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ABSTRACT 
In this report, we present a study in which we look into the possibilities of predicting end-to-

end network connection characteristics on mobile handheld devices based on historical data. 

These characteristics include throughput, packet-loss and round trip time. We base these 

predictions on a relevant timeframe in the past and the interface they were recorded on. We 

also present a software framework that performs the measurements, the storage and the 

prediction of end-to-end network characteristics. This framework helped us researching the 

possibilities of predicting end-to-end network characteristics. We designed this framework to 

solve several issues encountered in the mobile environment.  

We ran two experiments to research the possibilities of predicting network characteristics. The 

first experiment showed us that there are patterns of network characteristics in time. Using this 

collected data, we show in the second experiment that there are possibilities of predicting 

network characteristics.  

We conclude that there is a possibility to predict end-to-end network characteristics based on 

historical data and that our framework is able to do this.  
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1. INTRODUCTION 
In this day and age, digital battery powered mobile devices have seen 

a tremendous growth in usage. More and more applications are being 

designed and used for these devices. When these mobile devices first 

appeared, they only offered simple stand-alone services like a 

personal calendar or a personal contact list. Nowadays, these devices 

are also used in a networked environment (i.e. internet) for example 

in a mobile digital media platform (music, video, etc).  

Gaining the processing power to provide complex services, new 

applications emerged like VOIP telephony next to telephony over the 

standard GSM network [1]. Other services included streaming video 

from internet servers; watching TV over the UMTS network, offer 

video conferencing, etc. 

 With the coming of these complex internet services, the 

need for bandwidth increased. This need for more and different bandwidth demands over the 

air resulted in more wireless connection technologies becoming available. Some of these new 

technologies are Bluetooth, GPRS, EDGE, WCDMA and 802.11b/g. For versatility, manufacturers 

combined all these new technologies in mobile handheld devices. This allowed the devices to 

connect to the internet in several different ways.  

Due to user mobility, these mobile devices often find themselves in different environments.  

Combining user mobility with the numerous internet connection facilities causes a frequent 

change in network connection quality.  

Some internet applications designed for mobile devices rely heavily on the internet connection 

quality. The uncertainty of the internet connection quality used by mobile devices causes these 

applications to perform worse. Examples of applications that suffer performance hits due to this 

uncertainty are:  

• Voice over IP software applications 

• Data streaming software applications, like mp3 music players 

• Applications that schedule use of network resources 

These applications are able to adapt to networking conditions but uncertainty of the network 

quality makes the adaption process difficult. For example, a music streaming application could 

set its streaming bit-rate based on the given maximum interface speed (e.g. 11megabit/second 

for 802.11). Configuring applications on these values often causes erroneous behavior in 

practice. For example, it is possible that 11megabit/second is higher than the actual network 

supports. This causes buffer under runs in the music streaming application and thus gaps in the 

playback of music. These applications would perform better if they had a more accurate 

indication on the network conditions. In the example, the music streaming application could 

beforehand lower the streaming rate and provide gapless playback of music. 

 

Thanks to the processing power of current mobile devices, it is possible to extend them with 

extra functionality. We show in this research that it is possible to get an up-front indication of 

the end-to-end network characteristics. These characteristics include Round trip time, 

throughput and packet-loss.  

Because of frequent change in the network characteristics as experienced by mobile devices, we 

will investigate if the network characteristics, when observed in time, show repeating / periodic 

patterns. If this is the case then we can use these patterns to predict network characteristics for 

Figure 1: Mobile Handheld Device 



Predicting End-to-End Network Characteristics on Mobile Devices.  

 
6 

roaming devices that use network connections in their daily activity pattern if the device 

networking usage shows a similar periodicity.  

In this work, we investigate to which extent it is possible to provide up-front information about 

end-to-end network characteristics based on measurements done in the past. With this concept, 

it is possible to increase the performance of applications on mobile handheld devices that use 

network resources to provide their services.  For example, applications could adapt to the 

network conditions before they make a connection to an end-host. 

In [21] the authors show that network conditions are predictable. This research focuses on fixed 

networks, where our research focuses on mobile networks. In [3] the authors discuss software 

that automatically and dynamically selects a server using historical QoS statistics. The authors 

designed this software for fixed networks and limited it to remote server selection. We designed 

our solution to supply information only; it does not make any decisions on the network policies. 

Next to server selection, our solution can also be deployed for other purposes such as interface 

selection. In [4] the authors describe a software framework that automatically selects the path 

with the highest throughput for multi-homed mobile hosts. Again, our solution does not select a 

network interface (and thus network path) for an application, but gives information about end-

to-end connection characteristics per interface available at a time. Applications can use this 

information themselves to select the most appropriate interface based on their service 

requirements. Furthermore, our solution provides network characteristics estimations based on 

historical data, it does not do active measurements on demand to determine the end-to-end 

path characteristics. 

We present three contributions in this work. The first is the predictability of network 

characteristics as experienced by the mobile devices using observations from the past. Our 

second contribution is the framework to measure network characteristics on mobile devices. 

Finally, with some modifications, this framework provides software modules for applications to 

acquire estimates of up-front network characteristics using observed data from the past. 

By observing network characteristics for two weeks, we first research and obtain the time-cyclic 

patterns in the network characteristics of a mobile device. Using these time-cyclic patterns of 

the network characteristics, we will research whether it is possible to predict network 

characteristics using these time-cyclic patterns. 

To do our research on the prediction of network characteristics, we design and implement a 

software framework that is able to collect network characteristics and is able to provide 

predictions based on the collected characteristics.  

Chapter two of this report describes issues that applications encounter in the mobile 

environment. We use these issues to motivate our research. This chapter also describes in more 

detail how other authors solved these mobile environment issues and how our solution solves 

these. The third chapter describes the concepts we had to research in order to be able to 

measure and predict end-to-end network characteristics. Chapter four shows the 

implementation of the software framework. The fifth chapter describes the experiments we did 

to research the predictability of network characteristics. Chapter 6 contains the results of the 

experiments. In chapter seven we present our conclusions. 

The Dutch Freeband Communication Research Programme (Awareness project) supported this 
research under contract BSIK 03025. 
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Figure 2: Voip and Interface Selection 

2. MOTIVATION 
Most software applications using network resources on mobile devices do not have an accurate 

network quality indication. Since they make use of best effort internet services, they provide 

their services in a best effort manner. Because this is by no means any indication of the quality 

of the network, providing best effort services often produces problems like buffer under runs 

for music streaming applications or poor voice quality in VoIP applications. 

To motivate our research, we will present three important issues encountered in the mobile 

environment that we solve with our solution. After these examples, we will describe how other 

authors solve some of the issues that are at hand in these examples. We will wrap up by 

explaining how our solution solves these issues.  

2.1. MOBILE ENVIRONMENT ISSUES 

 Interface selection 

Devices often have multiple possibilities to connect to the internet. By being able to connect to 

the internet through different interfaces, devices have the ability to manipulate the network 

path to an end-host. If the device has multiple wireless interfaces enabled, applications often 

select the interface with the best first-hop network characteristics. Because the applications do 

not have an overview of the remaining part of the end-to-end connection, this selection does not 

necessarily have to be the most fitting option for the requirements of the application. Another 

interface that performs less on the first hop (higher delay or lower throughput), may actually be 

more suited in certain situations. We will explain one of these situations in the following 

example. 

 

 

In figure 2, we have depicted a situation where a VoIP application with video calling capabilities 

can choose between three different interfaces (Bluetooth, 802.11 or GPRS) to connect to the 

remote host. The VoIP application does not have any indication of the quality of the network 

connection other then the first hop characteristics, which the device provides in the form of 

signal strength and maximum interface speed. Consider the interface selection process of high 

quality video streaming application; it might go as follows: 

Based on the first-hop characteristics, the VoIP application will first use the 802.11 interface to 

connect to the end-host. Suppose that the 802.11 access point connects to the internet through a 

cheap internet subscription like home ADSL or ISDN. As a result, this internet connection is of 

G 

802.11 

GPRS 

High Latency 

Low throughput 

Good connection 

VOIP application on 

handheld device 

Remote Host 

Either VoIP, Landline, 

Mobile phone or other 

voice service. 

 

 

 

Bluetooth 
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very poor quality. Realizing after a while that this internet connection does not suffice for a high 

quality video stream, the application will try to connect using another network interface. GPRS, 

in general, has an unacceptable delay (>500 ms). After trying, the application will determine 

that this interface is also not suitable for a high quality video stream. Using the Bluetooth 

internet connection, the application determines that it provides suitable network conditions 

(low delay, acceptable throughput, low jitter). 

This interface selection takes a very long time; especially when an application has to turn on all 

these different interfaces, setup a connection and wait on time out etcetera. Even worse is the 

moment the characteristics of an interface change drastically, this could result in very low 

speech quality or even worse: connection loss.  

If more interfaces are available at a certain time and an application knows information about 

the end-to-end path for each of different the interfaces, then an application could immediately 

select the correct interface. This would save much time in connection setup. 

 

Adaption to network conditions 

Most network applications are already able to adapt to different network conditions. However, 

the network applications 

adapt during use of their 

services.  For example, VoIP 

applications could use a 

lower voice quality when the 

measured connection 

throughput is low. If a 

network application had information about the network conditions before it connects to a 

remote host, it could adapt before using the end-to-end connection. 

Suppose a music streaming application that streams music over an UMTS internet connection. 

