
Master of Science Thesis

In response to your inquiry

Automatic E-mail Answer Suggestion
in a Dutch Contact Centre

Michel Ronald Boedeltje

October 2005

Human Media Interaction Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

Enschede
the Netherlands

In collaboration with

Em@ilco.nl B.V.
Amersfoort

the Netherlands

Graduation committee: Dr. A.J. van Hessen
Prof. Dr. F.M.G. de Jong
Prof. Dr. T.W.C. Huibers
Mr. L. van Veen

Abstract

In the past years, the number of service requests through e-mail has shown an
explosive growth. To cope with the increased numbers of received e-mails, cur-
rent call centres are “transformed” into so-called contact centres, handling both
e-mail and telephone calls. Personal answering (each e-mail is written again by
an agent) costs way too much, so most companies use a set of predefined answers
that cover most of the e-mail service requests. Incoming e-mails are analysed,
where after a set of (maximal) 10 possible answers is presented to the agent. If
the selection is successful, writing an answer is replaced by selecting the correct
(predefined) answer. Because this selection process works much faster, the num-
ber of e-mails that can be handled increases significantly. This is true, as long as
the correct answer is presented within the set of suggested answers. If not, the
agent has to find the correct answer by typing in those keywords that lead to the
right set of suggestions: a time and money consuming process.

Therefore, the focus of this study is on the “improvement of relevant answer
suggestions”. We try to tackle the answer suggestion problem by transforming
the incoming e-mail (the raw question) into a normalized question (uniform way
of writing, removal of non-information words, etc.). This normalized question
will be classified as belonging to one or more classes (each class has one prede-
fined answer). In this thesis we present two classification techniques (known
from regular text classification problems) and apply them to a corpus of 17,000
e-mails collected and classified in a Dutch contact centre. The classification tech-
niques are adjusted in such a way that the implemented application can present
a ranked list of relevant categories (representing the answer suggestions) for
each incoming e-mail. We will show that both classification techniques are very
suitable for automatic answer suggestion in a contact centre: our best method is
able to present the correct answer within a ranked list of 5 possible answers, for
almost 85% of all incoming e-mails.

Moreover, we will show that applying language technology as an advanced text
normalization step, may improve the classification accuracy with another 3 per-
centage points. This brings the final classification accuracy to approximately
88%, which more than doubles the performance of the keyword based system
as currently used by the principal of this research: Em@ilco. Finally, we will
discuss the possibilities of completely auto-answering incoming e-mails: the ulti-
mate dream of each contact centre manager. Although the results are not “good
enough”, for unsupervised auto-answering, our 60%-first-answer-right-result is
quite promising. If combined with reliable confidence scores (something out of
the scope of this research), the proposed methods can be used to automatically
answer incoming e-mails (at least in out-of-office hours).

Preface

This thesis describes the research I have performed for my graduation project
for the HMI group of the University of Twente and Em@ilco.nl B.V., in order to
complete my Computer Science education at the faculty of Electrical Engineer-
ing, Mathematics and Computer Science. Off course, I could not have done all
this work alone. Therefore, I gratefully thank the following people:

First, the people from Em@ilco, and especially Leo van Veen and Berry Cor-
nelisse for giving me the opportunity to carry out my graduation project for
Em@ilco. They have always helped me when I needed new data for my exper-
iments or good programming advice to implement the prototype system.

Danny Lie from Carp technologies, for making available the Lingware tool-kit to
help me investigate the use of specific language technologies in this research.

My graduation committee: Arjan van Hessen, Theo Huibers, Franciska de Jong
and Leo van Veen. A special thank you to Arjan van Hessen, for being very
enthusiastic about my research, for keeping me motivated, for the good advice
and the nice conversations.

Off course I owe it to my fellow students of the Black-Coffee room to mention
them in this section, for the fun and discussions of news articles, formula 1 races
and our graduation work, during the last months.

My parents (Jan en Mineke) for enabling me to complete my education, their
support and their continuous interest.

My little sister (Marion), room mates and friends (especially Laurens for review-
ing this thesis), for their interest and support during this project.

Finally, I owe much gratitude to my girlfriend Jantina for her unconditional sup-
port and interest, but moreover, for the great times we had when I took some
time off this project.

Michel

1

Contents

1 Introduction 5
1.1 Problem description . 5
1.2 Problem statement . 6
1.3 Main innovative aspects . 7
1.4 Outline of the thesis . 7

2 Related Work 9
2.1 E-mail answering assistance . 9
2.2 Spam filtering and e-mail categorization 10
2.3 Text categorization . 11

3 Information Retrieval 12
3.1 Information retrieval system . 12
3.2 Information retrieval models . 14

3.2.1 Formal characterization of an IR model 14
3.2.2 Boolean model . 15
3.2.3 Vector model . 15
3.2.4 Probabilistic model . 16
3.2.5 Statistical language models 18

3.3 Term weighting . 19
3.3.1 TF.IDF weighting . 19
3.3.2 Okapi weighting . 20

3.4 Evaluation metrics . 22

4 Classification 24
4.1 Naive Bayes . 24
4.2 Support vector machines . 25
4.3 IR based classification . 26

4.3.1 Profile based classification . 26
4.3.2 Example based classification 27

4.4 Evaluation metrics . 28

5 Natural Language Processing 29
5.1 Stopword removal . 29
5.2 Stemming . 30

5.2.1 Suffix striping and the Dutch Porter stemmer 30
5.2.2 Dictionary based stemming 30

5.3 Spelling correction . 31
5.3.1 Probabilistic models of spelling correction 31

2

CONTENTS

5.3.2 Levenshtein Distance . 32
5.4 Language identification . 33
5.5 Decompounding . 34
5.6 Part of Speech tagging . 35

5.6.1 Rule based tagging . 36
5.6.2 Stochastic tagging . 36
5.6.3 Transformation based tagging 37

5.7 Semantic clustering . 37

6 Approach 39
6.1 Current Em@ilco approach . 39
6.2 E-mail corpora . 40
6.3 Problem analysis . 41
6.4 Classification . 41
6.5 Language Technology . 42

6.5.1 Lexical normalization . 42
6.5.2 The use of language technology for classification 43
6.5.3 Stopword removal . 44
6.5.4 Language identification . 44
6.5.5 Part-of-speech tagging . 45
6.5.6 Stemming . 45
6.5.7 Spelling correction . 46
6.5.8 Decompounding . 46
6.5.9 Semantic clustering . 47

7 Design 48
7.1 System overview . 48
7.2 Document preprocessing . 48
7.3 Indexing . 49

7.3.1 Example based indexing . 50
7.3.2 Profile based indexing . 52

7.4 Classification . 54
7.4.1 Profile based classification . 55
7.4.2 Example based classification 56

7.5 Data storage . 56

8 Evaluation 57
8.1 Experimental Set-up . 57

8.1.1 E-mail Corpus . 57
8.1.2 Evaluation metrics . 58
8.1.3 Test set-up . 59
8.1.4 Parameter settings . 60

8.2 Baseline classification experiments 63
8.2.1 Baseline experiment . 63

8.3 Language technology experiments (1) 67
8.3.1 Example based experiments 67
8.3.2 Profile based experiments . 70

8.4 Language technology experiments (2) 72
8.4.1 Example based experiments 72
8.4.2 Profile based experiments . 75

3

CONTENTS

8.5 Language technology experiments (3) 75
8.6 Conclusion . 77

9 Conclusions 79

10 Suggestions for future work 81
10.1 Research suggestions . 81

10.1.1 Hierarchical classification . 81
10.1.2 Information extraction and deletion 82
10.1.3 Automatic answering . 82
10.1.4 Automatic parameter estimation 83

10.2 Implementation suggestions . 83

A Classification accuracy for NLP experiments 89
A.1 First experiment series . 89
A.2 Second experiment series . 91
A.3 Third experiments series . 91

B Wordclasses of the POS-tagger 93

C Lingware toolkit output 95

4

Chapter 1

Introduction

With the ongoing acceptance of e-mail as a fast, cheap and reliable means of
communication, companies receive an increasing number of service requests via
e-mail. To handle these e-mails, current call centres are “transformed” into con-
tact centres; handling e-mail, telephone calls and, probably in the near future,
chats as well. Since most service requests are about a relatively small set of
problems, lots of these requests may be answered using a relatively small set of
standard answers.

1.1 Problem description

Handling such great amounts of e-mail in a contact centre is a very labour-
intensive task, requiring a serious investment of time and money. Automatiz-
ing the process of answering the service requests through e-mail could therefore
account for a time and money reduction. In an ideal situation, a computer ap-
plication would be developed that automatically selects the correct answer to an
incoming service request and sends the reply to the customer without interven-
tion of an agent. Unfortunately, the process of automatically answering e-mail is
a very difficult task, making it very unlikely that the correct answer is selected
for all incoming messages (recent studies show an automatic answering ratio of
e-mail in which 40% of the mails is answered correctly,see chapter 2). Due to the
risk of sending the incorrect answer to a customer, most companies are reluctant
to incorporate automatic e-mail answering in their contact centres. However, au-
tomatically suggesting relevant answers to incoming messages provides a good
alternative. If the correct answer to a question is presented within, for instance,
a top-5 of relevant answers, the agent only needs to select the correct answer and
send it to the customer. Such a system would improve the efficiency in a contact
centre and reduce the time spent on answering e-mail.

The focus of this project is to investigate the possibility to semi-automate the
answering of incoming e-mail by suggesting relevant answers to incoming mes-
sages.

5

CHAPTER 1. INTRODUCTION

1.2 Problem statement

Em@ilco has developed an e-mail management system (Q.mail//Box) that enables
contact centre agents to handle incoming messages efficiently. This system also
provides functionality to automatically suggest relevant answers. This answer
suggestion routine maps incoming e-mail to standard question, based on the
presence of predefined keywords in the incoming message. The standard ques-
tion is linked to a standard answer. A set of keywords is manually assigned to
each standard question and the standard question that has the most keywords
in common with the incoming e-mail, links to the best answer suggestion. The
main goal of this project is to investigate to what extent new techniques improve
the automatic suggestion of answers.

We try to tackle the automatic answer suggestion problem by transforming it
into a text classification problem. The e-mail messages are the documents that
should be classified and the classes in which they should be classified are the rep-
resentations of the standard questions. If an e-mail is classified (i.e. mapped to a
standard question), we can simply suggest the answer that is associated with the
standard question representing the category. The classification of new messages
is done by determining the similarity between the new messages and previously
answered messages. Based on the assumption that similar questions require
similar answers, the new message can now be categorized in the category that
stores previously answered messages that are most similar to the new message.
Finding relevant documents based on document similarity is a basic Information
Retrieval task where relevant documents are retrieved by determining the simi-
larity between a document and a user defined query. We state that automatically
determining the similarity between new messages and previously answered mes-
sages using information retrieval techniques, outperforms the basic classification
approach used by Em@ilco, leading to our first research hypothesis:

1. Information retrieval based classification of e-mail messages for automatic
answer suggestion outperforms the manually defined keyword approach
and is usable in a Dutch contact centre environment.

Since e-mail is such an easily accessible means of communication, e-mails often
are not well formed documents: They may contain spelling errors and grammati-
cally incorrect sentences, which may negatively influence the performance of the
classification algorithms. To overcome this problem, basic language technology
may be used to normalize the e-mail before they are used in the classification
algorithms, attempting to correct spelling errors and detect relevant words (e.g.
a noun adds more meaning to a document than a determiner or preposition).
Moreover, by using language technology we can relate morphological variants
of words and compounds. For example, huis (English: house) and huisje (En-
glish: small house) represent the same concept and are both relevant terms for
a document about houses, but have a different syntax. By relating such equiva-
lent terms, we can improve the classification results. In conclusion we can state
that language technology may assist in classifying e-mail, leading to our second
research hypothesis:

6

CHAPTER 1. INTRODUCTION

2 The use of Language Technology (like stemming, part-of-speech tagging
and spelling correction) as text normalization, improves the classification
accuracy of the information retrieval based classification methods.

In this thesis we attempt to prove these two hypotheses by empirical research
using an e-mail corpus acquired in a Dutch contact centre of “De National Post-
codeloterij” (English: The national lottery of zip codes). This corpus is further
described in section 8.1.1.

1.3 Main innovative aspects

The concept of using IR based classification techniques for text classification pur-
poses is not new, neither is the concept of using text classification techniques to
classify e-mail (for answer suggestion, or answer generation). However, using
IR based classification techniques for e-mail classification is a new concept. Re-
search on automatic classification of e-mail using text classification techniques
has already been done in German and Dutch contact centres using Support Vec-
tor Machines (SVM, see section 4.2) and Neural Nets in German, and Naive
Bayes (see section 4.1) in Dutch. This classification problem differs from text
classification problems in the level of detail of the classes: text classification uses
topics (like sports and financial) as classes, while this form of e-mail classifica-
tion uses standard questions as classes. For the latter, two distinct questions
may have the same topic, e.g. How can I change my e-mail address and How
can I apply for an e-mail address are two distinct questions about the same topic
(e-mail address).

The use of language technology to improve classification accuracy or information
retrieval results (precision and recall) is not a new concept either. However, since
this classification problem focusses on unstructured texts (e-mails) in particular,
in which many spelling errors and grammatically inconsistencies may occur, it is
not an equivalent problem to news article classification or abstract retrieval. The
use of language technology improves accuracy on certain problems while it wors-
ens the accuracy for others. Since e-mail classification (at this level) is not an
equivalent problem to general text classification, and we use different classifica-
tion techniques than the other e-mail classification research discussed in chapter
2, we may not assume that language technology yields the same results for our
problem. Therefore we will also investigate the use of language technology for
this specific problem.

1.4 Outline of the thesis

1. Introduction This chapter gives a brief introduction to the problem and
states the two research hypotheses we attempt to prove in this thesis.

2. Related work In this chapter we will discuss several projects that are re-
lated to the research of this project.

7

CHAPTER 1. INTRODUCTION

3. Information Retrieval This chapter provides the theoretical basis for the
information retrieval techniques used in this thesis.

4. Classification This chapter provides the theoretical basis for the classifica-
tion techniques used in this thesis.

5. Natural Language Processing This chapter provides the theoretical basis
for the language technologies that may improve classification accuracy.

6. Approach In this chapter we will present the chosen approach approach in
detail. With this approach we attempt to prove the two hypotheses.

7 Design This chapter gives an overview of the algorithm used in our prototype
and presents a detailed example to illustrate the working of these algo-
rithms.

8. Evaluation This chapter we will discuss the experiments we performed.

9. Conclusions This chapter presents our conclusions with respect to the two
research hypotheses.

10. Suggestions for future work Finally, we will point out some suggestions
for further research on this topic.

8

Chapter 2

Related Work

In this chapter we will present some research that is (strongly) related to our
e-mail answer suggestion problem. The first section covers projects that aim at
classifying e-mail in contact centres: two for German and one for Dutch. The sec-
ond section covers projects that are related because they deal with categorizing
e-mail, albeit in a smaller and more general collection of folders or categories:
two categories for spam filtering (spam and non-spam) and a handful of fold-
ers in an e-mail client. The last section covers more general text categorization
problems, organised in the Text REtrieval Conference (TREC). Our e-mail an-
swer suggestion problem is strongly related to such problems, since we use the
analogy of text classification to suggest answers to e-mail.

2.1 E-mail answering assistance

Busemann, Schmeier, and Arens (2000) developed the ICC mail system to as-
sist call centre agents in answering e-mails by suggesting relevant solutions
for incoming e-mail. They use Shallow Text Processing (STP) like word stem-
ming, part-of-speech tagging and sentence types, and Statistics-based Machine
Learning (SML) techniques like lazy learners, neural networks and support vec-
tor machines for mapping incoming mail on standard answers. STP techniques
are chosen above in-depth syntactic and semantic analysis, given the unstruc-
tured, informal and spontaneously created nature of e-mail, often containing
misspellings, jargon and grammatical inaccuracy. Their experiments showed
that the correct answer is selected in about 56.23% of the incoming e-mails (using
support vector machines and shallow text processing). Neural networks and lazy
learners only manage to select the correct text block (standard answer) in about
22% to 35% of the cases. Using support vector machines and STP, the correct
text block is selected within the top 5 results in 78% of the cases.

Scheffer (2004) uses support vector machines (SVM) and Naive Bayes in a co-
training learning environment to suggest possible answers for incoming e-mail
in e-mail service centres. They map the problem to a semi-supervised text clas-
sification problem and automatically learn from in- and outbound e-mail. Bickel

9

CHAPTER 2. RELATED WORK

and Scheffer (2004) introduce the problem of automated e-mail answering in an
e-mail service centre environment. This system learns from message pairs using
a support vector machine, and tries to answer (instead of suggesting answers for)
incoming e-mail based on previously given answers to similar questions. A clus-
tering algorithm is used to cluster similar (training) e-mails and a SVM is trained
for each cluster. Each cluster then contains all the training documents (e-mails)
that represent one category. Incoming e-mail is compared (using the SVM) with
each cluster (category), and the cluster with the highest similarity score (if above
a certain threshold) represents the answer used to answer this e-mail. Their ex-
periments show that the correct answer is selected in 40% of the e-mails. This
percentage is increased to 50% when different answers for equal questions are
merged (e.g. “When will my product be shipped” can be answered with “The
product is already shipped” or “The product will be shipped tomorrow”), which
require a different answer based on context information the customer does not
know. Both answers rely on the same question, but differ based on the context
information of when the product has been, or will be, shipped.

Gaustad and Bouma (2002) have experimented with an e-mail dataset acquired
in a help desk environment in their research on Dutch text classification. Their
dataset consisted of 6,000 e-mails, categorized in 193 categories, but their exper-
iments focused on a subset of 5,518 e-mails categorized in 69 categories (covering
92.5% of the e-mails). For this dataset, the results ranged from 42.79% correct
classification for the first suggestion of the system, to 77.65% correct classifica-
tion in the best-5 results. For their experiments, Gaustad and Bouma use a Naive
Bayes classifier, which is a simple but effective algorithm for text classification
and e-mail classification (Androutsopoulos et al., 2000).

2.2 Spam filtering and e-mail categorization

Spam filtering can be treated as a text classification problem (with e-mail as
documents) with two categories: spam and non-spam. Different classification
approaches for spam filtering have been developed an experimented with, e.g.
Naive Bayes (Androutsopoulos et al., 2000), Support Vector Machines (Drucker
et al., 1999), memory based (IR like) methods using K-Nearest-Neighbour
(Sakkis et al., 2003) and combinations of different approaches (Etzold, 2003).
Many of these spam filtering techniques are used nowadays, to cope with the
very large amount of spam sent daily.

E-mail categorization deals with routing incoming e-mail to user-defined folders.
Most e-mail clients enable users to define rules for routing e-mail based on the
sender, the topic and words in the content. Automatically classifying e-mail in
folders has been an interesting research topic for years, and many different ap-
proaches have been tried (and proven successful). Boone (1998) has created an
intelligent e-mail agent that can learn actions such as filtering, prioritising and
forwarding e-mail using automatic feature extraction from text and meta-data
like headers. Yang and Park (2002) have investigated the use of fast Machine
Learning algorithms (like TF.IDF for the Rocchio classifier and Naive Bayes).
Klimt and Yang (2004) introduce the Enron corpus as test bed for e-mail classifi-
cation and perform initial baseline experiments using a support vector machine

10

CHAPTER 2. RELATED WORK

and features from the contents of e-mail as well as header information. Brutlag
and Meek (2000) investigate the challenges in the email domain for text classifi-
cation and compare SVM and IR classification (TF.IDF or Rocchio classification)
while doing so. Their experiments show that little performance differences exist
between these techniques for classifying e-mail in a set of user-defined folders.

2.3 Text categorization

The first Text REtrieval Conference (TREC) was held in November 1992 (Har-
man, 1993), with the intention to bring researchers together to discuss their work
on a new large test collection. The TREC series have been brought to life with the
goal of providing a large test collection for information retrieval (IR) purposes,
that also reflects collections for large real-world information retrieval environ-
ments. This enables researchers to compare their findings with others based on
the same test collection, instead of having to compare research that is performed
on different collections. The first two tasks TREC addressed were fully aimed on
information retrieval, and covered IR using an “ad hoc” query (e.g. in a library
environment) and IR using a “routing” query (e.g. a filter to route some incoming
information stream).

In later years, TREC also focussed on text categorization tasks, and developed
several test sets for this purpose (based on the initial TREC test collection, in
which documents are also provided with a topic). The Text REtrieval Conference
series is a very useful resource for finding relevant information to text catego-
rization and information retrieval problems. Many of the techniques discussed
in this thesis have been presented at this conference and lots of research within
this conference series focusses on text classification problems.

11

Chapter 3

Information Retrieval

Information retrieval (IR) has been a research topic since the early 1950’s. The
definition given by Mooers (1950) (recited from Hiemstra, 2000) is probably one
of the most used definitions of information retrieval:

Information retrieval is the name of the process or method whereby a
prospective user of information is able to convert his need for informa-
tion into an actual list of citations to documents in storage containing
information useful to him.

Search engines on the internet are good examples of modern information re-
trieval systems that are widely used (e.g. Google and AltaVista). A user trans-
lates his need for information into a query and feeds it to the system (search
engine). The search engine converts the query into a (ranked) list of relevant re-
sources, in case of a search engine this will be web pages, but it could also be doc-
uments, pictures, etc.. The notion of relevance is very important in information
retrieval. Unlike data retrieval (e.g. using a database query), where data, satis-
fying a specific set of constraints, has to retrieved, information retrieval aims at
finding sources of information (not the information itself) that could satisfy the
user’s information need. Because many documents can be of some relevance to a
users query, it is common to apply a ranking function to the results.

3.1 Information retrieval system

There are basically two types of information retrieval methods: Ad hoc and Fil-
tering. If the document collection remains (relatively) static while new queries
are submitted to the system, we speak of ad hoc retrieval. This is the most com-
mon form. An example of ad hoc information retrieval is the use of a search
engine like Google, in which the user enters a search query to find relevant doc-
uments. A similar, but distinct, form is one in which the queries remain (rela-
tively) static while new documents come into the system (the document collection
is dynamic). This form of retrieval is called filtering, and is commonly based on a
user profile describing the user’s preferences, so new documents can be retrieved

12

CHAPTER 3. INFORMATION RETRIEVAL

Information problem

Query

Retrieved documents

Documents

Indexed documents

RepresentationRepresentation

Comparison

Feedback

Figure 3.1: Basic processes in an IR system (Croft, 1993)

based on this profile (e.g. a news feed). For example, the user makes a profile of
his or hers interest (e.g. soccer results of the English Premier League), and re-
ceives relevant information (e.g. news articles or websites) based on this profile.

An information retrieval system (a software program) consists of three basic pro-
cesses: representing the content of the documents, representing the users in-
formation need and comparing both representations (Hiemstra, 2000). Figure
3.1 (recited from Hiemstra, 2000) visualizes these three processes. The squared
boxes represent data and the rounded boxes represent processes.

The documents in the document collection are transformed into indexed docu-
ments by the representation process, also called the indexing process. Each doc-
ument is transformed into a formal representation which the comparison process
can understand, for example a vector representation (see section 3.2.3). These
formal representations of the documents may be stored in a so called index (e.g.
a database). Often, not the representations of the full documents are stored,
but, for storage and efficiency reasons, only the title and abstract. In a more so-
phisticated system, all index terms may be weighted (see section 3.3), and these
weights can also be stored in the index.

The user’s information need is transformed into a query in the representation
process, also called the query formulation process. Part of this process is per-
formed by the user and part by the IR system. The user translates his infor-
mation problem into a question, or set of keywords he or she wants to search
on, called the initial query. The IR system translates this initial query to a for-
mal representation that the system can understand. Based on the results of the
comparison process, the query can be adjusted. This process of successive query
formulation is called relevance feedback.

