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SAMENVATTING 
Een nieuw type handcomputer is in ontwikkeling in het Moby Dick project. Door de gewenste 
functionaliteit en prestaties, zal het energie verbruik de limiterende factor zijn voor deze 
handcomputer. Draadloze communicatie zal ook een belangrijke factor zijn in het project, wat 
een energie-efficiënt transport protocol, compatible met TCP/IP, wenselijk maakt. Dit verslag 
beschrijft het ontwerp van zo’n energie-efficiënt transport protocol voor mobiele draadloze 
communicatie. 
Er is echter nog niet veel onderzoek gedaan naar de energie efficiëntie van transport 
protocollen. Daarom zijn er eerst maten ontwikkeld om de energie efficiëntie van transport 
protocollen te kunnen meten. Deze maten zijn gebruikt om de prestaties van TCP/IP op 
draadloze verbindingen nauwkeurig te bestuderen. Vier probleemgebieden zijn gedefinieerd, 
die TCP/IP ervan weerhielden een hoog niveau van energie efficiëntie te behalen. Voor deze 
probleemgebieden zijn mogelijke oplossingen aangedragen waarna de haalbaarheid er van is 
onderzocht. 
De resultaten van dit onderzoek zijn gebruikt om E2TCP te ontwerpen. Een simulatie model 
van dit energie-efficiënte transport protocol is geïmplementeerd en onderworpen aan een 
grondige evaluatie. Uit de resultaten kan geconcludeerd worden dat E2TCP niet alleen een 
hogere energie efficiëntie heeft dan TCP/IP, maar dat het ook in staat is beter te presteren op 
meer traditionele punten: throughput en latency. 
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ABSTRACT 
A new generation handheld computer is under development in the Moby Dick project. 
Because of the desired functionality and performance, the energy consumption will be the 
limiting factor for this handheld. Wireless communication will also be an important factor in 
the project, which makes an energy-efficient transport protocol, compatible with TCP/IP, 
desirable. This thesis describes the design of such an energy-efficient transport protocol for 
mobile wireless communication. 
However, not much research has yet been done on the energy efficiency of transport 
protocols. First metrics were developed to measure the energy efficiency of transport 
protocols. These metrics were used to study the performance of TCP/IP on wireless links 
carefully. Four problem areas were defined that prevented TCP/IP from reaching high levels 
of energy efficiency. For these problem areas, solutions were proposed and their feasibility 
was examined. 
The results of this study were used to design E2TCP. A simulation model of this proposed 
energy-efficient transport protocol has been implemented and was subject to a thorough 
evaluation. The results show that E2TCP not only has a higher energy efficiency than TCP/IP, 
but it also manages to outperform TCP/IP on more traditional performance metrics: 
throughput and latency. 
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1 INTRODUCTION 
This thesis is part of the Moby Dick project at the Computer Science department of the 
University of Twente. The Moby Dick project is a joint European project to develop and 
define the architecture of a new generation of mobile handheld computers. Due to the 
increasing demand for performance and functionality, the energy consumption will be the 
limiting factor for the capabilities of such a new generation handheld. Therefore reducing 
energy consumption plays a crucial role in the architecture. An important aspect of the Moby 
Dick project is wireless communication. Because of the importance of energy efficiency to 
the Moby Dick project, the wireless communication should also be optimized to minimize 
energy consumption. 
Unfortunately, not a lot of research has been done on energy-efficient transport protocols. 
Even though it would be quite rewarding to do so, because in mobile systems, the radio 
(which is used for wireless communication) is one of the parts that consume the most energy 
[STE97]. Computer chips (like CPUs and memories) are becoming increasingly energy 
efficient because of advances in IC design. Radios however simply require a certain amount 
of energy to transmit and receive information. Furthermore, multimedia applications are using 
network services more extensively and continuously than before. The impact of minimizing 
the energy spent on wireless communication, will therefore only increase [HAV00b]. 
For these reasons, it would be beneficial to the Moby Dick project if an energy-efficient 
transport protocol would be designed. As a basis for such a protocol, TCP/IP (Transport 
Control Protocol/Internet Protocol) is a likely candidate. This would enable the handheld to 
communicate, via the Internet, with vast numbers of systems. 
This led to the following problem statement: 
 

The energy efficiency of transport protocols on wireless links should be 
researched. Based on that research, E2TCP –an energy efficient version of 
TCP/IP– should be designed and implemented, to test its energy efficiency and 
performance. 

 
The remainder of this chapter further delineates the problem area of E2TCP. Chapter 2 
explains what energy efficiency is and how it can be calculated. Chapter 3 then describes 
TCP/IP, explains what keeps it from reaching high levels of energy efficiency and what can 
be done to remedy this. The solutions presented in Chapter 3 were used to design E2TCP, 
which is described in Chapter 4. In Chapter 5 an implementation of E2TCP will be introduced 
before a thorough energy efficiency and performance evaluation will be given. Finally 
Chapter 6 gives the conclusions of this thesis. 

1.1 Problem area 
E2TCP will be used on a wireless link between a mobile host and a base station. The mobile 
host should be able to connect to the Internet via the base station in such a way that it is 
transparent to the mobile host and the Internet host it is connected with. This means neither 
the mobile host nor the Internet host should be able to tell whether E2TCP is used between the 
mobile host and the base station or regular TCP/IP. (Because the behavior of TCP is highly 
dependant on IP, E2TCP will have the functionality of both TCP and IP. This maximizes the 
potential gain in energy efficiency.) 
The design of this protocol is limited to the transport layer. The lower layers (the link layer 
and medium access layer (MAC) layer) should not be changed in any way. This is because the 
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protocol will be used as a drop-in replacement for TCP/IP on the mobile host and should be 
usable on all wireless links, just like TCP/IP is usable on all wired networks. The protocol 
should therefore make no assumptions about the link- and MAC layers. 
Now it is clear what should not be changed, it is time to explain what is allowed to be 
changed. There are three parts of the systems that can be changed. They are additive, which 
means that the second proposed change also includes the first and that the third proposed 
change also includes the second and first. 
The first proposed change is to replace TCP/IP at the base station with E2TCP. This change 
requires no user intervention but it is expected that by only applying this change, the increase 
in energy efficiency is rather small. 
The second proposed change is to also replace the transport protocol on the mobile host. This 
requires some user intervention because the user must install the protocol on its mobile host. 
Because of the user-friendliness of modern operating systems this should not be a big 
problem. When this proposal is executed a truly new transport protocol can be designed 
because it does not have to communicate directly with TCP/IP. A proxy application at the 
base station can then handle the translation of the energy efficient protocol on the wireless 
link to TCP/IP on the wired part of the path. The design of the proxy is not part of the 
problem statement: E2TCP will be the sole point of focus. It is expected that this proposal will 
yield an increase in energy efficiency compared to only the first change. Such a setup is 
shown in Figure 1.1. 
 

E2TCP 

link layer 

MAC layer 

link layer 

MAC layer 

application application 

mobile host internet host 

TCP 

IP 
E2TCP 

link layer 

MAC layer 

proxy 

base station 

link layer 

MAC layer 

TCP 

IP 

wireless link fixed link  
Figure 1.1: The intended setup of E2TCP. 

 
The third proposal is to change (some of) the applications on the mobile host as well. These 
applications will then be able to optimize the energy efficient connections for their intended 
use with Quality of Service-like (QoS-like) parameters. It is expected that this will increase 
the energy efficiency even further in certain cases, which would not have been possible with 
only the first two proposed changes. 
The conclusion of this chapter is that the protocol should meet the following requirements: 
• It should be a transport protocol and should be compatible with TCP/IP (through 

translation at the base station). 
• It should be energy efficient. 
• It should make no assumptions about the lower layers and leave them unchanged. 
• Higher layers (applications) should be able to use E2TCP just like TCP/IP. However, if 

they are E2TCP-aware, they should be able to optimize E2TCP connections for their 
intended use with QoS-like parameters. 
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2 MEASURING ENERGY EFFICIENCY 
When researching the energy efficiency of protocols, it is of course important to know what 
exactly energy efficiency (of a protocol) is and how to calculate it. In this chapter both topics 
will be discussed. 

2.1 Energy efficiency and energy overhead 
Energy efficiency is a measure to indicate how much energy a protocol uses to transmit data 
(in a certain case) compared to an ideal protocol. It will not be measured in absolute values 
because different cases (with different amounts of payload) should be comparable. An energy 
efficiency near 0% means little of the spent energy was used efficiently, while an energy 
efficiency of 100% means that no energy was wasted, which can only be achieved by an ideal 
protocol. 
It is important to know that for a given data transmission medium there is a minimum amount 
of energy that is required to send data from source to destination. No protocol can use less 
energy and still successfully complete the transmission. Let's call this minimum M. This is 
probably different from the actual spent energy, called S. The difference between those two 
values is called W; the amount of wasted energy. These values are shown in Figure 2.1. 
 

S 

M 

W 

S          = energy Spent by the protocol 
W         = energy Wasted by the protocol 
M          = Minimum amount of spent energy possible 

+ 

= 

 
Figure 2.1: The relation between the spent, wasted and minimum amount of energy. 

 
Energy efficiency then is: 
 

EE = M / S 

Equation 2.1: Energy efficiency. 
 
or in words: the part of the spent energy that was used useful. If the protocol is ideal and it 
only uses the minimum amount of energy (S = M) the energy efficiency is 100%. Since M is 
fixed and S can only increase, the energy efficiency can only become lower. 
Even though this is exactly what is needed to know about the protocols in this assignment, 
energy efficiency is not a good way to compare various protocols. This is because the 
differences in energy efficiency will be quite small even though the amount of wasted energy 
can differ quite much. Consider the following example. 
 

Example 2.1: The minimum amount of energy for a given data transfer is 100 (the 
measure used does not matter). Protocol A spends an amount of 125 to complete 
the transmission and protocol B 150. Clearly protocol B wastes twice as much 



Energy Efficient TCP  
 

4  
 

energy as protocol A (W is 50 and 25 respectively). But the energy efficiency of 
protocol A is 100 / 125 = 80% and that of B is 100 / 150 = 67%. When one only 
looks at the energy efficiency it is easy to see that protocol A is better than 
protocol B. When one tries to see how much protocol A is better, the energy 
efficiency numbers are not that convenient. 

 
There is another measure that is closely related to energy efficiency: energy overhead. Energy 
overhead is the amount of wasted energy compared to the minimum amount of energy, or: 
 

EO = W / M 

Equation 2.2: Energy overhead. 
 
This can be seen as the amount of energy that is spent more than the minimum the protocol 
requires. Because of its close relation with energy efficiency, energy overhead can be 
calculated when only energy efficiency is known, and vice versa. Unlike energy efficiency 
however, energy overhead is more suited to show the differences between two protocols. This 
is shown in the next example. 
 

Example 2.2: Consider the previous example but now the energy overhead will be 
calculated instead of energy efficiency. The energy overhead of protocol A is 25 / 
100 = 25% and the energy overhead of protocol B is 50 / 100 = 50%. This shows 
precisely that protocol B wastes twice as much energy as protocol A. 

 
Energy overhead will be used to compare protocols from now on, while energy efficiency 
numbers will sometimes be stated to be complete. 

2.2 Data overhead and time overhead 
Now a definition of energy overhead has been given, it is time to show how it is calculated. 
Before this can be done it is important to understand what precisely influences the energy 
efficiency and overhead of a protocol. Basically there are two characteristics that influence 
them. The first characteristic is the data overhead of a protocol. When a protocol uses more 
bytes to transmit the same amount of data, more bytes are wasted. Therefore the protocol 
becomes less energy efficient. The second characteristic that influences the energy efficiency 
of a protocol is time overhead. In certain cases, the longer the protocol needs to transmit the 
same amount of data, the longer the radio has to be active. When the radio is active, it requires 
(extra) energy to operate. Thus, the more time a protocol requires to send the same amount of 
data, its energy efficiency decreases. These two characteristics are sometimes related. 
The question remains how much these characteristics each influence energy efficiency. The 
answer really depends on the type of transceiver (transmitter and receiver) and what kind of 
link and MAC layer are used to transmit and receive the packets. For convenience the 
combination of transceiver, link layer and MAC layer will be called a radio from now on. To 
distinguish between different types of radios, a general power model of radios will be 
presented first. 

2.3 Power model of radios 
A radio has various states in which it operates. In each state the radio requires a certain 
amount of power to operate. In the following table as an example, the various states of a 
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WaveLAN modem will be listed, together with a description of the amount of power 
consumption [HAV00]. 
 

State Power consumption WaveLAN power consumption (mW) 
Off none 0 
Sleep low 35 
Active high 1325 
Transmit slightly higher than active 1380 
Receive slightly higher than active 1345 

Table 2.1: Powerstates of radios. 
 
Of course one could think that the ideal radio would be in the off state continuously, except 
when it has to receive or transmit data. However, real radios behave differently. When a radio 
switches between two states it takes a certain amount of time and possibly some amount of 
energy to complete the switch. Switching to and from the off mode takes so much time it is 
infeasible to use it to save energy between consecutive transmits and receives. The sleep state 
can be used for such a purpose. To effectively use the sleep state, however, takes extra 
coordination and increases the complexity of the lower level protocols. Furthermore, a lot of 
radios are not optimized for power consumption but for performance. So there are still a lot of 
radios that do not use the sleep state to save power to its full effect. 
It is also important to understand the concept of a network session. A network session is a 
period in time in which there is a established connection between the mobile and the base 
station. During a network session it is possible to use the network. For instance by requesting 
email from a mail server or establishing a telnet session with a telnet server. During a network 
session it is often infeasible for the radio to enter the off state. This is because switching to 
and from the off state requires much time. So before and after a network session the radio can 
be put in the off state to save energy. However, doing this during a session is not a thing a lot 
of radios are able to do. 
Now a general power model of radios has been given, some types of radios will be discussed. 
There are two extreme types of radios. Not all radios will fit in either categories. All radios 
however can be placed on a gliding scale between the those two types. These types are: 
• Always active. Such a type of radio is always in the active state during a network 

session. Because of the small difference between the energy consumption levels of the 
active state and the transmit and receive states, data overhead does not have a large 
impact on energy efficiency. Time overhead is much more important because the sooner 
the data has been transmitted and the network session can be ended, the sooner the radio 
can put in the off state. WaveLAN is an example of such a type of radio. 

• Ideal. An ideal radio would always be in the sleep- (or even off-) state during a network 
session, except when it has data to transmit or receive. For such a type of radio, time 
overhead would only have a very small impact on energy efficiency. Data overhead, on 
the other hand, is much more important. E2MaC is an example of this type of radio 
[HAV98]. 