Since the application does not have any indication of the underlying network conditions, it does 

not know the optimal streaming bit rate. If the streaming rate were set too high, then it would 

experience buffer under-runs. If it were set too low, then it would not use the connection to its 

full potential. If the streaming application would have an indication of the throughput rate as 

presented in Table 1, then the streaming application could select the corresponding throughput 

rate as seen in Table 1. 

Server Selection 

Popular files on the internet can often be found at more than one download location. This 

concept is called mirroring. The download locations are often spread geographically around the 

globe. The purpose of offering popular files at multiple locations is to distribute server load and 

allow better (i.e. faster) access for users from all parts of the world. When a user wants to 

download a popular file, the user often intuitively selects the physically closest server; this 

server has the highest chance to provide the fastest download rate. However, since the current 

internet topology is built as a star network and not as a mesh network, it is possible that due to 

routing a server at a remote physical location performs better than one at a physical close 

location. 

If a downloading application has information of network characteristics for each different 

server, then it could carefully select that host which provides the best characteristics. 

Predicted Throughput on 
different times using UMTS 

MP3 Streaming bitrate 

1 Mbit/s  
200 kbit/s 
120 kbit/s 

 192 kbit/s – 320 kbit/s 
128 kbit/s – 160 kbit/s 

32kbit/s – 96kbit/s  

Table 1: Predictions and bitrate 
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2.2. RELATED WORK  

In [4] the authors propose “a new wireless access paradigm for multi-homed hosts based on a 

session layer bandwidth aggregation mechanism”. They realize this by implementing a thin 

module called “Session layer Bandwidth Aggregation (SEBAG)”. This module is able to combine 

the bandwidth of different interfaces, achieving a higher throughput. Using a packet-scheduling 

scheme called “Expected Earliest Delivery Path First” (EEDPF), the module distributes the data 

load among the different wireless network interfaces based on interface speed. 

 The implemented module operates at both client side and server side. It operates between 

application and transport layer, making it transparent to applications. When the client model 

detects multiple internet connections, it uses all of the available connections to connect to the 

remote host.  

With SEBAG, the authors solve the “interface selection” issue we stated. This achieved by 

sending data over all interfaces and using the EEDPF packet-scheduling scheme.  However, since 

SEBAG only improves throughput by using all available interfaces to connect to the end-host, 

there is no feedback on other network conditions to applications. Therefore, SEBAG cannot be 

used to address the “server selection” and “adaption to network conditions” without changing 

the end-hosts. Another issue is that SEBAG requires a server module in order to operate. That 

means that SEBAG only works for those end-hosts that have the server module installed. 

The authors of [3] describe a mechanism that selects servers based on shortest download time. 

This mechanism uses past QoS data according to the day of the week and the time period to 

select the fastest mirror. The system that the authors have implemented acts as a proxy server 

and is transparent to the clients behind it. After the system obtains a mirrors list for a specific 

file, it measures QoS data by downloading a small amount of bytes from each of the mirror 

servers and calculating the throughput rate of the link. The system then stores this throughput 

information in a database, and uses it for server selection. 

The mechanism that the authors provide is able to solve the issue of “server selection”. Because 

there is no feedback to applications, this work does not offer a solution to the “Adaption to 

network conditions” and “interface selection” issues. The prediction of network characteristics 

in our work was inspired on this research, since we used a similar method to predict network 

characteristics.  

 

The research in [5] describes a system that actively selects an interface during usage of a 

specific end-to-end connection. Using the Stream Control Transmission Protocol (SCTP), this 

system sets up a multiplexed connection to the remote host through all local interfaces. SCTP 

works much like TCP, but it supports multi-homing and path selection. For more information 

about SCTP and how the authors modified SCTP, we refer to [5]. By performing active 

measurements on all the different active paths from the local host, the system actively selects 

that network path which provides the lowest round trip time in combination with the highest 

bottleneck bandwidth. The network path is selected by using the different network interfaces 

available in multi-homed hosts. When network characteristics change, the system can easily 

switch to another connection that provides the best network conditions. 

Just like in [4], this system only solves the “interface selection” issue, but it does not let 

application choose which interface to use. Although it is a rather lightweight solution, it is 

difficult to use it on large scale. Because SCTP is not compatible with TCP, this system can only 

be used with end-hosts that support SCTP. 
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In [21] the authors do research on TCP Throughput prediction. Their research in many ways 

resembles ours; the authors created a tool that is able to provide TCP throughput predictions 

based on past measurements. Using Support Vector Regression (a machine learning technique), 

the authors created a system that is able to accurately predict network throughput. Using a tool 

called PathPerf the authors verified that in the best case, 90% of the predictions made using this 

framework were within 10% of the actual value. In the worst case, 35% of the predictions were 

within 10% of the actual value.  

There are some vital points where our research differs from this. First, our research focuses on 

the mobile domain. The tool the authors created of [21] could perhaps also be deployed in the 

mobile environment. At the time at time of writing this report however, the tool was not yet 

available. Therefore, we were not able to verify whether this was possible. 

Our framework is also able to provide characteristics estimations to applications. The authors of 

[21] do not clearly point out if there is a feedback mechanism in their tool. 

Finally, our framework supports predictions of multiple different network characteristics like 

Packet loss, round trip time and throughput. 

2.3. OUR SOLUTION 

We solve the different issues described in Section 2.1 by providing predictions of the network 

characteristics. We base these predictions on network characteristics as the device experienced 

them in the past. We say experienced, since the device only uses characteristics that it can 

collect itself (figure 3). These characteristics include throughput, round trip time and packet 

loss.  

Our solution solves “Interface selection” by having separate predictions available per network 

interface. This makes it possible for applications to select the interface that best matches their 

connection requirements. We solve “Server selection” since our solution is able to provide up-

front estimations on a per host 

base. Lastly, our solution solves 

“Adaption to network 

conditions” by providing up-

front estimations of network 

characteristics, prior before 

applications set up an end-to-

end connection. 

For our solution to work 

however, we need historic 

network characteristics. When 

there are no past measurements available, our framework is unable to provide accurate 

estimations of the network conditions. Before this is possible, our framework needs information 

about network characteristics from the past, generated by an application that generates internet 

traffic. As soon as internet traffic comes available, our framework uses this information to 

estimate network conditions for a new end-to-end connection with the same conditions (time, 

end-host etc.).  Since our framework works with averages over the past, it gets more accurate as 

more data is collected. 

Another issue of our solution is when the network environment as seen by the mobile device 

deviates from the environment observed in the past. In our current solution, this would produce 

inconsistencies in the database, and as a result, inaccuracies in the network characteristics 

predictions. 

Figure 3: Device Perspective 

The Internet 

(Seen as a Black Box) 

Perspective 

Mobile Device 
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 Our framework does measuring passively. This means that is uses internet traffic generated by 

other applications to measure network characteristics. It does not generate internet traffic on 

its own. Therefore, either a user on a regular base or an automated process needs to generate 

internet traffic to obtain historical network characteristics.  
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3. MEASURING END-TO-END CHARACTERISTICS 
In order to validate the possibility to predict network characteristics based on past 

measurements, we created a framework that helped us proving these concepts. Our software is 

able to measure network characteristics of end-to-end connections as seen by the mobile device 

during the use of an end-to-end connection. It can record these characteristics and provide 

predictions based on these recorded network characteristics. 

Before we were able to create this framework, we had to research some basic concepts on 

measuring end-to-end network characteristics that we discuss in this chapter.  

First, to collect network characteristics, it is important to define which characteristics are 

important and which are not. For example, to some applications the number of hops to an end-

host is important, where for other applications only throughput is important. 

After we have defined important characteristics, we will describe how these characteristics are 

collected. We will discuss measuring methods and the methods we use to derive network 

characteristics from raw network traffic. 

Next, we will discuss how our software stores network characteristics and how it uses the 

stored characteristics for prediction of network characteristics. 

Finally, we will look into possible solutions for the initial state problem (i.e. when no prediction 

can be made because there is no historical data available). 

3.1. RELEVANT CHARACTERISTICS 

To determine relevant characteristics to record, we looked at the parameters used in Quality of 

Service monitoring. Characteristics like throughput, round trip delay, packet loss and jitter are 

among the most basic QoS parameters that are meaningful for most IP-based services [2]. To 

provide applications with basic information about end-to-end connection conditions, we should 

include these characteristics if possible. There is however, a vast list available of other relevant 

characteristics to measure as well, which could account for good or bad end-to-end network 

connection conditions in a particular situation. For example, the maximum transmission unit 

size for an interface or the number of hops passed to reach an end-host. Although both these 

examples help determine the end-to-end connection condition, change in these two affect the 

four basic characteristics described above. 

We will not focus on more than these four basic characteristics.  We made it possible to extend 

the system to measure more characteristics and let the framework provide these characteristics 

to applications that want this information. To provide this functionality, we added a plug-in 

system, which allows programmers to extend the software with their own measuring methods. 

3.2. COLLECTING DATA AND DERIVING CHARACTERISTICS 

There are many methods to measure end-to-end network characteristics. Most methods are 

either active or passive. For active measurements, an application generates traffic to measure 

network characteristics. For example, it is possible to run an application that actively measures 

throughput by downloading data from an end-host or one could use the Ping tool to measure 

round trip time to an end-host. Passive measurement methods use network traffic of other 

applications to measure network characteristics. 

Our preference lies with passive measurements. First, passive measurements do not influence 

the network load, since no extra traffic is generated to determine network characteristics. 

