
                                 
 
 
 
 
 
 
 
 
 
 
 
                Evaluation of Relations between Scales 
                             in an IRT Framework 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                         Khurrem Jehangir 
                                                                         Enschede, 2005 
                        
 
Supervisors 
Prof Dr. C.A.W. Glas   
Dr. H.J.Vos                                                                                                                                                                                    
 



 2 

 
                              
                             Table of Contents 
 

INTRODUCTION 4 

CHAPTER 1 7 

INTRODUCTION TO IRT 7 

IRT & the Classical Test Theory 8 

IRT Models 10 

Dichotomous IRT Models 10 
The Rasch Model or the 1-PL Model. 10 
The 2-PL Model. 11 

Polytomous IRT Models 12 
The Generalized Partial Credit Model (GPCM): 12 
The Sequential Model 15 
The Graded Response Model 17 

CHAPTER 2 19 

EVALUATION OF RELATIONS BETWEEN SCALES IN AN IRT FRAMEWORK
 20 

Maximum Likelihood estimation of trait levels in IRT 20 
Maximum Likelihood estimation of trait level for response patterns 21 
Marginal Maximum Likelihood estimation 22 
The EM algorithm 23 

Evaluation of relation between scales 24 
The limited information maximum likelihood for calculating between scales covariance: 25 

Simulation setup 28 

CHAPTER 3 30 

RESULTS & CONCLUSIONS 30 

Results of the Simulation Study 31 

The Dichotomous Models 32 
Simulation 1.1: The 1-PL model for β =0 32 



 3 

Simulation 1.2: The 1-PL model for β =1 33 
Simulation 1.3: The 1-PL model for varying β  33 
Simulation 1.4 : The 2-PL model 34 

Discussion of results for dichotomous models: 35 

The Polytomous Models 37 
Discussion of results for Polytomous models: 39 

Conclusions 40 

BIBLIOGRAPHY 42 
 
                                 



 4 

Introduction  
 
In an ever changing world, psychological testing remains one of the flagships of applied 

psychology. Over the course of the past decade or two there have been currents of change 

in the domain of psychological testing. New testing techniques are emerging in response 

to contemporary needs in psychological testing. These techniques are also based on new 

principles underlying test development. One promising technique which has been gaining 

momentum since the last decade or two is called IRT or item response theory. It is the 

basis or mainstay for the creation of many a modern test. It is gradually phasing out the 

classical test theory (CTT) from the testing domain because of its more theoretically 

justifiable principles and greater potential to solve practical measurement problems. 

 

IRT, also known as latent trait theory is model based measurement in which trait level 

estimates depend on both person responses and on the properties of items that were 

administered. The rules of measurement in IRT afford greater robustness, flexibility, 

efficiency and reliability in trait measurement than the classical test theory framework 

which was in use for most of the 20th century. The underlying principal used in IRT 

models for testing is that person and item parameters can be fully separated and this is 

brought to bear on measuring examinee traits and test characteristics with greater 

precision and flexibility. 

 

IRT now underlies several major tests. Apart from educational testing to measure 

examinee ability, IRT has also been applied to personality trait measurements, as well as 

to attitude measurements and behavioral ratings. Computerized adaptive testing in 

particular relies on IRT. In computerized adaptive testing examinees receive items that 

are optimally selected to measure their potential. Different examinees may receive no 

common items. IRT principles are involved in both selecting the most appropriate items 

for an examinee and equating across different subsets of items. 

 



 5 

Many diverse IRT models are now available for application to a wide range of 

psychological areas. Although early IRT models emphasized dichotomous item formats 

extensions to other formats has enabled applications in many areas; that is, IRT models 

have been developed for rating scales, partial credit scoring and multiple category 

scoring. 

 

This report studies the application of a new procedure for measuring across-scales 

relationship in a multi-dimensional IRT test. A multi-dimensional test is one in which a 

test is divided into sub-sets and latent variables are measured separately for each scale. 

The latent variables are assumed to correlate and the new procedure called ‘limited 

information maximum likelihood estimation’ proposed by Rubin and Thomas (2001) is 

used to estimate this correlation. The authors did not indicate that they had empirically 

tested this new procedure and in this report empirical tests are carried out to observe the 

effects of different models and values of item and person parameters. 

 

Chapter 1 of this report makes a comparison between the new IRT framework and the old 

Classical Test Theory (CTT) framework. Apart from highlighting the conceptual 

differences between IRT and CTT it also lists the array of advantages that are afforded by 

IRT to examiners. After stressing the importance of IRT as a testing framework, an 

explanation of the different IRT models for both dichotomous and polytomous scoring is 

given.  

 

Chapter 2 of this report is about the methodology that is tested in this report. It begins 

with an explanation of important concepts that are used for estimation of IRT model 

parameters like maximum likelihood scoring for single variable models. It also presents 

other estimation methods that are used in this report like marginal maximum likelihood 

(MML) and the EM algorithm. Then the new methodology used for estimating across 

scales relationship is described.  
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Chapter 3 is the concluding chapter; the results of the simulations carried out are 

presented followed by a discussion of the results and the feasibility of the methodology 

used for different IRT model configurations.     
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                                     Introduction to IRT 
 
 
In this chapter I give an introduction to the IRT framework. I begin by making a 

comparison between the old testing framework called the Classical Test Theory (CTT) 

and IRT. I discuss the advantages of IRT over CTT and how it is better equipped to meet 

the requirements of modern testing. After that I briefly trace the history of IRT evolution 

and present the basic IRT model in use today for dichotomous scoring called the Rasch 

model and its extensions (i.e. 2PL). After that I present three IRT models for polytomous 

scoring and describe how they can be evolved from the basic Rasch model.  
 

                         IRT and the Classical Test Theory  

 
The two testing theories that are in use today are the Classical Test Theory (CTT) and the 

IRT. CTT predates IRT and has been the mainstay of psychological testing for most part 

of the 20th century. However since the last decade or two IRT has become the dominant 

currency of testing, while CTT is become less popular. IRT is based on fundamentally 

different principles than CTT. IRT is a model based measurement that controls various 

confounding factors in score comparisons by a more complete parameterization of the 

measurement situation. 

