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Abstract 
 

 
Abstract 

 
This thesis describes a research project related to gesture recognition in a meeting 
environment. In this research project we want to determine where the challenges lie 
in gesture recognition and what the recognition performance is when we apply 
existing machine learning techniques in a real life setting such as meetings. The 
research is split up in four parts. The first part is feature selection. This part 
encompasses the process of analyzing meetings on useful gestures, annotating these 
gestures, parameterization with possible features and selecting the most useful 
features. The second part is segmentation, the process of automatically locating 
gestures in a meeting. Two segmentation approaches are examined; whole gesture 
segmentation and gesture part segmentation. Two methods, BIC and AM, are 
compared for each approach. The third part is feature clustering, the mapping of 
continuous data to discrete data. Two methods are compared for this purpose, K-
Means and Expectation Maximization. The final part is classification, labeling data 
parts with the correct gesture label. Hidden Markov models are used for 
classification. The main goal is to compare the classification performance on 
annotated gestures with the classification performance on automatically segmented 
gestures. From these four phases follows the project’s conclusions and 
recommendations.   
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1 - Introduction 

 
Chapter 1 - Introduction 

To introduce the topic of gesture recognition we will first explain what we mean when 
we speak of gestures. What kind of movements are gestures and what are common 
characteristics that separate them from other types of movements? Following this we 
give our motivation and the objective of this research project.  To place our research 
into context, we give an overview of the current state of the art in gesture 
recognition. We will present the background, some examples of previous work and 
commonly used methods and approaches. With the state of the art in mind, we look 
at the approach we want to take in this project.  
 
1.1. What is a gesture 

When people hear the term gesture recognition, their first reaction almost always is: 
“Oh so you are doing something with sign language.” Although sign language is an 
important and well known type of gesture, it is certainly not the only type of gesture. 
In this thesis we look at a broader definition. Next to hand gestures we also look at 
head gestures such as nodding and whole body gestures such as standing up. These 
gestures differ from each other in a lot of aspects. But the thing that separates 
gestures from other types of movement is their relation with communication. This 
idea is nicely formulated by Nespoulous [43]. 
 

"The notion of gesture is to embrace all kinds of instances where an individual 
engages in movements whose communicative intent is paramount, manifest, and 
openly acknowledged."  

 
Before we look further into techniques used in gesture recognition it is important to 
consider what the characteristics of gestures are. Gestures are variable in space and 
time, a so called spatio-temporal event. Gestures are variable in time because they 
have a certain start time, a variable duration and an end time. Also two examples of 
the same gesture will never be exactly alike. This makes gestures also variable in 
space. 
 
Some early studies have looked into the temporal characteristics of gestures. Kendon 
[34] states that a gesture consists of three phases: preparation, nucleus and 
retraction or reposition. The gesturing person first makes a preparatory movement, 
followed by the actual core of the movement, the nucleus, followed by a retraction to 
a rest position or a reposition for a new gesture phrase. McNeil [38] proposed a 
similar structure where he distinguished the following phases: preparation, (optional) 
pre-stroke hold, stroke, (optional) post-stroke hold and retraction. The structures of 
Kendon and McNeil focus only on the different temporal phases of a gesture and give 
no description of the gesture itself. Rossini [51] looked into spatial characteristics of 
gestures and proposed to enrich the phases of Kendon and McNeil with certain 
measurable parameters. Such as the angle of the moving joint, gesture timing, point 
of articulation (the main joint involved in the gesture) and locus (the main body part 
involved in the gesture).  
 
In the next paragraph we first describe our motivation and objective for this research 
project, before we take a look at the state of the art in the research field of gesture 
recognition. 
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1.2. Project goal 

The goal of this project is based on the motivation of the AMI project and our own 
motivation. From our motivation follows the main objective for this project. The 
obvious project goal is to fulfill this objective.    
 
1.2.1. Motivation 

New technologies open up new channels of communication for human-computer 
interaction. Traditional human-computer interaction devices (keyboard and mouse) 
are more and more replaced with these other channels of communicative input. 
These channels offer opportunities for communication in a more natural way using a 
variety of modalities, for example speech, text and nonverbal cues such as gestures. 
New opportunities also create new challenges. To face some of these challenges, 
sixteen partners from both the academic and the industrial world have combined 
their efforts in the AMI (Augmented Multiparty Interaction) project [5]. The general 
target of the AMI project is to support human interaction in the context of smart 
meeting rooms and remote meeting assistants. The main goals are to enhance the 
value of offline meeting recordings and to make real-time human interaction more 
effective. To achieve these goals new tools are developed for computer supported 
cooperative work and browsing and searching in multimodal meeting recordings.   
 
As part of the multimodal input interface, the AMI project looks into gesture 
recognition as a form of visual input. Gesture recognition can play a role in the two 
main goals stated above, the online and offline enhancement of the meeting 
environment. A real-time form of gesture recognition can serve as part of the 
multimodal input interface in the online meeting environment. An offline form of 
gesture recognition can help enhance the value of recorded meetings, for example to 
search for video sequences where voting gestures occur.  
 
Our own motivation for this research is based on some general observations we 
made during our literature study. We observed that most research in the gesture 
recognition field makes several assumptions on the recognition problem at hand. It is 
often assumed that: 

• The features describing the gestures are very precise and insensitive to noise. 
The features are often obtained in a controlled “laboratory like” environment. 

• The gesture set is limited and consists of easy separable gestures. 
• The gestures can be easily segmented from other types of movement in the 

feature sequences or the gestures are already segmented beforehand. 
 
In our opinion these assumptions cannot be made for real-life applications of gesture 
recognition. In more natural gesture recognition applications the feature extraction 
will most likely be less controlled. This is because using obtrusive devices, such as a 
data glove, will be out of the question. The features will most likely come from a 
computer vision based analysis of one or more camera recordings. We also think that 
it is unrealistic to assume that feature sequences are segmented beforehand. We 
expect that gesture segmentation will be a difficult research area.  
 
A second aspect of our motivation is that gesture recognition is a relatively new area 
of research. The lack of a standard, fully developed approach makes this research 
challenging. 
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1.2.2. Objective 

As we have seen in the motivation paragraph most gesture recognition systems used 
in the literature are tested and applied in a laboratory like environment. In these 
previous studies the boundaries, on how to perform a certain gesture, are often 
strictly defined. The features describing the gestures are often precise and not very 
susceptible to noise. The chosen gesture set mostly consists of gestures that are 
easily distinguishable by gesture recognition systems. Moreover, the video data is 
specifically recorded for gesture recognition. It often contains one isolated gesture, 
making gesture segmentation unnecessary.  
 
The meeting setting of the AMI project is a different environment, in which gestures 
are produced in a more natural way. The meetings were not specifically recorded for 
use in a gesture recognition system. Recognizing gestures in this more natural 
environment poses some new challenges. Features, obtained from a video recording 
with computer vision techniques, will be less precise than features obtained with a 
data glove for example. Gestures performed during meetings such as nodding will 
not be so easily distinguished from other types of movements. Also, the gestures are 
not recorded as separate isolated gestures but they are part of one entire meeting 
recording. This introduces the additional problem of having to segment the gestures 
from the rest of the meeting. 
 
This discrepancy brings us to our research objective. In this research project we 
want to determine where the challenges lie in gesture recognition and what the 
recognition performance is when we apply existing machine learning techniques that 
are used in gesture recognition to recognize a set of predefined gestures in the more 
natural meeting setting. 
 
We focus in this project on an offline form of gesture recognition. We want to locate 
gestures in pre-recorded meetings. This limits the problem area because additional 
real-time constraints are not included. To place our research into context and to 
determine which techniques and approaches are commonly used in gesture 
recognition, we take a look at the state of the art in the next paragraph. 
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1.3. State of the Art 

In the past two decades different fields of computer science have taken more and 
more interest in the domain of “Looking at People”. This domain covers a wide span 
of problem areas such as face recognition, gesture recognition, tracking humans and 
emotion research. Because of this wide problem span there is much attention from 
both the field of computer vision (finding and tracking objects) as well as the field of 
machine learning (pattern recognition). Recently the field of Human Computer 
Interaction has taken an interest, because of the promising applications this domain 
offers in creating a more natural way for humans to interact with computer 
technology in their environment. The ability to recognize human gestures opens up a 
wide range of possible applications. Just a few examples of application areas are: 
 

• Automatic recognition of sign language to facilitate communication with the 
hearing impaired. 

• Using gestures as part of a more natural interface with computer technology. 
• Making video searchable, for example searching for voting gestures in a video 

recording of a debate.  
• Using a recognition result as input for character animation to replay a certain 

event in a virtual world. 
• Using gestures as input to explain the emotion of a gesturing person. 
• Recognizing suspicious movements for surveillance purposes. 
 

This survey first provides an overview of recent surveys in the gesture recognition 
domain. Secondly it illustrates two common approaches seen in gesture recognition. 
In the remaining part of the survey, one of these approaches is examined in detail. 
This will result in an illustration of problems areas and state of the art methods and 
solutions. This approach and these methods will serve as a source of inspiration for 
our own approach described in Paragraph 1.4.     
 
1.3.1. Previous work 

The interdisciplinary research field of gesture recognition originated from the fields of 
computer vision and machine learning. Because of this, gesture recognition surveys 
often make a categorization in methods originating from either a computer vision or 
a machine learning point of view. Computer vision approaches typically use some 
form of low-level modeling of the motion dynamics to recognize a gesture. For 
example Motion History Images used by Davis and Bobick [17] in combination with 
template matching. The machine learning point of view concentrates more on finding 
patterns and relationships in high-level features, for example trajectory 
parameterization and state-space approaches. Because work in the domain of 
gesture recognition has been carried out for more than a decade, there have been a 
number of previous surveys on this topic. To put this survey into context these will 
be discussed shortly in chronological order.  
 

• Cédras and Shah [12] covered work prior to 1995 in their survey. They focus 
on the subjects of motion extraction, motion recognition and motion tracking. 
The survey does not focus on a specific type of gesture but uses the global idea 
of human motion.  

• Wu and Huang [66] published a survey in 1999 about how to represent human 
gestures, what features to use and how to collect this data. It also surveys 
some techniques for temporal gesture modeling and sign language recognition.  
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• Aggarwal and Cai [1] published a survey in 1999 covering mainly human 
motion analysis and motion tracking. The last chapter of this survey focuses 
more on activity recognition.  

• In 1999 Gavrila [24] published a survey about the visual analysis of human 
movement. The survey starts with the different 2D and 3D approaches for 
motion analysis and concludes with a description of different action recognition 
methodologies.  

• In 1999 Wang and Singh [61] describe the methods used in tracking and 
motion analysis of the whole body and of the different body parts. This survey 
focuses mainly on the feature extraction process.    

• Moeslund and Granum [39] made a survey in 2001 which covers the 
initialization of gesture recognition systems, the tracking of human motion, 
pose estimation and recognizing human motion.  

• Turk wrote, in the handbook of virtual environments [58] in 2002, an overview 
chapter on gesture recognition. This overview looks into the nature and 
representation of gestures. It also surveys different pen-based, tracker-based 
and vision-based gesture recognition approaches.  

• Wang et al. [62] presented in 2003 a survey about motion detection, tracking, 
behavior understanding and action recognition. This survey focuses mainly on 
the feature extraction process.    

• Chellappa et al. [13] discussed in 2005 different techniques for human 
identification using face or gait analysis. Also human activity recognition is 
covered but the focus is not on gestures but on activities, such as walking, for 
use in surveillance systems. 

 
As said, the surveys mentioned above frequently make the distinction between a 
computer vision and a machine learning point of view. In the next paragraph these 
two approaches are examined and compared.  
 
1.3.2. Two common approaches  

In this paragraph we examine the computer vision and machine 
learning point of view in more detail. The simple roadmap of 
Figure 1.1 is the same for both approaches. First a feature 
extraction module produces some form of features from the 
video. These features are used by the classification module to 
identify and label the gestures. A gesture interpretation module 
uses this classification result to give a meaning to the gesture, 
given the context in which the gesture was made. For example a 
recognized nodding gesture in context of a discussion indicates 
that the gesturing person agrees.  
 
In the feature extraction phase, most computer vision 
approaches transform a sequence of raw video images to a new 
image which captures the motion present in that sequence. These 
motion history images are compared in the gesture classification 
phase with a number of templates, one for each gesture. The 
gesture template which resembles the current motion image the 
most, classifies the current sequence. Most methods update the 
template afterwards with the new information of the current 
sequence to improve the template quality.       

Figure 1.1 – Common 
roadmap in gesture 
recognition 

- 9 - 



1 – Introduction 
 

Machine learning approaches take a different route in the 
feature extraction phase. Instead of computing one new 
image these methods abandon this image representation 
and transform a sequence of images into a sequence of 
higher level features. These features describe the motion in 
the images for example in terms of position of the hands or 
changes in velocity. The actual machine learning techniques 
come into play in the gesture classification phase. The 
general idea is to look for patterns and relationships in the 
feature data which are specific for a certain gesture. When 
such a specific pattern is present in the sequence of 
features, the corresponding gesture was performed in the 
original video. 

Figure 1.2 – Structure 
of machine learning 
based classification 

 
This survey focuses only on the machine learning approach 
to the gesture classification phase of Figure 1.1. A more 
detailed approach of this phase is given in Figure 1.2. This 
phase consists of selecting the most useful features from 
the feature extraction phase, segment these feature 
streams in time and cluster them in space to get a suitable 
representation for classification. These four sub-phases and 
corresponding techniques will be discussed in more detail in 
the next paragraphs. 
 
 
 

1.3.3. Feature Selection 

The first step of this phase is to determine all high level features that can be 
obtained directly or that can be calculated from the feature extraction module of 
Figure 1.1. Features that can be obtained directly are for example angles between 
different joints. Calculated features can for example be angular velocity or angular 
acceleration. 
 
The second step of the feature selection phase is to select a subset of features which 
are most suitable for the segmentation, clustering and classification phases that 
follow. An approach to this problem is to determine which features give the best 
description of the different gestures and at the same time discriminate the best 
between the different gesture classes. The so called most expressive features (MEF) 
and most discriminating features (MDF). This approach is described by Wu and 
Huang [66]. 
 
Another possibility is to represent the features in a smart way by deriving a new 
smaller set of features from the original feature space. When enough features and 
possibly different representations of the same features, are calculated it is possible 
to reduce the feature space to a more compact form. During this process it is 
important to retain as much of the original feature information as possible in the 
new, smaller feature set. A number of techniques are available for this problem. 
Principal component analysis (PCA) is for example used by Wu and Sutherland [65]. 
Fang et al. [21] use Self Organizing Feature Maps (SOFM) to reduce their feature 
vector. 
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1.3.4. Segmentation 

The general idea of the segmentation phase is to segment the spatio-temporal 
feature data in time. The aim is to obtain time sequences of features containing a 
gesture or gesture part. Segmentation is necessary because the person on the video 
will not be making gestures all the time. The feature streams will therefore not 
contain useful gesture data at every given moment. By segmenting the gestures 
explicitly, one can leave out those non-interesting parts of the data and consider only 
the gestures or gesture phases. It is also possible that two different gestures follow 
each other directly. Segmentation is in this case necessary to be able to split these 
two gestures. Kendon [33] mentions that humans also segment gestures first before 
recognizing the gesture itself. This may also be an indication that segmentation is 
useful. 
 
The most common approach to the segmentation process is explicitly extracting a 
complete gesture from the stream of feature vectors using some form of activation 
function or threshold. An alternative approach is not to segment explicitly before 
classification. This option is possible when a state space approach, such as a hidden 
Markov model (HMM), is used for classification. State transitions in an HMM are 
based on transition probabilities. These probabilities can be considered as an 
activation function. This way the classification method implicitly segments the data 
stream by remaining in a start state until it detects a gesture start. The end of a 
gesture is detected when the HMM enters an end state. A third option is a 
combination of the two methods mentioned above. This method explicitly segments 
the data stream on a lower level into gesture parts, instead of segmenting the whole 
gesture. These gesture parts are then combined in an HMM. These three options will 
be discussed below in more detail. 
 
Almost every explicit segmentation method mentioned in the literature makes the 
assumption that a gesture has rest poses at the beginning and at the end of a 
gesture. It is assumed that in such a rest pose a certain measured activity drops 
below a threshold or is in a local minimum. When this happens a gesture boundary is 
detected. This notion of rest poses is described by McNeill [38]. He states that a 
gesture always starts and ends in a certain rest state. McNeill also describes optional 
rest poses or holds within a gesture phrase: preparation, (optional) pre-stroke hold, 
stroke, (optional) post-stroke hold and retraction. These holds within a gesture could 
be a potential problem because they can result in boundary detection within a 
gesture. On the other hand, holds and rest states will likely differ in duration. Holds 
will generally be shorter than rest states making them distinguishable. 
 
The features used to calculate an activity measure differ between papers. Camurri et 
al. [10] measure the amount of detected motion by looking at variations in the 
silhouette and position of music and dance performers in the last few frames. This 
quantity of motion measure contains information about velocity and force. Fang et al. 
[21] segment continuous sign language data produced with a data glove. They first 
extract position, orientation and posture data, this data is transformed using a self 
organizing feature map (SOFM). The output of this SOFM is used to train a recurrent 
network which is used to segment the data. They obtain good results using this 
approach. However, the data glove and sign language setting, is less relevant to our 
research. Howell and Buxton [26] use the amount of changing pixels in pointing and 
waving gestures, between two frames, to detect how much motion is present. When 
the amount drops below a certain threshold a gesture boundary is detected.  
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Zhao [67] uses a combined zero-crossing and curvature method to detect boundaries 
in all sorts of motion of the human body. For their motion samples this method is 
more reliable than only using zero-crossing in the second derivative of the motion 
data, to detect significant changes. Zhao also mentions that the curvature is 
prominently high when a motion starts, ends or changes direction. Kahol et al. [32, 
31] use a minimum force measure to determine the local minima in total body force 
of dance movements. This total body force is calculated from the force, kinetic 
energy and momentum of the different body segments. While 93% of the boundaries 
are correctly detected, it is mentioned that some insertions were made. 
 
Implicit segmentation using a state space approach such as an HMM is applied by 
Rigoll et al. [49], and McCowan et al. [37]. The disadvantage of this segmentation 
method is that an HMM cannot cope well with overlapping gestures or gestures with 
intermediate poses that resemble begin states of other gestures, see [31]. 
Overlapping gestures could also affect the performance of explicit segmentation. 
However explicit segmentation has some possible solutions for this problem, such as 
different activity measures, while implicit segmentation has not.    
 
The last possibility, to combine the two methods mentioned above, is taken by Wang 
et al. [63]. They use local minima in acceleration to find certain boundaries. The 
blocks between these boundaries are seen as characters of a gesture alphabet. The 
concatenation of different gesture characters forming a gesture, is modeled using an 
HMM. Parallels can be drawn between this approach and speech recognition. For the 
interested reader we refer to a book by Jurafski and Martin [30], chapter 7 in 
particular. The elements of a gesture alphabet can be seen as phoneme-like units. In 
speech recognition the audio data is segmented into phonemes and combined to 
form different words. The same principle can be applied to gesture recognition by 
segmenting the feature data into small phoneme-like elements and combine them to 
form a single gesture. A difference with speech recognition is that predefined 
phonemes do not yet exist for gestures. This approach is applied to sign language 
recognition by Murakami and Taguchi [42], they use recurrent neural networks to 
construct the different sign language characters. Birk et al. [8] use principal 
component analysis to construct these sign language characters.  
 
1.3.5. Feature Clustering 

Whereas in the segmentation phase the spatio-temporal feature data is segmented 
in time, feature clustering is used to cluster the feature data in space. A number of 
classification methods used in the next phase require, or work better on discrete 
data. The general idea of clustering is to label all feature vectors at frame level with 
a discrete label. This maps similar feature vectors to the same label, reducing the 
search space and making the classification problem less complex. To handle this task 
there are several vector quantization techniques at our disposal. There are 
unsupervised iterative techniques such as K-means clustering or its generalized 
counterpart Expectation Maximization (EM). There are also supervised learning based 
techniques, such as self organizing maps or feed forward neural networks.   
 
Instead of labeling at frame level, it is also possible to go a step further by grouping 
several feature vectors together and give a single label to this group. We call this 
labeled group of feature vectors a gesture building block. In the remainder of this 
thesis we will abbreviate this term as GBB. A gesture can then be seen as a 
concatenation of a number of these GBBs. The GBBs can be intuitive, visually 
observable parts in a gesture or unintuitive, non-observable parts. For example, the 
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phoneme like units, mentioned in the previous segmentation paragraph, can be used 
as parts. An advantage of creating an intermediate abstraction layer of GBBs is that 
you can map different feature sets to the same GBBs. This way you can treat the 
classification of GBBs as a separate and maybe simpler classification problem. Bauer 
and Kraiss [6] use K-means clustering in sign language recognition. The feature 
vectors are clustered into different classes. Each class has its own representation 
called a Fenonic baseform. These Fenonic baseforms are the GBBs they use. A 
concatenation of baseforms forms a sign. Gaffney and Smyth [23] use a linear 
regression mixture model and a kernel regression mixture model to cluster trajectory 
based data. This method compensates for trajectories that belong to the same 
cluster but differ in duration.  
 
1.3.6. Classification 

In the classification phase the feature data from the previous two phases has to be 
given a gesture label. Classification only gives a name to a sequence of feature data. 
The parameterization and interpretation are left to subsequent phases. In the 
literature there are two main methodologies commonly used for classification. One 
focuses on a model based approach, where certain dynamics of human motion are 
considered. The other is a state space approach, where intermediate states of a 
gesture are used for recognition. Both methodologies will be discussed. 
 
When using the model based approach there are different ways in which one can 
model the underlying dynamics of a certain gesture. Examples are the calculation of 
hand trajectories [41, 35, 15], calculating angles between different body segments 
[53] or using changes in the velocity or acceleration of the motion [13]. The model 
based approach classifies different gestures by matching the data to be classified 
with certain predefined templates. These templates are different from the templates 
used in computer vision approaches, mentioned earlier in this survey. The computer 
vision approaches map the gesture to a static image template. The templates 
discussed here model the dynamics of certain gesture features and therefore do not 
take place in the image domain. The templates represent the average of a certain 
gesture class. How this average is computed is beyond the scope of this survey. The 
gesture template that resembles the data sample the most, will classify the gesture. 
This resemblance between template and data sample is usually determined using a 
similarity measure. Several measures can be defined such as the maximum deviation 
error between template and sample, the sum of the deviations for each data point or 
the sum of squared deviations for each data point. See for example [15]. A 
disadvantage of using a template is that the duration of the average gesture in the 
template is fixed at a certain value. A new data sample will likely have a different 
duration, which means you have to compensate for this difference. Dynamic Time 
Warping is frequently used for this purpose.  
 
The state space approach assumes that a gesture is essentially a sequence of states. 
Static postures are most commonly used as states. These states in combination with 
certain state probabilistic transitions form a framework for gesture recognition. 
Classification is done by evaluating how probable it is that an observed sequence of 
states is a certain gesture. The method used in a state space approach is almost 
always a form of hidden Markov model (HMM). HMMs are specifically suitable for 
time varying data because the time component is implicitly modeled in the 
probability matrix of the HMM. Gestures can stay longer or shorter in intermediate 
states. However this duration compensation has its limits. If gestures differ too much 
in duration the probability matrix becomes distorted.  
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A disadvantage of HMMs is that they make the assumption that a gesture is made up 
of a sequence of discrete states. This implies that the data is piecewise stationary, 
which may not be the case. It is possible to overcome this problem by using 
continuous states in an HMM [3]. Also HMMs will generally have a poor performance 
if the Markov condition doesn’t apply to the data. An N-order Markov condition 
assumes that the current state depends only on the N previous states. The problem 
with this assumption is that a large N is needed to model long term dependencies in 
gestures, which makes the problem computationally too complex and training 
virtually impossible. Nevertheless HMMs are the most commonly used method in 
different gesture recognition applications [21, 49, 6, 60, 25, 36, 59, 52].  
 
Occasionally a few special cases of the HMM approach are used, such as an 
HMM/neural network hybrid [14]. In HMMs the output probability distribution of each 
state is assumed to have a certain trainable parametric distribution. Neural networks 
on the other hand do not make an assumption on the statistical distribution of 
patterns in the input space. A hybrid of these methods uses neural networks to 
estimate these state distribution functions of the HMM, resulting in the best of both 
worlds. Semi-continuous HMMs are used by Zobl [69]. This HMM bridges the gap 
between discrete and continuous HMMs, by using the codebook of a vector 
quantization in the output distribution of each HMM state. This gives the advantage 
of a lower quantity of estimated parameters compared to a continuous HMM, which 
makes the problem easier to learn. Bengio proposes asynchronous HMMs [7] to cope 
with asynchrony that can occur when multiple data streams are used as input for 
classification. For example pointing to a map and then saying “I want to go there” 
leads to asynchrony between the gesture and the speech fragment.   
 
There are some other methods which can be used for classification such as radial 
basis functions (RBF) or neural networks. The use of these methods appears 
sometimes in the literature [26, 27], but they are far less commonly used than the 
two approaches discussed above. This can be explained by looking at the nature of 
these methods. Neural networks were originally devised to handle the classification 
or regression of static data. The gesture recognition problem has data that varies 
over time. This temporal component makes the problem less suitable for neural 
networks. Some extensions have been made, such as time delay neural networks, 
time delay RBF or recurrent neural networks, to cope with this temporal component. 
These extensions require an assumption on the time window to use. Short time 
dependencies can be modeled with these neural networks. Longer dependencies 
require a larger time window which increases the network complexity too much. 
These methods remain therefore in principle less suitable for time varying problems. 
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1.4. Approach 

The approach we want to take is the same approach as the roadmap given in Figure 
1.2 of the state of the art overview. This means that the project will be divided into 
four phases. A more detailed version of this part of the roadmap is given in Figure 
1.3. Below, each phase is discussed separately in terms of the input, what is done 
with this input and the output. Furthermore we discuss the way in which we divided 
the task in this project.  
 

 
 
 

Figure 1.3 - A detailed figure of the input and output of each phase. The video files are 
annotated and useful features for segmentation and classification are determined from the 
extracted video features. The useful segmentation features are used in segmentation 
resulting in feature segments. The data in these feature segments can be made discrete 
with feature clustering. Based on the useful classification features, the data in the 
continuous or discrete segments is labeled in classification, resulting in classified gestures. 

 
1.4.1. Feature selection  

Video’s, extracted video features    Useful features 
 
The purpose of the feature selection phase is to find useful features for the 
segmentation and classification of gestures. Useful features for classification are 
those features which consistently describe the gestures and make a clear distinction 
between the gesture classes. These features can be obtained either directly from the 
extracted video features or by calculating new features from these extracted 
features. However before a selection of useful features can be made, some other 
steps have to be taken first.   
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Step 1 – Video analysis 

Before we can select features, we first have to select the gestures we want to 
recognize. We want to know which gestures are commonly made during a meeting 
and which are useful to recognize. For this purpose the fist objective of this phase is 
to make an analysis of the meeting videos resulting in a selection of useful gestures. 
 