13

CHAPTER 3. INFORMATION RETRIEVAL

The main process of an IR system is comparing queries and documents. This
is also called the matching process. In this process, the query representation
is compared to all document representations in the index, resulting in a list of
relevant documents. A document is marked relevant by the system solely based
on the features represented in the document (words) and not by e.g. the writ-
ers intention. In ranked retrieval, the results (a list of documents) are ranked
in decreasing order of relevance. Users can navigate this list in search of the
information they need. Ranked retrieval intends to place the most relevant doc-
uments at the top of the list, minimizing the time the user has to invest searching
for the desired documents.

3.2 Information retrieval models

Baeza-Yates and Ribeiro-Neto (1999) describe the three classic models in infor-
mation retrieval: the Boolean model, the vector space model and the the proba-
bilistic model. In the Boolean model, queries and documents are represented as
sets of index terms (set theoretic model). In the vector space model queries and
documents are represented as vectors in t-dimensional space (algebraic model).
The probabilistic model presents a framework for representing queries and doc-
uments based on probability theory (probabilistic model). These classic models
consider each document as a set of representative keywords called index terms.
An index term is simply a word of a document whose semantics assists in remem-
bering the documents main themes. Index terms can have weights assigned to
them: Let ki be an index term, dj a document, and wi,j ≥ 0 be a weight associ-
ated with the pair (ki, dj). An index term that does not appear in the document
is assigned a weight of 0.

More recently, statistical language models have been introduced by Hiemstra
(2000) (amongst others). These models constitute a mathematical framework for
the combination of natural language processing and information retrieval, and
will be briefly discussed in section 3.2.5.

3.2.1 Formal characterization of an IR model

A formal characterization of an IR model is given by the next definition:

Definition An information retrieval model is a quadruple [D, Q, F, R(qi, dj)]
where

(1) D is a set composed of logical views (or representations) for the documents
in the collection

(2) Q is a set composed of logical views (or representations) for the user infor-
mation needs. Such representations are called queries

(3) F is a framework for modelling document representation, queries and their
relationships

14

CHAPTER 3. INFORMATION RETRIEVAL

(4) R(qi, dj) is a ranking function which associates a real number with a query
qiε Q and a document djε D. Such ranking defines an ordering among the
documents with regard to the query qi.

3.2.2 Boolean model

The Boolean model is a simple retrieval model based on Boolean algebra. Draw-
backs of the Boolean model are:

• Its retrieval strategy is based on a binary criterion: A document is predicted
relevant or non-relevant without any notion of grading scale (it is much
more a data retrieval model).

• It is difficult to translate information need into a Boolean expression, since
Boolean expressions have very precise semantics.

The Boolean model considers that index terms are either present or absent in a
document. As a result, the index term weights are assumed to be binary (0 or 1).
A query q is a conventional Boolean expression: e.g. index terms linked by three
connectives not, and, or. A document is judged either relevant or non-relevant by
the Boolean model. A document is judged relevant, only if it matches the exact
expression of the query.

Salton, Fox, and Wu (1983) have proposed and implemented an extended version
of the original Boolean model in which ranked retrieval is also possible.

3.2.3 Vector model

According to Baeza-Yates and Ribeiro-Neto (1999), the vector space model admits
that the use of binary weights is too limiting and proposes a framework in which
partial matching is possible. The term weights are used to compute the degree of
similarity between the user query and each document stored in the system. The
index terms in the documents and query are weighted. Within the vector space
model, documents and queries are represented as vectors in an n-dimensional
space. Joachims (1997) explains a classification approach using the vector model
and states that each document dj is represented as a vector −→dj = (d1

j , ..., d
n
j).

The query q is represented as a query vector −→q = (q1, ..., qn). Each element in
a vector represents a distinct word wi in the document collection. A term di can
be assigned a binary weight (0 for absence and 1 for presence). This model also
recognizes non-binary weights to distinguish between relevant and less-relevant
words (see section 3.3). In this case a term di is represented by a positive weight
equal or greater to 0 (a weight of zero represents the absence of a term). The
higher the weight for a certain term, the more relevant this term is assumed to
be.

The correlation (similarity) between the vectors representing the document and
query, can be quantified by the cosine of the angle of the vectors, which is given
in equation 3.1.

15

CHAPTER 3. INFORMATION RETRIEVAL

sim(dj , q) =

→
dj •

→
q

||
→
dj || × ||

→
q ||

(3.1)

Equation 3.1 divides the inner product of both vectors by the product of the Eu-
clidean lengths1 (also known as norm) of both vectors. The factor ||−→q || does not
affect the ranking of the results, since it is the same for all documents. The factor
||−→dj || provides a normalisation in the space of documents.

3.2.4 Probabilistic model

The classic probabilistic model was introduced in 1976 by Robertson and
Sparck Jones (information taken from Baeza-Yates and Ribeiro-Neto (1999)) and
later became known as the Binary Independence Retrieval (BIR) model. This
model tries to capture the IR problem within a probabilistic framework. The
idea is as follows: Given a user query, there is a set of documents which exactly
contain the relevant documents and no other (ideal answer set). The probabilistic
model is based on the Probabilistic Ranking Principle (PRP) (Robertson (1977)):

If a reference retrieval systems response to each request is a ranking
of the documents in the collections in order of decreasing probability of
usefulness to the user who submitted the request, where the probabil-
ities are estimated as accurately as possible on the basis of whatever
data has been made available to the system for this purpose, then the
overall effectiveness of the system to its users will be the best that is
obtainable on the basis of that data.

Sparck Jones et al. (1998) argue that (following the PRP) for each document and
each query the following basic question has to be answered:

”What is the probability that this document is relevant to this query?”

The probabilities for each query/document pair can then be ranked in order of
their probability of relevance. In the probabilistic model, index term weight vari-
ables are all binary (0 or 1) for documents and queries. A query q is a subset of
index terms. Let:

R be the set of documents known (or initially guessed) to be
relevant,

R be the complement of R (set of non-relevant documents),
P (R,

−→
dj) be the probability that the document dj is relevant to the

query and
P (R,

−→
dj) be the probability that the document dj is non-relevant to

the query

1The Euclidean length of vector −→d with length N is ||−→d || =
√∑N

i=1
d2

i

16

CHAPTER 3. INFORMATION RETRIEVAL

then the similarity of a document and a query (sim(dj , q)) is given by (using
Bayes rule to simplify):

sim(dj , q) =
P (R|

→
dj)

P (R|
→
dj)

=
P (

→
dj |R) · P (R)

P (
→
dj |R) · P (R)

(3.2)

Where P (R) stands for the probability that a document randomly selected from
the document collection is relevant. P (−→dj |R) stands for the probability of ran-
domly selecting document dj of the relevant documents. Since P (R) and P (R)
are constant for every document, and therefore do not influence the ranking of
documents, we can write:

sim(dj , q) ∼ P (
→
dj |R)

P (
→
dj |R)

(3.3)

In the probabilistic model it is assumed that index terms are independent. There-
fore we can rewrite the probability that a document containing n index terms is
relevant as the product of the probabilities that each of the independent index
terms (ki) is relevant using equation 3.4:

P (
→
dj |R) =

n∏

i=1

P (ki|R) (3.4)

Combining 3.3 and 3.4 results in equation 3.5:

sim(dj , q) ∼
∏

gi(
→
dj)=1

P (ki|R)) ·∏
gi(

→
dj)=0

P (ki|R))
∏

gi(
→
dj)=1

P (ki|R)) ·∏
gi(

→
dj)=0

P (ki|R))
(3.5)

Where,

P (ki|R) stands for the probability that the index term ki is present
in a document randomly selected from R,

P (ki|R) stands for the probability that the index term ki is not
present in a document randomly selected from R, and

gi(
→
dj) = 1 means that the weight assigned to term j from document d

equals 1 (a similar explanation can be given if the weight
equals 0).

This may seem a rather complicated function, but intuitively it is not. It just
states that the similarity between a document and a query depends on the index
terms in the query and a document. If an index term has been assigned a weight
of 0, it is not present in the document and if an index term has been assigned a
weight of 1, it is present in the document. This equation multiplies the probabil-
ities that index terms with weight 1 (present in the document) are relevant with
the probabilities that index terms with weight 0 (not present in the document)
are relevant. A similar explanation can be given for the denominator with the

17

CHAPTER 3. INFORMATION RETRIEVAL

small distinction that probabilities on non-relevance are calculated. This equa-
tion can be somewhat simplified by recalling that P (ki|R) + P (ki|R) = 1 , taking
logarithms and ignoring constant factors (for all documents in the context of the
same query), resulting in the next ranking expression in the probabilistic model:

sim(dj , q) ∼
n∑

i=1

wi,q · wi,j · (log P (ki|R)
1− P (ki|R)

+ log
1− P (ki|R)

P (ki|R)
) (3.6)

Where wi,q and wi,j represent the weights of index terms of the query and docu-
ment respectively.

3.2.5 Statistical language models

Hiemstra and de Jong (2001) state that full-text information retrieval is all about
natural language understanding. Common information retrieval systems only
use word statistics, and hence treat words like cow, cows, cattle and milk as if
they were totally unrelated. Information retrieval systems might benefit from
such relational information (cows is the plural of cow and cattle is the hyper-
nym of cows) by retrieving relevant documents containing terms that are not
literally present in the query. Common information retrieval systems use simple
language technology like stemming and stop word removal, but Hiemstra and
de Jong claim that many of the near future information retrieval applications
require for more serious natural language processing. For this reason they pre-
sented a mathematical framework for statistical language models in information
retrieval.

The concept of these language models is assigning probabilities to sequences of
words. If a word occurs three times in a document of 100 words, the probability
of that word, given that document is 0.03, and if a word occurs 2000 times in a
corpus of a million words, then the probability of that word is 0.002. For IR, a lan-
guage model is defined for each separate document in the collection, modelling
the typical language use on that particular document. P (D) is the probability of
the event that a document is relevant, where D can be any document in the col-
lection. P (T) is the probability that the term T occurs in the relevant document’s
language. It is assumed that some words of a user query are important, while
others are not. Since we cannot know beforehand which are the important words
(in general or from the document in specific), the model uses a mixture of the
probability P (T) (e.g. a term is relevant for a given collection of documents) and
the probability P (T |D) (a term in the relevant document). The basic model as-
sumes independence between query terms in a sequence of n terms T1, T2, ..., Tn,
resulting in the definition of the language model given in equation 3.7.

P (T1, ..., Tn|D) =
n∏

i=1

((1− λi)P (Ti) + λiP (Ti|D)) (3.7)

The parameter λi (0 ≤ λi ≤ 1) defines the probability that a term is important. In
an IR application documents are ranked in decreasing order of this probability.

18

CHAPTER 3. INFORMATION RETRIEVAL

Hiemstra (2000) shows that this model outperforms ranked retrieval models that
use today’s best performing TF.IDF weighting variations (see 3.3).

Besides its good performance, this model enables us to model the use of language
technology in information retrieval systems. Stopword removal (see section 5.1)
can be modelled by setting λi to 0, so that it does not influence the ranking
results. If λi = 0, the term Ti contributes the same amount of probability to
the final result of the computation, whether it occurs in the document or not.
Another language technology that might be modelled is the use of simple phrases
instead of single terms, using N-gram models. For instance, the sentence stock
exchange carries more information than just the single words stock and exchange,
which may easily lead to documents about the exchange of live stock, instead of
documents about Wall Street. Simple sentences of 2 words may be modelled
using the bi-gram model: instead of using the probability P (Ti) we now use the
probability P (Ti|Ti−1), which means that the probability that term Ti (exchange)
occurs, depends on the occurrence of the preceding term Ti−1 (stock).

3.3 Term weighting

Not all terms in a document are equally important in an IR system. Some words
(like the, or and besides) are not nearly as relevant as other (more specific) words
like for instance bicycle or computer. To distinguish between relevant and non-
relevant words, term relevance weighting schemes have been suggested to im-
prove the results of IR systems. By using a term relevance weighting scheme we
can specify which terms are important and which are less important.

3.3.1 TF.IDF weighting

In order to find relevant documents to a query, we first have to know what makes
a document relevant. Recall that a document is represented by a set of index
terms, which determines the relevance of the document. We can now define two
characteristics that determine the relevance of a term:

• A term is important if it occurs a lot in one document

• A term is distinctive if it occurs in as few documents as possible

The first characteristic is obvious: if a document contains a certain word many
times (e.g. bicycle), the document will probably contain enough information
about that word (e.g. bicycles), making the word an important term. The sec-
ond characteristic will be explained by example. Suppose a user searches for
information about bicycles, and formulates the query: information on new bicy-
cles. The words new and on are words that occur in many documents, and in
many contexts, but do not help on finding information about a specific topic (e.g.
bicycles). These words simply do not have enough distinctive power compared to
a word like bicycle, that occurs mostly in documents about bicycles.

19

CHAPTER 3. INFORMATION RETRIEVAL

This ideology led to the famous TF.IDF weighting scheme. Salton and McGill
(1983) describe that these important issues for relevance weighting can be de-
scribed by term frequency and inverse document frequency. The term frequency
TF (wi, d) is the number of times word wi occurs in document d. The document
frequency DF (wi) is the number of documents in which word wi occurs at least
once. The inverse document frequency IDF (wi) determines the specificity of a
term:

IDF (wi) = log
(|D|

DF (wi)

)
(3.8)

Where |D| is the total number of documents in the collection. Intuitively, the
IDF is low if a term occurs in many documents, and is highest if it occurs in
only one. Each term d(i) in a document dj can now be weighted using the TF.IDF
weighting scheme according to equation (3.9):

dj
(i) = TF (wi, dj)× IDF (wi) (3.9)

Determining the similarity between a document and query vector can also be
done using weighted vectors in the cosine similarity measure, as in equation
3.10, using the definitions of the inner product and Euclidean length.

sim(dj , q) =

→
dj •

→
q

||
→
dj || × ||

→
q ||

=
∑n

i=1 dj
i × qi

√∑n
i=1 (dj

i)
2 ×

√∑n
i=1 (qi)2

(3.10)

3.3.2 Okapi weighting

The Okapi system was developed in the 1980’s at the Polytechnic of Central Lon-
don and later developed at City University London and Microsoft Research. The
system is based on the probabilistic information retrieval model. Robertson and
Walker experimented with additional weighting algorithms for this system, lead-
ing to the BM25 formula (BM stands for Best Match). Hiemstra (2000) describes
that the Okapi weighting algorithm uses weights that are approximately linear
for small values of term frequency tf , but do not increase in the same rate for
larger values of tf .

Relevance weighting

In this system, documents and queries are also represented by vectors and their
similarity is determined by the vector product (inner product) in equation (3.11):

score(−→d ,
→
q) =

m∑

k=1

dk • qk (3.11)

20

CHAPTER 3. INFORMATION RETRIEVAL

Robertson and Sparck Jones (1997) give a simple and clear explanation of the
Okapi weighting algorithm (that is given below) in their technical report. Within
this algorithm there are three different sources of weighting data. The first one
is called collection frequency weight of an index term wi (like the document fre-
quency in TF.IDF weighting) and is given by:

CFW (wi) = log N − log n (3.12)

Where n is the number of documents a term dj occurs in and N the total number
of documents in the collection. The second source of weighting data is the term
frequency: TF (wi, d) which just like in TF.IDF weighting equals the number of
occurrences of term wi in document d.

The third source of weighting data is the document length which, in the Okapi
system, must be related to the term frequency of a term in a document. The
motivation behind this weighting source is that if a term occurs in a short doc-
ument and in a long one for the same number of times, the occurrence in the
short document is likely to be more valuable. The document length DL(d) is
the total number of term occurrences in a document d. The document length
can be normalized by dividing the the document length by the average document
length of all documents (ADL) and has the advantage that the units in which the
document length is counted does not matter too much (e.g. the total number of
characters can also be used):

NDL(d) =
DL(d)
ADL

(3.13)

These three sources of weighting data can be combined into a single formula
giving the combined weight for a term wi by equation (3.14):

CW (wi, d) =
CFW (wi) · TF (wi, d) · (k1 + 1)

k1 · ((1− b) + (b · (NDL(d)))) + TF (wi, d)
(3.14)

This combined weight indicates the relevance of each term for a document. In
the above equation, k1 and b are tuning constants. Tuning constant k1 modifies
the extent of the influence of term frequency where b (which ranges from 0 to 1)
modifies the effect of documentg length. b = 0 assumes that (long) documents are
long because they are multi-topic (e.g. cover several topics) and b = 1 assumes
that documents are long because they are repetitive (cover the same topic over
again). Robertson and Sparck Jones (1997) state that k1 = 2 and b = 0.75 are
good initial values for this weighting scheme, but experiments should be done to
determine optimum values for specific applications.

Query expansion and iterative searching

Robertson and Sparck Jones (1997) also describe some methods of query expan-
sion. Based on the initial results of the system, the query can be expanded with

21

CHAPTER 3. INFORMATION RETRIEVAL

search terms that are assumed relevant. Besides expanding the query, the com-
bined (relevance) weights (CW (wi)) are recalculated based on the results by the
next formula:

RW (wi, d) = log
(r + 0.5)(N − n−R + r + 0.5)

(n− r + 0.5)(R− r + 0.5)
(3.15)

Where r is the number of known relevant documents containing term wi and R
is the total number of known relevant documents to a query. This formula can be
used instead of CFW (wi) for all terms used in a second or subsequent iteration.
The process of refining the query based on the results of the previous iteration is
called iterative searching.

Longer queries

The weighting algorithm described has good performance for queries with at
least 5 words. However, for longer queries Robertson and Sparck Jones (1997)
have also experimented assigning weights to query terms. If a query is longer
than a sentence (or a few words) the Query Adjusted Combined Weight should
be computed according to equation (3.16):

QACW (wi, d) = QF (wi) · CW (wi, d) (3.16)

Where QF (wi) is the number of occurrences of term wi in the query.

3.4 Evaluation metrics

Van Rijsbergen (1979) already stated that the evaluation of an information re-
trieval system is related to the relevance of the documents in the collection and
the retrieved documents by an IR system. A document can either be retrieved
or not, and be relevant or not. Let us define the relevant set of documents in a
collection as A and the non-relevant set of documents as A. In a similar way we
define the set of retrieved documents in a collection by an IR system as B and the
set of non-retrieved documents by B. Table 3.1 displays the ’contingency’ table
for these measures. N represents the total set of documents in the collection.

RELEVANT NON-RELEVANT

RETRIEVED A ∩B A ∩B B

NOT RETRIEVED A ∩B A ∩B B

A A N

Table 3.1: Recall and precision contingency table (Van Rijsbergen, 1979)

22

CHAPTER 3. INFORMATION RETRIEVAL

Three evaluation measures can be defined based on the data in table 3.1. Preci-
sion (equation 3.17) is the fraction of retrieved documents which is relevant.

Precision =
|A ∩B|
|B| (3.17)

Recall (equation 3.18) is the fraction of the relevant documents which has been
retrieved.

Recall =
|A ∩B|
|A| (3.18)

Fallout (equation 3.19) is the fraction of the non-relevant documents which has
been retrieved

Fallout =
|A ∩B|
|A| (3.19)

Recall and precision are common used evaluation metrics for information re-
trieval systems. The average precision at different recall levels (e.g. at 0%, 10%,
...,100%) is called the 11pt precision. In an IR system a good trade off has to be
found between the recall and precision metrics. If al documents in a collection
are returned on a query, recall is 100%, but precision is dramatically low, and
vice versa if none of the documents is returned.

23

Chapter 4

Classification

In chapter 1 we assumed that within the e-mail answer suggestion problem,
similar questions require a similar answer. If we cast the e-mail answer sug-
gestion problem to a text classification problem, this assumption induces that
similar questions should be categorized in the same category (which represents
a standard question). In text classification, the problem is to assign a predefined
category to each document in the collection, based on the example of (manually)
pre-categorized documents. Like in information retrieval, we use words as the
features of a document (we represent them in this chapter as < f1, ..., fn >). In
this chapter we will discuss three approaches to text classification.

4.1 Naive Bayes

Naive Bayes is a rather simple yet effective statistical classification method
which has been widely used for text classification (Gaustad and Bouma, 2002).
Naive Bayes estimates the probability that a given document, containing fea-
tures f1, ..., fn belongs to a class c ∈ C using equation 4.1.

P (c|f1, ..., fn) =
P (c) ·∏n

i=1 P (fi|c)∑
k∈C P (k) ·∏n

i=1 P (fi|k)
(4.1)

The Naive Bayes approach is naive in the sense that it assumes that words (fea-
tures) are independent of one another. This assumption usually is not true, since
words are not completely independent of one another, but estimating the prob-
ability that a certain document (represented by a feature vector < f1, ..., fn >)
should be classified in a certain category, taking into account all the dependencies
between these words is simply not feasible. Using the independence assumption
and Bayes Law1 we can estimate the probability P (fi|c) relatively straightfor-
ward (by counting the number of times feature fi occurs in class c).

1P (c|x) =
P (c)P (c|x)

P (x)
, but since the denominator is constant for all classes, we omit it in equation

4.1

24

CHAPTER 4. CLASSIFICATION

4.2 Support vector machines

Support Vector Machines (SVM’s) are first introduced by Cortes and Vapnik
(1995) and are very suitable for text classification methods (Joachims, 1998).
Joachims treats a text classification problem as a set of separate binary text
classification problems (one for each category). As document representation he
uses words as features, but only if these words occur at least three times and
are not stopwords (like and, of and the), and scales these feature vectors using
inverse document frequency (see section 3.3).

Support vector machines are based on the Structural Risk Minimization princi-
ple, which tries to find a hypothesis h which can guarantee the lowest true error.
The true error of h is the probability that h will make an error on an unseen ran-
domly selected test example (i.e. a random document that should be classified).
SVM’s basically learn linear threshold functions, but can easily be used to learn
more difficult functions like polynomial ones. Typically, a basic SVM may learn
a binary distinction function, visualized in figure 4.1. The support vector ma-
chine relies on the support vectors to separate the data into two groups: one that
belongs to class 1, and one that does not. The support vector machine chooses
it margins as large as possible, and tries to find the Optimum Separating Hy-
perplane (OSH), denoted by the support vectors (using the dashed lines in the
figure), without creating classification errors. Notice that this figure represents
the best case: the data can be separated with no errors (e.g. a dot is not separated
from the crosses, but from the other dots).

X

X

X

X
X

X
X

X

X

X

Support vectors

Data belonging to class 1

Data not belonging to class 1

Figure 4.1: Two-dimensional linear threshold function that can be solved using
SVM’s

A remarkable property of SVM’s is that their ability to learn can be independent
of the dimensionality of the feature space, since they base the complexity of the
hypotheses on the margin they separate the data and not the number of features.
This means that the best set of features are used to separate the data, and not
all features (see figure 4.1).

25

CHAPTER 4. CLASSIFICATION

SVM’s should work well for text categorization because of this independence of
the dimensionality of the feature space and text classifiers have to deal with fea-
ture spaces of over 10000 features. Moreover, most text categorization problems
are linearly separable, and SVM’s try to find such linear separators.

Joachims experimented with SVM’s on the Reuters-21578 dataset (see section
6.2) and found that SVM’s outperformed Naive Bayes (section 4.1), Rocchio (sec-
tion 4.3.1) and K-NN classification (section 4.3.2). Joachims also adjusted his
Support Vector Machines so that they can output a ranked list of results, of which
the most suitable category is placed at the top (Joachims, 1999).

4.3 IR based classification

Sebastiani (1999) describes two distinct approaches for information retrieval
based classification. The first approach clusters all documents belonging to one
category into a single representation and compares these category representa-
tions to the query. The category representation with the highest relevance score
is most likely the category to which the query belongs. Such a classifier is called
a profile-based classifier. The second approach compares the query to every docu-
ment in the document collection and determines the category that is most likely
correct for this query, based on the most relevant documents. E.g. category 1
occurs seven times in the top ten results for a query (new document), so category
1 is most likely the correct category for our new document. Such a classifier is
called an example-based classifier.

