
Improving dependability of OSS access to a
hierarchical distributed ad-hoc NMS

Thesis for a Master of Science degree in Telematics
from the University of Twente, Enschede, the Netherlands

Enschede, July 2007

Bertrand Baesjou

UNIVERSITY OF TWENTE,
Faculty of Electrical Engineering, Mathemathics and Computer Science,

Design and Analysis of Communication Systems (DACS)

GRADUATION COMMITTEE:
Dr. Ir. Aiko Pras (University of Twente)

Dr. Maarten Wegdam (University of Twente)
B.Sc. MBA Pablo Arozarena (Telefónica Investigación y Desarrollo)





Abstract

One can perform ad-hoc network management by means of a hierarchical dis-
tributed NMS (Network Management System). On top of this, an (external)
OSS (Operation Support System) should be able to extract network information
and introduce new management policies. This functionality can be regarded as
mission critical to network management. Therefore a dependable interface be-
tween the OSS and the hierarchical distributed NMS should exist. Typically a
hierarchy has only one top-node with a full overview. It is therefore the function
of this top-node to interface with the OSS . However nodes on ad-hoc networks
are not particularly dependable in terms of availability, service responsiveness
and service capacity.

This thesis presents a design that addresses the dependability issues for this
top-node service. The Celtic Madeira hierarchical distributed ad-hoc NMS is used
to illustrate and evaluate the design. It provides the OSS interface by means of
Web services, while the framework itself is mainly based on Java. The presented
design allows the interface service to operate as a single logical entity, while it is
actually distributed among multiple nodes.

Keywords: distributed networks, transient networks, transient services, service
dependability, peer-to-peer, ad-hoc, Web services, distributed network manage-
ment

i





Acknowledgments

I want to express my thanks to every person that has stood by my side and
supported me during my educational period, and towards those who made this
thesis possible.

Firstly I want to thank Telefónica R&D, and in specific my supervisor B.Sc.
MBA Pablo Arozarena, for the possibility of doing my thesis research within their
company. Thereafter I want to express my gratitude to Dr. Ir. Aiko Pras and
Dr. Maarten Wegdam for their guidance, supervision and patience. The latter
especially holds for the conference calls between Madrid and Enschede, of which
the quality was not always optimal.

I am gratefull for all the support I had from the employees of the University
of Twente during my college years. In special I want to name Jan Schut who
always had an open door and listening ear.

Also I want to thank all of my colleague students with whom I have cooperated
in the past. As well I want to thank all of my friends, the ones I made at
the student house Cosa Nostra, sport association Hercules and all of the others
which I met via other means. They provided me comfort, joy and “academic
experiences” during my student life.

Lastly, but most importantly, I wish to thank my parents, Geertruida van de
Weem and Jean François Charles Baesjou (deceased), for raising, supporting and
loving me. It is especially the freedom my mother gave me to seek my own path,
and passion for technology of my father, that made me the person I am today.
To them I dedicate this thesis.

Bertrand Baesjou
Enschede, July 2007

iii





Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Outline thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Madeira platform 7

2.1 Network organisation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Component overview . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Network management . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Operational scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Service dependability 13

3.1 Networked services . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Service availability . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Service responsiveness . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Service capacity . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 NBI dependability challenges . . . . . . . . . . . . . . . . . . . . 15

3.3 Improvable NBI dependability aspects . . . . . . . . . . . . . . . 17

3.4 Ad-hoc & mobile services . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Ad-hoc: dependability impact . . . . . . . . . . . . . . . . 18

3.4.2 Service approaches . . . . . . . . . . . . . . . . . . . . . . 19

3.4.3 Applicability to Madeira . . . . . . . . . . . . . . . . . . . 21

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



4 Service design 23

4.1 Design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Service persistence . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Service capacity . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.3 Service connectivity . . . . . . . . . . . . . . . . . . . . . . 28

4.1.4 Service availability . . . . . . . . . . . . . . . . . . . . . . 30

4.1.5 Additional design choices & requirements . . . . . . . . . . 31

4.2 Design overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 General overview . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Service availability . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Service capacity & connectivity . . . . . . . . . . . . . . . 38

4.2.4 Cluster management . . . . . . . . . . . . . . . . . . . . . 39

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Design application 41

5.1 From design to Madeira . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Service persistence . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 Service capacity & service connectivity . . . . . . . . . . . 45

5.1.3 Cluster management . . . . . . . . . . . . . . . . . . . . . 48

5.2 Madeira backend services coupling . . . . . . . . . . . . . . . . . . 49

5.2.1 Network notifications . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 OSS requests and policies . . . . . . . . . . . . . . . . . . 49

5.2.3 Network setup & re-configuration . . . . . . . . . . . . . . 49

5.3 Design evaluation & Conclusion . . . . . . . . . . . . . . . . . . . 50

6 Conclusions 51

6.1 Main research question . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Research sub-questions . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55

List of Acronyms 59

A Madeira Web Services 61

A.1 Web Services paradigm . . . . . . . . . . . . . . . . . . . . . . . . 61

A.2 Web Services Description Language . . . . . . . . . . . . . . . . . 61

A.3 UDDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.4 Simple Object Access Protocol . . . . . . . . . . . . . . . . . . . . 63

A.5 Web Service Resource Framework . . . . . . . . . . . . . . . . . . 63

A.6 Web Service Notifications . . . . . . . . . . . . . . . . . . . . . . 64

A.7 Web Services Distributed Management . . . . . . . . . . . . . . . 64



B Ad-hoc networks 67
B.1 Ad-hoc paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2 Properties overview . . . . . . . . . . . . . . . . . . . . . . . . . . 67





Chapter 1

Introduction

In our means of communication ad-hoc networks play a continuously growing role.
Examples are ad-hoc capabilities of wireless nodes, autonomous forming network
infrastructures and p2p (peer-to-peer) content distribution networks. Typically
these networks have a certain level of autonomous network management. This
allows these networks to shape themselves and provide inter-node connectivity,
without any need of external interaction. However, with the growing adaption
and application of the ad-hoc paradigm, a demand for traditional management
features is surfacing. Examples are the real-time abilities to receive network status
information or the ability to introduce new policies into an operational network.

Due to the dynamics of ad-hoc environments, static centralised management
approaches do not scale well. Therefore an alternative is to use a hierarchical
distributed network management approach. Typically a hierarchy has only one
top-node with a full overview. It is therefore used to provide the interface between
the management layer and OSS . Within the network management infrastructure,
this interfacing ability can be regarded as a mission critical component. However
on an ad-hoc network, nodes are typically not dependable. Therefore this mission
critical interface between the OSS and management layer can have an undesirable
low dependability.

This thesis researches the possibilities of providing an approach that increases
the dependability of the interaction between a hierarchical NMS and an OSS . It
focuses on the management platform presented in the Celtic Madeira project. On
top of an ad-hoc network, this platform builds a p2p based logical hierarchical
distributed management layer. The interface between the Madeira OSS and man-
agement layer is state dependant and requires real-time operations (a response
follows promptly after a request). It was also originally designed to be single-node
hosted, and is thus affected by the dependability challenges introduced by ad-hoc
network nodes.

1



1.1 Research goal Introduction

1.1 Research goal

In the Madeira platform, the interface between the OSS and its hierarchical
distributed ad-hoc NMS has a low dependability. This research aims at provid-
ing insight into which approach can be taken to improve this low dependability.
Aim is also to provide insight in the feasibility of implementing this approach in
Madeira.

1.2 Research question

To define the scope and the aim of this research, the folowing research question
is defined:

“ For the hierarchical distributed ad-hoc NMS Madeira, how can the depend-
ability of the interface towards the externally located OSS be improved? ”

In order to reach an answer for the stated research question, a number of sub
questions are formulated.

1. Which dependability aspects of the interface between the Madeira hierar-
chical distributed ad-hoc NMS and the OSS should be improved?

2. For addressing the identified dependability aspects, what makes existing
service approaches applicable or not applicable?

3. If existing approaches are not found able to address all dependability aspects
at once, how can existing approaches be used, altered, combined and/or
extended into one unified approach doing so?

4. How does the previously chosen approach map to an implementation in the
Madeira framework?

1.3 Research approach

This research approach describes the steps taken in this thesis to answer the re-
search question. This will be done by addressing the sub-questions from the previ-
ous section 1.2 and using them as guideline for this thesis. Ultimately in chapter 6,
the conclusion of this thesis the main research question and sub-questions will be
answered.

1. The sub-question “Which dependability aspects of the interface between the
Madeira hierarchical distributed ad-hoc NMS and the OSS should be im-
proved?”, will be addressed by providing a literature study on the depend-
ability of networked services. Also a detailed insight into the functioning of
the Madeira interface will be provided. These insights will be combined and

2



Introduction 1.3 Research approach

used to identify which dependability aspects are important to the Madeira
interface.

2. The sub-question “For addressing the identified dependability aspects, what
makes existing service approaches applicable or not applicable?”, will be
addressed by providing a literature study on typical approaches for ensuring
dependability of services in transient environments. The applicability of
these service paradigms will be discussed in relation to Madeira.

3. The sub-question “If existing approaches are not found able to address all
dependability aspects at once, how can existing approaches be used, altered,
combined and/or extended into one unified approach doing so?”, will be ad-
dressed by discussing the applicability of existing paradigms for improving
each of the individual dependability aspects. These paradigms are unified
into a logical design of the interface.

4. The sub-question “How does the previously chosen approach map to an im-
plementation in the Madeira framework?”, will be addressed by discussing
the mapping of the design to the technologies used within Madeira. This
results in an overview and evaluation of the possibilities and challenges of
applying this design in Madeira.

Within the approach presented in this research it was chosen to not introduce
a dependable external service node for interfacing the OSS and the hierarchical
distributed NMS . Such a node could be a very well resourced with dependability
features such as redundant power supplies, redundant network connections and
fully synchronised backup servers. This node could use multiple paths to connect
to different parts of the network, do session tracking, load balancing. Effectively it
would replace the top node functionality in the hierarchical network management
layer.

There are however several reasons why this approach was not taken. For one,
rapid deployment is one of the forseen appliances of these networks. An other is
that this node might not be near to the actual network, introducing an increase
in the latency. Most important: the design that will be presented in this research
can already offer this functionality if preferred. It can do even better in case one
has direct control over the election procedure of new service nodes in the network.
Instructions can be given to elect a node with certain capabilities as top-node.
The approach is to add an (external) node and make it part of the network while
simultaneously instructing the the network to elect this node as top-node. This
way the, in this research introduced, dependability increasing procedures are still
applicable in case this special node fails.

3



1.4 Outline thesis Introduction

1.4 Outline thesis

The flow shown in figure 1.1 represents the outline of this thesis. Where the
solid black lines represent the reading flow, the red lines shows where the back-
ground information has relevance and the dashed lines show the sources of the
conclusions.

Figure 1.1: Thesis outline

The Madeira use case will be used troughout this thesis as illustration. There-
fore the platform is introduced in general in chapter 2. Readers familiar with the
Madeira project may skip this chapter. Thereafter the structure of the document
follows the order of the sub questions stated in section 1.3. Chapter 3 starts with a
general discussion on dependability aspects of networked services. In combination
with a discussion on the dependability of the NBI (North Bound Interface) service
this leads to a number of improvable NBI dependability aspects. The chapter
closes with a discussion on the applicability of known service paradigms in tran-
sient environments. Chapter 4 discusses the applicability of known paradigms
for each of the identified improvable dependability aspects. These discussions
lead to design choices making up one integrated final design. This design will be

4



Introduction 1.4 Outline thesis

evaluated in 5 by discussing the feasibility of applying it to the Madeira platform.
Finally in chapter 6 the conclusions will be presented. Background information
on Web services in provided by annex A, where background on ad-hoc networks
is provided by annex B.

5





Chapter 2

Madeira platform

The aim of this chapter is to provide a general insight in the Madeira hierarchical
distributed ad-hoc NMS . This platform will be used troughout this thesis as use
case.

The Madeira platform is the result of a research project between Ericsson,
Siemens, British Telecom, Telefónica R&D, TSSG, Unversitat Politècnica de
Catalunya and SGI. The project aims at enabling network management of ad-
hoc networks by means of a, p2p based, hierarchical distributed NMS [AFC+06].
Clients using the Madeira platform are currently provided basic services like ex-
ternal network connectivity. It allows network operators to monitor and manage
the network. Operators can provide, for example, certain clients priority or block
clients from the network. It also enables the identification of malfunctioning
network elements or loss of connectivity between network elements. This func-
tionality is enabled by letting the nodes in the hierarchical NMS send notifications
to the network manager. The active management functionality is enabled by the
ability of the network manager to issue commands and introduce policies into the
management layer. The actual manager of the Madeira NMS , called the OSS , is
typically located outside of the Madeira network. It connects to the management
layer via a Madeira network management interface called the NBI . This NBI
service is located at the top-node of the hierarchical management structure.

2.1 Network organisation

One of the key functional aspects of Madeira is the ability to dynamically form
managed networks. Therefore as basis it is chosen to take an ad-hoc approach
for forming the basic network. Primarily the network uses OLSR1 to provide
connectivity and routing between all nodes in the network. Madeira introduces
AMC (Adaptive Management Component)s on top of this ad-hoc network . These

1OLSR is on of many available routing protocol used to provide interconnectivity between
nodes in ad-hoc networks - http://www.olsr.org

7

http://www.olsr.org


2.2 Component overview Madeira platform

are management modules that directly correspondent with NE (Network Equip-
ment). By using a well-defined p2p interface, these AMC s are able to com-
municate with each other and thereby create an overlay management network.
Figure 2.1 gives a graphical overview of this mechanism. Within the now created
p2p network, the AMC s are able to interact with each other and perform network
management functions.

Figure 2.1: Overlay management network

To scale this solution to larger networks, it was chosen to apply a hierarchical
clustering approach. In this approach, a group of AMC s form a cluster of a
maximum number of members. Within each cluster a CH (Cluster Head) is
chosen. This CH can be seen as “super peer”. It is member of its own cluster
but also member of a higher cluster where one or more other CH s resides. This
higher cluster also has his own CH which makes part of an even higher cluster.
This goes on until the top of the hierarchical tree where the NBI resides. This
top node forms the core of the the Madeira management layer. Figure 2.2 shows
how the clustering of nodes might happen from a geographical point of view.
Figure 2.3 shows how the subsequent logical internal hierarchical tree is build.
Currently within Madeira, only the NBI communicates with the external OSS .
Within this basic Madeira placement logic, node competence or location is not
taken into account. Each nodes constantly checks its place in the hierarchy, when
it finds itself to be the top-node it starts up the NBI .