 

IRT differs substantially from CTT as a model based system of measurement. Unlike IRT 

in CTT item properties and person properties are confounded in the basic model which 

has many implications. Firstly, practical testing problems such as equating different test 

forms have been solved by using IRT. Furthermore, thanks to justifiable measurement 

scale properties of IRT inferential statistics about group differences as well as test score 

comparisons within or between persons have become possible. 

 

One powerful feature of IRT is that IRT trait levels have meaning for any set of 

calibrated items (where the same model holds) because IRT models include invariant 
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item properties. By contrast, in CTT the true score has meaning only for a fixed 

population and item set; by not including item properties in the model, a true score can 

apply only to a particular set of items or their equivalent. Thus the properties of items are 

not explicitly linked to behavior in CTT but in IRT they are. The outcome of this is that 

for example the relative impact of difficult items on trait level estimates and item 

responses can be known from an IRT model. 

 

Another weak link in CTT is that a persons true and error score may not be decomposed 

from a single test administration. The standard error of measurement in CTT applies to 

all scores in a particular population i.e. it is the same for all examinees in the population 

whereas in IRT based testing the standard error differs across scores or response patterns 

and gives a more accurate estimate of the conditional standard error for any particular 

examinee.  

 

Another outcome of the IRT based testing is that tests do not have to be as lengthy as 

they were in CTT. A short test that is based on IRT can be more accurate than a longer 

test based on CTT. This is made possible by using adaptive testing in which the 

examinees are administered items which match their estimated abilities using the IRT 

framework. Rather than testing examinees with items that are spread out over the entire 

ability spectrum, the test items can be focused around the estimated ability estimates of 

the examinees thus resulting in a more accurate estimate coupled with a shorter test. 

 

IRT is thus gradually phasing out CTT because of the main reasons which have been 

explained above. However IRT based testing is truly effective when it is done in the form 

of adaptive testing using computers. Because in IRT examinees are not supposed to 

receive the same questions but rather those questions that give maximum information 

about their estimated trait levels at that point in time. Modern computers possess the 

computing power to perform the necessary calculations to estimate trait levels 

continuously and select the next appropriate item to administer from the item pool. 

Computer adaptive testing is not yet pervasive but it is gradually phasing out paper and 
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pencil based tests which are based on the CTT.  IRT in its capacity as the framework on 

which computer adaptive testing relies will be the currency of future testing.   

 

                                                      IRT Models  
 
Item response theory (IRT) contains a large family of models. IRT development may be 

traced back to Lawley(1943) and Lord(1952). An important theoretical breakthrough was 

made by Georg Rasch(1960), a Danish mathematician who developed a family of IRT 

models that were applied to develop measures of reading. Rasch was particularly 

interested in the scientific properties of measurement models and he separated person and 

item parameters fully in his models. His student Anderson consequently elaborated 

estimation methods for the person and item parameters in Rasch’s model. Rasch 

developed many IRT models but his most famous model which is known by his name is 

the building block for many more complex or advanced models used in IRT today. 

Though there are many IRT models in use today I will only discuss the five IRT models 

that I use in this report. Two of these models are models for dichotomously scored items 

(in which there are only two possible outcomes) and three models are for modelling 

polytomously scored items (in which there are more than two possible outcomes). 

 

Dichotomous IRT Models 
 

The Rasch Model or the 1-PL Model. 

 
The simplest IRT model which belongs to the exponential family that is in use today is 

the Rasch model which is also known as the one parameter logistic model (1PL). For the 

simple Rasch model, the dependent variable is the response to a dichotomously scored 

item. The independent variables are the person’s trait score and the item difficulty level.  

Linking the independent variable to the dependent variable requires a non linear function 

which is the logistic function. The prediction provided by this logistic function is as 

follows: 
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where Xsi is the response of person s on item i, sθ the trait level of person s and iβ the item 

difficulty of item i . P (Xsi=1) is the probability of a correct response on item i for person s. 

          

This is known as the Rasch model or the 1 parameter logistic (1PL) measurement model, 

due to the inclusion of only one item parameter (i.e. difficulty) to represent item 

differences. 

The 2-PL Model. 
 
The 2-PL model is a more ‘complete’ or complex IRT model than the Rasch model. This 

model includes two parameters to represent item properties. One is the item difficulty 

which was also there in the Rasch model and the other new parameter is called the 

discrimination parameter denoted by the symbol alpha. The discrimination parameter is 

also known as the slope parameter. The Rasch model can be extended to the two-

parameter logistic model (2-PL) by allowing different discrimination parameters for each 

dichotomous item. Both item difficulty and item discrimination are included in the 

exponential form of the logistic model as follows: 

 

P (Xsi=1) =  
)(exp1

)(exp
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where Xsi is the response of person s on item i, sθ the trait level of person s and iβ the item 

difficulty of item i . iα is the discrimination parameter. P (Xsi=1) is the probability of a 

correct response on item i for person s. 

          

The discrimination or slope parameters indicate the steepness of the response function 

.An outcome of this property is that it is possible to observe how good the response 

function discriminates θ-values in the neighborhood of siβ .When the discrimination 

parameters are high, they give more information about the trait level of a person if he/she 

is administered a question whose difficulty level is equal to or close to the trait level of an 
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examinee. Tests can be shorter if the discrimination parameter is also included in the 

model because its inclusion means that questions if carefully selected can give more 

information about the trait level of an examinee which can thus be more quickly 

identified.  

                     

Polytomous IRT Models 
 
In this section I will discuss three models for polytomous item scoring. The models that 

were discussed earlier were for dichotomous scoring, i.e. there were only two possible 

response categories, either a correct score or an incorrect score. In polytomous scoring 

there are more than two possible response categories, i.e. there are more possibilities than 

either scoring correct or wrong. In other words a person may score an item partially 

correct. To model response behaviour on a test where there are more than 2 possible 

response categories models known as polytomous models have to be used. These models 

can be applied to any situation in which performances on an item or an assessment 

criterion are recorded in two or more ordered categories (e.g., rating scales) and there is 

an intention to combine results across items/criteria to obtain measures on some 

underlying variable. There are many models for polytomous scoring that have been 

proposed. In this section I discuss three of the more commonly used models which I will 

later use in the simulation studies. 