4.3.1 Profile based classification

A profile-based classifier is basically a classifier which embodies an explicit, or
declarative, representation of the category on which it needs to take decisions.
Rocchio’s classifier is the foremost example of such a classifier. Rocchio devel-
oped an algorithm for relevance feedback for use in the vector space informa-
tion retrieval model, which can be adapted to serve as a profile-based classifier.
Joachims (1997) describes the use of the Rocchio classifier using TF.IDF weights,
but other weighting schemes may also be used. Recall from section 3.3.1 that
documents are represented by a vector −→dj containing the weights of index terms
(calculated using the TF.IDF weighting scheme). First, the classifier should learn
to classify documents. This is achieved by combining document vectors (of one
category) into a prototype vector −→cj for each class Cj . In this training phase, both
the normalized vectors of the positive examples for a class as well as those of the
negative examples of a class are used. The prototype vector is then calculated as
a weighted difference of the positive and negative examples (as can be seen in
equation 4.2).

→
c j= α

 1
|Cj |

∑
→
dj∈Cj

→
dj

||
→
dj ||

− β

 1
|D − Cj |

∑
→
dj∈D−Cj

→
dj

||
→
dj ||

 (4.2)

26

CHAPTER 4. CLASSIFICATION

Where, α and β are parameters that adjust the relative impact of positive and
negative training examples (recommended to be 16 and 4 respectively). Further-
more, Cj is the set of training documents assigned to class j and ||−→dj || denotes
the Euclidean length of a vector −→dj . Additionally, Rocchio requires that negative
elements of the vector cj are reset to 0. The resulting set of prototype vectors
(one for each class) represents the learned model that can be used to classify a
new document d′ using equation (4.3).

HTFIDF (d′) = arg max
Cj∈C

cos(
→
cj ,
−→
d′) (4.3)

The classification function HTFIDF (H for hypothesis) returns the category that
has the highest similarity score (using the cosine function, but other similar-
ity functions may also be used) with respect to the document to be classified.
This approach can be slightly adjusted to return a ranked list (in decreasing or-
der of similarity) of categories that are suitable for document −→dj by ignoring the
arg max function and ordering the calculated similarity scores for each category
in decreasing order (cut off at a certain threshold if pleased).

4.3.2 Example based classification

Example based classifiers do not build a representation for each category but
use the categorization judgements that experts have given on the training docu-
ments similar to the one to be categorized. Such classifiers are therefore called
lazy learning systems, since they do not involve a true training phase. A com-
monly used algorithm for example-based classification is the K-NN (K-Nearest-
Neighbour) algorithm, implemented by Yang (1994) in the Expert System. The
conditional probability that a document dj is classified in category ck by human
judgement, is given by equation 4.4:

Pr(ck|dj) ≈ #(assign(ck, dj))
#(dj ∈ D)

(4.4)

Where d1, ..., dm are unique training documents and C1, .., Cl are unique cate-
gories. Furthermore, #(assign(ck, dj)) is the number of times category ck is as-
signed to document dj and #(dj ∈ D) is the number of times document dj occurs
in the document collection D. This probability is calculated since a document
may have more than one occurrence in the training sample (at least after text
normalization like stopword removal and stemming). Usually this equation re-
sults in a 0 or 1, indicating a category is or is not assigned to a document. The
relevance score is then calculated (using equation 4.5) by comparing the query
q to all documents dj ∈ D using a similarity measure like the inner product
or cosine, and multiplying the result with the conditional probability calculated
before.

rel(ck|q) ≈
m∑

j=1

sim(q, dj)× Pr(ck|dj) (4.5)

27

CHAPTER 4. CLASSIFICATION

Where sim(q|dj) is the similarity score calculated by the IR component and both
sim(q|dj) and rel(ck|q) are scores, not probabilities. If Pr(ck|dj) is either 0 or 1,
this formula just adds the similarity scores calculated for the document to be
classified and each document in the document collection. To use this classifica-
tion formula for K-NN classification, we can adjust equation 4.5, by summing the
results of only the top K (1 ≤ K ≤ m) documents retrieved by the IR component,
to equation 4.6:

rel(ck|q) ≈
K∑

j=0

sim(q, dj)× Pr(ck|dj) (4.6)

The results of calculating the relevance of a category to a given document (as in
equation 4.6) can be used to return the most relevant document as the category
the new document has to be categorized in, or return a ranking (in descending or-
der of relevance) of categories most suitable for the new document. This ranking
can be cut off at a certain threshold (based on the application and user’s need).

4.4 Evaluation metrics

Yang and Liu (1999) use the F1 measure (initially introduced by Van Rijsbergen
(1979) which combines recall (r) and precision (p) with an equal weight in the
following form:

F1(r, p) =
2rp

r + p
(4.7)

These scores can be computed for the binary decisions on each individual cate-
gory first and then be averaged over categories. Or, they can be computed glob-
ally over all the n×m binary decisions where n is the number of total test docu-
ments, and m is the number of categories in consideration.

Another common measure for classification problems is the classification accu-
racy, which is simply given by the percentage of documents that is correctly clas-
sified. E.g. if 60 of the 100 documents are categorized in the correct category, the
classification accuracy (or simply performance) is 60%. In section 8.1.2 we give a
definition of performance for ranked classification systems (in which the best-n
categories are given in a descending order of relevance)

28

Chapter 5

Natural Language Processing

In our second research hypothesis we stated that the use of natural language
processing (NLP, or language technology) which could be used as a text normal-
ization technique, improves classification accuracy in the e-mail classification
problem. In this chapter we describe seven techniques of NLP that might help
realising this.

5.1 Stopword removal

Zipf ’s law states that the product of the frequency of use of words and the rank
order (if we rank these words in descending order of frequency) is approximately
constant (Van Rijsbergen, 1979), meaning a large part of a text consists of very
few words. Most of these very frequent words are stopwords. A stopword is
a word which does not carry meaning in a natural language (Baeza-Yates and
Ribeiro-Neto, 1999). Typical candidates for stopwords are articles, prepositions
and conjunctions. For instance, in English: of, the, and, a, to, in and in Dutch:
en, de, een, omdat, desalniettemin are typical stopwords.

Eliminating these words should not significantly influence the classification ac-
curacy or retrieval precision, because these words do not carry meaning. More-
over, words occurring in a great amount of all documents, are fairly useless in
information retreival (see chapter 3). However, if we remove stopwords, we typ-
ically obtain a compression in the size of the indexing structure of 40% (e.g. in
the inverted file index in section 7.3).

Stopword removal can simply be implemented by using a stopword list. If a
word occurs in this list, we remove it from the document (or simply do not use
it in indexing and classification). Despite the benefits, stopword removal might
reduce recall in IR systems (and accuracy in classification systems), for instance
if the search query for Shakespeare’s work is denoted by only the famous quote
to be or not to be. Eliminating stopwords from that query only leaves the word
be, making it very difficult to find relevant documents to this query.

29

CHAPTER 5. NATURAL LANGUAGE PROCESSING

5.2 Stemming

Kraaij and Pohlmann (1996) have investigated the effect of stemming of docu-
ment and query terms in information retrieval systems. Stemming is the pro-
cess of mapping different morphological variants (word forms) to a single stem
(e.g. swimming and swimmer can both be reduced to their stem swim). Kraaij
and Pohlmann state that by reducing the morphological variance of terms (e.g.
mapping single and plural forms of the same word on a single stem), researchers
hope to improve the query-document matching process. They specifically investi-
gated the effectiveness of suffix striping for the Dutch language and what effect
the use of more linguistically motivated stemming techniques would have.

5.2.1 Suffix striping and the Dutch Porter stemmer

Suffix striping is one of the simplest stemming techniques. It uses a list of fre-
quent suffixes and a set of rules to reduce words to their stem. Examples of a
such a stemmer are the Lovins Stemmer (Lovins, 1968) and the famous Porter
stemmer (Porter, 1980). For English, the use of stemming is somewhat controver-
sial: according to Harman (1991), who investigated the Lovins stemmer, Porter
stemmer and the S-stemmer1, none of these algorithms consistently improved
performance. In the morphologically more complex language Slovene, Popovic
and Willet (1992) found more favourable results of Porter-like stemming. How-
ever, translating the Slovene corpus to English, and applying stemming to the
translated corpus did not improve retrieval, confirming Harmans conclusion. Fi-
nally, Hull (1996) shows that a more detailed evaluation, focussed on recall, does
reveal significant improvement, even for English.

Kraaij and Pohlmann (1994) have developed a stemmer for the Dutch language
based on Porter’s stemming algorithm. Porter’s algorithm is based on a series
of steps that each remove a certain type of suffix by way of substitution rules.
These rules only apply when certain conditions hold, e.g. the resulting stem
must have a certain minimum length. The original Porter stemmer only treats
suffixes, but the Dutch Porter stemmer also deals with the pre- and infixes ge,
which is introduced in most Dutch past particles (e.g. in gezwommen, English:
swum). The use of the Dutch Porter stemmer in an information retrieval system
increases recall, but at the cost of precision.

5.2.2 Dictionary based stemming

A Porter-like stemming algorithm is easy to implement and less time-consuming
in processing the documents, but also brings along a lower stemming accuracy.
Nevertheless, this type of stemming is usually sufficient for information retrieval
systems. To increase stemming accuracy, a dictionary based stemmer may be
used, either with or without a stemming algorithm as backup (in case no dictio-
nary entry is found).

1a simple stemmer conflating single and plural word forms

30

CHAPTER 5. NATURAL LANGUAGE PROCESSING

Gaustad and Bouma (2002) have developed a dictionary based stemmer with a
rule-based backup that outperforms the Dutch Porter stemmer in terms of accu-
racy, without being substantially slower. The dictionary based stemmer they use
is based on the Celex database (Baayen et al., 1993) and yields a stemming ac-
curacy of 96.27%, while the Dutch Porter stemmer yields an accuracy of 79.23%.
In their experiments on e-mail classification, both dictionary based and Dutch
Porter stemming do not significantly improve or worsen the classification re-
sults. Experiments on a Dutch news articles corpus taken from De Volkskrant
showed that stemming did not have clear effect on classification accuracy, and
differences between the Dutch Porter stemmer and the Dictionary based stem-
mer remain small.

5.3 Spelling correction

Spelling suggestion and spelling correction are common used tools in word pro-
cessing programs, and can also be used to correct spelling errors in incoming
e-mail in the contact centre. If a misspelled word occurs in an e-mail, determin-
ing if mails are similar becomes more difficult since the spelling of the words
differs (even though the same word is meant). Jurafsky and Martin (2000) de-
scribe several techniques to detect and correct spelling errors, which will be dis-
cussed in this section. Of all misspelled words, 80% are caused by single-error
misspellings, in particularly one of errors below:

insertion: mistyping the as ther
deletion: mistyping the as th
substitution: mistyping the as thw
transposition: mistyping the as hte

5.3.1 Probabilistic models of spelling correction

Probabilistic models of spelling correction are based on the Noisy Channel model
(Jurafsky and Martin, 2000). The input of this model is the correct spelling of
a word, which is transformed into a misspelled word by transportation through
the noisy channel (e.g. a human being by mistyping a character). Such a channel
introduces “noise” which makes it hard to recognize the correct (and intended)
word. The goal of probabilistic models for spelling correction is to figure out the
correct sequence of letters for a word, based on the “noisy” representation of that
word. The most used probabilistic model for such problems is based on Bayesian
Inference, which can also be used for classification problems (as a Naive Bayes
classifier, see section 4.1).

As an example we use the approach of Kernighan, Church, and Gale (1990),
who assume that the correct word will differ from the misspelling by a single
insertion, deletion, substitution or transposition (which should cover most of the
misspellings). First of all, we need to detect words that have most likely been
misspelled, for instance by searching a dictionary (notice that this method only
works for non-word spelling errors, i.e. where the mistyped word is not a real
word any more like hte for the). As an example of all transformations they use

31

CHAPTER 5. NATURAL LANGUAGE PROCESSING

Typo Correction Transformation
acress actress @ t 2 deletion
acress cress a # 0 insertion
acress caress ac ca 0 transposition
acress access r c 2 substitution
acress across e o 3 substitution
acress acres s # 4 deletion

Table 5.1: Example of possible corrections of the word acress (Kernighan et al.,
1990)

the word acress in table 5.1, for instance, the correct word actress could be trans-
formed by replacing the t with nothing (@) at position 22.

The second stage of the algorithm scores each correction by use of equation 5.1.
Let t be the typo, and let c range over the set C of candidate corrections. The
most likely correction is then given by equation 5.13.

ĉ = arg max
c∈C

P (t|c)P (c) (5.1)

The statistical data for estimating P (c) is collected by counting the number of
occurrences of word c in a corpus, but he statistical data for estimating P (t|c)
(likelyhood of the typo) is more difficult to estimate. This estimation is based
on the number of times that character e was substituted for character o in large
corpora, providing an estimate for P (acress|across).

If real word errors (the intended word is transformed in another correct word,
like dessert into desert) should also be corrected, context-sensitive spelling error
corrections should be used (for more information we refer to Jurafsky and Mar-
tin, 2000). It is estimated that 15% of the single typographical errors produce
valid English words.

5.3.2 Levenshtein Distance

Using the Levenshtein Distance, we can also detect and correct misspelled words
of which more than one letter is misspelled (unlike Kernighans approach). The
Levenshtein distance between two words is the minimum number of editing op-
erations (insertion, deletion and substitution) needed to transform one word into
the other (Jurafsky and Martin, 2000). Each operation is assigned a weight (usu-
ally 1) For example, the distance between intention and execution, using a weight
of 1 for all operations, is 5:

2The symbols @ and # represent nulls in the typo and correction respectively. The transformations
are named from the point of view of the correction, not the type

3Bayes equation normally has a denominator: arg maxc∈C
P (t|c)P (c)

P (c)
, but since the denominator

is constant for all c ∈ C, it is omitted

32

CHAPTER 5. NATURAL LANGUAGE PROCESSING

intention
1 delete i tention
2 substitute n by e etention
3 substitute t by x exention
4 insert u exenution
5 substitute n by c execution

The best suggestion for the misspelled word is that of which the Levenshtein
distance is lowest. For more complex Levenshtein models, we can also use prob-
abilities that estimate the cost for each operation (similar to Bayes inference for
spelling correction).

5.4 Language identification

Language identification is the process of determining the language of document,
a sentence or even a word. Cavnar and Trenkle (1994) use N-grams for language
identification, which is a process of text classification in which documents should
be categorized in languages. They define an N-gram as an N-character slice of
a longer string (for contiguous slices). For instance, the word text is composed
of the following N-grams (in which we use the underscore character to represent
blanks):

bi-grams (N = 2) T , TE, EX, XT, T
tri-grams (N = 3) TE, TEX, EXT, XT , T
quad-grams (N = 4) TEX, TEXT, EXT , XT , T

Cavnar and Trenkle use a corpus for each different language, in which they count
the occurrences of all possible character N-grams. This statistical information
is needed to calculate the probability that a document (or word or sentence) is
written in a certain language, by using Markov Chains: An N-gram is actually
an N-th order Markov Chain (Jurafsky and Martin, 2000).

In order to estimate the probability that a certain word belongs to a certain lan-
guage without using very large dictionaries for each language, we can use char-
acter sequences that are specific to languages. Therefore, we take a corpus for
each language, and collect statistical information of all possible character se-
quences, from which we can estimate the probability that a word belongs to the
specific language by using equation 5.2 (cn

1 represents a character sequence of n
characters and 5.2 is simplified using the chain rule).

P (cn
1) = P (c1, c2, ..., cn−1, cn) =

P (c1)P (c2|c1)P (c3|c2
1)...P (cn|cn−1

1) (5.2)

Since we are not able to create corpora large enough to store all possible charac-
ter sequences for a certain language, we estimate the probability following the
assumption that the probability that a character occurs, is only based on the
preceding N characters. Such an approximation model is called an N-th order
Markov Chain and is modelled by equation 5.3

33

CHAPTER 5. NATURAL LANGUAGE PROCESSING

P (cn
1) =

N∏

k=1

P (ck|ck−1
1) (5.3)

If we assume that the occurrence of a character is only dependent of the preced-
ing two characters (for which we model N-grams of a length of 3) we can model
the probability that a certain character occurs using the 3-th order Markov Chain
from equation 5.4.

P (cn
1) =

N=3∏

k=1

P (ck|ck−1
1) = P (c1)P (c2|c1)P (c3|c2, c1) (5.4)

N-th order Markov Models can be used in information retrieval and text classifi-
cation to estimate the probability that a word is from a certain language. If this
probability does not exceed a certain threshold (e.g. 0, which indicates that a
certain character sequence does not occur in that language corpus), we could opt
not to index this word, neglecting it in the retrieval or classification process (just
like stop words).

5.5 Decompounding

Dutch (like German, Finnish and Swedish) is a compounding language, mean-
ing words may be formed by concatenating other words in a productive process.
For instance a board meeting is called a directievergadering in Dutch, which is
a concatenation of directie (English: board) and vergadering (English: meeting).
An agenda for this meeting may be called a directievergaderingsagenda, which
is a concatenation of directievergadering (English: board meeting) and agenda
(English: agenda). Such words may occur in a text as a compound but may also
occur as a sequence of standalone words. Decompounding (or compound split-
ting) is not really an issue in English, since almost all compounds are separated
by a white space (for instance: White House, computer science and peace agree-
ment. Some exclusions are breathtaking, fingerprint and whereabouts, but such
compounds are usually not represented as a sequence of standalone words (e.g.
print of a finger for fingerprint).

Chen (2002) performed several experiments with compound splitting in Dutch
and German in his research on Cross Language Information Retrieval. Chen
experimented with a test set of 750,000 news articles categorized in 50 topics.
Each topic consists of three parts: A title, a description and a narrative. For the
monolingual information retrieval experiments in German, Chen used a test set
of 1938 news articles categorized in 50 topics. For the experiments in Dutch,
he used a test set of 1862 news articles categorized in 50 topics. For these ex-
periments only the titles and descriptions of the articles were used. For mono-
lingual information retrieval (MLIR) in German, decompounding caused an in-
crease of 11.47% in average precision and an increase of 16.04% in recall. For
Dutch monolingual information retrieval, decompounding caused an increase in
average precision of 4.10% and an increase in recall of 3.91%. Moreover, the

34

CHAPTER 5. NATURAL LANGUAGE PROCESSING

combination of stemming and decompounding improved the average precision
for German MLIR with 26.89% and recall with 24.79%, as for Dutch MLIR, this
combination improved the average precision with 10.57% and recall with 4.55%.

Monz and De Rijke (2001) show in their experiments for CLEF 2001, that de-
compounding in Dutch MLIR increases the average precision with 6.1% and in
German MLIR with 9.6%. Like Monz and De Rijke, we use the Dutch lexicon
of Celex to implement a compound splitter in the e-mail classification system.
The compound splitter replaces a compound word with the standalone words the
compound is built of in all documents of the collection. A (Dutch) fragment of the
decompounding lists from the Celex Lexicon is given below (each word at the left
side is split in the words between the brackets):

schoolrapport [school & rapport]
schoolrapporten [school & rapporten]
schoolrecht [school & recht]
schoolrecord [school & record]
schoolrecords [school & records]
schoolregel [school & regel]
schoolregels [school & regels]

5.6 Part of Speech tagging

Part of speech (POS) tagging is the process of assigning a part of speech (also
known as word class or morphological class) to each word in a corpus (or docu-
ment) (Jurafsky and Martin, 2000). POS tagging is an important building block
for language technology in the sense that it gives a significant amount of infor-
mation about the word and its neighbours. For instance, a personal pronoun (I
,she or he) is usually followed by a verb (e.g. I am), while a possessive pronoun
(my, his or hers) is usually followed by a noun (e.g. my bicycle). For information
retrieval and text classification techniques, POS tagging can be used to enhance
stemming accuracy (since we know the morphological affixes a word can take if
we know its word class) and may help in feature selection (e.g. a noun is usually
more meaningful than an adverb). The most difficult aspect of POS tagging is
to cope with ambiguous words like book, which can be used as a noun (a science
book) or a verb (book me a flight to Tokio). The result of POS tagging a simple
sentence like The grand jury commented on a number of other topics, may look
like:

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT
number/NN of/IN other/JJ topics/NNS

in which tags are preceded by a slash, DT is a determiner, JJ is an adjective, NN
a singular noun, VBD a verb in past tense, IN a preposition and NNS a plural
noun. We can roughly distinguish two types of POS taggers: rule based taggers
and stochastic taggers, which will briefly be discussed below (using Jurafsky and
Martin, 2000).

35

CHAPTER 5. NATURAL LANGUAGE PROCESSING

5.6.1 Rule based tagging

Rule based POS tagging systems are usually based on a two-stage architecture.
The first stage uses a dictionary to list all potential parts-of-speech for each word
in the input sentence, while the second stage uses hand-written disambiguation
rules to winnow down this list to a single part-of-speech for each word. In the
next stage, a set of about 1100 constraints are applied to the input sentence to
rule out incorrect parts-of-speech. For instance, a certain tag (or tag collection)
may be ruled out if the concerning word is succeeded or preceded by a word from
certain word class.

5.6.2 Stochastic tagging

Stochastic tagging (like a Hidden Markov Model (HMM) tagger) uses probabili-
ties to estimate the word classes for the words of a sentence. For a given sentence,
HMM taggers choose the tag with the highest probability based on the probabil-
ity that a word occurs and the probability that a word from a certain word class
may occur, given the previous n word classes (meaning that we choose the most
probable tag sequence for a sentence). A bi-gram (n = 2) tagger chooses the
the tag ti for word wi that is most probable given the previous tag ti−1 and the
current word wi, resulting in equation:

ti = arg max P (tj |tj−1)P (wi|tj) (5.5)

For instance, if we us a bi-gram model, and we have to determine whether the
tag for the word race should be noun (NN) or verb (VB) if it is preceded by the
word to (word class TO), we can use the next two probabilities:

P (VB|TO)P (Race|VB) (5.6)

P (NN|TO)P (Race|NN) (5.7)

In equation 5.6 we assume that race is a verb, and in equation 5.7 we assume it
is a noun where the probabilities are calculated by multiplying the probability
that race is a noun with the probability that a noun is preceded by to.

Stochastic POS taggers are machine learning algorithms and should be trained
before they can be used to determine the correct tags for an input sentence. Su-
pervised learning is the most common training technique for machine learning
algorithms, but also the most labour intensive one since a corpus should be man-
ually annotated to be used as training material. However, unsupervised training
of an HMM model is also possible, enabling training on unlabelled data. These
taggers start with a dictionary which lists all potential tags for each word, and
use the Expectation Maximization (EM) algorithm to learn a likelihood function
for each tag, and the tag transition probabilities. However, experiments show

36

CHAPTER 5. NATURAL LANGUAGE PROCESSING

that HMM’s trained on manually tagged data outperform those that use unla-
belled data and EM training. We refer to Jurafsky and Martin (2000) for more
detailed information on Hidden Markov Models and EM training.

5.6.3 Transformation based tagging

Transformation based tagging (also called Brill tagging) is an instance of the
Tranfsormation Based Learning (TBL) approach to machine learning (for more
information we refer to Brill, 1995), and is based on both rule-based and stochas-
tic tagging methods. The TBL tagger is based on rules that specify which tags
should be assigned to which words, like the rule based taggers. But like the
stochastic taggers, TBL is a machine learning technique in which rules are auto-
matically induced from the data. TBL uses a set of tagging rules in the following
way: The corpus is first tagged using the broadest rule (i.e. the rule that applies
to most cases), then a slightly more specific rule is chosen which changes some
of the original tags and next an even narrower rule is chosen, which changes a
smaller number of tags (some of which may be changed previously).

Brill’s TBL algorithm has three major stages. First, it labels every word with
its most likely tag. It then examines every possible transformation and selects
the one that results in the most improved tagging. Finally, it re-tags the data
according to this rule. These three stages are repeated until some stopping crite-
rion is reached (e.g. insufficient improvement over the previous pass). In order to
complete stage 2, TBL needs to know the correct tag of each word, and is there-
fore called a supervised learning algorithm. Templates are used to re-tag words
based on the tags of other words (like “Change tag a into tag b if the preceding
word is tagged z”).

