type a has completely disappeared from the
type; its function has been taken over by cx -> cx .3 As an example of an
editor of this type, we show the implementation of stringEditor again:

stringEditor ::
(Ref cx String) -> Editor cx (EditControl ls pst)

stringEditor ref =
(to_code
, ref.app (const "")
, 1
)
where
to_code initcx [cid] =

(EditControl (ref.val initcx)
(PixelWidth 80) 1 [ControlId cid]

3This type has less expressive power; it is less stringent, which implies that we can
create ‘wrong’ implementations of editors. This is, in fact, the case when an editor’s
context update function does not restrict itself to the editor’s ‘own memory cell’.

46

, to_updcv
)
where
to_updcv wstate = ref.app (const text)

where
(_, Just text) = getControlText cid wstate

The changes between the previous stringEditor and this one are:

• The parameter for an initial value is replaced by a parameter for a
reference (ref).

• In to_code, there is an extra functional abstraction for the initial
context (initcx).

• The initial value in the control definition is now obtained by applying
ref.val to the initial context initcx .

• The default value "" is replaced by the context update function
ref.app (const "") .

• The closing value text is replaced by the context update function
ref.app (const text) .

We can now explain how two editors are combined. We do this with the
operator :++: (its implementation can be found in appendix D). Like our
previous operators, it joins the control definitions with :+: , splits up the
id list and adds the id counts. However, the default and closing values are
not explicitly constructed anywhere: for each context, the update functions
from both editors are just composed after one another.

The result we intend to achieve with this is that the n editors in the
expression

editor1 :++: editor2 :++: ... :++: editorn

can be freely permutated, and that we can put parentheses anywhere in the
expression—all without changing the functionality of the composite editor.

For these properties to hold, it is essential that it does not matter in what
order two context update functions are composed : either way, the resulting
context should be the same. In other words, when fx is a context update
function in editorX and fy is its corresponding context update function
in editorY , then

fx ◦ fy = fy ◦ fx
should hold. If this condition is satisfied, the editors

editorX :++: editorY
editorY :++: editorX

47

can be interchanged without influencing the composite default or closing
value, and that is what we want. Furthermore, we also want

(editorX :++: editorY) :++: editorZ
editorX :++: (editorY :++: editorZ)

to be interchangeable, but this is achieved trivially; the equation

(fx ◦ fy) ◦ fz = fx ◦ (fy ◦ fz)

holds for any functions fx , fy and fz .

7.3 Editors with ×-constructed subject types

In this section, we examine the tree-like subject type structures built using
only ×. At the leaves of these binary trees, there may be atomic types or
other type structures; this does not matter to us. As we have already seen,
we can use splitref2 to derive references to these leaves (leaf references)
from a reference to the root of the tree.

We will show that when we use two different leaf references, the desired
commutativity of ◦ on two different context update functions holds. Intu-
itively, this is easy to understand: the references point to different ‘memory
cells’ and updating one of those cells does not influence the other. Therefore
it does not matter which one is updated first.

To prove this property mathematically, we will consider only the app
part of the references and denote these functions with a1, a2, a3, etcetera.
Two special cases of app functions are root, the reference to the top of
the tree, and id , the identity function. We construct sets of these functions
called leaf sets. A leaf set can be constructed in the following ways:

• {root} is a leaf set.

• If L = {a1, a2, . . . , an} is a leaf set, then

spliti(L) = (L \ ai) ∪ {ai ◦ appfst , ai ◦ appsnd}

is also a leaf set, for every 1 ≤ i ≤ n.

First, we will prove that every function in a leaf set distributes over ◦. This
means that there is no difference between updating a value with a composi-
tion of two functions, i.e. ref.app (g o h) , and composing two different
updates with the functions separated, i.e. (ref.app g) o (ref.app h) .

Please note that in the following definitions and proofs, we implicitly
assume all functions to be correctly typed and total.

48

Definition 7.1 A function f distributes over ◦ iff

f (g ◦ h) = (f g) ◦ (f h)

for every function g and h.

Theorem 7.1 id distributes over ◦.
Proof id (g ◦ h) = g ◦ h = (id g) ◦ (id h) �

Theorem 7.2 appfst and appsnd distribute over ◦.
Proof Assume an arbitrary tuple (x, y). Then

((appfst g) ◦ (appfst h)) (x, y)
= (appfst g) ((appfst h) (x, y))
= (appfst g) (h x, y)
= (g (h x), y)
= ((g ◦ h) x, y)
= (appfst (g ◦ h)) (x, y).

Since this is true for any tuple (x, y), we can now say

(appfst g) ◦ (appfst h) = appfst (g ◦ h).

The proof for appsnd is analogous. �

Theorem 7.3 If f1 and f2 distribute over ◦, then (f1◦f2) distributes over ◦.
Proof Assume that f1 and f2 distribute over ◦. Then

((f1 ◦ f2) g) ◦ ((f1 ◦ f2) h)
= (f1 (f2 g)) ◦ (f1 (f2 h))
= f1 ((f2 g) ◦ (f2 h))
= f1 (f2 (g ◦ h))
= (f1 ◦ f2) (g ◦ h).

�

Theorem 7.4 If root distributes over ◦, then every function in a leaf set
constructed from root distributes over ◦.
Proof For the base leaf set {root}, this property is trivially true. It
is sufficient to prove that the construction of any new leaf set preserves
distributivity over ◦. Assume we are constructing spliti(L) from a leaf set
L = {a1, a2, . . . , an} for which the property holds. Since ai, appfst and
appsnd all distribute over ◦, (ai ◦ appfst) and (ai ◦ appsnd) also distribute
over ◦, by theorem 7.3. �

49

With this result, we can prove the property which we are interested in: the
composition of two context update functions resulting from different leaf
references is commutative. Remember that a context update function is an
app function applied to a value update function. In other words:

Theorem 7.5 Assume root distributes over ◦. Then, for any two functions
ai and aj (i �= j) in a leaf set constructed from root,

(ai g) ◦ (aj h) = (aj h) ◦ (ai g)

for every function g and h.

Proof For the base leaf set {root}, this property is trivially true. We
will now prove that the construction of new leaf sets preserves the prop-
erty. Assume we are constructing a new leaf set spliti(L) from a leaf set
L = {a1, a2, . . . , an} for which the property holds. This means that we are
replacing the function ai with the two functions ai ◦ appfst and ai ◦ appsnd .
We need to prove:

1. that the composition of (ai ◦ appfst) g1 with aj h is commutative, for
any g1, h and aj (1 ≤ j ≤ n, j �= i);

2. that the composition of (ai ◦ appsnd) g2 with aj h is commutative, for
any g2, h and aj (1 ≤ j ≤ n, j �= i);

3. that the composition of (ai ◦ appfst) g1 and (ai ◦ appsnd) g2 is commu-
tative, for any g1 and g2.