  

The Generalized Partial Credit Model (GPCM) 
 
The PCM or the partial credit model is a uni-dimensional model for the analysis of 

responses recorded in two or more ordered categories (Masters, 1982). The Partial Credit 

Model is an application of Rasch’s model for dichotomous scoring to polytomously 

scored items (Masters, 1982). When an item provides only two scores 0 and 1 (i.e., wrong 

and correct), the probability of scoring 1 rather than 0 is expected to increase with the 

ability being measured. In Rasch’s model for dichotomous scoring, this expectation is 

modelled as: 
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where Pij1 is the probability of person j scoring 1 on item i.Pij0  is the probability of person 

j scoring 0 on item i, and θ j is the ability of person j. Furthermore,δ i denotes the 

difficulty of item i defined as the location on the ability scale at which a score of 1 on 

item i is as likely as a score of 0 (i.e., Pij0 = Pij1 = 0.5). The larger δ i, the smaller the 

probability of scoring 1 rather than 0 on item i.  

 

The model is written here as a conditional probability to emphasize that it is a model for 

the probability of person j  scoring 1 rather than 0. The above formula for the 

probability of scoring 1 rather than 0 also expresses the probability of person j scoring 1 

on item i (i.e., the item response function 1ijP ), since Pij0 and Pij1 must obviously sum up 

to 1.  

 

When an item provides more than two responses categories (e.g., three ordinal categories 

scores 0, 1 and 2), a score of 1 is not expected to be increasingly likely with increasing 

ability. This is because beyond some points on the ability scale, a score 1 should become 

less likely as a score 2 becomes a more likely result. Nevertheless, it follows from the 

intended order 0 < 1 < 2 …. < mi of a set of response categories that the conditional 

probability of scoring x  rather than x -1 on an item i (i.e., given only two possible 

scores) should increase monotonically throughout the ability range. In the PCM, this 

expectation is modelled using Rasch’s model for dichotomous scoring: 

 

exp( )
1 exp( )1

Pijx j ix
P P xijx ijx j i

θ δ
θ δ

−
=

+ + −−
,             x = 1, 2, … , mi 

 

where ijxP  is the probability of person j  scoring x  on item i , 1−ijxP  is the probability of 

person j  scoring x -1 on item i . jθ  is the ability of person j , and ixδ  is an item 

parameter (denoted also as difficulty parameter or sometimes as category or threshold 

parameter) governing the probability of scoring x  rather than x -1 on item i . However, 
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in the polytomous case, unlike in the dichotomous case, it does not hold any longer that 

1−ijxP  and ijxP  sum up to 1 since there are now more than two probabilities involved. 

 

Since it must hold that 0ijP  + 1ijP  + … + ijxP  + … + Pijmi  = 1, as shown by Masters 

(1982), it can readily be derived that the item response functions (mostly denoted as 

category response functions) for ijxP  (x = 1, 2, …, mi) and 0ijP  in the PCM can be 

formulated as follows:  
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1
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Defining for notational convenience 
0

( ) 0,
0

j ik
k
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=

 the above two expressions above 

for the response category functions can be formulated more compact as follows: 
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                x = 0, 1, …, mi. 

 

The PCM simplifies to the Rasch model if mi = 1, that is, for an item with only two 

response categories. In other words, Rasch’s model for dichotomous scoring can be 

considered as a special case of the PCM or in other words the PCM belongs to the Rasch 

family of models. 

 

It can be verified from the above formulas that δik indicates the location on the θ-scale 

where the probabilities of responding to categories k-1 and k (k = 1,…,mi) on item i are 
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equal. Furthermore, it holds that the larger δik, the smaller the probability of scoring k 

rather than k-1 on item i. It is also evident that the category response function for the 

lowest ordered category (i.e., category 0) is decreasing in θ, whereas the one for the 

highest ordered category (i.e., category mi) is increasing in θ. Since the sum of the 

category response functions must sum up to 1 for each value of θ, it follows that all other 

response category functions (i.e., categories 1, 2,…, mi-1) must necessarily first be 

increasing in θ and next be decreasing in θ. 

 

In order to allow for different slopes for the category response functions the PCM can be 

modified to the Generalized Partial Credit Model (GPCM) by incorporating the 

discrimination parameter in the model for the PCM. The GPCM which was originally 

developed by Muraki in 1992 and can be formulated in compact form as follows: 

 

exp ( )
0

exp ( )
0 0

x
ai j ik
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where ai denotes the discrimination parameter for item i. The GPCM will boil down to 

the PCM when all discrimination parameters are equal. The GPCM is a more flexible 

model than the PCM implying that a better fit to the data can be achieved, but at the 

expense of statistical elegance (i.e. no sufficient statistics). 

 
 

The Sequential Model 
 
The Sequential model is an alternative to the GPCM. Verhelst, Glas and de Vries(1997) 

develop the model by assuming that a polytomous item consists of a sequence of item 

steps. It views polytomous data as a special case of data resulting from a multistage 

testing design with dichotomous items where every test consists of one dichotomous item 

only. The choice of a follow up test is a function of the responses on previous items. 

Every step corresponds with a conceptually dichotomous Rasch item. The student is only 
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administered the next conceptual Rasch item if a correct response was given to the 

previous one. It is assumed that if a conceptual item is administered, the Rasch model 

holds, so the probability of taking a step is given by: 

),,1)|1( kmiikmikm bdYp θ== = 
)exp(1

)exp(
kmi

kmi

b
b
−+

−
θ

θ
 

Where dikm  is a design variable for dichotomous items given by: 

dikm = {1, if a response of person i to item k is available} 

dikm = { 0 , if a response of person i to item k is not available} 

bkm is the difficulty parameter of step m within item k. If we denote the number of steps 

within item k by rik then: 
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k
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m
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Using these formulas in the table given below are all possible responses for an item with 

Mk=3 and the associated probabilities P ),|( kk by θ  
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From inspection of the above table it can be verified that in general: 
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Where min(Mk, rk +1)stands for the minimum of Mk and rk +1.  

 

The Graded Response Model 
 

In 1969, the general graded response model was proposed by Samejima. It is different 

from adjacent category models or Continuous-ratio models .In Adjacent category models 

the definition of the probability that the score say Rk is equal to m conditional on the 

event that it is either m or m-1 and is given by: 

 
)(()1,,|( kmkkkk bamRormRmRP −=−=== θψ ) 
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Where ψ  is a logistic function. Above it was shown that this assumption leads to the 
GPCM. 
 