5.7 Semantic clustering

Thus far, the language technology discussed in this thesis focussed on syntax
only, but we could also consider using semantics in our classification system.
Text categorization might benefit from using synonyms or semantic concepts (e.g.
motor cycle and car are both instances of the concept motorised vehicles) (which
is a hypernym of both), enabling us to relate different words with the same or
similar meaning.

Rosso et al. (2004) has experimented with the use of WordNet senses as index
terms, instead of just using the words in a document. WordNet4 is a lexical
database in which English nouns, verbs, adjectives and adverbs are organized
into synonym sets (called synsets), each representing the underlying lexical con-
cept as basic building blocks. Wordnet uses 200,000 English terms and 600,000
links to represent semantic relations between words (such as antonyms, hy-
ponyms, hypernyms and synonyms). They found that indexing WordNet synsets
instead of terms, slightly improved classification accuracy using K-NN classifi-
cation (with K = 30), on a dataset of 20,000 newsgroup postings, divided in 20

4Freely available at http://wordnet.princeton.edu/

37

CHAPTER 5. NATURAL LANGUAGE PROCESSING

distinct newsgroups.

Gomez et al. (2004) also experimented with concept indexing using WordNet
synsets, and were not able to prove that concept indexing is better than the
bag-of-words approach for text categorization. For their experiments, they used
the Semcor corpus, which is a subset of 250,000 words and 15 categories, of the
Brown Corpus.

38

Chapter 6

Approach

In this section we will present the approach we have chosen to prove our hy-
potheses. The theoretical basis for our approach has already been discussed in
chapters 3, 4 and 5. Since we claim that information retrieval based classification
approaches outperform the approach Em@ilco currently uses for answer sugges-
tion (hypothesis 1), we begin this chapter with a brief outline of the approach of
Em@ilco.

6.1 Current Em@ilco approach

Em@ilco has developed the Q.mail//box to enable companies to manage their e-
mail correspondence with customers. All incoming e-mail is sent to the contact
centre agents who are responsible for answering it. This system also features a
routine for suggesting possible answers from a Question/Answer database. For
every incoming e-mail, the Q.mail//box searches suitable answers in the Ques-
tion/Answer database, based on manually determined keywords. A set of key-
words is defined for every standard question of the database by the content
manager of the system, and every new e-mail is checked by the system on the
presence of these keywords. The keywords that are found in the new mail are
compared to the predefined keyword sets of every standard question and the
question that has most keywords in common with the new mail, probably leads
to the best suitable answer for this mail. Results are ranked in decreasing or-
der of the number of keywords they have in common with the new e-mail. An
example: if a new e-mail has four keywords in common with standard question
1, three with standard question 2 and one with standard question 3, the answer
associated with standard question 1 gets a score of 100%, the answer of standard
question 2 a score of 75% and the answer of standard questio 3 a score of 25%.

The main disadvantage of this method to suggest possible answers is that the
keyword sets associated to each standard question are defined by a human con-
tent manager, and not by an algorithm. This could still lead to good results if
the QA database is small (e.g. about 20 Question/Answer pairs), but when more
QA pairs exist, it is very difficult to define accurate keyword sets that are dis-

39

CHAPTER 6. APPROACH

Characteristics Reuters Busemann Our corpus
Document type news e-mail e-mail
Language English German Dutch
Total nr. of documents 21,578 5,008 30,828
Used nr. of documents 13,321 4,777 16,198
Total nr. of categories 135 74 143
Used nr. of categories 120 47 37
Average document length 129 words 60 words 80 words

Table 6.1: Comparison of two e-mail corpora with the Reuters corpus

tinctive enough. Also, the ranking algorithm can be very deceptive because if,
for instance, the suggested answers all have two keywords in common with the
new mail, all suggestions get a score of 100%. Such a score suggests that the
suggested answer must be the correct one, but this decision should not be made
on two (possibly unimportant) keywords.

6.2 E-mail corpora

Busemann et al. (2000) have developed the ICC-mail system: an e-mail answer
suggestion system that can be used in a contact centre environment (see chapter
2). They use a corpus of 4,777 e-mails and 74 categories (not all categories are
used). They compare their e-mail corpus with the Reuters1 corpus (containing
small news documents) which is often used in benchmarking tests. Table 6.1 dis-
plays the differences between Busemanns corpus, the Reuters corpus (TOPICS
test set containing 13.321 documents) and the corpus used in this research. The
TOPICS test set of the Reuters corpus contains news messages in the economic
domain, where 120 of the 135 categories contain one or more documents. In
Busemanns corpus, a category is used if it contains at least 30 documents, which
cover a total of 94% of all documents in the collection.

The e-mails available for this research have been collected in a contact centre
environment for a Dutch national lottery. The collected corpus consists of ap-
proximately 28,000 e-mails, from which we can use almost 17,000 e-mails (for
detailed information we refer to section 8.1.1).

As can be seen in table 6.1, these three corpora differ a lot from each other, but
we can derive some useful relations between the e-mail corpus of Busemann and
ours. Let us first point out the main difference between an e-mail corpus an a
corpus like Reuters. The Reuters corpus (mostly) contains morphologically and
syntactically well formed documents, whereas an e-mail corpus usually contains
spontaneously created and informal documents, requiring researchers to cope
with a large amount of jargon, misspellings and grammatical inaccuracy (Buse-
mann et al., 2000). Besides the fact that both e-mail corpora deal with e-mail,
there are also similarities between both languages, as the Dutch and German
language are very alike.

1available at http://www.daviddlewis.com/resources/testcollections/reuters21578/

40

CHAPTER 6. APPROACH

6.3 Problem analysis

In chapter 1 we presented a brief introduction on the approach we use to prove
our hypotheses. First of all, we are going to cast the e-mail answer suggestion
problem to a text classification problem by using the standard question/answer
pairs as categories and the new and previously answered e-mails as documents.
If we are able to categorize a new e-mail message in one of the question/answer
categories, we can use the corresponding answer as a suggestion. The use of text
classification methods for e-mail answer suggestion introduces three important
aspects we should keep in mind when we choose an approach to follow.

Because e-mail is such an easily accessible means of communication, e-mails are
often unstructured and informal texts in which spelling errors and grammati-
cally inconsistencies occur quite often.

Moreover, some people may pose their question straight out because they know
what information they want, resulting in very short and accurate messages.
However, other people may describe their problem or question very elaborately,
because, for instance, they cannot pinpoint the cause of the problem, or are inca-
pable of describing the problem or question briefly. Such large e-mail messages
may contain lots of information that does not help at all in automatically finding
the correct answer, since overlap with other categories may occur due to the wide
scope of words that are used. Therefore, we have to consider the varying message
length in choosing our approach.

The last important aspect of this problem is the level of detail of the classes we
wish to categorize our e-mail in, with respect to a document classification system
in which topics of the documents are used (e.g. sports, finance, culture, etcetera).
In contact centres like the one used in this thesis, distinct questions about the
same topic may be posed: for instance a customer may want to cancel all tickets
(stop the lottery), or may want to cancel just 1 ticket (both questions are about
the topic “cancelling lottery tickets”).

6.4 Classification

The idea behind this research was that we should be able to provide relevant
answer suggestions to incoming e-mail, based on similar e-mail that has been
previously answered. We stated that if we could find similar messages (i.e. like
finding relevant documents using a search engine), we could use these in order
to select a relevant answer. Such IR-based approaches have been extensively
investigated for text categorization using the Rocchio classifier (section 4.3.1)
and K-Nearest-Neighbour classification (section 4.3.2).

In chapter 4 we also discussed two other classification approaches that perform
good on text classification problems: Naive Bayes (4.1) and Support Vector Ma-
chines (section 4.2). Naive Bayes tries to estimate the probability that a cer-
tain feature vector belongs to a given category, based on the probability that all
distinct features from the vector (words in a document) belong to a given cat-
egory. Support Vector Machines learn a threshold function to separate data in

41

CHAPTER 6. APPROACH

a high-dimensional space using an error minimization algorithm. Since Naive
Bayes and Support Vector Machines have already been proven suitable for e-
mail answer suggestions (respectively by Gaustad and Bouma (2002) and Schef-
fer (2004)), and we would like to pursue our hypothesis that answers could also
be suggested using information retrieval based techniques, we will try to classify
e-mail using the Information Retrieval Based classification approach. Within
this IR-based approach, it would be interesting to see if a profile based classi-
fier (like Rocchio) or an example based classifier (like K-NN) performs best on
this specific classification problem. Yang (1999) showed that the K-NN classifier
outperforms the Rocchio classifier, and the Naive Bayes classifier on the Reuters
dataset, with 85% accuracy for the K-NN classifier, to 75% and 71% for Rocchio
and Naive Bayes respectively, on version 3 of the Reuters dataset.

The Rocchio classifier builds a profile for each category and tries to match new
messages to these profiles. Such a profile is a unique representation consisting of
keywords that are specifically interesting for the category which is represented
by the profile. Yang (1999) explains that the weakness of the Rocchio classifier
is the assumption of one centroid (profile) per category, which is why Rocchio
does not perform well when the documents belonging to category naturally form
separate clusters. Most likely, this is not the case in our email classification
problem, since the documents in a category are all about the same question.

The K-NN classifier tries to classify a new message by finding the K most rele-
vant messages that have previously been answered. From these K most relevant
documents, the similarity scores for each corresponding category are summed,
and the category with the largest sum is the best suggestion.

For the IR-based classification approach we will investigate the use of the
TF.IDF weighting scheme, the Okapi weighting scheme and the Cosine and In-
ner Product similarity measures. Both combinations Okapi/Inner Product, and
TF.IDF/Cosine have normalization routines for document length, which can be
used to compensate for the difference in message lengths in our e-mail classifica-
tion problem.

6.5 Language Technology

Language technology can be used as a text normalization process prior to the
classification process. Using language technology, we try to compensate for the
lack of structure in e-mails and the possibility of grammatically incorrectness
and spelling errors. For our language technology experiments we use the Ling-
ware tool-kit implemented by Carp Technologies. For this research they have
kindly made available a tool-kit which incorporates stemming, part-of-speech
tagging and spelling correction.

6.5.1 Lexical normalization

The first process in which we use (very simple) language technology is lexical
normalization. In this step we try to normalize the e-mail by removing unwanted

42

CHAPTER 6. APPROACH

characters and strings. Because in typing text the use of diacritics (like é or ñ)
is somewhat laborious, most people tend to omit them. Therefore we translate
them to the same character without diacritics (e.g. é becomes e). Because we are
working with an e-mail corpus consisting of questions about a lottery, we opted
to neglect the use of numbers. Because the lottery tickets use zip codes, parts of
these numbers are not unique, but have a very distinctive power (resulting in a
high relevance weight). We assume that the use of these numbers is independent
of the question that is asked (lots of customers might mention the lottery ticket
number, but it is not needed for determining the question) since we do not want
a document to receive a high relevance score just because of this ticket number.

Some of the incoming e-mail messages are submitted using a web form. This
web form is then e-mailed to the contact centre, and uses a standard layout with
meta-information about the message. This meta-information (like the date it
is sent) and the layout tags are removed from the e-mail message since they
do not attribute to the intentional meaning of the message. Also, e-mail ad-
dresses are removed from the original message, because classification based on
the occurrence of an e-mail address might cause a problem if the customer has
sent multiple e-mails, containing different questions). Finally, we remove all
non-alphabetical characters, because they might disturb the tokenization pro-
cess and transform all characters to lower-case to ensure equal representation of
equal words. This results in a representation of each word that may only contain
lower-case characters (’a’,...,’z’).

After the lexical normalization, the input is sent to the Lingware tool-kit. The
Lingware tool-kit performs best if it receives full sentences as input, for disam-
biguation using Part-of-Speech tagging (see section 5.6). The tool-kit also pro-
vides routines for stemming and spelling correction. The last stage is to tokenize
the output of the tool-kit, resulting in a bag-of-words (BOW) representation for
each document.

6.5.2 The use of language technology for classification

The use of language technology in IR and classification is two-fold. Language
technology like POS-tagging, Language identification and stopword removal are
feature selection routines. The nature of these technologies is to eliminate words
that are not relevant for the classification of a document and provide a reduc-
tion in the feature space. By eliminating non-relevant words (like stopwords or
prepositions), the classification process may focus on the relevant words only and
may result in a higher classification accuracy. Language identification can also
be used as a feature selection technique, by eliminating all words that do not
belong to a language. The danger of applying such feature selection techniques
is that we accidentally may eliminate words that actually were important (or
relevant) for the classification process.

The second reason to use language technology has a more statistical nature. In
classification (and IR) we usually base the similarity of documents on the words
that occur in them. However, a document in which the word House occurs ten
times, may be just as relevant to a query as a document in which the word
Houses or Home occurs ten times. Our classification approaches are only able

43

CHAPTER 6. APPROACH

to relate terms that are syntactically equal. To compensate for the incapability
of these classification approach to relate semantically equal, but syntactically
different terms, we can use language technology like stemming, spelling correc-
tion, decompounding and semantic clustering. All of these language technologies
determine a basic representation of different morphological variants of equal or
related words. For example, the words swimming and swum can be represented
as the basic form swim by applying stemming. Semantic clustering might relate
the words cows and cattle (which is a hypernym of cows). Spelling correction also
maps different morphological variants of a word to a basic representation (i.e.
the correctly spelled word). The benefit of applying such language technologies
is that more documents may be found relevant, which results in more candidates
for the classification process (which is based on relevant documents). However,
applying such techniques not necessarily results in a better classification result.
By applying these techniques we substitute a group of words (different morpho-
logical variants or semantically related words) with a more general representa-
tion. In IR this results in a higher recall, but usually at the cost of precision.
In a classification problem, we may argue that the representation of such words
has become to general, which hinders the classification process because the small
differences between relevant and irrelevant documents may diminish. In chap-
ter 8 we will experiment with the application of such language technologies to
determine if they improve the classification results.

6.5.3 Stopword removal

Stopwords are meaningless words that usually occur very often in texts (some
exceptions are accordingly and whomever, which do occur that often). Because
these stopwords do not carry meaning, they are not important for the classifica-
tion process. The fact the most stopwords occur in many documents, causes their
assigned relevance scores to be rather low, which makes the impact of such words
on the classification process relatively small. However, the influence of stopwords
on the classification process should not be neglected, because the relevance score
is not equal to zero. Removing stopwords has the benefit that it reduces the
feature size and in doing so, speeds up the indexing and classification process.

6.5.4 Language identification

Using N-grams (see section 5.4) we can estimate the probability that a word is
part of a certain language, based on character sequence of the word and common
character sequences in a given language. Normally, language identification is
a text classification problem in which documents should be categorized in one
of a set of languages, based on the largest probability. Our e-mail classification
problem uses just one language, so we cannot really compare the results amongst
a set of languages. Therefore, the probability that a word is part of the given
language should exceed a certain threshold value.

In our classification system we use a 5-th order Markov Chain (the occurrence of
a character depends on the preceding 4 characters) with a threshold of zero. The
threshold implies that if a certain sequence of 4 characters of a word does not

44

CHAPTER 6. APPROACH

occur in our language corpus, we classify it is as not being Dutch2. The language
corpus is based on the 800,000 most frequent words from the “Corpus Gesproken
Nederlands” (English: Dutch Spoken Corpus, Oostdijk, 2000).

6.5.5 Part-of-speech tagging

Part-of-speech (POS) tagging has proven to be very useful in language technol-
ogy and information retrieval, due to its use for disambiguation of terms. Equal
words (e.g. bank) may have multiple meanings based on the word class (e.g. as
a verb to bank has a different meaning than the noun bank). In the e-mail clas-
sification problem we use POS tagging for disambiguating words before they are
stemmed and to select features (words) from documents. Words from some word
classes carry more meaning than words from other word classes. Words from
open word classes3 (nouns, verbs, adjectives and adverbs) carry more meaning
than words from closed word classes. Kraaij and Pohlmann (1996) stated that
the majority of the successful query terms for an IR system in a collection of
newspapers are nouns (58%), followed by verbs (29%) and adjectives (13%), while
other categories are negligible.

For feature selection using the POS tagger, we only use nouns, verbs and adjec-
tives, following the findings of Kraaij and Pohlmann. The POS tagger we use
is implemented in the Lingware tool-kit and may be called an “unsupervised
transformation based tagger”. Such a tagger (described in section 5.6) is error
driven, uses both stochastic and rule based tagging methods and does not need a
manually pre-tagged corpus for learning.

6.5.6 Stemming

Recall from section 5.2 that stemming replaces different morphological variants
of a word with the stem of that word. If a set of documents are all about the
same topic (or pose the same question in our problem), but use different morpho-
logical variants (like swimming, swum, swam and swim), a classification method
is unable to relate the documents based on these terms. If we apply stemming,
all documents from this set now contain the same morphological variant of that
word (i.e. swim) and can be related. Gaustad and Bouma (2002) found that
stemming did not improve classification accuracy for the Naive Bayes classifica-
tion method for e-mail classification. However, since stemming has proved itself
useful in other text-classification approach, and moreover, we are using differ-
ent classification methods, we will investigate the influence of stemming on the
classification accuracy.

Since dictionary based stemming yields best stemming accuracy (Gaustad and
Bouma, 2002), we decided to follow this approach. The stemming routine in the
Lingware tool-kit uses a dictionary for stemming. If a word could not be found

2The probability that such a sequence belongs to a given class is 0, causing the probability that a
word is from that class is also 0. Because of this, no smoothing techniques are used

3Open word classes are classes that do not have a fixed membership: new words may be added
(for example by borrowing them from other languages)

45

CHAPTER 6. APPROACH

in the dictionary, the stemming routine uses similar words (i.e. with the same
ending and word class) for which the stemming procedure is known, and applies
the same procedure to the unknown words.

6.5.7 Spelling correction

E-mails may contain spelling errors and typos, which obviously does not help in
retrieving an e-mail, let alone classifying it, based on the correct spelling of the
word. Ideally, we would process an e-mail in such a way that all spelling errors
are corrected. Unfortunately, spelling correction is a very difficult process, which
may introduce more errors than it corrects, resulting in a decrease of accuracy
for the classification methods. For instance, if a misspelling is very common in a
certain language, e.g. actress is written as acress, chances are that many e-mails
contain this specific misspelling if the intention was to write actress. Since many
e-mails contain this misspelled word, and some of them have been manually
classified in the correct category, the classifier may have learned to classify this
misspelled word in the correct category. However, if a spelling correction routine
changes the spelling to across (both words have a Levenhstein distance of 1),
the classifier has much more difficulty with categorizing the document, because
across is a very frequent word. The biggest weakness of spelling correction rou-
tines is that they may correct words that are not misspelled (e.g. proper nouns
or jargon), but just do not occur in the dictionary. In the case of proper nouns
or jargon, this probably causes a decrease in classification accuracy, since these
words tend to be very important for distinction of documents, and therefore for
the classification process.

We are going to investigate the influence of spelling correction on the classifica-
tion accuracy using the Lingware tool-kit. This tool-kit has a routine for spelling
correction, based on N-grams (thus it is context based), Levenhstein distance and
models of common made typing errors.

6.5.8 Decompounding

Decompounding or compound splitting, is a specific language technology often
very useful for compounding languages like Dutch, German or Finnish. The pos-
sible usefulness of compound splitting in a Dutch information retrieval or clas-
sification system, is that such compounding words may be written as one whole
(directiesecretaresse, English: secretary of the board) or as a series of standalone
words (secretaresse van de directie). An IR or classification system that does not
use semantics is not able to relate these two terms, unless the compound is split.

As described in section 6.5.2, splitting compounds does not necessarily result in
better classification results. Suppose a customer poses the question “Ik probeer
via de telefoon iets te vragen over mijn internetverbinding” (English: I am trying
to pose a question via the telephone about my internet connection) and another
customer poses the question “Ik probeer via internet iets te vragen over mijn tele-
foonverbinding” (English: I am trying to pose a question via the Internet about
my telephone connection). If we split the compounds telefoonverbinding and in-

46

CHAPTER 6. APPROACH

ternetverbinding, a classification routine is unable to detect the difference be-
tween the questions (since the BOW representations of both questions are equal).

The decompounding routine we use in this research, uses the Celex lexical
database. If a compound is listed, we replace it by the remaining word parts.

6.5.9 Semantic clustering

Semantic clustering may assist in relating messages based on semantics, instead
on the syntax of the messages. If a customer wishes to receive information about
motorised vehicles, we may present him or her with documents that contain the
words motorised and vehicles. However, this user is probably also interested in
cars and motor cycles (both are motorised vehicles), which may not be covered
in the presented documents about motorised vehicles. Cars and Motor cycles are
both instances of the concept motorised vehicles (which is a hypernym of both).
The use of semantic clustering may assist in detecting such relations between
words and create a mapping from these words to the parent concept (motorised
vehicles in our example). Instead of the individual words of the document, we
may use the concept of the words in the classification process. The advantage of
applying this technique is to generalise the content of the documents to find more
similar (and relevant) documents. However, semantic clustering is a consider-
able generalisation process, which may hamper the process of categorization.

For Dutch, a semantic lexicon is available (EuroWordNet), but unfortunately,
the licenses to use it are expensive. However, we believe that using semantic
concepts as index term, we overgeneralise the e-mails. Because the differences
between the categories are very small, using semantic relations (synonyms and
hypernyms) hamper the process of categorization. Besides, Rosso et al. (2004)
and Gomez et al. (2004) did not find a significant improvement in classification
accuracy on a classification problem in which the categories are more general.

47

Chapter 7

Design

Since no text classification system containing all the aspects of our approach
was available, we decided to implement such a system ourselves. This chapter
gives an overview of the design, and presents the algorithms that constitute the
foundation for this system. Additionally, it presents an example of the indexing
and classification processes, providing a better understanding of these processes.

7.1 System overview

The e-mail classification system can be divided into three parts: document pre-
processing, indexing and categorization. In order to classify incoming e-mail,
reference material is needed to which the new mail can be compared to. This
reference material (the previously answered mails) is analysed by the document
preprocessing subsystem and all useful tokens (words) are stored in an index
called the Document Collection. This index stores all index terms accompanied
by the following information:

• The documents the term occurs in

• The weights associated to the term/document pair

The indexing subsystem creates such an index using the output form the doc-
ument preprocessing subsystem, which is a bag-of-words for every document in
the collection. Figure 7.1 shows the architecture of the document preprocessing
and indexing phase for documents as figure 7.4 shows the architecture of the
document preprocessing phase in combination with the classification phase.

7.2 Document preprocessing

In this subsystem each query document (incoming mail) and training document
(previously answered mail) is analysed and transformed into a bag-of-words rep-

48

CHAPTER 7. DESIGN

<d1,…,dn>

Lexical
normalization

Stopword
Removal

Stemming

Word
Classes

N-gram
Check

Spelling
Correction

Compound
Splitting

<d1,…,dn>Document

Term
Weighting

Profile
Based

Indexing

Example
Based

Indexing

Document
Collection

<d1,…,dn>

<d
1
,…,d

n
> <d1,…,dn>

<d1,…,dn>

<c1,…,cn>

Document Preprocessing

Indexing

Figure 7.1: The indexing procedure: First a document is lexically normalized and
language technology may be applied. The indexing subsystem creates an index
of document representations (for the example based classifier) and an index of
category representations (for the profile based classifier).

resentation. Figure 7.1 displays the document preprocessing phase for indexing
training documents and figure 7.4 for the classification phase. Both preprocess-
ing phases differ only on the input: in figure 7.1 the input is a training docu-
ment and in figure 7.4 the input is a query document. The document prepro-
cessing subsystem contains six language technology processes, that are already
described in chapter 5. A bag-of-words may be processed by the subsystem mul-
tiple times, enabling us to use more language technologies, in any desired order.

Recall from chapter 6 that the Lingware tool-kit uses complete sentences for its
best results, instead of a bag-of-words representation. In our implementation,
we have taken this requirement into account by sending complete sentences to
the tool-kit. The full-sentence representation is an intermediate representation
between the full text and the bag-of-words, in which punctuation marks and di-
acritic marks have been removed. After the Lingware tool-kit has been used, we
transform the intermediate sentence representation to the bag-of-words repre-
sentation.