We already know that (ai g) ◦ (aj h) = (aj h) ◦ (ai g) for any g, h and aj

(1 ≤ j ≤ n, j �= i). When we substitute appfst g1 for g, we get

(ai (appfst g1)) ◦ (aj h) = (aj h) ◦ (ai (appfst g1))
((ai ◦ appfst) g1) ◦ (aj h) = (aj h) ◦ ((ai ◦ appfst) g1)

which proves the first property. The proof of the second property is anal-
ogous: we substitute appsnd g2 for g. To prove the third property, we will
first prove that the composition of appfst g1 with appsnd g2 is commutative.
We assume an arbitrary tuple (x, y) to which we apply it:

((appfst g1) ◦ (appsnd g2)) (x, y)
= (appfst g1) ((appsnd g2) (x, y))
= (appfst g1) (x, g2 y)
= (g1 x, g2 y)
= (appsnd g2) (g1 x, y)
= (appsnd g2) ((appfst g1) (x, y))
= ((appsnd g2) ◦ (appfst g1)) (x, y)

50

Since this is true for any tuple (x, y), we can also say

(appfst g1) ◦ (appsnd g2) = (appsnd g2) ◦ (appfst g1).

We use this result, together with the fact that ai distributes over ◦, to prove
the third property:

((ai ◦ appfst) g1) ◦ ((ai ◦ appsnd) g2)
= (ai (appfst g1)) ◦ (ai (appsnd g2))
= ai ((appfst g1) ◦ (appsnd g2))
= ai ((appsnd g2) ◦ (appfst g1))
= (ai (appsnd g2)) ◦ (ai (appfst g1))
= ((ai ◦ appsnd) g2) ◦ ((ai ◦ appfst) g1)

�

We translate this result into our editor language. Assume that the following
conditions are satisfied:

1. ref1 , ref2 , . . . , refn are all different leaf references created by
splitref2 from one root reference rootref .

2. rootref.app distributes over ◦.
3. For every 1 ≤ x ≤ n, the expression to editorx refx contains only

context update functions of the form refx.app f .

Then the n editors in the expression

to editor1 ref1

:++: to editor2 ref2

:++: ...
:++: to editorn refn

can be freely permutated, and we can put parentheses anywhere in this
expression, without changing the functionality of the composite editor.

Normally, condition (2) is satisfied because run in dialog applies its
editor argument to idref (see next section). For all atomic editors, condi-
tion (3) is also satisfied, because they are built that way. The programmer
only has to watch out that s/he does not violate condition (1), e.g. by using
the same reference twice (see also section 7.7).

7.4 A convenient notation for using splitref2

We can define dateEditor in the following way:

51

dateEditor date =
monthEditor month :++: dayEditor day
where (day,month) = splitref2 date

Our editor needs an argument of type (Ref cx (a,b)) , which it converts
into two references of type (Ref cx a) and (Ref cx b) (where a is the
type of a day value and b is the type of a month value). Since this will
be an often used pattern, we define a shorter notation for it which uses the
function declare2 :

declare2 ::
((Ref cx t1, Ref cx t2) -> e) -> ((Ref cx (t1,t2) -> e))

declare2 to_editor = to_editor o splitref2

Now we can write:

dateEditor =
declare2 \(day,month)->

monthEditor month :++: dayEditor day

Only the extra declare2 before the λ-abstraction shows that we are dealing
with references instead of ordinary values. This makes it easy for the pro-
grammer to define composite editors like dateEditor . Just like our atomic
editors, these need a reference argument, so they are actually functions from
references to editors, i.e. of the type (Ref cx a) -> Editor cx ct . They
can now be defined in a similar way that composite editors4 were defined in
the previous chapter.

The function run in dialog now expects its first argument to be of
this type. It applies it to idref , a reference to the whole context. The
initial value from its second argument (initval,initpst) is taken to be
the initial context and passed to the editor as an inherited attribute. In the
event handler of the OK button, the closing value is determined by applying
the closing context update function (see section 7.2) from the editor to this
same initial context. The implementation of run in dialog can be found
in appendix D.

7.5 Defining ⊗ and C with references

When we define editors of which the interface structure does not differ from
the subject type structure, we should be able to use ⊗ again. Its implemen-
tation :&: is easily defined in terms of editors with references:

(:&:) to_editor1 to_editor2 =
declare2 \(ref1,ref2)->

to_editor1 ref1 :++: to_editor2 ref2

4actually: functions from initial values to editors

52

The implementation of C only has to alter the reference that an editor gets.
This is done by the function convertref :

:: Bij a b :== (a->b, b->a) // bijection

convertref :: (Bij a b) (Ref cx a) -> (Ref cx b)
convertref (forth,back) refA =

{ val = forth o refA.val
, app = \f -> refA.app (back o f o forth)
}

In the val part, the function forth is applied to the original value in
the context. In the app part, before applying a value update function
f , forth is also applied, and afterwards the updated value is mapped back
using back . To apply a C-transformation to an editor instead of a reference,
we use convertF :

convertF :: (Bij a b) ((Ref cx b) -> e) -> ((Ref cx a) -> e)
convertF f to_editorB = to_editorB o (convertref f)

Translated to our leaf sets, the use of convertref introduces a new way
of constructing a leaf set: we convert one of the app functions (thereby
replacing the old one). From now on, we will use the abbreviation

ci = λu. ai (f−1 ◦ u ◦ f)

to denote the app function ai which is converted using the bijection f .

• If L = {a1, a2, . . . , an} is a leaf set, then

converti,f (L) = (L \ ai) ∪ {ci}

is also a leaf set, for every 1 ≤ i ≤ n.

Theorem 7.6 If ai is distributive over ◦, then ci is also distributive over ◦.

Proof Assume that ai is distributive over ◦.

(ci g) ◦ (ci h)
= (ai (f−1 ◦ g ◦ f)) ◦ (ai (f−1 ◦ h ◦ f))
= ai ((f−1 ◦ g ◦ f) ◦ (f−1 ◦ h ◦ f))
= ai (f−1 ◦ (g ◦ f ◦ f−1 ◦ h) ◦ f)
= ai (f−1 ◦ (g ◦ h) ◦ f)
= ci (g ◦ h)

�

53

Theorem 7.7 Assume (ai g) ◦ (aj h) = (aj h) ◦ (ai g) for any function g.
Then also (ci g) ◦ (aj h) = (aj h) ◦ (ci g) for any function g.