So at one side of the gliding scale, time overhead is very important and data overhead is not, 
while at the other side of the scale, data overhead is very important and time overhead is not. 
Because our energy efficient protocol could be used on either extreme of the scale, it would 
be best to minimize both types of overhead.  
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2.4 Calculating data overhead and time overhead 
The problem of measuring energy efficiency has now boiled down to two simpler problems. 
How to measure data overhead and how to measure time overhead. Data overhead will be 
calculated as follows: 
 

DO = S / D – 1 

Equation 2.3: Data overhead. 
 
where: 
DO is Data Overhead. 
D is the amount of Data that should be transmitted by the protocol (measured in bytes). 

This is the payload of the protocol and is often referred to as user data. 
S is the amount of data the protocol actually Sent, to transmit the payload D to the 

receiver (measured in bytes). This includes retransmitted packets, packet headers and 
acknowledgements. 

 
Consider the following examples: 
 

Example 2.3: when TCP/IP is used to send 1000 bytes in one packet, that would 
generate one 1040 byte packet (40 bytes header and 1000 bytes payload) and one 
40 byte acknowledgement. That would result in: 
 
D = 1000 
S = 1040 + 40 = 1080 
 
DO = 1080 / 1000 – 1 = 8% 
 
Example 2.4: when TCP/IP is used to send 1000 bytes in one packet (just like in 
Example 2.3) but this packet is lost upon first transmission, it would have to be 
retransmitted. That would result in: 
 
D = 1000 
S = 1040 + 1040 + 40 = 2120 
 
DO = 2120 / 1000 – 1 = 212% 

 
Time overhead will be calculated as follows: 
 

TO = T / (D / B) – 1 

Equation 2.4: Time overhead. 
 
where: 
TO is Time Overhead. 
T is the Time the protocol required to transmit the payload D to the receiver (measured in 

seconds). Time is measured until the destination has received all data and the sender is 
aware that this has happened. 

B is the Bandwidth available on the link (measured in bytes per second). 



 L. Donckers 
 

 7 
 

 
Example 2.5: when a protocol requires 1 seconds to transmit 1000 bytes over a 
link with a bandwidth of 1500 bytes per second, that would result in: 
 
D = 1000 
T = 1 
B = 1500 
 
TO = 1 / (1000 / 1500) – 1 = 50% 

 

2.5 Calculating energy overhead 
Now it is clear how data- and time overhead are calculated, it is time to show how to calculate 
energy overhead. It has been shown, in this chapter, that energy overhead (and efficiency) 
depends on data- and time overhead. It has also been shown that how much each 
characteristic influences energy overhead depends on the type of radio used. Because of this 
energy overhead will be calculated as the weighed average of data overhead and time 
overhead. Three ratios will be used, which are all assumed to correspond closely to a certain 
type of radio. It should also be noted that the ‘always active’ and ‘ideal’ types of radio were 
assumed to be almost always active and almost ideal. So they are not as far on the extreme 
ends of the scale as mentioned in Paragraph 2.3. They are listed in the following table. 
 

Type of Radio Data Ratio Time Ratio 
Always active 0.1 0.9 
Intermediate 0.5 0.5 
Ideal 0.9 0.1 

Table 2.2: Data- and time ratios for different types of radios. 
 
Energy overhead can then be calculated like this: 
 

EO = DRR * DO + TRR * TO 

Equation 2.5: Energy overhead. 
 
where: 
EO is Energy Overhead. 
DRR is Data Ratio with radio R. 
TRR is Time Ratio with radio R. 

2.6 Calculating energy efficiency 
Like energy overhead is the weighed average of data- and time overhead, energy efficiency is 
the weighed average of data- and time efficiency. From the definition of energy efficiency it 
is easy to deduce the definitions of data- and time efficiency. Data efficiency is the part of the 
amount of data actually sent to complete the transmission, that was used for the payload. And 
time efficiency is the part of the time it took the protocol to complete the transmission, that 
the minimum time is. So they will be calculated as follows: 
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DE = D / S 

Equation 2.6: Data efficiency. 
 

TE = (D / B) / T 

Equation 2.7: Time efficiency. 
 
where: 
DE is Data Efficiency. 
TE is Time Efficiency. 
 
Please note that both data- and time efficiency (just like energy efficiency) are percentages 
and are always larger than 0% and less than or equal to 100%. As can be seen data efficiency 
and data overhead are closely related. One can be used to calculate the other: 
 

DE = 1 / (1 + DO) 

Equation 2.8: Data efficiency as a function of data overhead. 
 
because: 
DE = 1 / (1 + DO) 
DE = 1 / (1 + (S / D – 1)) 
DE = 1 / (S / D) 
DE = D / S 
 
and: 
 

DO = (1 / DE) – 1 

Equation 2.9: Data overhead as a function of data efficiency. 
 
because: 
DO = (1 / DE) – 1 
DO = (1 / (D / S)) – 1 
DO = S / D – 1 
 
Time efficiency and time overhead are similarly related: 
 

TE = 1 / (1 + TO) 

Equation 2.10: Time efficiency as a function of time overhead. 
 
because: 
TE = 1 / (1 + TO) 
TE = 1 / (1 + T / (D / B) – 1) 
TE = 1 / (T / (D / B)) 
TE = (D / B) / T 
 
and: 
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TO = 1 / TE – 1 

Equation 2.11: Time overhead as a function of time efficiency. 
 
because: 
TO = 1 / TE – 1 
TO = 1 / ((D / B) / T) – 1 
TO = T / (D / B) – 1 
 
With the same ratios listed in Table 2.2, it is now possible to calculate the energy efficiency of 
a transmission: 
 

EE = DRR * DE + TRR * TE 

Equation 2.12: Energy efficiency. 
 
where: 
EE is Energy Efficiency. 

2.7 Summary 
In this chapter, two measures were introduced that say something about the amount of spent 
energy of a protocol: energy efficiency and energy overhead. It was also shown that, even 
though the goal of this thesis was the design of an energy efficient protocol, energy efficiency 
is not the best measure to compare the performance of different protocols. Energy overhead is 
more suited for this. 
To calculate energy overhead (and efficiency) it was stated that two characteristics of a 
protocol should be know: the data overhead and the time overhead. How much each 
characteristic influences the energy overhead depended on the type of radio used. Different 
types of radios were shown and explained, after which it was shown how to calculate energy 
overhead. Finally, the calculation of energy efficiency was discussed. 
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3 ASPECTS OF TCP 
The protocol known as TCP has become the de facto standard high level protocol used in 
large (inter)networks. It became the best known transport protocol, through the enormous 
growth of the Internet in both size and popularity. In this chapter, it will be explained how 
TCP works, what keeps it from reaching high levels of energy efficiency on wireless links and 
what can be done to remedy this. 

3.1 Transport Control Protocol 
At the lowest level, computer communications networks provide unreliable packet delivery. 
Packets can be lost or destroyed when transmission errors interfere with data, when network 
hardware fails, or when networks become too heavily loaded to accommodate the load 
presented. Networks that route packets dynamically can deliver them out of order, deliver 
them after a substantial delay, or deliver duplicates. At the highest level however, applications 
programs often need to send large volumes of data from one computer to another. A general 
purpose (connection oriented) protocol that provides reliable in-order delivery of data over all 
these kinds of low level networks, is required to be able to efficiently code networked 
applications and to provide a means to knit networks together into one large (global) network. 
TCP provides just this. 

3.1.1 Reliability 
To be able to provide reliable delivery, even though TCP packets themselves may be lost or 
duplicated, TCP uses positive acknowledgements (with retransmissions). Such schemes are 
also known as ARQ (Automatic Repeat reQuests) schemes. It requires the recipient to 
communicate with the sender, by sending back an acknowledgement message for each packet 
it receives correctly. The sender keeps a record of each packet it sends and waits for an 
acknowledgement before sending the next packet. The sender also starts a timer when it sends 
a packet and retransmits the packet if the timer expires before the acknowledgement arrives. 
In this way packets that are lost will be retransmitted until the sender receives an 
acknowledgement indicating the recipient has correctly received the packet. 
The second reliability problem arises when the underlying packet delivery system duplicates 
packets. Duplicates can also arise when networks experience high delays that cause premature 
retransmissions. To solve this problem each packet is assigned a sequence number and the 
receiver is required to remember which sequence numbers it has received. To avoid confusion 
caused by delayed or duplicate acknowledgements, each acknowledgement carries the same 
sequence number as the packet it is supposed to acknowledge. 

3.1.2 Sliding Windows 
The retransmission scheme mentioned above leaves a substantial amount of bandwidth 
unused because it must delay sending a new packet until it receives an acknowledgement for 
the previous packet. To operate more efficiently TCP uses a sliding window scheme. Such a 
scheme allows the sender to transmit multiple packets before waiting for an 
acknowledgement. The easiest way to envision the operation of a sliding windows scheme is 
to think of a sequence of packets to be transmitted. The protocol then places a small window 
on the sequence and transmits all packets that lie inside the window. Once the sender receives 
an acknowledgement for the first packet in the window, it slides the window along and sends 
the next packet. 
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A packet is called unacknowledged if it has been transmitted but no acknowledgement has 
been received. So the number of unacknowledged packets is constrained by the window size. 
With a window size of one packet, this sliding window scheme behaves exactly the same as 
the scheme mentioned above. By setting the window size to a large enough value, it is 
possible to eliminate network idle time completely. A sequence of packets with a sliding 
window is shown in the figure below. 
 

1 2 3 4 5 6 7 8 9 10 11 

window 

 

 

acknowledged packet  

unacknowledged packet  

 untransmitted packet 

upon reception of an 
acknowledgement for 
packet 5 the window 

will slide to the right like 
the arrow indicates 

 
Figure 3.1: The sliding window mechanism. 

 

3.1.3 Acknowledgements and Retransmission 
Because TCP may send data in variable length packets, and retransmitted packets can include 
more (or less) data then the original, acknowledgements cannot easily refer to packets. Instead 
they refer to a position in the stream (the data that needs to be transmitted) using stream 
sequence numbers. At any time, the receiver will have reconstructed zero or more bytes 
contiguously from the beginning of the stream, but may have additional pieces of the stream 
from packets that arrived out of order. The receiver always acknowledges the longest 
contiguous prefix of the stream that has been received correctly. 
This acknowledgement scheme is called cumulative because it reports how much of the 
stream has accumulated at the receiver. Such a scheme has both advantages and 
disadvantages. One advantage is that acknowledgements are both easy to generate and 
unambiguous. Another advantage is that lost acknowledgements do not necessarily force 
retransmission. A disadvantage however is that the sender does not receive information about 
all successful transmissions. 

3.1.4 Timeout and Retransmission 
Like other reliable protocols, TCP expects the destination to send acknowledgements 
whenever it successfully receives new octets from the data stream. Every time it sends a 
packet, TCP starts a timer and waits for an acknowledgement. If the timer expires before data 
in the packet was acknowledged, TCP assumes that the packet was lost or corrupted and 
retransmits it. 
TCP however, is intended for use in an internet environment. In an internet, a packet traveling 
between a pair of machines may traverse a single, low-delay network, or it may travel across 
multiple intermediate high-delay links. Furthermore, the total delay between the origin and 
destination of data, depends on network traffic on intermediate links, and can therefore vary 
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over time. Thus it is impossible to choose a timeout value a priori that will suit each situation 
optimal. To solve this problem, TCP does not use a fixed timeout value but measures the 
round trip time of data and updates its timeout value accordingly. 

3.1.5 Window Size and Flow Control 
TCP allows the size of the sliding window to vary over time. Each acknowledgement contains 
a window advertisement that specifies how much data the recipient is prepared to accept. This 
can be seen as specifying the receiver’s current buffer size. In response to an increased 
window advertisement the sender increases the size of its sliding window and in response to a 
decreased window advertisement it does the opposite. 
The advantage of a variable window size is that it provides flow control. Through these 
window advertisements the receiver can control the rate at which the sender transmits data. 
Having a mechanism for flow control is essential in an internet environment, where machines 
of various speeds and sizes communicate through networks and routers of various speeds and 
capacities. There are really two independent flow problems. First, internet protocols need end-
to-end flow control between the sender and the ultimate receiver. Window advertisements 
provide this kind of flow control. Second, internet protocols need intermediate flow control to 
handle congestion on intermediate networks. 

3.1.6 Response to Congestion 
Congestion is a condition of severe delay caused by an overload of packets at an intermediate 
switching point (e.g., a router). When congestion occurs, delays increase and the router starts 
to queue packets until it can route them. Of course each queued packet is stored in memory 
and a router has only finite memory. In the worst case, the total number of packets arriving at 
the congested router grows until the router reaches capacity and starts to drop packets. 
Endpoints do not usually know if, where and how congestion occurred. Senders only 
experience timeouts for the packets that were dropped by the router. Under normal 
circumstances TCP would simply retransmit the packet, thereby increasing traffic. This 
aggravates congestion instead of alleviating it. 
To avoid congestion, the TCP standard recommends using two techniques known as slow-
start (with congestion avoidance) and multiplicative decrease. To control congestion TCP 
maintains a second limit to the window size (besides the advertised window). This limit is 
called the congestion window limit. The allowed window size of the sender is then at all times 
the minimum of both limits. 
Multiplicative decrease reduces the congestion window limit by half, upon every loss of a 
packet. So multiplicative decrease can be seen as the mechanism that slows TCP down in case 
of congestion. When TCP no longer experiences congestion on its path, it uses slow-start 
(additive) recovery. Slow start begins with a congestion window limit of one and increases it 
for every acknowledgement it receives. Once the congestion window limit reaches one half of 
its original size before the congestion, congestion avoidance takes over. During congestion 
avoidance, it increases the congestion window only if all packets in the window have been 
acknowledged. 

3.2 Problems of TCP 
In this chapter some characteristics of TCP will be discussed that make it less suitable for 
wireless links. 
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3.2.1 Large headers 
TCP was intended to be a highly deployable transport protocol. It has a lot of features and 
options, some of them rarely used, which make it suitable for operation on a wide range of 
(inter)networks. When TCP became popular, an increasing number of changes and additional 
options were proposed. Some of these options are widely used today. To accommodate the 
most basic features, TCP has a header size of 40 bytes. This is a fixed size, which means that 
even though not all header fields will be used, the header size will still be 40 bytes. When 
widely used options are activated the size can grow to 80 bytes. 
This means that for every packet, there are 40 to 80 bytes overhead. An acknowledgement 
adds another 40 to 80 bytes to the overhead. This means that for packets with a 1000 byte 
payload, TCP has a data overhead of about 8% (without retransmissions). As can be seen, 
there is lots of room for optimization here. 

3.2.2 Simple acknowledgement scheme 
The acknowledgement scheme employed by TCP is fairly simple and does not allow an 
efficient retransmission scheme. Even though some optimizations have been proposed, TCP’s 
standard scheme always remained unchanged, so no incompatibilities were introduced. 
Standard TCP can only generate positive cumulative acknowledgements. This means that 
when the end station receives an out-of-order packet (due to packet reordering or packet loss) 
it is unable to send this information to the sender. Based on this incomplete information the 
sender can not know what the most energy-efficient retransmission scheme will be. A more 
advanced acknowledgement scheme will be easy to implement and will undoubtedly increase 
the energy efficiency. An example of what the receiver acknowledges and how that differs 
from the actual situation is given next. 
 