7.3 Indexing

The indexing procedure is probably the most important procedure in the classifi-
cation system. If an index is well created, it allows us to find relevant documents
to a query as fast as possible. In order to classify new documents (incoming e-

49

CHAPTER 7. DESIGN

Document Words Category
Doc1 bicycle, car 1 (land vehicles)
Doc2 bicycle, car, car 1 (land vehicles)
Doc3 boat, boat 2 (water vehicles)
Doc4 airplane, airplane 3 (air vehicles)

Table 7.1: A small document collection

mail), an index should be created containing all words that can be found in the
training documents (previously answered e-mail) after document preprocessing.
This index can be compared to an index that is normally found at the end of a
book and stores per index term the documents it occurs in and the weight that
is assigned to every term/document combination. Such an index is called an
inverted file index. As discussed in chapter 6 we investigate two different clas-
sification approaches (example and profile based) using two different weighting
schemes (Okapi and TF.IDF). For each classification approach, a different index-
ing procedure is needed. As well the Okapi as TF.IDF weighting scheme are
suitable for term weighting in both classification procedures.

In figure 7.1 documents and categories are represented by a BOW represen-
tation: a document is denoted with (d1, ..., dn) and a category is denoted with
(c1, ..., cn).

7.3.1 Example based indexing

The example based classification procedure uses information retrieval to match
a new document to a set of training documents. The index for this procedure
therefore consists of a collection with a representation for each document that is
used for training. The output of the document preprocessing subsystem (a bag-
of-words) serves as the input for the example based indexing procedure. This
procedure creates an index based on the words (index terms) accompanied by
the following information:

• In which and how many documents it occurs in (document frequency), along
with the document length

• The number of times it occurs in each document (term frequency)

The algorithm to index the words in a document collection is shown in figure 7.2.
In this algorithm we list all the words in a document collection and record the
term frequency for each term/document pair.

Suppose we want to create an index of the small document collection shown in
table 7.1. These four documents contain four unique terms and are categorized
in three distinct categories (land, water and air vehicles). Table 7.2 shows the
indexing of this document collection containing four documents and three cate-
gories. The first step shows the result after listing all term/document pairs that
are encountered (this list is already sorted). The second step shows the results
after grouping identical index term/document pairs. The entry

50

CHAPTER 7. DESIGN

1. For each document:
List each word that occurs in it and the document name

2. Sort the list alphabetically and iterate over it

3. Group identical index term/document pairs and record the term
frequency for every pair

4. Group identical index terms and record the document frequency
for every index term

5. Finally: Write all the index term/document pairs to the index

Figure 7.2: Example based indexing algorithm

Step 1 Step 2 Step 3
Term Doc Term Posting Term Posting
airplane Doc3 airplane (Doc3, 2) airplane (Doc3, 2)
airplane Doc3 bicycle (Doc1, 1) bicycle (Doc1, 1) ; (Doc2, 1)
bicycle Doc1 bicycle (Doc2, 1) boat (Doc4, 2)
bicycle Doc2 boat (Doc4, 2) car (Doc1, 1) ; (Doc2, 2)
boat Doc4 car (Doc1, 1)
boat Doc4 car (Doc2, 2)
car Doc1
car Doc2
car Doc2

Table 7.2: Example based indexing

Boat (Doc4, 2)

means that index term boat occurs in document Doc4 with term frequency 2. The
third step displays the final results of the example based indexing procedure.
Every index term occurs only once in the index, followed by the list of documents
in which it occurs. This list of documents is called the posting of an index term.
As we can see in table 7.2, index term car occurs in two documents (once in Doc1
and twice in Doc2).

Term weighting

To improve the results of the information retrieval routines, all index
term/document pairs should be weighted. The more important and distinctive
an index term is in the document collection, the higher the weight associated
to it. Recall that we investigate two different term weighting schemes. The

51

CHAPTER 7. DESIGN

data for calculating each weight can be derived from the example based index.
For each index term/document pair in the index a weight is calculated. For the
TF.IDF weighting scheme the weight is based on the term frequency and the (in-
verse) document frequency, as the weights for the Okapi weighting scheme are
also based on the document length, average document length and the number of
documents in the collection.

Following the example of table 7.2, we can calculate the weights for these in-
dex terms using the TF.IDF weighting scheme. Recall from section 3.3.1 that a
weight di is calculated using the term frequency and inverse document frequency.
The term frequency for index term car in document Doc2 is 2. Since car occurs in
two documents, and the total document collection contains four documents, the
TF.IDF weight for this term is calculated following equation 7.1. For the conve-
nience of the equation we have used a base of 2 for the logarithmic function. In
the weighting algorithms, the logarithm may be taken to any convenient base.

di = TF × IDF (wi) = log2(
|D|

DF (wi)
) = 2× log2(

4
2
) = 2 (7.1)

For indexterm boat, occuring only in document Doc4 (with term frequency 2) the
weight is calculated as shown in equation 7.2:

di = TF × IDF (wi) = log2(
|D|

DF (wi)
) = 2× log2(

4
1
) = 4 (7.2)

The first two columns in table 7.3 show the example based index using the
TD.IDF weighting scheme for our small document collection. The term frequen-
cies for index terms in each document are replaced by the TF.IDF weights as
calculated in both examples above.

Term Posting Term Posting
airplane (Doc3, 4) airplane (Cat2, 16)
bicycle (Doc1, 1) ; (Doc2, 1) bicycle (Cat1, 9.235)
boat (Doc4, 4) boat (Cat3, 16)
car (Doc1, 1) ; (Doc2, 2) car (Cat1, 12.812)

Table 7.3: Indexing results

7.3.2 Profile based indexing

The example based classification approach was based on the similarity between
the query document representation and the representations of the documents in
the collection. However, the profile based classification approach is based on the
similarity between the query document representation and the category repre-
sentations. For each category, a representation is calculated by taking all positive
and negative examples for this category. A positive example is a document that

52

CHAPTER 7. DESIGN

should be categorized in the category and a negative example should be catego-
rized in another category. Since the profile based indexing procedure requires
a weighted index as a starting point, this index is based on the example based
index explained above. Figure 7.3 displays the profile based indexing algorithm.
The normalized weight of an index term is simply the calculated weight divided
by the Euclidean document length of the document it occurs in. The sum of the
normalized weights of all terms in a document should be 1.

The results of this indexing procedure are similar to the results of the exam-
ple based indexing procedure, with the difference that we now store the (nor-
malized) weight per index term/category pair instead of the weight per index
term/document pair. Suppose we continue indexing the example document col-
lection of table 7.1. This collection is set up in such a way that a specific index
term occurs in only one category (leaving us with only positive examples for cal-
culating the profile weight for an index term/category pair). First, we calculate
the total normalized weights per index term. The Euclidean document length
of document Doc2 is calculated by taking the square root of the sum of squares
of the weights of the index terms in Doc2, in this case:

√
12 + 22 =

√
5. The

total normalized weight for index term bicycle can now be calculated by adding
the normalized weights of bicycle for each document this term occurs in. Bicy-
cle occurs in documents Doc1 and Doc2 with weight 1, the Euclidean document
lengths are

√
2 and

√
5 respectively, resulting in a total weight of:

1√
2

+
1√
5
≈ 1.154 (7.3)

Since bicycle occurs only in category 1, the score in equation 7.3 is already the
total normalized score for this index term/category pair. If bicycle would occur in
other categories, then the weights can be calculated using the total normalized
weight of an index term and the total normalized weight per category of an index
term. Bicycle occurs in two documents in category 1, and no documents that
contain the word bicycle belongs to another category, so we can calculate the
profile weight for this index term in category 1 by using only the first half of
equation 4.2 (section 4.3.1)1:

→
c j= α

 1
|Cj |

∑
→
d∈Cj

→
d

|| →d ||

 = 16× 1

2
× (

1√
2

+
1√
5
) ≈ 9, 235 (7.4)

The weights for the other index term/category pairs are calculated in a similar
way. If negative examples for a category exist, for instance when the index term
boat should occur in categories 1 and 2 because there are boats that can also
move on land (e.g. a hovercraft), then the second part of the equation is also
required. Calculating the total normalized weight for negative examples is done
in a similar way to that of the positive examples, but now all the index terms
that do not occur in a category should be taken into account. Columns 3 and
4 of table 7.3 display the results of the profile based indexing procedure on the
example document collection. The entry

1In this equation we use α = 16, following the literature on Rocchio classification.

53

CHAPTER 7. DESIGN

1. List all the index terms alphabetically and iterate over it

2. For each index term:
- Calculate the total normalized weight per index term

3. For each index term/category pair:

3a. - Calculate the normalized weight per pair

3b. - Calculate the total normalized weight for all other
index term/category pairs using steps 2 and 3a

3c. - Calculate the category weight for this index term/category
pair using equation 4.2 (section 4.3.1)

4. Calculate the category lengths by adding all weights per category

Figure 7.3: Profile based indexing algorithm

car (Cat1, 12.812)

means that index term car is represented in category 1 (land vehicles) with
weight 12.812).

7.4 Classification

Once the index is created, we can retrieve all documents (or categories) contain-
ing certain words. This process is called information retrieval. The occurrence
of a word in a certain document may be far more important than the occurrence
of that same word in a document that is ten times as long. For example, if the
term Clinton occurs four times in an article and ten times in the whole news
paper, it is far more important for the (small) article than for the whole news
paper. Therefore, a ranking of the retrieval results is created, so the results can
be processed in descending order of relevance. This ranking is the basis of the
classification process implemented in the e-mail classification system. Figure
7.4 shows the implementation of the classification and document preprocessing
subsystems. Note that the document preprocessing subsystem is the same as
in figure 7.1 but that the input is a query document (or just a query) instead of
a training document. The query is preprocessed by the document preprocessing
subsystem and enters the classification subsystem as a bag-of-words represented
by < q1, ..., qn >.

For the Okapi weighting scheme, experiments have been done with term weight-
ing for longer queries. Therefore the first step of the classification procedure is
to assign weights to a query. These Okapi weights are calculated using equa-

54

CHAPTER 7. DESIGN

Lexical
normalization

Stopword
Removal

Stemming

Word
Classes

N-gram
Check

Spelling
Correction

Compound
Splitting

<q1,…,qn>Query

Ranking

Classification

Matching
<D1,…,Dm>

Document Preprocessing

Classification

<q1,…,qn>

<q
1
,…,q

n
>

Document
Collection

Documents

Categories

<D1,…,Dm>

<C1,…,CL>

<C
1
,…,C

L
>

K-NN

<C*1,…,C*L>

Figure 7.4: The classification procedure: The classification subsystem matches
the query with all document representations (example based) and all category
representations (profile based). Finally the results are ranked and outputted.

tion 3.16 in section 3.3.2. The most important step is the matching procedure.
This procedure evaluates the query against all documents (for the example based
classification) or categories (for the profile based classification) and returns all
documents or categories of which one or more words match the query.

7.4.1 Profile based classification

The profile based classification procedure classifies documents based on category
representations build by the profile based indexer (section 4.3.1). The incoming
query is compared to all the category representations based on one of the match-
ing equations (the inner product or cosine similarity measure) by the matching
procedure. All categories that contain words which are also in the query, are
nominated. This set of categories that match the query are sent to the rank-
ing procedure that ranks the categories in descending order of relevance. The
relevance is determined by the similarity score that is calculated by the match-
ing procedure. The higher the similarity score, the more relevant the category
is. The output of the classification subsystem for profile based classification is a
ranked list of categories (< C1, ..., CL >) sorted in descending order of relevance.

55

CHAPTER 7. DESIGN

7.4.2 Example based classification

The example based classification procedure classifies documents based on other
(training) documents. The matching procedure is similar to the matching pro-
cedure of profile based classification, but in this case the query is compared to
all documents of the document collection (using the inner product or cosine sim-
ilarity measure). If a document contains words that occur in the query, it is
nominated and the set of nominated documents is sent to the ranking procedure
which ranks the documents in descending order of relevance. Where the profile
based classification was done at this point, the ranked document (< D1, ..., Dm >)
set is sent to the K-NN classification procedure. This procedure uses equation 4.6
(section 4.3.2) to calculate the score for each category a nominated document oc-
curs in, based on the first K documents from the ranked results. This procedure
sums up all the weights of documents (within the first K ranked documents) that
belong to the same category and reranks the category results. The output of the
classification subsystem for example based classification is also a ranked list of
categories (< C∗1 , ..., C∗L >) sorted in descending order of relevance.

7.5 Data storage

If the e-mail classification system is operational, it should classify several e-mails
per minute. It is therefore crucial that the performance of the classification sub-
system and document preprocessing subsystem is guaranteed to be good enough
to ensure this. To ensure fast classification, we have chosen to use a database
management system to store the indexes. Such a database system allows us to
retrieve data very fast and with SQL queries we can let the database do a lot of
our work by grouping results and adding weights of the results of an e-mail that
has to be classified.

56

Chapter 8

Evaluation

In this chapter we will discuss the experiments we have conducted. In the first
section we will present the experimental set-up, and in the remaining sections
we will present a selection of the results.

All experiments in this section have been conducted using the e-mail classifica-
tion system developed for this research and the test set described in section 8.1.1.
The approach for these experiments is described in chapter 6.

8.1 Experimental Set-up

8.1.1 E-mail Corpus

In order to evaluate our e-mail classification system, we need a huge amount of
human categorized e-mails for training and testing. The e-mail corpus we con-
duct our experiments on, is collected in a contact centre of “De Nationale Postcode
Loterij” (NPL, English: The National lottery of zip codes). In this national lot-
tery, customers use their zip codes as lottery tickets. The contact centre receives
e-mails with general questions about the lottery, change of addresses, technical
questions about personal web pages of customers, incorrect invoices and com-
mon complaints. The e-mails collected in this contact centre have (mostly) been
answered using standard answers (that can be selected from a tree-structure).
The standard answer is considered as the category of the e-mail. Therefore, all
e-mails that receive the same answer are considered as belonging to the same
class. This e-mail corpus consists of 30,828 e-mails categorized in 143 categories.
For training purposes we can not use empty categories, or categories with just
a small number of mails, therefore we only use categories that contain at least
100 e-mails: resulting in an initial test set of 50 categories that contain a total
number 27,789 mails.

Unfortunately, during the analysis of this initial test set, it became clear that
this set was not suitable for training a classification system due to the many
classification errors that had been made in the contact centre. The explanation

57

CHAPTER 8. EVALUATION

for these errors is that the agents in the contact centre are not obliged to select
a standard answer, but may also formulate one themselves (i.e. if they believe
no standard answer fits). As a result, the suggested standard answer and thus
the category, remains glued to the e-mail although the final answer may be com-
pletely different. This e-mail corpus has clearly not been collected for research
purposes, but for debugging and quality analysis purposes of the e-mail manage-
ment system developed by Em@ilco. Therefore, we first had to make a selection
of usable categories for evaluating the mail classification system. The adjust-
ments listed below have been made to the initial test set of 27,789 mails and 50
categories:

• 2 categories were excluded because the messages they contained could not
be answered using a standard answer. These categories were used to store
mails that could not be categorized (usually resulting in an answer like:
“We could not answer your e-mail because we do not have your personal
data”),

• 6 categories were excluded because they contained too many classification
errors made by the agents in the contact centre.

• a set of 8 categories turned out to be a subset of 3 categories. The mails in
the 8 subsets could all be answered using only 3 standard answers. The cat-
egories that require the same answer are merged, resulting in 3 (collective)
categories.

These adjustments to the initial test set led to the final test set containing 16,798
e-mails that are classified in 37 distinct categories. The average number of e-
mails per category is 454, but figure 8.1 shows that the smallest category con-
tains only 106 e-mails and the largest category contains 3593 e-mails.

8.1.2 Evaluation metrics

To evaluate classification algorithms in order to see how well they correctly clas-
sify e-mails, we use the classification accuracy as a measure (in this chapter we
may simply call it performance). The e-mail classification system is designed for
use in a communication service centre, where the performance of the system is
measured by the number of correctly suggested answers. If the system suggests
the correct answers (categories) for half of the documents, the performance sim-
ply is 50%. To provide assistance for the e-mail answering agents, we can suggest
a number of possible answers in a decreasing order of relevance (where the most
relevant answer is placed at the top). If the suggested set of answers is relatively
small, but contains the correct answer, the agent is able to reply to e-mail more
efficiently.

To evaluate the usability of this classification approach for automatic answer
suggestion, we slightly adjust the definition of performance to best-n perfor-
mance. The best-n performance is the percentage of documents where the correct
category is suggested within the first n answer suggestions for this document.
Suppose yi is the correct answer (i.e. category) for document i, xi is the set of

58

CHAPTER 8. EVALUATION

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Number of e-mails per

category

Figure 8.1: Distribution of the number of e-mails over the set of categories. The
largest category (nr. 37) contains 3593 messages.

suggested documents for document i with n elements (categories), and |D| the to-
tal number of documents in the collection, the best-n performance can be defined
as:

Best-n performance =
∑|D|

i=1 f(yi, xi)
|D| × 100

where f(yi, xi) =
{

1 if yi ∈ xi (with |xi| = n)
0 otherwise (8.1)

Suppose we receive 100 new e-mails. For 60 of these e-mails, the correct answer
is suggested within the first 5 suggestions of the system for each new e-mail.
In that case, the best-5 performance of the system simply is 60%, meaning the
agent can select the correct answer in 60% of the e-mails from a suggested set of
only five possible answers.

8.1.3 Test set-up

As discussed in the research hypotheses in section 1.2 and the approach in chap-
ter 6, we focus on the classification of e-mail messages using information re-
trieval (IR) based classification methods in the first place, and on using language
technology to improve these classification results in the second place. The first
experiments aim at proving that these IR based classification methods indeed
outperform the classification methods used by Em@ilco, and to relate these re-
sults to other classification techniques that have been used for e-mail classifica-
tion (see chapter 2), while the second series of experiments aim at showing the

59

CHAPTER 8. EVALUATION

influence of the used language technologies on the classification results.

Training and testing

In order for our system to be able to classify e-mail messages, it has to be trained
using a humanly classified subset of the NPL set discussed in section 8.1.1. These
e-mail messages are used by the system as examples of each category a new mes-
sage can be classified in. We use 80% of the total test set to train the classifica-
tion system and the remaining 20% to evaluate the system. The evaluation is
performed by feeding the classification system the messages from the test set,
and let the system classify these messages in the predefined categories. Since
we know the correct category for each of these test messages, we can determine
if the system was able to classify the mail in the correct category, and at which
rank this message was classified correctly (e.g. if the fifth category of the systems
results is the correct one, the rank of this message simply is 5).

Cross validation

Randomly dividing the corpus in 80% for training and 20% for testing purposes
may result in a particularly good or bad test set of e-mails, for which the results
may seem more promising or demotivating than they really are. To ensure a
representative test set and experiment, we use 5-fold cross validation. Using
5-fold cross validation implies making 5 distinct sets of equal size of randomly
selected messages. Each message may only be selected once and thus occurs
in only one of these five sets. Each set covers 20% of the total test set. With
these five randomly selected sets, we conduct a series of five experiments, each
time using one set as testing material and the other four as training material.
The results of these five experiments are averaged, ensuring a representative
experiment. In a series of five experiments, each document will be used exactly
once for testing, and four times for training.

8.1.4 Parameter settings

In some of the algorithms we use for our classification problem, we may change
the parameter settings. In this section we will discuss the parameters settings
for each of the algorithms, in order to achieve an optimal classification accuracy.

Term Weighting

For the Okapi term weighting scheme (equation 3.14, section 3.3.2) we can ad-
just the influence of the term frequency by setting parameter k and the effect
of the document length by setting parameter b. Robertson and Sparck Jones
(1997) explain that b can be assigned a value between 0 and 1. Assigning b = 0
represents the assumption that documents are long because they cover multiple
topics, in which case the document length should not be used as a normalization

60

CHAPTER 8. EVALUATION

for the relevance term (since the description of each topic is relatively small). If
we assign b = 1 we assume that documents are long because they are repetitive,
and cover the same topic multiple times. Robertson and Sparck Jones advise to
assign b = 0.75, which in our view reflects the situation, that most of the long
e-mails do not cover multiple topics. The parameter k can be used to manipulate
the effect of the term frequency on the relevance weight. Assigning k = 0 reflects
the assumption that term frequency does not have any influence on the relevance
of a certain term in a document. Robertson and Sparck Jones advise to assign
k = 2, which is a value that reflects the influence of the term frequency in the
TREC reference test set.

Profile based classification

In section 4.3.1 we presented an explanation of the Rocchio classification ap-
proach. This classification approach uses positive and negative examples to build
a centroid representation for each category. The parameters α and β manipulate
the influence of the positive examples and the negative examples respectively.
Moschitti (2003) describes a method to determine the optimal values for the pa-
rameters α and β by relating both parameters using the parameter ρ. The pa-
rameter ρ is defined by β/α and the optimal parameter setting for the Rocchio
classifier can be determined by increasing ρ smoothly until an optimum in classi-
fication accuracy is reached. The nature of the Rocchio classifier is to determine
an optimal margin between the centroids of categories. This is similar to Sup-
port Vector Machines, but these do not determine a margin between centroids,
but between the complete data collections (with a minimal classification error).
This optimal margin is based on the occurrence of index terms in the centroid.
The parameter estimation works as a feature selection procedure, and selects
only those features that are relevant to distinguish a category from the other
categories. By increasing the influence of the negative examples with respect
to the positive examples, we smoothly remove terms from the positive examples
that are irrelevant for distinguishing this category from the others. This pro-
cess continues until the influence of the negative examples has become that big
that relevant terms are being removed from the centroid (and the accuracy as a
function of ρ has reached its maximum).

Figure 8.2 shows the classification accuracy as a function of ρ for a random test
set of our e-mail corpus, using the Profile Based/Okapi/Inner product classifica-
tion combination. After the classification accuracy has reached its maximum, the
relevant and weak relevant terms will be eliminated, so this is the optimal value
for ρ and the optimal ratio between α and β.

A value for ρ ≤ 1 indicates that the positive examples are more important
than the negative examples in the classification process, which intuitively makes
sense. Joachims (1997) describes that the default values for α and β are 16 and
4 respectively (ρ = 0.25), values that are extensively used in text classification
research (Buckley et al., 1994). Moschitti (2003) shows in his research on param-
eter estimation for the Rocchio classifier, that the best classification accuracy is
reached when ρ > 1, which means that the negative examples have a greater in-
fluence on classification accuracy then the positive ones (on the Reuters corpus).

61

CHAPTER 8. EVALUATION

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Parameter settings (ratio between positive and negative examples)

P
er

fo
rm

an
ce

 (
%

)

Best-1 weighed average performance

Best-3 weighed average performance

Best-5 weighed average performance

Best-10 weighed average performance

Figure 8.2: Parameter estimation for ρ = β/α, for the profile based classification
method. The optimal parameter setting ρ = 8 reaches a best-5 classification
accuracy over 78%.

Figure 8.2 shows the classification accuracy as a function of ρ for our classifica-
tion problem and confirms the conclusion of Moschitti. The Parametrized Rocchio
Classifier (as Moschitti calls it) outperforms the Rocchio classifier with optimal
parameter settings discussed in literature (in which ρ = 1) with 5 percentage
points and even 10 percentage points when a more general parametrization is
used (e.g. ρ = 0.25).

In our e-mail classification problem the optimal parameter setting is: α = 1 and
β = 8 (and thus ρ = 8), meaning that the influence of the negative examples is 8
times as big as the positive examples for the best classification results. By setting
ρ = 8 we yield a best-5 classification accuracy of 78.15%, opposed to the accuracy
of 58.85% if we use the default parameter settings suggested by Buckley et al.
(an increase of almost 20 percentage points!).