Continuous ratio models on the other hand are based on the definition of probability of 

scoring equal to or higher than m given that the score is at least m-1: 

 
P(Rk ≥ m| Rk ≥ m-1)= ψ ( ak (θ -bkm))  
 
In the Graded response model however the probability is defined by: 
 
P(Rk ≥ m) =ψ (ak (θ -bkm )) 
 
It follows that the probability of scoring in a response category m is given by 
 
P(Rk = m) = P(Yikm =1| ,θ  bk) = ψ ( ak (θ -bkm)) - ψ (ak (θ -bk(m+1))) 
 

for m=1,……Mk-1.Since the probability of obtaining a score Mk+1 is zero and since 

everyone can at least obtain a score 0, 0)1( =+≥ kk MRP  and 1)0( ==kRP .Thus 

follows that  

 
P(Rk  = 0) = P(Yik0 =1| ,θ  bk) = 1- ψ (ak (θ -bk1)) 
 
and 
 
P(Rk  = Mk) = P(YikMk =1| ,θ bk) =  ψ (ak (θ -bkMk)) 
 
For this model to work it must hold that ψ (ak(θ -bkm))> ψ (ak (θ -bk(m+1))), which implies 

that b1< b2< ,…….,< bMk.. Furthermore the discrimination parameter ak must be the same 

for all steps. 
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Evaluation of relations between scales in an IRT 
framework 
 
         
In this chapter I discuss the methodology that is tested in this report. It begins with an 

explanation of important concepts that are used for estimation of IRT model parameters 

like maximum likelihood scoring for single variable models. It also presents the marginal 

maximum likelihood estimation method (MML) that is used when there is more than one 

variable in the model. Then the EM or the estimation-maximization algorithm is 

presented as it is used in the methodology studied in this report. The new methodology 

used for estimating across scale relation is described next. It is called ‘limited information 

maximum likelihood’ estimation. 

 

Maximum Likelihood estimation of trait levels in IRT 

 
 
The relationship between item responses and trait level is fundamentally different in IRT 

and CTT. Under CTT, trait levels are scored by combining responses across items. 

Typically, responses are summed into a total score and then converted into a standard 

score. However in IRT, determining the person’s trait level is not a question of how to 

add up the item responses. 

 

In a sense the IRT process of estimating trait levels is analogous to the clinical inferences 

process. In models of the clinical inference process, a potential diagnosis or inference is 

evaluated for plausibility. That is, given the observed behaviors how plausible is a certain 

diagnosis. Thus, the behaviors (and test responses) are symptoms of a latent variable 

whose value must be inferred. Given the limited context in which the persons behavior 

can be observed by the clinical and knowledge of how behaviors are influenced by a 

latent syndrome, what diagnosis is most likely to explain the presenting behaviors? The 

IRT process is akin to clinical inference; given the properties of the items and knowledge 
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of how item properties influence behavior (i.e. and IRT model), what trait level is most 

likely to explain the persons responses. 

 

Supposing a person received very hard items on a test and answered nearly all of them 

correctly; this response pattern is not very likely if a person has a low trait level. The 

likelihood that a person with moderate trait level could have answered those questions 

correctly is somewhat higher, but the likelihood of the response pattern is even higher for 

a person who has a high trait level. 

 

Finding the IRT trait level for a response pattern requires a search process rather than a 

scoring procedure. That is, the trait level that yields the highest likelihood for the 

responses is sought. In some cases, collateral information may be incorporated into the 

estimation procedure (e.g. trait distribution in the relevant procedure) so that more 

information than the response pattern is available. For instance when estimating the trait 

level distribution in a large class of examinees it is often assumed that the trait levels are 

normally distributed (i.e. pattern of distribution is like a normal distribution which has a 

bell shape). In IRT, trait levels are estimated in a model for a person’s responses, 

controlling for the characteristics of the items. Typically, trait levels are estimated by the 

maximum likelihood method; specifically the estimated trait level for a person maximizes 

the likelihood of his or her response pattern given the item properties. Thus to find the 

appropriate trait level ,one must(a) represent the likelihoods of a response pattern under 

various trait levels and (b) conduct a search process that yields the trait level that gives 

the highest likelihood. 

 

Maximum Likelihood estimation of trait level from response patterns 

 
To find the most likely trait score, first the likelihood of the person’s response pattern 

must be expressed in the model that contains the properties of the items that were 

administered. Once so expressed, the likelihood of the person’s response pattern may be 

computed for any hypothetical trait level. Then the likelihoods may be plotted by the trait 

level so that the trait level with the highest likelihood can be observed. 
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Instead of plotting a graph of likelihoods (probabilities) of a response pattern against 

different values of the ability parameter to see which value of the ability parameter yields 

the highest likelihood (probability), one can simply find the maximum of function of the 

response pattern with respect to the trait level parameter in the function. The first step in 

calculating maximum likelihood of a response pattern is to translate the item response 

pattern into the probability of that item response pattern occurring under the given model. 

All item parameter values are considered known in the model with the exception of the 

unknown parameter ‘trait level’ which is yet to be estimated. The next step is to multiply 

all these probabilities for every item in the test. The resultant probability function is the 

probability of getting that response pattern over the whole test. This probability function 

contains one unknown parameter i.e. the trait level parameter. The next step is to 

maximize this probability function for the ability parameter so as to find out the value of 

the ability parameter for which the function gives a maximum value. (It can be shown 

that the probability function is single peaked so it returns only a single maximum 

value.).However finding the maximum of the likelihood function in this form is tedious 

from a mathematical point of view. So in practice the log likelihood of this function is 

calculated and maximized; because the log of the likelihood function also maximizes at 

the same trait level as the likelihood function in the original product form and is easier to 

calculate. The only exception to calculating maximum likelihood estimates are response 

patterns that are all correct or all wrong. These patterns will yield the value of ‘infinite’ 

ability for an all correct response pattern and a value of ‘negative infinity’ for an all 

wrong response pattern. 