Step 2 – Annotation 

Features are calculated for the entire duration of a meeting. To be able to say 
something about the usefulness of a feature for a certain gesture, we have to label 
the correct part of the corresponding feature file. For this purpose we have to know 
exactly when a certain gesture takes place. This asks for the annotation of a certain 
amount of meeting data. The annotation process is the second objective of this 
phase. 
 
Step 3 – Gesture parameterization 

The third objective of this phase is to analyze ways in which gestures can be 
parameterized with features. For this purpose we are going to look at how people 
recognize gestures, what properties a good feature should have and which features 
we can calculate from the extracted video features. We also take the human 
perception into account because this might provide clues for the parameterization of 
gestures.  
 
Step 4 – Feature Selection 

Once we have determined a collection of features, the question which features 
should be used, can be answered. Our goal is to first filter the obtained feature set 
on outliers and noise. Second, using dimensionality reduction techniques, we try to 
remove those features that do not contain enough useful information. This leaves a 
set of features, from which we can select an optimal set in both the segmentation 
and classification phase. 
 
1.4.2. Segmentation 

Useful features  Feature segments 
 
The purpose of segmentation is to automatically find the gesture boundaries in the 
feature stream of an entire meeting. In the annotation step this segmentation is 
already done by hand for a number of meetings. However, if we want our system to 
recognize gestures by itself in a meeting video, this segmentation has to be done 
automatically. The approach to the segmentation problem is also split up in a 
number of steps. 
 
Step 1 – Segmentation technique selection 

The first step is to select and elaborate on two segmentation techniques using the 
available literature on this topic. The two techniques we are going to compare are a 
technique based on an activity measure (AM) and a probabilistic technique that uses 
the Bayesian information criterion (BIC). 
 
Step 2 – Segmentation feature selection 

The next step is to determine which subset of the useful features is most suitable for 
segmentation. Hand gestures will be segmented on a different feature set than head 
gestures for example. 
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Step 3 – Testing and evaluation 

The last step is to test the performance of the two selected segmentation techniques. 
To test this performance we need to set up an evaluation method that compares the 
automatically placed boundaries with the annotated boundaries. We will use two 
evaluation criteria. One is based on segmenting the gesture as a whole from the rest 
of the meeting. The second is a more tolerant criterion which is based on segmenting 
gesture parts. These parts may be used later to construct the earlier discussed GBBs. 
With these evaluation criteria we can evaluate the performance of the two 
segmentation techniques and select which technique is best. 
 
1.4.3. Feature clustering 

Continuous feature segments  Discrete feature segments 
 
Feature clustering is used to map the continuous values of the feature data to a 
number of predefined discrete values. The clustering method serves as a way to 
remove certain variations within a gesture class and map an occurrence of a gesture 
to a range of discrete values. This clustering step also allows the use of some 
classification techniques, such as discrete HMMs, which require discrete input values.  
 
The approach in this phase is to analyze two vector quantization techniques. The first 
is the commonly used method of K-means clustering. The second is a probabilistic 
variant on K-means called Expectation Maximization. We will determine in this phase 
which technique best suits our purposes. This technique can then be used in the 
classification phase to cluster the input data at frame level or to define GBBs as 
mentioned in the state of the art paragraph.  
 
1.4.4. Classification  

Feature segments  Classified gesture  
 
The goal of classification is to label the incoming feature segments with their correct 
gesture label. The approach in this phase can also be split up in a few steps. 
 
Step 1 - Selecting classification technique 

The first step is to select one classification technique out of the options that were 
mentioned in the state of the art survey.    
 
Step 2 – Classification analysis 

The second step is the analysis of different classification problems. The first problem 
involves the input representation. Questions like how to apply clustering or how to 
construct GBBs. The second problem is how to classify the generated feature 
segments of an entire meeting and find the correct gesture locations. 
 
Step 3 – Determining the test space  

The third step of the classification phase is to determine the options we want to test 
in the test step. These options are divided in the selecting feature subsets that seem 
most suitable for classification and determining the different classifier parameters.  
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Step 4 - Testing 

The fourth step is to test all the options selected in the test space and determine the 
performance of the best setup. The approach is divided in three tests. The first test 
will be used to reduce the options in the test space to a manageable size. The second 
test will determine the best classification setup and the performance on the manually 
annotated gestures. The third test will determine the performance on the feature 
segments generated by automatic segmentation. 
 
Step 5 - Evaluation 

The last step of the classification phase is to make an evaluation and give an 
explanation of the test results and the observations made during testing.  
 
1.4.5. Dividing the tasks 

Dividing a large project such as this into two parts is not an easy task. An apparent 
solution would be to just work separately on different phases. This is however not an 
option because the phases are sequential, the next phase relies on the previous 
phases. Therefore we chose to divide the work of each of the phases in two, as the 
project progresses. This also has advantages, since working on the same subject 
simplifies the discussion about that subject and makes it easier to give a second 
opinion. This is, of course, beneficial to the research. This advantage is at the same 
time a bit of a disadvantage because more time is spent in discussion about a 
subject. But we believe discussion leads to better ideas and results in the end.   
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Chapter 2 - Feature selection 

This chapter covers the process of selecting gestures from the meeting videos and 
determining a set of features which describe these gestures. Paragraph 2.1 covers 
the selection of a set of gestures for future recognition. In Paragraph 2.2 the 
annotation process of these gestures is described. Following this we examine 
possible ways to parameterize these gestures with features in Paragraph 2.3. Outlier 
filtering and smoothing of these features is covered in Paragraph 2.4. This chapter 
concludes with a selection of useful features using dimensionality reduction in 
Paragraph 2.5.    
 
2.1. Video analysis 

This paragraph covers the process of choosing a set of gestures. First we describe 
how the meeting data was collected. Then we make an analysis of all occurring 
movements during a meeting and make a subdivision in certain categories. The last 
step is selecting the gestures that are meaningful and plentiful enough to recognize.     
 
2.1.1. Meeting data collection 

The meeting data used in this project is recorded 
at the IDIAP institute in Switzerland, for the 
purpose of serving as test data in a number of 
meeting related projects such as the AMI project. 
The IDIAP smart meeting room is equipped with 
fully synchronized multichannel audio and video 
recording facilities, for technical specifications see 
[40].  

Figure 2.1 - Layout of the IDIAP 
smart meeting room  
Figure 2.2 – Meeting video 
example 
 

 
The layout of the room is shown in Figure 2.1. 
Two cameras each record a frontal view of two 
meeting participants, while a third camera films 
the projector screen and whiteboard, see Figure 
2.2. The results are the M4 public scripted 
recordings [28]. For both the train and test set 30 
meetings were recorded resulting in a total of 60 
recorded meetings with a total duration of 15 
hours. 
                

- 19 - 



2 – Feature selection 
 

2.1.2. Dividing all occurring movement 

The first step in selecting a set of gestures is to identify all different types of 
movement present in the recorded meeting data. To make this subdivision we looked 
at a previous annotation proposal by Reiter [48] for gestures and actions in 
meetings. We also looked at a few meeting recordings and came up with the 
categories listed below. These categories are structured with respect to the location 
of the gesture or action. This overview covers almost all the occurrences of human 
movement present in the meeting recordings. 
 
Hand movement 
• Pointing  
• Writing 
• Voting 
• Scratching / touching  
• Handling objects (for example a pen) 
• Beats (short gestures to emphasize     

speech fragments) 
• Iconic/metaphoric gestures  

(short gestures to illustrate speech 
fragments for example the fish was this big) 

• Writing on the whiteboard 
• Wiping the whiteboard clean 
 

Head movement 
• Nodding  
• Shaking 
  
Body movement 
• Leaning forward (on the table) 
• Leaning backward 
• Leaning with head on hand 
• Reposition 
• Standing up from the meeting 

table 
• Sitting down at the meeting 

table 

An analysis has been carried out to determine how often these movements occur 
during meetings. This analysis is based on twelve randomly selected meeting 
recordings of five minutes long, resulting in a total of one hour of meeting video. The 
results are summarized in Table 2.1. In the next paragraph we will assess which 
gestures are meaningful enough to select for classification. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.1 - Different types of movement 
and their occurrences in one hour of 
meeting video. 

Movement Occurrence 
Pointing  18 
Writing 58 
Voting 0 
Scratching / touching 49 
Handling objects  47 
Beats 100+ 
Iconics / Metaphorics 29 
Writing on the whiteboard 17 
Wiping the whiteboard 7 
Nodding 100+ 
Shaking 23 
Leaning forward 16 
Leaning backward 27 
Leaning on table 25 
Leaning with head on hand 41 
Reposition 6 
Standing up 12 
Sitting down 12 
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2.1.3. Gesture selection 

This paragraph discusses the selection of the gestures that are useful to recognize 
from the different types of movement observed in the previous paragraph. To 
determine the useful gestures we use the gesture definition from the introduction, 
Paragraph 1.1. There we stated that a gesture is a form of movement which has a 
certain relation with communication. Some of the movements however, that would 
be useful to be recognized according to this definition, can not be chosen because of 
a lack of data samples. We will start with discussing the gestures that are chosen 
and continue with the movements that are left out. The criteria we use to select the 
gestures are: 

• Is there a minimum amount of ten gesture samples present in the meeting 
recordings? 

• Does the gesture give useful information about the meeting?  
• Is this information not already sufficiently covered by another input modality 

of the smart meeting room? 
 
The pointing gesture is very useful to recognize because it indicates that someone is 
pointing towards something or someone, which could be the unspoken subject of a 
conversation. An example is the sentence: “this person here is joking”. Pointing 
gestures are very useful to help determine the focus of attention. This gesture is not 
performed very often, only 18 times in the analyzed hour. It is already annotated in 
the AMI M4 corpus, which makes it easy to find more samples for classification. 
However, the vast majority of the annotated pointing examples take place during a 
presentation. At this moment the feature extraction system we use is not yet able to 
process the video files of a presentation. Therefore, we have to leave the pointing 
class out of the segmentation, clustering and classification phases. The available 
feature data for this gesture is not significant enough, certainly not for training a 
classification method. We still annotate this gesture for later use when it is possible 
to process presentation recordings. 
 
Writing is more an action than a gesture. It does not correspond well with the 
definition of a gesture because by itself it has no communicative intent. However, if 
someone is writing, this could indicate that the subject matter discussed at that time 
is important. This makes it is useful to recognize when someone is writing. Writing is 
performed fairly often and it will be no problem to obtain enough samples. 
 
Beats are useful to recognize because they emphasize the importance of something a 
speaker is saying. Examples of this are the introduction of someone new into a story 
or summarizing an argumentation. The beat emphasizes the importance of the thing 
being said. Iconic and metaphoric gestures illustrate a speech fragment. McNeill [38] 
states that these gestures reveal a part of the memory image of a speaker and the 
viewpoint he has taken towards it. All speakers regularly used beats in the analyzed 
meetings. It was difficult to clearly distinguish the iconic and metaphoric gestures 
from the beats, without the use of textual information. When you only look at the 
video information these classes are too much alike. Therefore the beats and iconic 
and metaphoric gestures are grouped, forming a class of gestures illustrating or 
emphasizing a part of that what is being said. We will call this class speech 
supporting gestures, abbreviated as SSG. 
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The nodding and shaking gestures are also useful gestures to recognize. The nodding 
gesture indicates for example if someone is listening and agrees with the things 
being said. The same goes for shaking, but this time someone indicates 
disagreement. Both nodding and shaking can be used in the construction of an 
argumentation structure. An application could be to determine the proponents and 
opponents of a statement in a discussion. Both gestures are performed regularly 
especially the nodding gesture, so enough samples should be available.  
 
The standing up and sitting down gestures are also useful to recognize, because it 
indicates if a person is present or not or if someone stands up to write something on 
a whiteboard for example. Both are performed in every meeting that contains a 
presentation. Presentations occur regularly in the meetings to give enough samples 
to classify these gestures. 
 
This brings the total to seven gesture classes. The characteristics of these gestures 
are described in detail in Appendix A:  

1. Pointing 
2. Writing  
3. Speech supporting gestures  
4. Nodding 
5. Shaking 
6. Standing up 
7. Sitting down 

 
The reasons why the other observed movements are not chosen for classification will 
be discussed briefly. When someone writes on the whiteboard this indicates that 
something is being told, or written down that is important for all members of the 
meeting. However in the smart meeting room, writing on the whiteboard is already 
captured. Recognizing this action will therefore have no additional use. The voting 
gesture has not been seen once in twelve different meetings of five minutes each. It 
is impossible to perform machine learning on a gesture of which no substantial set of 
data samples exist. The same reason can be applied to the reposition and wiping the 
whiteboard gesture. Scratching, touching and handling objects are quite person-
dependent gestures and are not interesting because they do not tell us anything 
useful about the meeting, or the subject and contents of the meeting. The leaning 
gestures are also very person-dependent gestures. In the meeting recordings you 
see people who lean in all possible different directions and people who almost don’t 
lean at all. We want to look at gestures which are more person-independent, for this 
reason the leaning gestures are left out.  
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2.2. Annotation 

This chapter describes the different aspects of the annotation process. The seven 
chosen gesture classes are annotated with the Anvil annotation tool. We have 
compared three different tools and Anvil matched our requirements. The details of 
this tool comparison can be found in Appendix B. The rest of this paragraph gives an 
overview of the annotation guidelines and the inter-annotator agreement on these 
guidelines.  
 
2.2.1. Annotation Guidelines 

The annotation guidelines covered in this paragraph are meant to ensure that all 
annotators annotate the gestures in the same way. Table 2.2 gives a description of 
the start and end of each gesture. A special case occurs when the same gesture is 
performed repeatedly in one flow of movement, without a rest pose. This is 
annotated as one single gesture. For example, when someone is nodding and 
performs multiple nods, this is annotated as one nodding gesture.  
 
In addition we add different attributes to the annotated gesture. These attributes can 
either be general for each gesture or specific for certain gestures. A general attribute 
is the indication whether a certain gesture is performed clearly or not. The first 
specific attribute is whether a gesture is performed repeatedly. The gestures which 
have the repeated attribute are: nodding, shaking and pointing. The second specific 
attribute is the direction attribute for the pointing gesture. It is not possible to 
annotate the precise angle of the pointing gesture, but it’s reasonably easy to make 
a division using the eight wind directions. These eight directions are a 2D 
representation in the frontal plane of the 3D pointing direction from the perspective 
of the viewer. 
 

Gesture Begin movement End movement Attributes 
Pointing Moving the hands away from 

a rest position. 
Ending with the hands in a 
rest position. 

Clearness 
Repeated 
Direction 

Writing Moving hand, head and body 
from a rest position towards 
the object on which will be 
written.  

Moving hand, head and body 
backwards toward the rest 
position. 

Clearness 

SSG Moving the hands away from 
a rest position. 

Ending with the hands in a 
rest position. 

Clearness 

Nodding Beginning of the up or 
downward head movement. 

End of the last up or 
downward head movement. 

Clearness 
Repeated 

Shaking Beginning of the sideward 
head movement. 

End of the last sideward 
head movement. 

Clearness 

Table 2.2 – Annotation guidelines with begin movement, end movement and attributes for 
each gesture. 

Repeated 
Standing up Moving arms backward and 

body forward.  
Ending in a (straight) 
standing rest position. 

Clearness 

Sitting down Begin movement 
downwards. 

Ending with the body in a 
seated rest position. 

Clearness 
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2.2.2. Inter annotator agreement 

The gestures have been annotated by the two authors and both annotated a different 
set of meetings. Two meetings have been annotated by both annotators, to evaluate 
the inter annotator agreement. In this paragraph the agreement between the 
annotators is evaluated to ensure that both sets of annotations are the same. In 
theory this agreement has to follow from the given annotation guidelines, but in 
practice these may be explained differently.  
 
The agreement is tested on two levels. The first and most important level is label 
agreement. When there is no agreement, the training process of the classifier will be 
severely compromised. The classifier may get contradictory information, resulting in 
poor learning results and a poor classification performance. The second level is 
boundary agreement. When there is label agreement we can determine if both 
annotators agree on the start time and end time of the gesture. This level of 
agreement is important because the annotation data serves as a reference in 
evaluating different automatic segmentations. 
 
Label agreement 

Label agreement is evaluated by testing if, for a given gesture, there is also a 
gesture with the same label annotated by the other annotator. Possible outcomes of 
this test are listed below and illustrated in Figure 2.3:   

• Agreement: both annotators agree there is a gesture and agree on the label.  
• Insertion: one annotator says there is a certain gesture, whilst the other says 

there is no gesture. 
• Deletion: one annotator says there is no gesture whilst the other says there is.  
• Substitution: both annotators agree there is a gesture, but they disagree on 

the label.  
 

    
Figure 2.3 – Example of different label agreement test outcomes 

 
The result of this test is the confusion matrix of Table 2.3 containing all seven 
gestures and an empty category for the absence of a gesture. The diagonal of this 
Table shows the agreement on the different gestures. The last column and last row 
show respectively the insertions and deletions. The remaining cells show the 
substitutions. The Kappa statistic, a chance corrected measure to determine 
agreement, is calculated on this confusion matrix to evaluate the annotator 
agreement on labeling. An interpretation of the Kappa values is given by Altman [4]: 

• Poor agreement = Less than 0.20  
• Fair agreement = 0.20 to 0.40  
• Moderate agreement = 0.40 to 0.60  
• Good agreement = 0.60 to 0.80  
• Very good agreement = 0.80 to 1.00 
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By just looking at the results you can see that most gestures have good label 
agreement, the largest numbers are on the diagonal of the confusion matrix. The 
Kappa value of this matrix confirms this observation. The overall unweighted Kappa 
value is 0.74 which indicates a good inter annotator agreement on label, according to 
the interpretation of Altman.  
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Pointing 15  2     1 
Writing  4       
SSG   120     9 
Nodding    81    13 
Shaking     4    
Standing up      2   
Sitting down       2  
Empty   7 14 1    
Table 2.3 – Confusion matrix result of the label agreement test  
 

Boundary agreement 

A gesture annotated by the first annotator should also be annotated by the second 
annotator at the same location. An obvious approach to test boundary agreement 
would be to determine if both the start and end location of two annotated gestures 
match. This approach is not used because we think it cannot be applied to our 
annotation for the following reasons: 

• It is difficult to define a maximum number of frames that boundaries may differ 
from each other. There is no general rule of thumb for this and the maxima 
may differ between gestures. Some gestures have very clear boundaries which 
imply a small maximum number. Other gesture boundaries are vaguer which 
justifies a higher maximum. 

• Judging each gesture separately can give problems with repeated gestures. 
Take for example the situation in Figure 2.4 where annotator 1 annotates two 
single points and annotator 2 annotates one repeated pointing gesture. There 
is perfect agreement on where the nodding starts and where it ends. The 
annotators just disagree on whether it is one flow of movement. Separate 
judging would indicate that there is no agreement at all on the boundaries, 
because the long gesture differs too much from either short one.  

 

 
Figure 2.4 – Boundary agreement example 

 
The approach we take is based on the average amount of overlap between gestures. 
For the cases where there is label agreement we determine the amount of overlap 
and the amount of disagreement between two gestures. This is done, by counting 
the number of frames that both gestures have in common and the number of frames 
where both gestures differ from each other respectively. An average percentage of 
these numbers is calculated for each gesture class. The higher the overlap 
percentage the more agreement there is on the gesture boundaries. 
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Table 2.4 shows the results of the boundary agreement test. For each gesture class 
the total number of overlapping and disagreeing frames and the corresponding 
overlap percentages is given. When we use the overlap percentage as a measure for 
boundary agreement we see some gestures with low agreement. This is especially 
the case for nodding, standing up and sitting down. Observation of the specific 
nodding annotations showed that the low agreement on nodding is due to the vague 
end boundary of this gesture. When someone nods repeatedly, the head movement 
typically goes on for a while, diminishing in amplitude till it eventually dies out. The 
point where an annotator decides to end this gesture is therefore vague and differs 
between annotators. Observations also show that the low agreement on standing up 
is due to a different interpretation of the guidelines by the two annotators. One 
annotator annotated only the process of lifting the body from the chair to standing 
position whist the other annotator included more of the preparatory movements. This 
is also the case for sitting down. It is wise to take the differences explained here into 
consideration when using the annotation data for verification in the segmentation 
phase.   
 

 Overlap Disagree  Overlap%
Pointing 464 144 76,32%
Writing 2027 157 92,81%
SSG 2896 1020 73,95%
Nodding 2699 1506 64,19%
Shaking  101 27 78,91%
Standing up 83 78 51,55%
Sitting down 133 73 64,56%
Total 8403 3005  73,66%
Table 2.4 – Boundary agreement test results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- 26 - 



2 – Feature selection 

2.3. Parameterization of gestures  

Now we have annotated the different gestures, we want to describe them using 
certain measurable parameters or features. There are also other ways in which 
gestures can be described instead of describing them with features. For the 
interested reader we refer to Noot and Ruttkay [44]. To find suggestions for an 
appropriate description we will first take a look at the human way of perceiving 
gestures. Following this we look at the properties and ways of calculating certain 
features. This paragraph concludes with the features, which can be calculated from 
the already extracted video features. 
  
2.3.1. The human way 

The features humans use to perceive gestures may give some hints for the 
recognition of gestures by means of machine learning methods. They do not provide 
strict guidelines and laws that need to be followed. In this paragraph some aspects 
of the human perception and processing of gestures and gesture typologies are 
presented. A quote from Dell [19] indicates that humans observe much more 
features than a simple change in position of a body or body segment.  
 

When someone moves, you perceive it as more than a change of place or change 
in the mover’s body shape. Movement does not flow along in a monotone – you see 
swellings and subsidings, quick flashes, impacts, changes in focus, suspension, 
pressures, flutterings, vigorous swings, explosions of power, quiet undulations. All 
this variety is determined by the way in which the mover concentrates his exertion 
of effort.  

 
Pollick gives a good overview of the different studies on human perception of 
movement styles [45]. For example, Johansson [29] created a so called point-light 
display by filming actors in the dark carrying lights on their joints. This subtracts 
from all other characteristics of the actor and reduces the movement to a small set 
of points in motion. How the lights organize themselves into human movement is 
something that has yet to be solved. Although several different explanations have 
been offered for the human capability to recognize point-light walkers, none of these 
explanations gives a thorough and convincing theoretical basis to explain the 
perception of biological motion. Pollick also mentions that studies investigating brain 
areas [2, 50] have revealed that a specific brain area in the human superior 
temporal sulcus (STS) appears to be active when human movement is observed. 
These studies have also shown that certain brain areas traditionally thought of as 
solely motoric also serve a visual function. 
 
Once gestures are perceived by humans they are given a certain tag or classification, 
to give a meaning to the gesture. Different studies have tried to order this 
classification. Kendon’s continuum [33] is widely used to order gestures into different 
categories: Gesticulation  Language-like Gestures  Pantomimes  Emblems  
Sign Languages. As we move from left to right idiosyncratic (personal) gestures are 
replaced by more socially regulated signs. The spontaneous gestures (Gesticulation) 
form about 90% of all human gestures [58]. McNeill [38] divides this category in to 
four subclasses and gives definitions for classification. 
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Iconic:  representational gestures, depicting some feature of the object,  
  actions or event being described. 
Metaphoric:  gestures that represent a common metaphor rather than the object or  
  event directly. 
Beat:   a small and formless gesture often associated with word emphasis. 
Deictic:  pointing gestures that refer to people, objects or events in space or  
  time. 
 
Besides classification some studies have looked into general properties of gestures. 
Stephens [54] found that iconic and metaphoric gestures are performed mostly with 
the dominant hand, as opposed to beats which can be performed by either the left or 
right hand or both. As mentioned in the introduction of this thesis, McNeill [38] 
identified different phases within a gesture. He defined the gesture phrase or so 
called G-phrase. This phrase consists of the following elements: Preparation, Pre-
stroke hold, stroke, post-stroke hold and retraction. All phases except for the stroke 
phase are optional, but the preparation phase is rarely omitted. Functionally the 
stroke is the content-bearing part of the gesture. The effort used in the preparation 
and retraction phases is concentrated on reaching a certain rest-point of that phase. 
The stroke effort is concentrated on the form of the movement itself, for example on 
the trajectory, shape and posture.  
 
McNeill also presents some instructions for describing hand gestures. Some of those 
are repeated here for their possible relevance for automatic gesture recognition.  

• Describe the motion shape, the place in space where the motion is articulated 
and the direction of motion. 

• Describe if the motion is toward, away or parallel in front of to the side of the 
body. 

• Give the type of direction. 
o Unidirectional, the effort is exerted in one direction. 
o Bidirectional, the effort is exerted in two directions either both hands 

move in the same way (mirror images) or each hand moves in its own 
way. 

• Bimanual gestures start at the same time but need not to start from the same 
place and need not to end at the same time. 

 
As we have seen, studies into the human representation of gestures mostly focus on 
classification labels, properties of gestures and gesture phases. Describing a gesture 
using these high level features allows for a potentially easy classification. This kind of 
information is however very difficult to extract out of video data. From a gesture 
recognition point of view it is more realistic to look at ways to compactly describe a 
gesture using lower level features. The human way can give hints for these features. 
The next paragraph discusses a number of features and the properties an ideal 
feature should have. 
 
 
 
 
 
 
 
 
 
 

- 28 - 



2 – Feature selection 

2.3.2. Feature studies 

There are many different features that can describe human gestures. Some of them 
are more descriptive than others. A problem arises in selecting the right set of 
features. This is a difficult task because different occurrences of the same gesture 
class vary in both space and time. Multiple occurrences of the same gesture may be 
translated, rotated or scaled. An ideal feature set has to describe all occurrences of a 
certain gesture class in approximately the same way. On the other hand, gestures 
from different classes still have to be separated from each other and from noise and 
non-gestures. So a feature set ideally has to be invariant to the within class 
variations, whilst ensuring separability between classes. The usefulness of a feature 
set can be expressed in terms of a few criteria: 

• Translation invariance 
• Rotation invariance 
• Scale invariance 
• Contain as much of the available “context” as possible (see below) 
• Not susceptible to noise 

 
These criteria can’t be fulfilled all at once and therefore a trade-off has to be made. 
Campbell [9] gives an example: assume you move your hand in a perfect circle. A 
description of this gesture in terms of curvature and speed, for example, will be 
rotation and translation invariant. But these measures are constant during the 
gesture and thus do not contain any context information about where the top or 
bottom of the circle is. A description in terms of (x, y, z) coordinates does consider 
this context information but is not rotation and translation invariant. Other features 
which lie in between these two extremes, such as velocity (δx, δy, δz), trade off some 
invariance for context. But then again, the derivates used in velocity are more 
susceptible to noise. In the rest of this paragraph we will take a look at different 
feature sets proposed in earlier studies on feature selection for gesture recognition.  
 