Proof ci g = ai (f−1 ◦ g ◦ f). Therefore, our conclusion is a special case
of our assumption (we fill in f−1 ◦ g ◦ f for g). �

These two theorems imply that constructing a new leaf set using converti,f (L)
preserves the leaf set properties in theorems 7.4 and 7.5. Therefore, our re-
sults from section 7.3 also hold for leaf sets with converted references.

7.6 Implementing ⊕
The implementation ⊕ is once again a very verbose one which does lot of
administration. For that reason, it is left out here and can be found in
appendix D.

However, one interesting thing happens in this implementation. The
result type of the altD function is:

(Ref cx (EITHER a b)) ->
Editor cx (:+: c1 (:+: RadioControl c2) ls pst)

In other words, it yields an editor which edits a value of type EITHER a b
in a context cx using three controls. However, these controls themselves
do not operate in the context cx ! Instead, they operate in a new context
of type (Bool,(a,b)) . This way, the three controls can all have their own
separate ‘memory cell’, instead of sharing one of type EITHER a b . Hence,
the editor arguments of altD have the types:

(Ref (Bool,(a,b)) a) -> Editor (Bool,(a,b)) (c1 ls pst)
(Ref (Bool,(a,b)) b) -> Editor (Bool,(a,b)) (c2 ls pst)

The initial value for this new context is determined in the usual way, using
the value of type EITHER a b in the initial cx context and one of the two
default values. These default values are obtained by applying the default
context update functions to ⊥ (we know that it is never evaluated).5

To determine the context update functions for the composite editor, the
three update functions for the new context are applied first; depending on
the bool value in the updated context (bool,(l,r)) , the EITHER a b
value in the cx context is updated with either const (LEFT l) or const
(RIGHT r) .

5This is because these functions are all constructed like ref.app _->value. Further-
more, we must also replace the strict pattern matching in splitref2 by lazy pattern
matching.

54

7.7 Consequences of programming with references

Programming with references is easy and elegant. Distributing references
in a ×-tree is just like distributing ordinary initial values (only declare2
is added); the closing values are automatically constructed. Also, one can
easily build any layout tree with :++: , because unlike the >>& operator
(see section 6.4), it does not force a certain structure on this tree. We can
build the example from section 6.4, an editor of the form

Cf ((editorA ⊗ editorB) ⊗ editorC)

with subject type A × (C × B), like this:

declare2 \(a,cb)->
let (c,b)=splitref2 cb in

(editorA :++: editorB) :++: editorC

However, this example also shows a drawback to using references. We can-
not use arbitrary nested pattern matches anymore; we can only match on
a top-level tuple.6 Furthermore, this means that we cannot directly use ar-
bitrary Clean datatypes anymore. We can convert to and from them using
convertF , but this entails the extra work of writing a bijection.7

Another disadvantage of using references is that one can easily create
editors with a strange behaviour, if the conditions at the end of section 7.3
are not met. For example, in the editor

declare2 \(a,b)->
stringEditor a :++: intEditor b :++: stringEditor a

the same reference a is used twice.8 The composition of the two resulting
context update functions is not commutative; they both ‘write into the same
memory cell’. Therefore, the closing value of this editor will contain only the
closing value of the first stringEditor , because its context update function
is applied later (due to the definition of :++:). The value in the second
stringEditor is always ignored.

Similar strange behaviour can result from using convertF (f,g) when
f and g do not form a bijection. Unfortunately, these errors cannot be
found by the type checker.

6Of course, it is possible to define the functions declare1x2 , declare2x1 and
declare2x2 to match on the three possible tuples with nesting level 1, etc.

7However, we have already made an easy and helpful extension to our language by
implementing splitrefX and declareX for X = 3 and X = 4.

8Clean’s uniqueness typing system may be able to prevent this sharing of a reference.
We have not had the time to look further into this possibility.

55

56

8 Conclusions and future work

Our principal result is that we have revealed the essence of describing and
programming editors, which enables us to express them as the simple pro-
gram combinations that they really are. This essence is recorded in our
small abstract language of editors with the operators ⊗, ⊕ and C. It fo-
cuses on the separation—and the connection derived from it—of form (user
interface) and functionality (program interface) of an editor.

Guided by this abstract design, we have implemented the concept of
editors in a functional language, in a number of different ways. The console-
based editors in Haskell revealed a correspondence between editors and mon-
ads, and indicated the need for a static default value in addition to the dy-
namic value in each editor. In Clean, we discovered that we could build the
editor language on top of an object oriented GUI framework by viewing it
as an attribute grammar.

Next, we investigated two ways to undo the coupling between user inter-
face structure and subject type structure of composite (graphical) editors.
Both involve making the edited values explicit. Our first approach is in-
spired by monads and lets the programmer pass around the initial value
as well as the final value of an editor. In our second approach these are
replaced by a single reference. We find that this approach, although it is a
little less expressive, enables a more elegant and concise programming style.

A common property of all three graphical editor implementations is that
they relieve the programmer of the burden of naming objects, writing event
handlers and calling get and set functions. They make it possible to quickly
program simple editors in a modular, flexible, compositional and concise
way.

We owe a great deal of these results to the fact that we were working with
a functional language. The ability to use functions as first-class values was
crucial in our programming experiments, which aided us in thinking about
combining program fragments at a high level of abstraction. Although the
structure of this thesis might suggest otherwise, the mathematical editor
language emerged in interaction with our implementations.

57

Future work

While we have laid the foundation for a concise editor language, it is not
ready for ‘professional’ use yet. There is still a lot of room for improvement.
We name a few possibilities which come to mind:

• The programmer must definitely be able to exercise more influence
on the layout of editors. In the Object I/O Library, this is done
by supplying controls with extra layout attributes. Some of these
attributes are easily transferred to editors; others are not because they
use the control ids which we have hidden.

• It is possible (we have already experimented with it) to define an
operator which puts two editor dialogs in sequence. In fact, this is a
variant of ⊗ which has a lot in common with the first console variant
of ⊗ in section 4.3. This could produce wizard-like dialog sequences
with ‘Back’ and ‘Next’ buttons. Furthermore, alternate paths in these
wizards can be created with a ⊕ variant.

• In many real-life GUIs, a base editor dialog opens another editor dialog
when the user presses a button (often labeled ‘Advanced. . . ’). This
should also be possible in our language (the editor in this new dialog
possibly operates in a new references context).

• So far, we can only edit values with a static structure, but it should
also be possible to define a list editor. This editor would have subject
type [a] and present the user with a list in which s/he can move, add
and remove items using buttons. There is also a current item. The
user can edit this item in an additional editor with subject type a ,
which is for example located below the list or in a new dialog.

• This list editor can also be used as an editor with subject type a .
Compare this to selecting an address in an address book versus editing
the entries in an address book.