Example 3.1. Consider the following receiver state and the sender’s view of it, 
both listed in Figure 3.2.  
 

1 2 3 4 5 6 7 8 9 10 11 

1 2 3 4 5 6 7 8 9 10 11 

sender’s view of receiver state 

receiver state 

 

 

received packet 

unreceived packet  
 

Figure 3.2: Example based on the acknowledgement scheme of standard TCP. 
 
Assume the sender has sent a total of 9 packets. As can be seen the receiver has 
received all packets up to and including packet 5. Packet 6 and 7 were lost 
however, after which the receiver received packet 8 and 9. Upon reception of both 
packets, the receiver has to send an acknowledgement. Because of the positive 



 L. Donckers 
 

 15 
 

cumulative acknowledgement scheme, the receiver sends acknowledgements for 
packet 5. 
Because the sender receives multiple acknowledgements for packet 5, it knows 
something went wrong. It can safely assume packet 6 was lost but nothing more. It 
now has two options, both of which are potentially inefficient. It can either send 
one packet (number 6) or all packets (numbers 6 up to and including 9). 
If it would retransmit all packets, two packets would be sent too much. However, 
if the sender follows the standard and retransmits only packet 6, it must wait for 
the acknowledgement before it can decide what and how much to send next. Thus, 
it reverts to a simple protocol and may lose the advantage of having a large 
window. 

 

3.2.3 Loss is considered congestion 
TCP was designed with highly reliable links in mind. When it encounters packet loss it 
interprets this as congestion. In a (highly reliable) wired network this is a valid choice because 
in such setups congestion is the major source of packet loss. On wireless links however, the 
higher bit error rates cause much more packet loss (due to errors) than generally encountered 
on wired links. Interpreting all packet loss as congestion is not a realistic solution on wireless 
links, because from an energy efficiency point of view the ideal response to congestion differs 
from that to (burst) errors. Using an optimized window size management scheme, which also 
considers (burst) errors as the cause of lost packets will probably yield an increase in energy 
efficiency. 

3.2.4 Complete reliability 
Complete reliability may not seem a problem, but there are situations in which TCP’s 
complete reliability is undesirable. When receiving streaming audio (or video) with TCP, the 
protocol will rerequest all lost data. These rerequests will make sure the application (e.g. a 
media player) will receive all data. The extra latency introduced, will probably make the 
playback stall for a time and then fast-forward to the part where it was supposed to be by then. 
So rerequesting lost data has little use in such situations because the data will arrive too late. 
Since streaming media can usually be enhanced to cope with reasonable amounts of data loss, 
it would be better not to send rerequests for lost data (up to a reasonable level) in that case. 
Note that UDP (user datagram protocol) could be considered as a replacement for TCP in 
such cases. Just like TCP, UDP is a protocol that works on top of the IP protocol. Unlike 
TCP, it is connection-less and offers no reliability at all. Basically UDP offers too little 
features and too low reliability to be a real improvement over TCP. Using UDP shifts the 
problem to the application, because when using UDP, the application is responsible for 
connection setup/termination and the creation/handling of acknowledgements. 

3.3 Possible solutions 
In this chapter possible solutions to the energy efficiency problems of TCP will be discussed. 
Some of these solutions are mere concepts while others are extensions to existing protocols or 
even complete new protocols. All of these protocols try to optimize TCP (for wireless 
networks) in one way or another. Unfortunately most of them try to optimize the performance 
of TCP instead of the energy efficiency. Energy efficiency, however, depends only on byte- 
and time overhead. These two metrics are also often used to measure the performance of TCP, 
so there is a large overlap. 
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3.3.1 Header compression 
To address the data overhead of TCP several proposals have been voiced to compress the 
headers of TCP. This was often done with low-bandwidth serial (wireless) links in mind. 
TCP/IP header compression was first standardized with RFC 1144 [JAC90] (and later with 
RFC 2507 [DEG99], RFC 2508 [CAS99] and RFC 2509 [ENG99]). The scheme only works 
on single hop links (i.e.: there are no intermediate hosts) and needs to be supported by both 
end points. Although it only works on single hop links, this only applies to the compression of 
the TCP connection. The actual connection can still travel a path with many intermediate 
hops. The compression is transparent to other hosts except for the two end points of the single 
hop link on which the compression takes place. 
In [JAC90] the standard TCP/IP header fields were analyzed and for each field the way the 
values change during a TCP/IP connection were examined. Four different types of changes 
are defined and for each type a (new) representation method is chosen. For instance large 
integers, which only change slightly with each packet are represented by a small integer, 
which only represents the change from the last packet. This type of change is known as a 
delta change and the new representation is called a delta value accordingly. Almost all header 
fields are made optional and are only included if a certain flag in the compressed header is set. 
One interesting optimization is the replacement of the IP addresses and port fields with a 
connection identifier. Each TCP/IP headers stores the IP address and the port of both the 
sender and the receiver. Combined, these fields require 12 bytes of the header. Since these 
fields do not change during a connection, a connection identifier gets assigned to the 
connection during the connection establishment. From then on the compressed headers in the 
connection only carry the 1-byte connection identifier. 
A typical compressed header size is 3 bytes with the proposed scheme instead of 40 bytes. Of 
course this is a great improvement. In order to reach it however, the protocol has become less 
robust. Because the connection identifier is not always included and the two most used 
options are replaced by delta values, a lost packet can cause all subsequent packets to be 
misinterpreted. Naturally, checks are proposed to remedy this, but the necessary error 
recovery scheme can still cause normal valid packets to be discarded. This extra overhead will 
probably cause severe performance penalties on wireless links because of the high packet loss 
generally encountered. A less extreme compression method will almost certainly attain less 
data overhead than this scheme in case of high packet loss. This is shown in the next example. 
 

Example 3.2: Consider a transmission of 25000 bytes with packets that have a 
1000 byte payload. Upon transmission one of the necessary 25 packets will be 
lost. Three versions of TCP will be compared. The first version is standard TCP 
with 40 byte headers and acknowledgements. The second is TCP with a robust 
form of header compression, which has 8 byte headers and acknowledgements. 
The final version is TCP with the described header compression. This version has 
3 byte headers and acknowledgements but the loss of the packet will cause the 
next two packets to be misinterpreted and retransmitted. The amounts of 
transmitted bytes then are: 
 
26 * 1040 + 25 * 40 = 28040 bytes for normal TCP 
26 * 1008 + 25 * 8 = 26408 bytes for TCP with robust header compression 
28 * 1003 + 25 * 3 = 28159 bytes for TCP with described header compression 
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As can be seen, the described header compression would have a higher data 
overhead than normal TCP in this situation. A more robust header compression 
method would perform best however. 

 

3.3.2 Selective acknowledgements 
The selective acknowledgement scheme is an extension to the TCP protocol that addresses 
some of TCP’s problems by enhancing the acknowledgement scheme. It was standardized in 
RFC 2018 [MAT96] but a SACK (as selective acknowledgements are called) scheme was 
already mentioned in RFC 1072 [JAC88]. (An extension to RFC 2018 was published under 
RFC number 2883 [FLO00].) Both end points of the TCP connection need to support the 
SACK option in order to be effective. 
The SACK scheme adds extra information to acknowledgements about the receiver’s state 
each time TCP’s standard positive cumulative acknowledgement scheme is lacking. This 
happens when there are ‘gaps’ in the data the destination host has received. Standard TCP 
would acknowledge all data up to the first gap but TCP with SACK can effectively bridge a 
gap by sending an extra SACK block. By sending more information in acknowledgements the 
sender is better able to react to the actual state of the link and the receiver. The difference in 
supplied information to the sender is shown in the next figure. 
 

Example 3.3. Consider the same situation as in Example 3.1. However, this time 
there is also a SACK enabled receiver. The receiver state and both the senders’ 
view of it are represented in the next figure. 
 

1 2 3 4 5 6 7 8 9 10 11 

1 2 3 4 5 6 7 8 9 10 11 

sender’s view of receiver’s state (standard TCP) 

receiver state 

 

 

received packet 

unreceived packet  

1 2 3 4 5 6 7 8 9 10 11 

sender’s view of receiver’s state (SACK enabled TCP) 

 
Figure 3.3: Example based on the acknowledgement scheme of standard TCP and 

SACK enabled TCP. 
 
Remember that the standard TCP sender had to choose between two potentially 
inefficient courses of actions. The SACK enabled sender, however, knows what 
packets were lost and can simply retransmit those. This is always the most 
efficient method.  
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The SACK scheme can include any number of SACK blocks up to a maximum of four. This 
is because there is a limit on the size of TCP headers. All TCP options (including SACK 
blocks) are included in a special TCP header field called TCP options. The more options a 
TCP implementation uses the less space there is left for SACK blocks. In general TCP 
implementations that include SACK support, there is enough space left for three SACK 
blocks. 
Even though its headers are larger, a TCP implementation with SACK support generally has 
less data- and time overhead than a comparable implementation without SACK support, 
because it can handle retransmits more efficiently. Because of the less data- and time 
overhead SACK also performs better (in terms of throughput) than other protocols as was 
shown in [FAL96]. 

3.3.3 Delayed acknowledgements 
In principle a TCP receiver should acknowledge each packet that it receives. So each packet 
that reaches its destination immediately triggers a 40 byte acknowledgement (sometimes it 
can be piggybacked on normal packets bound for the other host however). This can of course 
be considered as a waste of bandwidth. To remedy this the TCP standard allows for a receiver 
to delay the sending of an acknowledgement for a period of time (with a maximum of 500 
milliseconds) [COM95]. In this way multiple acknowledgements can be combined and/or the 
acknowledgement(s) can be piggybacked on a normal data packet. 
This of course reduces data overhead. Unfortunately there are also a few drawbacks. The first 
disadvantage is that the importance of an acknowledgement increases. That is, if such an 
acknowledgement is lost more information on the state of the receiver is lost than would be 
the case with a undelayed acknowledgement. Because more information is lost, the 
consequences can be more severe, possibly increasing data- and time overhead. The second 
drawback is that time overhead will probably increase because the receiver will not 
immediately send an acknowledgement but will wait for a period of time before doing so. 
This will cause the sender’s window to be built up more slowly. 
Because TCP relies on acknowledgements to accurately estimate the round trip time, the 
sender is not allowed to combine too much acknowledgements. For every second data packet 
an acknowledgement should be sent, further reducing the decrease in data overhead. 
Below are listed two graphs that show the energy overhead for Tahoe (a version of TCP) with 
and without delayed acknowledgements. For more information on the used test method and 
why only these graphs suffice to compare the performance, see Chapter 5 and especially 
Paragraphs 5.1, 5.2, 5.3 and 5.6.1. In these paragraphs, everything needed to understand these 
graphs will be explained. At this time, the graphs could use some explanation. While the left 
axis speaks for itself the lower axis might be unintelligible. It roughly resembles the quality of 
the channel. The left side of the axis resembles a high quality channel (little errors) while the 
right side of the axis resembles a low quality channel (lots of errors). Above the graphs a 
scenario is mentioned. The scenario indicates the error model used. Scenario A uses fixed 
length bad states (burst errors) while scenario B uses variable length bad states. 
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Figure 3.4: Energy overhead of delayed 

acknowledgements in scenario A. 

Energy overhead in scenario B
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Figure 3.5: Energy overhead of delayed 

acknowledgements in scenario B. 
 
In both graphs it is quite clear that the use of delayed acknowledgements increases the energy 
overhead of a protocol and thus decreases its energy efficiency. From an energy efficiency 
standpoint, delayed acknowledgements should be avoided. 

3.3.4 Explicit congestion notification 
TCP’s flow control mechanisms rely on packet drops to detect congestion. When this happens 
TCP is already late in reacting because the congestion already occurred. It would be better if 
TCP could be notified when it is about to cause congestion so that it can react before packets 
are lost. Lost packets should be avoided because they will have to be retransmitted, increasing 
data (and time) overhead. 
To improve TCP, an explicit congestion notification (ECN) system was proposed in RFC 
2481 [RAM99]. In the proposed configuration both routers and end points should be ECN 
capable. When a router predicts that congestion will occur, it marks packets by setting a 
special ECN field in TCP packets. The receiver of the packet can then take appropriate 
measures to make sure the transmission rate of the connection will be reduced. In such a way 
congestion can often be avoided. 
Although this scheme can decrease data- and time overhead (because less retransmits should 
be necessary) it is also possible it increases time overhead. When a TCP connection is 
incorrectly told to decrease its transmission rate for instance. Overall this scheme can 
decrease energy efficiency but is only suited for multi-hop paths. E2TCP will be used on a 
single-hop path. Thus it will not experience congestion on intermediate nodes, which is the 
reason there is no need to make use of explicit congestion notification in E2TCP. 

3.3.5 Forward error correction 
Forward error correction (FEC) is often mentioned or proposed when the performance of 
(multimedia) streams over (wireless) links is found to be lacking. FEC protects data by adding 
a little bit of redundancy to each data unit. When errors occur on the wireless link and the data 
unit has errors in it, the FEC scheme can correct those errors (up to a certain amount). When 
the amount of FEC is increased the protected data can withstand more errors. On the other 
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hand the processing power increases as well as the total size of the data that needs to be 
transmitted. This of course also results in increased transmission times. 
ARQ schemes provide exactly as much error correction as is needed, because they only kick 
in when errors actually occur. The amount of error correction used in FEC schemes however, 
does not directly depend on the amount of errors that occurred. It in stead depends on the 
amount of expected errors and so the amount of FEC is decided upon in advance. 
Unfortunately predicting the future is still impossible, even for FEC schemes. So most of the 
time FEC schemes will either offer too much protection or too little. When too much 
protection is offered, too much data has been sent which means data- and time overhead could 
have been reduced. When too little protection was offered, the receiver could not correct the 
errors in the packet and the packet should be transmitted again. This is of course also the case 
when using an ARQ scheme but with the FEC scheme the packets are larger because of the 
added protection. So ARQ schemes can be said to be more energy efficient than FEC schemes 
[HAV99]. 
Furthermore using FEC in the transport layer is only possible when the lower layers also hand 
packets with errors to the transport layer. Because no assumptions were to be made about the 
lower layers FEC can not be used in E2TCP. 