 

Marginal Maximum Likelihood estimation 
 

The maximum likelihood estimation procedure described above is computed for a 

likelihood function of a single variable. However sometimes there is more than one 

variable in the likelihood function, as will be the case in this report. In such a case, in 

order to maximize the likelihood function of two or more variables, marginal likelihoods 

with respect to a subset of the variables can be defined. Let a denote the subset of 
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variables marginalized (i.e., integrated). Let b denote the other variables. Let x denote 

observed data. Given the likelihood function p(x|a, b), the marginal likelihood of b is 

 

P(x | b) = � dabapbaxp )|(),|( , 

 

where p(a| b) is the distribution of a conditional on b. In practice, b can be the item 

parameters or b can be the covariance matrix between ability dimensions (Bock & Aitkin, 

1981)  

 

The EM algorithm  
 

The EM or the expectation-maximization algorithm is an algorithm for finding maximum 

likelihood estimates of parameters in probabilistic models, where the model depends on 

unobserved latent variables or missing data. EM alternates between performing an 

expectation (E) step, which computes the expected value of the latent variables, or 

missing data, and a maximization (M) step, which computes the maximum likelihood 

estimates of the parameters given the data and setting the latent variables or missing data 

to their expectation(in an exponential family model) or to their distribution (in other 

models). 

 

 The EM algorithm can be viewed as an iterative method for finding the mode of the 

marginal posterior density p( )| yθ and is useful for many common models for which it is 

hard to maximize p( )| yθ directly but easy to work with p( ),| yθγ and p( ),| γθ y .If one 

thinks of θ  as the parameters in the problem and γ  as the missing data the EM algorithm 

formalizes the following idea, handling missing data starting with a guess of the 

parameters. (1) replace missing values by their expectations (or distributions) given the 

guessed parameters, (2) estimate parameters assuming the missing data are given by their 

estimated values (or distributions), (3) re-estimate the missing values assuming the new 

parameter estimates are correct, (4) re-estimate parameters and so forth iterating until 

convergence. 
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                  Measurement of between scales covariance 
 
 

In the previous section I described how the IRT theory can be used to determine the ability level 

of examinees on a test. Usually, in IRT models it is assumed that there is one (dominant) latent 

variable θ that explains test performance. However, it may be a priori clear that multiple latent 

variables are involved. A test with items related to more than one latent variable is often labeled a 

within-item-multidimensional test (Adams, et al., 1997) and a multi-dimensional model is 

required for such tests. Adams et al. (1997) also write about another class of multidimensional 

IRT models, between-item-multidimensional models, in which one test can be divided into 

subtests or scales where the responses to the items of each scale can be described by a uni-

dimensional IRT model. The latent variables, measured separately for each scale are assumed to 

correlate. It can be of interest to know the relationship between the different cognitive sub scale 

abilities. For instance it may be interesting to know the relationship between a persons I.Q. and 

math ability or I.Q. and language ability or math and language ability. The aim of this report is 

to test a new methodology for estimating the between scale relationships for a multi-

dimensional test using a number of one-dimensional models. A simulation is carried out 

in which a group of students is tested on a test with three dimensions or areas of ability, 

like math I.Q. and language. A matrix of 3 dimensional abilities is generated using a 

model in which we incorporate a known covariance matrix for configuring the between 

scales relationship. We then test the new method to find the between scales covariance 

from the available data using the new method and compare it with the known covariance 

used to model the data set.  

 

One method for calculating the covariance between scales is to use the so called full 

information maximum likelihood estimation in which the item parameters and the 

covariance matrix are concurrently estimated using marginal maximum likelihood 

(MML) and the EM-algorithm. However this is a tedious process and is infeasible for 

high-dimensional theta spaces because the computation of the integrals is cumbersome. It 

requires the calculation of a multiple integral (over the number of scales) in the 

probability model for every element of the covariance matrix. In this study I use limited 
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information maximum-likelihood estimation in which the model is estimated in two 

steps: first the item and person parameters are estimated per dimension and secondly the 

covariance matrix is estimated given the estimates obtained in the first step.  If the limited 

information maximum likelihood estimation works well it could then be considered a 

viable alternative for cases when the full information maximum likelihood estimates 

become too complex to compute.    

 

The limited information maximum likelihood for calculating between 
scales covariance 
 

The limited information maximum likelihood method used here is based upon an 

application of the EM algorithm presented by Rubin and Thomas (2001). Rubin and 

Thomas (2001) discuss a two-stage procedure where the first stage consists of calibrating 

the uni-dimensional subscales using a uni-dimensional IRT model such as the GPCM  

and the second stage consists of estimating the covariance-matrix between the latent 

variables using a combination of parameter expansion and the EM-algorithm 

 

The method calculates the covariance between scales by using observed data. These 

variance estimates include variance due to measurement error.  The relationship between 

the missing data and the estimated abilities is given by the equation 2.0. 

 
 
Equation 2.0 

iy =K iθ  + iε  
 

In this equation the parameter iy  represents the estimates abilities of the students. The 

parameter iθ represents the actual abilities of the students and the parameter K is a matrix 

of the regression coefficients. The term ε i represents the measurement error. 

 

Equation 2.0 can be used in the EM algorithm as described in the following equations 

2.1. and 2.2.  
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Equation 2.1 

θ
t = K

1−  y
t
 

 

Equation 2.2 
 

jK = inv (θ jW tθ ) * ( tθ jW jY  ) 

where  jW = diag( j1τ ,……., Njτ )  

Note that jK  is both the maximum likelihood estimate and the least squares estimate of K 

 

In equation 2.1 the parameter y represents the abilities of students estimated earlier in 

step 1 whereas the parameter θ  represents the expectation of θ  given the model in 

equation 2.0 and are treated as the missing data.  

 

For the EM algorithm to begin an initial value of the matrix K is guessed. In our case it is 

the identity matrix. The E step then estimates a value for the missing data θ  given the 

guessed parameter K in equation 2.1. This is followed by the M-step (given in equation 

2.2.) in which the parameter K is estimated assuming the missing data θ  are given by 

their estimated values in the E-step. This ‘updated’ estimate of the parameter K which is 

the matrix of regression coefficients is then reinserted into the E-step to get new values 

for the missing data θ  in the E-step which is then reinserted into the M-step for 

calculating an improved estimate of K and so forth till convergence is achieved. It can be 

shown mathematically that with every iteration the values of the estimates of estimates of 

K and � are nearer to maximum likelihood estimates of these parameters.  