Position based features 

Campbell [9] makes a comparison of different feature sets for 3-D gesture 
recognition. The different feature sets are tested in combination with a continuous 
HMM to recognize 18 T’ai Chi gestures. Also their performance is measured under 
translation and rotation variances. The feature sets tested by Campbell are: 

• The Cartesian position of the hands    (x, y, z) 
• The polar position of the hands with Cartesian z value   (r, θ, z) 
• The Cartesian velocity      (δx, δy, δz) 
• The polar velocity with angular velocity δθ term   (δr, δθ, δz) 
• The polar velocity with tangential velocity rδθ term  (δr, rδθ, δz) 
• Two sets with instantaneous speed δs and local curvature (δs, log(ρ), δz)  

ρ, see Equation 2.2       (δs, log(ρδs), δz) 
 
The Cartesian features are relative to a world centered coordinate system. The polar 
sets are relative to a body centered coordinate system, with the head position as the 
origin. Speed and curvature are local properties of the paths traced out by the 
hands. A summary of these features and their invariance properties is given in Table 
2.5. 
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Feature set Translation 
invariant 

Rotation 
invariant 

Scale 
invariant 

Remarks 

Cartesian 
Coordinates 
(x, y, z) 

No No No Contains most of the context of 
the original model but is sensitive 
to translation rotation and scale. 

Polar Coordinates 
(r, θ, z) 

Yes No No When the head is the center for 
polar coordinates this feature set 
is translation invariant. 

Cartesian velocity 
(δx, δy, δz) 

Yes No Yes* *Only scale invariant if the larger 
movement is made at the same 
velocity. Sensitive to rotation. 

Polar velocity 
(δr, δθ, δz) 
(δr, rδθ, δz) 

Yes Yes 
Horizontal 

Yes* *Only scale invariant if the larger 
movement is made at the same 
velocity. 

Speed and 
curvature 
(δs, log(ρ), δz)  
(δs, log(ρδs), δz) 

Yes Yes 
Horizontal 

Yes Noisy due to second derivative ρ. 
Least amount of context. 

Table 2.5 - Summary of different feature sets tested researched by Campbell 
 
The main conclusions of Campbell’s research are that feature sets designed to be 
translation and rotation invariant, indeed cope better with variations in translation 
and rotation. Cartesian velocity performs better in the presence of translational 
variations and polar velocity performs better with rotational variations. Higher 
derivatives such as the curvature suffer from derivative noise, which hinders 
recognition. Overall the polar velocity set is the best feature set to recognize the 18 
T’ai Chi gestures with. Campbell reports 95% accuracy on the test set.   
 
Trajectory based features 

When you have a certain feature, such as the position of a hand, you can track that 
value over time creating a trajectory of that specific feature. Cédras [12] surveyed 
different ways to parameterize such motion trajectories. The first method uses 
simple trajectory velocities vx(t) and vy(t). These parameters are translation 
invariant but not rotation invariant and not always scale invariant. Another method is 
to calculate the speed si and direction di of a point at time i. These features are 
calculated as follows: 
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Speed and direction are both translation invariant. Furthermore the speed is also 
rotation invariant and the direction is also scale invariant. The direction component is 
susceptible to noise, because of the nonlinear arctan operation. A third trajectory 
representation is the spatiotemporal curvature ρ which is defined as: 
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Curvature is translation and rotation and scale invariant. An advantage of curvature 
is that it describes a trajectory with a single function, as apposed to the two 
functions for velocity or speed and direction. It does suffer from noise due to the use 
of a second derivative. 
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All mentioned trajectory parameterizations use absolute values for velocity, speed, 
direction and curvature. Cédras suggests that absolute values of motion may be 
inadequate and that it may be better to look at the relative motion of the segments 
participating in the movement. For example, the absolute velocity of a body part 
may be less significant to gesture perception, than the relative velocity between the 
moving parts of that body segment. Cutting and Proffitt [16] showed that the 
absolute motion of an object is perceived as the sum of common motion and relative 
motion. Common motion is the global motion that is shared by all parts of the object. 
Relative motion is the motion of a part of the object with respect to other parts. 
Cutting and Proffitt found that relative motion is usually extracted first by an 
observer and is therefore an important measure for the understanding of the motion.  
 
Human model based features 
In a human model-based representation, relative motion can for example be 
expressed in terms of joint angles between different body parts. These joint angels 
are another type of feature. They can be derived from a human model representation 
of the gesture. Angles can also be thought of as being translation invariant because 
it is a relative measure. When for example the camera is shifted to the right the 
angles between different body segments will stay the same. Joint angles are rotation 
and scale invariant as far as the model estimator is capable of compensating for this 
variation. This is not the case when an absolute position of the hands is taken. 
However, an absolute position can be made relative by measuring the distance to a 
fixed point on the human body instead of to a fixed point in the image. 
 
Using a feature as context information 
Instead of looking for features that are invariant to variation occurring within a 
gesture class, one can also take features which describe this variation and use them 
as context information. Wilson [64] suggests this idea by using a parametric form of 
HMM to recognize a “family” of gestures. For example, if you make a pointing 
gesture, relevant context information could be the direction in which you point. A 
parametric HMM could recognize all the pointing gestures as a single pointing gesture 
family. This way it is possible to deal with the variance, which occurs for example 
when pointing in different directions.  
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2.3.3. Available features 

Now that we have seen some possible feature sets and their 
advantages and disadvantages we will look at features that 
can be derived from the already extracted video features. 
The feature extraction tool used in this project is a pose 
estimation system. The Posio system [46] is a tool that can 
estimate the human pose from a two dimensional image 
such as a camera frame. It matches a stick figure with the 
human form in the picture. This stick figure forms a model 
of the underlying picture, in terms of position of head and 
hands and the different joint angles. This research only 
focuses on a model of the upper part of the human body. In 
the meeting application area, all of the relevant gestures 
take place in this upper part. In the model of Figure 2.5 the 
different segments in black are connected by green joints. 
Each joint has one or more degrees of freedom (DOF) which 
describe the possible movement in the joint. The Posio 
model has a total of ten degrees of freedom, three in each 
shoulder, one in each elbow, one in the neck and one in the 
back.    

Figure 2.5 - Model of the 
upper part of the body.   
The segments (black) are 
connected by joints (green).   

 
There are a number of features which can be extracted from a static body pose such 
as the one in Figure 2.5: 

• The angles of each DOF in the joints. 
• The head and hands position (in world-centered Cartesian / polar coordinates). 
• The distances between the head and hands and between both hands. 

 
There are also a number of features which can be extracted from a few transitions 
from one pose to another: 

• The angular velocity for each DOF. 
• The angular acceleration for each DOF. 
• The velocity of the head and hand movement (Cartesian or polar). 
• The acceleration of the head and hand movement (Cartesian or polar). 
• The speed and direction of the head and hand movement trajectory. 

 
Finally there are some features which apply to a complete gesture or gesture part: 

• Locus, the part of the body where the gesture takes place. 
• Intensity of the gesture, based on average velocity or acceleration. 
• Duration of the gesture. 

 
The complete list of available features can be found in Appendix C. All feature 
representations discussed in this paragraph can be derived from the output of the 
Posio system. The most important task of the feature extraction module is to 
estimate these features as accurately as possible. Precise features form the basis for 
a good recognition. It seems wise to select high level features for their invariance but 
these features won’t be of any use if they cannot be estimated accurately. There are 
no quantitative results available about the performance of the Posio system. The 
output features of the Posio system are estimated from the 2d frames of a video. 
Because they are not directly measured, the head and hand positions and angles 
between joints are inherently noisy. Therefore we take a look at outlier and noise 
filtering in the next paragraph.  
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2.4.  Outlier and noise filtering  

The feature data extracted from the video images is an estimation of the underlying 
movement taking place. Estimations however can be wrong, resulting in spikes in the 
data or high frequency noise. An example is shown in Figure 2.6. This noise should 
not be present because the human movement which generates the data is a smooth 
movement. Humans cannot make these sudden changes because of physical 
limitations. A problem with noisy data arises when you want to make calculations on 
it. Derivates can amplify the existing signal noise. We use a few signal processing 
techniques to remove those outliers and smooth the data. These techniques will be 
discussed below. 
 
2.4.1. Outlier filtering 

First of all we want to remove the spikes in the data that clearly do not follow the 
apparent trend. These spikes can be caused by a wrong estimation (clipping) of the 
movement taking place, resulting in data values that don’t follow the trend of its 
surrounding data points. These outliers can severely influence derivatives calculated 
from this data because of their often extreme values. To filter these outliers in the 
data a common data cleaning technique from the signal processing field is used 
called median-filtering. This technique looks at a number of data points, surrounding 
the current data point using a window. From this set of data points the median is 
computed. This median value replaces the old value of the point being currently 
examined. This technique results in removing the outlier spikes from the data as can 
be seen in Figure 2.6. We use a window size of three since this will remove the 
spikes that that are only one frame in duration, which is typical for a clipping error. A 
higher window size might result in the removal of useful data.  
 

 
 
Figure 2.6 - The results of applying outlier filtering  

 
2.4.2. Noise filtering 

The second type of noise we want to filter is high frequency noise. This noise can be 
caused by estimations that are slightly different from the values that they ideally 
should have. Assume for example, that there is no movement and the neck joint 
angle should have a “correct” constant value of 10°, for a number of frames. The 
estimation of this angle might be 9° in the first frame, 11° in the second and 10° in 
the third, resulting in variations that ideally should not be there.  

- 33 - 



2 – Feature selection 
 

This high frequency noise can be amplified as said before, when computing derivates 
from the feature data. We have implemented two data smoothing techniques, to 
cope with this noise namely: running mean and weighted average. These techniques 
fall in the category of low pass filters because they keep low frequency variations in 
the data and filter out the high frequency variations. Both techniques work in the 
space domain of the data and are based on averaging out the data points, resulting 
in a smoother signal. 
 
Running mean 
The running mean technique applies Formula 2.3. The new value of the current data 
point is comprised of the already computed value of the previous data point and the 
average increment measured over a certain window. 
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A parameter on the running mean filter is the window size, over which the mean is 
calculated. The larger the window size the further you look back in the past to 
determine how you are going to update the present data point. The larger the 
window size, the more the data is averaged out. To determine this window size, the 
difference between gestures with long and short duration comes into play. For long 
gestures, you want a larger window size to smooth all the insignificant short 
changes. The window size has to be smaller for short gestures so you won’t smooth 
out these gestures’ shorter significant changes. The window size has to have some 
kind of relation with the length of the gesture. This relation will be empirically 
determined. 
 
Weighted average 
The weighted average technique is based on the recurrent Formula 2.4. Basically the 
new value consists of a percentage of the old value and a percentage of the new 
value of the previous point. This previously calculated point is also made up of these 
two percentages.  
 

1)1( −∗+−= kkk newpercentageoldpercentagenew    (2.4) 
 
The percentage parameter determines how much of the new value is comes from the 
already calculated value of the previous point (past information) and how much is 
left of the original data value (present information). Since the weighted average 
formula is recurrent, the higher this percentage is, the longer the past information 
will play a role in the calculation of the new value. A high percentage will therefore 
smooth the data more than a low percentage. This parameter also has to be made 
relative to the length of the gesture.  
 
Qualitative comparison 
Smoothing cannot be tested quantitatively because there is no ground truth on how 
smooth a signal should be. We made a qualitative analysis on the two smoothing 
techniques mentioned above using a number of long and short gestures. The results 
of both methods show a similar smoother signal. We choose to use the running mean 
method because the linear effect of the window parameter is easier to understand 
than the recurrent effect of the percentage parameter. The best smoothing result for 
short gestures is achieved with a window size of 3 and for the long gestures with a 
window size of 12. 
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2.5. Dimensionality reduction 

After feature selection we have a set of 84 possible features, see also Appendix C. 
This set is too large for practical use in classification and may contain some 
redundant features. In order to reduce this feature space we will look into different 
dimensionality reduction techniques. It is at this point not possible to test which 
reduction technique results in the best feature set for classification, because there is 
no classification approach yet. It is possible at this moment to use the inversed 
results of a dimensionality reduction technique, to pinpoint those features that add 
almost no information to a reduced feature set.  
 
First a description is given of a number of aspects of dimensionality reduction. 
Secondly we decide which technique to apply and how to apply it. Following this a 
selection will be made on the feature set, leaving out those features which contain 
almost no useful information. 
 
2.5.1. Aspects 

There are many dimensions on which different dimensionality reduction techniques 
can be compared. We have selected a few main aspects. For each aspect a short 
explanation will be given. The aspects mentioned here should provide enough 
information to select a technique. 
  
Feature extraction vs. feature selection 
There are two main methodologies for dimensionality reduction, feature extraction 
and feature selection. In feature extraction, not to be confused with the same 
computer vision term, the original feature set is transformed into a new, smaller 
feature set. The objective is to retain as much of the meaningful information as 
possible, whilst the original feature set is discarded. A disadvantage is that the 
meaning of the original features is also discarded. The transformed features are 
some sort of combination of the original features and therefore their meaning is not 
intuitive anymore. In feature selection a subset of the original features is selected 
which best optimizes one or more criteria. This leaves the meaning intact and this 
way the features remain interpretable. 
 
Supervised vs. unsupervised 
Supervised methods use class information of the features, to select or extract a new 
feature set. Unsupervised methods on the other hand try to construct a feature set 
by using aspects of the input data itself. PCA for example is an unsupervised method 
that uses maximization of the variance of the input data as a selection criterion. 
More information can be found in the following dimensionality reduction surveys [11, 
22]. Since the class information is available from the annotation of the different 
selected gestures, it is possible to use supervised methods. An advantage of 
supervised methods is that they can extract features that are useful for classification. 
These most discriminating features (MDF) are those features that ensure the best 
discrimination between different classes. Unsupervised methods can only extract the 
most expressive features (MEF), which retain the largest part of the available 
information. These most expressive features are not necessarily those features that 
can easily separate the different gesture classes. The difference between MDF and 
MEF features is studied by Swets and Weng [55]. 
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Linear vs. nonlinear 
A study by Backer et al. [18] shows that nonlinear methods, such as 
multidimensional scaling (MDS), Sammon’s mapping (SAM), self-organizing maps 
(SOM) and auto-associative feed-forward neural network (AFN), perform better than 
linear methods such as principal component analysis (PCA) or linear discriminant 
analysis (LDA), at nonlinear feature reduction. The MDS and SAM methods however 
perform only well on a data set with a limited number of data points. Since there is a 
large data set of meeting data available, these two methods are impractical for the 
current situation. The SOM and AFN perform better on low dimensional data. The 
feature data obtained from applying image processing to the meeting videos, is 
reasonably low dimensional, but it is questionable if this dimensionality is low enough 
to efficiently apply SOM or AFN. This means that linear approaches cannot be left out 
of the equation. 
 
2.5.2. Selected technique 

The technique we selected to reduce our feature dimensionality is LDA. This 
paragraph describes this technique and how it is applied to determine the non-useful 
features. 
 
Linear Discriminant Analysis  
The linear discriminant analysis technique is a supervised method that uses two 
evaluation criteria. The first is the between-class scatter of the feature set and the 
second is the within-class scatter. The between class scatter criterion ensures that 
the extracted features separate the different gesture classes as good as possible. The 
within-class scatter ensures that the extracted features group occurrences of the 
same class close together. This is the first advantage of using LDA, both the MDF and 
MEF are taken into account. As mentioned before unsupervised methods such as PCA 
cannot take the MDF into account. Since the class labels are available it is no 
problem to also evaluate the discriminative aspect of the different features.  
 
As the name suggest, LDA is a linear method. The main advantage of a linear 
method is the low processing time required to apply such a method. This is another 
advantage of LDA as opposed to non-linear methods such as SOM or AFN.  
 
Because LDA projects data onto a new feature set it is a feature extraction method. 
The objective of this paragraph is to select features that are not useful from the 
feature set. For the segmentation and classification phase it is also more intuitive to 
work with interpretable features. Feature extraction discards the meaning of the 
original features. Therefore, the LDA method is used in an inverse way to select 
features from the original feature set. In order to properly explain how we use LDA in 
an inverse manner we first explain the standard LDA procedure briefly. 
 
First the input data is normalized using the sample mean and standard deviation. 
Next the within-class and between-class scatter matrixes are calculated. From these 
matrices the correlation matrix and the eigenvalues are determined. The eigenvalues 
are used to calculate the new dimension d. These eigenvalues are sorted in 
decreasing order and transformed into a percentage. Each percentage shows which 
part the corresponding eigenvalue explains of the total variance. The first d 
eigenvalues are selected, by summing their percentages one by one, until a (large) 
given percentage is reached. This dimension d is used to transform the correlation 
matrix into a transformation matrix. 
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Inverse LDA 
The first step of inverse LDA is applying the original LDA method to reduce the 
original feature set to a certain new dimensionality d. In this step the transformation 
matrix and the eigenvalues of this matrix are calculated. The transformation matrix 
is calculated on the entire data set for all 84 features. This results in a dx84 matrix.  
 
The second step is to determine the influence of an original feature in the reduced 
feature set calculated in the first step. This is done by analyzing the transformation 
matrix and the eigenvalues. The larger the absolute value of an element in the 
transformation matrix, the more it adds to a new feature value. The columns of the 
matrix indicate the original features. The rows indicate the new features of the 
reduced feature set. Each row also has an eigenvalue that indicates what part of the 
variance the new feature adds to the total variance. By multiplying the eigenvalues 
with the absolute values of the features in the different columns, a score for each 
original feature is obtained. This score indicates how much the original feature 
contributes to the new feature set.  
 
Equation 2.5 illustrates the process. M is a dx84 matrix containing the absolute 
values of the features in the transformation matrix. The λ indicate the eigenvalues of 
each row. The vector v (v1 … v84) contains the result scores for each original feature.  
 

[ ] [ ] Mvvv dλλλ ...... 218421 =       (2.5) 
 
The last step determines which set of the original features contribute enough to the 
new feature set constructed by applying LDA. By looking at the values in the vector v 
and evaluating each value against a fixed threshold we can determine which features 
add enough to the feature set that could be obtained by applying LDA. The new 
feature set consists of the features that lie above this threshold. In the next 
paragraph the inverse LDA method is applied to reduce the original feature set of 84 
features.  
 
2.5.3. Reducing the feature set 

Before inverse LDA can be applied we have to take into account that there are many 
options to calculate a transformation matrix with LDA. It all depends on the desired 
dimensionality of the reduced feature set. These different transformation matrices 
are constructed in the first step where the original LDA method is applied. On our 
data set this first step generally produces a new feature set with a dimensionality 
ranging from one to six new features. Another factor is the optional smoothing of the 
feature data. Since this gives a total of only twelve test cases, six with and six 
without smoothing, we decided to apply the inverse LDA method to each of them. 
 
The threshold that is used to select which features add too little information to be 
useful is determined empirically. We have chosen a threshold value of 0.18%. This 
means that each feature that adds less than 0.18% to the feature set is removed for 
a certain test case. The value of 0.18% clearly separates a few feature categories. 
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Results 
The results of the twelve tests are given in Appendix C. The results clearly show that 
the angular velocities and angular accelerations are almost always below the 
threshold. Other feature sets below the threshold are the polar and Cartesian 
accelerations of the hands and the head. Only a few features of the polar and 
Cartesian velocity set lie below the threshold. This is not convincingly enough to 
discard these categories. The trend is obvious: the features to discard are all the 
accelerations and the angular velocities. This is a reduction from 84 to 50 features. 
Intuitively this result could be expected. Higher order derivates such as accelerations 
amplify the occurring noise resulting in an increase in within-class variation. Also, as 
mentioned earlier in 2.3.2, derivates trade in context information for invariance. Less 
context information will result in less between-class variation. Both effects explain 
why the discarded features add too little information to be useful. Table 2.6 lists the 
selected feature categories. In the following segmentation chapter and the later 
classification chapter we select a suitable subset from these categories.      
  

Feature Category 
Cartesian head & hand positions 
Polar head & hand positions 
Joint angles 
Distances between head & hands 
Cartesian head & hand velocities 
Polar head & hand velocities 
Speed and direction of head & hand 
Duration 
Intensity 
Locus 
Table 2.6 – The selected feature categories to be used in the remaining part of the 
project. Duration, intensity and locus are three uncategorized features. 
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Chapter 3 - Segmentation 

In the previous chapter we manually annotated the occurring gestures in some of the 
available meeting recordings. The annotation separates the occurring meeting 
gestures in time from other parts of the meeting. We can use this manual 
segmentation result to train and test the actual gesture classification method. But 
this restricts the program to work with manually pre-annotated meetings. In order to 
have the program work with plain feature streams, the segmentation has to be 
automatic. This chapter describes the techniques we researched and their results on 
automatic gesture segmentation. 
 
In the state of the art overview it is mentioned that explicit segmentation is not 
strictly necessary when using a state-space approach, such as an HMM, for 
classification. The idea is that the HMM will stay in a start state as long as no gesture 
takes place and will progress to an end state when a gesture does take place. So 
why do we want to research explicit segmentation methods? With a perfect 
segmentation the classification method only has to decide on the label of the 
gesture. If the gestures are not explicitly segmented, the classification method also 
has to determine the location of the gesture in addition to the label. Given the 
infrequent occurrence of gestures in a meeting, finding the correct location of the 
gesture implicitly will not be an easy task.  
 
Ideally, we want to segment the gestures as a whole. This means that we want to 
generate boundaries in the same place as a human annotator would place them. This 
enables us to present the meeting data in chunks to the classifier. The classifier then 
only has to decide if the chuck contains a certain gesture or not. However, assuming 
we can solve this segmentation problem may be too ambitious. The segmentation 
approach has some pitfalls. Take for example a repeated nodding gesture. The 
problem of segmenting this as a whole and not stopping after the first one or two 
nods is not easy to solve. Another example is coping with the long duration of a 
writing gesture. Not placing any boundaries between the beginning and end of 
writing may also prove to be difficult. 
 
We also want to research a less ambitious approach to the segmentation problem. 
From the previous examples we saw that it is reasonable to assume that a gesture is 
being segmented into smaller parts. In this less ambitious approach we want to allow 
the presence of these gesture parts as long as the begin and end parts are well 
aligned with the annotated gesture boundaries. This approach still has an advantage 
over no segmentation, because we still can present a sequence of gesture parts 
containing only the gesture to the HMM. The only problem lies in finding the correct 
sequence of gesture parts. 
 
In this chapter we want to answer the question if we can segment gestures as a 
whole or in parts from a meeting feature stream. For this we first have to determine 
the features on which each gesture class is segmented. This selection is made in the 
next Paragraph 3.1. After this we look at two different segmentation methods in 
Paragraph 3.2. A method to compare segmentations is described in Paragraph 3.3. 
The two segmentation methods are tested in Paragraph 3.4, followed by the 
conclusions of this chapter in Paragraph 3.5. 
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3.1. Segmentation features 

In order to recognize when a certain gesture begins and ends we have to know what 
characterizes the beginning and end of that gesture. To be able to find these 
characteristics we recall the annotation guidelines of Paragraph 2.2.1 used for the 
manual annotation. We use these guidelines as a starting point to determine for each 
gesture which features describe its boundary characteristics. These features are not 
necessarily the best features for future classification. For this you need features that 
describe the entire gesture. The features we are looking for in this paragraph only 
have to describe the gesture boundaries. For example the head features could be 
used to detect the boundaries of a writing gesture, because of the significant 
downward and upward movement during the beginning and end of this gesture. 
During writing the head generally remains in a fixed position thus providing less 
information for classification. The segmentation features selected from the categories 
listed in Table 2.6, are summarized in Table 3.1. A more detailed analysis of the 
selected segmentation features is provided in Appendix A. 
 

Category 
Gesture 

Cartesian 
position 

Polar 
position 

Joint angles Cartesian 
velocity 

Polar 
velocity 

Speed / 
Direction 

Writing Head Y Head R/D Head X Head Y Head R/D Head 
speed 

SSG Left/Right 
hand X/Y 

Left/Right 
hand D 

  Left/Right 
hand D 

 

Nodding 
 

Head Y Head R/D Head X Head Y Head R/D  

Shaking 
 

Head X Head R/D Head X Head X Head R/D  

Standing up  

Table 3.1 – Selected segmentation features. For the polar sets R/D stands for the radius and 
delta feature.  

Sitting down 
Head X/Y Head R/D Left/Right 

shoulder X 
Head X/Y Head R/D Head 

speed 
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3.2. Segmentation methods 

In this paragraph we describe the two segmentation methods we use. The idea is to 
test both methods on whole gesture segmentation and gesture part segmentation. 
We based our two segmentation methods on previous research into automatic 
segmentation. Research studies on this topic can be clearly divided into two different 
points of view: one using a Bayesian information criterion, the other using an activity 
measure. We will refer to these two approaches as respectively BIC and AM. The rest 
of this paragraph will give a detailed description of the two methods and how we 
apply them. 
 
3.2.1. BIC 

The BIC approach to automatic segmentation is a probabilistic one. It does not 
explicitly use any a priori knowledge about gesture characteristics to find the gesture 
boundaries. In short, the segmentation is performed by taking a certain observation 
sequence and evaluating if it is more likely that this sequence is generated by one 
underlying process or by two successive smaller processes. The presence of a 
boundary is implied if it is more likely that two different processes have generated 
the observation sequence. This approach makes the segmentation problem a 
statistical model selection problem, using a decision rule to place the boundaries.  
 
BIC is a frequently used decision rule for model selection problems. BIC 
segmentation has been used in the field of audio segmentation by Zhou and Hansen 
[68]. Also in the field of speech recognition, BIC is used for speaker segmentation by 
Tritschler and Gopinath [57]. Recently it has been applied in gesture segmentation 
by Zobl et al. [70]. The way we apply BIC to our problem is mainly based on this last 
article.  
 
The first step in the BIC approach is to place a window of size n over a part of the 
meeting’s feature stream. This results in a collection of n feature frames. It is 
assumed that within this window there is at most one boundary. The next step is to 
place boundary candidates at each position i within the range (4,…,n-4) of this 
window. We place the boundaries four frames from the edges of the window to 
ensure that there is enough data present to the left and right of each boundary 
candidate to estimate the Gaussian process. We assume four frames, because this 
number is also used by Zobl et al. in their BIC based gesture segmentation.  
 
To determine which of these candidate boundaries are valid we perform a test for 
each candidate. The test determines if one Gaussian process generated the 
observation sequence of the entire window or if two Gaussian processes generated 
the observation sequences to the left and right of the candidate boundary. Out of the 
boundaries that are valid, the boundary candidate that scores best on this test is 
selected to be the actual generated boundary. If none of the candidate boundaries is 
valid the window slides a certain amount of frames ahead. From there the process is 
repeated.  
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The amount of frames that the window slides is specified by the slide parameter. If a 
boundary is detected the window is also placed a number of frames ahead. This 
position is determined by adding the value of the slide parameter to the position of 
the detected boundary. This process is repeated until the end of the entire meeting 
stream is reached. To summarize: with the window size parameter you define the 
range in which you expect at most one boundary. With the slide parameter you 
influence the minimal amount of frames between two subsequent boundaries.  
  