3.3.6 I-TCP 
Indirect TCP [BAK95] is a solution specifically designed to be used with wireless 
connections. It was one of the first proposals to use split connections. The connections are 
named so because connections between the mobile host and fixed hosts are split up in two 
separate connections at the base station: one regular TCP connection between the base station 
and the fixed host and another connection between the mobile host and the base station. This 
last connection is a single-hop connection over a wireless link and there is no need to use 
standard TCP. Rather a more optimized wireless-link protocol can be used which solves some 
of TCP’s problems on wireless links. Another advantage of split connections is that it 
effectively separates the flow and congestion control at the base station. This way flow and 
congestion control on each sublink can be optimized separately from the other. 
Indirect TCP largely refrains from changing the protocol on the wireless link and solely 
focuses on the split connection principle. Still this proposal is able to obtain impressive results 
[BAK97] and the split connection principle is very well suited for wireless access to a TCP/IP 
network. 

3.3.7 Protocols inspired by I-TCP 
The obvious advantages of the split connections approach inspired some other protocols. 
These protocols all use a (lightly) optimized version of TCP on the wireless links to further 
improve performance over I-TCP. 
The Berkeley Snoop Module [BAL95] is another proposal to tackle the performance problems 
of TCP on wireless links. Just like I-TCP it proposes a split connection setup but the Snoop 
Module is more active than the I-TCP setup. The Snoop Module caches packets and performs 
local retransmissions as soon as packet loss is detected. This further increases performance 
over I-TCP. 
The M-TCP protocol [BRO97] also performs instant local retransmissions, just like the Snoop 
Module. Furthermore it adds user data compression support to decrease the payload size and 
through special flow control mechanisms it allows the sender to resume sending after breaks 
(like handoffs) at full speed. 
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In [RAT98] another protocol for networks with wireless links is proposed: WTCP. It closely 
resembles I-TCP but stresses the importance of accurate round trip time sampling and is 
constructed accordingly. 

3.3.8 Delayed duplicate acknowledgements 
The delayed duplicate acknowledgement scheme [VAI99] tries to mimic the behavior of the 
Snoop protocol but does it TCP-unaware, unlike the Snoop Module, which is TCP-aware. A 
TCP-aware protocol needs to look in the TCP headers in order to take appropriate measures. 
It is possible however that the TCP headers are not readable by intermediate hosts (because of 
encryption). This scheme tries to behave in the same way as the Snoop Module without 
examining the TCP headers. Because this scheme has less information to base its decisions 
on, it performs slightly worse than the Snoop Module. On the other hand it can be used in 
more situations. 

3.3.9 Mobile-TCP 
The Mobile-TCP protocol as described in [HAA97] is one of the few protocols that try to 
optimize for energy efficiency. It also employs the split connection principle but drastically 
changes the protocol on the wireless link. An asymmetric protocol is proposed: the protocol 
stack running at the mobile host is kept as small and simple as possible and as much 
processing is offloaded to the base station. 
In order to save energy the protocol uses very small custom headers and makes use of the 
connection ID principle, known from header compression. The implementation at the mobile 
host also features as few timers as possible and the protocol does not use the sliding windows 
principle, allowing for smaller buffers. Furthermore, the protocol for instance, does not 
support flow control or resequencing. 
Overall this protocol sacrifices so much in order to save on processing power, it will 
undoubtedly spend more energy on retransmits than other (energy efficient) protocols. 
Because the relative power consumption of processors, compared to radios, keeps decreasing, 
it is not that interesting to focus on minimizing required processing power. Minimizing data- 
and time overhead seems a better way to increase energy efficiency. 

3.3.10 PRTP 
The partial reliable transport protocol (PRTP) [BRU00] was not specifically designed with 
wireless links in mind but with a type of traffic. The strict reliability guarantees of TCP make 
it less suited for many multimedia applications. Often when streaming media experiences 
small amounts of data loss, retransmission is actually undesirable. They cause the playback to 
stall and the retransmitted data will already have ‘expired’ upon arrival. Furthermore most 
streaming media can withstand small amounts of data loss without a noticeable loss in quality. 
For such connections the partial reliability transport protocol, which is compatible with TCP, 
offers a solution. 
It allows the application to set a lower limit on the reliability. When the overall reliability 
does not drop below the limit, the receiver will not ask for a retransmission. If the overall 
reliability of the connection is in danger, the receiver will ask for retransmissions in the 
standard TCP manner. This enables a PRTP receiver to correctly operate with a TCP sender. 
When the application can deal with data loss the reliability can be set to values as low as 90%. 
In [GAR00] it is shown that with an optimized JPEG coder, images can tolerate up to 10% 
data loss before the quality of the images becomes noticeably less. 
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In case of packet loss PRTP performs very well compared to other versions of TCP. Please 
note that this does mean that the PRTP receiver receives not all data. Because wireless links 
generally experience much packet drops, PRTP is extremely well suited for streaming media 
over wireless links. 

3.3.11 Optimized window management 
One might think that this concept does not deserve it’s own paragraph. However, the way in 
which TCP reacts to (burst) errors on wireless links leaves a lot to be desired. Every packet 
loss is considered to be caused by congestion. For each packet loss TCP will drastically 
reduce its transmission speed so experienced congestion will quickly be cleared. The 
assumption that each packet loss is caused by congestion is valid in wired networks. Because 
of the high reliability of such links, the largest portion of packet loss is indeed caused by 
congestion. However, on wireless links, the assumption is not valid. Because of the relatively 
low channel quality of wireless links, a lot of packets will be corrupted while in transit. For 
each of those errors TCP will also reduce its transmission speed. A huge loss in time overhead 
can therefor be reached by optimizing the window management scheme of a protocol for 
wireless links. 

3.3.12 Conclusions 
Some of the concepts and protocols presented in this chapter are not applicable when 
optimizing for energy efficiency. They either focus on ways to improve performance that do 
not increase energy efficiency or they optimize the power consumption of the wrong part of 
the system. The other concepts presented here will be used in order to design a energy-
efficient transport protocol and these include: 
• split connections 
• small headers 
• selective acknowledgements 
• partial reliability 
• optimized window management 
 



 L. Donckers 
 

 23 
 

4 E2TCP 
In this chapter, E2TCP will be described in detail. First an overview of the architecture of 
E2TCP will be given, where the reasons for and expectations of the changes to TCP will be 
discussed. After that, the header format will be explained in detail, followed by the selective 
acknowledgement scheme. Finally, the window management will be described, as well as the 
partial reliability mechanism. 

4.1 Architecture overview 
One of the primary goals of this project was to design a transport protocol that would be 
compatible with TCP. It was therefore only self-evident that TCP would serve as a basis for 
this new protocol. Because E2TCP is derived of TCP, its architecture and mechanisms are 
roughly the same. On four points, however, adjustments were made to increase the energy 
efficiency of the protocol. These points are the headers, the acknowledgements, the window 
management and the reliability requirements. All four changes will be introduced in the 
following paragraphs.  

4.1.1 Headers 
The large header size of TCP was first introduced as a problem in Paragraph 3.2.1. The 
unnecessarily large headers are the cause of equally-unnecessary data overhead. The custom 
headers of E2TCP are the result of a rather straightforward implementation of some of the 
ideas of header compression standards, presented in Paragraph 3.3.1. The main principle that 
was used was: if it is not necessary to transmit a certain header field, don’t do it. This 
principle is so self-evident; one could wonder why such a system was not incorporated in the 
TCP standard. 
All header fields of TCP/IP datagrams were analyzed whether they should be included in the 
headers of E2TCP at all, whether they should always be sent or whether they were to be made 
optional. Such an optional header field will then only be sent if it is necessary to do so. Care 
was taken to keep the headers robust because the problems of a non-robust compressed header 
system, explained in Example 3.2, have to be avoided. 
The header size is reduced from 40 bytes to 8 bytes (in most situations). When using 1000 
byte packets for instance, the data overhead introduced by the headers of E2TCP will be 1.6% 
as opposed to 8.0% for the headers of standard TCP. Because less data has to be transmitted, 
the time overhead will probably also decrease somewhat, although perhaps not as much as the 
data overhead. This will probably result in a decrease in energy overhead of about 5%. The 
details of the headers of E2TCP will be discussed in Paragraph 4.2. 

4.1.2 Acknowledgements 
The simple acknowledgement scheme of TCP, introduced as a problem in Paragraph 3.2.2, is 
another point of TCP that could be improved to increase energy efficiency. In case of missing 
packets the sender simply has not enough information about the state of the receiver. On those 
occasions, it is possible the sender not always decides on the optimal course of action. A 
solution to this problem is the use of selective acknowledgements, which were introduced in 
Paragraph 3.3.2. 
An E2TCP receiver is able to construct selective acknowledgements. It does this by adding 
one or more SACK blocks to an acknowledgement. The headers (also used as 
acknowledgements) of E2TCP allow a maximum of two SACK blocks to be sent. This enables 
the receiver to fully acknowledge a received stream with two sets of subsequent missing 
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packets. When the sender receives such an acknowledgement it is always able to choose the 
most energy efficient course of action. Because of the diminishing returns of adding more 
SACK blocks and the fact that SACK blocks increase the size of the acknowledgements, a 
maximum of two SACK blocks is used. 
Although SACK blocks increase data overhead because the acknowledgements increase in 
size when these blocks are used, the effect of selective acknowledgements on the energy 
efficiency will be positive. This is because the sender is able to react in an optimal way to lost 
packets, which slightly decreases data overhead (because of less retransmits) and reduces time 
overhead substantially (because of a better utilization of the available bandwidth). However, 
giving an exact estimate of the increase in energy efficiency is impossible. The 
implementation of selective acknowledgements in E2TCP will be explained in detail in 
Paragraph 4.3. 

4.1.3 Window management 
The problems of TCP on wireless links with respect to its window management were 
introduced in Paragraph 3.2.3. The assumption of TCP that each packet loss is an indication 
of congestion is valid on wired networks, but has little value on wireless links. This is because 
the inherent unreliability of wireless networks, which causes a substantial amount of packets 
to be lost because of errors on the link itself. So, the window management of TCP should be 
altered to include (burst) errors as a possible source of packet loss, as was indicated in 
Paragraph 3.3.11. 
The window management mechanism of E2TCP differs on four points from that of TCP. First 
of all, E2TCP features immediate retransmits. When the receiver indicates it has received an 
out-of-order packet, the sender can immediately retransmit the missing packets, because 
E2TCP will be used on a single-hop link and no packet reordering can take place on such a 
link. Under the same conditions TCP would wait on a timeout before it would retransmit the 
lost packet, causing substantial delays. This change will therefore primarily decrease the time 
overhead. 
The second change is that E2TCP reacts to (burst) errors in a different way. If few errors 
occur, E2TCP considers this to be the result of normal static and barely reduces its 
transmission speed. When lots of errors occur, E2TCP considers a burst error to be the cause 
and drastically reduces its transmission speed. This way, E2TCP reacts to (burst) errors in a 
very energy efficient way, as will be shown in Paragraph 5.6. It should be noted that this new 
window management scheme relies on selective acknowledgements to detect the number of 
errors. Both data and time overhead will decrease because of this change. 
E2TCP also features a minimum window size, which is the third point on which the window 
management of TCP and E2TCP differ. This minimum window size causes E2TCP to quickly 
recuperate after a burst error, which will decrease time overhead. 
The final change to the window management of TCP is the use of an extra timer. The timers 
used in E2TCP are similar to the transmission timer in TCP, only one is used for transmissions 
and one is used for retransmissions. An extra timer increases the responsiveness of the 
protocol to changes on the channel but also increases the complexity of the protocol. One 
extra timer is considered to be a good tradeoff. This change will also decrease time overhead. 
The four changes will undoubtedly cause a decrease in energy overhead but it is impossible to 
give an estimation of the size of that decrease. The details of the implementation of the 
window management scheme can be found in Paragraph 4.4. 
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4.1.4 Reliability requirements 
Because the strict reliability requirements of a TCP connection are not always desirable, as 
was shown in Paragraph 3.2.4, the concept of partial reliability was developed, which was 
introduced in Paragraph 3.3.10. When transmitting streaming media, energy can be saved if 
unwanted retransmits can be avoided. Partial reliability provides a way to do this, by enabling 
the application to set the minimum desired reliability of the channel. 
The implementation of partial reliability in E2TCP is rather straightforward. The receiver 
keeps track of how much data was successfully received and how much was lost. If it detects 
packet loss it will check if the actual reliability still exceeds the minimum desired reliability 
and if so, will simply acknowledge the lost packet. The sender will think it was received 
correctly and will refrain from retransmitting. 
This simple mechanism will be able to decrease the energy overhead. How much is uncertain 
but its effect will increase when channel conditions deteriorate. This is because the effect of 
stopping retransmits increases when more packets are lost. The details of the implementation 
will be discussed in Paragraph 4.4.6. 

4.2 Header format 
The headers of E2TCP packets will be explained in this paragraph. Because E2TCP needs to 
be compatible with TCP/IP, the headers of IP and TCP will be examined first. Based on that 
information, a decision can be made on what header fields should be included in E2TCP 
headers, which will be explained in Paragraph 4.2.3. 

4.2.1 IP header 
The Internet calls its basic transfer unit an (IP) datagram. Such a datagram is divided into a 
header (of 20 bytes) and a data area in the following way: 
 

header user data 

IP datagram  
Figure 4.1: An IP datagram. 

 
According to [DEG99], all fields in headers can be classified into one of the following four 
categories depending on how they are expected to change between consecutive headers in a 
packet stream. These four categories are: 
• Inferred: The field contains a value that can be inferred from other values, and thus need 

not be transmitted. 
• Nochange: The field is not expected to change during the packet stream. Such a value 

only has to be transmitted once. 
• Delta: The field may change often but usually the difference from the field in the 

previous header is small, so that is more efficient to send the deviation from the 
previous value rather than the current value. 

• Random: The field changes unpredictably and should therefore probably be sent in full. 
 
Now the general layout of a datagram and the classes of headers has been described, the 
header can be described in more detail. The following figure presents the IP (version 4) 
header format: 
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VERS HLEN SERVICE TYPE TOTAL LENGTH 

HEADER CHECKSUM  

IDENTIFICATION 

SOURCE IP ADDRESS 

DESTINATION IP ADDRESS 

TIME TO LIVE PROTOCOL 

FRAGMENT OFFSET FLAGS 

0 19 16 8 4 31 24 

 
Figure 4.2: The IP header format. 

 
The header fields of an IP datagram are: 
 

Field Type Description 
Protocol version 
(VERS) 

nochange This field contains the version of the IP protocol that 
was used to create the datagram and is of course not 
expected to change within a packet stream. On the 
wireless link, E2TCP will operate and it does not need 
to know which version of TCP is used on the wired 
part of the connection. Therefore this field can be 
omitted from the E2TCP header. 

Header length  
(HLEN) 

inferred This field contains the length of the header but this 
can be determined by other means as well, so there is 
no need to include it in the header of an E2TCP 
packet. 

Service type nochange With this field the sender can specify the type of 
transport desired. It is, however, often ignored by 
hosts and routers and is not expected to change. 
E2TCP does not support different types of services 
and it does not need to include this field in its 
headers. 