Secondly, using passive measurements, we measure the traffic that the user generates. This 
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makes sure that our software also considers user behavior patterns and can use them for 

prediction of network characteristics. 

To be able to measure characteristics of all the end-to-end connections in use, the system has to 

be completely transparent to applications. Combining this with passive measurement 

techniques, we can choose between two different methods to achieve this.  

Socket Masking 

It is possible to design a measuring mechanism on top of the Transport layer, which manages 

end-to-end host connections. This technique is called ‘Socket Masking’ and is described in [13]. 

In this technique, a programmer replaces the Socket library as provided by the Operating 

System. By implementing the same functions as the default Socket library, applications do not 

see the difference between the original socket library and the modified one. The modified one 

contains code to monitor network parameters. During the usage of a TCP connection, the 

measuring mechanism can then perform measurements of several QoS parameters as described 

in the previous section.  

Using socket masking also has some disadvantages. For example, in some cases, it is not easy to 

replace the current socket implementation on systems. On the Windows CE platform for 

example, the Socket library is fixed in the ROM area of the device. It is therefore difficult on this 

platform to change the Socket implementation. 

Packet Logging 

Another method to measure network characteristics is to run a service, which gathers network 

data at the bottom of the stack (as low as possible). This service records all the raw data packets 

that pass through this low layer. Another application can then use these raw data packets and 

derive network characteristics from this data. For example, a good way of measuring round trip 

time is to measure the delay between a TCP SYN and a TCP SYN-ACK packet.  

One advantage of logging data and making statements based on this low-level data is that 

software can easily (without using many resources) take out the relevant data from a log file 

and store it. A disadvantage is the fact that if the logging is constantly enabled the log files might 

grow very large (mainly due to unimportant traffic), so a throttling mechanism should be 

introduced in order to keep the use of disk space at minimum. 

In our software, we chose for this method to gather network characteristics. Using this method 

to gather characteristics brings forth the need for methods to derive network characteristics 

from raw packet traces. We will discuss these methods in the following three sections. 

3.2.1. DERIVING ROUND TRIP TIME (RTT) 

TCP SYN and SYN-ACK packets 

In this research [14], the authors describe a method 

they use to derive round trip time from a packet trace. 

They calculate the difference of time between sending 

a TCP SYN packet and receiving a TCP SYN ACK packet. 

We explain the process in figure 3: the sender sends out 

an SYN packet, when the receiver receives this packet, it 

sends back the SYN ACK packet. When ignoring the processing delay of receiving and sending 

TCP packets, we can calculate the round trip time by calculating the difference in time between 

sending the SYN packet and receiving the SYN ACK packet. An issue with this method appears 

Sender Receiver 

SYN 

SYN, ACK 

RTT 

Figure 4: RTT estimation 
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when an intermediary host in the network path intercepts these packets (e.g., catching the SYN 

packet and sending a SYN-ACK packet back before the end host has responded with SYN-ACK). 

The RTT would then show an incorrect view since it only calculated using a part of the network 

path instead of the whole network path. 

 

Figure 5: RTT Estimation using SYN-SYN_ACK packets 

In figure 5, we see an example of a RTT estimation using SYN-SYN_ACK packets. The sending 

host (in this case 192.168.182.64) sends out a SYN packet to destination 80.65.96.122. In the 

case of Figure 5, the measured delay is 12 milliseconds.  

Application Layer Protocol 

Another way to derive round trip time using TCP packet traces is to make use of one of the 

application layer protocols like HTTP or FTP. Consider the official FTP protocol specification 

described in [20]. The NOOP command stands for “no operation” and does the following: 

“NOOP (NOOP): This command does not affect any parameters or previously entered commands. It 

specifies no action other than that the server send an OK reply.” 

This gives us the opportunity to use this command and others to get an indication on Round 

Trip Time. It works according to the same principles used in deriving RTT using TCP SYN and 

SYN-ACK packets. To calculate the round trip time, we take the difference between the time the 

command is sent and the time the response is received. Although we get an actually less 

accurate indication due to extra overhead, this method is less dependent on the lower protocol 

layers. Figure 6 gives an example of RTT calculated using FTP. 

 

Figure 6: RTT Estimation using FTP 

3.2.2. DERIVING PACKET LOSS 

In [15] the authors describe two methods to derive packet loss percentage from a TCP packet 

trace. They describe a “Naïve” and an advanced method. The simple method uses TCP sequence 

and TCP Acknowledgement numbers. Whenever a TCP Acknowledgement number does not 

match the correct TCP sequence number, packet loss has occurred. If we correct for 

retransmissions, then we get a good indication of the packet-loss percentage. The downside of 

determining packet loss based on TCP packets is that actual loss might be much higher. This is 

because in wireless links much of the correction facilities are already done on a lower level. 

However, this loss will be shown in round trip time or delay jitter figures. 

3.2.3. DERIVING THROUGHPUT 

In order to be able to derive throughput, we first have to define throughput. We define 

throughput as the number of bytes transferred between two endpoints within a certain period. 

This includes TCP retransmissions, to make up for lost TCP packets that the software does not 

see in the packet trace.  
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To explain our method of deriving throughput out of a packet trace, we define two concepts to 

help us determine the throughput. The first one is the flow. This is a period of time during which 

a host transfers a number of bytes to the other host. For example, the time an FTP server 

transfers data bytes of a file to another FTP client. The flow consists of TCP packets. We define 

the packets as our second concept. 

To derive throughput, we start at a packet which payload is larger than a certain threshold (to 

cope with ACK streams and underutilized connections).  We call this threshold the packet-size 

threshold. This packet marks the start of the flow. To determine all the packets that are part of 

the flow, each packet after the starting packet has to satisfy two conditions: 

 Each consecutive packet has to originate from the same end-host as the starting packet. 

 TCP packet payload size has to be larger than the packet-size threshold. 

To determine the end of the flow, we check for disconnections (TCP packets with either Reset or 

Finish flag set) or we check whether the inter-packet time is longer than a certain threshold (we 

call this threshold the time threshold). 

 

 
 

Figure 7 explains the situation. If we calculate throughput on this whole stream of packets, then 

we would get a wrong indication of the throughput speed, it would be much lower.  To be able 

to control the accuracy of the throughput, we check whether the number of TCP packets within 

a flow exceeds a predefined value (packet threshold).  

To calculate the throughput, we sum up the number of payload bytes of each separate TCP 

packet, calculate the duration of the flow and then calculate the number of bytes transferred per 

second.  

Our method has some drawbacks. First, it is possible to have multiple TCP streams sending at 

full possible data-rate; this will negatively influence the measured throughput of one stream. In 

addition, a relatively large number of bytes have to be transmitted in order to get an accurate 

measurement of throughput.  

When measuring TCP throughput, one has to deal with TCP slow start. If all packets in a flow are 

used, TCP slowstart will give an inaccurate view of the average throughput. With fast and steady 

links, TCP slow start often does not take very long. However, on links where the delay is high 

(and throughput is high too, like UMTS) it takes rather long before the maximum throughput 

rate is attained.  In Figure 8 on the next page we see a throughput plot created by Wireshark 

[16]. We recorded the packet trace of a UMTS connection to a web server in germany.  This 

picture shows the slow start on the connection. As can be seen on the picture, it takes rather 

long (1,5 seconds) before the average throughput rate is achieved.  

In order to get a more accurate throughput indication, we have decided to eliminate slow start 

from our measurements. To reduce the effects of slowstart, we ignore a predefined number of 

packets at the start of a flow (slowstart threshold).  

 

Figure 7: Inter Packet Gap 

1420b 1420b 562b 
2 minutes 

1420b 1420b 1420b 
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Figure 8: TCP Slowstart 

Using extensive testing on several packet traces, we determined the values for these thresholds. 

We will now discuss the threshold values we chose for deriving the throughput. 

 

Packet -size Threshold 

Initially we chose for a value of 1420 bytes. This is the MTU (maximum transmission unit) of the 

802.11 interface. However, during test of this value, we found that sometimes the MTU size of 

UMTS and GPRS traffic is below this threshold. Therefore, we chose a value of 100 bytes; this 

covered all the packet traces we tested.  

 

Time Threshold 

As a maximum inter packet gap value, we chose 5 seconds. This might seem very short, 

especially since TCP timeout is on 2 minutes. However, to get a valid indication of the maximum 

throughput, we have decided to set this on a very short period. Using several packet traces 

consisting of GPRS, UMTS and 802.11 traffic, we thoroughly tested this value in order to verify 

whether this was not to short.  

Slowstart Threshold 

The best method to determine this value is to actually look at the packet trace itself, and assign a 

value dynamically. However, since we did not have the time to program a method that 

dynamically assigned this value; we chose an easy solution by testing several values: 0 (for 

reference, 50 and 150. We checked how this value influenced the derived characteristics. 

The reported throughput for the 0 packet ignore was 113961,8 kbytes/s. For 50 and 100 

118355,4 kbytes/s and 116930,3 kbytes/s were reported. Although in this particular graph 

(figure 8) we see that the slowstart is over within the first 50 packets, we decided to ignore the 
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first 100 packets of a stream. We chose to do this since it slowstart heavily depends on delay 

variation.  

Packet Threshold 

We chose this value based on the number of packets we discard due to slowstart. We 

determined that we at least needed 100 packets for an accurate view on the throughput. 

Therefore, we set this value to 200 as we discard 100 packets due to slowstart. 