To test whether one process is better than two we have to measure how well a 
process describes a generated observation sequence. To represent this Gaussian 
process we use the covariance matrix ∑ of the features in the observation sequence. 
This results in three covariance matrices: ∑w representing the observation sequence 
of the entire window, ∑f representing the observation sequence left of the boundary 
and ∑s representing the observation sequence right of the boundary. To reduce the 
covariance matrices to a single score, the determinant of each matrix is calculated. 
Each determinant represents the score for the likelihood that the process correctly 
explains its observation sequence. The lower the determinant, the better the process 
explains the observation sequence. To be able to compare the different determinant 
values they are transformed by taking the logarithm of the absolute value. Each of 
the resulting values is corrected for their model size. When the likelihood score of the 
two smaller models ∑f and ∑s together is lower than the score of the larger model, 
the data within the window has more likely originated from two different processes. 
As a consequence, the evaluated position contains a boundary. 
 
The explanation above results in Formula 3.1. This formula is used to test if a 
boundary candidate is valid at position i within the current window.  
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 n = window size 
 i = number of frames before the boundary candidate 
 n-i  = number of frames after the boundary candidate 
 d    = dimensionality of the feature vector of each observation 
 λ = penalty parameter 
 ∑w = covariance matrix of the observation sequence in the entire window 
 ∑f = covariance matrix of the observation sequence in the first part 
 ∑s = covariance matrix of the observation sequence in the second part 
 
The last term in the above formula is a penalty term which corrects the formula for 
the feature dimensionality d. The lambda parameter can be used to fine-tune this 
penalty. Suppose the complexity of the segmentation data increases while the 
dimensionality remains the same, for example when the summed left and right hand 
feature is used. A higher lambda is necessary in this case to compensate for this 
increased complexity. Effectively this penalty influences the number of boundaries 
that are placed. A higher lambda parameter results in fewer detected boundaries. 
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3.2.2. AM 

The AM approach uses a priori knowledge of the begin and end characteristics of a 
gesture. The idea is to find a feature or combination of features that shows these 
characteristics and to explicitly search for the gesture boundaries. For example, you 
know that for a speech supporting gesture the hands start and end in a rest position. 
From this you assume that the velocity feature in these rest positions is close to 
zero. Gesture boundaries can then be placed by explicitly searching for points, where 
the hand velocity crosses a certain threshold that is close to zero. Generally, 
methods originating from this point of view use some form of activity measure to 
detect gesture boundaries.  
 
The AM method finds gesture boundaries by explicitly searching for points that might 
indicate a gesture’s begin or end. In Paragraph 3.1 we listed the features that show 
the characteristic begin and end movements of a gesture. We will use these features 
as our measure of activity. We now have to find a way to search for the 
characteristic boundaries. Figure 3.1 below shows the trajectory of a certain feature. 
It also shows four possible categories of interest that might indicate a gesture 
boundary: local minima, local maxima, zero crossings and threshold crossings 
 

 

   
Figure 3.1: Variation of a feature over time showing points of interest. 

 
The basic idea behind the AM method is to search for occurrences of one or more of 
the categories listed above, in the trajectory of a certain feature. These points of 
interest might indicate a gesture start or end, as the examples in the following 
paragraphs make clear. 
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Local minima and maxima 
Local minima and maxima are actually occurrences of the same phenomena. For 
example let’s say that the graph above represents the movement of the head in the 
y direction. In this scenario a local minimum means that the head was moving down 
and is now at its lowest position before moving up again. The same can be said for a 
local maximum, only in this case the head was moving up and is now starting to 
move down again. Both categories indicate a change in direction when you look at 
position features such as Cartesian or polar coordinates. A writing gesture starts for 
example with a sudden downward movement of the head. This characteristic change 
in direction could be detected by looking at points where a local maximum occurs in 
one of the position features. 
 
A downside to using local minima and maxima is that noise will cause much of these 
minima and maxima in the data. To limit the resulting set of boundaries found when 
searching for local minima and maxima a threshold can be defined. This threshold 
can be used to include only the very high and low peaks in the data. The smaller 
minima and maxima generated by noise, random movement or smaller gestures 
such as nodding are left out. This can be useful when searching for the boundaries of 
gestures with larger amplitudes such as writing, standing up and sitting down. 
Another possibility is to define a window where only one minimum or maximum may 
occur and keep only the minimum or maximum with the lowest or highest value 
within this window. 
 
Zero crossings 
Zero crossings in velocity features have a significant meaning. A zero crossing 
indicates that the velocity of the occurring movement was slowing down is now zero 
and is going to speed up. This shows a moment of rest in the occurring movement 
that might indicate a gesture start or end. 
 
Threshold crossings 
Threshold crossings can be useful when you have observed, for example that at the 
end of standing up, the Y position of the head always exceeds a certain value whilst 
during the rest of the meeting this feature is always below this value. By defining a 
threshold on this value and looking for the points where the Y position of the head 
crosses this threshold you might find the end boundaries for standing up.  
 
It is also possible to define a threshold on velocity features. Consider for example the 
absolute velocity as a measure of occurring activity. You could define a threshold on 
the minimum amount of velocity and look for the points where the velocity exceeds 
this threshold. In this case a gesture begins when the measured activity becomes 
higher than the threshold and ends when the activity drops below the threshold 
again. 
 
The resulting set of boundaries can be limited by increasing the threshold on a 
certain feature. If for example a high boundary on a velocity feature is defined, the 
detected boundaries are limited to include only the gestures which have high 
variations in velocity.  
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3.3. Comparing two segmentations 

Before we can test which segmentation approach and corresponding parameter 
settings gives the best segmentation result, we need a method to compare two 
generated segmentations. The first step in this process is to compare a generated 
segmentation with the corresponding annotated segmentation. The method we use 
for this is described in the next paragraph. The second step is to give an error score 
to the result of this comparison. The error score for whole gesture segmentation is 
determined in Paragraph 3.3.2. The error score for gesture part segmentation is 
determined in Paragraph 3.3.3. Error scores of different generated segmentations 
can be compared with each other to determine which segmentation is better. 
 
3.3.1. Comparing with annotation 

This paragraph gives a description of how we compare a generated segmentation 
with our own manual annotations. A comparison is made for each annotated gesture, 
to evaluate how well a generated segmentation matches the annotated gesture. 
Independent of a whole gesture or gesture part approach, the start and end 
boundary of the annotated gesture both have to be matched with an automatically 
generated boundary. We have to consider that it is very unlikely that a generated 
boundary will be present at exactly the same frame as the annotated boundary. 
Therefore, we have to decide when a generated boundary is close enough to be 
coupled to an annotated boundary. A range r has to be defined in which the closest 
generated boundary must lie in order to be coupled to an annotated boundary. With 
this range we create two situations as shown in Figure 3.2. We call the situation 
where a boundary is within range a ‘match’. We call the other situation where there 
is no boundary within range a ‘deletion’.  
 

 
 

Figure 3.2 - The situation where a generated (green) boundary is within the range r of an 
annotated (red) boundary and the situation where no boundary is within range. 
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When both annotated boundaries of a certain gesture have been matched correctly 
with generated boundaries, other generated boundaries in between the two matched 
boundaries can still make the segmentation unsuccessful. This third situation is 
called an ‘insertion’. Note that we consider boundaries to be an insertion, only if the 
begin and end boundaries of the currently examined gesture are already matched. 
When either is not matched we do not speak of an insertion because there is not a 
possibly, correctly segmented gesture to make the insertion in.   
 
A last situation is caused by boundaries in between the gestures. Because we have 
not annotated all occurring movement, these boundaries could indicate the presence 
of gestures that are not considered by us or could indicate any other type of 
movement. Suppose you are looking for nodding boundaries, at points where the 
head starts to move down. This method might very well find nodding boundaries but 
it will most likely also find boundaries of actions that also start with a downward 
movement of the head, for example looking down at the table. Both gestures have 
the same begin characteristics, but only the nodding gesture is annotated and 
looking down is not. The segmentation method cannot be blamed for not being able 
to make a distinction between these movements. Because we do not have any 
information about these movements we cannot say if a certain situation would be a 
match, insertion or deletion. Therefore we will not consider these situations any 
further. A consequence of this approach is that the uninteresting data between two 
gestures will be segmented into smaller parts, leaving the classification method to 
deal with classifying these parts as uninteresting. 
 
3.3.2. Error score for whole gesture segmentation 

When using a whole gesture segmentation approach we want the automatically 
placed boundaries to be only present in the vicinity of the annotated boundaries. This 
means that no insertions should occur in between the two boundaries that match 
with the beginning and end of a gesture. So the success criterion is to find as many 
matches as possible and as little deletions as possible with the least amount of 
insertions. The rest of this paragraph describes the calculation of an error score 
which represents this success criterion. 
 
Match score 
For the situations where there is a match, we can determine an error score by 
calculating the difference in frames between the generated and annotated boundary. 
The formula for the calculation of this score is presented below. 
 

( )ryatedBoundaFrameGenerryatedBoundaFrameAnnotAbsEm ## −=   (3.2) 
 
To determine the maximum range, in which Em should lie, we use the boundary 
agreement between annotators described in Paragraph 2.2.2. The amount of 
disagreement on the location of boundaries gives a good indication of the differences 
that might occur between two segmentations.  
  
The result of the boundary agreement test describes how much overlap there is 
between gestures annotated by two different annotators. Table 2.4 in Paragraph 
2.2.2 also lists the disagreement between annotators, expressed by the total number 
of frames that the gestures in the test set did not overlap. By dividing this total 
disagreement by the number of gestures in the test set we calculate the average 
number of frames the annotators disagree on per gesture. A gesture always has two 
boundaries.  
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To get the average disagreement per boundary, we must divide the disagreement on 
the whole gesture by two. The resulting value of seven frames is used as the 
maximum range between the generated and annotated boundary. The calculation is 
given below.  
 

7
2

228/3005
max ≈=r         (3.3) 

 
Deletion score 
When there is a deletion, there is no generated frame within the maximum range 
rmax. Therefore the error score for this situation should at least be greater than the 
maximum match error which is this maximum range of 7. But we do not know if the 
closest generated boundary is just out of range or far away. Therefore, we add one 
to this maximum range as the error score for a deletion.  
 

1max += rEd           (3.4) 
 
Insertion score 
The last situation of an insertion arises when one or more boundaries are generated 
in between the matched begin and end boundaries. You could say that it does not 
matter how much boundaries are inserted because the gesture is already incorrectly 
segmented with only one insertion. We still choose to calculate a score based on the 
number of insertions because this way the total error score can reflect whether the 
number of insertions is diminishing or not. To determine the penalty for an insertion 
we look at the penalty we determined for a deletion. An insertion has the same effect 
as a deletion. Both cause an incorrect segmentation of the whole gesture. Because 
deletions and insertions both result in incorrectly segmented gestures, we should 
give both the same error score. However, we still want to take the number of 
insertions into consideration. Taking all this into account we give the following error 
score to an insertion where #i is the number of insertions between two matched 
gesture boundaries. This results in the same penalty as a deletion, when one 
insertion occurs, with a small increase for multiple insertions.  
 

irEi #max +=          (3.5) 
 
Total score 
We now have error scores for the three situations that can occur per gesture. These 
must be grouped together in a single score for the whole segmentation pass. This is 
done by summing these errors of all gestures together and dividing this score by the 
total number of counted matches, deletions and insertions. Ema  Edb  Eic in the 
formula denote the different error scores for each situation and Nm Nd Ni 
respectively the number of matches, deletions and insertions.  
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3.3.3. Error score for gesture part segmentation 

The gesture part segmentation approach allows the gesture to be split up into 
smaller blocks. This means that the generated segmentation only has to segment 
parts of a gesture. The smaller gesture units could be classified first, before they are 
combined to form a gesture. A similar approach is taken by Wang et al. [63]. 
Parallels can be drawn with speech recognition, where the phonemes are also 
identified first and then used to classify a certain word or phrase. For sign language 
recognition this approach is applied by Murakami and Taguchi and by Birk et al. [42, 
8].  
 
Because a gesture is split up in smaller parts, insertions are allowed to occur. No 
error score is assigned to insertions. The begin and end boundary of an annotated 
gesture should however still be matched by an automatically generated boundary. 
The success criterion for this approach is just to find as many matches, close to the 
annotated boundaries and as a consequence, have as little deletions as possible.  
 
Match and deletion scores 

We calculate the error scores for the matched boundaries and the deletions in the 
same way as we did in whole gesture segmentation. See Formula 3.2 and 3.4. 
 
Total score 

The only difference between this approach and the whole gesture approach is that 
we ignore the insertions. The score for this approach can be derived from the whole 
gesture approach Formula 3.6 by simply leaving out the insertions. This reduces the 
formula to the one presented below.  
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The above error score is designed to find the optimal combination of features and 
segmentation settings that generates the most matches as close as possible to the 
annotated boundaries. In other words minimizing this error will result in the optimal 
combination of features with the best matching precision.  
 
Gesture part baseline test 

A possible problem with ignoring the insertions might be that the segmentation 
method just places as much boundaries as possible, to get the most precise matches 
and the least deletions. As a consequence the average size of the gesture parts may 
become too small to represent anything significant. To test if the average size of the 
gesture parts is too small, we devised a baseline test. The idea behind the baseline 
test is to place boundaries a certain fixed amount of frames apart, resulting in 
gesture parts with a fixed size. The average size of the gesture parts generated with 
BIC or AM must be larger than this baseline size. 
 

- 48 - 



3 – Segmentation 

The baseline test can match all annotated boundaries as long as it places the 
boundaries close enough together. This is because a boundary is considered to be a 
match when it lies within the range of seven frames before or after the annotated 
boundary. In theory this means that if you just place boundaries every 14 frames 
apart, you can get a 100% match. However this match would not be very precise. 
For the example of 14 frames the minimum deviation from the annotated boundaries 
is 0 and the maximum deviation is 7 so the expected precision of a match is an 
average of 3.5 frames.    
 
To make a fair comparison between the baseline test and the BIC or AM result both 
must have the same match precision. For example if BIC generates matches with an 
average precision of 2 frames, the baseline test with the same precision would result 
in gesture parts of 2*4=8 frames. The average size of the parts generated by the 
BIC example must lie above these eight frames to be better than the baseline 
method. Summarized the baseline test approach is as follows. First determine the 
match precision of the currently evaluated BIC or AM result. Next determine the 
baseline part size that corresponds to this precision. Finally evaluate if the BIC or AM 
part size exceeds the baseline part size.     
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3.4. Testing 

In this paragraph the segmentation performance of the two previously described 
methods is evaluated for the whole gesture and gesture part approach. The purpose 
of the test phase is to find an answer for each gesture class to the following 
questions: 

• Which segmentation method is better, BIC or AM? 
• What are the best parameter settings for this method? 
• On which feature or features is this best result achieved? 

 
The best combination of parameters and features is determined automatically, by 
testing a whole range of different combination of features and parameter settings.   
The setup with the lowest error score will have the best combination of features and 
parameters. This is because the error scores for whole gesture and gesture part 
segmentation are designed to reflect the desired behavior of each approach. The 
tested parameters and feature setups are described below. 
 
3.4.1. Test setup 

To determine the best segmentation method the best BIC result is compared with 
the best AM result. The approach with the lowest error score is the best 
segmentation approach. 
 
BIC parameters 
When we recall the explanation of BIC in 3.2.1, there are three BIC parameters: a 
window width, a window slide parameter and the λ penalty value for inserting a 
boundary. We assume that on a large data set the optimal values for these 
parameters can be determined independently. This saves a lot of processing and 
testing time because no combinations of parameters have to be tested. If we for 
example test 5 values for each of the three parameters we now have to perform 15 
tests instead of 125 (53). These assumptions are based on preliminary tests which 
show that the error score determined with independent testing deviates only a few 
percent from the optimal score possible. This deviation is not significant. We 
therefore conclude that we can optimize the values for these parameters 
independent of each other.  
 
AM parameters 

In the description of the AM method in Paragraph 3.2.2 we mentioned four different 
types of boundaries: Local minima, local maxima, zero crossings and threshold 
crossings. Most these boundaries have additional parameters. The threshold 
crossings have a threshold parameter indicating the position of the threshold. The 
detected minima and maxima can also be restricted with a threshold. The minima 
and maxima also have an optional boundary filter, which selects the lowest local 
minimum or highest local maximum within a certain window. Also the minima and 
maxima can be made absolute, when it is required that the maxima must lie above 
and the minima below zero.  
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Feature setups 

For the BIC method there are three feature setups available: 
• The first setup is to determine an individual gesture part and whole gesture 

score for each single feature that has been suggested in Paragraph 3.1.  
• Based on these individual results some of the best features can be combined 

to form the second test setup.  
• The last setup is to sum some logical individual features together, such as the 

left and right hand for example. The performance is determined on the new 
summed feature.  

 
For the AM method a similar approach is taken. It is however not possible to test a 
combination of features because the AM method only works on one dimensional 
data. Only the first and last setup mentioned in the BIC approach will be applied for 
the AM method. 
 
All of the tests in this chapter are performed on features which are smoothed, 
normalized and filtered for outliers. In the next two paragraphs the best test results 
are given for whole gesture segmentation in Paragraph 3.4.2 and gesture part 
segmentation in Paragraph 3.4.3. Furthermore, the test results are evaluated to 
determine if the best results are good enough. 
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3.4.2. Whole gesture segmentation results 

Table 3.2 provides all the answers to the questions we asked in the beginning of this 
test paragraph, for whole gesture segmentation. For each gesture: which method 
performs best AM or BIC, on which features is this result achieved and with which 
parameter settings.  
 
Gesture Method Feature set Parameter settings 
Writing AM Sum of: Cartesian coordinate 

head Y direction, polar 
coordinate head Radius / Delta 

Boundary types:  Threshold 
   Maxima 
   Zero Cross 
Threshold value: 2 
Min/Max threshold: 0.8 
Min/Max filter: False 
Min/Max absolute: True 

SSG BIC Sum of: polar coordinate Delta 
of the left and right hand  

Window size:  13 
Window slide:  1 
λ penalty:  2 

Nodding BIC Sum of: Cartesian velocity head 
Y direction, polar velocity head 
Radius / Delta 

Window size:  24 
Window slide:  2 
λ penalty:  3 

Shaking BIC Sum of: Cartesian velocity head 
X direction, polar velocity head 
Radius / Delta 

Window size:  16 
Window slide:  2 
λ penalty:  5 

Standing 
up 

AM Sum of: left and right shoulder 
X angle 

Boundary types: Minima 
   Maxima  
Threshold value: Not  
   applicable 
Min/Max threshold: 0.8 
Min/Max filter: False 
Min/Max absolute: True 

Sitting 
down 

AM Sum of: left and right shoulder 
X angle 

Boundary types:  Threshold 
   Maxima 
Threshold value:  2.6 
Min/Max threshold:  0 
Min/Max filter:  False 
Min/Max absolute:  False 

Table 3.2 – Summary of the best test results for whole gesture segmentation. 
 

We can also make a few additional observations from these test results. The first 
observation is that the shorter gestures (SSG, nodding and shaking) use the BIC 
method to segment the entire gesture. The longer gestures (writing, standing up and 
sitting down) achieve the best segmentation results with the AM method. This 
observation may be explained by the characteristics of the gestures. The nodding 
and shaking gesture can have a repeated pattern within the gesture itself. This 
means that an AM method that segments on an observable aspect may find 
boundaries within the gesture, because the observable aspect is repeated within the 
gesture. These insertions add to the error score. This may explain why AM scores 
worse than BIC for the small gestures. The larger gestures, however, generally lack 
this repeated aspect and may therefore be easier to segment with the AM method.  
 
Another observation we can make is that the best results for both BIC and AM are 
based on summed features. This seems reasonable since a sum of features contains 
more information to segment on than its separate parts. Suppose that one feature 
gives the best description of the beginning of a gesture whilst another best describes 
the end. The sum of these two features would be suitable to segment the whole 
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gesture on. This observation is in line with the one Rigoll et al. [49] made for the BIC 
method. They state that the best results can be achieved by using the energy (sum) 
of each feature vector instead of the feature vectors themselves. 
  
Segmentation performance  

Based on Table 3.2 we now know what combination of segmentation method, 
features and parameter settings results in the lowest error score. But is this lowest 
error score good enough to say that we can segment the gestures as a whole? To 
answer this question we estimate the percentage of gestures in the test set that can 
be segmented as a whole. This performance percentage is obtained by dividing the 
matched gestures without any insertion by the total number of gestures in the test 
set. This is approached by Formula 3.8. The number of matches and deletions 
together form the total amount of gesture boundaries. This number must be divided 
by two to get to total number of gestures in the test set. The matched gestures are 
estimated by dividing the matched boundaries by two. Subtracting the insertions 
from this total will leave the matched gestures without any insertion. Table 3.3 lists 
the performances of whole gesture segmentation.  
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Whole Gesture Match Insertion Deletion Performance 
Writing  95 24 63 29,75% 
SSG 1224 550 12 10,03% 
Nodding 678 226 84 29,66% 
Shaking 120 52 0 13,33% 
Standing up 14 3 6 40,00% 
Sitting down 15 5 5 25,00% 
Total (weighted) 2146 860 170 18,39% 

 
 
 
 
 
 
 
 
 

Table 3.3 – Performance evaluation of the whole gesture segmentation results. The 
match and deletion columns list the matched and deleted boundaries. The insertion 
column lists the number of gestures where one or more insertions occur.  

 
The optimal balance between the insertions and deletions is found for each gesture 
using the evaluation method described in Paragraph 3.3.2. Despite this optimal 
balance, the average number of gestures that we can segment as a whole without 
having any insertions or deletions turns out to be only 18%, as can be seen in Table 
3.3. This means that we cannot use the researched segmentation approaches to 
segment entire gestures. 
 
An explanation for the results lies with the characteristics of the different gestures. 
The longer gestures have more frames so the chance is higher for an insertion to 
occur and make the segmentation unsuccessful. This means that writing, standing up 
and sitting down are difficult to segment as a whole. The nodding and shaking 
gestures can have a repeated pattern in them. A boundary could very well be 
inserted between these repeated parts. The SSG class is very diverse, which makes 
it difficult to find a general setting with which the wide range of gestures can 
segmented correctly. Each gesture class has pitfalls that make whole gesture 
segmentation difficult. 
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3.4.3. Gesture parts segmentation results 

In the previous paragraph we saw that whole gesture segmentation is not possible 
with the approaches we have taken towards automatic segmentation. In this 
paragraph we look at the results, suggested by our automatic test, for the gesture 
part segmentation. Table 3.4 below shows the best suggested method, feature set 
and parameter settings results.   
 
Gesture Method Feature set Parameter settings 
Writing AM Head speed Boundary types:  All 4 types 

Threshold value: 2 
Min/Max threshold: 0 
Min/Max filter: False 
Min/Max absolute: False 

SSG AM Sum of: polar velocity Delta of 
the left and right hand  

Boundary types:  All 4 types 
Threshold value: 1 
Min/Max threshold: 0 
Min/Max filter: False 
Min/Max absolute: False 

Nodding AM Sum of: Cartesian velocity head 
Y direction, polar velocity head 
Radius / Delta 

Boundary types:  All 4 types 
Threshold value: 0.2 
Min/Max threshold: 0 
Min/Max filter: False 
Min/Max absolute: False 

Shaking AM Sum of: Cartesian velocity head 
X direction, polar velocity head 
Radius / Delta 

Boundary types:  All 4 types 
Threshold value: 0.2 
Min/Max threshold: 0 
Min/Max filter: False 
Min/Max absolute: False 

Standing 
up 

BIC Sum of: Left and right shoulder 
X angle 

Window size:  10 
Window slide:  1 
λ penalty:  1 

Sitting 
down 

BIC Sum of: Left and right shoulder 
X angle 

Window size:  10 
Window slide:  1 
λ penalty:  1 

Table 3.4 – Summary of the best suggested test results for gesture part segmentation. 
 
For whole gesture segmentation we observed that a summed feature set gave the 
best results. This is also true for gesture part segmentation. Almost all gesture 
classes except writing use a summed feature. The same explanation, that a summed 
feature potentially contains more information to segment on, also applies for gesture 
part segmentation. 
 
Segmentation and baseline performance 

Just as for whole gesture segmentation we look at the performance of the gesture 
parts approach. The only criterion here is to have the most precise matches and the 
least deletions possible. When we look at the performance of this approach it is a lot 
better than the whole gesture performance and results in almost 96% match of a 
generated boundary with a segmented boundary, see Table 3.5.  
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Gesture Parts Match Deletion Performance 
Writing  156 2 98,73% 
SSG 1214 22 98,22% 
Nodding 687 75 90,16% 
Shaking 116 4 96,67% 
Standing up 20 0 100,00% 
Sitting down 20 0 100,00% 
Total (weighted) 2213 103 95,55% 

 
 
 
 
 
 
 
 

Table 3.5 – Segmentation results for gesture part segmentation. The performance 
percentage is obtained by dividing the match by the sum of match and deletion.  

 
In Paragraph 3.3.3 we argued that a possible problem with ignoring the insertions 
might be that the segmentation method just places as much boundaries as possible, 
to get the most precise matches and least deletions. As a consequence the average 
size of the gesture parts may become too small to represent anything significant. To 
test this hypothesis we suggested a baseline test in that paragraph. This test gives a 
lower limit to the average part length. The length of the parts generated by the 
segmentation method should be at least larger than this baseline. We determined the 
part length with the settings of Table 3.4. The results are given in Table 3.6, which 
gives the average part length and the baseline part length. The baseline average part 
length is based on the precision of the AM or BIC segmentation. 
 

 
 
 
 
 
 
 
 
 

Gesture Average part length 
  Base 
Writing  4 6
SSG 5 4
Nodding 3 5
Shaking 3 5
Standing up 10 6
Sitting down 10 7
Table 3.6 – Average part length using the suggested results of Table 3.4. The Base 
column is the result of the baseline method. 

 
The first four gestures, which are segmented with the AM method, have a low 
average part length. Especially for writing, nodding and shaking where the part 
length is even lower than the baseline length. This results in a high average number 
of parts per gesture and a high number of total generated bounds. For writing, 
nodding and shaking the average number of parts and number of generated 
boundaries would be even lower when you use the baseline segmentation method. 
The score for speech supporting gestures is also only marginally better than the 
baseline test. In other words ignoring the insertions leads to too small gesture parts 
for writing, nodding and shaking.  
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Re-evaluation 

In order to increase the average part length for the writing, speech supporting, 
nodding and shaking gesture, the settings for the best AM result and the best BIC 
result are re-evaluated. The results for standing up and sitting down show that the 
segmentation with BIC generates larger gesture parts. This indicates that BIC in 
general might generate fewer boundaries. Therefore we re-evaluated not only the 
best AM result but also the best BIC result. The objective is to decrease the number 
of generated boundaries and thereby increase the average part length, while the 
percentage of matched boundaries does not decrease significantly. The AM setting 
with which the number of generated boundaries can effectively be reduced is the 
boundary type selection. An example is to leave out all the threshold crossings. For 
BIC, the penalty parameter directly influences the number of boundaries. The 
penalty value is increased to reduce the boundaries generated by the BIC method.  
 