Total length inferred This field contains the length of the complete 
datagram but that will also be specified by any 
reasonable link-level protocol. It is unnecessary to 
include it in E2TCP headers. 

Identification random For each datagram a unique number is stored in this 
field. It is used to refragment split up datagrams. On a 
point-to-point link (where E2TCP will operate) no 
fragmentation will take place and each packet will be 
identified by its sequence number or 
acknowledgement number (TCP header fields). 

Flags random These flags control the fragmentation of the datagram 
and can be left out of the header. 

Fragment offset random This field is used in datagram refragmentation and 
does not need to be included in E2TCP headers. 
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Field Type Description 
Time to live nochange This field contains the maximum number of hops the 

datagram is allowed to take over the internet and is 
not expected to change. Because E2TCP operates on a 
single-hop link this field would serve no purpose. 

Protocol nochange This field indicates the next level protocol used in the 
data portion of the IP datagram. Because E2TCP only 
has one mode of operation this field can also be 
omitted. 

Header checksum random This is a checksum on the header only. In E2TCP a 
checksum will be used but like the checksum field of 
a TCP header it will protect the entire datagram and 
not just the header. 

Source IP address nochange This field stores the source address and will be 
included in E2TCP headers. 

Destination IP address nochange The destination address is contained in this field and 
will be included in an E2TCP header just like the 
source IP address. 

Table 4.1: The IP header fields. 
 
IP also allows some optional extra information to be sent in its headers. Timestamps and 
source routes are among them. As said these fields are optional and need not be supported by 
E2TCP. Furthermore the base station can still support most of them, so these options can be 
used on the wired path of the connection. 
Of all these header fields only three will be included (in one way or another) in the E2TCP 
header: the source- and destination IP address and the checksum. 

4.2.2 TCP header 
A TCP packet is encapsulated in an IP datagram and is divided into a header (of 20 bytes) and 
payload in a way similar to an IP datagram. 
 

IP header user data: TCP datagram 

IP datagram 

user data TCP header 

TCP datagram  
Figure 4.3: A TCP datagram within an IP datagram. 

 
A TCP header can be presented as follows: 
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DESTINATION PORT 

WINDOW  

CHECKSUM  

SEQUENCE NUMBER 

ACKNOWLEDGEMENT NUMBER 

HLEN RESERVED 

0 16 10 4 31 24 

SOURCE PORT 

CODE BITS 

URGENT POINTER 
 

Figure 4.4: The TCP header format. 
 
The fields of a TCP header are: 
 

Field Type Description 
Source port nochange The port number of the sender is stored in this 

field and should be included in E2TCP headers 
so it is compatible with TCP. 

Destination port nochange This field stores the port number of the 
receiving side and should also be included in an 
E2TCP header. 

Sequence number delta This field indicates what part of the data stream 
is included in this datagram. This field is 
required to interoperate with TCP. 

Acknowledgement number delta This field stores a number, which indicates 
what part of the data stream has already been 
received by the destination and should not be 
omitted from the headers of E2TCP. 

Header length 
(HLEN) 

random In this field the length of the TCP header is 
stored. It is unnecessary to include it in E2TCP 
headers. 

Code bits random This field contains 6 code bits. These are: 
• URG, which indicates whether the urgent 

pointer field is valid or not. 
• ACK, which indicates whether or not the 

acknowledgement field is valid. 
• PSH, indicates if this packet requests a 

push. 
• RST, indicates if the connection should be 

reset. 
• SYN, indicates if the sequence numbers 

should be synchronized. 
• FIN, indicates if the sender has reached 

the end of its byte stream. 
Window random The window field is used by the receiving side 

to exercise flow control over the sender. It will 
be included in E2TCP so flow and congestion 
control is possible. 
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Field Type Description 
Checksum random As indicated in the previous paragraph, a 

checksum will be included in the E2TCP 
headers, which will protect the entire E2TCP 
datagram. 

Urgent pointer random This field indicates which data in the packet is 
of a special urgent type, which deserves special 
treatment from the receiver. In order to 
interoperate with TCP, this field will be 
included in the headers. 

Table 4.2: The TCP header fields. 
 
TCP also allows some optional extra information to be sent in TCP headers. Timestamps and 
SACK blocks are among them. As said these fields are optional and need not be supported by 
E2TCP. Furthermore the base station can still support most of them, so these options can be 
used on the wired path of the connection. 
Of all these header fields the following will be used in E2TCP headers: source- and 
destination port numbers, sequence and acknowledgement numbers, window, urgent pointer 
and, as already said, the checksum. 

4.2.3 E2TCP header 
To get an overview of the fields that were chosen to be included in the headers of E2TCP, they 
will be listed again with their type and size. 
 

Field Type Size (in bytes) 
Source IP address nochange 4 
Destination IP address nochange 4 
Source port number nochange 2 
Destination port number nochange 2 
Sequence number delta 4 
Acknowledgement number delta 4 
Window random 2 
Urgent pointer random 2 
Checksum random 2 

Table 4.3: The E2TCP header fields. 
 
But that is not all information that should be included in an E2TCP header. Some flags to use 
for connection startup and termination (like the SYN and FIN code bits in TCP headers) are 
also required. Furthermore E2TCP will have selective acknowledgement support so some 
SACK blocks should be included as well. 
Because the source- and destination IP addresses and ports require 12 bytes of storage and 
will not change during a connection, they will only be sent the first time. In the E2TCP 
headers a connection identifier field will also be included. During connection startup a 
connection identifier will be chosen, which –from then on– will only be used for that 
combination of source- and destination IP addresses and ports until the connection is 
terminated. This type of header compression is also used in various standards as was seen in 
Paragraph 3.3.1. 
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In the code bits field in a TCP header two bits are included that indicate whether or not the 
urgent pointer and acknowledgement fields are valid. One could wonder why they are still 
included in the TCP headers when they are not valid: if the code bits indicate they are not 
valid there is no reason to include the fields in the headers at all. To optimize the E2TCP 
headers, fields that will not always be included will have a bit in the header indicating 
whether or not they are included. When they are included the receiver should conclude they 
are also valid. 
An actual E2TCP header will then look like this: 
 

1 

7 

FLAGS 

EXTRA FLAGS 

SENDER IP ADDRESS 

CONNECTION IDENTIFIER 

SENDER PORT NUMBER 

RECEIVER PORT NUMBER 

SEQUENCE NUMBER 

URGENT POINTER 

ACKNOWLEDGEMENT NUMBER 

FIRST SACK BLOCK  

SECOND SACK BLOCK  

RECEIVER IP ADDRESS 

WINDOW SIZE  

CHECKSUM  

1 

1 

4 

4 

2 

2 

4 

2 

4 

4 

4 

2 

2 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

0 

next to each field its size (in bytes) is listed 
a * indicates the field is optional 

 
Figure 4.5: The E2TCP header format. 

 
The fields mentioned in the figure will now be explained in detail. 

4.2.3.1 Flags 
This field contains certain status bits that indicate how to interpret the rest of the header. Its 
size is one byte and it is not optional. This means every E2TCP packet will feature this header 
field. The field looks like this: 
 

R E F S U A W 

0 1 2 3 4 5 6 7 

 
Figure 4.6: The flags field format. 

 
The bit fields are: 
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Bit field Size (in bits) Description 
Reserved 1 This bit field is reserved for future 

extensions/versions of E2TCP. For now it 
should always be ‘0’. 

Extra flags included 1 This bit field indicates whether or not the 
extra flag field is included in the header. 

Full addresses included 1 If this field is set, the full addresses of both 
the sender and the receiver are included. This 
means the source- and destination IP address 
and port fields are included in the header. 

Sequence number included 1 This bit field indicates whether the sequence 
number field is included in the header or not. 

Urgent pointer included 1 This field is used to indicate if the urgent 
pointer field in included. 

Acknowledgement type 2 This field indicates what kind of 
acknowledgement is included in the header. 
• ‘00’ means there are no 

acknowledgement fields included. 
• ‘01’ means only the acknowledgement 

number field is included. 
• ‘10’ means that beside the 

acknowledgement number field, also 
the first SACK block is included 

• ‘11’ means that all acknowledgement 
fields are included (the 
acknowledgement number and both 
SACK blocks). 

Window included 1 This bit field indicates whether or not the 
window field is included. 

Table 4.4: The bit fields of the flags field. 
 

4.2.3.2 Extra flags 
This field contains extra status bits that are needed on certain occasions. Its size is one byte 
and it is optional. The field looks like this: 
 

SYN RESERVED FIN 

0 1 2 3 4 5 6 7 

 
Figure 4.7: The extra flags field format. 

 
The bit fields of the extra flag field are: 
 

Bit field Size (in bits) Description 
Reserved 6 This bit field is reserved for future extensions/versions of 

E2TCP. For now it should always be ‘000000’. 
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Bit field Size (in bits) Description 
SYN 1 This bit field is used to indicate that the sequence numbers 

should be synchronized. This is used on connection setup. 
FIN 1 This bit field is used to indicate that the sender has reached the 

end of its data stream. It is used to terminate connections. 

Table 4.5: The bit fields of the extra flags field. 
 

4.2.3.3 Connection identifier 
This field is used to store the connection identifier of the packet. Its size is one byte and it is 
not optional. The 1-byte size means that a mobile host running E2TCP to connect to a base 
station (and the internet) has a maximum of 256 simultaneous connections. This should be 
more than enough, even for heavy use of the Internet. 

4.2.3.4 Sender IP address 
In this field the IP address of the sender is stored. Its size is four bytes and it is optional. This 
field should only be sent until a connection identifier has been agreed upon. 

4.2.3.5 Receiver IP address 
In this field the IP address of the receiver is stored. Its size is four bytes and it is optional. 
This field should only be sent until a connection identifier has been agreed upon. 

4.2.3.6 Sender port number 
This field is used to store the port number of the sender. Its size is two bytes and it is optional. 
This field should only be sent until a connection identifier has been agreed upon. 

4.2.3.7 Receiver port number 
This field is used to store the port number of the receiver. Its size is two bytes and it is 
optional. This field should only be sent until a connection identifier has been agreed upon. 

4.2.3.8 Sequence number 
In this field the sequence number of the last byte in the packet is stored. Its size is four bytes 
because complete sequence numbers are stored. Even though the type of the corresponding 
TCP header field was delta, E2TCP will always transmit complete sequence numbers and not 
the difference with the last packet. Upon data loss a scheme which, only transmits the 
difference, can lose multiple packets because the correct decoding of each packet depends on 
the correct decoding of the previous packet. On wireless links with a high number of errors, 
such a scheme is unacceptable. The sequence number field is optional and is only used when 
the sender transmits data to the receiver. The following example shows which sequence 
number is stored: 
 

Example 4.1: Consider an E2TCP packet, which payload consists of bytes 5, 6, 7 
and 8 of the data stream. The sequence number field would then be used to store 
the number eight. 

 
Please note that this differs slightly from the TCP sequence number field. Care must be taken 
that the base station converts the values. 
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4.2.3.9 Urgent pointer 
This field is used to indicate urgent data is included in the packet. It is two bytes large and 
optional. When the urgent pointer included bit is set, a stream of urgent data is included in the 
payload of the packet. The urgent pointer indicates the end of the urgent data stream. 

4.2.3.10 Acknowledgement number 
This field is used to acknowledge data by the receiver. Its size is four bytes because sequence 
numbers are used to indicate what has been received and what not. For the same reason the 
full sequence number is stored in the sequence number field, it is done here as well. This field 
is also optional and will only be sent when the receiver needs to acknowledge data to the 
sender. For more information on how acknowledgement numbers are chosen, see Paragraph 
4.3. 

4.2.3.11 First SACK block 
This field is used to store the first SACK block and is optional. It will only be used in certain 
cases where the receiver wants to acknowledge data to the sender. Its size is four bytes. For 
more information on SACK blocks, see Paragraph 4.3. 

4.2.3.12 Second SACK block 
This field is used to store the second SACK block is used in the same way as the first SACK 
block. 

4.2.3.13 Window size 
This field is used to store the limit on the window size the receiver sets for the sender. Its size 
is two bytes because TCP uses 16 bit unsigned integers to store the window size. The field is 
optional. 

4.2.3.14 Checksum 
In this field the checksum of the complete E2TCP packet is stored. Its size is two bytes 
because the same checksum algorithm as in TCP is used. This field is not optional and should 
be transmitted with each packet to protect it. 

4.2.4 E2TCP header sizes 
Because almost all fields in the E2TCP headers are optional and only need to be transmitted 
when they are required, E2TCP headers are usually quite small. A normal data packet will 
have a header of 8 bytes versus a 40 byte TCP header. Especially with small payloads the 
overhead will be reduced dramatically. Normal acknowledgements will have a size between 8 
and 16 bytes depending on how many SACK blocks are used. TCP acknowledgements have a 
size of 40, 50 or 60 bytes (with none, one and two SACK blocks respectively) up to a 
maximum of 80 bytes if more options are used. 

4.3 Selective acknowledgements 
E2TCP not only supports selective acknowledgements but also relies on them to effectively 
increase its energy efficiency. Because E2TCP will work on a single-hop link and performs 
local retransmissions, it will know, when a packet is received out of order, that the 
intermediate packets were lost. It is able to do so, because no packet reordering can take place 
on a single-hop link. Upon noticing out of order packets, the receiver will indicate to the 
sender (with selective acknowledgements), that it has not received the intermediate packets. 
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Upon reception of an acknowledgement with SACK blocks the sender can immediately 
retransmit the lost packets and does not have to wait on timeouts or duplicate 
acknowledgements. This will reduce the time overhead of E2TCP without increasing the data 
overhead. 
When the destination host receives a packet it should always send an acknowledgement and 
acknowledge as much data as possible. Because E2TCP depends on selective 
acknowledgements the receiver is always required to send as much SACK blocks as possible. 
The acknowledgement number field should contain the number of the last byte in the 
contiguous received prefix of the stream. The following example shows this: 
 

Example 4.2: Consider the following receiver state. 
 

1 2 3 4 5 6 7 8 9 10 11 

receiver state 

 

 

received packet 

unreceived packet  
 

Figure 4.8: Example of a receiver state. 
 
Because the receiver must acknowledge as much data as possible, it should 
acknowledge all packets up to and including packet 5. It is not allowed to only 
indicate it has received all packets up to and including packet 4, even though, 
strictly speaking, that would also be true. 