3.3. STORING AND PROVIDING CHARACTERISTICS 

We want to provide a prediction of network characteristics based on relevant past 

measurements. To do this, we need a way to combine relevant past measurements together. In 

[3], the authors describe a system that achieves this. As soon as a measurement sample comes 

available, the system calculates the average over the values corresponding to the same day of 

the week and the time period. 

Our system works in a similar way, but because mobile handheld devices have limited storage 

space and processing power, we needed a method that uses less storage space. We are using the 

following method: We take a reoccurring period, for example one week. We split up the week in 

time slots. If the time period of a slot is set to one hour, we have a total number of 24 * 7 = 168 

time slots within one week. If we take a reoccurring period of one month, there would be a total 

number of 24 * 28 = 672 time slots. In each time slot, information of the network characteristics 

at that time are stored, along with the end host and the interface used. Each time a new sample 

of the same class, interface and end host comes available, the average in the corresponding time 

slot is updated with this new value. Using this method, we do not have to store all the measured 

characteristics, thus saving up storage space. 

Because at some points in time, measurement samples are more variable then other times, the 

fixed time period method can reduce accuracy when needed. To solve this, we could use of 

variable time periods. The time period is then increased where accuracy is not needed (e.g. 

during night times) and can be decreased for better accuracy. This concept is explained in figure 

9. 

 

 
When we want to make a prediction of the network characteristics, we take the corresponding 

time slot and provide the network characteristics stored therein. To give an indication of the 

precision of the prediction, we also store a correction value along with the average of a 

measurement. This correction value is comparable with the standard deviation, but it is not the 

same. The difference lies in the calculation method. Where normally the standard deviation is 

calculated over the whole data set, this formula ‘updates’ the recorded deviation value with the 

new value. Using this formula, we do not need the complete history of average values in order to 

Figure 9: Fixed Time period and Variable Time Period 
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get an indication of the standard deviation. The algorithm we use to calculate this correction 

value is described in detail in [18] and is based on the following formulae: 

 

 

 

In these formulae, m denotes the average, x represents the new measured characteristic, n is the 

number of measurements, and s represents the correction value. 

3.4. INITIAL STATE 

One problem with our solution to store and provide characteristics is encountered when there 

are no relevant measurements available to provide a prediction. In this case, we can use of some 

other techniques described in this section. 

Prediction based on basic network parameters 

In combination with the Network Abstraction Layer described in [9], it is possible to provide 

information about maximum link speeds, reception level etc. With this information, there is a 

possibility to give a quality indication of the first hop parameters. Since this is only first-hop 

information and not information of the complete end-to-end path, it is not always very accurate, 

especially when the first hop is not the bottleneck link.  

Comparison with other experience 

When the device makes a connection to an end-host that does not have an entry in the database, 

our software can compare information with other end-hosts that have a similar network path.  

When the network paths are relevant, then the system can use the stored characteristics from 

this host for prediction of the network characteristics.  

In order to use this technique, our software also needs to store the network path to an end host. 

To obtain the network path to an end host, we can use the trace route tool.  This is not always 

reliable however, since a path trace done with trace route has some flaws [6]. 

We can also determine path similarity by using locality information of the end hosts. This 

information can be collected using WHOIS queries, or using the NetGeo [11] database. NetGeo 

provides locality information based on IP address. While these locality information providers 

are not perfect [12], they still are accurate enough to provide locality information of the end-

hosts. Based on this information we can assume that if we connect to these end hosts from the 

same physical location, that the first hops of the end-to-end paths (given the usage of the same 

network interface) closely resemble each other.  
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4. FRAMEWORK DESIGN AND IMPLEMENTATION 
This chapter will describe the design and implementation of UFNET (Up Front Network 

Estimation Toolkit). UFNET is a collection of software modules bundled together to form basis 

software to collect, store and predict end-to-end network characteristics. We discuss how we 

built up the UFNET framework and which design choices we made. The concepts discussed in 

chapter 3 help us define the specifications and build up the framework.  

We use this framework to research the existence of network characteristics patterns in time as 

seen from the mobile device. In addition, the framework is used to research the accuracy of 

predicting network characteristics using the patterns. We also designed this framework to solve 

the mobile environment issues discussed in chapter 2. 

In the first section, we start with formulating the design considerations of the framework. After 

that, we provide the design overview of the framework and we end by supplying detailed 

information on the implementation on the framework. In this same section, we also describe 

issues we encountered during the implementation of the framework. 

 

4.1. DESIGN CONSIDERATIONS 

Before we created our software, we had to consider the following concepts: 

1. Lightweight 

Because we targeted our framework at Mobile Handheld Devices, we needed to keep the 

framework as lightweight as possible. This means that we had to keep the use of 

resources as limited as possible. First, we had to limit the use of storage space. For 

example, it is possible not to store all collected packets when a packet trace is collected, 

but just a subset of the collected packets. The use of processor power also had to be 

limited in order not to impede the end user in normal day device use.  

2. Extendibility 

As we described in Chapter 3, one should be able to extend the framework, making it 

able to measure additional characteristics. For example, it is possible to extend our 

framework to measure the number of hops in an end-to-end path. Since other 

programmers want to do this, we had to make the process of adding additional 

characteristics measurements easy to understand. 

3. Platform Independent 

The framework should not be platform dependent. We designed it in such way that it 

can be converted to other devices. We achieve this by using as little as possible functions 

of the operating system. Of course, it is difficult to achieve this completely. Now, our 

framework only works on Windows CE 5.0 (the operating systems that use this core are 

Windows Mobile 5.0 and Windows Mobile 6.0), but with effort it is possible to make it 

work on a number of different platforms. 

4. Control & Personal Data 

We designed our framework in such way that users are able to stop the collection of 

statistics whenever they please. Since the framework stores much data and from this 

data a lot of personal information can be derived from this data, it forms a privacy risk. 

In the current implementation, we did not take any steps to encrypt this data.  

5. Presenting data 
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In order to make it easy for programmers to get predictions of network characteristics, 

we had to design the framework to present its predictions in an intuitive way. We have 

done this by implementing a simple application interface that provides predictions 

needing only a small amount of function arguments. 

4.2. IMPLEMENTATION OVERVIEW 

To provide insight in the layout of the framework we have created a class diagram (see diagram 

1 on page 22 and see appendix 1) and a general layout diagram (Figure 10) that provides insight 

in the total view of the framework. We will start with the general layout to give a basic view on 

the framework.  

 

Figure 10: Basic General Layout 

We have split the framework in three domains (collection of software modules): the Netmon 

collector domain, Info Provider domain and the UFNET main domain.  

The UFNET main domain manages communication between the different components. The 

UFNETControl module located in the main domain controls the different software components 

within the UFNET framework. 

The modules within the Netmon collector domain perform the actual network characteristics 

gathering. The packet trace generator monitors all traffic on the mobile device, it captures all 

the packets that the mobile device received and sent. When the collector signals the packet trace 

generator to calculate characteristics, the parser reads out all the packet traces and starts to 
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derive network characteristics using the characteristics calculation modules (which do the 

actual calculation process). When this process completes, it sends the derived characteristics to 

the UFNETControl module. 

Within the InfoProvider domain, we have defined modules that read out the database and 

provide the characteristics to applications. It is up to applications what to do with the predicted 

characteristics. Our framework only collects and provides characteristics; it does not make any 

decisions regarding policies. 

‘Statistics’ 

Network characteristics are stored within c# objects called ‘Statistic’ (not depicted in figure 6). 

This object is used throughout the UFNET framework to transfer information about the derived 

network characteristics to the separate modules. It contains basic information on the derived 

network characteristic like the time the framework recorded it, the value and descriptive 

information about the type of the network characteristic.  

4.3. UFNET IMPLEMENTATION  

We will describe the UFNET implementation in detail in this section. We start by defining the 

platform we work on, after that we explain our implementation in detail. 

Platform 
We have implemented our software for the Windows Mobile 5.0 platform. We chose for this 

platform because it is very well documented and we had all software available to be able to 

program the devices. The device we used for testing was the HTC TyTN, a Pocket PC device 

running Windows Mobile 5.0. 

Development Language 
We chose for Microsoft.NET as our development environment. The .NET-developing 

environment provides us with many functions that we have to use for development of our 

project. In order to provide us with Pocket PC specific platform functions, we also made use of 

the OpenNETCF Smart Device Framework 2.0 platform [17]. The language used is C#. We chose 

C# since it allows for easy extension and it is independent of the device used as long as it is 

running Windows Mobile 5.0. For Operating System functions that were not available within the 

.NET or the OpenNETCF framework, we created and included some native DLL files. 

4.3.1. IMPLEMENTATION DETAILS 

Consider the class diagram on the next page, it shows the class diagram of our framework. We 

did not include all classes in order to keep the diagram conveniently arranged. We derived the 

real implementation from the basic general layout as we presented it in Figure 6. The collector 

interface is part of the UFNET main domain, where the NetmonCollector class is an 

implementation of this collector interface (and in our case part of the NetMonCollector domain 

as shown in figure 10).  

To start the characteristics collection process, an application has to supply an implementation of 

the Collector interface, and use the CollectStatistics function. We have provided the 

NetmonCollector class as the default. The NetmonCollector class is responsible for capturing and 

storing packet traces. We have described this class in detail in section 4.2.3. When the 

CalculateSatistics function is called, NetmonCollector starts to derive network characteristics 

from the stored packet traces. These characteristics are stored in Statistics objects and are 
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afterwards send to DataBaseUpdater, which updates the database. The ConnectionEstimate class 

(which is part of the InfoProvider domain) uses this database to supply applications with 

upfront network characteristics estimations.  