2.2 Component overview

Figure 2.4 presents a graphical overview of the Madeira platform in order to
provide a more detailed insight into its internal operations. The operation of
these components will be discussed in the subsequent paragraphs.

AMC layer In the AMC , five major services can be distinguished. The first
being the NBI , this optional service allows the OSS to interface with the NMS .

8



Madeira platform 2.2 Component overview

Figure 2.2: Madeira physical clustering

Secondly, the CM (Configuration Management) service takes care network man-
agement related tasks. It also provides network configuration updates upwards
to the NBI , or network information responses (such as a topology layout) to any
Madeira node requesting it. The third service, the FM (Fault Management),
takes care of generating fault reports. It also handles sending them to, and re-
ceiving them from, other AMC components. The forelast service is actually a
group of services: the AMC specific services. This group takes care of the in-
teraction between the management layer and the NE , it for example includes a
SNMP (Simple Network Management Protocol) adapter. The final service is the
PBMS (Policy Based Management System), the heart of all AMC services. It
takes care of the information exchange between services and the application of
introduced policies. New policies can be introduced on any Madeira node, they
do not necessarily have to originate from the NBI node.

Platform layer In the platform layer there are two services. The first service,
Lifecycle Management Service, takes care of managing the AMC services. It
can start and stop AMC modules and provide configuration information for the
AMC . The second platform service, Platform Services, takes care of all p2p related
tasks. Services such as a notification service between AMC s, a directory service
with capability information of AMC s and one hop NE s. A connectivity service
providing connectivity on the p2p network between AMC s and a grouping service

9



2.3 Network management Madeira platform

Figure 2.3: Madeira logical clustering

that takes care of the clustering of AMC s. This grouping service thus implicitly
chooses the node on which the NBI service will start.

2.3 Network management

In [Fri06], the Madeira NMS is defined as strongly distributed. This claim is
based on the principles that: all nodes are basically equally distributed and co-
operate in clusters to perform management tasks, when a CH fails the network
keeps on functioning and triggers itself to re-organise, and ultimately the ability
to introduce policies approaches the goal oriented approach used in cooperative
approaches.

However, the internal model also heavily relies on a logical hierarchical struc-
ture. This structure is used to both scale p2p traffic in the network as well as the
information flow from and to nodes. This information flow does not only require
network capacity but also processing and storage resources at nodes. The working
of the hierarchical mechanism can best be described by the example where a link
between node A and B is lost. Both A and B report the loss of connectivity to the
other node to their CH . In the case it is both the CH of A and B it correlates the
two fault reports to one fault report. This report states that the link between A
and B is failing. Based on thresholds introduced by policies, this report might be
escalated to a higher level CH until it arrives at the NBI . The NBI can notify the

10



Madeira platform 2.3 Network management

Figure 2.4: Madeira platform overview

OSS about this fault, which in its case can take a certain action by, for example,
introducing policies. Due to the hierarchical structure the NBI is the only node
with a complete overview of the system.

Within the Madeira group there is a consensus that a network split could
occur, however no policies are currently in place how to handle such a separation.

Management commands Madeira also provides the ability to sent commands
to the NMS . This includes the ability to request the logical and/or physical
network topology, but also enables the OSS to, for example, directly disable
nodes. Therefore the Madeira network is defined in this thesis as a “hierarchical
distributed ad-hoc NMS”. An overview of the functionality and how they relate
to the AMC is provided in figure 2.5.

Service advertisement To advertise the location of the Web services based
NBI to the OSS , Madeira uses a third party service discovery service, a UDDI
(Universal Description Discovery and Integration). When a NBI is started it
informs the UDDI , allowing an OSS to request the NBI location. If the NBI
changes of location, the OSS is disconnected. The newly located NBI updates
the location information in the UDDI , the OSS can now request the new NBI
location at the UDDI .

11



2.4 Operational scenarios Madeira platform

Figure 2.5: NBI internal structure

2.4 Operational scenarios

In order to provide a clear view of the Madeira platform utilisation, a number of
typical envisioned usage scenarios will be discussed.

A typical scenario is the appliance of the Madeira platform during conferences
in order to provide clients (external) network connectivity. Due to the manage-
ment facilities of Madeira, it will be possible to dynamically influence the services
offered to clients and the behaviour of the network. It can for example be chosen
to give certain clients priority at a certain moment or to shut down a base sta-
tion. Typically a number of nodes are deployed offering (wireless) connectivity to
clients, while internode communication also takes place wireless. Just a number
of nodes will have fixed network connectivity to an external network. Madeira
network nodes can become unreachable, be lost or be moved at any moment.

An other forseen use is the deployment in search and rescue operations. The
Madeira platform can be used to both rapidly deploy a network, while on the
other hand manage network behaviour and client services. If for example a res-
cue worker finds an injured person, the clients used by rescue workers at that
location might be assigned a higher network priority. Typically these networks
can exist of a variety of hardware, some more mobile than others and with varying
computational resources. These networks typically connect to external networks
via (slower) GSM or satellite like services.

12



Chapter 3

Service dependability

In this chapter the improvable NBI dependability aspects will be identified. Sec-
tion 3.1 provides a general discussion on dependability aspects. Thereafter the
dependability challenges faced by the NBI will be discussed in section 3.2. This
leads to the identified improvable dependability aspects of the Madeira NBI in
section 3.3.

The second part of this chapter, section 3.4, discusses existing services op-
erating in dependability challenging environments. The applicability of these
paradigms in order to improve the dependability aspects faced by the NBI are
thereafter discussed.

3.1 Networked services

The definition of dependability, or reliability1, states:
Dependability –the trustworthiness of a computing system which allows re-

liance to be justifiably placed on the service it delivers 2

This definition shows that consistency, knowing what to expect, is the most
important aspect of dependability.

There is not a single definition of a dependable service. A broad definition
is provided by [Lap95]. It takes service availability, reliability, safety, confiden-
tiality, integrity and maintainability into account. However, this research will
not take the safety, confidentiality, integrity and maintainability aspects into ac-
count. Within this research, the properties regarded as relevant for dependable
services are service availability, service responsiveness and service capacity. They
are interpreted and distilled from [Int06] and will respectively be discussed in
paragraphs 3.1.1, 3.1.2 and 3.1.3. For this research two major fields with influ-
ence on the service dependability are recognised. One side is the network domain

1Dependability is a synonym for reliability and will thus be addressed as such in this thesis
http://www.thefreedictionary.com/dependability - accessed: 22-11-2006

2http://www.dependability.org/wg10.4/ - accessed: 22-11-2006

13

http://www.thefreedictionary.com/dependability
http://www.dependability.org/wg10.4/


3.1 Networked services Service dependability

and on the other side there is the node domain. It must also be noted that the
dependability of the software (implementation) is not taken into.

To clarify what is meant by the aim of improving the dependability of the
service, the following definition is used in this research:

Improved service dependability –A situation where higher service level
expectations can be set as opposed to a previous situation

Within this definition, the more the service performance fluctuates, the less
dependable the service is regarded.

3.1.1 Service availability

Service availability is the time a service client is able to reach the service and
actually use it. An important aspect of the availability is the MTTR (Mean
Time To Repair), which depicts the how long it takes the service to become
available again after failure. A second one is the MTBF (Mean Time Between
Failure), which relates to the frequency of failure occurrence. These two metrics
define the availability, or up-time, of a service.

From the network domain, this aspect is challenged by the availability of
network connectivity. This can be caused by for example link outages, distortion,
router outages and network congestion. Often for mission critical applications
a high network availability is defined. For example in [Int06] a 100% network
availability is guaranteed, however without expressing over what period of time
this is and if there are exceptions.

In the node domain service availability the service is challenged by the up-time
of service nodes. In case of a single node hosted service, the availability of the
service is never higher than to the availability of the node. As second availability
aspect there is the amount of time it takes for a service to deploy itself on a
node, advertise itself and being able to actually serve requests. This includes the
restoring of any state or session information.

3.1.2 Service responsiveness

The responsiveness of a service is often measured by the response time. This is
the time between sending a request and receiving the response. It is commonly
perceived that the shorter this time is, the more dependable the service is. How-
ever, the exact response time is not important for this research. Important is
that there is no big variation in response times.

In the network domain the service response time is heavily influenced by the
latency. This is the time it lasts for a packet to travel from source to destination.
Variation in this latency is called jitter3. It typically decreases the dependabil-

3Defined by http://developers.cogentrts.com/cogent/cogentdocs/gl-defs.html#
gl-timer as: ‘refers to the variation of timer events around a requested periodicity”- accessed:
16-11-2006

14

http://developers.cogentrts.com/cogent/cogentdocs/gl-defs.html#gl-timer
http://developers.cogentrts.com/cogent/cogentdocs/gl-defs.html#gl-timer


Service dependability 3.2 NBI dependability challenges

ity of real-time services which are said to suffer a lot under a high response
variation[Fer90]. Latency and jitter is influenced by the capacity of connectivity,
packet loss and the amount of traffic. Capacity can change, for example, when
routing in-between the client and service changes. Typical changes in packet loss
can be found on wireless networks were the signal can be distorted. An example
of an acceptable figures for critical services is given in [Int06] as a latency of 45
milliseconds, jitter of 0.5 milliseconds and packet loss of 0.3%.

In the node domain the response time is heavily influenced by speed of com-
putational resources. For example speed of a CPU (Central Processing Unit)
or high disk-access times influence the time it takes to generate a response. For
multi-node hosted services differences in computational resources, such as a faster
CPU , might lead to variations of service node side response times.

3.1.3 Service capacity

Service capacity is the number of requests that can be invoked on the service
within a certain amount of time. Like with service response time, an exact figure
is not important. What is important is that there is a stable request capacity
where a client can expect a certain number of requests it is able to issue per
moment of time.

On the network side, the request capacity is mainly influenced by the con-
nection capacity. When the network is not able to handle a certain amount of
request messages per second and starts dropping packets, the service (or client in
case of response messages) may never receive them.

In the node domain, the capacity is mainly influenced by the capacity of
system resources. Such as the availability of CPU cycles or the amount of memory
available for a service node. This capacity can be varying due to, for example,
other processes using the same host or differences in system resources on different
service nodes. For the node domain the service request capacity is tightly related
to the service response time. Often better equipped nodes offer a better response
time and a higher request capacity.

3.2 NBI dependability challenges

Since the NBI offers important functionality to the managers of the Madeira net-
work, dependability of this interface is of high importance. However in the current
operational situation there are a number of major issues with the dependability
of the NBI . The most important will be described and discussed.

Availability The first major dependability problem is low availability. Cur-
rently if the node hosting the NBI fails or is not available to the Madeira network,
the network reconfigures and elects a new NBI . This node sets up its NBI Web

15



3.2 NBI dependability challenges Service dependability

services based interface, registers to the UDDI and waits for clients to connect
again. The time between the initial NBI node becoming unavailable and the
new NBI being up and running currently takes at least 40 seconds but this can
extend to several minutes. During this time the network cannot be monitored or
managed. Especially in ad-hoc networks where nodes likely to be lost leading to a
low MTBF . In combination with the high MTTR this leads to a low availability.

A second problem within availability is the loss of any state or session infor-
mation. When a NBI node is lost and is erected at a new location, any session
and state information is lost. This means that the OSS has to re-issue all previ-
ous commands to make certain that the service is in the correct state again. For
example re-issuing the subscriptions to network and alarm notifications. Until
that time these notifications will not even be queued for transmission towards
the OSS . This could lead to a loss of notifications. Only when the service is back
in the original state, it can be regarded fully available.

Node capacity An other challenge is the request capacity stability of the node
hosting the NBI . Within the Madeira network, resources are heterogeneous. This
means that at one point a NBI runs on a powerfull laptop being able to process
a lot of requests, while on the other moment the NBI is located on a far less well
equipped wireless base station. Fluctuating capacity can lead to situations where
the service towards the OSS suddenly declines heavily and where not all issued
requests can be served.

Connectivity Network capacity stability is also an issue. Due to the routing
service Madeira provides between external sources and its clients, it could hap-
pen that those clients generate large amounts of traffic at certain moments. This
directly impacts the responsiveness and request capacity. A second network ca-
pacity instability source are wireless links. These can encounter fluctuations in
noise levels or encounter actual movement of nodes. This can take place both be-
tween the client and the service, and between the NBI and its hierarchical NMS .
A third source is the existence of large response messages from the NBI . Such
messages, as for example the network topology response, can take up hundreds
of kilobytes up til megabytes. Such messages choke the connectivity capacity. A
fourth cause is the heterogeneity of connectivity resources of ad-hoc networks.
In case a service moves to an other node it can suddenly encounter a different
connectivity capacity.

Under normal operation, most of the issues pointed out in this section will not
lead to large problems. However especially in the more complicated situations
one wants to be able to perform network management tasks. These are exactly
the moments when the dependability of the NBI can deteriorate rapidly. For
example a critical link may go down, resulting in significant more traffic being

16



Service dependability 3.3 Improvable NBI dependability aspects

routed trough the same link the NBI uses to connect to the OSS . This might
heavily delay the notifications coming from the NBI that this link failure took
place, thus delaying the network manager to notice and take action. An other
problem is a ddos (distributed denial of service) attack on the NBI node. Since
the NBI is a single-point-of-failure between the manager and the management
layer, it is an easy target for deliberate attacks. These attacks might choke con-
nection capacity, network and node response time and might even disable the
node completely. The shutdown of this node leads to a relocation of the NBI
to an other node with lost of any state information and a long unavailability as
result.

3.3 Improvable NBI dependability aspects

Looking at the NBI it is clear that there are a number of dependability problems
with the current service provisioning of the NBI . The main problems and causes
that can be derived, along with a motivation where improvements should be
made, are provided in the following listing.

• Increase service availability–Mainly due to the high MTTR in combi-
nation with the low MTBF , availability of the NBI is often challenged.
Especially within ad-hoc networks nodes are more likely to be lost. In or-
der to improve availability, the MTTR has to go down from the minutes
range to the seconds range. Secondly loss of state information affects the
availability of the service. Therefore state information should be retained.