 
This is slightly different from the acknowledgement number field in TCP and the base station 
should take care in converting the values. 
The SACK blocks resemble their TCP counterparts even less. This is because the TCP 
variants are unnecessarily large. Their size is ten bytes for each SACK block. Two full 
sequence numbers of four bytes each that indicate the beginning and ending of the block and a 
two byte option field. E2TCP does things differently. Because the SACK block will always 
fall within the maximum possible window size (because no more has been transmitted) the 
difference in sequence numbers between the acknowledgement numbers and the beginning 
and ending of the SACK blocks is always representable by a 16 bit number. So E2TCP only 
requires two two byte numbers for each SACK block. 
A SACK block is constructed in the following way: 
 

2 

7 

BEGIN 

END 2 

0 

next to each field its size (in bytes) is listed 
 

Figure 4.9: The SACK block field format. 
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The first number indicates the starting position of the SACK block. It is measured as the 
difference between the sequence number of the first postion of the SACK block and the 
second sequence number after the previously highest acknowledged sequence number in this 
packet (either by the acknowledgement number or the previous SACK block). The second 
number indicates the ending position of the SACK block and is measured as the difference 
between the sequence number of the end and the sequence number of the beginning of the 
block. The following example shows this: 
 

Example 4.3: Consider the following receiver state. 
 

1 2 3 4 5 6 7 8 9 10 11 

receiver state 

 

 

received byte 

unreceived byte 

12 

 
Figure 4.10: An example of a receiver state. 

 
As has been shown, the acknowledgement number would be 5. The first SACK 
block should acknowledge bytes 8 and 9. The begin field of the first SACK block 
would be: 8 – 5 – 2 = 1 and the end field would be: 9 – 8 = 1. The second SACK 
block should acknowledge byte 11. The begin field of the second SACK block 
would then be: 11 – 9 – 2 = 0 and the end field would be: 11 – 11 = 0. 

 

4.4 Window management 
E2TCP features a window management scheme that is optimized for energy efficiency on 
wireless single-hop links. First the congestion and flow control mechanisms will be explained, 
followed by how E2TCP transmits and retransmits packets. After that will be shown how 
acknowledgements influence the window size and finally the round trip time estimation will 
be discussed. 

4.4.1 Congestion and flow control 
As told in the chapter on TCP, congestion can occur on the intermediate hosts (simply called 
congestion problems) and at the endpoints of the connection (called flow problems). Because 
E2TCP operates on a single-hop link there is no real distinction between congestion and flow 
control. 
Flow control is provided by the window field in the E2TCP header. If the receiver includes 
this field in one of its acknowledgements the maximum window size of the sender will be set 
to the included value. The maximum size will remain so until the receiver specifies otherwise. 
This will help reduce data overhead because only when changes occur, the new value will be 
sent. When a connection is setup the maximum window size will be set to its default value. 
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4.4.2 Transmission 
E2TCP will transmit as much as the current window size allows. With each transmission it 
will set the transmission timer to a value slightly higher than the round trip estimate to 
compensate for small variations in the actual round trip time. When not all packets are 
acknowledged before the timer expires, all sent unacknowledged non-retransmitted data 
within the current window will be transmitted again. All sent unacknowledged non-
retransmitted data out of the current window is marked to be transmitted again as soon as the 
window allows for it. After a transmission timeout the window size will be set to a fixed small 
value. Transmitted packets will be transmitted again after a transmission timeout or will be 
retransmitted after packet loss (there is a subtle difference). If all transmitted packets are 
acknowledged and the transmission timer is still active, it is canceled. 

4.4.3 Retransmission 
When E2TCP detects packet loss it will immediately retransmit those lost packets. As said in 
Paragraph 4.1.3, E2TCP also features a retransmission timer. With each retransmitted packet 
the retransmission timer will be set in the same way the transmission timer is set. This is 
different from TCP because normal TCP implementations have only one transmission timer. 
By adding one timer so regular transmissions and retransmissions each have their own timer, 
the retransmission scheme can be made more energy efficient. This is because with a total of 
two timers, the time it takes before one of them expires is bound to be lower than with only 
one timer. Thus burst errors will be noticed sooner and E2TCP will be more responsive to 
variations in the quality of the channel, which reduces time overhead. The following example 
will show this. 
 

Example 4.4: Consider the following situation. Both a TCP and a E2TCP sender 
will retransmit a packet at time 1 and transmit a new packet at time 5. The timers 
will be set to expire in 6 time units. 
At time 1, a TCP sender will set its timer to 7 and reset it to 11 when it transmits 
the packet at time 5. So no sooner than time 11, it is able to detect both packet 
losses. 
An E2TCP sender, however, will set its retransmission timer to 7 at time 1 and its 
transmission timer to 11 at time 5. At time 7 it is already able to detect the loss of 
a packet. 

 
When not all retransmitted packets are acknowledged before the retransmission timer expires, 
all unacknowledged already retransmitted packets within the current window will be 
retransmitted again. All unacknowledged already retransmitted packet out of the current 
window are marked for future retransmission and will be sent as soon as the window allows 
for it. After a retransmission timeout the window size will be set to a small fixed value. If all 
retransmitted packets are acknowledged and the retransmission timer is still active, it is 
canceled. 

4.4.4 Acknowledgements and window size 
TCP always considers packet loss to be the result of congestion. This is one of the reasons 
TCP is not energy efficient on wireless links, as was shown in Paragraph 3.2.3.  E2TCP also 
considers single and burst errors on the wireless channel to be the cause of lost packets. 
Upon reception of an acknowledgement a scoreboard, which keeps track of acknowledged 
data, is updated to reflect the changes. Each acknowledgement is analyzed to see if it informs 
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the sender of new lost packets. If the amount of newly reported errors is zero, the window size 
is enlarged. If the amount of newly reported errors is still below a certain error limit, E2TCP 
considers the packet loss to be the result of normal static on the channel and will decrease the 
window size but not below the minimum window size. It is also possible the amount of errors 
exceeds the limit. E2TCP considers this to be the result of a burst error and the window size is 
set to its minimum value. In this way E2TCP discriminates between single errors and burst 
errors and is able to achieve a higher energy efficiency. 

4.4.5 Round trip time estimation 
Because E2TCP operates on a single-hop link the delay will not vary much, even though it’s a 
wireless link. E2TCP can therefore refrain from using timestamps in its headers, which 
normally increase data overhead. Round trip time estimations are only done on transmitted 
packets. No more than one measurement can take place at the same time. Upon packet 
transmission, a new round trip time measurement is started if possible. If the round trip time 
measurement is not finished before the transmission timer expires, the measurement is 
canceled. If the sender receives the acknowledgement that was triggered by the packet that 
started the measurement, the round trip time is recorded. If an acknowledgement arrives that 
acknowledges data with higher sequence numbers than the packet that started the 
measurement, the measurement is canceled. This way only accurate measurements are 
recorded. E2TCP remembers the last five measurements and uses them to calculate 
estimations on the current round trip time, which are used to set the (re)transmission timers. 

4.4.6 Burst error detection 
Although E2TCP has an improved window management scheme to deal with (burst) errors 
more efficiently than standard TCP, another more sophisticated mechanism was originally 
intended to be used. Unfortunately it did not perform very well and was abandoned for a 
cleaner and simpler version that did perform as intended, as was described in Paragraph 4.4. 
On a channel with burst errors it is very important that the transport protocol reacts in the 
right way to burst errors. When the burst error encountered is very small it is best to keep 
sending at the original pace. This is because the protocol has no time to react. Once it has 
noticed the burst error, it has already passed. When the burst error is long however, it would 
be best to stop sending until the burst error has passed. There are a few problems that have to 
be overcome before a scheme like this can be implemented. First, it is unknown a priori when 
a burst error will start and end. Therefore, the protocol has to detect it by itself, which takes at 
least as long as the delay on the channel. This also means that the length of the burst error is 
not known a priori. The second problem is that when the protocol stops sending in case of a 
long burst error, it has no way of telling the burst error is over. So it always has to keep 
sending some packets. Something that can be thought of as polling. 
A scheme was developed that would be able to guess the length of the next burst error, based 
on the measured lengths of the last burst errors. This scheme kept track of the state of the 
channel and defined the states as: normal, possible burst error and burst error. When it was in 
the normal state, it would operate very much like the scheme that is now used. When it 
suddenly detected a timeout or a lot of errors it would switch to burst error mode. It would set 
the window size to a very small fixed value and would guess the time the burst error started. 
Once out of the burst error it would guess the time the burst error ended and would remember 
the calculated length of the burst error. If the protocol was in the normal state and would only 
notice a few errors it would guess the time of the start of the errors and switch to the possible 
burst error state. When the errors would continue it would then switch to the burst error state 
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and continue as stated above. When the errors would stop however, it would conclude it was 
no burst error after all and switch back to the normal state. 
If enough burst error lengths were recorded the mechanism added an action. Upon noticing 
the start of a burst error it would guess its length. If it was below a certain limit it would still 
decrease its window size but only slightly. This way the protocol could still send at almost full 
speed. If the burst error was indeed as small as predicted it would react in an optimal way. If 
the burst error was longer than predicted however, it is possible the protocol would react in a 
very inefficient way. If the predicted length was above the limit it would set the window size 
to a very small value and set a timer to the predicted end of the burst error. When the timer 
expired, it would start sending again at near full speed. 
As told, this mechanism did not perform very well. It was not stable enough because its 
measurements were unfortunately very inaccurate. There is no reliable way to accurately 
measure the start and end times of a burst error for instance. This caused the recorded burst 
error lengths to be quite inaccurate. When the mechanism then tried to guess the length of the 
next burst error, it would be based on the inaccurate information. Therefore it would not be 
very reliable itself. Furthermore it can be argued if the length of the next burst error 
corresponds in any way with the lengths of the previous burst errors. It was clear that in order 
to make the mechanism more robust the length measurements could not be used. This caused 
the scheme to become quite simple but a lot more energy efficient. The performance of this 
mechanism will be compared with the current mechanism in the following graphs. 
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Figure 4.11: Energy overhead of burst error 

detection mechanisms in scenario A. 
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Figure 4.12: Energy overhead of burst error 

detection mechanisms in scenario B. 
 
In scenario A, the difference between the two burst error detection mechanisms is quite small. 
Still it should be clear that the current (simple) mechanism has a slightly lower energy 
overhead in all situations. The superiority of the current scheme becomes especially clear 
when the graph of scenario B is examined. Clearly the current scheme is more energy 
efficient than the other. 
It is also interesting to note the decrease in energy overhead on the right side of the graph in 
Figure 4.12. Both mechanisms experience this decrease allthough the decrease in energy 
overhead of the proposed mechanism is much more pronounced. The decrease is the result of 
the window management of E2TCP. When the lengths of bad states drop below a certain 
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point, E2TCP correctly decides to keep transmitting. This is an efficient solution because the 
bad state is so short, it will be over before E2TCP has decreased its transmission speed. The 
graphs show that not decreasing the transmission speed under these conditions is indeed an 
energy efficient solution. 

4.5 Partial reliability 
Partial reliability is only relevant to the receiver. An application will be able to set a certain 
amount of reliability for each connection with a Quality of Service-like parameter. This 
parameter: the reliability level, can be set from 0% to 100% in one percent steps. Of course 
E2TCP defaults to full reliability when an application does not set a new reliability (because it 
is unaware of the partial reliability option for example). When the receiver encounters lost 
packets, it checks its current reliability level. If it is still above the specified limit, the receiver 
will falsely acknowledge as much lost packets as possible without violating the reliability 
demand, so the sender will not retransmit them. After that the receiver will of course update 
its current reliability level. If the reliability demand is not met, the receiver will send a normal 
acknowledgement; so all lost data will be retransmitted. 
Thus it is possible the application at the sender only receives parts of the stream. The 
application itself is responsible for handling the gaps in the stream. 
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5 TEST RESULTS 
In this chapter a thorough performance evaluation of E2TCP will be given. To measure the 
performance and energy efficiency of E2TCP and compare the protocol with other versions of 
TCP, an implementation of E2TCP was made in the Network Simulator 2 (NS2) [FAL00]. 
NS2 is an open source discrete event simulator targeted at network research and has 
substantial support for TCP over wired and wireless links. Because NS2 is free and features 
implementations of all kinds of simulated applications, versions of TCP, MAC layers, link 
layers and interconnects like duplex point-to-point links, LANs, wireless LANs, etc, it has 
become a very popular tool in network research to evaluate (new) protocols. 
In this chapter an explanation on what is involved in the tests comes first, followed by an 
explanation of the home built error model used in the tests. The choice of default values for 
the parameters, briefly mentioned in the previous chapter, will be discussed after that, 
followed by a look at how much each method, adopted to make E2TCP energy efficient, 
makes a difference. Finally the energy efficiency of E2TCP will be compared to that of other 
TCP variants. 

5.1 Simulation model 
NS2 is a simulator and not a real environment. Therefore the model of the protocol has been 
simplified. Sometimes because of limitations in NS2 and sometimes because a part of the 
protocol was not required to measure the energy performance of the protocol. Differences 
between the specification and the implementation in NS2 are listed below. All other 
mechanisms are implemented according to the specification. 
• There is no flow control. This is a limitation of NS2 and flow control is therefore also 

not used in other protocols in NS2. This is not a problem because E2TCP will be tested 
on a single-hop wireless link to measure its energy efficiency. The absence of flow 
control does not hamper or improve its basic performance. 

• The stream is not byte oriented but packet oriented. This means that all sequence 
numbers are measured in packets instead of bytes. Packets will have a fixed sized 
payload of 1000 bytes. Because E2TCP will be tested on a single-hop link this is not a 
problem at all. This also means the size of the windows is measured in packets instead 
of bytes. 

• There is no connection setup and termination phase. An E2TCP state machine, as TCP 
has, is not implemented. This is done because it has very little influence on the overall 
energy efficiency and the TCP variants in NS2 also lack this part of the protocol. 

• Sequence numbers can not overflow. No mechanism is in place to let the sequence 
numbers wrap around when its maximum value (232) has been reached. Because the 
implementation also lacks a connection startup phase, the sequence numbers will always 
start at 0. Since sequence numbers apply to packets instead of bytes this means almost 4 
Terabytes can be sent in the simulation before a problem will arise. This is more than 
enough to measure the performance of E2TCP. 