 
 
Equation 2.3 
 

� =1/N �
=

N

i 1
θ i θ

t

i
 

 

Once convergence is achieved, the final value of the covariance matrix �  is calculated 

using equation 2.3. On right hand side of the equation every column of the transpose of 
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the estimated matrix of missing data is multiplied by its transpose. This is done over all 

persons and the average of the result will yield the final covariance matrix.  
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                                          Simulation setup 
 

The objective of this simulations carried out in this report is to study the viability of a 

limited information EM algorithm technique proposed by Rubin and Thomas(2001) for 

finding the covariance between scales. The scales in the empirical example used in this 

report correspond to the multidimensional ability sub sets. The test is split in a number of 

sub sets and every subset relates to a specific ability parameterθ t. The relationship or 

covariance between the ability estimates for the different sub-sets is represented in the 

form of a covariance matrix. 

 

The simulation study begins with randomly drawing values of theta for different scales 

from a multivariate normal distribution with a known covariance matrix. Thus we know 

from the start the covariance used to model the multidimensional ability matrix. The 

value of this known covariance matrix is used later for comparison with the covariance 

matrices resulting from the estimation procedure of Rubin & Thomas (2001). 

 

The values of ‘abilities’ obtained so far represent the real abilities of the students. The 

next step is to convert these real ability values into estimates of these real abilities along 

with estimates of the measurement error. This is done in two steps. First, by generating a 

response pattern for all examinees over all items in each sub scale of the test using the 

actual sub scale abilities under the respective response model. Secondly, by estimating 

the sub-scale abilities from the response patterns using ‘maximum likelihood’ which will 

then yield  the estimates of the sub scale abilities and the associated measurement errors. 

The estimates of the abilities obtained using maximum likelihood will serve as the input 

matrix Y ( in equation 2.1) of the EM algorithm and likewise the estimates of the 

measurement error will serve as the diagonal elements of the matrix W (in equation 2.2). 

 

We then calculate the covariance matrix using the EM algorithm and compare the values 

obtained with the original known covariance matrix for various input parameter 

combinations of the five different response models. We can thus observe the performance 
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of the limited information EM algorithm in calculating the covariance between scales for 

the different situations.  

.                                  
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                                  CHAPTER 3 

 
In this concluding chapter the results of the simulations carried out are presented. The 

Chapter is divided into two sections, one for dichotomous testing and one for polytomous 

models. Results are tabulated for both sections followed by a discussion of those results. 

The chapter ends by concluding about the feasibility of the ‘limited information 

maximum likelihood estimation’ for various dichotomous and polytomous models.  

 

Results of the Simulation Study  
  

The simulation setup described in the previous section was implemented for the five 

models described earlier. In the section below we can observe the results of the 

simulation exercises for the five different models. The tables in this section shows the 

between the simulated covariance matrix and the original covariance matrix for various 

input configurations. This is followed by a discussion of these results.   

 

The test parameters that are altered for the five different models (as shown in the tables) 

include the sample size denoted by M ,  test length denoted by K and the value of the non-

diagonal elements of  the original covariance matrix denoted by � . The results of the 

simulation are represented in the form of the average of differences between the diagonal 

and off-diagonal elements of the original covariance matrix and the simulated covariance 

matrices. The simulated values of the covariance matrices represent an average of those 

values over 100 replications. 

 

The simulations study is divided into two main sections, one for dichotomous scoring 

models and the other for polytomous scoring models. There are two sorts of effects that 

are studied, the main effects, like those resulting from alteration of test parameters like 

sample size, test length and item parameters like item difficulty. Secondly, the across 

model effects, i.e. to see how the simulation results are affected by the choice of model 

under which the simulations are done.  
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                               The Dichotomous Models 
 

For the dichotomous models, four simulations setups were created. The first three 

simulation setups were for the Rasch model or the 1PL dichotomous model in which the 

values of the item difficulty parameter were varied. The last simulation setup was for the 

2PL model. The aim was to observe any main effects of varying the item parameters and 

other test characteristics like sample size & test length. For every model in this section a 

table of results is presented followed by a discussion of those results. At the end of the 

section there is a general discussion of the differences in the results of the different 

models . 

Simulation 1.1: The 1-PL model for β =0 

 
The first simulation was carried out for the 1PL model with the fixed values of the item 

difficulty parameter β  = 0.The results are tabulated in the Table 1.1 below. 

 

Table 1.1:  Mean absolute error of the estimates of the covariance matrix (diagonal 

� =1.0) for dichotomous items generated using the 1PL with β =0. 

         M  ρ (off-diagonal � )            K   Diagonal Off-Diagonal 
      1000                 .8          21    0.556    0.136 
                  .8            63    0.119    0.042 

                 .4            21    0.558    0.072 

                 .4            63    0.124    0.027 
     100                 .8            21    0.563    0.144 
                 .8            63    0.196    0.078 

                 .4            21    0.566    0.075 

                 .4            63    0.194    0.061 

 
 

By examining the above table for values of β  fixed at zero a main effect of test length 

can be observed. The estimates for both the diagonal and off diagonal elements are more 

precise when the test is longer, i.e. 63 items. There is a secondary effect of the sample 
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size; the estimates are more precise when the sample size is larger. There seems to be no 

effect of the covariance parameter on the diagonal elements but it seems to effect the off-

diagonal values; the off-diagonal differences are almost twice as less for the cases when 

the covariance parameter is smaller, i.e. 4.  

Simulation 1.2: The 1-PL model for β =1 
 
The second simulation was carried out for the 1PL model with the fixed values of the  

item difficulty parameter β  = 1.The results are tabulated in Table 1.2 below. 

 
Table 1.2: Mean absolute error of the estimates of the covariance matrix�  (diagonal 
� =1.0) for dichotomous items generated using the 1PL with β =1. 
 