Example based classification

The K-nearest-neighbour classification approach bases the classification on the
K most relevant documents (neighbours) retrieved by an information retrieval
system. One might argue that we only need to consider the best retrieved docu-
ment, since the information retrieval routine determined that this document is
most relevant and might therefore require the same answer. However, the first
retrieved document (that is syntactically most similar to the query document) is
not necessarily the document that is semantically most similar to the query doc-
ument. For example, the second or even ninth document might reflect the mean-

62

CHAPTER 8. EVALUATION

ing of the new document better than the first document. This means that the
words in the e-mail may overlap for great amount, but the actual question posed
in both mails differs. K = 1 would therefore probably be not the best approach to
optimize the classification accuracy, but a value for K that is too large would nei-
ther. In the latter case, the largest categories would finally get the upper hand in
classification accuracy, because these categories would be suggested very often
because they simply contain more messages than the others. The value for K
has to be empirically determined for every text classification problem. Typical
values for K in text classification problems range over K ∈ {10, ..., 100}. Initial
tests on our e-mail corpus determined that assigning K = 50 yields the best clas-
sification results, and is therefore used in the experiments. The differences in
classification accuracy between values for K ∈ {40, 50, 60} are small (a difference
of approximately 1 percentage point), and the optimum value for K might change
if we apply different term weighting schemes or apply language technology. How-
ever, it is important to use the same value for K in every experiment, otherwise
we would not be able to determine the influence of a certain language technology
on the classification accuracy.

8.2 Baseline classification experiments

To prove our first hypothesis that IR based classification performs better than
the current classification approach used by Em@ilco, the first experiments are
fully focussed on the classification methods. For the experiment series in this
section we compare the results of the combinations of two classification methods:
Profile based classification (section 4.3.1) and Example based classification (sec-
tion 4.3.2), two term weighting schemes: Okapi term weighting (section 3.3.2)
and TF.IDF term weighting (section 3.3.1) and two similarity measures: cosine
and inner product.

We have measured the best-n performance for each of the categories, and cal-
culated the average performance. The average performance is calculated by av-
eraging the performance per category, and does not take the size of categories
into account. We also measured the total number of e-mails that is correctly
classified within the top-n results of the system. This performance is called the
weighted average performance, since it also takes the category sizes into account.
The weighted average performance of the system is calculated by dividing the to-
tal number of correctly classified mails within the top-n, by the total number of
incoming mails. The weighted average performance best reflects the usability of
such a classification system in a contact centre, as it represents the total number
of mails that is correctly classified by the system.

8.2.1 Baseline experiment

In our baseline experiments we calculated the best-n performance for each cate-
gory, and for each n ∈ {1..37} (37 being the maximum number of categories). The
average of these performances can be found in the result tables in the column
Avg. The weighted best-n performance of the classification system are listed in

63

CHAPTER 8. EVALUATION

% Best-1 % Best-3 % Best-5
Approach Avg Wavg Avg Wavg Avg Wavg

Example Okapi IP 36.67 52.07 59.45 74.63 69.50 82.15
Example Okapi Cos 39.04 48.20 61.15 77.15 72.28 84.82
Example TFIDF IP 9.96 25.80 19.95 43.11 33.43 56.75
Example TFIDF Cos 37.94 47.25 60.54 76.35 70.90 83.90
Profile Okapi IP 43.94 45.87 67.23 68.44 77.78 77.40
Profile Okapi Cos 39.31 27.49 64.49 52.39 75.84 64.09
Profile TFIDF IP 41.25 43.07 65.80 67.11 76.52 76.50
Profile TFIDF Cos 39.27 27.20 62.93 50.61 74.43 63.08
Em@ilco approach 14.78 14.21 29.37 31.94 37.18 40.00

Table 8.1: Classification results of the baseline experiment. The table lists the
average (Avg) and weighted average (Wavg) best-n performance for all of the
classification approaches for n ∈ {1, 3, 5}.

the columns Wavg in the result tables.

Table 8.1 displays the results of the baseline test in which we experiment with
the eight possible combinations of classification method, term weighting scheme
and similarity measure. The first column of the approach section in the table
lists the used method (Profile based or Example based), the second column lists
the term weighting scheme (Okapi or TF.IDF) and the third column lists the
similarity measure (IP for inner product and Cos for cosine) we used. The results
listed in this table only cover the best-n performance for n ∈ {1, 3, 5}. The results
for n = 1 show the classification accuracy (and thus answer accuracy) if e-mails
in this contact centre were automatically answered. For each experiment, the
best average and best weighted average are printed in bold. The average and
weighted average performances of the Em@ilco approach are printed on the last
row (these performances have been measured using the final test set discussed in
section 8.1.1). Figure 8.3 shows the differences between the best example based
method and the best profile based methods, in terms of average and weighted
average performance. The performance of the example based methods is printed
in blue, the performance of the profile based methods in red and the performance
of the Em@ilco approach is printed in black, while the average performance is
marked using a triangle and the weighted average performance using a square.
The green line denotes the best-guess performance (only weighted average) and
illustrates the percentage of correct answer suggestions if we suggest the best-n
answers in descending order of category size (i.e. the largest category (answer
suggestion) is the best suggestion, the second largest category the second best,
etc.).

Analysis and discussion

First of all, we can consider our first hypothesis proven: information retrieval
based classification methods outperform the Em@ilco classification method in
terms of classification accuracy for our best classification approaches.

64

CHAPTER 8. EVALUATION

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

Classification rank (best-n)

P
er

fo
rm

an
ce

 (
%

)

Example based, Okapi, Cosine (Average)
Example based, Okapi, Cosine (Weighted average)
Profile based, Okapi, Inner product (Average)
Profile based, Okapi, Inner product (Weighted average)
Em@ilco approach (Average)
Em@ilco approach (Weighted average)
Best-guess (Weighted Average)

Figure 8.3: Performance of the best example based method and the best profile
based method, in terms of average and weighted average performance, compared
to the Em@ilco approach

In table 8.1 we printed the maximum classification accuracy per best-n average
and weighted average performance measure in bold. The profile based classi-
fication methods reach a higher average classification accuracy than the exam-
ple based methods. However, the example based classification methods yield a
higher classification accuracy in terms of best-n weighted average performance.
This difference between average and weighted average performance is also illus-
trated in figure 8.3. In this figure we see that the average and weighted average
performance of the profile based classifier (denoted with red lines) are approxi-
mately equal. But the difference in average and weighted average performance
of the example based classification method is 10 percentage points for the best-5
performance. This difference is caused by the high classification accuracy of the
example based method in the large categories (see figure 8.4). The difference be-
tween weighted classification accuracy of the profile and example based methods
can be explained using figure 8.4. The profile based methods (denoted with the
red bars) perform really good on the smaller categories (100 to 350 e-mails per
category). However, the example based methods (denoted with the blue bars)
perform really good on the larger categories (400 to 3590 e-mails per category),
which results in a higher total (weighted) classification accuracy because it sim-
ply classifies more e-mails correctly than the profile based method. Recall from
section 4.3.1 that the weakness of the Rocchio classifier (profile based method) is
that it determines just one centroid per category. If a category consists of many
mails, it is more difficult to determine a single centroid that very accurately re-
flects all the mails in the category. The mails in the category all require the
same answer, and therefore pose similar questions, but the more e-mails that
are stored in a category, the more different ways of posing the question are en-

65

CHAPTER 8. EVALUATION

0

20

40

60

80

100

120

10
6

11
5

12
9

15
1

15
9

17
9

18
5

19
3

20
3

22
5

24
4

26
4

29
7

35
6

37
0

53
3

10
05

13
45

35
93

Nr. of mails per category

P
er

fo
rm

an
ce

 (
%

)
EB, Okapi, Cosine (Unweighed performance)
PB, Okapi, IP (Unweighed performance)

Figure 8.4: Unweighted performance of the EB/Okapi/Cosine and the
PB/Okapi/IP approach, with respect to the category size

countered, resulting in a great variety of words.

Remarkably, the EB/TFIDF/IP combination performs really poor: a 26.71 per-
centage point difference with the EB/Okapi/IP combination in average best-1 per-
formance (more than 3.5 times as bad), and more than two times as bad when
measuring weighted best-1 performance. This difference is caused by the lack
of document length normalization in the TF.IDF weighting scheme and inner
product similarity measure combination (recall that the cosine similarity mea-
sure and the Okapi weighting scheme both have built in length normalization).
For the other example based combinations (in which document length normal-
ization is applied), the performance differences are not that large. According
to the results of table 8.1, this explanation does not hold for the profile based
methods. For the profile based methods, the cosine similarity measure doe not
seem to work well (for both Okapi and TF.IDF weights). Hiemstra (2000) also
compared the TF.IDF weighting scheme using the cosine similarity (called the
tfc.tfc method) measure with the Okapi weighting scheme using the inner prod-
uct (called the BM25 formula) and found that the Okapi and inner product com-
bination performed about 100% better than the TF.IDF cosine combination in
average precision. Overall we can say that the example based combination us-
ing the Okapi weighting scheme and cosine similarity measure performs best for
this e-mail classification problem.

The fact that the best-guess performance is higher than the performance of the
Em@ilco approach illustrates two things. First of all, a great amount of the mails
is about a relative small set of the questions, resulting in a couple of large cate-
gories, which account for a large amount of the answers. If the categories were
of equal size, the best-guess performance would be represented by a straight line
from 0 to 100%, and perform worse than the Em@ilco approach until the best-15
to best-20 answer suggestions. Moreover, this difference illustrates that it is not
that trivial to manually determine sets of relevant and distinctive keywords for

66

CHAPTER 8. EVALUATION

each standard question.

8.3 Language technology experiments (1)

In our second hypothesis, we stated that language technology improves the clas-
sification results of information retrieval based classification methods. Because
of the unstructured and easily accessible status of e-mail as a means of commu-
nication, spelling errors and grammatically inconsistencies may occur. To prove
this hypothesis, we continue experimenting with the e-mail classification sys-
tem, but pre-process the e-mail messages using language technology discussed
in chapter 6, in both the training and the classification process. First, we will
illustrate the influence of each individual technology on classification accuracy.
For the next series of experiments, the most promising techniques will be com-
bined.

To illustrate the influence of each individual language technology on the clas-
sification results, we show the increase or decrease in percentage points, with
respect to the classification accuracy of the baseline experiments of section 8.2.1.
An experiment is conducted for each example and profile based combination of
the baseline test, of which the results are displayed in the tables for example
and profile based methods in this section. In both tables we present the change
in classification accuracy due to the application of a language technology for best-
n performance in weighted average. A decrease in accuracy is marked red and in
each table the used language technologies are abbreviated according to the next
list:

Abbreviation Language technology
sw Stopword removal
dc Decompounding
ng N-gram check
st Stemming
sp Spelling correction
wc Word classes (Part of speech tagging)

8.3.1 Example based experiments

This section discusses the the experiments we conducted using language tech-
nology in combination with the example based classification methods. In table
8.2 we present the differences in classification accuracy for the language technol-
ogy experiments with respect to the baseline experiments of section 8.2.1. The
classification accuracies for each language technology experiment are also listed
in appendix A.1. In the table and the discussion of the results we will abbreviate
the example based method to EB, the inner product to IP and the cosine to Cos.

67

CHAPTER 8. EVALUATION

Experiment Weighted average performance (%)
n Approach base sw dc ng st sp wc

1

Okapi/IP 52.07 +3.58 +6.48 +5.87 +5.81 -11.19 +6.24
Okapi/Cos 48.20 -7.76 -0.26 +2.08 +8.73 +10.15 +10.05
TFIDF/IP 25.80 +14.97 +0.89 +0.03 -0.33 -0.02 +14.07
TFIDF/Cos 47.25 -6.56 -0.32 -11.13 +6.61 +7.43 +10.56

3

Okapi/IP 74.63 +3.10 +6.42 +6.10 +5.96 -12.75 +6.01
Okapi/Cos 77.15 -3.69 +0.35 +0.95 +0.91 +2.09 +1.46
TFIDF/IP 43.11 +20.12 +0.85 +0.19 -0.95 +0.14 +17.55
TFIDF/Cos 76.35 -2.59 +0.20 -10.70 +0.17 +0.96 +1.98

5

Okapi/IP 82.15 +2.63 +5.25 +5.22 +4.74 -10.63 +4.69
Okapi/Cos 84.82 -3.15 +0.04 +0.33 +0.53 +1.26 +0.45
TFIDF/IP 56.75 +17.79 +0.37 +0.17 -1.52 +0.11 +16.01
TFIDF/Cos 83.89 -2.02 +0.07 -7.58 +0.29 +0.74 +1.41

10

Okapi/IP 89.47 +2.00 +3.49 +3.45 +3.38 -6.03 +3.15
Okapi/Cos 91.42 -2.05 +0.17 +0.48 +0.27 +0.63 +0.25
TFIDF/IP 71.78 +13.39 +0.43 +0.23 -0.15 +0.55 +12.25
TFIDF/Cos 91.02 -1.60 +0.28 -5.64 +0.16 +0.46 +0.64

Table 8.2: Influence of the use of language technology for the Example based
methods. The first column lists the value for n to measure the best-n performance
in weighted averages

Stopword removal

Stopword removal causes a slight improvement in classification accuracy for the
Okapi/IP combination and a huge improvement for the TFIDF/IP combination
(13 to 20 percentage points increase). The improvement for the TFIDF/IP com-
bination may be explained by the lack of document length normalization of this
method. If all stopwords are removed from the documents, differences in docu-
ment length become much smaller. If we apply document length normalization
using the cosine similarity function, the classification accuracy decreases with
2 to 2.5 percentage points (and 6.5 to 7.7 for best-1 performance). Stopword
removal seems to work best if the inner product similarity measure is used, be-
cause no strong document length normalization is applied. The document length
normalization of the Okapi weighting scheme is related to the average document
length, and not the absolute length of a certain document, which makes it less
strong then the cosine document length normalization.

The huge increase in classification accuracy for the TFIDF/IP combination does
not cause the total classification accuracy of this method to exceed the 84.77%
accuracy of the baseline Okapi/Cosine combination (see appendix A.1).

Decompounding

Decompounding (or compound splitting) only increases classification accuracy for
the Okapi/IP combination, with an increase in weighted average performance
ranging from 3.49 to 6.48 percentage points. Because of this increase in accu-

68

CHAPTER 8. EVALUATION

racy, this combination now outperforms the EB/Okapi/Cosine combination by an
increase of approximately 2.5 percentage points:

Combination Accuracy
EB/Okapi/IP with dc 87.40%
EB/Okapi/Cos without dc 84.82%
EB/Okapi/Cos with dc 84.87%

N-gram check

The N-gram check improves the classification accuracy for the Okapi/IP com-
bination (3.45 to 6.10 percentage points), while it worsens the accuracy of the
TFIDF/Cosine combination (a decrease ranging from 11.13 to 5.64 percentage
points). The increase in accuracy of the Okapi/IP combination (with 87.36%
in best-5 weighted average performance) causes this method to perform better
than the baseline performance of the Okapi/Cosine method, but still not better
than the Okapi/IP combination using decompounding (respectively 84.82% and
87.40% in best-5 weighted average performance).

Stemming

Stemming does not significantly influence the classification accuracy of the
Okapi/Cos combination and TF.IDF based combinations. However, applying
stemming results in a considerable increase of best-1 performance. Also,
the Okapi/IP combination benefits from using stemming with an increase in
weighted average performance of 3.38 to 6.32 percentage points and a total clas-
sification accuracy of 86.88% for best-5 performance (exceeding the results of
our baseline experiment). Since the performance for n = 1 increases and for
n ∈ {3, 5, 10} remains approximately zero (except for the Okapi/IP combination)
we can conclude that stemming mainly influences the ranking of the retrieved
documents instead of improving overall classification accuracy. Again, document
length normalization comes into play: if strong document lenght normalization
is applied (using cosine), stemming does not siginificantly influence the classifi-
cation results. Also, when the documents are not normalized (TFIDF/IP combi-
nation), the influence of stemming is also negligible. The difference in classifica-
tion accuracy using stemming is caused by the difference between the Okapi and
TF.IDF term weighting scheme, of which the first is more sophisticated.

Spelling correction

Spelling correction slightly improves classification accuracy of the Okapi/Cos
and TFIDF/Cos combinations, does not significantly influence the TF.IDF/IP
combination, but dramatically decreases the accuracy of the Okapi/IP combina-
tion. Spelling correction causes a decrease of 12.75 percentage points for best-3
weighted average performance and 10.63 percentage points for best-5 weighted
average performance. Most likely, spelling correction introduces more noise in
the form of wrongly corrected words, than it can take away by correcting mis-

69

CHAPTER 8. EVALUATION

Experiment Weighted average performance (%)
n Approach base sw dc ng st sp wc

1

Okapi/IP 45.87 -1.76 -4.11 -0.26 +0.37 -0.07 +1.16
Okapi/Cos 27.49 +0.47 -1.76 +0.30 -1.42 -0.17 +1.04
TFIDF/IP 43.07 -0.62 -6.20 -0.50 +0.10 -0.06 +2.33
TFIDF/Cos 27.20 +0.02 -2.06 +0.29 -1.71 -0.17 +0.58

3

Okapi/IP 68.45 -0.78 -3.72 -0.27 -0.24 -0.10 +1.06
Okapi/Cos 52.39 +2.14 -3.61 +0.16 -0.73 -0.20 +2.13
TFIDF/IP 67.11 +0.01 -4.47 -0.21 +0.06 +0.09 +1.73
TFIDF/Cos 50.62 +2.14 -3.91 +0.37 -0.86 -0.01 +2.18

5

Okapi/IP 77.40 -0.02 -2.70 -0.14 -0.56 -0.16 +0.91
Okapi/Cos 64.09 +2.30 -3.17 +0.10 +4.19 -0.25 +1.98
TFIDF/IP 76.50 +0.28 -3.10 +0.05 -0.30 -0.05 +1.30
TFIDF/Cos 63.08 +2.66 -3.79 -0.01 -0.17 -0.13 +1.85

10

Okapi/IP 87.51 +0.40 -1.69 -0.04 -0.45 -0.17 +0.57
Okapi/Cos 80.53 +1.89 -2.76 -0.21 -0.29 -0.37 +1.16
TFIDF/IP 87.21 +0.48 -1.64 +0.16 -0.40 -0.12 +0.68
TFIDF/Cos 80.02 +2.09 -2.62 -0.04 -0.08 -0.29 +1.46

Table 8.3: Influence of the use of language technology for the Profile based
methods. The first column lists the value for n to measure the best-n performance
in weighted averages

spelled words. Apparently, TFIDF is relatively insensitive to this noise, while
Okapi is not.

Part of speech tagging

The use of only nouns, verbs and adjectives for classification improves the ac-
curacy of all example based classification methods. However, the increase in
classification accuracy is much bigger for classification methods using the in-
ner product similarity measure, than for classification methods using the cosine
similarity measure. Again, this difference is caused by the strong document
length normalization of the cosine function. The huge increase of accuracy for
the TFIDF/IP combination causes the total classification accuracy of this combi-
nation to become 72.76% (see appendix A.1), which is still 12 percentage points
lower than the baseline performance of our best classification approach.

8.3.2 Profile based experiments

This section discusses the experiments we conducted using language technology
for the profile based classification methods. In table 8.3 we present the differ-
ences in classification accuracy for the language technology experiments with
respect to the baseline experiment of section 8.2.1. In appendix A.1 the classi-
fication accuracies are also listed for each language technology experiment. In
the table and the discussion of the results we will abbreviate the profile based
method to PB.

70

CHAPTER 8. EVALUATION

Applying language technology to e-mails before they are sent to the classifica-
tion process does not cause a significant increase in classification accuracy of the
profile based methods, for most language technologies. Eliminating stopwords
slightly increases the accuracy for the cosine based classification methods, but
does not significantly influence the accuracy of the inner product based methods.
Applying the N-gram check, stemming or spelling correction also does not sig-
nificantly influence the accuracy. If we split compound terms, the classification
accuracy decreases with 2 to 6 percentage points, and if we only use nouns, verbs
and adjectives in classification, the accuracy increases with 1 to 2 percentage
points.

Remarkably, the classification accuracy is only influenced by language technolo-
gies that introduce or eliminate words. Eliminating stopwords or eliminating
words that are not nouns, verbs or adjectives causes a slight increase in classifi-
cation accuracy, while the introduction of words (which is the result of compound
splitting) causes a decrease in accuracy. This can be explained by the choice of
the specific parameter settings for the Rocchio classifier. The parameter settings
are optimal for the Okapi and inner product combination for unchanged e-mails
(i.e. no language technology is applied). This means that the other classification
approaches (based on the cosine similarity measure) may not be working with
the optimal parameter settings and therefore might be improved by applying
language technology. The process of parameter selection is an optimalization of
feature selection: if we increase ρ we eliminate more features (words) from the
centroid representation until a certain maximum is reached. After this maxi-
mum, relevant and weak relevant terms will also be eliminated (which does not
improve the classification process). Since the optimal parameter settings for the
Okapi/IP classification method have been determined on the set of unchanged
e-mails, the classification accuracy for this combination will most likely not be
improved by applying language technology. However, the other classification
combinations might be improved by language technology, if that language tech-
nology compensates for the not optimal feature selection process (that is done
by parameter estimation for ρ). If the language technology eliminates irrelevant
features from the e-mails, it compensates for the not optimal parameter settings
for the Rocchio classification algorithm. This is also the reason that eliminat-
ing stopwords (irrelevant words) improves classification accuracy for the cosine
based methods. Also, only using nouns, verbs and adjectives (accounting for al-
most all relvant and successful query terms of a document, according to Kraaij
and Pohlmann, 1996) eliminates most irrelevant terms from a document. By
applying compound splitting, two or more words (parts of the compound) are in-
troduced in the documents and only one is eliminated for each compound term.
This process does not assist in feature selection as it does not eliminate irrelevant
features from the document, but only introduces (both relevant and irrelevant)
terms. However, if we choose an optimal parameter setting for each specific clas-
sification method, the application of language technology on these classification
methods would probably not have a signinficant influence on the classification
accuracy.

71

CHAPTER 8. EVALUATION

8.4 Language technology experiments (2)

The application of individual language technologies to the profile based classifi-
cation methods did not result in a significant increase in classification accuracy.
Therefore, applying combinations of these language technologies would probably
not positively influence the classification accuracy either. For the example based
classification methods, the application of language technology does positively in-
fluence the classification accuracy for most classification approaches. Spelling
correction is an exception on this statement: it does not significantly improve the
accuracy (for best-n performance for n ∈ {3, 5, 10}) and is therefore excluded from
the following experiments. In this section we focus on applying combinations of
language technology to the example based classification approaches, in order to
improve the total classification accuracy of these methods. Unfortunately, it is
not feasible to conduct all permutations of language technology combinations,
which is 6! = 720 experiments, since the order of applying different technolo-
gies also influences the classification. For this reason, we start experimenting
with binary combinations of stopword removal, decompounding, N-gram check-
ing, stemming and pos-tagging (using only nouns, verbs and adjectives). If the
results of these binary combinations are promising, we conduct further experi-
ments with the combination of language technologies. To demonstrate the lack of
positive influence of applying language technology for the profile based classifica-
tion methods, we also conduct these experiments with the profile based classifier.

8.4.1 Example based experiments

In this section we present the results of the experiments using the example based
classification methods, in which we combine the language technologies presented
in chapter 5. Table 8.4 displays the influence of the binary combinations of lan-
guage technology for the example based classification methods.

Word classes and Stemming

In this combination we only use nouns, verbs and adjectives, of which the nouns
and verbs are also stemmed. This language technology combination yields no
significant improvement for the EB/IP combinations with respect to the influ-
ence of only using word classes (respectively 8 and 17 percentage points decrease
in the Okapi/IP and the TFIDF/IP combination). With respect to the application
of just stemming, this combination results in a considerable decrease in accuracy
for the Okapi/IP combination and performs slightly better for the TFIDF/IP com-
bination. For both the Okapi/Cos and TFIDF/Cos approaches, this combination
has no significant influence on the classification accuracy.

Since combining word classes and stemming does not improve the classification
accuracy, we will not further investigate other combinations based on this ap-
proach. Using either stemming or word classes would cause a higher increase in
classification accuracy than the combination of both.