5.2 Test setup 
The test setup consists of two hosts connected by a wireless LAN. Because they are the only 
hosts on the LAN, it can also be seen as a full duplex point-to-point link. Concern may arise 
that this setup is not representative for wireless LANs with more hosts, but because modern 
MAC protocols use collision avoidance, the performance of such networks will strongly 
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resemble a LAN with two hosts and a lower bandwidth. It is not important which host will 
model the mobile host and which the base station because E2TCP is a symmetrical protocol. 
Each host will be running E2TCP and together they will create one E2TCP connection that 
connects both hosts. The sender will start the transmission and during the test, all kinds of 
data will be collected so the energy efficiency can be calculated. Each test will be run 10 
times, of which the average will be used. 
There are a lot of parameters to each test, which will influence the outcome. The bandwidth 
and delay of the channel, the length of the burst errors and the periods between them, the 
version of TCP used and the kind of traffic. 
The bandwidth and delay parameters apply to the wireless LAN itself. This includes the 
physical medium, the MAC layer and the link layer. E2TCP should be evaluated with various 
values for both characteristics but a ‘default’ value should be chosen for tests in which these 
characteristics are not the main concern. The default bandwidth will be 1 Mbps. This 
resembles IEEE 802.11 [IEE99] and Bluetooth [BLU01]. A closer look to the effect of 
bandwidth will be taken by varying the bandwidth from 0.5 to 5 Mbps, resembling anything 
from lower speed serial links to the new high speed IEEE 802.11b standard [IEE99b]. For the 
delay the default value will be 50 ms. This is an estimation of the delays introduced by a 
typical IEEE 802.11 physical layer, link layer and MAC layer combined, based on 
measurements by [CHE94]. The effects of the delay on the energy efficiency of various 
protocols will also be examined by varying the delay between 40 and 70 ms. 
An error model is attached to the wireless LAN model in NS2. Such an error model can cause 
packets to be dropped because of random noise or burst errors. Because the hookup that is 
supposed to connect one of the standard error models to the wireless LAN model was broken 
in the version of NS2 that was used, a custom error model was written. This model will be 
explained in the next paragraph. 
The protocols that will be compared to each other are three standard versions of TCP: Tahoe, 
Reno and NewReno, PRTP in the partial reliability tests, and of course E2TCP. For PRTP a 
NS2 implementation was kindly supplied by the PRTP team from the Karlstad University of 
Sweden. Tahoe, Reno and NewReno were chosen because these are widely known versions of 
TCP and they are already implemented in NS2. 
Various forms of traffic will be simulated to model different types of applications. A (mass) 
data transfer will be used as the default application. This resembles file transfer, browsing the 
Internet and sending and receiving emails. In the tests where a closer look will be taken at the 
effect of the type of traffic, an interactive traffic model will be used as well as a constant bit 
rate model. The interactive traffic models applications that feature more or less randomly 
interspersed small amounts of data. This resembles interactive applications like telnet 
sessions, instant messaging services, chatting and possibly browsing and sending and 
receiving emails (when the requested pages or emails are relatively small). The constant bit 
rate traffic resembles streaming media, like audio and video. 
The (default) test setup then looks like this: 
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Figure 5.1: The default test setup. 

 

5.3 Error model and setup 
As said, a custom error model was created to be used in the tests. A simple two-state error 
model was chosen because with two states it is already possible to realistically model random 
noise and burst errors. Each state has three parameters: its minimum length, its maximum 
length and its error rate. When the minimum length does not equal the maximum length, a 
random length is chosen between the extreme values at each switch to that state. The more the 
value approaches one of the extremes the less likely it will be chosen. This way, the chosen 
value will be near the center of the range most of the time and will sometimes be a lot smaller 
or larger. The error model will then switch between these two states constantly. The error rate 
of the state applies to packets because the implementations of the various protocols in NS2 are 
packet oriented as well. All packets on the wireless LAN are transparently routed through the 
error model, which randomly corrupts the packets with a chance that corresponds to the error 
rate of the state it is currently in. This way the corrupted packet will still travel the physical 
medium and use bandwidth but will be dropped by the MAC layer, just like in real life. 
Typically one state will be setup in such a way it resembles a high quality channel with some 
modest random noise and the other state will represent a burst error with a very high error 
rate. For the good state an error rate of 0.05% was chosen which corresponds to 
measurements done by [ECK96]. For the bad state an error rate of 80% was chosen, causing 
an average of 4 out of 5 packets to be corrupted. These values were fixed during the tests and 
the lengths of the states were varied to model different channel conditions. These two states 
and the transitions between them are shown in Figure 5.2. 
 

good 
state 

bad 
state 

 
Figure 5.2: States and transitions of the error model. 

 
The choice of state lengths is somewhat more difficult. It is not sufficient to examine the 
proportions of the good state and the bad state lengths, to see how well a protocol will 
perform. The length of the bad state itself can have a large impact on the energy efficiency. A 
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protocol can behave quite differently when the good state and bad state lengths are changed 
from 20 seconds and 2 seconds to 10 seconds and 1 second respectively, even though the 
proportions remain the same. So not one but two scenarios were chosen. The first scenario 
(scenario A) has a fixed bad state length of 0.1 second and the good state length varies from 
300 seconds to 1 second. This corresponds to a nearly perfect channel (the tests were 
constructed to be finished within 300 seconds of simulated time) to a very bad channel. In this 
scenario the proportions between the good state and bad state length are gradually worsened. 
In the other scenario (scenario B) the proportions are fixed so the channel’s quality remains 
the same. The good state lengths vary from 20 to 1 second, with the bad state length always 
being one tenth of the good state length. This allows the protocols energy efficiency to be 
examined with varying bad state lengths while the proportions between the good state and bad 
state length remain the same. 

5.4 E2TCP parameters 
In the previous chapters a few parameters of E2TCP were mentioned. These include the 
minimum window size, the maximum window size, the window size after a timeout and the 
error limit. In this paragraph will be explained what kind of effects each parameter has and 
how the default values were chosen. 

5.4.1 Minimum window size 
An E2TCP sender initializes its window size to the minimum window size and unless a 
timeout occurs it will not set its window size below this value. The window size is an 
important parameter because it has a large effect on the energy efficiency of the protocol. 
When the minimum window size increases the time overhead will diminish. This is because 
the sender’s minimum speed will be higher. An increased minimum window size also means 
that in case of (long) burst errors the data overhead will increase too, because the sender’s 
transmission rate during burst errors will be quite high. Choosing a good value for this 
parameter is partly a tradeoff between a decreased time overhead and an increased data 
overhead. In the following graphs, the performance of minimum window sizes of 5, 10, 15 
and 20 packets are given. 
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Figure 5.3: Energy overhead of E2TCP with 
various minimum window sizes in scenario A. 
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Figure 5.4: Energy overhead of E2TCP with 
various minimum window sizes in scenario B. 

 
As can be seen from the graphs the higher the minimum window size is set, the lower the 
energy overhead becomes. One might assume that choosing the highest value possible would 
be best. The situation is a little bit more complicated however. First of all, the higher the 
minimum window size the higher the data overhead in certain situations (high bad state 
lengths in scenario B for example). This causes the energy overhead (with an ideal type of 
radio) of a minimum window size of 20 packets to be higher than the others in those 
situations. So a high minimum window size is not always the best solution. The mentioned 
data overhead and energy overhead figures are shown in the following blown up graphs. 
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Figure 5.5: Byte overhead of E2TCP with 

various minimum window sizes in scenario A. 
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Figure 5.6: Energy overhead of E2TCP with 
various minimum window sizes in scenario B. 

 
Furthermore, it is important that E2TCP remains adaptive. The higher the minimum window 
size, the smaller the difference will be between the minimum and maximum window size. 
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This reduces the adaptivity of E2TCP and makes it less suitable for a wide variation of 
situations. For these two reasons, a default value of 12 packets was chosen. 

5.4.2 Maximum window size 
The maximum window size also has quite a large impact on energy efficiency. An E2TCP 
sender will never set its window size higher than the maximum window size. The higher this 
value, the greater the bandwidth the protocol can fully utilize. So large values decrease the 
time overhead, especially on high bandwidth links. Unfortunately very large values can 
hamper performance on low bandwidth links. A large maximum window size also causes high 
data overhead in case of (long) burst errors because more traffic is ‘in flight’ and it takes 
longer for the protocol to reach an acceptable window size. The maximum size should not be 
too close to the minimum window size because the protocol can not adapt itself enough to the 
various channel situations. Choosing a good default value can only be done by making a 
tradeoff between performance on low and high speed links and time versus data overhead. In 
the following graphs, the performance of maximum window sizes of 15, 20, 25, 35 and 45 
packets are given. 
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Figure 5.7: Energy overhead of E2TCP with 

various maximum window sizes in scenario A. 
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Figure 5.8: Energy overhead of E2TCP with 
various maximum window sizes in scenario B. 

 
Perhaps it is difficult to see but E2TCP with a maximum window size of 20 or 25 packets 
scores best in scenario A. A lower or higher value causes the energy overhead to increase. 
Because of the long bad state lengths in scenario B, the lower the maximum window size the 
better E2TCP performs (as was predicted). Care should also be taken to make the difference 
between the minimum and maximum large enough for E2TCP to remain adaptive. This all 
makes the choice for this parameter quite difficult. A default value of 25 packets was chosen 
because this value satisfies all requirements best. 

5.4.3 Window size after a timeout 
The window size is set to this value when a (re)transmission timeout occurs. A large value 
causes the sender to quickly recover after a burst error but causes extra data overhead during 
the burst error itself. So again, choosing a default value boils down to making a tradeoff 
between data and time overhead. As you can see in the graphs however, this parameter does 
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not have a tremendous effect on the energy overhead. The following graphs show the energy 
overhead of E2TCP with the following window sizes after a timeout: 1, 2, 5 and 10 packets. 
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Figure 5.9: Energy overhead of E2TCP with 

various window sizes after a timeout in 
scenario A. 
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Figure 5.10: Energy overhead of E2TCP with 

various window sizes after a timeout in 
scenario B. 

 
The differences are minute but a value of 5 packets has the lowest energy overhead in 
scenario A. In the other scenario the differences are somewhat larger and a size of 10 packets 
performs best. The longer the bad state length however, the better the lower values perform. 
Because of the small differences this parameter does not warrant too much attention. A value 
of 5 packets seems to be the best overall performer. 

5.4.4 Error limit 
The error limit parameter decides when an E2TCP sender thinks of the channel as being in a 
burst error state. So the higher this value the more errors should occur before E2TCP 
drastically reduces its transmission speed. With a large value E2TCP will have a smaller time 
overhead in case of (small burst) errors. On the other hand it will have a higher data overhead 
in case of long burst errors because E2TCP is slower in reacting. And yet again a tradeoff 
must be made between data- and time overhead before a good default value can be chosen. 
The energy overhead of E2TCP with error limits of 1, 2, 5 and 10 errors is presented in the 
following graphs. 
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Figure 5.11: Energy overhead of E2TCP with 

various error limits in scenario A. 
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Figure 5.12: Energy overhead of E2TCP with 

various error limits in scenario B. 
 
As can be seen the error limit does not have a large impact on the energy overhead of E2TCP. 
In scenario A, E2TCP performs better as the error limit increases. This is because the bad state 
lengths are so short, decreasing the transmission speed serves no purpose. In scenario B 
however, the energy overhead of E2TCP becomes lower as the error limit decreases. The bad 
states are long enough in this scenario to warrant slowdowns. A tradeoff between these two 
scenarios yields a default value of 5 errors. 

5.4.5 Conclusions 
By studying the performance of E2TCP with different parameters, a set of optimal parameters 
was chosen as the default values. Most of the times the selection of values for these 
parameters was quite difficult and often it was necessary to make a tradeoff by increasing a 
performance metric for a certain situation and decreasing another performance metric 
(possibly for another situation). The minimum- and maximum window size both have quite a 
large impact on energy efficiency, especially compared to the window size after a timeout and 
the error limit, which both hardly influence the energy efficiency of E2TCP. In certain 
situations, choosing another value for both the minimum- and the maximum window size 
could yield a maximum decrease in energy overhead of about 25%. Still the chosen default 
values are considered to be the best overall values. To summarize the selection of values, they 
will be listed in the following table. 
 

Parameter Default value  
Minimum window size 12 packets 
Maximum window size 25 packets 
Window size after a timeout 5 packets 
Error limit 5 errors 

Table 5.1: The default values for the parameters of E2TCP. 
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5.5 E2TCP dissected 
In this paragraph a performance evaluation of the various methods to increase energy 
efficiency in E2TCP will be given. The methods used are optimized window management, 
selective acknowledgements, small headers and partial reliability. The performance evaluation 
will start by comparing Tahoe with E2TCP, which only has optimized window management 
enabled. The comparison will be done with Tahoe because it is the most energy efficient 
version of TCP, as will be shown in Paragraph 5.6.1. After that selective acknowledgements 
will be added to E2TCP, followed by its own headers and finally partial reliability. All tests 
will be done with the default setup. 

5.5.1 Window management 
In this test, E2TCP only has its own window management enabled. Unfortunately, the window 
management scheme of E2TCP relies on selective acknowledgements to operate properly. 
This version of E2TCP will therefore be severely crippled. The energy overhead of both 
protocols is shown in the following two graphs. 
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Figure 5.13: Energy overhead of various 

protocols in scenario A. 
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Figure 5.14: Energy overhead of various 

protocols in scenario B. 
 
In scenario A, it is clear that E2TCP is too crippled to reach low levels of energy overhead. 
Tahoe clearly scores better. Certainly there is a lot of room for improvement. In scenario B, 
E2TCP already outperforms Tahoe and is therefore the more energy efficient protocol of the 
two. 

5.5.2 Selective acknowledgements 
Selective acknowledgements will also be enabled for E2TCP in this test. This should also 
make the window management scheme perform better because it directly depends on SACK. 
The energy overhead for both scenarios is shown in the following graphs. 
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Figure 5.15: Energy overhead of various 

protocols in scenario A. 
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Figure 5.16: Energy overhead of various 

protocols in scenario B. 
 
As can be seen in the graphs, E2TCP has less energy overhead than Tahoe in scenario A this 
time. Clearly E2TCP depends on selective acknowledgements in this scenario. In scenario B, 
the gain is less impressive but especially with small good and bad state lengths E2TCP with 
selective acknowledgements is more energy efficient than E2TCP with window management 
only. Clearly selective acknowledgements make E2TCP more energy efficient in both 
scenarios. 

5.5.3 E2TCP headers 
The custom headers of E2TCP were also used in this test. Because they are much smaller than 
standard TCP/IP headers they should also contribute to less energy overhead. Enabling the 
custom headers gets E2TCP up to full strength. If all versions would be listed in the graphs, 
they would become quite hard to study. Therefore, only E2TCP with both its window 
management and selective acknowledgements enabled will be used to compare standard 
E2TCP with. The energy overhead of both versions of E2TCP will be shown in the following 
graphs. 
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Figure 5.17: Energy overhead of various 

protocols in scenario A. 
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Figure 5.18: Energy overhead of various 

protocols in scenario B. 
 
It should be clear from the graphs that enabling the custom headers, lowers the energy 
overhead of E2TCP in both scenarios in all situations with about 5%. 

5.5.4 Partial reliability 
In the previous paragraph was shown what the energy overhead of standard E2TCP was. 
When an application allows for it, E2TCP can also enter a partial reliable mode of operation. 
This will further enhance its energy efficiency. In this test E2TCP will be used at 100% and 
90% reliability. The energy overhead of both reliabilities is shown in the following graphs. 
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Figure 5.19: Energy overhead of various 

protocols in scenario A. 
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Figure 5.20: Energy overhead of various 

protocols in scenario B. 
 
In both scenarios partial reliability manages to improve the energy efficiency of E2TCP 
considerably. Partial reliability obviously has a larger effect when the quality of the channel 
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deteriorates. The reason for this is that when more packets are lost, the advantage of not 
retransmitting them increases. 