• Equalise service capacity–Ad-hoc networks typically have heterogeneous
nodes. Therefore the service capacity of the individual nodes are likely not
equal to each other. This makes, from the node domain, the service capacity
fluctuate heavily. Therefore means should be found to equalise this service
capacity.

• Equalise connectivity capacity–Due to heterogeneity and transient be-
haviour of ad-hoc networks in combination with traffic spikes, there can be
fluctuations in link capacity. It makes, from the network domain, the ser-
vice capacity unequal. The connectivity capacity towards the service should
become more equalised.

It should be noted that the service responsiveness aspect introduced in para-
graph 3.1.2 is not listed as improvable dependability aspect. This is because in
the Madeira case no real-time streaming data is involved. Therefore jitter is an
aspect that has less impact on the service dependability of Madeira.

As overall conclusion of these problems one can argue that the main issue is
having a single point of failure due to the nature of the service and the underlying
ad-hoc network. Paragraph 3.4.1 will discuss the impact of ad-hoc environments

17



3.4 Ad-hoc & mobile services Service dependability

onto the dependability of services into some more depth. The NBI service itself
is state sensitive and requires real-time state updates. Therefore only one logical
service entity can exist, currently running on one node. This node can be pointed
out as single point of failure and is the weak spot of the NBI service.

3.4 Ad-hoc & mobile services

In section 3.3 a number of improvable dependability aspects are listed. This
section discusses if any existing service paradigms are able to address all of these
dependability aspects at once. Paragraph 3.4.1 discusses why there is a focus on
service paradigms within ad-hoc environments. Thereafter in paragraph 3.4.2 the
actual approaches are discussed. Finally in paragraph 3.4.3 the applicability of
these approaches to Madeira is discussed.

3.4.1 Ad-hoc: dependability impact

Appendix B distinguishes 16 properties of ad-hoc networks. From these proper-
ties, three can be identified as having an influence on the dependability of the
service running on an ad-hoc network node.

The first property is the transient behaviour. It makes that a service node can
disappear without any prior warning. Especially for single node hosted services,
such as the NBI , this means that the service vanishes (for a while or forever)
from the network and thus directly impact availability.

Secondly, the transient behaviour by devices has impact on the connectivity.
Physically moving away/towards an other node decreases/increases the link qual-
ity and thus impacts the service capacity stability and possibly service response
time stability. Worst case scenario is the connection being lost entirely, rendering
the service node completely unavailable.

The last property is the heterogeneity of resources. This makes that service
properties of a service change from node to node. One node hosting the service
might be able to serve 10 requests per second with a response time of 80 ms.
However an other service node might be able to serve just 8 requests with a
response time of 100 ms. This thus directly impact the service capacity and
service response time stability.

The symptoms following from these causes largely map with the dependability
aspects of the Madeira platform discussed in section 3.3. To address these three
properties ad-hoc networks require a special type of service paradigm. These will
be discussed hereafter in paragraph 3.4.2.

18



Service dependability 3.4 Ad-hoc & mobile services

3.4.2 Service approaches

Ad-hoc network internal services

Ad-hoc networks need to erect themselves and keep functioning. Therefore inter-
nal services are designed that deal with the dynamics of these networks. These are
services like node management, where new nodes are found and added, lost nodes
are removed and routing tables are updated and propagated. These services are
constantly updating their information about themselves and their neighbours. In
case a route is lost, the nodes autonomously try to find new routes. Each node
has exactly the same service logic and set of parameters to achieve the same
goals. There is no central node involved. This replication of the service without
the need for a distributed state, allows it to function dependently. In case one
node fails, the system still functions. One can also argue that there is also a form
of load distribution. Every node in the network spends resources for the service
to function.

Service discovery

Besides providing connectivity to external networks, or towards other nodes
within the network, an important component of many ad-hoc networks is the
incorporation of service discovery/advertisement functionality [Che02]. This ser-
vice itself is typically replicated on all nodes and allows higher-level services to
register themselves, while it allows higher-level clients to search them. Within
the service infrastructure itself, every service instance is also a client. If one of
the ad-hoc nodes disappears from the network it can indicate that the higher-
level service on that node becomes unavailable. However this does not affect
the discovery service as a whole and can therefore be regarded as dependable for
its purpose. The paradigm of this service is similar to the previously discussed
ad-hoc internal services paradigm.

Peer-to-peer services

Services following the p2p-paradigm are also regarded to be ad-hoc services
[HLP02]. This assumption is based on the fact that some important properties
of p2p-networks are similar to those of ad-hoc networks. These are mainly the
transient behaviour of nodes, the heterogeneity of resources and its decentralised
nature. [HLP02] identifies three important services: file-sharing, communication
& collaboration and distributed computing. They are regarded to be a type of
ad-hoc network running in the application layer.

File-sharing Within the p2p-paradigm the same information is distributed and
replicated among many nodes. In case a node becomes unavailable, a duplicate of
the service is available on an other node. Take for example file-sharing, (part of)

19



3.4 Ad-hoc & mobile services Service dependability

a file is available on multiple nodes. If a client starts downloading from node X
which suddenly becomes unavailable, the client can revert to node Y offering the
same (portion of the) file. The client indicates to the service which part of the file
it requires, and the service itself thus does not need to keep any state information.
While doing this, the client downloading the file also directly makes (parts of)
this file available to other interested parties. Nodes can thus have simultaneous
the client and service role. Within these services there are no changes that have
an effect on the entire service. Except for the case where all nodes hosting a
certain file are lost. A service node can remove a file, but this does not remove
any content at any other nodes.

Communication & collaboration The best example of communication and
collaboration services are the framework services of p2p networks. These services
take care of node and/or discovery and any needed routing for, for example,
search queries. These services are similar to the ones in pure ad-hoc networks
as described the first two services of this paragraph 3.4.2. An example of a
p2p solution especially aimed at ad-hoc networks is provided in [GP05]. This
solution aims at providing dependable discovery of Web service services on ad-
hoc networks by utilising the p2p paradigm. It uses p2p based replication of
service brokers, where it distributes to nodes within the network.

Distributed computing The service replication paradigm also holds more or
less for distributed computing4. Every node is able to perform certain compu-
tational functions. A client can have a certain task and looks for clients on the
network with processing slots free. It may divide the task in certain sub-tasks
and feed those parts to the different nodes on the network. If a node processing
a (sub-)task suddenly drops out of the network, an error will occur. The client
can however still outsource this task to an other node. In that way the service is
set up redundantly. In cases faster response times are needed from the service, a
client can outsource the same task multiple times to multiple clients. It can now
use the result of the fastest node.

Recoverable mobile environments

In [PKV96] a discussion about the design and trade-offs of recoverable mobile
environments is presented. Its aim is similar to that of this research: making more
dependable transient (mobile) services. However this research assumes protocols
and fixed base stations to recover from failures of mobile hosts. It assumes mobile
wireless devices and fixed base stations, where the reliable base stations are used
to regularly store state information on. These are used by the mobile hosts
to recover the state. With a set of handover protocols this information can be

4An example of a distributed p2p computing system is Porivo http://www.porivo.com

20

http://www.porivo.com


Service dependability 3.5 Conclusion

exchanged between multiple base stations allowing hosts to be transient. A similar
approach is presented in [CGGC05] where checkpointing is used to store the state
of a mobile host in a base station. This solution however does not provide a higher
availability, but it only guarantees that states are able to progress.

3.4.3 Applicability to Madeira

It can be concluded from the discussion provided in this paragraph 3.4 that the
described ad-hoc services paradigms show behaviour that allows them to function
in a dependable manner.

Starting off with the recoverable mobile environments approach, it makes use
of fixed dependable centralised nodes. Such nodes are not available with the
Madeira network. Therefore this approach is discarded.

The other approaches mainly use the paradigm of equally distributing/repli-
cating the service troughout the network, creating a high overall availability. This
offers the client to have a choice between, and thus also distribute the load over,
service nodes offering the best response time or service capacity. Service dis-
tribution also enables information (such as states) to be redundantly stored. It
must however be noted that typically any changes spread troughout the network
gradually and are not real-time.

Looking at the current state of the NBI shows that the service is tightly
coupled to the hierarchical top-node of the Madeira hierarchical distributed man-
agement network. Both the OSS and the underlying Madeira framework are
focused on this one node. The NBI is state sensitive and has real-time require-
ments, meaning that on a request the response should follow promptly thereafter.
Ultimately there are only a limited number of OSS clients forseen wanting to
connect to the NBI . These properties make it unsuitable to apply ad-hoc service
approaches. Distribution of the service over (all) nodes could result in a storm
of state updates on the network, using a lot of unnecessary resources. This will
affect the real-time capabilities, resulting in a slow and unresponsive service. Ul-
timately the Madeira framework is organised with the one top-node in mind. The
CM and FM modules for example always report upwards to this one top-node.

3.5 Conclusion

In Madeira three major dependability challenges are identified in section 3.3.
Service availability, service capacity and connectivity capacity. It was identified
in paragraph 3.4.2 that for other ad-hoc based services a common solution is
to replicate the service to multiple nodes within the network. As discussed in
paragraph 3.4.3, this approach does however not scale well for the Madeira NBI
service. Existing paradigms can thus not be easily copied and applied to the

21



3.5 Conclusion Service dependability

Madeira case. This mainly due to the centralised nature of the NBI service.
Therefore a different approach is needed to increase the NBI dependability.

22



Chapter 4

Service design

In section 3.3 the requirements for increasing the dependability of the NBI in-
terface between the Madeira hierarchical distributed NMS and the OSS were
identified. This chapter focuses on the service design addressing these require-
ments. The first part of this chapter, section 4.1, will discuss the design choices
made in order to address each of the individual requirements. Thereafter, based
on these choices, a high-level design addressing the requirements is presented in
section 4.2. In order to provide more insight into the behaviour of the design and
operations, logical flow diagrams are provided as well.

4.1 Design choices

This section focuses on the design choices made to address the requirements iden-
tified in section 3.3. The design choices will be discussed per individual identified
requirement. With all design choices the focus is on solutions that require minimal
alteration of the underlying hierarchical distributed NMS paradigm.

The design choice for state persistence provision is regarded as leading for
other design choices. This due to the impact this choice has on the performance
and operation of the system as a whole. Therefore the first paragraph 4.1.1 is
devoted to state persistence. The service availability requirements as a whole
will be addressed in paragraph 4.1.4 after the design choices for service capacity
and service connectivity are discussed in paragraphs 4.1.2 and 4.1.3. In the
final paragraph 4.1.5 additional requirements raised by the design choices will be
discussed.

4.1.1 Service persistence

In the current approach a centralised state storage system is used. Since a node
can become unavailable at any, unpredictable, moment the only way to retain a
state of a service is to replicate it to an other node. This can be regarded as the

23



4.1 Design choices Service design

replication of an underlying critical service component, as suggested in [BvRV04].
Three major state retention approaches can be identified and will be discussed
hereafter.

Client side state retention

As described in [Mon98], state information of a session could be stored within the
client. With each request to the server the client sends the session object setting
the session state. There is however not only a session between a client and a
server, but possibly also between the top-node and the network behind it. This
might create the situation where information about the association between the
top-node and the network is being sent to the client. This is undesirable since it
allows (untrusted) clients to manipulate state information. This approach thus
needs a sufficient security model checking the validity of states on the server side.
Therefore this approach is discarded. One can of course save any state between
the service and the network in the network itself, while relying on the client for
client state information. Such an approach is however regarded as unnecessary
complex.

Fully distributed state replication

An other approach is to store the state is using by fully distributed storage sys-
tem as described in [CN03] and [RGK+05]. In this approach, each node in the
network stores (a part of) the state. These services are optimised for larger user
bases that are demanding in file storage and retrieval. Therefore such a fully
distributed approach requires many resources of both the network and the nodes.
This will directly impact the overall performance of the ad-hoc network. It is
likely to have a direct impact on some dependability aspects of the service, such
as network capacity stability and node responsiveness. Since the envisioned use
of the stored information is limited, the impact on the resources is regarded dis-
proportional. The fully distributed storage system is therefore disregarded as
appropriate approach.

Partly distributed state replication

The last approach is a partly distributed state storage, such as presented in
[AIH97]. State information is distributed to a limited number of other nodes
within the network. On each state change a node sends a state update to the
other nodes, all holding the full state. When the main node becomes unavailable,
the other nodes have the latest state preserved. One might only need, for example,
five storage nodes on a network of hundred nodes. This saves roughly a ten fold

24



Service design 4.1 Design choices

of network resources as opposed to fully distributed state replication1.

Distribution method

State information updates could generate a lot of inter node communication.
Especially in a MANET (Mobile ad hoc Network) this can be a serious issue since
all neighbour nodes in promiscuous mode will receive each transmitted packet
[WL03]. Therefore a number of options how to keep the impact on network
resources minimised will be discussed. Three approaches for distributing state
information can be identified in [BM92] (first two approaches) and [Bha99] (third
approach).

First approach: active replication In the active state replication approach,
every server receives the request via a multicast mechanism. Each server will
also sent a response and both service and client use a voting system to determine
what the state will be. This approach however requires a lot of connectivity and
computational resources in both the internal network and to the external clients.
Therefore this approach is regarded unsuitable.

Second approach: primary backup Requests from all clients are issued
to one host. This host distributes the state update to the other nodes. This
distribution could be done by a p2p chunk based filesharing manner [PGES05].
In this approach the state is divided in parts and these parts are distributed
to a number of nodes. These nodes inter-connect to each other to acquire the
full state. However with many state updates of the service, the shared states
age faster and clients have to keep pulling and pushing this new information.
This will increasingly require additional resources. A second option is having an
unicast association between the primary node and every other node offering the
service. Thus with X nodes this one primary node also has to send X updates.
This approach however is likely to introduce a computational and connectivity
resource bottleneck on the primary node. An other, third, approach is using a
reliable multicast mechanism such as described in [SCG+01]. Every node registers
to a multicast address and the primary node will only have to send out one packet.
The multicast protocol builds a tree-based overlay network on top of the network
layer for forwarding the multicast data, so only a small number of nodes burden
the load of these messages [CDK+03]. A second multicast approach as described
in [KRAV03] is especially aimed at p2p networks and uses a overlay mesh network.
It is essentially aimed at large (10k nodes) networks. However, multicast takes
place within the network itself and thus also relying on nodes not part of the
nodes offering the service. It also seems that such application level multicast

1Rough estimate based on the assumption that in a fully distributed approach there is
optimisation due to nodes only saving a part of the state, thus requiring less network traffic.