  

Diagram 1: Limited class diagram of UFNET framework 
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Figure 13: Statistic Structure 

XML Database 
To implement the database we chose 

for a XML solution. XML allows for easy 

data exchange to other processes. In 

addition, .NET offers a vast range of 

possibilities to work with XML files 

easily. We examined the possibility of 

using a SQL solution with Microsoft 

SQL server Mobile Edition. However, 

after some consideration it seemed 

that it is not possible to create a SQL 

database on the storage card, limiting 

the storage capacity severely. See 

figure 11 for the layout of the XML file. 

We chose for a fixed time period as 

described in section 3.3. Characteristics 

are stored per day, per hour, per 

interface and end host. To use a dynamic solution also described in section 3.3 we have to 

update the DatabaseUpdater class. We did not choose for this due to time constraints of the 

project. According to the specification, the XML should fall within the InfoProvider domain. 

However, since we use a separate XML file for a database, the xml file does not fall into a specific 

domain as described in figure 10. The storage procedure is more extensively described in 

section 4.2.3. 

Predictions 

To provide predictions of network characteristics, we use the ConnectionEstimate and the 

Provide classes. Both classes fall into the Info Provider domain.  The provide class is the main 

entry point for applications that want to use the up-front estimations that the UFNET 

framework offers. The class accepts a point in time, end host and interface to use. Based on this 

data, it will look up if predictions are available. When 

predictions are available, it will return a ConnectionEstimate 

instance that contains the different 

characteristics that are stored in the 

database. We left out the functionality 

of advising a network interface. It is 

still possible however, to get network 

characteristics of a network interface at 

a given time. The programmer then has 

to supply the different network 

interfaces available to get 

characteristics for all the devices. 

Statistics 

Statistic is a data structure that contains information about a 

Network Characteristic. Figure 12 describes the layout of the C# structure. All the variables are 

customizable except for the type field. An enumeration determines the values of this variable. 

To be able to describe characteristics that are not represented in the enumeration, we included 

a General Information field. We have included a basic type for each of the characteristics that we 

Figure 11:  XML layout. X = day number, Y = hour, Z = 

local interface, W= End host IP address 

<StatisticsXML> 

 <dX> 

  <tYY+1> 

   <iZ_W> 

    <Statistic 1> 

    </Statistic 1> 

    <Statistic N> 

    </Statistic N> 

   </iZ_W> 

  </tYY+1> 

 </dX> 

 <dX+k> 

 … 

 </dX+k> 

</Statistics XML> 

 

Figure 12: 

Statistic Type 

Enumeration 
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can provide with our framework. Figure 13 shows the different types available. These are 

Round Trip Time, Packet Loss, Throughput, Battery Drain, Time Out, and General Information. 

Note that we added Battery Drain to include characteristics regarding the battery usage of the 

device during measurements. The collector implementation generates instances of the Statistic 

structure. After they are generated, the collector implementation sends them to the database 

updater implementation.  

Database Updater 
The Database updater updates the XML file as described in the Basic Implementation section. 

This is initiated by the Collector implementation. Since Updating database might be a lengthy 

operation due to large file sizes, we chose to let the controlling application decide when the 

database should be updated. In the current implementation, we have embedded the different 

database updater implementations in to the NetmonCollector package. See following section for 

more information regarding the database updater. 

4.3.2. COLLECTOR IMPLEMENTATION DETAILS 

In this section, we will describe the layout and the implementation of the NetmonCollector 

domain. NetmonCollector uses the Netlog[8] tool to obtain packet traces of the network traffic 

that is sent and received by the mobile device. We will first explain how Netlog works. After 

that, we will go into detail on each of the classes that the class diagram appendix 1 shows. 

Netlog 
During the early stages of the framework development, we did not know how to generate 

network statistics easily. The obvious choice was to use socket masking .The idea was to build a 

socket implementation on top of the one already existent in Windows Mobile 5.0. This socket 

masking technique would then perform measurements during the usage of the socket. Some 

measurement methods were to calculate the delay between a connection request and a 

connection acknowledgement or to measure the amount of data stream coming through the 

socket per second. However, this would be a crude measurement since we would not have been 

able to deal with extra delay the operating system causes.  

Figure 14 depicts the measuring point of the netlog module. This figure depicts the measuring 

point from an application point of view. As can be seen, it is in between the NDIS driver and the 

Socket Stack. 

 

During development, we ran into a different method of getting network statistics.  On the 

Windows CE operating system, a tool called ‘Netlog’ exists. This tool is used to store raw data 

packets as received by NDIS (Network Driver Interface Specification)[7]. Using the raw stored 

data packets, we were able to derive statistics from these packets directly. For more information 

regarding ‘Netlog’, see [8].  

Mobile host 

Socket Stack 

Data Stream 

NDIS Driver 

First Hop End Host 
Medium 

Measuring Point  

 

 

 

 

 

Local Domain 

 

Figure 14: Measuring Point 
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The netlog.dll driver is loaded when the NDIS driver finds it. This driver normally is controlled 

by NetlogCTL.exe. However, it was not possible for us to use a console to get output from the 

netlogctl.exe module. Therefore, we made some changes to the netlogctl.exe module and added 

the static functions to netlogctl.dll. This dynamic link library allows for control of the netlog.dll 

module during runtime within the same process. Figure 15 describes the overall flows of the 

data and the different modules within Windows Mobile 5.0. 

 

 
Figure 16 depicts a representation of 

the data that netlog collects. The data is 

stored in the .CAP file format as defined 

by Microsoft.  This file format is used in 

e.g. Microsoft Network Monitor. We wrote our own parser for this file 

format since the timestamp accuracy of the Microsoft Log Parser tool[22] is not sufficient to 

calculate statistics. 

Datacopyer 
Figure 17 depicts the main functions of this class. 

This class provides packet traces copying 

functionality, which we need to free up system 

resources. Once the Netlog subsystem is activated, 

it generates packet trace (.cap) files in the main 

memory of the handheld device. These files are 

stored here because in general, this memory is 

faster than an external memory device, like a SD 

card. These cap files are initially not larger then 1,5 

megabytes, although this size can be changed using the netlogcontroller class.  Netlog creates 

files with an index fashion. When a netlog file is created, it has the file name of netlogK.cap, with 

K being the current index number starting at K=0. Initially, the netlog.dll driver would switch 

between K=0 and K=1, thus overwriting the old file. For safety purposes, we decided to keep the 

files in case something would go wrong with the experiment. Therefore, we changed it to the 

method just explained.  

The DataCopyer class detects any change in the default netlog directory. As soon as a new 

netlogK.cap file appears in the default netlog directory, the file the DataCopyer is copies the file 

to the Storage Card. On the storage card, the files are kept in a temporary directory until the 

NetlogParser has processed them.  

MAC frame 

header 

IP Packet TCP/UDP MAC frame 

footer 

Figure 16: Captured Data 

Figure 15: Netlog 

Netlog.dll NetlogCTL 

(DLL or EXE) 

Controls 

NDIS NIC Data 

D
ata 

Socket Stack & 

Application 

Data 

Netlog(x).cap Data 

Figure 17: Datacopyer Class 
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The DataCopyer class needs the NetlogController 

class as an object in its constructor. This is needed 

in order to stop the netlog subsystem when files 

need to be copied. 

Netlog Controller 
The netlog controller class (see figure 18) functions 

as a wrapper class for native c code. Originally, the 

netlog subsystem comes with a NetlogCtl.exe in 

order to send control functions to the netlog.dll, 

which acts as a driver. This executable file takes 

console input and outputs to a console as well. It 

was not possible to read console output in an easy 

way on the Pocket PC platform. To be able to 

control the netlog driver dynamically, we wrote a 

DLL file that takes of the functions of netlogctl, but 

offers the static functions to programs that want to 

make use of the functionality. To provide the 

wrapper functions from native C code to managed C# code, we created the netlogcontroller 

class. This class keeps track of the state of the netlog driver and allows changing some of its 

properties. Figure 20 gives an overview of the variables that 

can be changed using this class. Note that some of the 

functions described in this class were initially not available, 

although they were described in the netlog API. We 

implemented these features by changing some code in the 

netlog.dll file and compiling it. This was possible for us to do 

since the Windows CE 5.0 (the core of windows mobile 

2005) Platform Builder came with the source code of the 

netlog subsystem. 

NetmonParse and Packet Object 
NetmonParse  (figure 19) offers the functionality to parse cap 

files and convert them to packet objects. The general layout 

of NetmonParse can be found in Figure 19 while the general 

layout of the PacketObject class can be found in Figure 14. 

NetmonParse takes in the constructor a string to the filename 

it has to parse. When requested, it returns an Array of packet 

objects that were parsed from the .CAP file.  

Additional functionality that should be added to this class is the possibility to add multiple files 

to be parsed. This would allow the class to concatenate all the files, and return all the relevant 

Figure 18: Netlog Controller class 

Figure 20: Packet Object Class 

Figure 19: NetmonParse Class 
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information from the files into one list of Packet objects. In the current implementation, all files 

have to be separately sent to the NetmonParse class.  

Packet objects contain a large collection of all the data that is stored in an Ethernet Frame. Not 

all information from the packet trace is stored in a Packet Object. For example, checksum data is 

not stored. This is because we did not use it in the characteristics calculation process. If needed, 

one can easily change the Packetobject and NetmonParse classes to add the storage of these 

variables. The packet objects are used for calculation of network characteristics. Each separate 

packet object represents a frame as depicted in Figure 16.  