The scatter plot of Figure 3.3 shows the result of this fine-tuning evaluation for 
writing. The yellow point belongs to the suggested setting of the automatic 
evaluation method. Although this point does have the highest match percentage it 
also has the highest number of generated boundaries, which resulted in the low 
average part length for writing. The red and blue points are the test results of the 
fine tuning test for AM and BIC. Most tests result in significantly fewer generated 
boundaries whilst still having a high match percentage. The green point indicates the 
chosen fine-tuned setting. The same approach has been used for speech supporting, 
nodding and shaking. 
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Figure 3.3 – Scatter plot of the fine-tuning test results for writing. The yellow point is the 
best result before fine-tuning. The green point is the best result after fine-tuning 
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Table 3.7 lists all the fine-tuned settings and Table 3.8 shows the new average part 
length compared to the baseline length. With the fine tuned settings, all gestures 
perform better than their corresponding baseline tests. The average part length has 
increased significantly for writing, speech supporting, nodding and shaking. There is 
only a decrease of 0.04 percent point in performance compared to the old total 
segmentation performance given in Table 3.5. The new total performance score is 
95.51%. The indication that BIC generally produces larger gesture parts for a similar 
performance, proved to be true. The BIC method with the parameters from Table 3.7 
will be used to segment gesture parts for all gesture classes. 
 

Gesture Method Feature set Parameter settings 
Writing BIC Sum of: Cartesian head Y 

position, polar head Radius / 
Delta  

Window size:  10 
Window slide:  1 
λ penalty:  6 

SSG BIC Sum of: polar position Delta of 
the left and right hand  

Window size:  13 
Window slide:  1 
λ penalty:  6 

Nodding BIC Sum of: Cartesian head Y 
position, polar head Radius / 
Delta 

Window size:  12 
Window slide:  1 
λ penalty:  7,5 

Shaking BIC Sum of: Cartesian velocity head 
X direction, polar velocity head 
Radius / Delta 

Window size:  11 
Window slide:  1 
λ penalty:  6 

Standing 
up 

BIC Sum of: Left and right shoulder 
X angle 

Window size:  10 
Window slide:  1 
λ penalty:  1 

Sitting 
down 

BIC Sum of: Left and right shoulder 
X angle 

Window size:  10 
Window slide:  1 
λ penalty:  1 

Table 3.7 – Summary of the fine-tuned test results for gesture part segmentation. 
 

 Gesture Average part length 
  Base 
Writing  10 8
SSG 12 9
Nodding 11 10
Shaking 9 9
Standing up 10 6
Sitting down 10 7

 
 
 
 
 
 
 
 

Table 3.8 – The fine tuned average part length.  
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3.5. Segmentation conclusion 

In this chapter we evaluated the performance of two segmentation methods, BIC and 
AM, on whole gesture and gesture part segmentation. By giving a single score to a 
generated segmentation we were able to automatically determine the optimal 
parameter settings for each method and segmentation approach. The test results are 
summarized below in Table 3.9. 
 

Gesture Whole gesture 
performance 

Gesture part 
performance 

Writing  29,75% 98,73% 
SSG 10,03% 98,22% 
Nodding 29,66% 90,16% 
Shaking 13,33% 96,67% 
Standing up 40,00% 100,00% 
Sitting down 25,00% 100,00% 
Total (weighted) 18,39% 95,55% 
Table 3.9 – Summarized test results 

 
The average performance for segmenting entire gestures is only 18% due to 
insertions. Given this performance we can conclude that it is not possible to reliably 
use whole gesture segmentation for the classification phase. We have however 
determined for each gesture class which features are the most suitable for 
segmenting entire gestures. The other observation is that we achieve the best results 
by segmenting the longer gestures using the AM method and the shorter gestures 
using BIC. See Table 3.2 for the test results of each gesture class. 
 
It is possible to segment gestures in parts. Almost 96% of the generated boundaries 
are correctly matched with the annotated boundaries. However, using the settings 
generated by the automatic evaluation method resulted in very small gesture parts. 
By fine-tuning these settings, the gesture part sizes increased to sizes between nine 
and twelve frames or 0.36 – 0.48 seconds per part. The segmentation score only 
decreased slightly by this fine-tuning to 95.51%. A downside of the gesture part 
segmentation is that the whole meeting is just split up in smaller parts. Although the 
annotated boundaries are matched there are also a lot of boundaries in between the 
gestures. 
 
The re-evaluation step also showed that BIC generally produces larger gesture parts 
than AM on our data. The BIC method is used on all six gesture classes to segment 
the gesture parts. Another observation is that the best results are achieved on 
summed features. An explanation for this is that a sum of features contains more 
information to segment on than its separate parts. The final features and settings we 
use to segment each gesture are listed in Table 3.7.  
 
All in all we can say that we did not succeed in segmenting gestures as a whole. We 
can however segment the gestures in parts of decent size with high reliability. This 
means that in the classification phase we can process the data in parts and we don’t 
have to process the data frame by frame.  
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Chapter 4 - Feature clustering 

This chapter describes the approaches we have taken to cluster the feature data in 
space. There are several reasons for clustering. In general a reduction from a 
continuous to a discrete feature space could potentially leave almost all context 
information intact but reduce the search space drastically. This means that clustered 
data can follow the trend of the original data whilst leaving out the potentially non-
interesting smaller variations. A reduced search space helps to simplify the training 
of a classifier. Also, a number of classification methods require, or work better, on 
discrete data.   
 
Clustering will be applied for each class, on a combination of input features in the 
classification phase. This means that data points, discussed in the clustering 
approaches, consist of feature vectors. We have chosen to implement and test two 
different clustering methods, K-means and expectation maximization (EM), which will 
be described below. This is followed by a short test that compares both methods and 
a discussion which method is best for our purposes.  
 
4.1. Algorithms 

The first algorithm we have chosen is a commonly used unsupervised clustering 
method K-means, described in Alpaydin [3]. The K-means algorithm finds clusters by 
choosing K data points at random, as initial cluster centers. Each data point is then 
assigned to the cluster that is closest to that point. Next, each cluster center is 
replaced by the mean of all the data points that have been assigned to that cluster. 
The next step is to reassign data points that are now closer to a different cluster 
center. This process is iterated until no more data points are reassigned. The reason 
for choosing this algorithm is that it is fast and robust to use. 
 
We also apply a probabilistic method, the expectation maximization algorithm with 
Gaussian components. The EM method can be seen as a generalized version of K-
means clustering. The main difference is the distinction between hard versus soft 
memberships. A hard membership is adopted in the K-means algorithm where a data 
point is assigned to only one cluster. This is not the case with the EM algorithm, 
which uses a soft membership, where each data point can contribute to multiple 
clusters. The formulae for the expectation and the maximization step are also 
described in Alpaydin [3]. Expectation maximization does have its disadvantages. It 
generally takes longer to converge to a stable solution than K-means and the chance 
that the clustering won’t converge at all is present for EM, whilst K-means always 
converges. Also, the EM method has to calculate a covariance matrix for each 
cluster. The difficulty of this calculation increases when more clusters are used or 
when clustering is applied on a more complex data set. This makes the EM method 
less scalable. 
 
A possible cluster difficulty is that different gestures cause very different variations in 
the data. Nodding gestures for example cause small variations in the data but do 
happen often. Standing up gestures cause large variations in the data but do not 
happen so often. Both gesture classes have to be represented by their own clusters. 
It might be possible that the larger gestures overshadow the smaller gestures 
resulting in fewer clusters for the smaller gestures and more clusters for the larger 
gestures. Because EM uses soft label memberships it may be better suited to cope 
with this difficulty. This problem cannot be solved with normalization because the 
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different variations are present in the same feature. Normalization can bring different 
features in the same range but does not change the relative differences within a 
single feature. In the next paragraph we will evaluate how EM and K-means perform 
on our dataset. 
 
4.2. Testing and conclusions 

To evaluate the performance of K-means versus EM we looked at how good the 
generated clusters approach the original data for different cluster sizes. This 
performance is measured with the summed city block error (Manhattan distance), 
being the sum of the absolute difference between the data points before and after 
clustering. The Manhattan distance does not take a squared distance, making it less 
susceptible to single large differences (outliers). The lower the reconstruction error, 
the better the clustering result approaches the original data. The results of these 
tests are shown in Figure 4.1. The more clusters you add the more precise the 
clustering method can approach the data, resulting in a lower error score. However, 
at a certain point, adding more clusters will not result in a significantly lower error 
score. To find the optimal amount of clusters one has to look for the dent in the error 
graph. This is the point where the decrease in error significantly decreases, the so 
called elbow criterion. Because the feature sets to cluster are determined in the 
classification phase, we cannot test the effect of different cluster sizes on the 
classification performance at the moment. The optimal number of clusters has to be 
determined in the classification phase.  
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Figure 4.1 – Example of reconstruction errors of EM and K-means clustering for different 
cluster sizes. The original data which was clustered consisted of one feature namely the 
summed head features: Y position, polar position R and Delta. Using the dent method one 
can say that the optimal number of clusters is 10 in this case. 
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The example graph of Figure 4.1 shows that K-means clustering has a lower 
reconstruction error than EM clustering. K-means therefore approaches the original 
data better than the EM method. Given this result and the advantages of K-means on 
calculation speed and convergence the conclusion would be to use K-means. 
However this reconstruction error is measured over a whole meeting and doesn’t say 
anything about our concern that the larger gestures might overshadow the smaller 
gestures. To test if there is reason for this concern we have examined the clustering 
result on nodding gestures. An example result is shown in Figure 4.2.  
 

 
Figure 4.2 – Example of the K-means clustering result on a nodding gesture using 10 
clusters. The red vertical lines show the gesture boundaries. The green line shows the 
original data (summed head features: Y position, polar position R and Delta). The blue line 
shows the clustering result. 

 
When we look at the graph we see that the concern we had, that this small nodding 
gesture would be flattened out into one cluster, is unfounded. The trend of the green 
line is reasonably followed by the clustered blue line. To conclude this chapter on 
clustering we can say that it is safe to use K-means clustering as the clustering 
method for the remainder of this project.   
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Chapter 5 - Classification 

In the previous two chapters on segmentation and clustering we concluded that it is 
possible to partition a whole meeting into small gesture parts. The data in these 
gesture parts can be left continuous, or made discrete using K-means clustering. The 
optionally clustered gesture parts form the input for this chapter on the final phase of 
the roadmap, classification. 
 
First the choice of classifier is documented in Paragraph 5.1. Here we comment on 
the considerations we had for using an HMM as a classifier. Furthermore the 
developed HMM toolkit is described in this paragraph. In Paragraph 5.2 we make an 
analysis of the different problems we have in this classification phase. The paragraph 
starts with the options we have for presenting data to the HMM. This is followed by 
the method we suggest on how to find gestures in a partitioned meeting. In 
Paragraph 5.3 we determine the test space. This is divided into three parts namely 
the gestures, feature sets and the classification parameters that will be tested. 
Paragraph 5.4 starts with a test plan on how to test the options of the test space. In 
the remainder of that paragraph the phases of this test plan and their results are 
documented. This chapter ends with the conclusion and evaluation of the test results 
in Paragraph 5.5 and 5.6 respectively.  
 
5.1. Why classify with HMMs  

To make a choice for a classification method, we looked at what we want to classify, 
the kind of data we have at this point and what a classifier should be capable of. We 
will illustrate our choice for an HMM classifier, based on these considerations. In 
addition we also take into account that HMMs are the most commonly used method 
in the literature for different gesture recognition applications 
 
The whole idea of this project is to find and classify the occurring gestures in a 
certain meeting recording. The logical way to do this would be to identify the data 
interesting data chunks and let a classifier decide what kind of gesture it is. This 
approach assumes that it is possible to segment whole gestures from a meeting 
recording. The conclusions of the segmentation chapter state that it is only possible 
to reliably divide the whole meeting into smaller segments which may or may not be 
part of a gesture. Since not all segments are part of a gesture the first aspect of a 
possible classification approach is that it must be capable of indicating that a piece of 
data doesn’t contain any gesture at all. Although this is not a distinctive aspect it has 
to be reckoned with.  
 
The second aspect of a possible classification approach is flexibility. Since we want to 
classify gestures with very different characteristics it is preferable that we can use a 
different classifier for each gesture. By this we mean not so much a totally different 
classification approach, but for example a different topology. It would be preferable if 
a classification approach would provide this flexibility. 
 
A third important aspect is that different instances of the same gesture class can 
have different durations. This means that we are dealing with data with varying 
duration. An example of this is the writing gesture where it is possible that someone 
writes for a short or longer period of time. As a consequence it is necessary that the 
classification approach is able to cope with variable observation lengths. 
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A last aspect that limits the number of possible classifiers is the fact that at the start 
of this project we have decided to work towards a solution that uses machine 
learning techniques. This leaves for example static template based classifiers out of 
the question. By altering templates based on the gesture samples you can argue that 
you can learn the best template. However, the main consideration for using machine 
learning approaches is that we assume that these techniques can model the varying 
duration aspect better than templates or similar methods.  
 
Mainly based on the different duration aspect we have chosen to use HMMs for 
classification. An HMM can deal with variable observation lengths, as we have 
already seen the state of the art overview (Chapter 1). It also fulfills all other aspects 
mentioned above. To handle the non-gesture parts it may be possible to use a 
garbage-HMM or a simple threshold. Also, an HMM is flexible, because you can vary 
the number of states or the topology of how these states are connected. And last but 
not least, it is a machine learning technique. In the rest of this chapter the 
possibilities of HMMs and especially the possibilities we use will be covered more 
extensively.  
 
5.1.1. HMM toolkit 

Before we can use HMMs for classification we first have to make a toolkit that allows 
us to build one. We have based our implementation on Rabiner’s tutorial on HMMs 
and Alpaydin’s book on machine learning [47, 3]. The features that are available in 
this toolkit are described below. This description assumes a general knowledge of 
HMMs. We will not describe all the ins and outs of hidden Markov models here. For 
this we refer to Rabiner’s tutorial [47].  
 
The toolkit can be used to construct both discrete and continuous HMMs. This means 
that the observation sequences used to train and test an HMM can consist of 
clustered or unclustered data. The HMM parameters we have implemented for these 
two types are: 

• The number of states 
• The number of mixtures per state (only for continuous HMM) 
• Different state topologies  

 
The number of states influences the modeling capacity of the HMM. It might be 
possible that more complex gestures such as writing require more states than 
nodding. 
 
A continuous HMM is a generalization of a discrete HMM. The observation 
probabilities are calculated using a number of mixtures for each state and the 
distribution of those mixtures. Each mixture is a multivariate normal distribution with 
a certain mean vector and covariance matrix. By increasing the number of mixtures 
per state you influence the capacity of what each state can model. For example with 
one mixture you can model data with one Gaussian distribution and with two 
mixtures the data is approached using two Gaussian distributions.  
 
Because the different gestures have different characteristics, we have implemented 
two HMM topology options: fully connected and left-right. Some of the gestures have 
a repeated character which requires the topology to be fully connected or at least 
cyclic. In a fully connected topology you can go from the last state to the first state 
to model a repeated characteristic. Other gestures which are not repeating could 
suffice with a left-right topology. This topology is less complex and easier to learn. 
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Applied extensions 

In our toolkit we have applied two extensions which are not commonly found in HMM 
literature. We describe these two below. 
  
Because some of the gestures, especially writing, can be performed for a relative 
long time, we have implemented scaling as mentioned in Rabiner [47]. This 
technique applies normalization on the forward and backward variables used in the 
forward and backward procedures. The probability multiplications involved in such 
long observation sequences would otherwise become too small and go beyond a 
computers number range. As a consequence the output of the HMM for a certain 
observation sequence is the negative log of the actual probability of this observation 
sequence. Because you take the negative log, the output of the HMM is no longer a 
direct probability. Instead, the lower the HMM error score the better this HMM 
explains the observation sequence. 
 
The restriction on the observation probabilities mentioned in Rabiner’s tutorial [47] is 
also implemented in our toolbox. When a certain alphabet symbol is rarely observed 
during the training phase, the observation probabilities for that symbol will approach 
zero. When the same symbol occurs during the testing phase within a certain 
observation sequence the probability of that observation sequence will be too low, 
because of the high influence of one very low observation probability. To prevent this 
from happening we have restricted the observation probabilities within the toolbox to 
be at least greater or equal to 10-4.  Note that when for example 200 symbols are 
used the restriction takes up 20% of the total observation probability, leaving only 
80% to be divided between the most probable symbols. It might be necessary to 
lower this restriction when the number of alphabet symbols increases.    
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5.2. Options for classification 

The overall objective is to classify the gestures that occur in a meeting. There are a 
few topics that will have to be discussed, before we can process this meeting data. 
The first topic is the input representation of the gesture parts constructed in the 
segmentation phase, followed by an elaboration on the gesture building blocks 
(GBBs). The other topic discusses how to classify gestures in the data stream of an 
entire meeting. 
 
5.2.1. Input data options 

This paragraph discusses how the feature stream of an entire meeting is partitioned 
and the options we implemented to represent the data within these parts. 
 
We can use the time indices of the boundaries generated by the segmentation 
process, to partition the classification feature stream. This has to be done for each 
gesture separately because each gesture has a different set of features and settings, 
for segmentation and for classification. After applying segmentation we have six 
different partitioned classification streams, one for each gesture. The advantage of 
partitioning is that you can search more efficiently for gestures in the meeting 
stream. Parts enable us to walk through the data stream part by part instead of 
frame by frame reducing processing time. The method we use to walk through the 
gesture parts will be discussed in Paragraph 5.2.3.   
 
We have implemented three options to represent the feature data within the gesture 
parts. The first option is to classify the data within a gesture part to one label, before 
classifying the entire gesture. This is a two layer classification approach. When the 
gesture parts are classified in the first layer they become GBBs. In this case the 
input for the HMM consists of a sequence of a few GBBs, one for each gesture part. 
The options on how to construct these GBBs are discussed in the next paragraph.  
 
When the gesture parts are not classified beforehand, the second and third options 
are to leave the data continuous or make it discrete. To make the data discrete we 
cluster each feature frame of a gesture part to a discrete label, using the clustering 
approach described in Chapter 4. When the data is clustered the input for the HMM 
consists of a sequence of discrete labels for every frame of a gesture. The continuous 
gesture parts result in a sequence of continuous feature data for every frame of a 
gesture. To summarize, the input data options are: 

• Pre-classified GBBs 
• Discrete gesture parts 
• Continuous gesture parts 
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5.2.2. Constructing GBBs 

In this paragraph we describe the options we have to label gesture parts and turn 
them into GBBs. There are several options to create GBBs from the gesture parts. 
When using GBBs as input, one of the options described here will be chosen to 
classify the first layer of gesture parts to GBBs. The options are divided in supervised 
and unsupervised 
 
Unsupervised 

The first option is to use the most frequently occurring cluster number in a gesture 
part as a label for that gesture part. The approach is to cluster each feature frame of 
a gesture part to a discrete label using clustering described in Chapter 4. The cluster 
label that occurs most frequently is the label of the GBB. In essence this is a voting 
method. We assume that each gesture part has a clear main cluster. The reason for 
this assumption is that the segmentation method, used to construct the gesture 
parts, segments the data on significant changes. As a consequence we expect that 
within a part no significant change takes place and most of the data is clustered to 
one cluster label. 
 
The second option is a direct clustering of the entire trajectory within a gesture part 
to one cluster, instead of clustering each frame of the gesture part. To do this we 
have to find a method that can cope with the differences in length of the gesture 
parts. We choose to represent a gesture part by one feature frame, which is the 
average of all feature frames in that part. This average feature frame is then 
clustered to a label which forms the label of the GBB. A problem with using an 
average feature frame could be that we throw away too much information 
beforehand resulting in a poor first classification step. 
 
Supervised 

In order to use a supervised labeling approach, a set of gesture parts has to be 
manually labeled with a set of predefined labels. These annotated gesture parts can 
be used with a machine learning method to learn the labeling of gesture parts to 
GBBs. The labels assigned to the gesture parts can also have a semantic meaning. 
This semantic information could aid the classification. You can label the gesture parts 
of nodding for example with “head up” and “head down” labels.  
 
The advantage of a supervised method is the possibility to test the classification step 
of gesture parts to GBBs explicitly. This ensures that this first step performs 
optimally before the result is used in the following step, of classifying gestures from 
these GBBs. The downside is that the current annotation doesn’t suffice for such a 
supervised learning approach. In the current annotation only whole gestures are 
annotated, not gesture parts. To annotate gesture parts you have to define new 
gesture part labels and annotation guidelines. One problem is how to tell what labels 
to use. Another problem is the actual labeling because the movement taking place in 
the parts isn’t always very clear. This could lead to different interpretations between 
annotators. Next to annotation the problem extends to segmentation. The parts 
generated by the automatic segmentation method may not have the same semantic 
meaning as the annotated parts. We think that the manual labeling of the parts could 
turn out to be too difficult so that a supervised approach eventually performs worse 
than an unsupervised approach. Given the problems mentioned above, we choose 
not to consider the supervised approach any further.   
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5.2.3. How to process an entire meeting 

At this stage we have a meeting partitioned in consecutive gesture parts. The HMM 
classifier will be trained on whole gestures because that is what we annotated. Since 
gestures cannot be segmented as a whole, there is a discrepancy between the 
smaller gesture parts and the objective to classify entire gestures. Therefore we have 
to come up with a solution on how to present a set of gesture parts to a classifier.  
 
Gesture size chunks 

The classification stream of a certain meeting could be offered to an HMM as a whole, 
leaving the HMM to find out which parts together form a gesture. This would leave 
the HMM to cope with a large amount of redundant information, because gestures do 
not occur frequently during a meeting. It would be better to present the entire 
classification stream to the HMM in chunks of gesture size. This simplifies the 
classification task to the decision whether a certain chunk of gesture parts is a 
gesture or not. 
 
Because the typical length differs between the gesture classes, different chunk sizes 
are needed for each gesture class. The length within a gesture class is also too 
variable to have a fixed chunk size for each gesture class. This means that we have 
to vary the chunk size for each gesture between a certain minimum and maximum 
size. These sizes are determined by taking the minimum and maximum length of the 
entire set of annotated gestures. 10% of the largest and smallest gestures are left 
out of this set to get a more average minimum and maximum. Table 5.1 lists the 
results. As a result of this measure the exceptionally short and long gestures can still 
be classified correctly but not as accurate anymore. The end performance will not be 
compensated for this. 
 

Gesture Minimum Maximum 
Writing 104 422 
SSG 12 35 
Nodding 15 73 
Shaking 14 75 
Standing up 41 70 
Sitting down 44 74 
Table 5.1 – The minimum and maximum chunk size, in number of frames. 

 
Sliding and expanding window 

In order to obtain the different chunks from the partitioned classification stream we 
use a sliding and expanding window. Depending on the chosen input data 
representation, this window expands and slides through the GBBs or gesture parts. 
This principle is shown in Figure 5.1. The window expands from the minimum size in 
a number of expansion steps to the maximum size in order to capture different 
gesture lengths. Each time the window expands, one ore more gesture parts or GBBs 
are added to the chunk that is presented to the HMM. When the maximum window 
size is reached, the window slides forward through the stream. Each time the window 
slides, it slides one gesture part forward and the window size is reset to the 
minimum size.  
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Figure 5.1 – Sliding and expanding window. The blocks are the gesture parts or GBBs 
depending on the input data representation. Blue indicates the selected parts that form a 
chunk. Green indicates the part that will be added to the chunk in the expand phase.  

 
Locating the gestures in a meeting 

The result after processing a meeting with the sliding and expanding window is a list 
of HMM error scores generated for each data chuck. These scores are generated from 
the beginning till the end of the examined meeting. We use a threshold on the error 
score to determine if an HMM has classified a chunk as a gesture.  
 
Because of the sliding and expanding window the same gesture parts are examined 
multiple times. Therefore a certain gesture can also be examined multiple times. This 
can be seen in Figure 5.2. A gesture can be examined partially when the window is 
not aligned with the gesture (situation 1 and 5). It can be examined entirely but 
along with other parts (situation 2 and 4), or entirely without any additional data 
parts (situation 3). This means that not only one error score, but also the 
surrounding scores should lie under the threshold to indicate the presence of a 
gesture. When only one score is lower than the threshold we define this as an 
incident. This could for example be a small piece that resembles part of a gesture. If 
a consecutive range of lower HMM scores is present as shown in Figure 5.2 (situation 
2, 3 and 4), the lowest error score indicates the chunk that most likely matches the 
annotated gesture. 

 
 
Figure 5.2 – Multiple examinations of the same gesture. The parts that belong to a gesture 
are marked with G. The colored parts are examined. The numbers are the HMM error scores.  
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Length compensation 

If we want to locate the chunk with the lowest error score a problem arises when we 
compare the error scores of chunks in one expand phase with each other. Examples 
of this are situations 3 and 4 of Figure 5.2. In general, if the HMM error scores of two 
chunks are compared and the gesture parts of the first chunk form a subset of the 
second chunk, the smaller (first) chunk will always have a lower error than the larger 
(second) chunk. As a consequence the chunk similar to the minimum gesture size 
will always have the lowest error score, because it is the smallest chunk of one 
expand phase. 
  
This under-fitting behavior explained above is a problem for gestures with high 
length variation. Because of this problem, the classified gesture boundaries will never 
both be matched with the annotated boundaries of longer gestures. All gestures, 
which are not similar in size to the minimum gesture size, will therefore not be 
matched. If a gesture has less length variation the problem is smaller, because more 
gestures will be similar in size to the minimum gesture size.  
 
An obvious solution for the length problem would be to use a fixed window size equal 
to the average size of a gesture. When a fixed window is used there is no need to 
expand from the minimum to the maximum gesture size. The classified gestures will 
now all have a length similar to the average size of that gesture. However this still is 
not a sufficient solution for the gestures with a high variation in length. For these 
gesture classes, the smaller than average and the larger than average gestures, will 
still be missed. 
  
The solution we applied for the length problem is a form of length compensation on 
the HMM error scores. With this compensation we can determine which chunk in the 
expand phase has the lowest error score, given its length. The idea, in terms of 
probabilities, is to multiply the HMM probability of a chunk with the chunk’s length. 
For example, assume that chunk X is twice as long as chunk Y. To get equal 
corrected probabilities, the original HMM probability of chunk X may be twice as low 
as the HMM probability of chunk Y. Now it is possible that a longer chunk is selected. 
Because our toolkit doesn’t work with probabilities but with error scores this 
compensation is also transformed. In terms of error scores the compensation 
translates to subtracting the log of the chunks length from the original error score to 
get the corrected error.  
 