25



4.1 Design choices Service design

introduces even more overhead as opposed to network layer multicast [DLL04].
A last approach for the primary backup mechanism would be the distribution
of the state change to a second node, which in its turn sends this change to a
third node. This approach only requires the primary node to send a state change
once, while it is still replicated to multiple other nodes. This approach also has
as advantage that it is possible that not all wireless service nodes in an ad-hoc
network are physically within communication reach of each other. The forwarding
of information is more likely to spread the broadcasting more evenly throughout
a larger part of the network.

Third approach: synchronised storage A third approach is using the ap-
proach applied in distributed databases for state distribution, where techniques
like time-sampling and two phase locking are used. With this approach clients
would be able to do operations on all nodes offering the service. This service
requires on a lot of communication and steps before a state is actually changed.
It however has to be taken into account that one has to deal with slow nodes
and slow networks. Therefore this approach is bound take a lot of time and
computational and connectivity resources, degrading the service dependability
for response time and connectivity.

Conclusion

For state preservation it can be concluded that the approach where the full state is
distributed to a limited number of nodes would be the most fitting solution. This
in order to minimise used network resources, while still having a high probability
of the last known state being available on a node within the network. Distribution
of this information is optimally done in a primary backup mechanism where nodes
forward the state changes to each other. This in order to keep resources usage in
the network and on the nodes minimal, while still providing reliable replication.

4.1.2 Service capacity

To stabilise, and where possible improve, the service capacity without changing
anything to the actual node hardware resources, a number of paradigms will be
discussed.

The first general paradigm is to reserve a certain amount of resources on a
node, like described in [Tia05] for Web services. This QoS (Quality of Service)
based approach can guarantee a certain service level due to the reservation of
resources. A service however never has a service capacity higher than the resources
of the hosting node are able to deliver. If a node is ill-equipped, the service
capacity can drop below the actual service needs of the clients. Thus not resolving
the heterogeneity of resources among nodes. An other hurdle is that it would
require the underlying system to actually provide the priority scheduling that is

26



Service design 4.1 Design choices

needed by the service. Since not all devices are able or willing to support this
scheduling, this approach does not distribute seamlessly. Therefore this approach
is discarded.

A second general approach is to distribute the server load among multiple
nodes. In [CCY99] four specific approaches for distributing load on (Web server)
services are distinguished and described. These are mainly based on running
nodes with full, or partial, abilities of the offered service. Hereafter these ap-
proaches will be described and their applicability to the set requirements will be
discussed.

Client side load distribution

In this approach, the client has, or obtains, a list of service nodes. From this list
it decides which one to address to issue a request. This approach mainly works in
cases no states need to be set on the server side, or in case states are send along
with client requests. This approach can be used easily when it involves requests
that do not alter the state of the service. It can also be used if the system is
able to distribute state updates in such a matter that all instances of the services
running on the distributed nodes are guaranteed in the same state. However, as
discussed in paragraphs 4.1.1, the latter is difficult to achieve.

Service advertisement distribution

A second approach is to let the node that handles the service discovery requests
respond with different service locations. In this way a centralised node is more
or less able to guide which nodes are being approached for requests. However,
the Maderia use case shows that third party service advertising nodes could be
utilised. There is no control over what functions they support. Therefore this
approach is not feasible.

Server side dispatcher

A third alternative is the dispatcher paradigm, as described in [FSG05]. It works
as follows: an edge node, the dispatcher, handles incoming traffic where it does
security related tasks and tracks the state of a session. Next the actual requests go
to a grid of nodes behind the dispatcher node. These individual nodes just process
a job and are not involved with any state related tasks. The result is posted back
to the originating dispatcher node. This host couples the response back to the
client and updates its state information. The approach of using the nodes in the
network as grid nodes is also envisioned in [TT03]. It seems very suitable for the
situation where one has control over all load balancing activities and where only
a single interface for keeping the session is convenient. Downside of this approach
is that all network traffic has to go trough one node which therefore could turn
into a bottleneck.

27



4.1 Design choices Service design

Server side redirection

The final approach is a server based solution where the server is able to redirect the
client to an other server. This allows servers to communicate about, for example,
the current load and redirect clients to less busy servers. Such an approach will
give the service the chance to do the load balancing and also distribute network
traffic on outbound interfaces. However it requires the state to be distributed
and synchronised, which is not a feasible option as discussed in paragraph 4.1.1.

Conclusion

For the design it is envisioned to make use of a combination between the client
side and server side load distribution. Due to the choice, made in paragraph 4.1.1,
to manage all state changes from one node, two different operations will be distin-
guished, read and write operations. The first only invokes a request that does not
alter the state of the service. The latter actually invokes a request that changes
the state of the service. An example could be a request for network informa-
tion versus the setting of a service side subscription flag for fault notifications.
This means the ability, of both the service and the client, to distinct between
those types of requests is required. The approach is that the client has a list
of service nodes. From this list it can distinct the primary node from the sec-
ondary nodes, where only the primary node can handle write operations. This
primary node thus handles all state changes as consistent with the choice made
in paragraph 4.1.1. The other (secondary) nodes are only able to provide read
functionality. When a client does a read request, it can do this at any given read-
node on the list. This distributes the load of both system and network resources.
However the write operation can only take place at the primary node. Therefore
the dispatcher approach will be taken at at this node. The primary node will be
enabled to dispatch the operation itself to an other node in the network, while
eventually changing the service state and parses the result of the operation back
to the client.

Since this approach is basically the grid paradigm, one can apply numerous
known load balancing schemes such as discussed in [BEOW99]. It is for example
possible that the client chooses its service based on previous response times or a
(pseudo) random algorithm.

4.1.3 Service connectivity

To improve the stability of the service connectivity, four major approaches are
identified. These will be enlisted and the relevance to the set requirements will
be discussed.

28



Service design 4.1 Design choices

Redundant communication

A first approach is to have redundant paths to the service node operational and
duplicate all messages on both paths [ASB03]. This approach increases the prob-
ability of packages arriving at the service node and might decrease the delay and
jitter. The service and the client can use the packet that arrives as first. It also
provides some capacity stability. A certain path might suffer from congestion
while an other one alternative path might not. Downside of this approach is
that the service node, which is not always very well equipped, has to process
more incoming packets and also has to send replies via multiple paths. These
operations require additional network and computational resources affecting the
service capacity. Since also the redundant path is likely to be routed via the
ad-hoc network, it also increases the traffic load on the internal network. This
approach is therefore disregarded.

Multiple service nodes

An other approach is, as stated in section 4.1.2, to let clients connect to different
servers. If there are multiple servers a client can choose to connect to one based on
directions of the server or experiences of the client. If clients connect to different
nodes, there is less chance that they will congest the network capacity to a single
node. If each node uses its own external connection2 this introduces a natural
redundancy and an overall network capacity of the capacity of the individual
connections combined. This approach however requires the individual service
nodes to provide at least a part of the service functionality.

Network QoS

A final approach is to offer network QoS as described in [XN99]. This approach
reserves network resources for routing and sending network packets to certain
destinations. It is preferably used in situations where there is control over a large
part of the path between the server and the client (preferably the entire path).
This enables the delivery of end-to-end service guarantees. Since there is only
control over the ad-hoc network, and not the external network where the client is
located, this QoS paradigm can only be partly applied. Node system resources
could be reserved, as similarly discussed as first solution in paragraph 4.1.2. This
enables the node to at least have the system resources to process the packets.
In case this node offers routing from the network to the external network, it can
reserve a certain percentage of fixed connectivity capacity as well. However this
approach is dismissed on the same grounds as discussed in paragraph 4.1.2. There
is simply no guaranteed control over the node for such an approach.

2Assuming that within this research scope there are always multiple egress nodes to external
networks available.

29



4.1 Design choices Service design

Conclusion

The multiple service nodes based solution should be used as much as possible.
This is similar to the solution discussed in the conclusion of section 4.1.2. It
is likely that secondary service nodes have their own connectivity to external
networks. Therefore the spreading of read operations among service nodes spreads
the load on connectivity resources to the service as a whole as well. This leads to a
more stable and more dependable connectivity behaviour. Once one service node
suffers from bad connectivity, the client will notice this due to a bad response
time. Therefore the client could issue its next read request to an other service
node.

For the service node where the write operations take place, the connectivity
improvement is brought by the fact that this node does not has to deal with
incoming read operations anymore. It should be noted that if the clients issue a
lot of write operations and only a small amount of (distributed) read operations,
this approach loses its effect. If this would prove a bottleneck in a real world set-
up, it could be evaluated to alter the design to a more elaborate one. One could
think of a situation where the primary node receives a write request, dispatches
the request itself to an other node. Thereafter let the other node send the response
back to the client via its own up-link to subsequently report to the primary node
that the response has been send and the state can be changed. However, for the
current Madeira operations the current design approach is regarded as sufficient.

A second note is that, in the Madeira case, this approach does not spread the
load of outgoing notifications from the network to the client. The so called CM
notifications and FM alarms. These still place all the burden on the primary node.
This behaviour can not be changed without changing the underlying network
paradigms. Such a change is regarded outside the scope of this research. An
approach where the primary node redirects certain messages to secondary nodes
is discarded as well. This due to the extra network and node resources such an
approach would need to redirect the packets, making the solution maybe worse
than the problem.

4.1.4 Service availability

A low MTTR contributes to a better availability. Certain aspects of reducing the
MTTR of the physical node the service is running on are hard to accomplish. This
due to the lack of direct control over the nodes. If for example a node suffers from
a sudden shut down there are no means to turn it back on again. Therefore in
order to reduce the MTTR, the introduction of redundancy into all aspects that
can lengthen the MTTR is forseen. The approaches discussed in the conclusions
of section 4.1.1, 4.1.2 and 4.1.3 actually already cover such an approach and the
means to improve the dependability of service availability.

The preservation of the state should take care of not having to re-start the

30



Service design 4.1 Design choices

entire session over again after loss of the service node. The fact that secondary
nodes are already running the entire service saves time starting up the service
on a new service node. The first secondary service node should become primary
node on loss of the primary node. Clients will also already have the list of other
service nodes because this is needed for the “multiple service nodes solution”, as
discussed in section 4.1.3. Therefore clients do not always need to issue a request
to the external advertising service. In normal operation, only after a while the
secondary node discovers that the primary node is not available. At that point
this secondary node has to take over the primary task and inform the external
advertising nodes. At this point the clients that were connected to the initial
primary node will already have noticed that this node has gone down. By using
the list of other service nodes they also already know the location of the new
primary node.

As for the MTBF , the probability of a node being lost in the network does not
decrease. So for the part of the service offering the write operation the MTBF
will not change. However, due to the availability of multiple nodes offering read
functionality, the MTBF for this read operations part of the service will increase.

4.1.5 Additional design choices & requirements

Based on the chosen approach in the previous paragraphs, some additional design
choices and requirements have to be set.

State preservation classes

In Maderia there is the situation where there are two classes of state information.
The first class is the state information of the service itself. Within the Maderia
NBI this is for example the state of the incoming network messages queue. These
states are independent of connected clients, but are important to be replicated.
The second class are states coupled to clients. For example in the Maderia NBI
the service side flag of a client for being kept informed about network messages.
The approach should take both of these classes taken into account for replication.

Cluster management

To enable all functionality as described in previous paragraphs a number of man-
agement tasks regarding service nodes have to be dealt with.

The service will rely on multiple nodes hosting the service. It is therefore
required that service nodes are being elected and bootstrapped. As presented
in 2.1, this functionality is already partly available within Madeira. This approach
does however not deal with the start-up of multiple service nodes. To facilitate
this requirement, each node within the network should be enabled to elect and
start-up the service. A node election process that preferably should be used is

31



4.2 Design overview Service design

related to approaches taken for leader elections in distributed networks, where
metrics such node capacity and connectivity are taken into account. Such an
approach is provided in [VKT04]. It is however not the aim of this research to
investigate how to optimally elect a node within a network. It is simply assumed
that functionality is in place that enables the availability of a number of service
nodes.

In distributed systems heartbeat mechanisms are typically used in order to
track the availability of components [Vog96]. A heartbeat mechanism tends to be
lightweight in both system and network resources. Therefore an approach where
such a mechanism is used is forseen. This in order to both enable the primary
node to compile a list of available secondary service nodes and secondly allow
other service nodes to keep track of availability of the primary service node.

Service reassembly

Once a network segmentates into two or more networks, each of those networks
will create the primary-secondary nodes infrastructure. Each one of these services
might want to externally register themselves as “the” service, thus striving with
each other over which service should be registered. This could be addressed by
applying a more dynamic services advertising and resolving scheme allowing a
client to find all services that fit within certain parameters. This issue is however
not addressed within the Madeira framework. It is outside the scope of this
research to further address this. Assumed is that networks can separate and
merge again. This research focuses on what to do with the states on a reassembly.

Each of the services might be in a different state on reassembly. An approach
could be to reset all states and start all over again. It is however not uncommon for
large ad-hoc networks with large amounts of nodes, or groups of nodes, to segment
for a (shorter) period of time and then rejoin again. This would mean that the
state would be reset every single time this happens, potentially dismantling any
state preservation at all. Since it does seems that this problem can not be tackled
simply for very dynamic environments, as also stated in [JLD06], the pragmatic
approach is taken where it is decided on operational level how this situation
should be handled. This means that at application level certain policies has to
be set of what to do with certain states if two networks merge. These policies
will probably be created during the implementation phase.

4.2 Design overview

Based on the design choices made in the previous section 4.1, this section will
provide an integrated overview of forseen logical components. It shows, from a
logical point of view, which components are required and how they interact with
each other. This is done so by discussing their behaviour guided by flow diagrams.