IStatistics 
The IStatistics interface (Figure 21) provides an interface for deriving statistics in the 

NetmonCollector class. As soon as the framework starts collecting packet traces, the framework 

initializes the various implementations of the IStatistics interface that are available in the 

IStatistics collection in NetmonCollector. These need initialization since they might need more 

data then the packet 

traces provide (e.g. 

Battery drain). We chose 

for the IStatistics 

solution in order to 

provide extendibility for 

the methods of 

characteristics 

generation. We have 

made a couple of 

implementations, which we will discuss in the next section. The current NetmonCollector 

implementation only uses a predefined set of IStatistic implementations. It is possible to extend 

the characteristics derived by adding an implementation of the IStatistics interface.   

 IStatistic Implementations 

The implementations currently available in the UFNET framework are: 

 FTP_RTT: Provides Round Trip Time estimation based on FTP commands  and their 

reply 

 RTT: Provides Round Trip Time estimation based on SYN-SYN_ACK packets 

 SimpleThroughput: Provides Throughput estimation based on number of bytes 

counted within a certain time period 

 SimplePacketLoss: Provides Packetloss estimation based on SEQ-ACK analysis 

We only use TCP in our measurement techniques. As described in section 3.2, TCP allows for 

(relatively easy) measurement of some basic QoS variables. To derive the characteristics, we 

implemented the principles described in section 3.2.  

IOutput and Implementations 

For our experiments, we needed more methods to output network characteristics. Therefore, 

we created an IOutput interface with several implementations of the interface. Figure 22 

describes the layout and the relations of this interface. 

 

Figure 21: IStatistic Interface and Statistic Object 
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According to Figure 10, our initial design showed that the DatabaseUpdater class should be part 

of InfoProvider domain. However, since we chose for an offline database file in XML form, we 

have included the procedures to update the database in the NetmonCollector domain. Along with 

it, we have included an IOuput interface that the various output modules implement. Like the 

different IStatistics implementations, the framework does not automatically add all the different 

IOuput implementations to the output list. They have to be manually added and executed in the 

monitoring applications. 

RawStatsWriter and ReadableStatsWriter 
We added these two implementations of the IOutput class for use in our experiment. They 

output the characteristics as the IStatistic implementations supply them. The difference 

between RawStatsWriter and ReadableStatsWriter classes is that the RawStatsWriter class 

writes the characteristics in a binary format (compressed) where the ReadableStatsWriter class 

makes a textual impression of all the different statistics. 

  

Figure 22: IOutput and Implementations 
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5. EXPERIMENT EXECUTION 
In this chapter, we will describe how we executed our experiments and the realization of the 

testing application. We used the UFNET Framework to execute two experiments.  

In the introduction of this report, we described that we want to use cyclic patterns in time of 

network characteristics to predict network conditions. In the first experiment, we collected data 

to use for our predictions. This experiment also helped us determine whether there are cyclic 

patterns. In the second experiment, we test how well we can use the data collected in 

experiment to predict network conditions. 

In 5.1, we will first describe the setup, difficulties and execution of the first experiment. In 

section 5.2, we describe the second experiment. We end this chapter with section 5.3, where we 

provide some information on the difficulties we had during the creation of the test application. 

5.1. FIRST EXPERIMENT: DATA COLLECTION 

For the first experiment, we ran an application for two weeks that executed download 

sequences at random times during the day. The download sequences were start in a regularly, in 

order to acquire enough measurements to be able to make predictions for each of the 168 

timeslots in one week (see section 3.3). Each download sequence consisted of downloading a 

small fragment of a big file from ten different hosts. To prevent overlapping of the download 

sequences, the application scheduled a new download sequence as soon as a sequence finished. 

The maximum waiting time was selected randomly between 10 and 20 minutes. We did this in 

order to get enough measurements to get an average of that hour, and not just a single sample. 

To get average values taken over multiple weeks, we measured two weeks long.  

One person carried the device with him for the duration of the experiment. We made sure that 

during the day, the device had multiple sources of internet available. Therefore, we placed an 

802.11 access point where this user resided most often. 

When the test application started a download sequence, it randomly selected a network 

interface. When the framework recorded a characteristic, it stored information of the interface 

used to obtain it and the time it was taken. There was a 20% chance that the application 

selected the Cellular line (UMTS or GPRS) interface and an 80% chance that it selected the 

802.11 interface to connect to the internet. We chose these values to reduce the usage of UMTS 

and GPRS traffic, which costs much money. If an internet connection was already available (for 

example in the form of a USB or Bluetooth connection) then the test application used this 

internet connection for download. When the download sequence completed, the test application 

disabled the network interface it used to connect to the internet. 

Collected data 

As a download source, we needed a file that is mirrored at different locations. At first, we used 

Tucows HTTP mirrors as download source. However, during the test, we found out that our 

UMTS connection provider buffered all the HTTP data we collected, rendering our test results 

useless (see transparent proxy on UMTS section below).  

In order to overcome this problem we selected FTP mirrors instead of HTTP mirrors. Since 

Tucows servers do not provide any files by FTP, we had to change our source. We chose for 

several UBUNTU mirrors spread across the globe. Our test file was the latest UBUNTU cd image. 

This file was 732293120 bytes long. We had 10 mirrors in our test list: 

 
ftp://ftp.snt.utwente.nl/pub/linux/ubuntu/edgy/ubuntu-6.10-desktop-i386.iso   Utwente NL 

ftp://ftp.snt.utwente.nl/pub/linux/ubuntu/edgy/ubuntu-6.10-desktop-i386.iso
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ftp://ftp.tiscali.nl/pub/mirror/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso   Tiscali Adam NL  
ftp://ubuntu.mirrors.skynet.be/pub/ubuntu.com/releases/edgy/ubuntu-6.10-desktop-i386.iso Brussel BE 
ftp://ftp.uni-kl.de/pub/linux/ubuntu.iso/edgy/ubuntu-6.10-desktop-i386.iso    Uni Kaisers. DE 
ftp://mirror.ox.ac.uk/sites/releases.ubuntu.com/releases/edgy/ubuntu-6.10-desktop-i386.iso  Uni Oxford UK 
ftp://se.releases.ubuntu.com/mirror/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso  Uni Sweden 
ftp://ubuntu.task.gda.pl/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso    Poland 
ftp://ftp.ale.org/mirrors/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso   Atlanta US 
ftp://ftp.citylink.co.nz/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso    New Zealand 
ftp://ftp.ecc.u-tokyo.ac.jp/UBUNTU-CDS/edgy/ubuntu-6.10-desktop-i386.iso    Tokyo JP 

We chose for this list to keep file conditions and server conditions the same. We derived the 

location information for each of the links from the information that is listed on the UBUNTU 

mirrors website [19]. For the duration of the experiment, the user never left the city of 

Enschede, located in the Netherlands. During office hours from Monday to Friday, the user was 

at his work in the city of Enschede while during other hours the user was at his home, located 

on the Campus of the University of Twente. There were two days the user did not go to the 

working location, which was on the Monday and the Wednesday of the second week. 

Generated traffic per file 

Because UMTS traffic has to be paid for (about 50 eurocents per megabyte for the used 

subscription), a requirement was to generate not too much data, but enough to derive statistics. 

Therefore, we had to find an optimum number of bytes to download of each file. Since UMTS has 

a high variance in packet delay[24], an optimum value for every case was difficult to find. Using 

a download time constraint would not suffice, since it often happened that after a connection 

has been set up, the connection idled for a couple of seconds and did not generate traffic. In 

Figure 23, we see a throughput trace from a file download. It shows that the data connection 

idled for at least three seconds before traffic was sent to the mobile host. This could be due to 

the web server took long to send the reply, but it shows us that we cannot use the time 

constraint to determine the length of a single download. 

 
Figure 23: Throughput Trace of UMTS traffic 

ftp://ftp.tiscali.nl/pub/mirror/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso
ftp://ubuntu.mirrors.skynet.be/pub/ubuntu.com/releases/edgy/ubuntu-6.10-desktop-i386.iso
ftp://ftp.uni-kl.de/pub/linux/ubuntu.iso/edgy/ubuntu-6.10-desktop-i386.iso
ftp://mirror.ox.ac.uk/sites/releases.ubuntu.com/releases/edgy/ubuntu-6.10-desktop-i386.iso
ftp://se.releases.ubuntu.com/mirror/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso
ftp://ubuntu.task.gda.pl/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso
ftp://ftp.ale.org/mirrors/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso
ftp://ftp.citylink.co.nz/ubuntu-releases/edgy/ubuntu-6.10-desktop-i386.iso
ftp://ftp.ecc.u-tokyo.ac.jp/UBUNTU-CDS/edgy/ubuntu-6.10-desktop-i386.iso
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Because we cannot use a time constraint, we used a data constraint. To select an optimum value 

of data to download we had to see how much packets were generated with a particular number 

of bytes. We had to consider the design issues of our throughput derivement as described in 

section 3.2.3 (e.g. packets discarded due to slowstart, packet length to derive throughput etc.). 

To generate enough packets we decided to offer the framework a minimum amount of packets 

by downloading a preselected number of bytes.  

In figures 24 and 25 we see two traces that represent a download from a server in Switzerland. 