Determining the threshold and range parameter 
The last classification issue is how to determine when a range of consecutive low 
error scores is low enough to clearly indicate a gesture. In other words how to 
determine the threshold and the number of chunks scores that have to lie below this 
threshold. The optimal settings for these two parameters can be determined by 
examining the relation between false positives and true positives. Having too few 
true positives indicates that the chosen threshold may be too low. Having too many 
false positives indicates that the chosen threshold may be too high. The challenge is 
to find the threshold where you have a desired balance between true and false 
positives. The solution to this problem will be discussed in the test Paragraphs 5.4.2 
and 5.4.3. 
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5.3. Test space selection 

The selection of the test space for the testing phase of this chapter consists of three 
parts. First, a subset of the gesture classes is selected for testing. Second, the 
feature sets that will be tested for the different models are chosen. For this selection 
the results of Chapter 2 and experiences of the segmentation phase are used. Next 
the possible values for the different model parameters are considered. Based on the 
characteristics of the gestures a decision is made for each parameter. This selection 
of gestures, features and parameters forms the input for the test phase. 
 
5.3.1. Gestures  

To limit the time needed for the remaining tests of this classification phase we have 
decided to select three gestures for the different tests. The first gesture we decided 
not to test is the sitting down gesture. This gesture shows many similarities with the 
standing up gesture, so there is little added value in researching the classification 
performance of both gestures. The nodding and shaking gesture class is also not 
further researched. During the project it became clear that many nodding and 
shaking gestures have small amplitudes and are hard to distinguish from other small 
head movements or noise in the data. Finding a model that is capable of 
distinguishing between this noise and the gestures will be a very difficult or even 
impossible task. As a consequence we have decided to focus on the three remaining 
gestures: writing, speech supporting gestures and standing up. 
 
5.3.2. Features  

In this paragraph we select the feature sets we want to test per gesture. To make 
this selection we first recapitulate on a few of the conclusions made in the feature 
selection chapter. 
 
In the feature selection Paragraph 2.3.2 we looked at the properties an ideal feature 
should have. One of the remarks there was that velocity based features should 
perform better on classification than position based features, because of their 
invariance to translation and rotation. We want to test if we can also reproduce this 
observation with our classification results. Therefore we will test each gesture on 
position features and their velocity counterparts. Another distinction made in 
Paragraph 2.3.2 is the difference between the Cartesian and polar representation of 
the position and velocity features. We also want to test the differences between 
these representations on our classification results. This results in four feature sets:  

1. Cartesian position set 
2. Polar position set 
3. Cartesian velocity set 
4. Polar velocity set 
 

In the feature selection chapter we determined different feature sets. We have 
looked at the variations the gestures cause in these features. Using these 
observations we have decided whether or not to use them in the position or velocity 
test sets. Some of the general observations for all gestures are described below. The 
chosen features per gesture, can be found in the gesture description Appendix A. 
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The suggested joint angles do show a reasonable amount of variation within a 
gesture. This is why they were most likely suggested by the LDA method during 
feature selection. In most cases however this variation is inconsistent for different 
examples of the same gesture. A certain angle feature does not always show the 
same behavior for all of the gestures of one class. A reason for this might be that the 
angles are estimates, derived from a 2d picture of a video-frame using complex 
vision techniques. Since estimates can be wrong the data from these features will 
likely be more inconsistent even when the data is smoothed. Another reason might 
be that joint angles cannot describe different gesture examples of the same class 
consistently because the angles are just different every time, due to a high within-
class variation.  
 
A second notion that became apparent in this and previous chapters is that the 
speed-direction feature set is noisier than the Cartesian or polar velocity feature 
sets. The velocities are obtained by taking the first derivative of the position 
features. The speed and direction features use nonlinear operations in their 
calculation, making them more susceptible to noise. These noisier features will most 
likely have a negative influence on the recognition performance, which is also the 
conclusion of Campbell et al. [9], from their research on features for gesture 
recognition. Therefore we have decided to leave the speed-direction feature set out 
of the test sets. 
 
Features that can be measured more precisely and consistent are the position of the 
hands and head. This notion can also be seen in the selected features for 
segmentation in Paragraph 3.1. Almost all of the selected segmentation features are 
hand and head features or their derivates. Because of the better precision of the 
hand and head features we have decided to use these and their derivates for 
classification. Table 5.2 summarizes the features we have chosen for each. 
 

Gesture Cartesian 
Position 

Polar  
Position 

Cartesian 
Velocity 

Polar  
Velocity 

Writing Left hand X,Y  
Right hand X,Y 
Head X,Y 

Left hand R,D  
Right hand R,D 
Head R,D 

Left hand X,Y 
Right hand X,Y 
Head X,Y 

Left hand R,D  
Right hand R,D 
Head R,D 

SSG Left hand X,Y  
Right hand X,Y 
 

Left hand R,D  
Right hand R,D 

Left hand X,Y 
Right hand X,Y 

Left hand R,D  
Right hand R,D 

Standing up  Head X,Y 
Root Y 

Head R,D 
Root Y 
 

Head X,Y Head R,D 

Table 5.2 – Classification features per gesture, divided in four sets. In the polar sets R 
stands for radius and D for direction. 
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5.3.3. HMM options 

Because it is impossible to test all combinations of HMM parameters we choose to 
narrow down this test space and only test those options that seem to make sense. 
For each gesture we have to decide how to represent the input data and what kind of 
HMM should be used. To do this the following questions must be answered.  
  
Input data representation: 

1. Is the data to be classified in the form of discrete gesture parts, continuous 
gesture parts or GBBs? 

2. If the input is GBBs, are they constructed using the main cluster or direct 
clustering method? (Paragraph 5.2.2) 

 
HMM options: 

3. Given the answer to question 1, do you need a continuous or discrete HMM? 
4. How many states should the HMM consist of?  
5. What kind of HMM topology is likely to perform best? 

 
We try to find an answer for each of these questions by looking at the characteristics 
of the different gestures. This means that the decision on what to test is not based 
on hard facts but on experiences from working with the meeting data. A selection of 
what to test, based on the questions above, is summarized in Table 5.3. The answers 
to the five questions can be found in the gesture description Appendix A. 
 
 

Gesture Input Data GBB option Discrete / 
Continuous 

States Topology 

Writing • GBBs  
• Discrete GP 

• Direct 
clustering 
• Main 
cluster 

Discrete  3-6 Left-Right 

SSG • Discrete GP 
• Continuous GP  

 • Discrete 
• Continuous 
 

4-8 Fully 
connected 

Standing up • GBBs 
• Discrete GP 

• Direct 
clustering 
 

Discrete 5-9 Left-Right 

Table 5.3 – Summary of the test options for classifying the different gestures. The term 
gesture part is abbreviated as GP. 
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5.4. Testing 

The purpose of this paragraph is to test and select the models that are most suited 
for classifying the different gestures. This selection is made in three stages which are 
presented below. Before the tests can be performed, the data has to be divided into 
three sets. The largest set, the train set, will be used for training the different 
models. The second set, the validation set, will be used for testing the effects and 
determining the values of different classification parameters. The last set, the test 
set, is used for measuring the performance of the selected models and their 
corresponding parameters. For the exact division of the total sample set see 
Appendix D. 
 
The purpose of the first test stage is to reduce the test options given in Table 5.3 
and the suggested feature sets of Table 5.2. Because the combination of features 
and classification parameters gives a large set of options, the evaluation cannot be 
performed by hand. Therefore we use 5x2 cross validation, as proposed by Dietterich 
[20], on the set of annotated gestures. The reason for using 5x2 cross validation as 
well as the test and evaluation methods and test results are presented in Paragraph 
5.4.1.  
  
The target of the second test stage is to determine the classification performance on 
isolated samples of each gesture. The performance is measured on the annotated 
gestures, avoiding the need for segmentation. This phase selects the model and 
parameters best suited to classify a certain gesture without having to process an 
entire stream of meeting data. The isolated sample performance is represented by a 
confusion matrix showing how well a set of gestures can be distinguished from a set 
of non-gestures. The model and model parameters are selected from the results of 
the 5x2 test where most options have been removed. A more detailed description of 
this test stage and the results are documented in Paragraph 5.4.2  
 
In the last test stage we test the performance of classifying gestures in the data 
stream of an entire meeting, using the method of Paragraph 5.2.3. The model and 
parameters of the isolated sample stage are used as a starting point to the settings 
for this streamwise test stage. The results of this test, given in Paragraph 5.4.3, will 
provide insight in the performance loss of classifying gestures from an entire meeting 
stream compared to classifying pre-segmented gestures. A measure that copes with 
the imbalance between negative and positive samples is used to determine this 
performance loss.  
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5.4.1. 5 x 2 cross validation test 

In Paragraph 5.3 we discussed the test space consisting of four feature sets and the 
selected HMM options for each gesture class. The feature sets and HMM options can 
be varied, creating a different classification setup each time. In addition when using 
discrete input, the number of clusters used to make the continuous data discrete can 
also be varied. The combination of all these options results in a large test space. It 
would be virtually impossible to test all these combinations extensively in the 
isolated sample and streamwise test phases. Therefore, the goal of this cross 
validation test phase is to reduce the test space as much as possible.  
 
The topology aspect is not varied in this test phase because we selected one fixed 
topology for each gesture class in Paragraph 5.3. The number of clusters is also not 
varied because the HMM error scores for different cluster sizes cannot be compared 
with each other. Reducing the cluster size simplifies the input data because the 
continuous data is mapped on a smaller number of clusters. This simplification is at 
the cost of how accurate the discrete data matches the continuous data. As a result 
the average HMM error score will also decrease because there is less variation in the 
input data. How much the error score decreases is not known beforehand. This 
means that we cannot compensate an error score of a 10 cluster input so that we 
can compare it with an error score of a 20 cluster input. We do test the remaining 
four classification parameters listed below. 

• The input option: continuous gesture parts, discrete gesture parts or GBBs. 
• Velocity or position based features. 
• Cartesian or polar feature representation.  
• The number of HMM states. 

  
To make a selection between the options of these four classification parameters we 
make a pair-wise comparison. Take, for example, the decision between continuous 
gesture parts and discrete gesture parts. To make this decision we compare the 
setup “continuous gesture parts - velocity - Cartesian - 7 states” with its counterpart 
“discrete gesture parts – velocity – Cartesian - 7 states”. This comparison is made 
for all combinations of the last three parameters. If the setup with continuous 
gesture parts significantly outperforms discrete gesture parts, we can discard 
discrete gesture parts as an option for the examined gesture.  
 
In the rest of this paragraph we describe the method we use to test a certain 
classification setup and how we determine if one setup performs significantly better 
than another setup.  
 
5x2 cross validation 
In order to apply 5x2 cross validation a subset of all the annotated data is needed. In 
our case we use for this subset the combined train and validation set, see Appendix 
D. This subset is divided in two sets of equal size. The first set is used to train an 
HMM using a certain classification setup. The second set is used to test the 
performance of that classification setup. Then we swap the roles and the second set 
is used to train the HMM whilst the first set is used to test the performance. This 
division into two sets is made randomly five times. This results in a total of ten error 
scores for a certain classification setup. According to Dietterich [20], the 5x2 cross 
validation method ensures that you get an accurate estimation of the error score for 
that classification setup. 
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The first step is to validate if all ten scores give a reasonable estimation of the true 
error score. We assume that the ten scores are independent of each other and 
normal distributed. We estimate the sample mean and standard deviation. If all 
scores give a reasonable estimation of the true error score all values should be close 
to the estimated mean and the set should have a low variance. This assumption does 
not hold when a single score varies more than two standard deviations from the 
estimated mean. In this case a new series of scores has to be calculated. 
 
The second step is to compare two sets of ten error scores of two different 
classification setups. Comparing two sets of ten scores directly is quite difficult.  
Therefore we have chosen to compare the means of the scores. Because of the 
validation made in the first step, the ten scores can be represented by their mean. 
To make a statistically sound comparison of these two means we use a method 
described by Tarpey [56]. The suggested method is as follows: 
 
The null hypothesis states that the two means are equal and the alternative 
hypothesis states that the means are not equal. 
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We use a two-tailed t-test statistic on these hypotheses, see Formula 5.2. This 
statistic is a measure of the standardized difference between the two means. The 
significance level α we use is 0.05 and the degree of freedom is n1+n2-2 = 10+10-2 
= 18. The critical t value for 0.025 (α/2 because test is two tailed) and 18 degrees of 
freedom is 2.4450. When t, calculated using Formula 5.2, is higher than the critical 
value the null hypothesis is rejected. When the hypothesis is rejected there is a 
significant difference between the two means of the error scores. 
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The first formula calculates the t value based on the two means (μ1 and μ2), their 
combined standard deviation (Sp) and the number of samples (n1 and n2). The 
second formula calculates the combined variance (Sp

2) based on the variances of the 
two separate test series (S1

2 and S2
2). This combined variance can only be calculated 

when the two variances of the series are considered equal. In order to test this we 
perform an F-test on these two variances. The null hypothesis is that the two 
variances are equal and the alternative hypothesis is that they are not equal.   
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The hypothesis is validated by performing a two-tailed F-test with a significance α of 
0.05. The probability of the F-test is based on the F statistic value of Formula 5.4 
and the two given degrees of freedom (n1 and n2). When this probability lies within 
the range 0.025…0.975 (α/2…1-α/2), the null hypothesis is accepted. When the 
hypothesis is accepted the means can be compared, otherwise we can directly 
conclude that the two test setups differ significantly.  

- 75 - 



5 – Classification 
 

2
2

2
1

S

S
F =           (5.4) 

     
Thus in order to validate whether the difference between two tests is significant, first 
the variance and then the means are compared. When either the variances or the 
means aren’t equal there is a significant difference between two tests.    
 
Test results 

The table below lists the results from the 5x2 cross validation tests for the four 
tested aspects of classification setup. We choose the best option for a certain 
parameter when at least 50% of the tested comparisons show a significant difference 
between the two options. An X indicates that no significant difference could be 
detected between the options of that parameter.  
 

Gesture Input Data Position vs. 
Velocity 

Polar vs. 
Cartesian 

States 

Writing Discrete GP Velocity Cartesian X 
SSG Discrete GP Velocity Cartesian 8+ 
Standing up Discrete GP Velocity X X 
Table 5.4 – Test results of the 5x2 setup tests. 

 
The first thing we observe is that the GBBs aren’t used for any of the gestures. The 
GBBs clearly perform worse than the gesture parts. The idea behind using the GBBs 
was to construct shorter and more generic observation sequences. However, when 
the contents of a single gesture part can’t correctly be matched to a single label, too 
much context information is lost when the GBBs are constructed. We suspect that a 
supervised approach for constructing the GBBs, as suggested in Paragraph 5.2.2, 
may be needed in order to use a two layered classification approach. With the 
unsupervised approach we took for constructing the GBBs it is not possible to 
correctly reduce gestures to a more generic description. 
 
The choice between position and velocity based features can easily be made for all 
gestures. All gestures prefer the velocity based features. A possible explanation for 
this is that the hand and body movements suffer more from translational variance. 
This makes it is harder to model a gesture’s pattern using position based features. 
Velocity based features are translation invariant and therefore perform better on 
these gestures. The choice between Cartesian and polar based features is more 
difficult to make. For the writing gesture and for the speech supporting gesture the 
Cartesian velocities perform slightly better than the polar velocities. For standing up 
it is not possible to make a significant distinction between Cartesian and polar 
features.  
 
The 5x2 cross validation also gave no conclusive answers concerning the number of 
states. The only significant claim that can be made from the test results is that from 
the range of 4-8 states for speech supporting gestures, eight states perform best. It 
may be possible that speech supporting gestures require more states. This will be 
tested in the isolated sample test phase.   
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5.4.2. Isolated sample performance test 

As mentioned in the introduction of the testing paragraph, the purpose of this test is 
to determine the classification performance on isolated samples. This test also 
determines which model and parameters are best suited for classifying the different 
gestures. The first paragraph shows how an isolated sample test is performed. After 
this, the most promising models are chosen, for each model an appropriate threshold 
is determined and the isolated sample performance is verified on the test set. 
 
Test approach 
At this stage we want to know how well a certain model can separate a set 
containing gestures of one class, from a set of random meeting data of similar size. 
These random data chunks are called non-gestures. The reason for separating 
gestures from non-gestures and not from the other annotated gestures is that the 
ultimate target is to determine where a certain gesture occurs within a data stream. 
The target is not to decide if a certain chunk of data is gesture x or gesture y. In the 
5x2 test the performance was measured based on the scores of how good a model 
explained the gestures in the validation set. In this phase we also want to know how 
a certain model scores on the non-gestures. Therefore, the validation set consists 
not only of gestures but also of non-gestures of similar size. 
 
The model options that remain from the 5x2 test are those options with no 
significant differences on the test results of the 5x2 tests. Since the number of 
remaining options that needs to be examined is relatively small we have chosen to 
select the most promising model by hand.  
 
Garbage model 

After comparing the results of the first few models it became obvious that there were 
far too many false positives for all models. Analyzing the HMMs and data showed 
that the different models of the gestures also more or less explain the non-gesture 
data. Within the gestures there is almost always a phase of minor activity that is also 
very common in most non-gesture data. These phases are also described as holds by 
McNeill [38] in his study on the temporal characteristics of gestures. Because these 
phases are part of a gesture and therefore part of the training data, they are also 
modeled by the HMM that tries to explain the gesture. As a result, this HMM also 
explains the non-gesture data quite good. This makes the model less capable of 
making the distinction between gestures and non-gestures. 
 
The observation of the minor activity phase led to the notion of filtering out all data 
that contains only common activity (garbage), leaving the data that contains 
uncommon activity (gestures). To accomplish this, a simple HMM is trained on all the 
data that contains no gestures. This results in a garbage model that models the 
common activity during a meeting. Because large amounts of non-gesture data are 
available it is no problem to train such a garbage model. Initial tests with the 
garbage model showed that the common activities in the non-gesture data can be 
explained and filtered out by the garbage model. An example of the effect of a 
garbage model on speech supporting gestures shows an 82% decrease in false 
positives at the cost of 12% decrease in correct classifications.  
 
 
 
 
 

- 77 - 



5 – Classification 
 

Model selection results  

The table below shows the most promising features and model parameters for each 
gesture. The simple guideline we used to compare and select a certain model is as 
follows. For each model the number of true positives is set to a fixed number by 
varying the model’s threshold. The model with the smallest amount of incorrect 
classifications is chosen as the best performing model. 
 

Gesture Feature set Data from States Topology 
Writing     
Garbage 
model 1 

Hand polar 
velocities  

Discrete  
20 clusters 

10 Fully connected 

Garbage 
model 2 

Head polar 
velocities 

Discrete  
20 clusters 

4 Left Right 

Gesture 
model 

Hand polar 
velocities 

Discrete  
20 clusters 

10 Left Right 

SSG     
Garbage 
model 

Cartesian 
velocity 

Discrete  
30 clusters 

8 Fully connected 

Gesture 
model 

Polar 
velocity 

Discrete  
30 clusters 

18 Fully connected 

Standing up     
Garbage 
model 

Polar 
velocity 

Discrete  
30 clusters  

8 Fully connected 

Table 5.5 – The garbage and gesture models and their parameters which are chosen 
based on the classification performance on the validation set. 

 
The first thing that we should point out is that the writing gesture setup doesn’t use 
the suggested six features of its feature set together. Instead the four hand and two 
head features are separated. It turned out that two separate garbage models filtered 
the non-gestures better than one combined model. An explanation for this is that it is 
easier to train the clustering and the HMM on feature sets with lower dimensionality. 
Initial tests showed that using the better trained simpler models outweighed the loss 
of the relation between the hand and head features. For the gesture model only the 
model trained on the hand features is used. Adding a model based on the head 
features didn’t improve the classification performance on the validation set.  
   
The speech supporting results of the 5x2 tests indicated that this gesture might have 
needed more than the tested eight states. The isolated sample test results clearly 
support this case. The best gesture model even has eighteen states. Because of the 
large increase in the number of states we decided to retest the polar velocity feature 
set even though this option was already discarded in the 5x2 test. This turned out to 
be a good decision since the polar velocities outperformed the Cartesian velocities for 
the gesture model with eighteen states. 
 
The standing up gesture tests with the garbage model alone showed good results. An 
explanation for this observation is that this gesture causes variations in the features 
that are very different from the average variations modeled by the garbage model. 
Because when a person stands up, he moves out of his normal seated position. 
Therefore, the standing up gestures will have a much higher error score on the 
garbage model than random non-gesture data. This allows for an easy distinction 
with a threshold between the standing up gestures and the non-gesture data. Adding 
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a gesture model didn’t improve the classification performance on the validation set. 
This explains why Table 5.5 only lists a garbage model and no gesture model.  
 
Determining the threshold 
Now the models are known but the last parameter, the threshold has not been 
determined yet. From a set of confusion matrices alone it is hard to determine which 
threshold ensures the best performance. For this we use an ROC curve as described 
in Alpaydin [3]. An ROC curve displays the hit rate versus the false alarm rate. The 
hit rate indicates which part of the positive samples (gestures) is correctly classified 
as a gesture. The false alarm rate indicates which part of the negative samples (non-
gestures) is incorrectly classified as a gesture. Equation 5.5 shows the formulae for 
the hit rate and the false alarm rate.    
 

FNTP
TP
+

=Rate Hit   
FPTN

FP
+

=Rate  Alarm False    (5.5) 

 
The TP indicate the true positives, FP the false positives, FN the false negatives and 
TN the true negatives. How these variables correspond with a confusion matrix is 
shown below in Table 5.6 
 

Predicted 
Actual 

Positive Negative 

Positive True Positives 
(TP) 

False Negatives 
(FN) 

Negative False Positives 
(FP) 

True Negatives 
(TN) 

Table 5.6 – Example confusion matrix 
 
Figure 5.3 shows an example of a ROC curve. A hit and false alarm rate of 1 
corresponds to classifying all positive and negative samples as positive. A hit and 
false alarm rate of 0 corresponds with classifying everything negative. The optimal 
point in this graph is the upper left corner, where the hit rate is 1 and the false alarm 
rate 0. All positives are classified as positive and all negatives as negative. But how 
do we determine the optimal points on the actual ROC curve? As an example we 
compare the upper three points with the highest hit rates of the curve. Since the 
most left one is clearly the closest to the upper left corner of the graph it has the 
best performance of the three compared points. The four points in Figure 5.3 that 
show a better performance compared to their neighboring points are indicated by an 
arrow.  Which point and corresponding threshold we should choose is still not clear. 
Therefore, we have decided to define two scenarios which determine for us what 
relation between the hit rate and false alarm rate is required. The two scenarios are 
presented below. 
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Figure 5.3 – An example ROC curve the shaded green area indicates the low false alarm rate 
region. The shaded red area indicates the high hit rate region. The two yellow dots indicate 
the relative best performing threshold settings for the two regions. 

 
Accurate scenario 
In an accurate scenario, the costs of false positives are high. When a gesture is 
recognized the chance that it actually is a gesture should be high. This first 
requirement means that the gesture should have a low false alarm rate. For selecting 
the correct point on the ROC curve we first select a region of the graph where the 
false alarm rate is low enough. Figure 5.3 shows this as the green region. Within this 
region the yellow point shows the best relative performance. The threshold that 
corresponds with this point is chosen as the threshold for the accurate scenario.   
 
In the streamwise test, where an entire meeting is processed there is an additional 
requirement for the accurate scenario. The begin boundary and end boundary of the 
recognized gesture should lie close to the actual annotated boundaries. The measure 
we use for deciding when a boundary is close enough is the inter-annotator 
agreement calculated in Paragraph 2.2.3. The annotator disagreement on a certain 
gesture defines the range within which the boundary should lie. Table 5.7 lists these 
deviation ranges for the writing, speech supporting and standing up gesture. The 
idea behind this is that the automatic classification results may disagree with an 
annotated gesture as much as the annotators disagreed on it. This restricts the 
accuracy of this scenario to be at least equal or better than the human observer 
accuracy.  

 
 
 
 
 

Gesture Range 
Writing 20 
SSG 7 
Standing up 20 
Table 5.7 – boundary deviation ranges in number of frames for the accurate scenario 
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Tolerant scenario 
In a tolerant scenario, the costs of false negatives are high. The tolerant scenario 
focuses on a high hit rate, indicating that when there is a gesture it should be 
recognized. The downside of this approach is of course that the false alarm rate will 
also increase. Figure 5.3 shows the high hit rate region in red. The threshold that 
corresponds to the yellow point within this region is selected for the tolerant 
scenario. 
 
The precision of the match with the annotated begin and end boundary doesn’t have 
to meet precise requirements in the tolerant scenario as long as there is overlap 
between the annotated and recognized gesture. This means that the recognized 
gesture should have at least one frame overlap with the annotated gesture. Note 
that this introduces an additional discrepancy in the streamwise test between the 
scenarios. The first discrepancy is that the accurate scenario still focuses more on a 
low false alarm rate and the tolerant scenario more on a high hit rate. The second 
discrepancy is that in the accurate scenario the match between annotation and 
classification must meet precision requirements whilst in the tolerant scenario 
overlap is considered sufficient. This makes a direct comparison of the streamwise 
performance of the two scenarios more difficult. The measured difference in 
performance between the accurate and tolerant scenario in the streamwise test will 
be caused by the two discrepancies between the scenarios. However there is 
information available from the isolated sample test about the effect of the first 
discrepancy. With this information we can deduct the performance effect of the 
second discrepancy.         
 
Isolated sample performance results 

Now the correct thresholds have been determined on the test data, the performance 
of the gesture models and garbage models can be verified. The classification 
performance for a certain gesture is determined on a test set consisting of gesture 
and non-gesture data. Below the confusion matrices for the three gestures are 
presented for the accurate and tolerant scenario. 
 
Writing 

 Accurate scenario   Tolerant scenario 
Predicted 

Actual 
Writing Garbage  Predicted 

Actual 
Writing Garbage 

Writing 10 14  Writing 20 4 
Garbage 1 46  Garbage 20 27 

  
The confusion matrix of the accurate scenario shows that there is only one false 
positive. This is clearly at the cost of the number of correctly recognized gestures. 
When for the tolerant scenario the number of correct recognitions is increased, the 
number of false positives also increases significantly.  
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Speech supporting gesture 
 Accurate scenario   Tolerant scenario 

Predicted 
Actual 

SSG Garbage   Predicted 
Actual 

SSG Garbage 

SSG 48 127  SSG 149 26 
Garbage 1 163  Garbage 26 138 

 
Although for the accurate scenario there is only one false positive, the number of 
false negatives is high. Decreasing this number of false negatives in the tolerant 
scenario does not introduce too many false positives as we saw with writing. 
 