32



Service design 4.2 Design overview

Paragraph 4.2.1 provides a high-level overview of the entire system, discussing
the existing and new components. Thereafter paragraph 4.2.2 discusses the com-
ponents and their operations for improving service availability dependability. It
uses the design choices made in paragraphs 4.1.1, 4.1.4 and 4.1.5. Thereafter
paragraph 4.2.3 discusses the components and operations forseen for improving
service capacity and connectivity dependability. This is done based on the design
choices made in paragraphs 4.1.2 and 4.1.3. These are combined since it is a
single approach that addresses both requirements. Finally the cluster manage-
ment is discussed in paragraph 4.2.4, based on the additional requirement from
paragraph 4.1.5.

4.2.1 General overview

In order to provide an overview of where the proposed improvements are placed,
figure 4.1 is provided.

Figure 4.1: Top level overview of the service design

On the consumer node the consumer (the OSS in Madeira) was an already
existing component in the original service. This consumer has a frontend service
which provides an interface to for example an end-user (applied in JSP (Java
Servlet Pages) in Madeira). It connects to the actual service trough the consumer
side service interface (Web services in Maderia). The choices made to improve
service dependability requires some additions in the consumer node. These ad-

33



4.2 Design overview Service design

ditions are placed in the consumer service logic. A more detailed overview of
this logic is shown in figure 4.2. Behaviour of this component will be discussed
troughout subsequent paragraphs.

Figure 4.2: Detailed insight in the consumer service logic component

Back again to figure 4.1. On the service node side, the service component
was already existing (the NBI service in Madeira). This component houses three
sub-components. The backend service is the part that provides the actual service
logic. It contains for example the functions that deals with topology requests. In
Maderia these are the Java methods and routines, which are functionally located
in the upper part of figure 2.5.

The service side service interface allows the consumer to interface with the
service. In Madeira this functionality is provided by Web services. In figure 2.5
the upper outbound arrows indicate this part of the service.

Finally the network service interface allows the backend service to communi-
cate to other services in the ad-hoc network. In Madeira this is the connection
to the CM , FM and PBMS instances, shown in figure 2.5 by the arrows between
the lower and upper part.

Two new components on the service node side are forseen for improving the
service dependability: the backend service logic and the network service logic.
These two components are shown in more detail in figure 4.3 and figure 4.4. Their
operation will be discussed in subsequent paragraphs. Further the ad-hoc network
services component can be seen in figure 4.1. This already existing component
represents the ad-hoc network services an ad-hoc network node is able to offer.
These are services like connectivity and service discovery.

4.2.2 Service availability

State recording

In order to provide state persistence, the states in the service side service inter-
face, the backend service and the network service interface components should
be preserved. This separation is made because these components can be located

34



Service design 4.2 Design overview

Figure 4.3: Detailed insight in the backend service logic component

Figure 4.4: Detailed insight in the consumer service logic component

at different levels in the system and are clearly distinctable. Therefore for each
of these components there is a component needed to retrieve and set this state
information. These logical sub-components in the new backend service logic com-
ponent can be set as service interface state handler, backend service state handler
and the network service interface state handler. These components are shown in
figure 4.3.

State forwarding

As chosen in paragraph 4.1.1, the state will be distributed to a limited number
of other service nodes. This is done by the collector/synchronisation logic. It
harvests and provides the states from the three state handler components and
forwards them to, or receives them from, other nodes. The locations of these
secondary nodes are provided by the service node tracker, which will be discussed
in section 4.2.4. The state updating operation is shown in figure 4.5. If a node is
not able to reach the next node, it should send its update to a next one.

Normally the collector/synchronisation logic uses the ad-hoc network to send
state updates. In case the primary node notices that it is not able to connect
to any secondary nodes anymore, it can conclude that it has lose internal net-
work connectivity. Therefore external contacting information of secondary nodes
should be used to do a final state transfer. Again this information can be gath-
ered from the service node tracker. Thereafter this node should shut the primary
service down.

35



4.2 Design overview Service design

Figure 4.5: State retrieval, replication and updating

Client server re-association

In order to provide a successful client-server re-association, an alteration in the
core of the service is required. The service should start accepting a unique identi-
fier with every operation, while the client needs to include this identifier in every
invocation. Therefore this addition is required in the consumer side service in-
terface on the client side, while on the service side it is required in the service
side service interface.

To illustrate the the operations around invocation identifier management, fig-
ure 4.6 is provided. The frontend service will invoke a call on the consumer side
service interface (step 1). Thereafter the consumer side service interface informs
the service interface state handler of the invoked method (step 2). This com-
ponent will thereafter associate an identifier with this invocation and save it to
a list where all identifier-invocation key/value pairs are stored (step 3). There-
after the identifier is returned to the consumer side service interface (step 4).
Now the remote method on the service side service interface is invoked with the
identifier as attribute (step 5). The service interface state handler records the
identifier, whereafter it is collected by the collector/synchronisation log (step 6
and 7). Thereafter it is replicated to the other service node (step 8).

In order to illustrate the behaviour of the system on primary node failure,
figure 4.7 is provided. When the primary service node becomes unavailable, the

36



Service design 4.2 Design overview

Figure 4.6: Client server identifier handling

service state negotiator will retrieve the location of the secondary service node
from the service nodes list (step 1 and 2). This list is published by the the service
side service nodes location publisher towards the service nodes location tracker
component of connected clients (not shown in the figure). It will do so on each
change of information regarding the location of service nodes. The client connects
to the secondary service node (the new primary service) and states that it wants
to re-connect to the service (step 3). The service retrieves the identifier of the
last invocation for this client, and returns it to the client (steps 4,5 and 6). This
allows the client to look-up the last registered invocation in the service interface
state handler and report to the frontend service which invocations probably did
not take place (steps 7, 8 and 9). It is up to the service user if it wants to re-issue
these invocations.

Figure 4.7: Client server reconnect procedure

37



4.2 Design overview Service design

4.2.3 Service capacity & connectivity

As stated in section 4.1.2, a read/write separation scheme for providing server
capacity stability, while also improving the connectivity stability, was chosen. The
service collects and publishes which operations causes state changes and which
operations do not. This in order to allow the client to distinguish between read
and write operations.

The service side service interface will implement a flag with every possible
service invocation, stating whether or not that particular method causes a state
change. The service interface state handler would be able to gather this informa-
tion, while the client/service state negotiator takes care of informing the clients.
The client will ultimately keep this list in the service request dispatcher. For find-
ing and addressing the nodes the client can use the service nodes location tracker,
as also discussed in the previous paragraph 4.2.2. The basic operation of an invo-
cation of a method (both read and write) is described in figure 4.83. The frontend
service does a service invocation (step 1). The consumer side service interface
informs the service request dispatcher of the invocation in order to determine if it
is a read or write operation (step 2). Based on the type of operation the service
nodes location tracker returns a location of a service node (step 3 and 4), which
is returned to the consumer side service interface (step 5). Ultimately the service
node is invoked (step 6).

Figure 4.8: Client does (read) operation on service

3Note that for the sake of simplicity the steps taken to include the unique identifier as
discussed in paragraph 4.2.2 are omitted in this diagram.

38



Service design 4.2 Design overview

Read operations

The operation of the read operation is basically not more than the one depicted
in figure 4.8. Added to this figure could be an optional response back from the
service side service interface to the consumer side service interface onwards to
the frontend service.

This approach should, on average, increase the capacity of the read operations
by (n-1), where the capacity of the service nodes n is the mean of the overall node
capacity in the network. Note that it is undesirable for the service to allow read
operations on the primary node4.

Write operations

For the write operation the primary node is always invoked. Therefore the choice
for grid-like outsourcing by using the dispatcher paradigm was made. This means
that a number of worker nodes should be deployed. Preferably in the vicinity of
the primary node. For the sake of simplicity it is assumed that these nodes can
be ordinary service nodes providing some operations that can only be invoked by
the primary node and not directly by the client(s). With this scheme there is not
an average linear increase in capacity as with read operations. This because the
primary service node itself could become a bottleneck once the number of write
operations comes to a level where the operation of outsourcing the jobs itself
takes too much resources. In that situation it is neither able to process the jobs
itself nor can it outsource them. This means the upper limit of scalability for the
primary NBI . Adding more grid nodes is not a solution at that point.

Resuming on the operation shown in figure 4.8, figure 4.9 shows the specialised
part for the write operation. It starts off with a normal method invocation (steps
1 and 2). Thereafter the primary node dispatch component outsources the com-
putation (steps 3,4 and 5). Both the operation that is being dispatched, as well
as any needed values are send along. The local backend service processes the job
and returns the result (steps 6,7, and 8). Depending on the type of operation, the
primary node backend service can return the result to the consumer node (steps
9 and 10).

4.2.4 Cluster management

In order for the proposed service to work, logic available on each network node
is forseen. This is the network service logic as shown in figure 4.4. It houses
both logic to elect new service nodes (service node elector) and to keep track
of the availability of the current service nodes (service nodes tracker) based on
a heartbeat approach. The latter provides the other service components, such

4It is assumed that there are always at least two nodes in the network that can host the
service, thus that there is always a write and at least one read node.

39



4.3 Conclusion Service design

Figure 4.9: Write operation on service by client

as the collector/synchronisation logic as discussed in paragraph 4.2.2, the list of
available service nodes. It also provides this list to the service nodes location
publisher, also located in the backend service logic (figure 4.3). This component
publishes the location updates towards the service nodes location tracker, located
in the consumer service logic (figure 4.2).

4.3 Conclusion

The most important design choices made in section 4.1 are: The partly distributed
state retention via a primary backup mechanism, as discussed in the conclusion
of paragraph 4.1.1, in order to keep sufficient reliable backups while not stressing
the system resources too much. And the separation between read and write func-
tionality, as discussed in the conclusions of paragraphs 4.1.2 and 4.1.3, in order to
allow the system to host itself among multiple nodes. Providing both the ability
to spread requests on multiple nodes and use multiple network resources. As
shown in 4.1.4, these approaches combined lower the MTTR and partly increase
the MTBF . Overall the approach improves the availability of the service, the
stability of system resources and the stability of connectivity resources.

40



Chapter 5

Design application

This chapter discusses the applicability of the the design, as presented in chap-
ter 4, to the Madeira use case. This is done in the first part, section 5.1, by
placing the design in context of the technologies used in the Madeira platform.
Thereafter, in section 5.2, the impact of the design on the Madeira platform spe-
cific services is discussed. Finally in section 5.3 a design evaluation and conclusion
will be presented.

5.1 From design to Madeira

This section discusses the mapping of the design presented in chapter 4 to the
technologies used in the NBI . This discussion will follow the outline of the top-
ics discussed in section 4.2. Since the Web services paradigm is one of the key
technologies within the Madeira NBI , appendix A is provided. It provides back-
ground information about the key Web services components and paradigms ap-
plied within Madeira.

5.1.1 Service persistence

As specified in the design section 4.2, three major parts have to be dealt with
in order to provide service persistence. The service side service interface, the
backend service and the network service interface. Within the Madeira framework
all these three components are present. The service side service interface consists
of a Web service coupled to a backend service written in Java. This backend
service connects to the Madeira distributed management network by directly
communicating with the local Java-based Madeira CM , FM and PBMS instances.
These instances are present at every node.

Within the NBI , currently two types of states are used. Firstly there are the
states used to set if an OSS wants receive certain Madeira notifications. The OSS
can set a different flag (state) for different types of notifications, such as alarms,

41



5.1 From design to Madeira Design application

configuration changes, etc. Secondly there is the actual notifications queue in
pubscribe. These notification contain information about, for example, changes
in the network structure or the loss of a node. These updates are transmitted
via the pubscribe framework. This functionality can be placed at the service side
service interface. Since currently no state information is being kept in either the
backend service nor the backend service interface, focus in the discussion hereafter
will be on the Web services based service side service interface.

WSRF state preservation

The Madeira NBI utilises the WSRF (Web Service Resource Framework). Its
current state of the art is the availability of “A persistence API so that users can
recover the state of a WS-resource after shutdown of the host”1. This is done by
means of storing the EPR (End Point Reference) in XML (Extensible Markup
Language) files on the host where the Web service runs. When a node shuts
down unexpectedly and thereafter restarts, the Web service can read in these
files and restore the Web service into its previous state. There is currently no
solution in place for distributing these files to other nodes. An issue is also that
the framework only reads in these state files during the start of the service. The
approach thus does not support real-time updating of states to running nodes.
Therefore this approach would not cut back in the service start-up time, which
is a major part of the MTTR in Madeira. It clearly does not sufficiently match
the design parameters.

Tomcat state replication

WSRF runs in the Tomcat Web services container. Within Tomcat 5.0 there is a
default support for clustering of applications2. It offers state replication by send-
ing delta updates of changes. However, this approach relies on the usage of the
unreliable network level multicast. The usage of a reliable multicast mechanism is
undesirable, as identified in paragraph 4.1.1, this due to the load it places on the
network. In the upcoming version 6.0 of the Tomcat container, an other replica-
tion approach is provided called the BackupManager. This solution is especially
aimed at larger cluster networks where network capacity is more scarce. In this
approach a single backup is kept in a secondary node. This backup is updated
by sending deltas of the state changes3. Even tough this approach itself does
not use the multicast protocol, the underlying cluster management still requires
it. This manager keeps track of joining and leaving/unreachable cluster nodes.

1Muse version 2.0 - http://ws.apache.org/muse/ - accessed: 30-01-2007
2http://tomcat.apache.org/tomcat-5.0-doc/cluster-howto.html - accessed: 05-02-

2007
3http://tomcat.apache.org/tomcat-6.0-doc/cluster-howto.html - accessed: 05-02-

2007

42

http://ws.apache.org/muse/
http://tomcat.apache.org/tomcat-5.0-doc/cluster-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/cluster-howto.html


Design application 5.1 From design to Madeira

Within networks with good connectivity, this approach offers a fitting solution.
However for the Madeira ad-hoc network it means an extra, undesirable, burden
on resources.

Hash based state replication

In [Jus05] a more tailored alternative for Web services state replication is sug-
gested. It has a TCP (Transport Control Protocol) based solution instead of
SOAP (Simple Object Access Protocol) or multicast. Based on hashes of ob-
jects, nodes can compare if they are in possesion of the latest objects. On change
of the object, the host where the object is changed pushes out an update to the
other nodes. This protocol can easily be applied to the Madeira ad-hoc network.
Due to the reliance on normal TCP connections, this protocol can also be used to
synchronise the primary and secondary service nodes via an external connection
in case the NBI loses contact with the backend network. The approach seems to
perfectly fit within the design and goals of this research. In order to enable the
replication of objects, it requires the representing Java objects to be implemented
as serializable objects. Within pubscribe, where all of the states are currently lo-
cated, all objects are already implemented serializable4. To know the location of
the primary and secondary nodes, clustering is still needed. A separate cluster
management solution will be discussed in paragraph 5.1.3.