Both connections were made over a UMTS connection and we defined no download time 

constraint. The download would stop after either 200kb (figure 24) had been downloaded or 

after 800kb (figure 25) had been downloaded. As we can see in the figure of the 200kb 

download, more than 50% of the packets of the total download are ‘wasted’ on TCP Slowstart. In 

the 800kb version however, only a small percentage is ‘lost’ due to slowstart. Since 800kb 

would generate too much data (cost requirement) and 200kb would generate inaccurate results, 

we chose to stop each download after 600kb.  

 
Figure 24: Throughput trace of 200 kilobyte download using UMTS 
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Figure 25: Throughput trace of 800 kilobyte download using UMTS 

Timeout 

The current socket implementation on windows mobile 5.0 did not support connection time. As 

a result, we had to program our own timeout implementation. For the connection timeout, we 

took a value of 30 seconds. If the application received no data for over 30 seconds then it 

assumed that connection has been lost and continued with the next download location, if an 

internet connection was still available. We had to use Socket timeouts; else, our test application 

would stop functioning if a connection had been lost. 

Transparent proxy on UMTS 

During the execution of the first experiment, we found out that the UMTS RTT measurements 

had inconsistent values. We discovered this since our UMTS measurements from ns-

tucows.tucows.com (a server in Australia) gave a round trip time of 90ms where the same 

measurement on 802.11 had a response of around 350ms. Take note that our mobile end host at 

the time of measuring was located in Enschede, The Netherlands.  We also discovered that the 

throughput of this particular server was much higher when using UMTS than the throughput 

using 802.11. It appeared that Vodafone (our mobile service provider) had a proxy server 

installed in order to speed up UMTS transfers. Consider figures 26 and 27. 

 

 
Figure 26:Assumed UMTS connection situation 

ns-tucows.tucows.com Mobile Equipment 

Internet 
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In figure 26, we have depicted the situation as we assumed it. The mobile equipment had a 

direct connection to the end host, therefore making our method of deriving network 

characteristics using TCP packet traces valid. It is often the case however that a computer 

running Network Address Translation (NAT, a technique to multiplex an internet connection) is 

between the mobile equipment and the internet. This normally is not of concern since most NAT 

computers only map the port number different and directly route the traffic from remote 

endpoint to requesting local endpoint, without changing the packet contents.  

In figure 27, we have depicted the real situation. In reality, an intercepting host resided between 

the mobile equipment and the internet. This host acted as a proxy; it cached all HTTP requests 

coming from the mobile host. It works by intercepting TCP traffic that is sent from the mobile 

host. This host is called a transparent proxy, since the mobile host did not have any indication 

that this proxy server was changing the network traffic. For example, when the mobile host sent 

a TCP SYN packet (to establish TCP connections) to a remote server on the internet, this host 

intercepted it and immediately sent a reply back to the mobile host with SYN-ACK, even before 

the connection had been correctly set up with the remote host. This prevented measurements 

based on TCP SYN-ACK packets because we only measured the round trip time of the first part 

of the path. In addition, when the proxy server cached the file of a HTTP request, the test 

application downloaded from the proxy server and not from the remote host. This would give a 

wrong indication of the network throughput. In order to cope with the transparent proxy we 

chose for FTP downloads instead of HTTP downloads. 

We verified the existence of a transparent proxy by taking a HTTP web server on the internet 

that we maintained. Performing a packet trace on this server showed us that the proxy server 

on the Vodafone side did a “conditional HTTP GET” each time it wanted to download something 

from our server. After the first request, the proxy server cached the “HTTP GET” command and 

closed the connection to our server. It then sent the data directly to the mobile host, without 

retrieving it from our server. The proxy server still did pretend that it was our server sending 

the mobile device the data. 

Figure 27: Real UMTS connection situation 

Internet 

ns-tucows.tucows.com Mobile Equipment using Vodafone UMTS 
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Figure 28: Throughput trace as seen by our server 

The proxy server also acted as a data buffer. We verified the buffering from the fact that we see 

different throughput values. Figures 28 and 29 show this. We took this measurement from a 

packet trace of an FTP connection. In figure 28, we see the throughput graph as seen from our 

internet server. On figure 29, we see the throughput graph of the mobile host. What can be 

observed from first figure is a buffer mechanism. When the proxy server filled its buffer, the 

throughput speeds lower considerably until the buffer is empty. When this happens, the 

throughput speed increases again until the buffer is full. In addition, we see much higher 

throughput rates on the first figure. In [23] the authors give a thorough description of the 

buffering process and the transparent HTTP proxy.  

 

 

Figure 29: Throughput trace as seen by the mobile host 
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5.2. SECOND EXPERIMENT: PREDICTING CHARACTERISTICS 

This experiment resembled the first experiment; we also collected characteristics on both 

interfaces using the same constraints as we defined them in the first test. Since we only wanted 

to see how accurate our predictions were, instead of downloading from ten different hosts, each 

time a download sequence started the application randomly selected one host from the list we 

presented in section 5.1. Before the application started the download, it requested a prediction 

of the network characteristics from the UFNET framework. The application then stored this 

prediction. The measured network characteristics are stored the same way as in the first 

experiment, although this time in a different database in order to keep the original database as 

we built it with the first experiment free of change. Using these settings, we were able to 

compare the actual measured statistics with the predicted value. Since we did not need to 

generate accurate values of the network conditions, we ran the test for one week and we did 

only one measurement per hour. 

5.3. TEST APPLICATION DIFFICULTIES 

Most of the difficulties we encountered during the implementation of the test application had to 

do with discovering native functions in the Windows Mobile 5.0 development environment. We 

describe two issues that took much of our time to solve. 

Device suspend 

In order to perform the test, we needed to make sure that the device kept executing our test 

code during the download of a file. In Windows Mobile 5.0 devices, the operating system might 

end up in a suspend state when the user has not interacted with the device for a while. When 

the device is in suspend, it halts code executing until the user wakes up the device, and with it 

stopping our test. This issue has also been present during the research of [9]. We used some 

parts of the NAL implementation of this research in order to prevent the device in going into 

suspend mode during the download of a file. In short, this code keeps the device alive by 

resetting the idle timer of the device. In order to make the code compatible with our test code 

and to save battery life, we added a mechanism that makes it possible to enable/disable the 

keep-alive code.  

Enabling/Disabling Wireless Devices on Windows Mobile 5.0 

We could not find any documentation on how to enable/disable power to 802.11 interfaces on 

Windows Mobile 5.0 using software calls. There are some undocumented features that allow 

enabling/disabling a wireless interface (Bluetooth, Phone or 802.11). The documentation we 

used in order to use this feature can be found here [10].  
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6.  EXPERIMENT RESULTS 
In this chapter, we will discuss the results of our experiments. We will go into detail on the 

results we got from both experiments. In section 6.1, we will discuss the results of the first 

experiment and in section 6.2, we will discuss the results of the second experiment. 

Although the main purpose of the first experiment was to collect data for the second 

experiment, we also did this experiment to look into the patterns of the different network 

characteristics. 

 We only did these experiments with one user; this makes it difficult for us to get solid 

conclusions. It is possible however to provide a view on the predictability of network 

characteristics. 

6.1. RESULTS FIRST EXPERIMENT 

As described in chapter 5, in this experiment we intensively gathered network characteristics 

for two weeks. Every 10 to 20 minutes our test application downloaded 600 kilobytes from 10 

different hosts across the globe. We gathered statistics for round trip time, throughput and 

packet loss. In this experiment, we only gathered data to verify if there is a recognizable pattern. 

We will describe the reoccurring patterns we observed from the collected characteristics using 

a small portion of the statistics we collected. Most host / characteristics combination show 

either dependency on user location, dependency on network / server load or, to some extent, no 

dependency at all. 

We took the characteristics from the database we developed for the UFNET framework.  That 

means that each point in the plots is the average on a specific weekday and hour over two 

weeks. As a result, there is a maximum of 24 * 7 = 168 points for the combination of each host 

and network interface. The total number of measurements for each combination of interface 

and characteristics therefore makes 168 * 10 = 1680 measurements. Unfortunately, some of the 

measurements failed, resulting into gaps in the plots. Some reasons for these gaps are: 

 Losing internet connectivity during start of measurement 

 Host did not respond on connect request after 30 seconds 

 Host did not respond on FTP command within 30 seconds 

 Host did not respond correctly on measured FTP command 

 Measurement fell out of the boundaries specified in the test section. 

 Interface lost connection to gateway (e.g., connection to 802.11g base station is lost) 

 Destination network was unreachable for a specific host. 

 No measurement done for the interface at this timeslot 

The average number of gaps for WLAN was 212.86 (12.27%). For Cellular Line this is 808,1  

(48,1%).  Not all of these gaps are the result of measurement failures; the high percentage of 

gaps for the Cellular Interface is mostly the result of the small percentage of measurements (as 

explained in chapter 5). For both interfaces, the most gaps occurred in Packet Loss plots. The 

least gaps for cellular line are in the Round Trip Time plot and for WLAN in the throughput plot. 

The person who carried the device running the test software (from here referenced as the 

“user”) was at the work location during normal weekdays (Mo-Fri, 8:45-17:00) and was at the 

home location during times not within this timeframe. We call this behavior the standard user 

behavior. The device that ran the test software never left the city of Enschede during the two 

weeks of running. During these two weeks, there were two days that the user deviated from the 
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standard behavior pattern. This was on Monday and Wednesday of the second week. During 

these days, the device was at the home location instead of the work location. 