72

CHAPTER 8. EVALUATION

Experiment Weighted average performance (%)
n Approach wc/st sw/dc sw/ng dc/st sw/st dc/wc ng/st

1

Okapi/IP -5.50 +3.99 +4.39 +5.19 +7.16 +5.92 +6.11
Okapi/Cos +9.57 +6.63 -0.24 +7.57 +10.09 +9.61 +3.73
TFIDF/IP +4.99 +15.67 +15.53 -0.05 +17.06 +14.43 -0.31
TFIDF/Cos +10.08 +6.87 +0.25 +5.81 +10.58 +10.35 +3.47

3

Okapi/IP -10.36 +4.71 +4.43 +6.24 +6.84 +6.11 +6.27
Okapi/Cos +0.89 -0.55 -1.78 +0.67 +2.22 +1.56 +0.66
TFIDF/IP +3.31 +19.54 +21.15 +0.04 +24.05 +16.57 -0.99
TFIDF/Cos +1.65 +0.16 -1.09 -0.05 +3.02 +2.01 +0.18

5

Okapi/IP -12.79 +3.78 +3.73 +4.92 +6.19 +4.78 +4.81
Okapi/Cos +0.22 -0.78 -1.99 +0.31 +1.67 +0.50 +0.07
TFIDF/IP -1.05 +17.25 +18.52 +0.17 +21.59 +15.19 -1.65
TFIDF/Cos +1.02 +0.08 -1.18 +0.23 +2.79 +1.47 +0.22

10

Okapi/IP -15.27 +2.60 +2.71 +3.45 +3.87 +3.25 +3.42
Okapi/Cos +0.17 -0.71 -1.63 +0.22 +1.10 +0.12 -0.03
TFIDF/IP -6.35 +13.38 +13.95 +0.71 +16.12 +11.60 -0.16
TFIDF/Cos +0.72 -0.29 -1.08 +0.19 +1.63 +0.46 +0.07

Table 8.4: Influence of the use of binary combinations of language technology for
the Example based methods. The first column lists the value for n to measure
the best-n performance in weighted averages

Stopword removal and decompounding

If we first remove all stopwords from the document, and then split compounds,
the classification accuracy increases with respect to only removing stopwords.
This increase ranges from 2 (best-5 performance) to 13 (best-1 performance) per-
centage points for the cosine based approaches and approximately 1 percentage
point for the Okapi/IP combination. For the Okapi/Cosine combination, the clas-
sification accuracy is comparable to that of only removing stopwords.

With respect to decompounding, the combination of removing stopwords and
splitting compounds has no significant influence.

Stopword removal and N-gram check

Applying the N-gram check after the stopwords have been removed results in a
small increase in classification accuracy with respect to only stopword removal,
for all classification approaches (about 1 percentage point).

With respect to the classification accuracy of only applying the N-gram check,
we see an increase of 6 to 18 percentage points for the TFIDF combinations
(TFIDF/Cos and TFIDF/IP respectively) and a decrease of approximately 2 per-
centage points for the Okapi combinations.

73

CHAPTER 8. EVALUATION

Decompounding and stemming

Splitting the compounds and stemming all the remaining words of a document
(including the resulting words of the decompounding process) does not have a
significant influence on the classification results with respect to using only one
of these techniques.

Stopword removal and stemming

The combination of stopword removal and stemming appears to be a good lan-
guage technology application for all of our example based classification ap-
proaches. The classification accuracy increases with at least 4 percentage points
with respect to only applying stopword removal.

With respect to the classification accuracy yielded by applying stemming for the
example based classification approaches, this combination shows an increase of
1.5 a 2 percentage points for all our classification approaches, except for the
TFIDF/IP combination. For this approach, the increase in in classification ac-
curacy reaches a maximum of 21 percentage points.

Wordclasses and decompounding

The combination of using decompounding and only using nouns, verbs and ad-
jectives for the classification process does not have a significant influence on the
classification accuracy if we compare it to only applying decompounding or only
using nouns, verbs and adjectives for classification. An exception can be notices
for the Cosine combinations in best-1 performance, which show a considerable
increase in accuracy. However, the other performance measures do not reflect
this increase.

N-gram check and stemming

With respect to applying the N-gram check to the words of the documents, we
do not yield a significant increase in classification accuracy for the Okapi based
methods, and the TFIDF/IP method. However, for the TFIDF/Cosine method,
the classification accuracy increases with 5 to 14 percentage points (for best-10
and best-1 performance respectively).

Applying the combination of the N-gram check and stemming only significantly
influences the best-1 performances of the Okapi/Cos and the TFIDF/IP combi-
nation. For best-n performance with n ∈ {3, 5, 10}, the classification accuracy
remains approximately constant with respect to the application of only applying
stemming.

74

CHAPTER 8. EVALUATION

Experiment Weighted average performance (%)
n Approach wc/st sw/dc sw/ng dc/st sw/st dc/wc ng/st

1

Okapi/IP -2.27 -5.95 -2.55 -3.40 -3.36 -3.35 -0.04
Okapi/Cos -0.56 -1.51 +0.56 -3.64 -1.25 -1.04 -0.97
TFIDF/IP -1.45 -7.02 -1.19 -4.59 -1.39 -4.67 -0.24
TFIDF/Cos -0.60 -2.53 +0.39 -3.38 -1.20 -1.57 -1.17

3

Okapi/IP -1.85 -5.01 -1.21 -3.41 -0.66 -2.33 -0.44
Okapi/Cos +2.12 -2.24 +1.85 -4.79 -2.71 -1.58 -0.02
TFIDF/IP -1.17 -5.02 -0.65 -3.97 +0.54 -2.70 -0.07
TFIDF/Cos +1.98 -2.92 +2.04 -5.37 -2.53 -1.89 +0.00

5

Okapi/IP -1.56 -3.87 -0.48 -3.34 -0.05 -1.58 -0.25
Okapi/Cos +2.74 -1.86 +2.04 -3.65 -2.23 -0.96 +0.44
TFIDF/IP -0.89 -3.11 -0.05 -3.22 +0.85 -1.41 +0.10
TFIDF/Cos +2.94 -1.53 +2.35 -4.10 -1.78 -1.57 +0.71

10

Okapi/IP -1.11 -1.93 +0.37 -2.43 +0.11 -1.21 -0.34
Okapi/Cos +1.52 -1.79 +1.71 -2.86 -1.97 -0.99 +0.26
TFIDF/IP -0.82 -1.45 +0.67 -2.12 +0.52 -1.06 +0.04
TFIDF/Cos +1.99 -0.76 +1.99 -2.63 -1.10 -0.85 +0.81

Table 8.5: Influence of the use of binary combinations of language technology for
the Profile based methods. The first column lists the value for n to measure the
best-n performance in weighted averages

8.4.2 Profile based experiments

As we expected in the introduction of this section, the application of combina-
tions of language technologies does not improve the classification accuracy for
the profile based classification methods. In the last section we already discussed
that the application of language technology only might improve the classification
accuracy if it compensates for the sub-optimal feature selection that is implied by
the parameter settings for the Rocchio classifier. For almost all binary combina-
tions we experimented with, the classification accuracy equals, or is worse then,
the application of only one language technology from the combination. However,
the combination of stopword elimination and N-gram check slightly increases the
classification accuracy with respect to only eliminating stopwords or only apply-
ing the N-gram check. Apparently, stopword elimination and N-gram checking
both compensate the non-optimal parameter settings for feature selection of the
Rocchio classifier. Again, the increase is only achieved in the classification meth-
ods for wich the parameter settings are not optimal.

8.5 Language technology experiments (3)

In the last section we experimented with binary combinations of language tech-
nology for our classification methods. In those experiments we noticed that the
combination of two individually successful language technologies do not always
result in a better classification accuracy than the individual ones. For example,
stemming and the use of only nouns, verbs and adjectives both individually cause

75

CHAPTER 8. EVALUATION

Weighted average performance (%)
Experiment Example based Profile based

n Approach sw/dc/st sw/ng/st sw/dc/st sw/ng/st

1

Okapi/IP +4.05 -10.66 -7.18 -4.18
Okapi/Cos +6.17 -0.68 -3.27 -0.96
TFIDF/IP +15.45 +14.70 -6.08 -2.35
TFIDF/Cos +7.61 +0.62 -3.58 -1.16

3

Okapi/IP +4.25 -12.57 -5.06 -1.07
Okapi/Cos -0.97 -2.13 -4.07 +1.33
TFIDF/IP +18.81 +17.93 -3.98 +0.20
TFIDF/Cos +0.01 -1.30 -4.18 +1.42

5

Okapi/IP +3.69 -14.20 -3.86 +0.14
Okapi/Cos -1.04 -2.02 -2.37 +2.20
TFIDF/IP +16.67 +10.50 -2.60 +1.02
TFIDF/Cos +0.07 -1.23 -1.88 +2.83

10

Okapi/IP +15.45 +14.70 -6.08 -2.35
Okapi/Cos -0.65 -1.63 -2.25 +1.64
TFIDF/IP +12.83 +1.12 -1.50 +0.63
TFIDF/Cos -0.04 -0.98 -1.04 +2.35

Table 8.6: Influence of the use of combinations of three language technologies for
the Profile based methods. The first column lists the value for n to measure the
best-n performance in weighted averages

an increase in classification accuracy of about 5 percentage points with respect to
the baseline experiment for best-5 performance of the EB/Okapi/IP combination.
However, the combination of these two technologies (st/wc) causes the classifica-
tion accuracy to decrease with 12.79 percentage points!

The following language technology combinations performed better than their in-
dividual technologies, or at least perform as well as them. These are the combi-
nations on which we want to base our next series of experiments.

Stopword removal / decompounding
Stopword removal / N-gram check
Stopword removal / Stemming
decompounding / stemming
N-gram check / stemming

Combining these technologies (in combinations of three distinct technologies)
results in the combination of stopword removal, decompounding, stemming
(sw/dc/st) and stopword removal, n-gram check and stemming (sw/ng/st). The re-
sults of these experiments for the example and profile based classification meth-
ods are presented in table 8.6.

As illustrated in table 8.6, the profile based classification methods do not show
a significant increase in classification accuracy for the combination of stopword
elimination, decompounding and stemming. The slight increase in classification
accuracy for some of the methods in which the language technology combination
of eliminating stopwords, applying the N-gram check and stemming is applied,
does not exceed the increase in accuracy of the binary combination of applying

76

CHAPTER 8. EVALUATION

the N-gram check eliminating stopwords (see table 8.5).

Applying the combination of eliminating stopwords, decompounding and stem-
ming to the example based classification approaches does cause an increase in
classification accuracy with respect to the baseline experiments. However, this
increase in accuracy is smaller than the increase caused by applying only the
combination of eliminating stopwords and decompounding. The use of stemming
for this combination does not cause an extra increase in classification accuracy
for the stopword removal and decompounding combination. The combination of
removing stopwords, applying the N-gram check and stemming for the exam-
ple based classification approaches does not yield an increase in accuracy for
the Okapi based methods. The increase in classification accuracy for the TFIDF
combinations does not exceed the classification accuracy for combination of only
applying the stopword removal and N-gram check combination.

Since no extra increase in classification accuracy is yielded from combining three
language technologies to the classification process, we see no reason to further
investigate the influence of other combinations of language technology.

8.6 Conclusion

First of all, IR based classification approaches perform better in suggesting rel-
evant answers to e-mail than the keyword approach implemented by Em@ilco.
The example based methods (K-NN classifier) outperform the profile based meth-
ods (Rocchio classifier) in terms of weighted average classification accuracy. For
an optimal use of the classification algorithms presented in this thesis, the opti-
mal parameter settings have to be empirically determined. In case of the exam-
ple based classifier the value for K (which is the number of relevant documents
that influence the classification results) for the K-Nearest-Neighbour algorithm
has to be determined. In case of the profile based classifier, the optimal value
for ρ = β/α has to be determined. This ratio ρ manipulates the influence of the
negative training examples with respect to the influence of the positive train-
ing examples. For every classification problem these values may differ from the
values in this thesis.

The second hypothesis, which states that language technology improves the clas-
sification accuracy for the IR based classification approaches, cannot be answered
with an unambiguous yes. The application of language technology for e-mail
classification using the example based classifier indeed improves the classifica-
tion accuracy. Figure 8.5 illustrates this statement. In this figure we present
the classification accuracies of our best example and profile based classification
method (Okapi weights and inner product similarity) and the best application
of language technology to both approaches. The example based classification
approaches are denoted by the blue lines and the profile based classification ap-
proaches are denoted by the red lines. The baseline classification accuracy is
marked using squares, while the classification accuracy when we also use lan-
guage technology are marked using triangles. For the example based classi-
fier, the application of decompounding yields the best classification accuracy and
shows an increase in best-5 accuracy of 5.25 percentage points with respect to

77

CHAPTER 8. EVALUATION

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

Classification rank (best-n)

P
er

fo
rm

an
ce

 (
%

)

EB/Okapi/IP
EB/Okapi/IP using decompounding
PB/Okapi/IP
PB/Okapi/IP using wordclasses

Figure 8.5: Influence of the application of language technology on the classifica-
tion accuracy of the profile and example based classification methods

the EB/Okapi/IP classification method, and an increase of 2.58 percentage points
with respect to the EB/Okapi/Cosine classification approach. This results in a to-
tal best-5 weighted classification accuracy of 87.4%. For the profile based classifi-
cation approach, the use of language technology does not positively influence the
classification accuracy for the best classification approach. For the other profile
based classification approaches, the use of language technology slightly boosts
the classification accuracy, but the total accuracy does not exceed the baseline
accuracy of the PB/Okapi/IP combination, for which the parameter settings are
optimal. Moreover, in case of the profile based classifier, the use of language tech-
nology can be compensated tuning the feature selection by setting the parameter
ρ to a value for which the classification accuracy for this specific method reaches
its maximum.

78

Chapter 9

Conclusions

In our first research hypothesis we stated that information retrieval (IR) based
classification of e-mail messages for automatic answer suggestion, should outper-
form the manually defined keyword approach as developed by Em@ilco. In this
thesis we presented two IR based classification approaches that certainly sub-
stantiate this hypothesis. In the classification routine as developed by Em@ilco,
the correct answer was suggested in the first 5 suggestions in 40% of the cases.
Our best performing IR based classification method, was able to more than dou-
ble this performance: in 84.5% of the e-mails, the correct answer was suggested
in the first 5 suggestions. So, we consider our first hypothesis as proven. It is
worth noting that for almost 60% of all e-mails, the first answer was the correct
answer, so automatic e-mail answering should be possible once we have a reliable
confidence measure. This certainly encourages further research in this area.

The second research hypothesis stated that the use of language technology as
text normalization, improves the accuracy of the IR based classification. In this
thesis we have shown that this is partly true. Our example based classification
approach (the K-Nearest-Neighbour classifier) benefits slightly from the use of
language technology. The classification accuracy for this method increases with
approximately 3 percentage points to a maximum of 87.36%, if we apply just
one language technology (decompounding, stemming, language identification or
POS-tagging in which we only use nouns, verbs and adjectives for classification,
for best-5 weighted performance). If we apply combinations of two language tech-
nologies in the classification process, the increase in accuracy even approximates
4 percentage points, resulting in a maximum classification accuracy of 88.34%.
However, for the profile based classification approach (the Rocchio classifier), the
use of language technology does not significantly improve the classification accu-
racy.

The classification approaches presented in this thesis perform best if the docu-
ments (i.e. e-mails) contain as much relevant and as little irrelevant informa-
tion as possible. With this we mean that an e-mail should not contain more
information than the actual question the user wishes a response to, for optimal
classification accuracy. The nature of the language technology we used in this
thesis is twofold. We try to eliminate as much irrelevant terms as possible (re-

79

CHAPTER 9. CONCLUSIONS

moving stopwords or using only nouns, verbs and adjectives in the classification
process). Moreover, we try to generalise the e-mails by relating different morpho-
logical variants of words and correcting spelling errors. In both matters we try
to transform the e-mail into a representation as relevant as possible for the clas-
sification process (i.e. only the words that matter should be kept). Suppose we
only receive e-mails in which the question has been reduced to a single sentence
without customer information, e-mail signatures, reply lines, greetings, etc.. For
instance, the e-mail contains no more than the sentence:

“How may I apply for more lottery tickets?”

It should not be difficult to distinguish this question from the sentence:

“How may I cancel my lottery tickets?”

However, if we pose the last question differently and provide a more realistic ex-
ample with more (unfortunately irrelevant) information like the sentence below,
discrimination will be more difficult:

“In august, I decided to apply for a lottery ticket, but now I realise that
applying for this ticket was not a good idea! Therefore I wish to cancel
it.”

If we want the system to classify the last e-mail in one of the categories repre-
senting the standard questions ”cancelling tickets” and ”applying for tickets”, it
would probably be classified in the last, since the words apply and applying oc-
cur more often than cancel. The essence of this e-mail is that the user wants to
cancel a ticket. However, even if we apply the language technology presented in
this thesis, the system would not be able to classify this e-mail correctly.

If we wish to improve text classification systems using language technology, we
have to strive for detecting and extracting the essence of a document: a very
difficult problem, which may not adequately be solved by current state-of-the-art
language technologies.

Overall we can state that the use of information retrieval based classification
methods is certainly suitable for best-N answer suggesting in a contact centre. A
good incorporation of the proposed technologies will certainly provide a reduction
in time spent on answering e-mails, and thus on the investments that have to be
made in implementing the technology.

80

Chapter 10

Suggestions for future work

No Master of Science thesis is complete without a bunch of useful ”future work”
suggestions at the end. Moreover, we will point out some necessary requirements
for the classification approach to perform optimally in a contact centre.

10.1 Research suggestions

In this research we demonstrated that in general, IR based classification meth-
ods for automatic e-mail answer suggestions perform good, and that classifica-
tion accuracy is higher than that of support vector machines (Busemann et al.,
2000) and Naive Bayes (Gaustad and Bouma, 2002). However, since the point
of departure differs (i.e. the e-mail corpus), we can not decide which approach
performs best for the presented cases. An evaluation study, like Yang and Liu
(1999) conducted for text categorization on the Reuters-21578 corpus, should be
done to compare such statistical based classification approaches for the e-mail
domain.

10.1.1 Hierarchical classification

In this research we focused on using text classification techniques for answer
suggestion on incoming e-mail in a contact centre. Although some contact centres
are mono-subject (i.e. they work on one item for just one customer as is the case
with the ”De Nationale Postcodeloterij”) some of them handle a wider variety of
subjects (e.g. questions about telephony, television, and internet for a Telecom
provider). Suppose we receive the following request:

”dear company, I want to complain about the internet service inter-
ruption. I told the lady on the telephone about it, but still I get no
connection.”

This message contains the important terms internet, interruption and telephone,
which may be suggested an answer to a telephony service interruption ques-

81

CHAPTER 10. SUGGESTIONS FOR FUTURE WORK

tion instead of the original internet question. Of course, different e-mail ad-
dresses can be used, but companies tend to use as few addresses as possible
(more addresses means more communication and more communication means
more money). To solve this problem, it is important to classify incoming mail
first as belonging to one of the three broad classes (telephony, television, or in-
ternet).

In the second stage, the e-mail can be categorized within one of the clusters of the
selected category. The advantage of such an approach might be that classification
accuracy increases (since the classification problem has become easier due to the
smaller category set). For each cluster an index (document collection) is created
based on the messages that belong to that cluster. Such clusters do not neces-
sarily have to be determined manually, but may also be determined by document
clustering algorithms which cluster a set of documents in a set of categories.

10.1.2 Information extraction and deletion

The main theme of this thesis is that an e-mail may contain valuable information
for classification and information retrieval systems, but that it can be difficult to
determine which information is relevant. The important information, ”hidden”
in many accompanying phrases, contains the actual questions, complaints, or re-
marks the customer wishes a response to. Such key-utterances are very difficult
to detect, but we may decrease the complexity of the problem by removing utter-
ances that are not relevant (personal information, greetings, welcome message,
a signature below the e-mail message or reply-information). In general one can
state that removing non-relevant information increases the relevance density of
the remaining part of the message and so, increases the possibility of a correct
classification.

Moreover, besides information extraction and deletion, we may also add infor-
mation to the e-mail representation in our system by looking at the (structured)
meta-information of an e-mail. E-mails contain information about the date, time
sender, receiver and subject. Especially the subject might be an interesting ad-
dition for the classification because it usually specifies the content of the mail
(although lots of people just reply on the last e-mail received).

10.1.3 Automatic answering

In the last decades, text classification mainly focussed on large text collections
(e.g. news paper article collections) that can be categorized in relatively general
topics (sports, economics, culture, foreign politics, etc). The research of Buse-
mann et al. (2000), Scheffer (2004), and Gaustad and Bouma (2002) has demon-
strated that text classification techniques perform well in suggesting relevant
categories for a document collection containing small, unstructured documents
in a relatively large (and detailed) set of categories. However, correct direct clas-
sification for such e-mail messages (best-1 performance) is not feasible due to the
fact that differences between documents and the differences between categories
are very small.

82

CHAPTER 10. SUGGESTIONS FOR FUTURE WORK

An interesting research topic might be automatically answering e-mail in contact
centres. Based on the classification techniques presented in this chapter, we can
focus on the 60% of the e-mails that can be automatically answered. Obviously,
this 60% is not high enough to auto-answer all incoming e-mails automatically
since 40% of the customers would receive an incorrect answer: additional confi-
dence measurements are necessary!

Term weighting schemes in this thesis may provide us with useful information
about the relative relevance of documents. Two categories with almost equal
relevance scores are both good candidates for answer suggestion, but a category
that has a relevance score that exceeds all of the relevance scores of the other cat-
egories, is more likely to be the correct category and thus can be used to answer
the question. If the category suggestion is trustworthy enough, we might send
it to the customer (with a note that this is an automatically generated answer).
Suppose that 50% of the e-mails receive such ”one preferred category” and that
80% of the class selection of these e-mails is right. Then, we have the following
situation:

80% x 50% = 40% correctly responded
20% x 50% = 10% incorrectly responded
50% = 50% handled by human agents

If so, it should be interesting to see if the public will accept this: a nearly real
time response at a cost of 10% erroneous answers.

10.1.4 Automatic parameter estimation

The presented classification approaches rely on correct parameter settings in or-
der to achieve an optimal classification accuracy. In chapter 8 we stated that
for each classification problem the parameters should be experimentally deter-
mined. For this research, the optimal value for K in K-Nearest-Neighbour clas-
sification turned out to be 50, and the optimal value for ρ in the Rocchio clas-
sification algorithm was 8. Moschitti (2003) experimented with an automatic
parameter estimation algorithm. Based on a small reference set of the document
collection, the parameter ρ for which the classification accuracy of a certain clas-
sification problem reaches its maximum, is automatically determined. For each
classification problem, the value for ρ might be different. Investigating the use
of such automatic parameter estimation algorithms based on the work of Mos-
chitti for estimation of ρ and K may increase the usability of the classification
approaches presented in this thesis.

10.2 Implementation suggestions

Text classification problems have in common that a given set of documents
should be categorized within a given set of categories. The documents, categories
and numbers naturally differ in different classification problems. For this reason
we may not assume that the best classification and language technology combi-
nation presented here for the ”Nationale Postcode Loterij” are optimal too for a

83

CHAPTER 10. SUGGESTIONS FOR FUTURE WORK

different classification problem. Even if the documents are comparable (both are
e-mail sent to a service centre) and the number of categories is more or less equal,
the optimal strategy may differ from the best in this report. Before implementing
these classification algorithms in a contact centre, some experiments have to be
conducted to determine the best classification approach for the specific set of doc-
uments and categories. Parameters like K in K-Nearest-Neighbour classification
and α and β in Rocchio classification might have to be adjusted. Also, the applica-
tion of language technology might not result in the same classification accuracy
for different classification problems. The experiments to determine the optimal
settings and classification approaches can be conducted using the prototype that
we have developed for this research.