Client-server re-association

Paragraph 4.2.2 stated the use of an unique identifier for the client-server re-
association. Since the identifier is only important to the client, it is possible to
allow a free format identifier. From the service point of view, the identifier has to
be included in every operation definition in the WSDL (Web Services Description
Language) file. The portion requirering the inclusion of the identifier during an
operation can be specified as shown in listing 5.1.

1 <element name="sessionIdentifier" type="string" minOccurs="1"
maxOccurs="1"/>

Listing 5.1: WSDL example invocation identifier

By setting the type to string, the client is allowed to put in any free type of
identifier. This identifier should at least be placed in any state changing operation.
On the NBI side, the identifier itself should be implemented as serializable object
so it can be synchronised with the other service nodes.

To re-initialise disconnected session, the Web service should expose a new
interface that triggers the re-initialisation procedure. This could be defined in
the WSDL file as provided in listing 5.2.

4http://ws.apache.org/pubscribe/apidocs/serialized-form.html - accessed: 19-03-
2007

43

http://ws.apache.org/pubscribe/apidocs/serialized-form.html


5.1 From design to Madeira Design application

1 <element name="ServiceConnectRequest">
2 <complexType>
3 </complexType>
4 </ element>
5

6 <element name="ServiceConnectResponse">
7 <complexType>
8 <sequence>
9 <element name="sessionIdentifyer" type="string"

minOccurs="1" maxOccurs="1"/>
10 </ sequence>
11 </complexType>
12 </ element>
13 . . .
14 <message name="ServiceConnectRequest">
15 <part name="body" element="nbi:ServiceConnectRequest"/>
16 </message>
17

18 <message name="ServiceConnectResponse">
19 <part name="body" element="nbi:ServiceConnectResponse"/>
20 </message>
21 . . .
22 <opera t i on name="Connect">
23 <input name="ServiceConnectRequest" message="

nbi:ServiceConnectRequest" />
24 <output name="ServiceConnectResponse" message="

nbi:ServiceConnectResponse" />
25 </ operat ion>

Listing 5.2: WSDL example for NBI service connect by OSS

Line numbers 1 to 4 show the definition of the empty element contained in the
ServiceConnectRequest message shown in line 14 to 16. This is the message issued
by the OSS towards the NBI that should trigger the NBI to respond with the
identifier. Line 6 to 12 show the definition of the return message, shown in line
18 to 20, send by the NBI . It defines the inclusion of the last known identifier
issued by this OSS . It is up to the client to undertake any action based on this
information. For the Madeira case such an action could be the re-subscribing for
certain notifications. Line 22 to 25 defines the actual operation.

NBI service reassembly

A large part of the states in the NBI are binary yes/no states. Meant by this
is that for example an OSS is either subscribed for certain notifications, or it is
not. By default an OSS is not subscribed to anything. All the states can be

44



Design application 5.1 From design to Madeira

regarded to be set to “no” by default. Setting this flag to a “wrong” state has
limited impact. This allows a relatively easy approach for solving the reassembly
issue for these states. The pragmatic approach is taken that when two services
get consolidated, the state will be non-default if one of the former service states
was set to non-default. This means that if at one of former services a particular
OSS wanted to receive updates, while it did not wanted them at the other, the
consolidated state will be that this OSS is subscribed for updates.

There is also a non-binary state. That is the sessionIdentifyer. This string
can contain any value. On consolidation this value should be cleared, indicating
to the OSS that there was a consolidation.

There is also the state of the pubscribe messsage queue. These are the mes-
sages, such as FM alarms or CM notifications, that are queued to be sent to the
OSS . Because messages from the added network might still be of interest to the
OSS , they should still be queued. To clearly distinct them as buffered messages
from the “old” added network they should be flagged as such. This could be done
by a specialised CM notification depicting the start of the old messages and a
notification signalling that the last message has passed. This approach allows the
OSS to still correlate or process them.

This approach does however not scale well for future situations. Think of
service states that are shared between clients, or states that can have multiple
values or contain lists. Within NBI access management this could be for example
conflicting “allowed-” and “denied-hosts” listings. Where in one network the host
is on the allowed list, it might be on the denied list on the other. Therefore this
feature should be reconsidered and expanded every time a state is added to the
service.

5.1.2 Service capacity & service connectivity

The approach presented in section 4.2.3 describes the functioning of the read
and write separation. How to distinct the read from the write operation within
Madeira will be discussed first. Thereafter the dispatcher functionality of the
NBI is discussed.

Read & write operation separation

For support of separation between read and write operations, the client needs
to be informed of this separation. Within Web services typically the WSDL file
is used to define the service interface. However WSDL does not support the
inclusion of non-functional aspects of a Web service5. Therefore the WS-Policy
scheme is drafted [BBC+06]. The scope is stated as:

“WS-Policy defines a policy to be a collection of one or more policy asser-
tions. Some assertions specify traditional requirements and capabilities that will

5http://cat.inist.fr/?aModele=afficheN&cpsidt=17415693 - accessed: 23-03-2007

45

http://cat.inist.fr/?aModele=afficheN&cpsidt=17415693


5.1 From design to Madeira Design application

ultimately manifest on the wire (for example, authentication scheme, transport
protocol selection). Some assertions specify requirements and capabilities that
have no wire manifestation yet are critical to proper service selection and usage
(for example, privacy policy, QoS characteristics). WS-Policy provides a sin-
gle policy grammar to allow both kinds of assertions to be reasoned about in a
consistent manner.”6.

Current WS-Policy examples and utilisation is mainly found in the security
context. It is for example used to define if certain security tokens are required for
certain operations. For any other application the WS-Policy framework is said
to be extendable. Therefore in the Madeira case, an extension for read and write
operation distinction should be added. It is however outside the scope of this
thesis to create a Web service standards extension. These policies can be bound
to certain Web service operations (port types) by means of using WS-metadata
exchange [BBB+06].

WS-Policy is available in the Axis2 Web service container, used by the Madeira
platform7. Also WS-metadata exchange is available in the Axis2 Web service
container8. Usage of these frameworks is therefore feasible.

Service nodes addressing

Typically the WSDL document of a service lists the available endpoints. It does so
by defining multiple “ports” and enlisting these in the “service” part. This allows
the service to have multiple distinctive endpoints for the same service, allowing
Web service clients to distribute operations among Web services endpoints. These
definitions are however statically defined in WSDL document of the service. In the
Madeira case that would mean that on every service location change a new WSDL
file should be created and retrieved by the OSS . Therefore such an approach does
not scale well in dynamic service environments. Chosen is therefore to leave this
“service ”part of the Madeira WSDL document unchanged and let the primary
NBI be listed as sole endpoint. Information about the location of the other
endpoints will be provided by the primary NBI .

Within the Madeira framework, pubscribe can be re-used by the primary NBI
to distribute service nodes availability information to the clients. Each client will
be subscribed by default to this nodes location list and will receive informational
updates about changing node locations. As interface for pubscribe, the WSRF
relevant part of the WSDL file should contain something similar as shown in
listing 5.3. This defines NBINodes as resource property for pubscribe. It defines
a pubscribe topic to which clients can be subscribed. Line 3 defines the topic,
where line 8 actually includes the topic in pubscribe.

6http://www-128.ibm.com/developerworks/library/specification/ws-polfram/ - ac-
cessed: 21-03-2007

7http://ws.apache.org/commons/policy/index.html - accessed: 21-03-2007
8http://wiki.apache.org/ws/Axis2/metadataExchange - accessed: 21-03-2007

46

http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://ws.apache.org/commons/policy/index.html
http://wiki.apache.org/ws/Axis2/metadataExchange


Design application 5.1 From design to Madeira

1 xmlns : types="http://celtic.org/madeira/nbi/types"
2 . . .
3 <element name="NBINodes" type="types:NBINodes"/>
4 . . .
5 <element name="ResourceProperties">
6 <complexType>
7 <sequence>
8 <element r e f="nbi:NBINodes" minOccurs="1" maxOccurs="1"/

>
9 . . .

10 </ sequence>
11 </complexType>
12 </ element>

Listing 5.3: WSDL example for distribution of service node list by NBI to OSS

Line 1 references to the file that holds information about the type structuring of
the NBINodes element. This XML-types file will have to incorporate an entry as
shown in listing 5.4, where line 3 defines the NBINodes-type to have one primary
NBI listed. Line 7 specifies an unbounded number of secondary ones. All service
nodes are communicated to the OSS every time information about one of the NBI
nodes changes. The information about available nodes can be distilled from the
JGroups cluster management solution, which will be discussed in section 5.1.3.

1 <xs:complexType name="NBINodes">
2 <xs : s equence>
3 <xs : e l ement name="PrimaryNBI" type="xs:string"/>
4 <xs : e l ement name="SecondaryNBIs">
5 <xs:complexType>
6 <xs : s equence>
7 <xs : e l ement name="Nodes" type="xs:string" maxOccurs=

"unbounded"/>
8 </ xs : s equence>
9 </xs:complexType>

10 </ xs : e l ement>
11 </ xs : s equence>
12 </xs:complexType>

Listing 5.4: XML types definition example for NBI service nodes list

This service location information could be used by the OSS as if it was infor-
mation contained in the “port” part of the service WSDL file. This would allow
the the re-use of existing routines. The client can distribute the Web service
invocations to the different service nodes.

47



5.1 From design to Madeira Design application

NBI dispatcher paradigm

On the primary service node it is envisioned that the dispatcher paradigm is used
to provide more service capacity stability. The dispatcher paradigm is a known
approach for increasing Web services capacity [FSG05]. In such an approach a
Web service dispatcher node decouples the session from the request. It passes
the Web service invocation directly to a backend node as a Web service request.
However such an approach forwards the entire Web service invocation to a second
host and does not decouple to lower levels. These SOAP messages that need to
be forwarded increase the load on network capacity [TVN+03]. Therefore the
less network resources hungry Java RMI (Remote Method Invocation) is better
suitable. The primary service node will handle all Web services related tasks,
where the underlying logic invokes methods on the secondary NBI service nodes.
This approach is also more flexible. It allows underlying NBI functionality to be
dispatched as well, might this be needed in future situations.

5.1.3 Cluster management

The JGroups library provides group communication functionality and can be used
for primary and secondary service node tracking9. It offers cluster management
tasks such as the addition, deletion, detection of lost nodes and inter node message
exchange. All this functionality runs either over UDP (User Datagram Protocol)
or TCP . It is shown in [ACL04] that the TCP variant is highly preferable above
the UDP variant. Since multicast can not be used in TCP mode, a new node
must know the address of one of the participants. Luckily, the Madeira platform
is always familiar with the location of the NBI since it is the top-node in the hier-
archy. Since the NBI is always part of this cluster, any node within the network
will be able to address and join the cluster. The state replication approach, as
described in paragraph 5.1.1, can be used to distribute this list among all service
nodes.

For the election of service nodes the current approach of the Madeira plat-
form will be re-used in a slightly altered fashion. Currently the top-node itself
determines that it is the top-node and starts the NBI service. This approach will
be extended to the secondary layer of nodes in the logical hierarchy. If a node
registers it is in the layer below the top-node, it should start the NBI service as
secondary node10. For the logical hierarchical overview given in figure 2.3 this
would mean that BS12 is the primary NBI and the other nodes in cluster MC
2-0 have the secondary NBI role.

9http://www.jgroups.org - accessed: 21-03-2007
10This could be constructed such that this is decided by a Madeira policy. This policy could

be set to having all nodes in the two layers below the NBI to be running as secondary NBI .
Similar to how cluster sizes are dictated.

48

http://www.jgroups.org


Design application 5.2 Madeira backend services coupling

5.2 Madeira backend services coupling

As presented in chapter 2, there are a number of platform services that have to
be taken into account. Services that can not be changed without changing a large
portion of the Madeira paradigm. The impact of the design on these services will
be discussed per service.

5.2.1 Network notifications

The distributed NMS is still organised in a hierarchical fashion. All network
notifications, like FM alarms and CM status updates, are being sent to the
primary NBI . This is a good thing since the handling of these notification is a
state dependant operation on the side of the NBI . The downside is that it does
not distribute the load of these messages over all service nodes. Especially in
the case where many notifications are escalated towards the OSS , it can cause
performance issues for the NBI service. By the use of internal Madeira policies
the amount of messages that are escalated upwards can be limited. This tool
should thus be utilised to minimise the number of messages in case the NBI is
flooded. It thus can be concluded that the design presented in this research is
able to operate with this service. The design is however not able to take away
negative aspects of this service. Improving the notification service was however
never the goal of this research.

5.2.2 OSS requests and policies

Any incoming request or command issued by an OSS can currently be processed
by any one of the NBI service nodes. For example a topology request can be sent
to any local CM instance, which always runs on any given Madeira node. This
CM will gather the requested network topology. The same holds for policies that
are introduced by the OSS . An OSS can already specify a list of Madeira nodes
to which a certain policy has to apply. Every PBMS within a Madeira node is
able to locate other nodes and inform them of the policy. These are typical read
operations in the Madeira network. Especially the topology request operation is
a costly operation that can thus be diverted by the OSS to any secondary NBI .
Positive is also the given that even if the primary NBI is not available, the OSS
can still insert policies and thus actively manage the network.

5.2.3 Network setup & re-configuration

Currently on loss of the NBI hosting node, the hierarchy of the Madeira network
completely re-configures. This means that any node can become the new NBI .
However the approach presented in this research requires a secondary node to
become the primary service node. Therefore some adaptions are needed in the

49



5.3 Design evaluation & Conclusion Design application

Madeira “Grouping Service” component, one of the “Platform Services” taking
care of node election as presented in section 2.1. Currently this placement logic
is a basic algorithm and thus leaves much room for future adjustments and im-
provements. The network should actively make sure that a secondary NBI node
becomes primary if the former primary becomes unavailable. It thus needs to be
informed about the primary NBI , who is secondary, tertiary, etc. node. This
can be done based on the JGroups list presented in paragraph 5.1.3. The current
primary node can feed this list to the “Grouping Service”.