         M ρ (off-diagonal� )            K Diagonal Off-Diagonal 
      1000              .8          21    0.803    0.182 
               .8            63    0.129    0.031 

              .4            21     0.810    0.079 

              .4            63    0.121    0.020 
     100              .8            21    0.805    0.189 
              .8            63    0.164    0.059 

              .4            21    0.807    0.082 

              .4            63    0.162    0.052 
 

From the above table it can be seen that there is a main effect of varying the test length. 

When the test is longer the estimates are more accurate. There is a main effect of the 

covariance parameter for the non diagonal values which becomes greater when the test 

length is 21; the estimates are more precise when the covariance is lower. There is also a 

secondary effect of the sample size when the test is longer i.e. consists of 63 items; the 

estimates are slightly more accurate in all corresponding diagonal and off-diagonal cases.  

Simulation 1.3: The 1-PL model for varying β  
 

The third simulation was carried out for the 1PL model with varying values of the item 

difficulty parameter β  .The item difficulties were uniformly varied between the values -
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1.5 and + 1.5 such that the average value was zero. The results are tabulated in Table 1.3 

below. 

 
 
Table 1.3:  Mean absolute error of the estimates of the covariance matrix � (diagonal 
� =1.0) for dichotomous items generated using the 1PL for varying values of β . 
 
         M ρ (off-diagonal� )          K   Diagonal  Off-Diagonal 
      1000             . 8        21     0.394     0.090 
              . 8         63     0.081     0.031 

             . 4         21     0.394     0.047 

             . 4         63     0.076     0.021 
     100             . 8         21     0.405     0.105 
             . 8         63     0.157     0.064 

             . 4         21     0.373     0.066 

             . 4         63     0.162     0.052 

 
 

The results in the table above show that there is a main effect of test length. When the 

number of items is greater the estimates are significantly more accurate for both diagonal 

and off-diagonal elements of the covariance matrix. There is a secondary effect of the 

sample size when the test is longer; the estimates are more precise when the sample size 

is bigger .The covariance parameter does seem to have a main effect for the off-diagonal 

cases; when the covariance parameter is low the accuracy of the estimates is higher in 

each case, more so when the test is shorter. 

 

Simulation 1.4: The 2-PL model 
 
The simulation for the 2PL model was carried out while varying both the values of the 

item difficulty parameter and the item discrimination parameter. The item difficulty 

parameters were varied between -1.5 and + 1.5 with the average being zero. The item 

discrimination parameters were drawn uniformly between the values 0.75 and 2.25.The 

results of the outcomes are tabulates below in Table 2. 
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Table 1.4 :  Mean absolute error of the estimates of the covariance matrix �  (diagonal 
� =1.0) for dichotomous items generated using the 2PL model. 
 
         M ρ (off-diagonal� )        K   Diagonal  Off-Diagonal 
    1000             .8      21       0.790    0.205 
              .8       63     0.190    0.066 

             .4       21     0.792    0.110 

             .4       63     0.182    0.033 
     100             .8       21     0.791    0.217 
             .8       63     0.247    0.089 

             .4       21     0.819    0.153 

             .4       63     0.242    0.067 

 
 
A main effect of test length is visible; when the test is longer the estimates are 

significantly more precise (for both diagonal and off-diagonal elements). There is a 

secondary effect of sample size when the test is longer, the estimates are more accurate 

for a bigger sample size. The covariance parameter has a main effect for the off-diagonal 

elements; when the covariance is low the accuracy of the estimates is better. 

 

Discussion of results for dichotomous models 

 
For all the dichotomous scoring cases it is evident that there is a main effect of the test 

length. When the test is longer the estimates are significantly more accurate. There is also 

a secondary effect in all the models: when the test is longer, the sample size affects the 

estimates. The estimates are more precise when the sample size is greater. The covariance 

parameter also seems to have a main effect on the off-diagonal cases especially more so 

when the number of items is lesser; when the covariance is lower the accuracy of the 

estimates is better. 

 

Besides the main effects of input parameter variation there are also across-model effects. 

i.e. the model used  seems to affect the quality of the results produced. The best estimates 

were made for the 1PL model when the item difficulty parameter was varied uniformly 

between -1.5 and 1.5 for the test while its average value was kept at zero. Results were 
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also relatively good for the 1PL model with item difficulties for all items assigned a zero. 

The results were poorer for the 1PL model with all item difficulties being 1.0. The reason 

for this is that the abilities of the examinees were normally distributed with the average 

being zero. Thus a set of items with difficulty levels matching the average ability, i.e. 

zero, ought to yield less error in ability estimation as was the case in our simulations. 

This would in turn result in a more accurate estimation of the covariance between sub-

scale abilities. Thus the 1PL with difficulty parameters fixed at 1.0 yielded poor results as 

questions were not concentrated in the vicinity where actual abilities were concentrated. 

 

Results for varying item difficulties with average zero were better than for the simulation 

in which every item difficulty was fixed at zero. The plausible explanation is that though 

abilities were also averaged at zero, there was variation in the ability distribution and the 

variation in difficulties of the items administered in the tests was concurrent with the 

variation in the tested abilities. This provided more accuracy in ability estimation because 

more information can be gained from the response to an item whose difficulty is closer to 

the real ability of an examinee that is being tested.    

 

Results were also relatively poor for the 2PL model with varying item difficulties and 

varying discrimination parameters. The distribution of the item discrimination parameters 

caused this effect. A plausible explanation is that the item discrimination parameters were 

assigned such that they were generally low for the cases when the item difficulties 

matched the actual abilities and generally higher in the case when difficulties of items 

administered were further from the actual ability level of the examinees. This would 

results in lesser information being gathered about the actual abilities of the examinees 

and thus a larger error term. This could be rectified to a certain degree by a more 

appropriate choice of item discrimination parameters. 

 

. 
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                                The Polytomous Models 

 
In the second part of the simulation study three models for polytomous item scoring were 

considered and simulations were carried out to observe any effects of model selection. 

The results of the simulation study were tabulated for the three models followed by a 

discussion of the differences in the results. 

 

The set up of the simulation was as follows. In order to be able to compare the results for 

the three models the selection of the item and ability parameters had to be such that they 

are themselves not an underlying and unwarranted cause for variation in the simulations 

across the three models. To achieve this, the following steps were taken. For all three 

models the ability parameters were drawn from a standard normal distribution with mean 

zero as described earlier. The discrimination parameters were fixed at one. For the 

GPCM drawing the item parameters from a distribution was not considered, because the 

dependence between these parameters may result in very unfavorable values with the 

consequence of item categories without responses (Wilson & Masters, 1993). Therefore 

the β  parameter values were fixed. The values of the first five items are given in the 

table below. 