The effectiveness of these methods is entirely based on the nature of the classi-
fication problem and the training data. If the training data contains lots of clas-
sification errors, the approaches discussed in this thesis will inevitably copy this
incorrect classification behaviour, resulting in a low classification accuracy and
thus low usability in a contact centre. Also, the presence of tags for structuring
information (e.g. to forward a web form using e-mail) can negatively manipulate
the classification accuracy and should therefore be removed. Finally, text classifi-
cation works best for a classification problem in which the categories are distinct
and documents may be categorized in exactly one category. This implies that
no categories should contain other categories. For example, if the contact centre
uses categories named “Email address - general” and “How may I change my e-
mail address”, these categories may overlap. This overlap introduces a problem
to a classification algorithm since both categories contain mails with questions
about the e-mail address, and contact centre agents will also categorize mails
from the second category in the first one. The classification algorithm now finds
two suitable categories for the same question.

In conclusion, before text classification approaches may prove their use in a con-
tact centre, the classification organization first has to be optimalised. This im-
plies the following:

• No double question/answer pairs (categories) may exist

• No overlapping categories may exist

• Equal questions requiring different answers (based on context information
like a date, time or event) should be collected in the same category (since
the questions are the same)

However, we expect that the combination of better classification approaches,
more advanced language technologies and more structured e-mails will enable
automatic answering of e-mails in the future.

84

Bibliography

I. Androutsopoulos, J. Koutsias, K.V. Chandrinos, G. Paliouras, and C.D. Spy-
ropoulos. An evaluation of naive bayesian anti-spam filtering. ArXiv Computer
Science e-prints, 2000.

R.H. Baayen, R. Piepenbrock, and H. Van Rijn. The CELEX lexical database.
linguistic data consortium, university of pennsylvania, 1993.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

S. Bickel and T. Scheffer. Learning from message pairs for automatic email an-
swering. In ECML, pages 87–98, 2004.

G. Boone. Concept features in re:agent, an intelligent email agent. In AGENTS
’98: Proceedings of the second international conference on Autonomous agents,
pages 141–148. ACM Press, New York, 1998.

E. Brill. Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics, 21
(4):543–565, 1995.

J.D. Brutlag and C. Meek. Challenges of the email domain for text classification.
In Proceedings of ICML-2000, International Conference on Machine Learning,
pages 103–110, 2000.

C. Buckley, G. Salton, and J. Allan. The effect of adding relevance information
in a relevance feedback environment. In SIGIR ’94: Proceedings of the 17th
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 292–300, New York, NY, USA, 1994. Springer-
Verlag New York, Inc.

S. Busemann, S. Schmeier, and R.G. Arens. Message classification in the call
center. In Proceedings of the sixth conference on Applied natural language
processing, pages 158–165, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

W.B. Cavnar and J.M. Trenkle. N-gram-based text categorization. In Proceedings
of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information
Retrieval, pages 161–175, Las Vegas, US, 1994.

A. Chen. Cross-language retrieval experiments at clef 2002. In Proceedings of
CLEF-2002, pages 28–48, 2002.

85

BIBLIOGRAPHY

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):
273–297, 1995.

B.W. Croft. Knowledge-based and statistical approaches to text retrieval. IEEE
Expert, 8(2):8–12, 1993.

H. Drucker, D. Wu, and V. Vapnik. Support vector machines for Spam categoriza-
tion. IEEE-NN, 10(5):1048–1054, 1999.

D. Etzold. Improving spam filtering by combining naive bayes with simple k-
nearest neighbor searches. ArXiv Computer Science e-prints, 2003.

T. Gaustad and G. Bouma. Accurate stemming of dutch for text classification.
Language and Computers, 45(1):104–107, 2002.

J.M. Gomez, J.C. Cortizo, E. Puertas, and M. Ruiz. Concept indexing for auto-
mated text categorization. In Proceedings of the 9th International Conference
on Applications of Natural Languages to Information Systems, NLDB, 2004.

D. Harman. How effective is suffixing? Journal of the American Society for
Information Science, 42(2):7–15, 1991.

D. Harman. Overview of the first trec conference. In SIGIR ’93: Proceedings of
the 16th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 36–47, New York, NY, USA, 1993. ACM
Press.

D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis,
University of Twente, 2000.

D. Hiemstra and F. de Jong. Statistical language models and information re-
trieval: natural language processing really meets retrieval. GLOT Interna-
tional, 5:288–294, 2001.

D. Hull. Stemming algorithms - a case study for detailed evaluation. Journal of
the American Society for Information Science, 47(1), 1996.

T. Joachims. A probabilistic analysis of the rocchio algorithm with tfidf for text
categorization. In Douglas H. Fisher, editor, Proceedings of ICML-97, 14th
International Conference on Machine Learning, Nashville, US, 1997. Morgan
Kaufmann Publishers, San Francisco, US.

T. Joachims. Text categorization with support vector machines: learning with
many relevant features. In Proc. 10th European Conference on Machine Learn-
ing ECML-98, pages 137–142, 1998.

T Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-02), pages 132–142, New York, 1999. ACM Press.

D. Jurafsky and J.H. Martin. Speech and Language Processing. Prentice Hall,
New Jersey, 2000.

M. D. Kernighan, K. W. Church, and W. A. Gale. A spelling correction program
based on a noisy channel model. In Proceedings of the COLING-90, volume 2,
pages 205–211, Helsinki, Finland, 1990.

86

BIBLIOGRAPHY

B Klimt and Y. Yang. The enron corpus: A new dataset for email classification
research. In Proceedings of ECML’04, 15th European Conference on Machine
Learning, pages 217–226, 2004.

W. Kraaij and R. Pohlmann. Porter’s stemming algorithm for dutch. In
L.G.M. Noordman and W.A.M. de Vroomen, editors, Informatiewetenschap
1994: Wetenschappelijke bijdragen aan de derde STINFON Conferentie, pages
167–180, 1994.

W. Kraaij and R. Pohlmann. Viewing stemming as recall enhancement. In SIGIR
’96: Proceedings of the 19th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 40–48, New York,
USA, 1996. ACM Press.

J.B. Lovins. Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics, 11:22–31, 1968.

C. Monz and M. De Rijke. Shallow morphological analysis in monolingual infor-
mation retrieval for dutch, german and italian. In Proceedings CLEF 2001,
pages 262–277. Springer Verlag, 2001.

S. Mooers. Information retrieval viewed as temporal signaling. In Proceedings of
the International Congress of Mathematicians, volume 1, pages 572–573, 1950.

A. Moschitti. A study on optimal parameter tuning for Rocchio text classifier. In
Fabrizio Sebastiani, editor, Proceedings of ECIR-03, 25th European Conference
on Information Retrieval, pages 420–435, Pisa, IT, 2003. Springer Verlag.

N. Oostdijk. The spoken dutch corpus. overview and first evaluation. In Proceed-
ings LREC 2002, volume 2, pages 887–893, 2000.

M. Popovic and P. Willet. The effectiveness of stemming for natural-language
access to slovene textual. Journal of the American Society for Information
Science, 43(5):384–390, 1992.

M.F. Porter. An algoritm for suffix striping. In K. Sparck Jones and P. Willet,
editors, Readings in Information Retrieval, 1980.

S.E. Robertson. The probability ranking principle in ir. Journal of Documenta-
tion, 33(4), 1977.

S.E. Robertson and K. Sparck Jones. Relevance weighting of search terms. Jour-
nal of the American Society for Information Science, 27(3):129–146, 1976.

S.E. Robertson and K. Sparck Jones. Simple, proven approaches to text retrieval.
Technical report, City University London and University of Cambridge, 1997.

P. Rosso, E. Ferretti, D. Jiménez, and V.Vidal. Text categorization and infor-
mation retrieval using wordnet senses. In Proceedings of the second Global
WordNet Conference, pages 299–304, 2004.

G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, S.D. Spyropoulos,
and P. Stamatopoulos. A memory-based approach to anti-spam filtering for
mailing lists. Information Retrieval, 6(1):49–73, 2003.

87

BIBLIOGRAPHY

G. Salton, E.A. Fox, and H. Wu. Extended boolean information retrieval. Com-
mications of the ACM, 26:1022–1036, 1983.

G. Salton and M.J. McGill. An introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

T. Scheffer. Email answering assistance by semi-supervised text classification.
Intelligent Data Analysis, 8(5), 2004.

F. Sebastiani. A tutorial on automated text categorisation. In Analia Amandi and
Ricardo Zunino, editors, Proceedings of ASAI-99, 1st Argentinian Symposium
on Artificial Intelligence, pages 7–35, Buenos Aires, AR, 1999.

K. Sparck Jones, S. Walker, and S.E. Robertson. A probabilistic model of infor-
mation retrieval: Development and status, 1998.

C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Dept. of Computer
Science, University of Glasgow, 1979.

J. Yang and S. Park. Email categorization using fast machine learning algo-
rithms. In Discovery Science, pages 316–323. Springer-Verlag, 2002.

Y. Yang. Expert network: Effective and efficent learning from human decisions
in text categorisation and retrieval. In Bruce W. Croft and C. J. van Rijsbergen,
editors, Proceedings of the Seventeenth Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 13–22.
Springer-Verlag, 1994.

Y. Yang. An evaluation of statistical approaches to text categorization. Informa-
tion Retrieval, 1(1/2):69–90, 1999.

Y. Yang and X. Liu. A re-examination of text categorization methods. In SIGIR
’99: Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pages 42–49, New York,
USA, 1999. ACM Press.

88

Appendix A

Classification accuracy for NLP
experiments

In this appendix we will present the classification accuracy for the experiments
using language technology as a pre-process for the information retrieval based
classification methods presented in this thesis. In chapter 8 we already pre-
sented the differences between the baseline experiments and the experiments
using language technology, but in this appendix we present the total classifica-
tion accuracy for the combinations of classification methods and language tech-
nologies. In each table, the classification methods are denoted in the rows and
the language technologies in the columns. We use the following abbreviations:

Abbreviation Language technology
sw Stopword removal
dc Decompounding
ng N-gram check
st Stemming
sp Spelling correction
wc Word classes (Part of speech tagging)

A.1 First experiment series

In this section we will present the classification accuracy of the first experiments
series. In this experiment series we investigated the influence of each individual
language technology on the classification accuracy. In table A.1 we present the
classification accuracy of using language technology for the example based clas-
sification methods. In table A.2 we present the classification accuracy of using
language technology for the profile based classification methods.

89

APPENDIX A. CLASSIFICATION ACCURACY FOR NLP EXPERIMENTS

Experiment Weighted average performance (%)
n Approach base sw dc ng st sp wc

1

Okapi/IP 52.07 55.65 58.55 57.95 57.88 40.88 58.31
Okapi/Cos 48.20 40.43 47.94 50.28 56.93 58.35 58.25
TFIDF/IP 25.80 40.77 26.68 25.83 25.47 25.78 39.86
TFIDF/Cos 47.25 40.69 46.93 36.12 53.87 54.69 57.82

3

Okapi/IP 74.63 77.73 81.05 80.71 80.59 61.88 80.64
Okapi/Cos 77.15 73.46 77.49 78.10 78.05 79.24 78.61
TFIDF/IP 43.11 63.23 43.96 43.30 42.16 43.25 60.66
TFIDF/Cos 76.35 73.76 76.54 65.64 76.51 77.31 78.32

5

Okapi/IP 82.15 84.77 87.40 87.36 86.88 71.51 86.83
Okapi/Cos 84.82 81.67 84.87 85.15 85.36 86.08 85.27
TFIDF/IP 56.75 74.53 57.11 56.91 55.23 56.85 72.76
TFIDF/Cos 83.89 81.87 83.96 76.31 84.18 84.63 85.30

10

Okapi/IP 89.47 91.47 92.96 92.91 92.85 83.44 92.62
Okapi/Cos 91.42 89.37 91.59 91.90 91.69 92.05 91.67
TFIDF/IP 71.78 85.17 72.21 72.01 71.63 72.33 84.03
TFIDF/Cos 91.02 89.42 91.30 85.38 91.18 91.48 91.66

Table A.1: Classification accuracy of using language technology for the Example
based methods. The first column lists the value for n to measure the best-n
performance in weighted averages

Experiment Weighted average performance (%)
n Approach base sw dc ng st sp wc

1

Okapi/IP 45.87 44.10 41.76 45.61 46.23 45.79 47.03
Okapi/Cos 27.49 27.95 25.73 27.78 26.07 27.31 28.53
TFIDF/IP 43.07 42.45 36.87 42.56 43.17 43.01 45.40
TFIDF/Cos 27.20 27.22 25.14 27.49 25.49 27.03 27.78

3

Okapi/IP 68.45 67.67 64.73 68.18 68.21 68.35 69.51
Okapi/Cos 52.39 54.53 48.77 52.54 51.66 52.18 54.52
TFIDF/IP 67.11 67.12 62.65 66.90 67.17 67.21 68.84
TFIDF/Cos 50.62 52.76 46.71 50.98 49.76 50.61 52.80

5

Okapi/IP 77.40 77.38 74.71 77.26 76.84 77.24 78.31
Okapi/Cos 64.09 66.39 60.92 64.19 68.29 63.84 66.07
TFIDF/IP 76.50 76.78 73.40 76.55 76.20 76.45 77.81
TFIDF/Cos 63.08 65.73 59.29 63.06 62.91 62.95 64.93

10

Okapi/IP 87.51 87.91 85.82 87.46 87.05 87.33 88.07
Okapi/Cos 80.53 82.43 77.77 80.32 80.24 80.17 81.69
TFIDF/IP 87.21 87.69 85.57 87.36 86.81 87.08 87.89
TFIDF/Cos 80.02 82.11 77.40 79.98 79.94 79.73 81.48

Table A.2: Classification accuracy of using language technology for the Profile
based methods. The first column lists the value for n to measure the best-n
performance in weighted averages

90

APPENDIX A. CLASSIFICATION ACCURACY FOR NLP EXPERIMENTS

Experiment Weighted average performance (%)
n Approach wc/st sw/dc sw/ng dc/st sw/st dc/wc ng/st

1

Okapi/IP 46.57 56.06 56.46 57.26 59.23 58.00 58.18
Okapi/Cos 57.77 54.83 47.96 55.77 58.29 57.81 51.92
TFIDF/IP 30.79 41.47 41.32 25.75 42.85 40.22 25.48
TFIDF/Cos 57.34 54.12 47.51 53.06 57.83 57.60 50.72

3

Okapi/IP 64.27 79.35 79.07 80.87 81.47 80.74 80.90
Okapi/Cos 78.04 76.59 75.36 77.82 79.37 78.71 77.81
TFIDF/IP 46.42 62.65 64.25 43.15 67.16 59.68 42.12
TFIDF/Cos 77.99 76.50 75.25 76.30 79.37 78.35 76.53

5

Okapi/IP 69.36 85.93 85.88 87.06 88.34 86.93 86.96
Okapi/Cos 85.05 84.05 82.83 85.13 86.50 85.33 84.89
TFIDF/IP 55.70 73.99 75.27 56.92 78.33 71.94 55.10
TFIDF/Cos 84.92 83.97 82.71 84.12 86.68 85.36 84.11

10

Okapi/IP 74.19 92.07 92.18 92.92 93.33 92.72 92.88
Okapi/Cos 91.59 90.71 89.79 91.64 92.52 91.54 91.39
TFIDF/IP 65.43 85.16 85.74 72.49 87.90 83.38 71.62
TFIDF/Cos 91.74 90.73 89.94 91.21 92.65 91.48 91.10

Table A.3: Classification accuracy of using binary combinations of language tech-
nology for the Example based methods. The first column lists the value for n to
measure the best-n performance in weighted averages

A.2 Second experiment series

In this section we will present the classification accuracy of the second experi-
ments series. In this experiment series we investigated the influence of binary
combinations of language technology on the classification accuracy. In table A.3
we present the classification accuracy of using language technology for the ex-
ample based classification methods. In table A.4 we present the classification
accuracy of using language technology for the profile based classification meth-
ods.

A.3 Third experiments series

In this section we will present the results for our third experiments series. In
table A.5 we present the total classification accuracy for applying combinations
of three language technologies on the example and profile based classification
methods.

91

APPENDIX A. CLASSIFICATION ACCURACY FOR NLP EXPERIMENTS

Experiment Weighted average performance (%)
n Approach wc/st sw/dc sw/ng dc/st sw/st dc/wc ng/st

1

Okapi/IP 43.59 39.91 43.32 42.46 42.51 42.51 45.83
Okapi/Cos 26.93 25.98 28.05 23.85 26.23 26.45 26.52
TFIDF/IP 41.61 36.05 41.88 38.48 41.68 38.40 42.82
TFIDF/Cos 26.60 24.67 27.59 23.82 26.00 25.63 26.03

3

Okapi/IP 66.60 63.44 67.24 65.04 67.79 66.12 68.01
Okapi/Cos 54.51 50.15 54.24 47.59 49.67 50.81 52.36
TFIDF/IP 65.94 62.09 66.46 63.14 67.65 64.42 67.04
TFIDF/Cos 52.59 47.70 52.66 45.25 48.09 48.73 50.62

5

Okapi/IP 75.85 73.53 76.92 74.06 77.35 75.82 77.15
Okapi/Cos 66.83 62.23 66.14 60.44 61.86 63.13 64.53
TFIDF/IP 75.61 73.39 76.45 73.28 77.35 75.09 76.60
TFIDF/Cos 66.01 61.55 65.43 58.97 61.29 61.50 63.79

10

Okapi/IP 86.39 85.58 87.87 85.08 87.61 86.29 87.17
Okapi/Cos 82.05 78.74 82.24 77.68 78.56 79.54 80.79
TFIDF/IP 86.39 85.76 87.88 85.09 87.73 86.15 87.25
TFIDF/Cos 82.01 79.26 82.02 77.39 78.92 79.17 80.84

Table A.4: Classification accuracy of using binary combinations of language tech-
nology for the Profile based methods. The first column lists the value for n to
measure the best-n performance in weighted averages

Weighted average performance (%)
Experiment Example based Profile based

n Approach sw/dc/st sw/ng/st sw/dc/st sw/ng/st

1

Okapi/IP 56.12 41.41 38.68 41.68
Okapi/Cos 54.36 47.52 24.21 25.53
TFIDF/IP 41.25 40.50 36.99 40.71
TFIDF/Cos 54.87 47.87 23.617 26.04

3

Okapi/IP 78.89 62.06 63.39 67.37
Okapi/Cos 76.18 75.01 48.31 53.72
TFIDF/IP 61.92 61.04 63.13 67.37
TFIDF/Cos 76.36 75.04 46.44 50.62

5

Okapi/IP 85.84 67.95 73.54 78.17
Okapi/Cos 83.79 82.80 61.728 63.95
TFIDF/IP 73.42 67.24 73.91 78.25
TFIDF/Cos 83.96 82.66 61.19 63.76

10

Okapi/IP 91.77 73.11 84.99 87.68
Okapi/Cos 90.77 89.79 78.28 82.17
TFIDF/IP 84.61 72.90 85.71 87.84
TFIDF/Cos 90.98 90.04 78.99 82.37

Table A.5: Classification accuracy of combinations of three language technologies
for the Profile based methods. The first column lists the value for n to measure
the best-n performance in weighted averages

92

Appendix B

Wordclasses of the POS-tagger

The lingware tool-kit developed by Carp Technologies uses the following Word
Classes in the Part of Speech tagger:

Tag WordClass Dutch translation
ADJ Adjective Bijvoeglijk naamwoord
ADJC Comparative adjective Vergelijkend bijvoeglijk

naamwoord
ADJS Superlative adjective Overtreffend bijvoeglijk

naamwoord
ADV Adverb Bijwoord
CONJ Conjunction Voegwoord
DET Determiner Determinator
END End of sentence Zinseinde
INTR Interjection Tussenwerpsel
NS Noun singular Enkelvoudig zelfstandig

naamwoord
NP Noun plural Meervoudig zelfstandig

naamwoord
NUM Numeral Nummer
PMK Punctuation mark Interpunctie
PREP Preposition Voorzetsel
PRON Pronoun Voornaamwoord
PROP Proper noun Eigennaam
PRONDEMO Demonstrative pronoun Aanwijzend

voornaamwoord
PRONPERS Personal pronoun Persoonlijk

voornaamwoord
PRONRELA Relative pronoun Betrekkelijk

voornaamwoord
PRONQUES Interrogative pronoun Vragend

voornaamwoord

93

APPENDIX B. WORDCLASSES OF THE POS-TAGGER

Tag WordClass Dutch translation
PRONPOSS Possessive pronoun Bezittelijk

voornaamwoord
PRONWKND Reflexive pronoun Wederkerend

voornaamwoord
Q Quantifier Kwantor
UNK Unknown Onbekend
VAI Verb auxiliary infinitive Hulpwerkwoord,

onbepaald
VAPAS Verb auxiliary past Hulpwerkwoord,

verleden tijd
VAPASPAR Verb auxiliary past participle Hulwerkwoord,

voltooid deelwoord
VAPRE Verb auxiliary present Hulpwerkwoord,

tegenwoordige tijd
VAPREPAR Verb auxiliary present participle Hulpwerkwoord,

tegenwoordig
deelwoord

VI Verb infinitive Onverbogen
werkwoord

VPAS Verb past Werkwoord,
verleden tijd

VPASPAR Verb past participle Voltooid deelwoord
VPRE Verb present Werkwoord, tegen-

woordige tijd
VPREPAR Verb present participle Tegenwoordig

deelwoord

Table B.1: Wordclasses used in the Part-of-Speech tagger developed by Carp
Technologies

94

Appendix C

Lingware toolkit output

This appendix contains a listing of the output generated by the Lingware tool-kit
output developed by Carp Technologies. We present the results for the sample
Dutch sentence: Ik koopp een fiets (English: I buy a bicycle with a spelling error
in the verb buy). The output is presented in an XML format, in the container
<reply > </reply >. The results per token are tab-delimited.

<reply >
TokenIndex: 0

Original token: ik
Used token: ik
CLASS: SCRIPT
Word frequency: 481518
Word classes: PRONPERS (1.0)
Stems:
Word parts: ik (1.0)
Preferred spellings: ik (1.0)

TokenIndex: 1
Original token: koopp
Used token: koop
CLASS: SCRIPT
Word frequency: 0
Word classes: VPRE (1.0)
Stems: kopen (1.0)
Word parts kopen (1.0)
Preferred spellings: koopt (kopen) (0.8)

95

APPENDIX C. LINGWARE TOOLKIT OUTPUT

TokenIndex: 2
Original token: een
Used token: een
CLASS: SCRIPT
Word frequency: 1079982
Word classes: DET (1.0)
Stems:
Word parts: een (1.0)
Preferred spellings: eer (0.5), pen (0.5),

eed (0.5), wen (0.5),
hen (0.5), en (0.5),
eet (0.5), ene (0.5),
gen (0.5), ren (0.5),
jen (0.5), ken (0.5),
den (0.5), ben (0.5),
ven (0.5), eek (0.5),
sen (0.5), oen (0.5),
ten (0.5), een (1.0),
men (0.5)

TokenIndex: 3
Original token: fiets
Used token: fiets
CLASS: SCRIPT
Word frequency: 1768
Word classes: NS (1.0)
Stems: fiets (1.0)
Word parts: fiets (1.0)
Preferred spellings: fiets (1.0)

</reply >

The explanation of the Lingware tool-kit output is presented in table C.1. For
every feature that may contains different values (because of ambiguity a word
may be matched to several stems and word classes), the probability is given for
each option and ranges from 0 to 1.

96

APPENDIX C. LINGWARE TOOLKIT OUTPUT

Feature Explanation
Original token The token that is read directly from the input (no

change has been made)

Used token This is the token that is used for further processing,
if the word spelling was incorrect, the spelling is
corrected

Word frequency The number of occurrences of the original token in
the corpus

Word classes The possible word classes that fit the token. The
probability for each word class is presented
between the braces (and ranges from 0 to 1)

Stems The stem of the used token (if known). Nouns are
stemmed to their singular form and verbs are
stemmed to their non-conjugated form.

Word parts Lists the word parts of a compound

Preferred spellings A list of possible spellings that may be suggested
by a spelling checker if the used token is misspelled.
This is not a spelling correction routine, but a
spelling suggestion routine

Table C.1: Explanation of the Lingware tool-kit output

97