Characteristics dependency 

We looked at the combination of the host and its characteristics. We observed that each of these 

showed dependency on user location, dependency on network / server load or no dependency 

at all. We did not observe any host that showed evident dependency on both user behavior and 

network behavior. In figure 30, we see an example of both concepts; dependency on user 

location and dependency on network / server load. Poland and Utwente NL show dependency 

on user location while Kaiserslautern DE shows dependency on network / server load. Again, 

these are just observations; the main purpose of this experiment was to collect data and not to 

research the nature of the observed patterns. 

  

Figure 30: Average Packet Loss on 802.11g over two weeks 

 

Figure 31: Average round trip time on 802.11g over two weeks 
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Dependency on user behavior 

Consider figure 31. In this figure, we see that the round trip time of the server Utwente NL 

shows different values at the time the user was at the work location. There is a small increase in 

round trip times as well for Amsterdam NL and Brussel BE although this increase is marginal.  

The throughput and RTT figures of the cellular line interface (UMTS or GPRS, figure 32) show 

even more dependency on user behavior. Although it can be seen that the geographically far 

hosts show a higher RTT (figure 32), the location of the user has much more effect on 

characteristics measured on the cellular line interface. The big decrease in RTT / increase in 

throughput are because at the work location, the device had an UMTS connection while at the 

home location, only a GPRS connection was available. In figure 33, one can observe the deviation 

of the user from his standard behavior. We notice dips during the days that the device was at 

home location instead of work location (figure 33, on Monday and Wednesday).  

 

Figure 32: Average round trip time on Cellular Line over two weeks 

 

Figure 33: Average Throughput on Cellular Line over two weeks 
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Dependency on server / network load 

In figure 34, we see an example of dependency on network / server load. Kaiserslautern DE 

showed daily decrease and increase in throughput (the throughput plot resembles a sine wave). 

This means that for some characteristics in combination with a host, the characteristics were 

more dependent on server load or network load. It is interesting to note that due to this 

phenomenon the geographically far server in New Zealand sometimes was faster than the 

geographically close server in Germany was (figure 34). 

 

Figure 34: Average Throughput on 802.11g over two weeks 

No dependency 

On some hosts, characteristics did not show much change over the overall course of two weeks. 

Take for example figure 31. From the plot of Uppsala SE, one cannot determine whether the 

user was at the home location or not. A pattern of overall server load is not evident either (at 

least, not as evident as it is in figure 34). This behavior is even clearer for cellular line 

technology. Consider figure 35. The plots show inconsistent behavior (no clear pattern). 

 

Figure 35: Average Packet Loss on Cellular Line over two weeks 
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6.2. RESULTS SECOND EXPERIMENT 

Our second experiment was to use the measurements we have accumulated in phase 1 as 

predictions to our measurements in this experiment. We did this to verify the accuracy of our 

predictions. In this experiment, the user did not deviate from the standard behavior pattern. 

The user went to work for 5 days and was at the home location during the evenings and the 

weekends. Because in the second week on Monday and Wednesday of the first experiment the 

user was not at work, we see inaccuracies in the predictions of Monday and Wednesday. One 

setback was the unavailability of an 802.11 internet connection on Sunday, therefore, Sunday is 

missing on the 802.11 plots. Due to unavailability of the device we used in the first experiment, 

we changed the device for the second experiment. The type of the device was exactly the same. 

We made sure that the conditions on the device were the same; we exactly copied all the 

settings from the other device to this different device. We will discuss six plots: one for each 

separate combination of interface and measured characteristic. Each plot depicts the Predicted 

value from the UFNET framework and the Real value (measured at the time) (the measured 

value after the download sequence completed) and the absolute difference in prediction and 

measured value. We will discuss each plot and will provide accuracy information for each of 

them. The average errors we present are the averages of the green line (average absolute 

prediction errors in value and percentage). 

 

Round Trip Time on 802.11 

 

Figure 36: Predicted vs. Real values RTT 802.11 
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standard deviation is σ= 38,2. The average of the measured samples (real) is E=70,4 

milliseconds and the standard deviation is σ=53,0 milliseconds. 

 We do not have an explanation of this increase in RTT.  The Utwente server, for example, 

showed a dramatic increase of Round Trip Time. The average round trip time in the database of 

the Utwente server was 6.3 ms, however the newly measured values showed an average of 36,1 

ms. The use of a different device for this experiment could have caused this, or increased 

network traffic could have caused this. It is striking however, that this change is only observed 

for RTT on 802.11. If we reduce the real measured values to 20% of their value, we get an 

average error of 7ms and an average error percentage of E= 58%. This shows there was a 

condition (on the device or on the network) that increased the RTT by 80%. 

Round Trip Time on Cellular Line 

 

Figure 37: Prediction vs. Real values RTT Cellular Line 

This figure depicts the much better prediction over all different hosts on RAS than on 802.11. 
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much impact as it has on 802.11. This is explained by the high standard deviation. However, the 

figure shows consistent values, and although the standard deviations are high, we still have 
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Note the prediction error on Monday and Wednesday, which is due to the user deviating from 
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Throughput on 802.11 

 

Figure 38: Prediction vs. Real values Throughput 802.11 
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Figure 39: Prediction vs. Real values Throughput Cellular Line 

The figure below (figure 40) shows a zoom in on the bottom area of the plot. We see that there is still 

some difference, but the predictions are still quite accurate. 

 

Figure 40: Prediction vs. Real values Throughput Cellular Line 2 
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Figure 41: Prediction vs. Real values Packet Loss 802.11 

Packet loss on Cellular Line 

This plot of packet loss on the cellular line interface (figure 42) shows the least consistent 

values. The average prediction error was 1,86% and the average error percentage of each value 

was 100,3% Prediction samples E= 3,7% σ= 1,3 Real samples E= 2,9% σ= 1,4. Also considering 

the other plots of this section, we can state that packet loss value on the cellular line interface is 

the least predictable of all the characteristics. We expected this since the packet loss 

characteristic on the cellular line interface did not show any pattern (see figure 35 in the 

previous section). 

 

Figure 42: Prediction vs. Real values Packet Loss Cellular Line 
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Here we present a table with our prediction results. 

Interface Characteristic Error Percentage 
Error  

Predicted average 
and SD 

Real average and 
SD 

802.11 RTT 34ms 183% E=38,8ms σ=38,2 E=70,4ms σ=53,0 

802.11 TP 27408b/s 12,8% 
E=253192b/s 

σ=52989 
E=250423b/s 

σ=67615 
802.11 PLS 0,64% 66% E=1,9%  σ=2,7 E=2,1% σ=3,1 
Cellular 

Line 
RTT 76ms 18,8% E=425,3ms σ=144,7 

E=427,5ms 
σ=196,1 

Cellular 
Line 

TP 16107b/s 91% 
E=38186,5b/s 

σ=55906 
E=38186,5b/s 

σ=56554 
Cellular 

Line 
PLS 1,86% 100,3% E=3,7% σ=1.3 E=2,9% σ=1,4 
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7. CONCLUSIONS AND FUTURE WORK 

Conclusions 

In our work, we have examined the possibilities to the predictability of network characteristics 

on mobile devices using measurements done in the past. As we have shown in chapter 6, most of 

these characteristics are predictive due to their cyclic patterns; we observed that these show 

dependency on network / server load or dependency user location. Predictability got as good as 

an average error percentage of 12,8% on throughput predictions of 802.11 and as bad as an 

average error percentage 183% on RTT predictions of 802.11. Although we only did this 

experiment with one person, it means that there is a possibility to predict network 

characteristics using historical data, on the condition that the environment of the mobile device 

does not change drastically. This immediately shows the biggest flaw in using past 

measurements to predict network characteristics: as soon as there is a change in the 

characteristics patterns, the predictability of the network characteristics drop. 

The framework we designed solves the issues we described in the second chapter of this report. 

Network applications that would make use of the features of this framework would benefit from 

the up-front estimations, since they would be able to adapt to network conditions. These 

applications include VoiP software or media streaming software. It would allow the software to 

select the best quality settings, giving the user the best quality available. The current framework 

can be used by applications to measure the network characteristics during usage. Since the 

operating system runs all the time on the mobile devices, for the best results, the framework 

should be incorporated within the operating system, making it possible to provide up-front 

estimations to all applications that want information about the network conditions.  

However, for this solution to be optimal, network conditions should be measured all the time 

and not just only when the user uses the network possibilities of the mobile device. With the 

current devices, this is not possible, since this would put a huge strain on the battery use. With 

the first experiment, even with the steps we took to limit battery usage we had to charge the 

battery every night, since it would not last for 24 hours.  

Future work / recommendations 

Since we did not have enough time to implement sophisticated methods of deriving network 

characteristics using the packet traces we collect, it is possible to improve the accuracy of the 

network predictions by improving the methods that derive network characteristics. We only 

stored network characteristics by the interface they were collected and which time period. To 

improve predictions, it is possible to store information about the conditions they were captured 

(e.g. connected network, signal strength). To give a better view on the quality of the predictions, 

a method should be implemented to assign a value judgment to the predictions. We only had 

time to use a correction value, which is updated every time new characteristics are stored in the 

database. However, we did not have enough time to verify whether this is good indication of the 

quality of the predictions. 

To get a better view on the network quality, more methods should be implemented that derive 

network characteristics from the packet traces. For example, jitter or number of hops to a host. 

Finally, a solution should be found to the issue that appears as soon as the network 

characteristic patterns change drastically. One could implement the solutions as we described 

them in the initial state section of chapter three. However, more research is necessary to cope 

with this issue.  
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APPENDIX 1 
Netmon Collector Class Diagram. A detailed class diagram of the Netmon Collector module 

within the UFNET framework. 