• Some editing events could have a direct effect, instead of the indirect
effect when the OK button is pressed. We have already experimented
with this, synchronizing two different editors which edited the same
value. To achieve this result, an editor’s context update function can
be applied in the event handler of the control itself. Furthermore,
every editor would need an extra synthesized attribute: a set function
which copies the editor’s associated value from the current context
into the control.

• A default button can be included in an editor dialog, which sets the
editor to its default value. An often seen example of this is the ‘Clear’
button on WWW forms.

58

• The limitation of splitref2 to tuple references can possibly be solved
by generic programming [6, 8]. A generic splitref would transform
a reference to an arbitrary product type into a product of references.

• Our editor concept could be extended to include inputters (editors
which always have their default value as initial value) and outputters
(editors whose value cannot be altered).

• We should investigate the efficiency of our editor implementations.

• Implementing our references approach in other GUI frameworks such
as wxHaskell[2] or Fudgets[7] seems possible and might well provide
new insights.

• A visual tool could be constructed for defining editors without any pro-
gramming whatsoever. Creating a layout of the different sub-editors
within an editor would be easier with such a tool.

59

60

References

[1] http://www.w3.org/MarkUp/Forms/.

[2] http://wxhaskell.sourceforge.net.

[3] Peter Achten and Rinus Plasmeijer. Interactive Functional Objects in
Clean. In C. Clack, K. Hammond, and T. Davie, editors, Proc. of 9th
International Workshop on Implementation of Functional Languages,
IFL’97, number 1467 in LNCS, pages 304–321. Springer-Verlag, Berlin,
September 1998.

[4] Peter Achten, Marko van Eekelen, and Rinus Plasmeijer. Generic
Graphical User Interfaces. In Greg Michaelson and Phil Trinder, ed-
itors, Selected Papers of the 15th Int. Workshop on the Implementa-
tion of Functional Languages, IFL03, LNCS. Edinburgh, UK, Springer,
2003. To appear.

[5] Peter Achten, Marko van Eekelen, and Rinus Plasmeijer. Composi-
tional Model-Views with Generic Graphical User Interfaces. Technical
Report NIII-R0408, Nijmegen Institute for Computing and Information
Sciences, University of Nijmegen, The Netherlands, February 2004.

[6] Artem Alimarine and Rinus Plasmeijer. A Generic Programming Ex-
tension for Clean. In Thomas Arts and Markus Mohnen, editors, The
13th International workshop on the Implementation of Functional Lan-
guages, IFL’01, Selected Papers, volume 2312 of LNCS, pages 168–186.
Älvsjö, Sweden, Springer, September 2002.

[7] M. Carlsson and T. Hallgren. FUDGETS - A graphical user interface
in a lazy functional language. In Proceedings of the ACM Conference
on Functional Programming and Computer Architecture, Copenhagen,
DK, FPCA ’93, New York, NY, 1993. ACM.

[8] D. Clarke and A. Löh. Generic Haskell, Specifically. In J. Gibbons and
J. Jeuring, editors, Generic Programming. Proceedings of the IFIP TC2
Working Conference on Generic Programming, pages 21–48, Schloss
Dagstuhl, July 2003. Kluwer Academic Publishers. ISBN 1-4020-7374-
7.

61

[9] Thomas Johnsson. Attribute grammars as a functional program-
ming paradigm. In Proc. of a conference on Functional programming
languages and computer architecture, pages 154–173. Springer-Verlag,
1987.

[10] Simon Peyton Jones. Haskell 98 language and libraries: the revised
report. Journal of Functional Programming, 13(1):0–255, January 2003.

[11] Donald E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2:127–145, 1968. Correction: Mathematical Systems
Theory 5: 95–96, 1971.

[12] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the
model-view controller user interface paradigm in smalltalk-80. J. Object
Oriented Program., 1(3):26–49, 1988.

[13] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and
future of user interface software tools. ACM Trans. Comput.-Hum.
Interact., 7(1):3–28, 2000.

[14] Rinus Plasmeijer and Marko van Eekelen. Clean Lan-
guage Report, version 2.0 – Draft. Department of Soft-
ware Technology, University of Nijmegen, 2001. Available at
ftp://ftp.cs.kun.nl/pub/Clean/Clean20/doc/CleanRep2.0.pdf.

62

A Implementation of console editors

with defaults

module EditorsDefault where

type Editor a =

(a -- default value

, a -> IO a -- editing operation

)

andthen :: Editor a -> Editor b -> Editor (a,b)

(default1,edit1) ‘andthen‘ (default2,edit2) = ((default1,default2), editBoth)

where

editBoth (initval1, initval2) =

do

changedval1 <- edit1 initval1

changedval2 <- edit2 initval2

return (changedval1, changedval2)

setDefault :: a -> Editor a -> Editor a

setDefault d (_,edit) = (d,edit)

convertF :: (a->b, b->a) -> Editor b -> Editor a

convertF (forth,back) (defaultB,editB) = (defaultA,editA)

where

defaultA = back defaultB

editA initvalA =

do

changedvalB <- editB (forth initvalA)

return (back changedvalB)

intEditor :: Editor Int

intEditor = (0,edit)

where

edit initval =

do

putStrLn "Current value:"

print initval

putStrLn "Input new value:"

readLn

unitEditor :: Editor ()

unitEditor = ((),return)

63

alt = altL

altL = altD True

altR = altD False

altD :: Bool -> Editor a -> Editor b -> Editor (Either a b)

altD isLeftDefault (defaultL,editL) (defaultR,editR) = (defaultE,editE)

where

editE initvalE =

do

changedtag <- tagEditor inittag

chooseEditor changedtag

where

(inittag, initvalL, initvalR) = det_inits initvalE

det_inits (Left val) = (’L’, val, defaultR)

det_inits (Right val) = (’R’, defaultL, val)

chooseEditor ’L’ =

do

changedval <- editL initvalL

return (Left changedval)

chooseEditor ’R’ =

do

changedval <- editR initvalR

return (Right changedval)

defaultE = if isLeftDefault then (Left defaultL) else (Right defaultR)

tagEditor :: Char -> IO Char -- has no default value, so no editor!

tagEditor initval =

do

putStrLn "Current tag: "

putStrLn [initval]

putStrLn "Input new tag: "

c <- getChar

putStrLn ""

return c

run :: Editor a -> a -> IO a

run = snd

64

B Implementation of point-free

graphical editors

implementation module EditorsPF

import StdEnv, StdIO

:: Editor a c :==

(a [Id] -> // initial value; control ids

(c, // control definition

WState -> a) // closing value, given state of the dialog

, a // default value

, Int // nr of controls

)