Standing up 

 Accurate scenario   Tolerant scenario 
 Predicted 
Actual  

Standing up Garbage  Predicted 
Actual 

Standing up Garbage 

Standing up 4 0  Standing up 4 0 
Garbage 0 31  Garbage 0 31 

 
The confusion matrices for both scenarios of the standing up gesture show no false 
negatives or false positives. This indicates a perfect separation of gestures from non-
gestures. In the next paragraph we will compare the above isolated sample 
performances with the performances of the streamwise processing test.   
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5.4.3. Streamwise performance test 

In this third test phase we test the performance of trying to find and classify 
gestures in an entire meeting, instead of classifying pre-segmented gestures. To test 
this streamwise performance we use the method with a sliding and expanding 
window as suggested in Paragraph 5.2.3. In the isolated sample phase we tested the 
performance on pre-segmented gestures. The degradation in performance between 
this test and the isolated sample test will tell us the impact of not having pre-
segmented gestures available. 
 
Re-evaluation of parameters 

The first step in the streamwise performance test is the re-evaluation of the 
threshold parameter for both the accurate and tolerant scenario. We use the values 
for the threshold parameter determined in the isolated sample test as a starting 
point and fine-tune these values on the validation set. The reason for this fine-tuning 
step is that the thresholds established on the isolated samples might not work 
equally well in this streamwise scenario. In the isolated sample test the threshold 
parameter is used directly to determine if a certain pre-segmented chunk of data is a 
gesture. In the streamwise method the threshold is used together with another 
parameter we call the range parameter. As illustrated in Paragraph 5.2.3 we expect 
that the data chunks surrounding the chunk with the lowest error score are also 
chunks with low error scores. The range parameter controls the minimum number of 
consecutive chunks that must lie below the given threshold in order to classify a 
certain chunk as a gesture.  
 
Because the threshold parameter is now used in combination with the range 
parameter we have more options than in the isolated sample test. You can for 
example take a low threshold and a low range setting. This will find the gestures that 
have a low error score on the gesture model for a small number of consecutive 
chunks. You can also increase the threshold and the range setting. In this case more 
chunks will fall below the higher threshold, but also more consecutive chunks must 
fall below this threshold. Because of this flexibility we re-evaluated the thresholds 
established in the isolated sample test. Next to this re-evaluation we also determined 
the best setting for the range parameter. The approach for determining the best 
setting for threshold and range is the same approach used in the isolated sample 
test, namely choosing the best point on the ROC curve for a given scenario as 
explained in the previous paragraph in Figure 5.3. 
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Streamwise performance 

The next step is to measure the performance on the test set, using the selected 
garbage and gesture models with their optimal thresholds and range settings. This 
results in the confusion matrices shown below. For each confusion matrix we discuss 
briefly the models we used and some observations that can be made from the 
results.  
 
Writing 

 Accurate scenario   Tolerant scenario 
 Predicted 

Actual 
Writing Garbage 

 
Predicted 

Actual 
Writing Garbage 

Writing 0 24  Writing 10 14 
Garbage 0 6238  Garbage 18 6220 

 
For the writing gesture we used the writing garbage model as a classifier in both 
scenarios. This is different from the isolated sample test where we used the garbage 
model as a filter and a gesture model as the classifier. In the isolated sample test, 
the gesture model was able to classify some samples that still came through the 
garbage filter as garbage. This resulted in a better performance because false 
positives were reduced without a large impact on the correct classifications. However 
in this streamwise test the gesture model was not able to show the same behavior. 
The confusion matrix for the accurate scenario shows no gestures that are classified 
correctly. This means that it is not possible to find the precise location of the writing 
gestures in an entire meeting with the approach we used. 
 
Speech supporting gestures 

 Accurate scenario   Tolerant scenario 
 Predicted 

Actual 
SSG Garbage 

 
Predicted 

Actual 
SSG Garbage 

SSG 9 166  SSG 123 52 
Garbage 53 4632  Garbage 189 4496 

 
For the speech supporting gesture the garbage model is used as a filter in the 
accurate scenario. The gesture model is used to classify the data chunks that were 
not marked as garbage. This resulted for the accurate scenario in a better 
performance, instead of using the garbage model alone as we did in the isolated 
sample test. However the performance of the accurate scenario is very low, nine 
correct recognitions out of 175 with 53 false positives. For the tolerant scenario we 
used the speech supporting garbage model directly as the classifier just as in the 
isolated sample test.   
 
Standing up 

 Accurate scenario   Tolerant scenario 
  Predicted 

Actual 
Standing up Garbage 

 
Predicted 

Actual 
Standing up Garbage 

Standing up 2 2  Standing up 3 1 
Garbage 1 10376  Garbage 2 10375 

 
The standing up garbage model is used directly as a classifier in the accurate and 
tolerant scenario, just as in the isolated sample test. Using a gesture model in 
combination with the garbage model didn’t result in a better performance.  
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Comparison with isolated sample results 

The last step is to evaluate the performance loss of the streamwise approach 
compared to the isolated sample approach. We have the confusion matrices of both 
tests. However, to compare two confusion matrices with each other a single measure 
is needed. This measure gives a performance score to both confusion matrices. 
There are several methods to measure performance based on a confusion matrix. We 
have analyzed the accuracy, Kappa, and F-measure.  
 
All three measures can be used as a performance measure. Which one is more suited 
depends on the situation. When you compare an isolated sample confusion matrix 
with a streamwise confusion matrix you immediately see that a streamwise confusion 
matrix has far more true negatives than true positives. Because an entire meeting is 
processed the gestures are far rarer than the non-gesture occurrences. The accuracy 
and the Kappa measure both have the true negative component in their equations, 
but the F-measure has not. Therefore, we think that we can make the best 
comparison between the isolated sample and the streamwise performances with the 
F-measure.  
 
The F-Measure leaves the true negatives out of the equation. This measure is defined 
as the harmonic average of the precision (P) and recall (R) measures. Precision is 
defined as the proportion of the predicted positive cases that are correct. Recall is 
defined as the proportion of the actual positive cases that are correctly identified. 
The three measures are determined using the formulae in Equation 5.6. The results 
of the F-Measure comparison are given in Table 5.8  
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Gesture Isolated sample    
F-Measure % 

Streamwise 
F-Measure % 

Performance 
difference 

Writing    
Accurate 
scenario 

57% 0% 57% 

Tolerant 
scenario 63% 38% 25% 

SSG    
Accurate 
scenario 

43% 8% 35% 

Tolerant 
scenario 

85% 51% 34% 

Standing up    
Accurate 
scenario 100% 57% 43% 

Tolerant 
scenario 

100% 66% 34% 

Table 5.8 – Comparison between isolated sample and streamwise performance 
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From Table 5.8 we can see that the performance loss with the streamwise approach 
is at least 25% and even 57% in the accurate writing scenario. For this scenario and 
also for the accurate scenario of speech supporting gestures the streamwise 
performance is very low, respectively zero and eight percent.  
 
In the previous isolated sample test paragraph we mentioned two discrepancies that 
are responsible for the performance in the streamwise test. The first discrepancy is 
that the accurate scenario focuses more on a low false alarm rate and the tolerant 
scenario more on a high hit rate. The second discrepancy is that in the accurate 
scenario the match between annotation and classification must meet precision 
requirements whilst in the tolerant scenario overlap is considered sufficient 
 
For writing the difference between the accurate and tolerant scenario in the isolated 
sample test is 6%. In the streamwise test this difference increases to 38%. Because 
the first discrepancy is also present in the isolated sample test, the increase of 32% 
is mainly due to the second discrepancy of having to match the annotated 
boundaries precisely in the accurate scenario. For speech supporting gestures the 
difference in the isolated test was already 42%. This difference only increases 
slightly to 43%, meaning that the additional precision requirement doesn’t have a 
large impact on the streamwise performance. For standing up the difference between 
the scenarios increases from 0% in the isolated case to 9% in the streamwise case.  
 
The main observation we can draw from this is that the longer the gesture is, the 
more its performance suffers from the additional accuracy restrictions in the accurate 
scenario. In the evaluation paragraph we will give a possible explanation for this 
observation.  
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5.5. Conclusion 

To conclude the classification topic, a short summary of the findings made in the 
three test stages is given, starting with the reductions made on the test space with 
the 5x2 cross validation test. This is followed by the classification performance on 
isolated samples and the impact on this performance when using the suggested 
streamwise classification approach. 
 
5.5.1. Test space reduction 

The objective of the 5x2 cross validation test was to reduce the selected test space 
as much as possible. This was done by evaluating if one option for a certain 
classification parameter performed significantly better than all the other options for 
that parameter. To make this comparison we used a combination of the F-test and t-
test on the mean and variances of the 5x2 cross validation test results.  
 
The most obvious observation that could be made in the 5x2 test was that the GBBs 
performed significantly worse for all gestures. In the evaluation paragraph we will 
explain why we think this happened. Another apparent observation could be made 
regarding velocity or position based features. As expected the velocity features 
outperformed the position features because of the writing, SSG and standing up 
gestures’ translational variance. 
  
The test results of the 5x2 cross validation test could not give a conclusive answer 
for the last two tested classification parameters: whether a Cartesian or a polar 
feature representation is better and the ideal number of HMM states. 
 
5.5.2. Isolated sample classification performance 

The first objective of the isolated sample test was to select the best model for each 
gesture class. The second objective was to evaluate the performance of this model 
by determining the confusion matrix on a set of manually pre-segmented gestures 
and non-gestures. In determining the performance we used two scenarios. The first 
was an accurate scenario where we wanted as little false positives as possible. The 
second was a tolerant scenario where the emphasis lay more on a high number of 
true positives at the cost of some false positives. 
 
The first observation we made when selecting the best model for each gesture class 
was that it is difficult to train a good gesture model. The gesture model was unable 
to make a good distinction between the gesture examples and the non-gesture 
examples in the validation set. This led to the use of garbage filtering. We trained a 
garbage filter on the all the data of a number of meetings. This resulted in a model 
for the most common movement in a meeting. With these garbage models we were 
able to mark a reasonable amount of the non-gestures as garbage, whilst leaving 
most of the actual gestures unmarked. This resulted in the following confusion 
matrices of Table 5.9 for the three tested gesture classes. 
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 Accurate scenario   Tolerant scenario 
Predicted 

Actual 
Writing Garbage  Predicted 

Actual 
Writing Garbage 

Writing 10 14  Writing 20 4 
Garbage 1 46  Garbage 20 27 

  
 Accurate scenario   Tolerant scenario 

Predicted 
Actual 

SSG Garbage  Predicted 
Actual 

SSG Garbage 

SSG 48 127  SSG 149 26 
Garbage 1 163  Garbage 26 138 

 
 Accurate scenario   Tolerant scenario 

Predicted 
Actual 

Standing up Garbage  Predicted 
Actual 

Standing up Garbage 

Standing up 4 0  Standing up 4 0 
Garbage 0 31  Garbage 0 31 

Table 5.9 – Confusion matrices of the isolated sample test 
 
For writing the confusion matrix of the accurate scenario shows only one false 
positive. But only 10 out of the total of 24 gestures are recognized correctly. 
Increasing the number of true positives in the tolerant scenario leads to a large 
increase in false positives. With 20 correctly classified gestures there are also 20 
false positives. 
 
For the speech supporting gestures there is also only one false positive in the 
accurate scenario. But again only 48 of the 175 gestures are correctly classified. 
However, increasing the true positives in the tolerant scenario, doesn’t lead to the 
same dramatic increase in false positives that we see for writing. The tolerant 
scenario performance results in 148 true positives against 26 false positives. 
 
The confusion matrices for both scenarios of the standing up gesture show no false 
negatives or false positives, indicating a perfect separation of gestures from non-
gestures. Furthermore we used only the garbage model for this gesture to get this 
result. This works because the standing up gesture is really different from the 
common movement in a meeting. This enables the garbage model to make a perfect 
distinction between the actual gestures and the garbage. 
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5.5.3. Impact of the streamwise classification approach 

The objective of the streamwise test was to evaluate the performance impact of not 
having pre-segmented gestures. This impact is determined by comparing the isolated 
sample performance with the streamwise performance. We first determined the new 
confusion matrices for the three tested gestures, summarized in Table 5.10. 
 

 Accurate scenario   Tolerant scenario 
 Predicted 

Actual 
Writing Garbage 

 
Predicted 

Actual 
Writing Garbage 

Writing 0 24  Writing 10 14 
Garbage 0 6238  Garbage 18 6220 

 
 Accurate scenario   Tolerant scenario 

 Predicted 
Actual 

SSG Garbage 
 

Predicted 
Actual 

SSG Garbage 

SSG 9 166  SSG 123 52 
Garbage 53 4632  Garbage 189 4496 

 
 Accurate scenario   Tolerant scenario 

 Predicted 
Actual 

Standing up Garbage 
 

Predicted 
Actual 

Standing up Garbage 

Standing up 2 2  Standing up 3 1 
Garbage 1 10376  Garbage 2 10375 

Table 5.10 – Confusion matrices of the streamwise test 
 
Next we used the F-measure to give a performance score to these confusion matrices 
and the isolated sample confusion matrices. Using this F-measure we compared the 
streamwise performance with the isolated sample performance. The conclusion of 
this comparison is that a streamwise classification approach results in at least 25% 
performance loss and even 57% for the accurate writing scenario. In the next 
paragraph we evaluate why we think the performance loss is this large, especially for 
the accurate scenario. 
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5.6. Evaluation 

The idea of this evaluation paragraph is to give a possible explanation for the 
observed test results, based on our experiences acquired during testing. The claims 
made in this paragraph are speculations. They are not validated with test results, but 
they do point out what the problem areas are. 
 
5.6.1. GBBs performance 

As mentioned in the results of the 5x2 test paragraph, the GBB approach performs a 
lot worse than the gesture part approach. The idea behind using GBBs is that they 
would provide a more uniform description of the gestures within one gesture class. 
We will discuss here what we believe are the two main reasons why constructing 
GBBs out of the gesture parts has failed.  
 
The first reason is the displacement of the boundaries within a gesture. The gestures 
are separated into parts in the segmentation phase of the recognition process. 
Because of the precise match of generated boundaries with the annotated boundaries 
we expected that the boundaries inserted within the gestures are also placed at 
meaningful positions. These are positions where the insertions split the gesture into 
semantically meaningful parts. It is however very well possible that too few or too 
many boundaries are inserted or that they aren’t inserted at a logical position at all. 
Since we use an unsupervised method to construct the GBBs there is no control 
mechanism on whether the placement of these boundaries is correct. Suppose the 
boundaries within a gesture are not placed at a similar location for each gesture. This 
makes the division of the gesture into parts inconsistent. Constructing GBBs from 
these inconsistent parts will not result in a more uniform description for each 
gesture.  
 
The second reason lies with the dependency on the clustering of the data. The main 
cluster method uses the clustered data to determine the label of the GBB. The direct 
clustering method calculates an average vector on the continuous data and then 
clusters this vector to determine the label. When the movement within a part cannot 
clearly be represented by one label, because the data is matched to two or more 
clusters, both methods choose only one of those clusters as a label. This could mean 
that very similar pieces of data will not always be matched to the same GBB label, 
but to a set of two or sometimes more labels. In the end this leads to a large set of 
inconsistent label sequences for the same gesture and not to the intended uniform 
description. 
 
These two reasons together explain in our opinion why the GBB strategy doesn’t 
perform well in the 5x2 tests. On one hand the search space isn’t reduced effectively 
whilst on the other hand too much context information is lost.      
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5.6.2. Gesture modeling difficulties 

Paragraph 5.4.2 explains that a garbage model is used to filter out the pieces of data 
that clearly contain no gesture. The results of the isolated sample tests show 
however, that for some gesture classes it is still very difficult to produce a good 
gesture model. The two gesture classes that show these problems are the speech 
supporting gesture and the writing gesture. We think that the main problem lies in 
the gesture classes themselves for these two gestures.  
 
The writing gesture is a very long gesture that actually consists of three main parts. 
These parts are: the starting body movement forward towards the writing position, 
the actual writing part and the body movement backwards. The results that show the 
splitting of the feature sets in a set for the hand features and a set for the head 
features indicate that these movements together are hard to classify. Also the long 
and highly variable duration of this gesture has an impact on the performance. While 
an HMM is suitable to cope with variable observation lengths, the average length of 
254 frames for the writing gesture is probably too much to fit into one HMM. We 
think that trying to recognize the writing gesture with the three sub movements 
together and with such a long duration as a whole is too much for one HMM.  
 
For the speech supporting gesture we suspect that the diversity of the gesture is too 
high to fit into a single model. Because a model is constructed based on such a 
diverse set of data it is very likely that this model explains a wide variety of hand 
movements. This means essentially that other hand movements that are no speech 
supporting gesture will also be explained by the model. When the two confusion 
matrices of the isolated sample tests are compared, it shows that a small set of false 
positives can be removed but at the cost of many true positives. We think that these 
false positives, that are hard to remove, are other hand movements that are also 
easily explained by the gesture model.  
 
Another indication for the fact that the speech supporting gesture model explains a 
too diverse set of data is given by the results of the 5x2 and isolated sample tests. 
The initial prediction of the number of states given in Table 5.3 was four to eight 
states. The 5x2 tests already showed clearly that eight or more states were needed. 
The ultimately selected model in the isolated sample test even has eighteen states. 
The high capacity of eighteen fully connected states allows the modeling of a large 
set of observations sequences, including some non-gesture observations.       
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5.6.3. Streamwise performance loss 

In Paragraph 5.4.3 the performance loss of the streamwise approach versus the 
isolated sample approach was determined. Based on the F-measure the streamwise 
approach has at least a performance loss of 25%. In the accurate scenario for writing 
this loss is even 57%. In this evaluation we try explain this observation. 
 
First of all there is a difference in difficulty between the isolated sample test and the 
streamwise test. In the isolated sample test, the validation set consists of pre-
segmented gestures and garbage chunks. The only decision that has to be made 
using the output of the garbage model and gesture model is whether a certain data 
chunk is a gesture or garbage. In the streamwise test there are also a number of 
other difficulties. First the validation set does not consist of pre-segmented data 
chunks but it consists of an entire meeting. The streamwise method described in 
Paragraph 5.2.3 has to search for occurrences of a gesture using the selected models 
and a sliding and expanding window. The second difficulty is that for the accurate 
scenario the match between the annotated and classified gestures must also meet a 
certain precision requirement. Both the begin and end boundary must lie close to the 
annotated boundaries. This extra difficulty for the accurate scenario also has its 
impact on the performance. For all three gestures the accurate scenario performs 
worse and has a higher performance loss than the tolerant scenario.  
 
In the analysis Paragraph 5.2.3 we mentioned the problem of under-fitting when 
trying to find a precise match between classified and annotated gestures. The higher 
the length variation within a gesture class is the bigger this problem is. To cope with 
this problem we suggested a form of length compensation. In terms of probabilities 
the HMM probability of a chunk is multiplied with its length. However, the under-
fitting problem still remains even with this length compensation. This can be 
observed from the streamwise performance scores. The writing gesture with the 
highest variation in length has a performance of 0% on the accurate scenario.  
 
In retrospect, the reason why the under-fitting problem remains is that the length 
compensation we used is flawed. This idea is derived from the Bayes’ rule, given in 
Equation 5.7. 
 

)chunk(P
)G(P*)G|chunk(P

)chunk|G(P =      (5.7) 

 
The term P(chunk|G) is the HMM output probability of gesture G for this chunk of 
data. As said in Paragraph 5.2.3 this probability can not be compared for chunks of 
different length. We tried to solve this problem by multiplying the HMM output 
probability with the length of the chunk. However, the right solution according to 
Formula 5.7 is to compensate a chunks HMM probability for the chance of that chunk 
P(chunk). This gives the term P(G|chunk) which is the probability of gesture G given 
a certain chunk. This probability can be compared for chunks of different lengths 
because it is corrected for the a priori chance of the chunk. In our case we do not 
know the a priori distribution to determine P(chunk). So in order to use this length 
compensation approach a solution has to be found on how to estimate P(chunk) from 
the available data samples. This will be further discussed in the recommendation 
Paragraph 6.2.3. 
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Chapter 6 - Conclusions and recommendations  

In the last chapter of this thesis the original research objective is evaluated. Based 
on this evaluation we give some recommendations for future work. 
 
6.1. Conclusion 

Gesture recognition is a relatively new field of research. The lack of standard fully-
developed approaches made our research challenging and served as a personal 
motivation. The main research motivation was the discrepancy between recognizing 
gestures in a controlled environment versus a more natural environment such as 
meetings. Assumptions that hold in a controlled environment cannot always be made 
for real life applications of gesture recognition. 
 
This discrepancy inspired our research objective. In this research project we wanted 
to identify the problem areas in gesture recognition and determine the recognition 
performance when we apply existing machine learning techniques, used in gesture 
recognition, to recognize a set of predefined gestures in the more natural meeting 
setting. 
 
Having a set of isolated samples to be recognized is an assumption often made. The 
confusion matrices and F-measure scores for the isolated sample test show that you 
can indeed get a reasonable performance under this assumption. But if the 
assumption of isolated gestures is abandoned the problem gets much harder. Having 
to locate the gestures in a meeting with a certain precision is an additional challenge 
in the recognition approach. This difficulty is reflected in the performance scores of 
the streamwise test. Especially for accurate scenarios and even for the tolerant 
scenarios the performance drops significantly.  
 
The second part of the research objective was to point out where the challenges lie 
in gesture recognition. We identified three challenges in our research. The first 
challenge is finding consistent features to describe the gesture with. The second 
challenge is segmentation, identifying when something interesting occurs in a 
meeting without classifying what. The third challenge is modeling a gesture class 
based on the chosen features. The next page gives a summary of the main test 
results. This is followed by a description of the three challenges and their problems. 
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Segmentation results 

 
Gesture Whole gesture 

performance 
Gesture part 
performance 

Writing  29,75% 98,73% 
SSG 10,03% 98,22% 
Nodding 29,66% 90,16% 
Shaking 13,33% 96,67% 
Standing up 40,00% 100,00% 
Sitting down 25,00% 100,00% 
Total (weighted) 18,39% 95,55% 

Table 6.1 – Summarized test results 
 
 
Classification test results 

 
 Accurate scenario   Tolerant scenario 
 Writing Garbage   Writing Garbage 

Writing 10 14  Writing 20 4 
Garbage 1 46  Garbage 20 27 

 SSG Garbage   SSG Garbage 
SSG 48 127  SSG 149 26 

Garbage 1 163  Garbage 26 138 
 Standing up Garbage   Standing up Garbage 

Standing up 4 0  Standing up 4 0 
Garbage 0 31  Garbage 0 31 

Table 6.2 – Confusion matrices of the isolated sample test 
 
 

 Accurate scenario   Tolerant scenario 
 Writing Garbage   Writing Garbage 

Writing 0 24  Writing 10 14 
Garbage 0 6238  Garbage 18 6220 

 SSG Garbage   SSG Garbage 
SSG 9 166  SSG 123 52 

Garbage 53 4632  Garbage 189 4496 
 Standing up Garbage   Standing up Garbage 

Standing up 2 2  Standing up 3 1 
Garbage 1 10376  Garbage 2 10375 

Table 6.3 – Confusion matrices of the streamwise test 
 
 

Gesture Isolated sample    
F-Measure % 

Streamwise F-
Measure % 

Performance 
difference 

Writing    
Accurate  57% 0% 57% 
Tolerant  63% 38% 25% 
SSG    
Accurate  43% 8% 35% 
Tolerant  85% 51% 34% 
Standing up    
Accurate  100% 57% 43% 
Tolerant  100% 66% 34% 

Table 6.4 – Comparison between isolated sample and streamwise performance 
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6.1.1. Consistent features       

The challenge here is to find the ideal features. These are features, invariant to 
translation, rotation and scaling, which are at the same time highly informative. On 
the other hand it must also be possible to reliably extract these features from the 
video recording of a gesture in some way. This extraction process has to be 
consistent so that the same gestures are described in the same way. 
 
Because of the natural environment we don’t have the luxury of precise feature 
measurement by means of a data glove for example. The extracted features in this 
project are derived from a dynamic stick-figure representation of the actors in a 
meeting. The estimation of this stick-figure representation results in more noise and 
less consistent features than one would get with direct sensors. As a consequence, 
gestures with small amplitudes might not be distinguishable anymore from noise. We 
encountered this in our project with the nodding and shaking gestures. Also the 
usefulness of more invariant higher level features derived from these base features 
such as accelerations will be compromised due to derivate noise amplification. This 
became apparent in the inverse LDA analyses of the feature selection chapter. All the 
derived accelerations and the angular velocities showed too little consistency on this 
test and were discarded. 
 
Good features that can consistently be extracted from the gestures form the basis for 
a good segmentation and classification performance. We think there is a challenge in 
improving feature extraction techniques. This will result in an increased quality of the 
original data and improve the performance of segmentation and classification.  
 
6.1.2. Segmentation 

The challenge for segmentation is to automatically identify the begin and end 
boundaries of the occurring gestures in a meeting. This simplifies the classification 
task because the location of the gesture will already have been determined in the 
segmentation phase. Data between two boundaries only has to be labeled with the 
correct gesture label.    
 
We researched two segmentation approaches, BIC and AM. Both approaches 
performed insufficiently to reliably segment the gestures as a whole. The best setup 
resulted in an average of only 18% correctly segmented gestures. Even with a 
perfect classifier the maximum classification performance would be 18%. Therefore, 
we also researched a less ambitious approach that segments the gestures in parts. 
With this approach we can reliably match 96% of the annotated boundaries with an 
automatically generated boundary. However, the downside of gesture parts is that 
the generated boundaries do not always indicate a gesture start or end. This means 
that each sequence of gesture parts might contain a gesture and has to be processed 
in the classification phase. Instead of only labeling a sequence, the classifier now 
also has to determine which sequence of parts is mostly likely a gesture. The data 
can be processed more efficiently in parts but the location of the gestures is still not 
known. In this project the impact of this additional problem was significant, at least 
25% performance loss on the researched gestures. 
 
Segmentation is still a big challenge. An approach which can reliably perform whole 
gesture segmentation will simplify classification and improve the overall classification 
performance significantly. 
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6.1.3. Gesture modeling 

The challenge in gesture modeling is to find a good descriptive model of the gesture 
class. This representation should model or explain all the different gesture samples 
of a certain gesture class. Additionally the model should be discriminative enough to 
distinguish gestures from non-gesture samples. 
 
We used HMMs to model the gestures. Preliminary results in the isolated sample 
tests produced a lot of false positives. This showed us that the trained gesture 
models had difficulties with separating the gestures from the non-gestures. We 
solved part of this problem with the use of garbage models, which model the average 
meeting movements. These models were able to filter out part of the non-gestures 
beforehand. For the standing up gesture this filtering was even 100% because this 
gesture is very different from the average movement in a meeting.  
 
However, the gesture model will still give a reasonable explanation for the non-
gestures that slip through the garbage filter. For an accurate scenario the threshold 
on the gesture models output has to be very strict to leave out those remaining non-
gestures or false positives. As a result many of the gesture samples are also 
removed. This can be seen when classification results of the tolerant and accurate 
scenario of the isolated sample test are compared. Removing 19 of the 20 false 
positives that occur for writing in the tolerant scenario also removes 10 of the 20 
true positives. Removing nearly all false positives in the accurate scenario for speech 
supporting gestures leaves only 48 out of the 149 true positives. The challenge is to 
find a better gesture model, so the removal of the last false positives does not have 
such a large impact on the number of correct classifications.  
 