5.3 Design evaluation & Conclusion

It can be concluded that it is highly feasible to apply the presented design to
the Madeira use case. The design offers a better dependability of the entire NBI
service as a whole. Higher performance expectations can be set for the NBI as a
service.

Due to the mix of technologies involved, Java RMI , custom TCP state re-
tention, JGroups cluster management, custom WS-Policy extension and Web
services, the actual implementation will probably be a steep effort.

The added load on the underlying Madeira network is minimal. The state
replication solution presented in 5.1.1 is able to send only the changed objects
via a TCP connection. The NBI dispatcher can use Java RMI and therefore
keep any message markup overhead low. While the cluster management solution
discussed in 5.1.3 re-uses Madeira information about the location of the top-node,
which in its case is directly the cluster manager. This allows the clustering to take
place using a non-multicast solution, saving network resources. Optional added
network traffic is also the dispatching of write operations by the primary node,
as discussed in 5.1.2, and the exchange of service node locations by the Madeira
“grouping” service.

As discussed in paragraph 5.1.1, the NBI will be able to change location of the
primary service node in a matter of seconds instead of almost minutes, increasing
the availability dependability. This due to the Web services that already run in
secondary service nodes, combined with the preservation and availability of state
information and prior knowledge of the client about the probable whereabouts of
a newly erected primary service node.

Ultimately, within Madeira, the design makes the network connectivity be-
tween the NBI service and the OSS more dependable. The discussion in para-
graph 5.1.2 shows the ability to distinct read and write operations and thus
make use of the distributed NBI service paradigm. The loss of one node makes
a smaller dent into the performance of the service, thus improving the service
capacity dependability as well.

50



Chapter 6

Conclusions

In order to answer the main research question, a number of sub questions were
formulated. These sub-question were used as guideline in this thesis. These
sub-questions will be answered in section 6.2 after answering the main research
question in section 6.1. Ultimately future work is discussed in section 6.3.

6.1 Main research question

Answering the main research question “For the hierarchical distributed ad-hoc
NMS Madeira, how can the dependability of the interface towards the externally
located OSS be improved?”,the following can be concluded:

The ad-hoc network, combined with the fact that the interface operates from
one node, mainly influences the dependability. The interface is challenged in
the areas of availability, service capacity and connectivity capacity. Existing
approaches are not found able to facilitate the requirements of dependability in-
crease. Chapter 5 shows that the design introduced in chapter 4 is applicable
for Madeira. Based on a combination of existing paradigms, this design allows
decoupling the service from the physical host. This results in a number of nodes
being able to host (a part of) the service. Enabling the introduction of resources
redundancy, load distribution and state information replication. This reduces
the MTTR, increases the MTBF and equalises service capacity and network re-
sources.

6.2 Research sub-questions

1. The answer for the first sub-question, “Which dependability aspects of the
interface between the Madeira hierarchical distributed ad-hoc NMS and the
OSS should be improved?”, is that it is identified in section 3.3 that, to
become more dependable, the NBI is required to get a higher availability,

51



6.2 Research sub-questions Conclusions

have a stable node capacity and stable connectivity capacity. Where im-
provement of dependability is defined in section 3.1 as being able to set
higher service expectations.

2. To answer the second sub-question, “For addressing the identified depend-
ability aspects, what makes existing service approaches applicable or not ap-
plicable?”, is that these approaches, presented in section 3.4, render them-
selves useless due to the lack of facilitation for real-time synchronised dis-
tributed states. As discussed in paragraph 3.4.3, they mainly just replicate
the entire service to multiple nodes in the network, providing an overall
high availability dependability. The existence of multiple service nodes
allows clients to distribute requests, balancing load on service and connec-
tivity resources. This results in a higher dependability of the service and
its connectivity.

3. Answering the third sub-question “If existing approaches are not found able
to address all dependability aspects at once, how can existing approaches
be used, altered, combined and/or extended into one unified approach do-
ing so?”, it is shown that numerous existing paradigms can be re-used to
increase the dependability of the interface. Important re-usable paradigms
stated in 4.1 are partly distributed state forwarding, primary-secondary ser-
vice node separation, dispatcher, grid and load balancing approaches. In
combination with the introduction of separating state changing and non-
state changing operations, an integrated high-level design is discussed in 4.2.

In the design, partly distributed state forwarding from a primary node to
secondary nodes takes care of lightweight state distribution and preserva-
tion. The separation of state changing and non-state changing operations
allows the clients to invoke all state changing operations on the primary
node, thus keeping state changes centralised. This primary node also ap-
plies the dispatcher paradigm to distribute load to other nodes and thus
create more service capacity. The non-state changing operations can be dis-
patched by the client to a known list of secondary nodes, creating network
connectivity and computational resources balancing. Due to the availabil-
ity of running secondary nodes with recent state information, a client easily
switches to such a secondary node once the primary becomes unavailable.
This lowers the MTTR and thus increases availability.

4. Answering the last sub-question “How does the previously chosen approach
map to an implementation in the Madeira framework?”, it is shown in 5.1
that most of the design components can applied within the technologies
currently used by the Madeira platform.

For the dispatcher/grid paradigm at the primary node, Java RMI can be
used internally on the Madeira network. For distributing the information

52



Conclusions 6.3 Future work

which operations are service state changing and which ones are not, WSDL
files and a tailored WS-Policy extension can be used. For primary/sec-
ondary nodes cluster management JGroups can be used. The JGroups
service nodes location information can be distributed to the OSS by using
the Madeira pubscribe framework. Service session resumption is handled by
setting and synchronising request unique identifiers. For state distribution
a lightweight TCP service combined with the JGroups information can be
used. This makes the design highly applicable for the Madeira use case and
thus justifies its feasibility.

6.3 Future work

In the line of work done in this research, two major fields of future work are
forseen. The first is the actual implementation of the design presented in this
thesis. Second is a quantification of dependability metrics. Combined they can
provide a more precise evaluation of the design.

As for the current design applied in the Madeira case, the top-node NBI will
still suffer if there are a lot of notifications flowing from the network towards the
OSS . Both (outbound) connectivity and node resources are challenged. Since
this is a plausible situation for larger networks, further research is needed to find
a solution for cases where the number of notifications is choking the resources of
the primary NBI node.

53





Bibliography

[ACL04] Takoua Abdellatif, Emmanuel Cecchet, and Renaud Lachaize. Eval-
uation of a group communication middleware for clustered j2ee ap-
plication servers. In CoopIS/DOA/ODBASE (2), pages 1571–1589,
2004.

[AFC+06] P. Arozarena, M. Frints, S. Collins, L. Fallon, M.Zach, J. Serrat, and
J. Nielsen. A peer-to-peer approach to network management. In
Wireless World Research Forum, Shanghai, April 2006.

[AIH97] J.M Anderson, M. Ilyas, and S. Hsu. Distributed network manage-
ment in an internet environment. In Global Telecommunications Con-
ference, 1997. GLOBECOM ’97., IEEE, volume 1, pages 180–184,
Arizona, November 1997. IEEE, IEEE.

[ASB03] David G. Andersen, Alex C. Snoeren, and Hari Balakrishnan. Best-
path vs. multi-path overlay routing. In IMC ’03: Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement, pages 91–
100, New York, NY, USA, 2003. ACM Press.

[Bau04] Tim Bauge. Ad hoc networking in military scenarios. White Paper,
May 2004.

[BBB+06] Keith Ballinger, Bobby Bisset, Don Box, Francisco Curbera, and Don
Ferguson. Ws-metadataexchange. Specification, August 2006.

[BBC+06] Siddharth Bajaj, Don Box, Dave Chappell, Francisco Curbera, and
Glenn Daniels. Ws-policy. Specification, March 2006.

[BEOW99] Richard B. Bunt, Derek L. Eager, Gregory M. Oster, and Carey L.
Williamson. Achieving load balance and effective caching in clustered
Web servers. In Proceedings of the 4th International Web Caching
Workshop, 1999.

55



Bibliography Bibliography

[Bha99] Bharat K. Bhargava. Concurrency control in database systems.
Knowledge and Data Engineering, 11(1):3–16, 1999.

[BHM+04] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, and David Orchard. Web services architec-
ture. Technical report, W3C, February 2004.

[BM92] Navin Budhiraja and Keith Marzullo. Highly-available services using
the primary-backup approach. In Workshop on the Management of
Replicated Data, pages 47–50, 1992.

[Bor03] Joseph Borg. A comparative study of ad hoc & peer to peer networks.
Master’s thesis, University College London, August 2003.

[BvRV04] Ken Birman, Robbert van Renesse, and Werner Vogels. Adding high
availability and autonomic behavior to web services. In ICSE ’04:
Proceedings of the 26th International Conference on Software Engi-
neering, pages 17–26, Washington, DC, USA, 2004. IEEE Computer
Society.

[CCY99] Valeria Cardellini, Michele Colajanni, and Philips S. Yu. Dynamic
load balancing on web-server systems. IEEE Internet Computing,
3(3):28–39, May 1999.

[CDK+03] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. Splitstream: High-bandwidth multicast in cooperative en-
vironments, 2003.

[CGGC05] I.-R. Chen, Baoshan Gu, S.E. George, and Sheng-Tzong Cheng. On
failure recoverability of client-server applications in mobile wireless
environments. IEEE Transactions on Reliability, 54(1):115– 122,
March 2005.

[Che02] L. Cheng. Service advertisement and discovery in mobile ad hoc
networks, 2002.

[CN03] L. Cox and B. Noble. Samsara: Honor among thieves in peer-to-peer
storage, 2003.

[DLL04] A. Detti, C. Loreti, and P. Loreti. Effectiveness of overlay multicast-
ing in mobile ad-hoc network. In 2004 IEEE International Conference
on Communications, volume 7, pages 3891– 3895, June 2004.

[Fer90] D. Ferrari. Client requirements for real-time communication services;
RFC-1193. Internet Request for Comments, (1193), 1990.

56



Bibliography Bibliography

[Fri06] Martijn Frints. Possibilities of peer-to-peer technology in network
management. Master’s thesis, University of Twente, December 2006.

[FSG05] Liang Fang, Aleksander Slominski, and Dennis Gannon. Web services
security and load balancing in grid environment, 2005.

[GP05] G. Gehlen and L. Pham. Mobile web services for peer-to-peer appli-
cations. In Proceedings of the Consumer Communications and Net-
working Conference 2005, page 7, Las Vegas, USA, Jan 2005.

[HLP02] Prof. Dr. H. G. Hegering and Prof. Dr. C. Linnhoff-Popien. Peer-
to-peer und andere ad-hoc-dienste. Technical report, TU München,
2002.

[Int06] Internap. Performance ip network-based optimization, July 2006.

[JLD06] L. Juszczyk, J. Lzowski, and S. Dustdar. Web service discovery,
replication, and synchronization in ad-hoc networks. In ARES 2006,
pages 20–22, April 2006.

[Jus05] Lukasz Juszczyk. Replication and synchronization of web services in
ad-hoc networks. Master’s thesis, Techische Universitat Wien, May
2005.

[KRAV03] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh, 2003.

[Lap95] J.-C. Laprie. Dependability of computer systems: concepts, limits,
improvements. In Sixth International Symposium on Software Relia-
bility Engineering, pages 2–11, October 1995.

[Mon98] Lou Montulli. Persistent client state in a hypertext transfer protocol
based client-server system, June 1998.

[PGES05] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The
Bittorrent P2P file-sharing system: Measurements and analysis. In
4th Int’l Workshop on Peer-to-Peer Systems (IPTPS), Feb 2005.

[PKV96] Dhiraj K. Pradhan, P. Krishna, and Nitin H. Vaidya. Recoverable
mobile environment: Design and trade-off analysis. In Symposium on
Fault-Tolerant Computing, pages 16–25, 1996.

[RGK+05] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. Opendht: A public dht service
and its uses, 2005.

57



Bibliography Bibliography

[SCG+01] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin,
D. Leshchiner, M. Luby, T. Montgomery, L. Rizzo, A. Tweedly,
N. Bhaskar, R. Edmonstone, R. Sumanasekera, and L. Vicisano. Pgm
reliable transport protocol specification, 2001.

[SGF02] Rüdiger Schollmeier, Ingo Gruber, and Michael Finkenzeller. Routing
in mobile ad hoc and peer-to-peer networks. a comparison, 2002.

[Tia05] Min Tian. QoS integration in Web services with the WS-QoS frame-
work. PhD thesis, Freien Universität Berlin, December 2005.

[TT03] Domenico Talia and Paolo Trunfio. Toward a synergy between p2p
and grids. IEEE Internet Computing, 7(4):96–95, 2003.

[TVN+03] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller. Perfor-
mance considerations for mobile web services, 2003.

[VKT04] Sudarshan Vasudevan, Jim Kurose, and Don Towsley. Design and
analysis of a leader election algorithm for mobile ad hoc networks,
2004.

[Vog96] Werner Vogels. World wide failures. In EW 7: Proceedings of the 7th
workshop on ACM SIGOPS European workshop, pages 115–120, New
York, NY, USA, 1996. ACM Press.

[WL03] Jie Wu and Wei Lou. Forward-node-set-based broadcast in clustered
mobile ad hoc networks. Wireless Communications and Mobile Com-
puting, 3(2):155–173, March 2003.

[XN99] X. Xiao and L. M. Ni. Internet qos: A big picture, March 1999.