:: EITHER a b = LEFT a | RIGHT b

:: UNIT = UNIT

:: Bij a b :== (a->b,b->a) // bijection

convertF :: (Bij a b) (Editor b c) -> Editor a c

convertF (forth,back) editorB = editorA

where

(to_codeB, defB, nrB) = editorB

editorA = (to_codeA, back defB, nrB)

to_codeA initvalA ids =

(controlB, back o to_closvalB)

where

(controlB, to_closvalB) = to_codeB (forth initvalA) ids

setDefault :: a (Editor a c) -> Editor a c

setDefault newdef (to_code, _, nr) =

(to_code, newdef, nr)

(:&:) infixr 5 ::

(Editor a (c1 ls pst)) (Editor b (c2 ls pst))

-> Editor (a,b) (:+: c1 c2 ls pst)

(:&:) editor1 editor2 = (to_code, (def1,def2), nr1+nr2)

where

(to_code1, def1, nr1) = editor1

(to_code2, def2, nr2) = editor2

to_code (initval1,initval2) ids =

(control1 :+: control2, to_closingval)

65

where

(control1,to_closingval1) = to_code1 initval1 ids1

(control2,to_closingval2) = to_code2 initval2 ids2

(ids1,ids2) = splitAt nr1 ids // split id list in two

to_closingval wstate =

(to_closingval1 wstate, to_closingval2 wstate)

(:|:) infixr 5 ::

(Editor a (c1 ls pst)) (Editor b (c2 ls pst))

-> Editor (EITHER a b) (:+: c1 (:+: RadioControl c2) ls pst)

(:|:) editL editR = editL :.|: editR

(:.|:) infixr 5 ::

(Editor a (c1 ls pst)) (Editor b (c2 ls pst))

-> Editor (EITHER a b) (:+: c1 (:+: RadioControl c2) ls pst)

(:.|:) editL editR = altD True editL editR

(:|.:) infixr 5 ::

(Editor a (c1 ls pst)) (Editor b (c2 ls pst))

-> Editor (EITHER a b) (:+: c1 (:+: RadioControl c2) ls pst)

(:|.:) editL editR = altD False editL editR

altD :: Bool (Editor a (c1 ls pst)) (Editor b (c2 ls pst))

-> Editor (EITHER a b) (:+: c1 (:+: RadioControl c2) ls pst)

altD isLeftDefault editL editR = (to_code, defE, nrL+1+nrR)

where

(to_codeL, defL, nrL) = editL

(to_codeR, defR, nrR) = editR

defE = if isLeftDefault (LEFT defL) (RIGHT defR)

to_code initE ids =

(controlL :+: radios :+: controlR, to_closingval)

where

(initL,initChoice,initR) = det_inits initE

det_inits (LEFT val) = (val, 1, defR)

det_inits (RIGHT val) = (defL, 2, val)

(controlL,to_closingvalL) = to_codeL initL idsL

(controlR,to_closingvalR) = to_codeR initR idsR

(idsL,[idRadio:idsR]) = splitAt nrL ids

radios =

RadioControl [empty,empty] (Rows 1) initChoice [ControlId idRadio]

where

empty = ("",Nothing,id)

to_closingval wstate =

if (radioselection==1) (LEFT closingvalL) (RIGHT closingvalR)

where

(_, Just radioselection) = getRadioControlSelection idRadio wstate

closingvalL = to_closingvalL wstate

closingvalR = to_closingvalR wstate

stringEditor :: Editor String (EditControl ls pst)

stringEditor =

(to_code, "", 1)

where

to_code initval [cid] =

66

(EditControl initval (PixelWidth 80) 1 [ControlId cid]

, to_closingval

)

where

to_closingval wstate = text

where (_, Just text) = getControlText cid wstate

unitLabel :: String -> Editor UNIT (TextControl ls pst)

unitLabel label =

(to_code, UNIT, 0)

where

to_code UNIT [] =

(TextControl label []

, _ -> UNIT

)

dropdownEditor :: [String] -> Editor Int (PopUpControl ls pst)

dropdownEditor labels =

(to_code, 1, 1)

where

to_code initval [cid] =

(PopUpControl items initval [ControlId cid]

, to_closingval

)

where

items = zip2 labels (repeat id)

to_closingval wstate = index

where (_, Just index) = getPopUpControlSelection cid wstate

checklistEditor :: [String] -> Editor [Bool] (CheckControl ls pst)

checklistEditor labels =

(to_code, map (const False) labels, 1)

where

to_code initval [cid] =

(CheckControl items (Rows 1) [ControlId cid]

, to_closingval

)

where

items = [(l,Nothing,if b Mark NoMark,id) \\ l<-labels & b<-initval]

to_closingval wstate =

[isMember i selection \\ _<-initval & i<-[1..]]

where

(_, Just selection) = getCheckControlSelection cid wstate

int2string2int :: Bij Int String

int2string2int = (toString,toInt)

intEditor :: Editor Int (EditControl ls pst)

intEditor = convertF int2string2int stringEditor

run_in_dialog ::

(Editor a (c a (PSt ps)))

(a,(PSt ps))

-> (a,(PSt ps)) | Controls c

67

run_in_dialog editor (initval,pst)

([winid:cids], pst) = openIds (nr+1) pst

(control, to_closingval) = to_code initval cids

dialog =

Dialog "" (control :+: (buttons winid to_closingval))

[WindowId winid, WindowClose (noLS closeActiveWindow)]

((_, Just newval), pst) = openModalDialog initval dialog pst

= (newval, pst)

where

(to_code, _, nr) = editor

buttons winid to_closingval =

LayoutControl (ok :+: cancel) [ControlPos (Center,zero)]

where

ok = ButtonControl "OK" [ControlFunction storecv]

cancel = ButtonControl "Cancel"

[ControlFunction (noLS closeActiveWindow)]

storecv (ls,pst)

(Just wstate,pst) = accPIO (getWindow winid) pst

ls = to_closingval wstate

pst = closeActiveWindow pst

= (ls,pst)

Note the use of Clean’s let-before construct, marked with a # . The scope
of the identifiers in the lhs of a definition following # does not include the
rhs of the definition itself or the definitions above it, but does include the
definitions below it. This way we can use the same name pst for the values
of the process state at different stages. The same goes for the local state
ls .

68

C Implementation of monadic-style

graphical editors

implementation module EditorsMon

import StdEnv, StdIO

:: Editor a c :==

([Id] -> // control ids

(c, // control definition

WState -> a) // closing value, given state of the dialog

, a // default value

, Int // nr of controls

)

:: EITHER a b = LEFT a | RIGHT b

// can’t import normal Either from StdLibMisc because of name clash with StdIO!