All three challenges mentioned above are not separate challenges. They heavily 
influence each other. Without precise consistent features the segmentation and 
classification performance will also suffer. And without a good segmentation you will 
also need a more accurate gesture model to still be able to find the correct gesture 
locations. In the following recommendations paragraph we present some ideas for 
future work to possibly overcome the challenges we identified. 
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6.2. Recommendations 

The previous paragraph mentions the challenges in gesture recognition. In this 
paragraph we give a few suggestions which could improve the classification of 
gestures. These recommendations are divided into three main parts, annotation and 
feature selection, segmentation and classification. 
 
6.2.1. Annotation and feature selection 

A first recommendation for this phase of the recognition process is to use a feature 
extraction approach that is more precise and robust. A better feature extraction that 
permits the nodding and shaking data to be separated from the noise in the data 
allows an attempt at recognizing these gestures. Also the performance in the other 
stages of the project would improve when the original features are more consistent 
and less noisy. 
 
A possible solution for the gesture modeling problem is simplifying the gesture 
classes. The recommendation is to make the annotation more specific so that the 
gestures in one class become more alike. For the writing gesture it is possible to 
divide the movement into three parts: the forward body movement towards the 
writing position, the actual writing hand movement and the ending body movement 
backwards. Annotating these three parts separately allows for a more flexible 
recognition. As long as you recognize the begin and end parts, the writing part itself 
doesn’t have to be recognized to correctly classify the entire gesture.  
 
The SSG class is a very diverse class, where many different hand movements are 
grouped together. One option is separating the iconics and metaphorics from the 
beats. The speech itself and precise annotation guidelines will be needed, to decide if 
a hand gesture contains communicative information (iconic or metaphoric) or only 
emphasizes the speech (beat). Another option to split the SSG class is annotating if a 
gesture is performed with the left hand, the right hand or with both hands.  
 
For the nodding and shaking gesture class it is possible to split a repeating gesture 
into multiple nods or shakes. However, it is possible that nods, which were originally 
part of a repeated nodding gesture, don’t contain a clear begin or end phase. 

 
6.2.2. Segmentation 

For segmentation, the recommendation in general is to continue research on whole 
gesture segmentation. The first specific recommendation is to group together gesture 
parts using BIC and work toward a whole gesture representation. BIC is used to 
model the two parts separately and together. When the model for the parts together 
gives a better score than the two models for the separate parts, the boundary 
between the parts can be removed.  
 
The second recommendation is to apply garbage filtering before segmentation. With 
the garbage model you can reduce the area, where segmentation should look for 
gesture boundaries. When the regions where a gesture could be present are 
identified, it is possible to allow only two boundaries within this area. AM or BIC can 
be used to place the begin and end boundary.  
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The last recommendation is to use a more intricate measure for the activity. The 
measures we have researched are only individual, summed or combined features. A 
good measure should balance the input of several features so that a consistent 
representation of the activity is obtained. Kahol et al. [32, 31] for example, calculate 
the force, kinetic energy and momentum for different body segments. These 
segments are connected in a hierarchical structure, where parent segments inherit 
the aggregate characteristics of each child segment and child segments inherit the 
motion of the parent segment. This structure can be used to derive more intricate 
head, hand and body measures to segment the different head, hand and body 
gestures with.  
 
6.2.3. Classification 

The first recommendation for the classification phase is based on the results of the 
5x2 tests. These results show that the unsupervised construction of building blocks 
and the two layered classification approach doesn’t work. A supervised construction 
of the building blocks could produce a low dimensional but highly informative 
representation of a gesture. We think that a two layered classification approach in 
general has a very high potential for gesture recognition. Because gesture 
recognition is a spatio-temporal problem, one layer can be used for the spatial 
problem and the other for the temporal problem. 
 
The results of the isolated sample tests show that a model doesn’t only explain the 
gesture but also some non-gesture data. To make a better distinction, we think that 
more emphasis is needed on the sequence within the data and less on the data itself. 
The recommendation is to determine how well the most probable state sequence Q 
within HMM λ explains the observation sequence O, the probability P(Q|O, λ). 
Instead of evaluating how well the entire HMM explains the observation sequence, 
the probability P(O|λ). By using the Viterbi algorithm this state sequence can be 
determined and observed. Other classification methods that focus more on the 
pattern or small set of patters of a gesture class are also recommended.  
 
The streamwise tests show that it is difficult to precisely match the classified 
gestures with the annotated gestures, due to the problems with variable lengths. 
Paragraph 5.6.3 explains that the a priori distribution of a gesture is needed to 
compensate for this length problem. The actual a priori distribution is unknown. A 
recommendation for estimating this distribution is to use the length distribution 
within a gesture class. 
 
The last recommendation is to use domain knowledge after different gestures are 
recognized in a certain data stream. When the results show two gestures occurring 
at the same time that cannot overlap, because of physical restraints to the human 
body, the one with the highest likelihood can be selected. Another example is the 
sequence of standing up and sitting down gestures. The restriction that these two 
should be alternated ensures that no two standing ups or sittings downs are 
recognized after each other. A last example of using domain knowledge is using the 
input of other modalities such a speech to influence the a priori probability of certain 
gesture classes. For example the probability of nodding and shaking gestures 
increases in a discussion. When someone is giving a presentation the writing chance 
increases for the listeners. For the speaker the chance of pointing gestures increases. 
In general, information of the gesture recognition domain or other domains could be 
used to enhance the recognition result. 
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Appendix A - Gesture description 

This appendix describes the seven meeting gestures chosen in this project. The 
characteristics of each gesture are described according to their location, temporal, 
amplitude and parametric properties. This is followed by each gestures annotation 
guidelines. The tested segmentation features are described for all gestures except 
pointing. The tested classification features and the tested HMM options are given for 
the writing, SSG and standing up classes. 
 
Pointing 

The pointing gesture is a hand and arm gesture. The gesture starts when the hand is 
moved away from an arbitrary rest position. Next the hand moves to where the 
person wants to point to. This is almost always followed by a retraction to an 
arbitrary end position. The duration of this gesture is relatively fixed. The amplitude 
depends on whether the hand starts close to the pointing position or not. Additional 
parameters for this gesture are the pointing direction (north, east etc.) and if the 
gesture is performed repeatedly. 
 
Annotation guideline 

 
 
 
 

 
Writing 

The writing gesture is in general a hand gesture, but also the head and body are 
involved. This gesture starts when the person moves towards the writing position. 
This means that the head moves downward, the body leans forward and the hands 
move towards the pen and paper. Most of the time, this gesture ends with the 
inverse of this movement. The duration of this gesture is arbitrary; it all depends on 
how long the person is actually writing. This can change from 50 to even 500 frames. 
Because this gesture involves a change to a writing position the amplitude is 
relatively large especially for the head. The hands do not always have large 
amplitudes because they can already be near the pen and paper before the gesture 
starts. 
 
Annotation guideline 

 
 
 

 
 

 

Gesture Begin movement End movement 
Pointing Moving the hands away from 

a rest position. 
Ending with the hands in a 
rest position. 

Gesture Begin movement End movement 
Writing Moving hand, head and body 

from a rest position towards 
the object on which will be 
written.  

Moving hand, head and body 
backwards toward the rest 
position. 
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Tested segmentation features 

The writing characteristics of the annotation guidelines above are most clearly 
present in the different head features. This is because the head almost always moves 
significantly downward when someone begins to write and upward when they are 
finished. We observed that the following head features show the characteristic begin 
and end movements of a writing gesture: 

 
Feature set Selected feature(s) 
Cartesian coordinates Head Y 
Polar coordinates Head Radius / Delta 
Joint angles Head X joint 
Cartesian velocity Head Y 
Polar velocity Head Radius / Delta 
Speed/Direction Head Speed 

 
 
 
 
 
 
 

 
One head feature is not present, namely the direction feature. This feature is just too 
noisy due to the use of the nonlinear arctan operation in its calculation. 
      
The expected hand and arm (shoulder and elbow) movements do appear in the data 
but not as clearly as the head movement. This is because the hands and arms do not 
always have to be moved to get them to their writing position. It could very well be 
the case that the hands and arms are already in their correct positions. The body 
movement which could be measured by the back joint is also not clearly present. The 
first possible explanation is that someone is already leaning forward on the table. 
The second explanation is that the back at the position of the joint moves less clearly 
than the head when a writing gesture starts or ends.  
 
The head movement primarily takes place in the vertical Y direction. Polar 
coordinates combine the Cartesian coordinate system in the X and Y direction. 
Because the X component has no effect the polar coordinates will show the same 
variation as the Cartesian Y coordinate at the same time. So it is possible to sum 
these features and amplify their characteristics. The same can be done with the 
Cartesian and polar velocities. Speed and joint values are different from the other 
features in scale and behavior and cannot be grouped together.  
 
Tested classification features 

Writing is a hand gesture, but a part of the gesture also involves a change in body 
position, moving the head downward. Therefore the hand features as well as the 
head features are part of the tested feature sets. 
 

Gesture Cartesian 
Position set 

Polar  
Position set 

Cartesian 
Velocity set 

Polar  
Velocity set 

Writing Left hand X,Y 
Right hand X,Y 
Head X,Y 

Left hand R,D 
Right hand R,D 
Head R,D 

Left hand X,Y 
Right hand X,Y 
Head X,Y 

Left hand R,D 
Right hand R,D 
Head R,D 
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Tested HMM options 

1.  Because of the length of this gesture, it consists of a relatively large amount of 
gesture parts. It should be possible to create enough GBBs out of these gesture 
parts. The problem that you discard information by using GBBs should therefore 
not be much of a problem. If the classification with GBBs doesn’t perform well, 
discrete gesture parts are a second option. 

2.  By constructing the GBBs based on the direct clustering of the average vector of 
a gesture part we expect that the repetitive part occurring in the hand movement 
is smoothed out. The risk of this smoothing is however that too much information 
is thrown away. Therefore the second option, constructing the GBBs based on 
main cluster, is also considered. 

3.  A discrete HMM is necessary, since we intend to use GBBs or discrete gesture 
parts. 

4.  The number of states for this HMM lies probably somewhere between three and 
six. Less is unlikely because there are three distinct stages in this gesture: the 
begin head movement, writing hand movement and end head movement. More 
than six is also unlikely because all three gesture phases described above are not 
very complex and should not require more than two states.  

5.  If the repetitive writing part is pre-classified to one or two GBBs, a left right HMM 
topology could be suitable for the top level classification. When too many labels 
are used for the writing part and they show a repetitive pattern a left-right HMM 
might not be sufficient. In this case you need a fully connected HMM.  

 
SSG 

The speech supporting gestures are purely hand gestures. This gesture starts when 
one or both hands are moved away from their rest positions. This is followed by a 
short stroke where the speech is supported followed by a retraction to another rest 
position. The gestures in this group can be divided in beats which only emphasize 
speech and iconics or metaphorics which also illustrate the speech. The duration of 
this gesture is relatively fixed, but the beats tend to be shorter than the iconic and 
metaphoric gestures.  
 
Annotation guideline 

 
Gesture Begin movement End movement 
SSG Moving the hands away from 

a rest position. 
Ending with the hands in a 
rest position. 

 

 
 

Tested segmentation features 
Speech supporting gestures are not easily distinguishable from other occurring 
movement because the average amplitude of this gesture is very small. Because 
these gestures are made solely with the hands we have examined the available hand 
features. The features that do show some characteristic speech supporting 
movements are: 

 
 Feature set Selected feature(s) 

Cartesian coordinates Left/Right Hand X 
Left/Right Hand Y 

Polar coordinates Left/Right Hand Delta 
Polar velocity Left/Right Hand Delta 
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The other hand features either show no clear characteristic movement at all, or show 
inconsistent characteristics when you look at different examples of the same gesture. 
 
It is possible to sum the coordinate or velocity data of the left and right hand 
together to get the movement of both hands in one feature. This might however 
cause problems when for example both hands make the same movement but in 
opposite direction. Adding the features of both hands in this situation might cancel 
out the occurring movement in the resulting feature. It is possible to work around 
this problem by taking the absolute velocity for example. It has to be tested if this 
summation has any effect on the segmentation performance. 
 
Tested classification features 

Speech supporting gestures are purely made with the hands so we consider only the 
hand features in the tested feature sets. 
 

Gesture Cartesian 
Position set 

Polar  
Position set 

Cartesian 
Velocity set 

Polar  
Velocity set 

SSG Left hand X,Y 
Right hand X,Y 

Left hand R,D 
Right hand R,D 

Left hand X,Y 
Right hand X,Y 

Left hand R,D 
Right hand R,D 

 
Tested HMM options 
1. Because this gesture is relatively short it only has a few gesture parts, roughly 

two or three. Classifying these parts to GBBs would probably result in a high loss 
of information. The SSG is a short, fast and expressive gesture. Our expectation 
is that this expressiveness separates this gesture from other hand movements. 
Clustering the data with too few clusters could result in abstracting from this 
expressiveness. It is however possible that with enough clusters the search space 
is reduced quite effectively while most information remains within the discrete 
feature data. We want to try the discrete gesture part approach because a 
discrete HMM is easier to train. If clustering proves to be difficult for this gesture 
we can fall back on continuous gesture parts. 

2.  Not applicable here since GBBs are not used. 
3.  Considering question one, we need either a discrete or continuous HMM. 
4.  Taking the complexity of the gesture into account we expect that an HMM needs 

four to eight states.  
5.  Again given the complexity we expect to need a fully connected topology.  
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Nodding and shaking 

Nodding and shaking are head gestures. The nodding gesture starts when the head 
begins to move up- or downward. For the shaking gesture this movement is in a 
sideward direction. Both gestures end when this oscillating movement ceases. This 
can take an arbitrary amount of time depending on how long the person keeps 
nodding. This can be anywhere within 10 to 100 frames. The amplitude of this 
movement is small compared to the other gestures. The largest amplitude is found in 
the beginning of these gestures, it fades out toward the end. An additional 
parameter is, if it involves a single or repeated nods or shakes.    
 
Annotation guideline 

 
Gesture Begin movement End movement 
Nodding Beginning of the up or 

downward head movement. 
End of the last up or 
downward head movement. 

Shaking Beginning of the sideward 
head movement. 

End of the last sideward 
head movement. 

 
 

 

 
Tested segmentation features 

Nodding gestures have the same problem as speech supporting gestures, in that 
they are not easily distinguishable from other occurring movements. The features to 
take into consideration are of course those features that describe the movement of 
the head. Although not all head features show the expected nodding characteristics. 
The speed feature contains too little information to segment on and the direction 
feature is as mentioned before too noisy. The features which do somewhat show the 
typical up and downward movements of the head are: 

 
 Feature set Selected feature(s) 

Cartesian coordinates Head Y 
Polar coordinates Head Radius/Delta 
Joint angles Head X 
Cartesian velocity Head Y 
Polar velocity Head Radius/Delta 

 
 
 
 
 

 
The same conclusions can be made for the shaking movement. In general this 
gesture is the same as the nodding gesture only moving the head sideways instead 
of up and down. Therefore the same features can be used for this gesture class. Only 
the joint feature cannot be used since this feature is only measured in the up and 
down direction and not in the sideways direction. This leaves the following features: 

 
Feature set Selected feature(s) 
Cartesian coordinates Head X 
Polar coordinates Head Radius/Delta 
Cartesian velocity Head X 
Polar velocity Head Radius/Delta 

 
 
 
 
 

 
Note that the characteristics for nodding and shaking are only very faintly present in 
these features and show only for the clear gestures. The reason for this is that the 
amplitude of the up, down and especially the sideward movement of the head is very 
small during these gestures, in the order of one or two pixels. It is possible to 
amplify the characteristic movements just as in writing by summing the Cartesian 
and polar coordinates and Cartesian and polar velocities together. 
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Standing up and Sitting down 

Standing up and sitting down are whole body gestures. When preparing to stand up 
a person moves his arms backward and body forward. The gesture ends when the 
person is fully upright. The sitting down gesture starts when a person moves down 
and ends when he or she is seated again. The duration depends a bit on how much a 
person hesitates during these gestures but in general the duration is relatively fixed. 
The amplitude caused by these gestures is large, because it involves an entire 
change of place from a seated to a standing position.     
 
Annotation guideline 

 
 

 
 

 

Tested segmentation features 
The observation of moving the arms backward is best seen in the shoulder X joint 
feature of both arms (flexion extension in the longitudinal plane). This data shows 
the same data variation for both arms, noting that the data of the left arm is 
inversed compared to the data of the right arm. This inversion occurs when one arm 
is places on the arm rest of a chair and the other on the table. Other features that 
describe arm or hand movement do not show the same characteristics for both 
hands or differ too much between different samples. This is due to the fact that the 
arms and hands start in an arbitrary start location. For example one person might 
keep his hands on the table when standing up to support his weight, while another 
person might not.  
 
The downward movement of the body at the beginning of standing up and the rise of 
the body at the end of the gesture are most clearly seen in the features that describe 
the position of the head. The head typically moves down first, when a person 
prepares to stand up and then moves up very fast during the actual standing up 
movement. The suggested features to use are: 

 
 
 
 
 
 
 
 

 
The sitting down movement is very similar to the standing up movement. It 
practically is the inverse movement of standing up. Therefore we assume that the 
features found useful for standing up are also the features to use for sitting down. 
 

Gesture Begin movement End movement 
Standing up Moving arms backward and 

body forward.  
Ending in a (straight) 
standing rest position. 

Sitting down Begin movement 
downwards. 

Ending with the body in a 
seated rest position. 

Feature set Selected feature(s) 
Cartesian coordinates Head X/Y 
Polar coordinates Head Radius/Delta 
Joint angles Left/Right Shoulder X 
Cartesian velocity Head X/Y 
Polar velocity Head Radius/Delta 
Speed / Direction Head Speed 
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Tested classification features 

Standing up will cause variations in almost all the measured features because of its 
large amplitude. However these variations are not always consistent for different 
examples of this gesture. The only consistent movement is the large upward and 
downward movement of the head and the change in the root Y position. These 
features are considered in the tested feature sets. 
 

Gesture Cartesian 
Position set 

Polar  
Position set 

Cartesian 
Velocity set 

Polar  
Velocity set 

Standing up   Head X,Y 
Root Y 

Head R,D 
Root Y 

Head X,Y Head R,D 

 
Tested HMM options 

1.  The standing up gestures are relatively long gestures, so the construction of 
GBBs should be possible. If it turns out that the usage of GBBs restricts the data 
too much, the clustered gesture parts are also an option. We expect that the 
upward movement should still be present in the clustered data. These two 
options, GBBs and discrete gesture parts, are chosen to be tested.  

2.  When the GBBs are used direct clustering of the average of the gesture parts 
should leave most information of the upward movement intact. Therefore we 
chose this method for constructing the GBBs. 

3.  For both the GBB strategy and the discrete gesture part approach we need a 
discrete HMM. 

4.  We suspect that the number of states needed to model the movement depends 
for on the number of clusters or GBBs. The HMM should model the upward 
aspect, based on a number of possible sequences of GBBs or clusters. Because 
the number of clusters cannot be too small the number of states should at least 
be five. 

5. Because this gesture has no repeated character a left-right topology should 
suffice.
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Appendix B – Annotation tool comparison 

Within the AMI project Reiter [48] suggests two tools suitable for annotation of the 
video data. Another tool which has been used in the AMI project is the Nite toolkit. 
Of course more tools are available, but the given three should be good enough for 
our annotation purposes. By means of a short list of pros and cons we will determine 
which tool is going to be used for annotation. The aspects on which we evaluated the 
tools are: 

1. Is it possible to annotate multiple gestures in the case that more gestures are 
performed simultaneously? 

2. Is it possible to add attributes to a gestures annotation? (e.g. to indicate 
whether the performed gesture is clear or vague) 

3. Is it possible to save the annotation data in an easy to use format such as 
XML? 

4. Are basic video playback functions available? (e.g. stop, start and pause) 
5. Is the program intuitive and easy to use? 

 
The table below lists the results of the short review. 
 

Tool 
Criteria 

Anvil TASX Nite 

1 + + + 
2 + + - 
3 + + + 
4 + + + 
5 + - + 
Table B.1 – Evaluation results of the three annotation tools 

 
When you just look at the number of + marks, the Anvil tool scores the highest. In 
our opinion this is the best tool to use for our annotation purposes since it supports 
all the required features and also some more that aren’t listed.  
 
The disadvantage of the TASX tool is primarily its usability. It too supports all the 
necessary features but it is cumbersome to work with. This has primarily to do with 
the lack of a good coupling between the annotation window and the video display. 
This makes it more difficult and time consuming to annotate precise gesture 
boundaries. Another smaller disadvantage is the rather unintuitive output format of 
the TASX tool which makes a combination with other gesture recognition tools more 
difficult.  
 
A disadvantage of the Nite tool is that it is a labeling tool and doesn’t support the 
addition of attributes to the label. It is easy to use because you can annotate “on the 
fly” using key-shortcuts while the video plays. In the other tools you have to pause, 
select the correct fragment and label it. This on the fly annotating however has a 
disadvantage because a human has a certain reaction time. Because of this the begin 
boundary will start too late, when the gesture has already begun and the gesture will 
also end too late. These deviations will also differ between annotators, because 
everyone has a different reaction time. Even the reaction time of one annotator will 
change during annotation because he or she will get used to the program. This 
requires another, difficult correction pass to correct all the boundaries.     
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Appendix C – Available features 

 
# Name # Name 
 Head & hand position  Cartesian accelerations 
1 Head X 42 Cartesian Acceleration Head X 
2 Head Y 43 Cartesian Acceleration Head Y 
3 Left Hand X 44 Cartesian Acceleration Left Hand X 
4 Left Hand Y 45 Cartesian Acceleration Left Hand Y 
5 Right Hand X 46 Cartesian Acceleration Right Hand X 
6 Right Hand Y 47 Cartesian Acceleration Right Hand Y 
    
 Root position  Polar acceleration 
7 Root X 48 Polar Acceleration Head R 
8 Root Y 49 Polar Acceleration Head Delta 
9 Root Z 50 Polar Acceleration Left Hand R 
  51 Polar Acceleration Left Hand Delta 
 Joint angles 52 Polar Acceleration Right Hand R 
10 Head joint X 53 Polar Acceleration Right Hand Delta 
11 Head joint Y   
12 Back joint   Speed and direction 
13 Left shoulder X 54 Speed Head  
14 Left shoulder Y 55 Direction Head  
15 Left shoulder Z 56 Speed Left Hand  
16 Left elbow  57 Direction Left Hand  
17 Right shoulder X 58 Speed Right Hand  
18 Right shoulder Y 59 Direction Right Hand  
19 Right shoulder Z   
20 Right elbow  Angular velocity 
  60 Angular velocity Head joint X 
 Polar coordinates 61 Angular velocity Head joint Y 
21  polar Head R 62 Angular velocity Back joint  
22  polar Head Delta 63 Angular velocity Left shoulder X 
23  polar Left Hand R 64 Angular velocity Left shoulder Y 
24  polar Left Hand Delta 65 Angular velocity Left shoulder Z 
25  polar Right Hand R 66 Angular velocity Left elbow  
26  polar Right Hand Delta 67 Angular velocity Right shoulder X 
  68 Angular velocity Right shoulder Y 
 Head/hand distances 69 Angular velocity Right shoulder Z 
27 distance Head  70 Angular velocity Right elbow 
28 distance Head    
29 distance Left Hand   Angular acceleration 
  71 Angular acceleration Head joint X 
 Cartesian velocities 72 Angular acceleration Head joint Y 
30 Cartesian Velocity Head X 73 Angular acceleration Back joint  
31 Cartesian Velocity Head Y 74 Angular acceleration Left shoulder X 
32 Cartesian Velocity Left Hand X 75 Angular acceleration Left shoulder Y 
33 Cartesian Velocity Left Hand Y 76 Angular acceleration Left shoulder Z 
34 Cartesian Velocity Right Hand X 77 Angular acceleration Left elbow  
35 Cartesian Velocity Right Hand Y 78 Angular acceleration Right shoulder X 
  79 Angular acceleration Right shoulder Y 
 Polar velocities 80 Angular acceleration Right shoulder Z 
36 Polar Velocity Head R 81 Angular acceleration Right elbow 
37 Polar Velocity Head Delta   
38 Polar Velocity Left Hand R   
39 Polar Velocity Left Hand Delta 82 Duration 
40 Polar Velocity Right Hand R 83 Intensity 
41 Polar Velocity Right Hand Delta 84 Locus 
Table C.1. – The complete set of available features. 
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Redundant features 

 

Table C.2. – The numbers of the features that are below the threshold of the feature 
reduction test. The feature numbers are given for the reduced dimensions one to six and 
the smoothed and unsmoothed situation. 

#rows unsmoothed smoothed 
1 1, 8, 9, 11, 30, 32-36, 

38-53, 55, 59-81 
1, 8, 9, 11, 25, 30, 32-35, 39-40, 42-44, 46, 
48-49, 51-52, 55, 57, 60-67, 69-74, 76-81 

2 8, 9, 11, 30, 32-36, 38-
53, 60-81 

9, 11, 30, 32-33, 35, 38-40, 42-44, 46, 48-
49, 52, 55, 57, 60-63,  65-67, 69-74, 76-81 

3 9, 11, 30, 32-36, 38-40, 
42-53, 60-81 

9, 11, 30, 33, 35, 39-40, 42-44, 46, 48-49, 
52, 55, 57, 60-63, 65-67, 69-74, 76-81 

4 9, 11, 32-35, 38-40, 42-
53, 60-81 

9, 11, 39-40, 42-44, 46, 48-49, 52, 55, 57,  
60-63, 65-67, 69-74, 76-81 

5 9, 11, 32-35, 38-40, 42-
53, 60-81 

9, 11, 39-40, 42-44, 46, 48-49, 52, 55, 57,  
60-63, 65-67, 69-74, 76-81 

6 9, 11, 32-35, 38-40, 42-
53, 60-81 

9, 11, 39-40, 42-44, 46, 48-49, 52, 60-63, 
65-67, 69-74, 76-81 
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Appendix D – Sample sizes 

 
Gesture Train (50%) Validation (20%) Test (30%) Total 
Writing 39 16 24 79 
SSG 268 175 175 618 
Standing up 4 2 4 10 
Table D.1 – The sample sizes for the train, validation and test set for the tested gesture 
classes. 
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Glossary  

 
AM - Activity Measure 
 
AMI - Augmented Multiparty Interaction 
 
BIC - Bayesian Information Criterion 
 
DOF - Degree Of Freedom  
 
EM - Expectation Maximization 
 
GBB - Gesture Building Block 
 
GP - Gesture Part 
 
HMM - Hidden Markov Model 
 
LDA - Linear Discriminant Analyses 
 
MDF - Most Discriminating Features 
 
MEF - Most Expressive Features 
 
SOFM - Self Organizing Feature Maps 
 
SSG - Speech supporting gesture 
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