 
Table 2.0: Item parameter values used for simulating data using the GPCM 
 

Category 

 

Item 

1 2 3 4 

             1            -2.0          -1.5      -0.5          0.0 

             2         -1.5           -1.0       0.0          0.5 

             3         -1.0           -0.5       0.5          1.0 

             4         -0.5             0.0       1.0          2.5 

             5          0.0            0.5       1.5          2.0 

 
Note: The difficulty levels of item 3 are located in such a way that the category –bounds 
are located symmetric with respect to the standard normal ability distribution. The first 
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two items are shifted to the left on the latent scale, the last two items are shifted to the 
right. 
 
Data were then generated under the GPCM and using this data the item parameters of the 

SM and the GRM were estimated using maximum marginal likelihood (Bock & Atkin, 

1981).The resulting item parameters of the SM and GRM were such that item category 

response curves for all three models were close. These estimated values were then used 

for generating data using the SM and the GRM which were then compared for all three 

models. 

 

 
Simulation 2.1: The Generalized Partial Credit Model (GPCM) 
 
 
Table 2.1: Mean absolute error of the estimates of the covariance matrix � (diagonal 
� =1.0) for dichotomous items generated using the GPCM.  
 
         M ρ (off-diagonal� )                K  Diagonal  Off-Diagonal 
      1000               .8          24     0.078    0.032 
                .8            48     0.066    0.027 

               .4            24     0.066    0.017 

               .4            48     0.059    0.016 
     100               .8            24     0.140    0.059 
               .8            48     0.138    0.058 

               .4            24     0.150    0.056 

               .4            48     0.144    0.045 
 
 
 
Simulation 2.2: The Sequential Model(SM) 
 
 
Table 2.2:  Mean absolute error of the estimates of the covariance matrix � (diagonal 
� =1.0) for dichotomous items generated using the SM. 
 
         M  ρ (off-diagonal� )                K    Diagonal  Off-Diagonal 
      1000               .8        24      0.094      0.033 
                .8          48      0.055      0.022 

               .4          24      0.093      0.024 

               .4          48      0.052      0.016 
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     100               .8          24      0.183      0.070 
               .8          48      0.131      0.058 

               .4          24      0.174      0.061 

               .4          48      0.138      0.047 

 
 
 
Simulation 2.3: The Graded Response Model (GRM) 
 
 
Table 2.3: Mean absolute error of the estimates of the covariance matrix � (diagonal 
� =1.0) for dichotomous items generated using the GRM. 
 
         M  ρ (off-diagonal� )             K   Diagonal  Off-Diagonal 
      1000             .8      24     0.085    0.027 
              .8       48     0.047    0.019 

             .4       24     0.080    0.021 

             .4       48     0.051    0.017 
     100             .8       24     0.178    0.071 
             .8       48     0.148    0.062 

             .4       24     0.204    0.067 

             .4       48     0.148    0.049 

 

Discussion of results for Polytomous models 
 
By observing the above tables it can be seen that there is no significant difference 

between the results obtained for the three models; in other words they work equally well 

with the limited information EM algorithm. However there are similar main effects of 

input parameter variation within the three models. The first main effect that is quite 

significant is that of the ‘number of persons’ parameter. When the number of persons is 

greater the estimates are significantly more accurate. There is also another main effect 

which is less pronounced. It is caused by the number of items. When the number of items 

is greater the estimates are more precise. The covariance parameter has a relatively small 

‘main’ effect on off-diagonal values; the estimates are slightly more accurate for lower 

covariance. These results are consistent with the results obtained using dichotomously 

scored items. 
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                                  Conclusions 

 
The aim of this study was to see how well the limited-information maximum-likelihood 

estimation technique suggested by Rubin and Thomas (2001) works as a function of test 

length, sample size, parameter choice for dichotomous items and model choice for 

polytomous items. Rubin and Thomas (2001) only give an empirical example in their 

paper which does not answer these questions. This study employs their technique in a 

simulation study for calculating between scales co-variance in order to know its 

feasibility via-a-vis parameter variation and model selection. 

 

The setup of the study was divided into two parts, for dichotomous models and 

polytomous models. In the first instance simulations were carried out on three cases of 

the 1PL model in which the difficulty parameters were varied. A fourth simulation of the 

dichotomous case was of the 2PL model. For the polytomous cases model comparison 

was done between the GPCM, GRM and the SM.  

 

Some results were as expected. There was a main effect of test length. The effect was 

stronger in the dichotomous models than in the polytomous models. In the polytomous 

models the strongest main effect was caused by the sample size; when the number of 

persons was greater there was a large improvement. In the dichotomous models there 

wasn’t any main effect caused by sample size. However there was a secondary effect of 

the sample size when the test length was longer. The covariance parameter also has a 

main effect in both polytomous and dichotomous model; the differences being more 

pronounced for the dichotomous models. The effect was that when the covariance is 

lesser the estimates are more precise. For the dichotomous models the improvement was 

even more when the number of items was lesser. 

 

However in the dichotomous models case there was a marked difference produced by 

parameter selection. The best results were for the 1PL cases where the average values of 

the difficulty parameter matched the average value of the abilities which were drawn 

from a normal distribution. In the 1PL case where the average value of the difficulty 
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parameter was further away from the average of the drawn ability values the estimates 

were less accurate because of the larger measurement error in estimating the abilities. The 

results for the 2PL model were also poor which were caused due to selection of 

inappropriate discrimination parameters in relation to the abilities of the students and 

items administered to them.    

 

In the polytomous models the estimates were similar for all three models and no 

significant change could be detected.  
 

Thus based on the results obtained it would be fair to conclude that the limited 

information marginal maximum likelihood technique employed in the study works 

equally good for the three polytomous models with sample size having a significant main 

effect on results within each model. For the dichotomous cases the method works better 

when item parameters are appropriately selected. Furthermore the test length has a 

significant main effect within the dichotomous models; the long tests producing 

significantly more accurate estimates than short tests. 
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