:: UNIT = UNIT

:: Bij a b :== (a->b,b->a)

(>>&) infixl 0 ::

(Editor a (c1 ls pst)) (a -> Editor b (c2 ls pst))

-> Editor b (:+: c1 c2 ls pst)

(>>&) editor1 to_editor2 = (to_code, def2, nr1+nr2)

where

(to_code1, def1, nr1) = editor1

(to_code2s, def2, nr2) = to_editor2 def1

to_code ids =

(control1 :+: control2, to_closingval)

where

(control1, to_closingval1) = to_code1 ids1

(control2, _) = to_code2s ids2

to_closingval wstate = to_closingval2 wstate

where

closingval1 = to_closingval1 wstate

(to_code2d,_,_) = to_editor2 closingval1

(_,to_closingval2) = to_code2d ids2

(ids1,ids2) = splitAt nr1 ids

69

returnc :: a -> Editor a (NilLS ls pst)

returnc val =

(to_code // opening & closing code

, val // default value

, 0 // nr of ids

)

where

to_code [] = // only applied to an empty id list

(NilLS // control definition

, \wstate -> val // closing value

)

setDefault :: a (a -> Editor a c) -> (a -> Editor a c)

setDefault newdef to_editor1 = setDef o to_editor1

where

setDef (to_code, _, nr) =

(to_code, newdef, nr)

convertF ::

(Bij a b) (b -> Editor b (c ls pst))

-> (a -> Editor a (:+: c NilLS ls pst))

convertF (forth,back) to_editorB =

\initvalA ->

to_editorB (forth initvalA) >>& \closingvalB ->

returnc (back closingvalB)

(:&:) infixr 5 ::

(a -> Editor a (c1 ls pst)) (b -> Editor b (c2 ls pst))

-> ((a,b) -> Editor (a,b) (:+: c1 (:+: c2 NilLS) ls pst))

(:&:) to_editor1 to_editor2 = to_editorBoth

where

to_editorBoth inits =

to_editor1 initval1 >>& \closingval1 ->

to_editor2 initval2 >>& \closingval2 ->

returnc (closingval1,closingval2)

where

(initval1,initval2) = inits // lazy binding to avoid cycle-in-spine

(:|:) infixr 5

(:|:) to_editorL to_editorR = to_editorL :.|: to_editorR

(:.|:) infixr 5

(:.|:) to_editorL to_editorR = altD True to_editorL to_editorR

(:|.:) infixr 5

(:|.:) to_editorL to_editorR = altD False to_editorL to_editorR

altD ::

Bool

(a -> Editor a (c1 ls pst))

(b -> Editor b (c2 ls pst))

-> ((EITHER a b) -> Editor (EITHER a b)

(:+: c1 (:+: (:+: RadioControl NilLS) (:+: c2 NilLS)) ls pst))

70

altD isLeftDefault to_editorL to_editorR = to_editorE

where

to_editorE initE =

editorL >>& \closvalL ->

editorC >>& \closvalC ->

editorR >>& \closvalR ->

returnc (if closvalC (LEFT closvalL) (RIGHT closvalR))

where

(initL,initC,initR) = det_inits initE

det_inits (LEFT val) = (val, True, defR)

det_inits (RIGHT val) = (defL, False, val)

editorL = to_editorL initL

(_,defL,_) = editorL

editorR = to_editorR initR

(_,defR,_) = editorR

editorC = choiceEditor initC

choiceEditor =

setDefault isLeftDefault

(convertF bool2int2bool (radioEditorRow ["",""]))

bool2int2bool = (\b -> if b 1 2, \i -> i==1)

stringEditor :: String -> Editor String (EditControl ls pst)

stringEditor initval =

(to_code, "", 1)

where

to_code [cid] =

(EditControl initval (PixelWidth 80) 1 [ControlId cid]

, to_closingval

)

where

to_closingval wstate = text

where (_, Just text) = getControlText cid wstate

unitLabel :: String UNIT -> Editor UNIT (TextControl ls pst)

unitLabel label UNIT =

(to_code, UNIT, 0)

where

to_code [] =

(TextControl label []

, _ -> UNIT

)

int2string2int :: (Int -> String, String -> Int)

int2string2int = (toString,toInt)

intEditor :: (Int -> Editor Int (:+: EditControl NilLS ls pst))

intEditor = convertF int2string2int stringEditor

radioEditor ::

([String] Int

-> Editor Int (RadioControl ls pst))

radioEditor = radioEditorG (Columns 1)

71

radioEditorRow ::

([String] Int

-> Editor Int (RadioControl ls pst))

radioEditorRow = radioEditorG (Rows 1)

radioEditorG ::

RowsOrColumns [String] Int

-> Editor Int (RadioControl ls pst)

radioEditorG rowsorcolumns labels initval = (to_code, 1, 1)

where

to_code [cid] =

(RadioControl items rowsorcolumns initval [ControlId cid]

, to_closingval

)

where

items = [(label,Nothing,id) \\ label <- labels]

to_closingval wstate = radioselection

where

(_, Just radioselection) = getRadioControlSelection cid wstate

run_in_dialog ::

(a -> Editor a (c a (PSt ps)))

(a,(PSt ps))

-> (a,(PSt ps)) | Controls c

run_in_dialog to_editor (initval,pst)

([winid:cids], pst) = openIds (nr+1) pst

(control, to_closingval) = to_code cids

dialog =

Dialog "" (control :+: (buttons winid to_closingval))

[WindowId winid, WindowClose (noLS closeActiveWindow)]

((_, Just newval), pst) = openModalDialog initval dialog pst

= (newval, pst)

where

(to_code, _, nr) = to_editor initval

buttons winid to_closingval =

LayoutControl (ok :+: cancel) [ControlPos (Center,zero)]

where

ok = ButtonControl "OK" [ControlFunction storecv]

cancel = ButtonControl "Cancel"

[ControlFunction (noLS closeActiveWindow)]

storecv (ls,pst)

(Just wstate,pst) = accPIO (getWindow winid) pst

ls = to_closingval wstate

pst = closeActiveWindow pst

= (ls,pst)

72

D Implementation of graphical editors

with references

implementation module EditorsRef

import StdEnv, StdIO

:: Ref cx a = // ref. to value of type a in context of type cx

{ val :: cx -> a // retrieve value from context

, app :: (a->a)->(cx->cx) // update value in context

}

:: Bij a b :== (a->b, b->a) // bijection

:: UNIT = UNIT

:: EITHER a b = LEFT a | RIGHT b

:: Editor cx ct :==

(cx [Id] -> // initial context; list of control ids

(ct // control definition

, WState -> (cx -> cx) // update closing value in context

)

, cx -> cx // update default value in context

, Int // nr of ids

)

idref :: Ref a a

idref = {val=id,app=id}

declare2 ::