58



List of Acronyms
AAA . . . . . . . . . Authentication, Authorization, and Accounting

AMC . . . . . . . . . Adaptive Management Component

CH . . . . . . . . . . . Cluster Head

CM . . . . . . . . . . . Configuration Management

CPU . . . . . . . . . . Central Processing Unit

ddos . . . . . . . . . . distributed denial of service

DHCP . . . . . . . . Dynamic Host Configuration Protocol

EPR . . . . . . . . . . End Point Reference

FM . . . . . . . . . . . Fault Management

FTP . . . . . . . . . . File Transfer Protocol

GSM . . . . . . . . . GSM

HTTP . . . . . . . . Hyper Text Transfer Protocol

JSP . . . . . . . . . . . Java Servlet Pages

MANET . . . . . Mobile ad hoc Network

MOWS . . . . . . . Management Of Web Services

MTBF . . . . . . . . Mean Time Between Failure

MTTR . . . . . . . Mean Time To Repair

MUWS . . . . . . . Management Using Web Services

NBI . . . . . . . . . . . North Bound Interface

NE . . . . . . . . . . . . Network Equipment

NMS . . . . . . . . . Network Management System

OASIS . . . . . . . . Organization for the Advancement of Structured Infor-
mation Standards

OSI . . . . . . . . . . . Open System Interconnetion Reference Model

OSS . . . . . . . . . . . Operation Support System

p2p . . . . . . . . . . . peer-to-peer

PAN . . . . . . . . . . Personal Area Network

59



Bibliography Bibliography

PBMS . . . . . . . . Policy Based Management System

PC . . . . . . . . . . . . Personal Computer

PDA . . . . . . . . . . Personal Digital Assitant

QoS . . . . . . . . . . . Quality of Service

RMI . . . . . . . . . . Remote Method Invocation

SMTP . . . . . . . . Simple Mail Transfer Protocol

SNMP . . . . . . . . Simple Network Management Protocol

SOAP . . . . . . . . Simple Object Access Protocol

TCP . . . . . . . . . . Transport Control Protocol

UDDI . . . . . . . . Universal Description Discovery and Integration

UDP . . . . . . . . . . User Datagram Protocol

UWB . . . . . . . . . Ultra-Wide Band

WS . . . . . . . . . . . Web Service

WSDL . . . . . . . . Web Services Description Language

WSDM . . . . . . . Web Services Distributed Management

WSN . . . . . . . . . Web Service Notifications

WSRF . . . . . . . . Web Service Resource Framework

XML . . . . . . . . . Extensible Markup Language

60



Appendix A

Madeira Web Services

This section focuses on the general principles of Web services and the specific
technologies that were chosen in the Madeira framework.

A.1 Web Services paradigm

Web Service –A Web service is a software system designed to support interoper-
able machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP (Hyper Text Transfer Protocol) with an XML se-
rialisation in conjunction with other Web-related standards.[BHM+04]

An overview of how this paradigm can be modeled is provided in figure A.1.
A Web service application typically runs in a web container. For the Madeira
framework it was chosen to use Apache Tomcat1. Technologies used within, and
build on top of, Web services will be discussed in subsequent sections.

A.2 Web Services Description Language

To enable entities into discovering what functions are provided by the Web service,
the WSDL was developed. It is an XML based service description of the Web
service. It describes what operations and messages are supported by the service,
which are subsequently bound to a protocol and message formats required to
enable communication with the Web service.

The WSDL document is structured as follows2:

• Types–is defined to describe the data types used in the exchanged mes-
sages.

1http://tomcat.apache.org
2http://www.w3.org/TR/wsdl# document-s

61

http://tomcat.apache.org
http://www.w3.org/TR/wsdl#_document-s


A.3 UDDI Madeira Web Services

Figure A.1: Web services overview

• Messages–Represents an abstract definition of the data being transmitted.
Various logical parts make up a message, each of such a part is associated
with a definition within some type system.

• portType–Defines a set of abstract operations. Each operations refers to
an input message and output messages.

• Binding–Specifies concrete protocol and data format specifications for mes-
sages and operations defined by a particular portType.

• Port–Specifies the address for a binding and therefore defining a single
communication endpoint.

• Services–Used to aggregate a set of related ports.

A.3 Universal Description Discovery and Inte-

gration

To enable publishing and finding services offered by a Web service the UDDI has
been developed. The UDDI was designed as a worldwide registry where Web
services could be listed and resolved. However this envisioned status seems to
never been reached and it is asserted that most UDDI instances can be found
in intranets where they are used to dynamically bind clients to services3. The

3http://en.wikipedia.org/wiki/UDDI - accessed: 12-10-2006

62

http://en.wikipedia.org/wiki/UDDI


Madeira Web Services A.4 Simple Object Access Protocol

UDDI is filled with WSDL files which are published and uploaded in the form of
SOAP messages by the Web service. Requirement is that a client at least knows
the address of the UDDI and the identification (name) of the service it wants to
use. An UDDI might also require some security tokens to be presented by the
client for services that are not publicly available.

A.4 Simple Object Access Protocol

The SOAP protocol is used by Web service endpoints to exchange messages. This
protocol is an XML based messaging protocol4. The message exchanged between
entities consists of a SOAP header part, containing addressing information, and a
XML body part, containing the actual content, these parts combined is the SOAP
envelope. SOAP envelopes themselves can be exchanged via various protocols,
such as HTTP , SMTP (Simple Mail Transfer Protocol) and FTP (File Transfer
Protocol). The SOAP standard is implemented in Apache Axis5 and is therefore
used by the Madeira framework.

A.5 Web Service Resource Framework

By itself a Web service itself is stateless. This is inconvenient because it limits
the functionality of Web services. Therefore OASIS (Organization for the Ad-
vancement of Structured Information Standards) has specified the WSRF 6 that
enables the preservation of states. The WSRF uses a set of methods to store
and request states of a Web service. States are stored as “ResourcesProperties”
which are declared in the WSDL file. There are a number of operations available
by default.

• GetResourceProperty–gets a single ResourcesProperty based on name-
space and ResourcesProperty name;

• GetMultipleResourceProperties–gets multiple ResourcesProperty in-
stances in one request;

• SetResourceProperties–sets the value of a single ResourcesProperty;

• QueryResourceProperties–retrieves a list of all the available Resource-
sProperties;

This specification is implemented in the Apache pubscribe framework and is there-
fore used by the Madeira framework to support WSN (Web Service Notifications).

4http://www.w3.org/TR/soap12-part1/
5http://ws.apache.org/axis/
6http://www.oasis-open.org/committees/wsrf/

63

http://www.w3.org/TR/soap12-part1/
http://ws.apache.org/axis/
http://www.oasis-open.org/committees/wsrf/


A.6 Web Service Notifications Madeira Web Services

A.6 Web Service Notifications

Since the normal paradigm of a Web service is that a client does a request and the
server sends a response. There typically are no means to intiate communication
from the server side. Therefore several bodies are trying to provide protocols
that enable the server to send server initiated messages. OASIS offers the WSN
standard7, and IBM and Microsoft are providing a similar standard, called WS-
Eventing8. Both providing the ability to send notifications, in the form of SOAP
messages, from the server to the client. The basic operation is that a client
subscribes to certain topics while specifying a Web service endpoint. Subsequently
the server, in case of an event triggering a notification, sorts out which clients
are subscribed. The approach however requires the client to also be running a
Web service. Apache Pubscribe9 currently supports the WSN standard and is
therefore used by the Madeira framework, while WS-Eventing is supported by the
.NET framework10. WSN is used within Madeira to notify the OSS of network
events, such as FM alarms and CM events.

A.7 Web Services Distributed Management

Because there is a general tendency towards the ability to manage services, such
as networks or applications, a general framework specification has been created
by OASIS . This specification, called WSDM (Web Services Distributed Manage-
ment)11, consists of two sets of standards. The first being MOWS (Management
Of Web Services)12, it specifies how a Web service endpoint can be managed by
the use of Web services. Because it is only applicable to a very specific applica-
tion domain, it is outside the scope of this document. The second standard is
MUWS (Management Using Web Services)13, which defines how the management
of any resource can be accessed via the use of Web services.

MUWS is based on WSRF and WSN and allows a client to to perform man-
agement tasks, acquire management information and subscribe for notifications.
The MUWS standard specifies what the content of reports are, they must contain
an event number, identification of the source component, identification of the re-
porting component, and might contain additional information such as a date and
time of the report. Additional fields can be added as described in an additional

7http://www.oasis-open.org/committees/wsn/
8http://www.w3.org/Submission/WS-Eventing/
9http://ws.apache.org/pubscribe/

10http://www.microsoft.com/net/
11http://www.oasis-open.org/committees/wsdm/
12http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20574/

wsdm-mows-1.1-spec-os-01.pdf
13http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20576/

wsdm-muws1-1.1-spec-os-01.pdf

64

http://www.oasis-open.org/committees/wsn/
http://www.w3.org/Submission/WS-Eventing/
http://ws.apache.org/pubscribe/
http://www.microsoft.com/net/
http://www.oasis-open.org/committees/wsdm/
http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20574/wsdm-mows-1.1-spec-os-01.pdf
http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20574/wsdm-mows-1.1-spec-os-01.pdf
http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20576/wsdm-muws1-1.1-spec-os-01.pdf
http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20576/wsdm-muws1-1.1-spec-os-01.pdf


Madeira Web Services A.7 Web Services Distributed Management

MUWS specification 14. This specification used by the Madeira framework for
the NBI notifications.

14http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20575/
wsdm-muws2-1.1-spec-os-01.pdf

65

http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20575/wsdm-muws2-1.1-spec-os-01.pdf
http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/20575/wsdm-muws2-1.1-spec-os-01.pdf




Appendix B

Ad-hoc networks

This section aims at providing a better insight into the ad-hoc network paradigm.
It describes its main properties and behaviour.

B.1 Ad-hoc paradigm

Ad hoc network –An ad-hoc network may be defined as a self-organising, self-
healing (wireless) network in which (mobile) nodes are responsible for discovery of
each other and subsequent cooperation so that communication is possible.[Bor03]

Ad-hoc networks are networks that typically exist due to a special purpose.
This could be for example a provisional network in a search and rescue operation.
The ad-hoc paradigm is used in a large number of technologies such as IEEE
802.111, Bluetooth2 and UWB (Ultra-Wide Band)3. However, it can be noted
that many of those technologies are associated with wireless devices such as PDA
(Personal Digital Assitant) devices, laptops, mobile phones, etc. There is a more
detailed definition for this kind of networks namely MANET . A MANET merely
emphasises that the ad-hoc network runs on top of mobile nodes and is therefore
more likely to have unpredictable topology changes.

B.2 Properties overview

To be able to fully understand the ad-hoc network paradigm, the most important
properties of this type of networks can listed as [Bor03][SGF02]:

• Decentralised architecture–The network architecture of ad-hoc networks
is decentralised by nature.

1http://standards.ieee.org/getieee802/
2http://www.bluetooth.com
3http://www.uwbforum.org

67

http://standards.ieee.org/getieee802/
http://www.bluetooth.com
http://www.uwbforum.org


B.2 Properties overview Ad-hoc networks

• Transient behaviour–Nodes may come and go at any moment in time at
any place within the network.

• Transient by devices–The transient behaviour is often due to the physical
movement of devices.

• Heterogeneity of resources–Resources of nodes, in terms such as connec-
tivity and computational resources, can be diverse in these type of networks.
PDAs might be part of the network, but also mobile phones, PC (Personal
Computer)s or other computational devices may form part of these net-
works.

• Small network size–Due to the design of ad-hoc networks they do not
scale well for larger networks.

• In lower part of OSI –Designed mostly for the Network but also in the
Data-link and Physical layer of the OSI (Open System Interconnetion Ref-
erence Model) model.

• Autonomous network functioning–The ad-hoc network is able to or-
ganise itself without the need for an external party or a centralised server.
This functionality is enabled by pre-defined scripts, algorithms and policies.

• Node discovery–Nodes are automatically discovered and added to the
network.

• Routing–There are over 80 routing protocols4 available for ad-hoc networks
that enables the network to built inter-node routes. Or routes to other
networks such as the Internet.

• Node reachability–All nodes within the network are able to communicate
with each other.

• Multicasting–The network uses multicasting to enable nodes to find other
nodes and organise a network.

• Instantaneous–Due to the autonomous network management, these type
of networks are quickly deployed out in the field. Examples are for exam-
ple networks used in military deployments [Bau04], PAN (Personal Area
Network), search and rescue operations and sensor networks.

• Mostly wireless application–Most ad-hoc networks are a MANET be-
cause it is often not ideal and optimal applying the ad-hoc paradigm in
wired networks. Wired networks have other infrastructures that are bet-
ter suited for providing connectivity such as the DHCP (Dynamic Host
Configuration Protocol) and the use of routers.

4http://en.wikipedia.org/wiki/Ad hoc routing protocol list - accessed: 13-12-2006

68

http://en.wikipedia.org/wiki/Ad_hoc_routing_protocol_list


Ad-hoc networks B.2 Properties overview

• Physically nearby–Since most ad-hoc networks are a MANET , the nodes
joining are likely to be physically nearby to each other.

• Network findability–Prior knowledge of certain information such as a
broadcast addres and frequency ranges (in case of a MANET ) is required
to find and join the network.

• Network management–QoS and AAA (Authentication, Authorization,
and Accounting) are typically difficult to realise and in case of MANET s
physical constraints have to be taken into account.

As these basic characteristics of the ad-hoc network paradigm are listed, it can be
concluded that these networks provide the ability to quickly deploy a fully func-
tioning autonomous network. One in which the applications do not necessarily
have to care about handling routing of traffic, discovery of nodes or other basic
network management tasks.

69


	Abstract
	Acknowledgments
	Introduction
	Research goal
	Research question
	Research approach
	Outline thesis

	Madeira platform
	Network organisation
	Component overview
	Network management
	Operational scenarios

	Service dependability
	Networked services
	Service availability
	Service responsiveness
	Service capacity

	NBI dependability challenges
	Improvable NBI dependability aspects
	Ad-hoc & mobile services
	Ad-hoc: dependability impact
	Service approaches
	Applicability to Madeira

	Conclusion

	Service design
	Design choices
	Service persistence
	Service capacity
	Service connectivity
	Service availability
	Additional design choices & requirements

	Design overview
	General overview
	Service availability
	Service capacity & connectivity
	Cluster management

	Conclusion

	Design application
	From design to Madeira
	Service persistence
	Service capacity & service connectivity
	Cluster management

	Madeira backend services coupling
	Network notifications
	OSS requests and policies
	Network setup & re-configuration

	Design evaluation & Conclusion

	Conclusions
	Main research question
	Research sub-questions
	Future work

	Bibliography
	List of Acronyms
	Madeira Web Services
	Web Services paradigm
	WSDL
	UDDI
	SOAP
	WSRF
	WSN
	WSDM

	Ad-hoc networks
	Ad-hoc paradigm
	Properties overview