((Ref cx a, Ref cx b) -> thing)

-> ((Ref cx (a,b)) -> thing)

declare2 f = f o splitref2

declare3 ::

((Ref cx a1, Ref cx a2, Ref cx a3) -> thing)

-> ((Ref cx (a1,a2,a3)) -> thing)

declare3 f = f o splitref3

declare4 ::

((Ref cx a1, Ref cx a2, Ref cx a3, Ref cx a4) -> thing)

-> ((Ref cx (a1,a2,a3,a4)) -> thing)

declare4 f = f o splitref4

73

declare1x2 ::

((Ref cx a, (Ref cx b1, Ref cx b2)) -> thing)

(Ref cx (a,(b1,b2)))

-> thing

declare1x2 f ref = f (ref1, splitref2 ref2)

where

(ref1,ref2) = splitref2 ref

declare2x1 ::

(((Ref cx a1, Ref cx a2), Ref cx b) -> thing)

(Ref cx ((a1,a2),b))

-> thing

declare2x1 f ref = f (splitref2 ref1, ref2)

where

(ref1,ref2) = splitref2 ref

declare2x2 ::

(((Ref cx a1, Ref cx a2), (Ref cx b1, Ref cx b2)) -> thing)

(Ref cx ((a1,a2),(b1,b2)))

-> thing

declare2x2 f ref = f (splitref2 ref1, splitref2 ref2)

where

(ref1,ref2) = splitref2 ref

splitref2 :: (Ref cx (a1,a2)) -> (Ref cx a1, Ref cx a2)

splitref2 r = (r1,r2)

where

r1 = { val = fst o r.val, app = r.app o appfst }

r2 = { val = snd o r.val, app = r.app o appsnd }

appfst f t = (f x, y) where (x,y) = t

appsnd f t = (x, f y) where (x,y) = t

// lazy tuple binding to avoid cycle-in-spine

splitref3 :: (Ref cx (a1,a2,a3)) -> (Ref cx a1, Ref cx a2, Ref cx a3)

splitref3 r = (r1,r2,r3)

where

r1 = { val = fst3 o r.val, app = r.app o appfst3 }

r2 = { val = snd3 o r.val, app = r.app o appsnd3 }

r3 = { val = thd3 o r.val, app = r.app o appthd3 }

appfst3 f t = (f x, y, z) where (x,y,z) = t

appsnd3 f t = (x, f y, z) where (x,y,z) = t

appthd3 f t = (x, y, f z) where (x,y,z) = t

splitref4 ::

(Ref cx (a1,a2,a3,a4)) -> (Ref cx a1, Ref cx a2, Ref cx a3, Ref cx a4)

splitref4 r = (r1,r2,r3,r4)

where

r1 = { val = fst4 o r.val, app = r.app o appfst4 }

r2 = { val = snd4 o r.val, app = r.app o appsnd4 }

r3 = { val = thd4 o r.val, app = r.app o appthd4 }

r4 = { val = for4 o r.val, app = r.app o appfor4 }

fst4 (x,y,z0,z1) = x

snd4 (x,y,z0,z1) = y

74

thd4 (x,y,z0,z1) = z0

for4 (x,y,z0,z1) = z1

appfst4 f t = (f x, y, z0, z1) where (x,y,z0,z1) = t

appsnd4 f t = (x, f y, z0, z1) where (x,y,z0,z1) = t

appthd4 f t = (x, y, f z0, z1) where (x,y,z0,z1) = t

appfor4 f t = (x, y, z0, f z1) where (x,y,z0,z1) = t

convertF ::

(Bij a b) ((Ref cx b) -> thing)

-> ((Ref cx a) -> thing)

convertF f to_editorB = to_editorB o (convertref f)

convertref :: (Bij a b) (Ref cx a) -> (Ref cx b)

convertref (forth,back) refA =

{ val = forth o refA.val

, app = \f -> refA.app (back o f o forth)

}

setDefault ::

a ((Ref cx a) -> Editor cx c)

-> ((Ref cx a) -> Editor cx c)

setDefault newdef to_editorOld = to_editorNew

where

to_editorNew ref = (to_code, ref.app (const newdef), nr)

where

(to_code, _, nr) = to_editorOld ref

(:++:) infixr 5 ::

(Editor cx (c1 ls pst)) (Editor cx (c2 ls pst))

-> Editor cx (:+: c1 c2 ls pst)

(:++:) editor1 editor2 =

(to_code

, upddef1 o upddef2

, nr1 + nr2

)

where

(to_code1,upddef1,nr1) = editor1

(to_code2,upddef2,nr2) = editor2

to_code initcx ids =

(control1 :+: control2, to_updcv)

where

(ids1,ids2) = splitAt nr1 ids

(control1, to_updcv1) = to_code1 initcx ids1

(control2, to_updcv2) = to_code2 initcx ids2

to_updcv wstate = (to_updcv1 wstate) o (to_updcv2 wstate)

(:&:) infixr 5 ::

((Ref cx a) -> Editor cx (c1 ls pst))

((Ref cx b) -> Editor cx (c2 ls pst))

-> ((Ref cx (a,b)) -> Editor cx (:+: c1 c2 ls pst))

(:&:) to_editor1 to_editor2 =

declare2 \(initval1,initval2) ->

to_editor1 initval1 :++: to_editor2 initval2

75

(:|:) infixr 5 ::

((Ref (Bool,(a,b)) a) -> Editor (Bool,(a,b)) (c1 ls pst))

((Ref (Bool,(a,b)) b) -> Editor (Bool,(a,b)) (c2 ls pst))

-> ((Ref cx (EITHER a b)) -> Editor cx (:+: c1 (:+: RadioControl c2) ls pst))

(:|:) to_editorL to_editorR = to_editorL :.|: to_editorR

(:.|:) infixr 5 ::

((Ref (Bool,(a,b)) a) -> Editor (Bool,(a,b)) (c1 ls pst))

((Ref (Bool,(a,b)) b) -> Editor (Bool,(a,b)) (c2 ls pst))

-> ((Ref cx (EITHER a b)) -> Editor cx (:+: c1 (:+: RadioControl c2) ls pst))

(:.|:) to_editorL to_editorR = altD True to_editorL to_editorR

(:|.:) infixr 5 ::

((Ref (Bool,(a,b)) a) -> Editor (Bool,(a,b)) (c1 ls pst))

((Ref (Bool,(a,b)) b) -> Editor (Bool,(a,b)) (c2 ls pst))

-> ((Ref cx (EITHER a b)) -> Editor cx (:+: c1 (:+: RadioControl c2) ls pst))

(:|.:) to_editorL to_editorR = altD False to_editorL to_editorR

altD ::

Bool

((Ref (Bool,(a,b)) a) -> Editor (Bool,(a,b)) (c1 ls pst))

((Ref (Bool,(a,b)) b) -> Editor (Bool,(a,b)) (c2 ls pst))

-> ((Ref cx (EITHER a b)) -> Editor cx (:+: c1 (:+: RadioControl c2) ls pst))

altD isLeftDefault to_editorL to_editorR = to_editor

where

to_editor ref = (to_code, upddef, nrE)

where

(refC, refLR) = splitref2 idref

(refL, refR) = splitref2 refLR

editorE =

(to_editorL refL

:++: to_editorC refC

:++: to_editorR refR

)

(to_codeE, upddefE, nrE) = editorE

upddef = ref.app (const (choose defE))

defE = upddefE undef

(_, (defL, defR)) = defE

det_inits (LEFT val) = (True, (val, defR))

det_inits (RIGHT val) = (False, (defL, val))

choose (b,(l,r)) = if b (LEFT l) (RIGHT r)

to_code initcx ids =

(controlE, to_updcv)

where

(controlE, to_updcvE) = to_codeE initsE ids

initsE = det_inits (ref.val initcx)

to_updcv wstate = ref.app (const (choose cvE))

where

cvE = to_updcvE wstate initsE

to_editorC =

setDefault isLeftDefault

(convertF bool2int2bool (radioEditorRow ["",""]))

bool2int2bool = (\b -> if b 1 2, \i -> i==1)

76

stringEditor :: (Ref cx String) -> Editor cx (EditControl ls pst)

stringEditor ref =

(to_code

, ref.app (const "")

, 1

)

where

to_code initcx [cid] =

(EditControl (ref.val initcx) (PixelWidth 80) 1 [ControlId cid]

, to_updcv

)

where

to_updcv wstate = ref.app (const text)

where

(_, Just text) = getControlText cid wstate

intEditor :: ((Ref cx Int) -> Editor cx (EditControl ls pst))

intEditor = convertF (toString, toInt) stringEditor

unitLabel :: String (Ref cx UNIT) -> Editor cx (TextControl ls pst)

unitLabel label ref =

(to_code

, ref.app (const UNIT)

, 0

)

where

to_code initcx [] =

(TextControl label []

, \wstate -> ref.app (const UNIT)

)

radioEditor ::

([String] (Ref cx Int) ->

Editor cx (RadioControl ls pst))

radioEditor = radioEditorG (Columns 1)

radioEditorRow ::

([String] (Ref cx Int) ->

Editor cx (RadioControl ls pst))

radioEditorRow = radioEditorG (Rows 1)

radioEditorG ::

RowsOrColumns [String] (Ref cx Int) ->

Editor cx (RadioControl ls pst)

radioEditorG rowsorcolumns labels ref =

(to_code

, ref.app (const 1)

, 1

)

where

to_code initcx [cid] =

(RadioControl items rowsorcolumns (ref.val initcx) [ControlId cid]

, to_updcv

)

77

where

items = [(label,Nothing,id) \\ label <- labels]

to_updcv wstate = ref.app (const radioselection)

where

(_, Just radioselection) = getRadioControlSelection cid wstate

run_in_dialog ::

((Ref a a) -> (Editor a (c a (PSt ps))))

(a,(PSt ps))

-> (a,(PSt ps)) | Controls c

run_in_dialog to_editor (initcx,pst)

([winid:cids], pst) = openIds (nr+1) pst

(control, to_updcv) = to_code initcx cids

dialog =

Dialog "" (control :+: (buttons winid to_updcv))

[WindowId winid, WindowClose (noLS closeActiveWindow)]

((_, Just newcx), pst) = openModalDialog initcx dialog pst

= (newcx,pst)

where

(to_code, _, nr) = to_editor idref

buttons winid to_updcv =

LayoutControl (ok :+: cancel) [ControlPos (Center,zero)]

where

ok = ButtonControl "OK" [ControlFunction storecv]

cancel = ButtonControl "Cancel"

[ControlFunction (noLS closeActiveWindow)]

storecv (cx,pst)

(Just wstate,pst) = accPIO (getWindow winid) pst

cx = (to_updcv wstate) cx

pst = closeActiveWindow pst

= (cx,pst)

78

E The complete doorEditor example

E.1 Using only the Object I/O library

module doorEditorOO

import StdEnv, StdIO

mydialog (name,disturb) [idEdit,idPopUp,idDialog] =

Dialog "" controls [WindowId idDialog]

where

controls =

EditControl name (PixelWidth 80) 1 [ControlId idEdit]

:+: PopUpControl labels (bool2int disturb) [ControlId idPopUp]

:+: ButtonControl "OK"

[ControlFunction okfun, ControlPos (Center,zero)]

okfun (ls1,pst1) = (ls2,pst3)

where

(Just wstate, pst2) = accPIO (getWindow idDialog) pst1

(_, Just newtext) = getControlText idEdit wstate

(_, Just newint) = getPopUpControlSelection idPopUp wstate

ls2 = (newtext, int2bool newint)

pst3 = closeActiveWindow pst2

bool2int b = if b 1 2

int2bool i = (i==1)

labels = zip2 ["come on in","do not disturb"] (repeat id)

runmydialog (initval,pst)

(ids,pst) = openIds 3 pst

((_, Just newval), pst) =

openModalDialog initval (mydialog initval ids) pst

= (newval,pst)

Start world = startIO NDI Void (loop initval) [] world

where

loop val pst

(val,pst) = runmydialog (val,pst)

= loop val pst

initval = ("Sander",True)

79

E.2 Using point-free editors

module doorEditor

import StdEnv, StdIO, EditorsPF

doorEditor = stringEditor :&: disturbEditor

where

disturbEditor =

convertF (bool2int,int2bool)

(dropdownEditor ["come on in","do not disturb"])

where

bool2int d = if d 1 2

int2bool i = (i==1)

Start world = startIO NDI Void (loop initval) [] world

where

loop val pst

(val,pst) = run_in_dialog doorEditor (val,pst)

= loop val pst

initval = ("Sander",True)

E.3 Notes

Both implementations open the editor dialog with initial value ("Sander",True).
When the user closes this dialog, a closing value is returned. To show what
this value is, the same dialog is run again, but now with this new value as
its initial value. This is performed ad infinitum by the function loop .

The function Start is the main function, which is evaluated when a
Clean module is run. It uses the function startIO from the Object I/O
library, which starts an Object I/O process.

Note the use of Clean’s let-before construct, marked with a # . The
scope of the identifiers in the lhs of a definition following # does not include
the rhs of the definition itself or the definitions above it, but does include
the definitions below it. This way we can use the same name pst for the
values of the process state at different stages. The same goes for the local
state ls .

80