5.5.5 Conclusions 
By ‘dissecting’ E2TCP, it became clear how much each energy efficient method present in 
E2TCP, contributed to the overall energy efficiency of E2TCP. Only enabling the window 
management scheme of E2TCP, clearly crippled E2TCP so much it was unable to perform 
better than Tahoe in scenario A. When selective acknowledgements were added, E2TCP 
already became quite energy efficient and had less energy overhead than Tahoe in both 
scenarios. Using E2TCP’s custom headers further increased its energy efficiency just like 
enabling partial reliability. To give an indication of the energy overhead of all versions, the 
average energy overhead will be listed in the following table for each version and both 
scenarios. 
 

Protocol version Scenario A (%) Scenario B (%) 
Tahoe 44.5 54.5 
E2TCP (Window management only) 102.4 39.6 
E2TCP (Window management + SACK) 14.7 22.4 
E2TCP 10.1 17.4 
E2TCP (90% reliability) 4.9 12.6 

Table 5.2: The average energy overhead of various protocol versions. 
 
In Paragraph 1.1, three proposals were mentioned to deploy E2TCP. The first proposal only 
allowed the transport protocol at the base station to be replaced with E2TCP. The second 
proposal was to replace the transport protocol at both the base station and the mobile host, 
while the third proposal was to change the applications at the mobile (and possibly the 
internet) host as well. It was expected that the first proposal would yield the smallest gain in 
energy efficiency, while the third proposal would yield the largest gain in energy efficiency. 
Now E2TCP has been ‘dissected’, it is possible to check if those expectations were correct. 
When only the base station is running a version of E2TCP, its possible to use the optimized 
window management method. There are two problems however. First E2TCP with only its 
window management enabled can have a higher energy efficiency than Tahoe, but also a 
considerably higher one. It depends on the situation. The second problem is that only when 
the base station is the sender, energy can be saved. The first problem is solved when the 
mobile host is running a SACK enabled version of TCP, but still it is quite useless to consider 
the first proposal. As said, it is unclear if energy will be saved and if energy is saved it will be 
at the base station and not at the mobile host, where it is needed. 
When the second proposal is executed things become more interesting. Both the base station 
and the mobile host will be running E2TCP so there is no problem in using both the window 
management scheme and selective acknowledgements. It has been shown that when both are 
enabled, E2TCP clearly is more energy efficient than other protocols and the mobile host will 
definitely save energy. This is because the energy overhead of other protocols is two to three 
times as high as that of E2TCP. Furthermore, E2TCP can use its own headers further 
increasing its energy efficiency. Then the energy overhead of other protocol is three to four 
times as high as that of E2TCP. The energy efficiency (based on the average energy overhead) 
of Tahoe is 69% and 65% in scenario A and B respectively, while E2TCP scores 91% and 
85% respectively. 
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Partial reliability can be enabled when the third proposal is executed: changing the 
applications at the mobile- and internet hosts. This causes the energy overhead of E2TCP to 
drop even further to levels that are anywhere from four to nine times as small as normal TCP. 
The energy efficiency (based on the average energy overhead) of E2TCP with partial 
reliability is 95% and 89% in scenario A and B respectively. However, partial reliability can 
only be used with streaming media. 

5.6 Evaluation of E2TCP 
The evaluation of E2TCP will begin with a detailed look at the default setup. Next, a closer 
examination of its performance on wireless links with different bandwidths. After that a closer 
look will be taken at the influence of different delays, traffic and finally the effect of partial 
reliability will be studied. 

5.6.1 Default setup 
In this test all parameters will be set to their defaults. This means that the bandwidth will be 1 
Mbps, the delay 50 ms and the protocols compared will be Tahoe, Reno, NewReno and 
E2TCP. The partial reliability mechanism of E2TCP will be disabled so E2TCP is 100% 
reliable, just like the other protocols. The simulated traffic will be a mass data transfer of 20 
MB in total. Both error scenarios will be used. 
This first time a performance evaluation will be given, a closer look will be taken at the data 
overhead and the time overhead before examining energy overhead. In later evaluations these 
graphs will be omitted because finally only energy overhead counts. Should a later test yield 
interesting results in respect to data- or time overhead, the graphs will be included. 
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Figure 5.21: Byte overhead of various 

protocols in scenario A. 
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Figure 5.22: Byte overhead of various 

protocols in scenario B. 
 
As can be seen, E2TCP has less data overhead than the other TCP versions, in both scenarios, 
at all points. This can be attributed to the small headers and its optimized window 
management in combination with selective acknowledgements. Especially in scenario A it is 
clear that when the quality of the channel deteriorates, the data overhead increases. It is 
interesting to note the decrease in data overhead in scenario B for E2TCP at the right side of 
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the graph. Unlike standard TCP, E2TCP does not decrease its transmission speed for very 
small burst errors, resulting in a very low data overhead when burst errors are very small. 
Another characteristic of the graphs that should be noted is that all three standard versions of 
TCP behave the same. The absolute values in data overhead may differ somewhat but the 
tendency of each version closely resembles that of the others. 
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Figure 5.23: Time overhead of various 

protocols in scenario A. 
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Figure 5.24: Time overhead of various 

protocols in scenario B. 
 
Because of the enormous differences in time overhead, it is hard to see how much the time 
overhead of E2TCP differs from that of the other protocols in the left sides of the graphs. 
When examining the source data for the graphs, it is clear that E2TCP has a time overhead 
that is about twice as small as the other protocols in the worst cases. Especially when the 
quality of the channel deteriorates (the right side of the graphs), the difference in time 
overhead between E2TCP and the other protocols increases. This means that (considering time 
overhead) E2TCP scales much better than the other protocols when the quality of the channel 
worsens. 
Just like with data overhead, the three versions of TCP tested behave in the same way. The 
absolute values differ somewhat again, but they all have the same tendency. It should also be 
clear that the other versions of TCP have much more time overhead than data overhead. 
Because of the way energy overhead is calculated, there will probably be large differences 
between the different types of radios. 
What this means for the energy overhead will be shown in the following graphs. For each 
scenario three graphs will be shown, each graph corresponding to a certain type of radio. 
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Figure 5.25: Energy overhead of various 

protocols in scenario A. 
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Figure 5.26: Energy overhead of various 

protocols in scenario B. 
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Figure 5.27: Energy overhead of various 

protocols in scenario A. 
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Figure 5.28: Energy overhead of various 

protocols in scenario B. 
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Figure 5.29: Energy overhead of various 

protocols in scenario A. 
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Figure 5.30: Energy overhead of various 

protocols in scenario B. 
 
The first thing that can be concluded is that E2TCP has a significantly lower energy overhead 
than the other three protocols, in both scenarios and with all types of radios. Thus E2TCP has 
a higher energy efficiency than the other protocols in this test. Usually E2TCP has an 
overhead that is at least twice as small as that of another protocol, but the difference can 
increase with shorter bad state lengths to 16 times as small. 
Another important thing to note is that just as with data- and time overhead, the three versions 
of TCP behave in the same way. From now on only one other protocol will be used to 
compare the performance of E2TCP to. If the graphs are studied closely, Tahoe can be said to 
be the most energy efficient protocol of the three and will therefore be used. 
It should also be clear that the energy overhead obtained by the protocols on an ideal type of 
radio is much lower than that on the other types of radio. This is because for an ideal type of 
radio time overhead has not a big impact. As seen, (for the standard TCP versions) time 
overhead is much higher than data overhead, which causes the increased energy overhead for 
the first two types of radios. 
The final remark that will be made, is that although the absolute values for energy overhead 
differ between the three types of radios, the tendencies of each protocol are the same 
regardless of what type of radio is used. Therefore, only one type of radio will be used in 
future tests. The intermediate type will be chosen because the other types are at the extremes 
of the scale. The intermediate type will therefore probably be better suited to be compared to 
real radios. To be complete, the energy efficiency graphs for the intermediate type of radio 
and both scenarios will be listed below. 
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Figure 5.31: Energy efficiency of various 

protocols in scenario A. 
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Figure 5.32: Energy efficiency of various 

protocols in scenario B. 
 
As was already concluded from the energy overhead graphs, it is clear that E2TCP has a 
higher energy efficiency than the other protocols. 

5.6.2 Bandwidth 
In this test the impact of the channel’s bandwidth on the energy overhead will be examined. 
The test setup equals the default setup except for a few changes. The bandwidth will not be 
fixed at 1 Mbps but four different bandwidths will be used: 0.5, 1, 2 and 5 Mbps. As told in 
the previous paragraph, only Tahoe and E2TCP will be used and only the energy overhead 
graphs of the intermediate type of radio will be shown. The results of the test can be seen in 
the following graphs: 
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Figure 5.33: Energy overhead of Tahoe with 

various bandwidths in scenario A. 
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Figure 5.34: Energy overhead of E2TCP with 

various bandwidths in scenario A. 
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Figure 5.35: Energy overhead of Tahoe with 

various bandwidths in scenario B. 
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Figure 5.36: Energy overhead of E2TCP with 

various bandwidths in scenario B. 
 
Because of the terribly high overhead of Tahoe on high bandwidth low quality links, the 
graphs were truncated at 300% overhead. On links with the smallest good state length Tahoe 
had 441% and 1128% energy overhead on 2 and 5 Mbps links respectively for scenario A and 
444% and 1125% for scenario B. 
Upon close examination of the graphs, it can be seen that E2TCP has less energy overhead 
than Tahoe for each bandwidth/quality of channel combination. In most cases Tahoe even has 
an energy overhead that is at least twice as large as that of E2TCP. This means that E2TCP is 
more energy efficient than Tahoe (in this test). The second conclusion is that independent of 
bandwidth, E2TCP scales better than Tahoe when channel conditions deteriorate. It should 
also be clear that E2TCP does not scale worse than Tahoe when bandwidth increases. This is 
an important characteristic of E2TCP because the bandwidths on new wireless standards are 
rapidly increasing. 

5.6.3 Delay 
The impact of the delay of the channel on the energy overhead of Tahoe and E2TCP was 
examined in this test. The test setup equals the default setup except for the following changes: 
the delay was not fixed at 50 ms but the test was run with delays of 40, 50, 60 and 70 ms. The 
energy overhead for both scenarios is shown in the following graphs. 
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Figure 5.37: Energy overhead of Tahoe and 

E2TCP with various delays in scenario A. 
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Figure 5.38: Energy overhead of Tahoe and 

E2TCP with various delays in scenario B. 
 
Again the graphs were truncated because of the large differences in overhead. This time at 
140%. On links with the smallest good state length Tahoe had 211%, 351% and 524% energy 
overhead on links with 50, 60 and 70 ms delay respectively for scenario A and 211%, 340% 
and 540% for scenario B. 
Two conclusions can be drawn by studying the graphs. The first conclusion is that E2TCP 
again has a lower energy overhead than Tahoe on all delay/channel quality combinations and 
thus is more energy efficient. The second conclusion is that E2TCP scales much better when 
the channel delay increases. 

5.6.4 Traffic 
In this test the energy overhead of Tahoe and E2TCP will be examined for various types of 
traffic. Up to now, all tests were done with a simulation of a (mass) data transfer. In this test 
two other types of traffic will be used for the simulation. The first simulation will be done 
with an interactive application model that models interactive types of traffic like telnet 
sessions, chatting and instant messages. The second simulation will be done with a constant 
bit rate application, that models streaming audio and video. 
The interactive traffic model works a bit different than the data transfer model. With an 
interactive traffic model the delay between consecutive packets can be set. The application 
will then randomly create packets in such a way that the average delay between packets 
equals the set value. In this test interdeparture times of 0.5, 0.2, 0.1 and 0.05 seconds were 
used, which resemble data rates of 16 to 160 Kbps (2 to 20 KBps). The energy overhead for 
both scenarios is shown in the following graphs. 
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Figure 5.39: Energy overhead of Tahoe and 
E2TCP with various interdeparture times in 

scenario A. 
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Figure 5.40: Energy overhead of Tahoe and 
E2TCP with various interdeparture times in 

scenario B. 
 
As can be seen, the performance of both protocols, in scenario A, barely changes when the 
interdeparture times are altered. In that scenario Tahoe consistently has about twice as much 
energy overhead as E2TCP. In scenario B, the differences are not as large but E2TCP still 
manages to score lower energy overhead scores. 
The constant bit rate traffic model resembles the interactive model somewhat. It too sends 
data at a specified rate. To model streaming media, data rates of 0.25, 0.5 and 1 Mbps were 
used. The energy overhead for both scenarios is shown in the following graphs. 
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Figure 5.41: Energy overhead of Tahoe and 
E2TCP with various data rates in scenario A. 
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Figure 5.42: Energy overhead of Tahoe and 
E2TCP with various data rates in scenario B. 

 
Because of the large differences in energy overhead both graphs were truncated at 60%. In 
scenario A with a good state length of 1 second, Tahoe scores 89% and 211% for data rates of 
0.5 and 1 Mbps respectively in scenario A and 87% and 212% respectively in scenario B. 
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From the graphs can be concluded that in scenario A, E2TCP is much more energy efficient 
than Tahoe. Furthermore E2TCP scales better when data rates increase. In scenario B, Tahoe 
is able to equal E2TCP’s energy overhead when bad states are long and data rates low. E2TCP 
however, is more energy efficient when data rates increase and/or bad state lengths shorten. 
So E2TCP has a higher energy efficiency in this test. 
Another conclusion that can be drawn from the graphs is that even though the absolute 
numbers differ when E2TCP is used with different data rates, the tendencies do not. This 
means that for different data rates E2TCP behaves the same. 
The 1 Mbps constant bit rate traffic is able to completely saturate the link because it has a 
bandwidth of 1 Mbps itself. Because of this, that traffic behaves exactly the same as a mass 
data transfer. Closely examining the source data of the graphs, proved this. 

5.6.5 Partial reliability 
In this test the partial reliability of E2TCP will be examined. The default setup will be used 
with the following protocols: Tahoe, PRTP and E2TCP. Tahoe is of course fully reliable. 
E2TCP will be set to 95% and 90% reliability while PRTP will be used at 90% reliability. It 
was the intention to test PRTP at 95% reliability as well, but PRTP does not allow for such 
fine-tuning of the reliability. Apparently with E2TCP the application has a more fine-grained 
control over the reliability of the connection. 
It is only useful to use partial reliability on certain types of traffic. Streaming media 
applications and sometimes mass data transfer (images, audio and video) applications are 
suited to adapt to partial reliability. Therefore only the constant bit rate and mass data transfer 
models should be used in this test. In the previous paragraph it was shown that for a data rate 
of 1 Mbps the constant bit rate application behaves exactly the same as the mass data transfer 
application. Furthermore it was shown that E2TCP behaves the same when different data rates 
are used for the constant bit rate application. Therefore it is sufficient to use the mass data 
transfer (as in the default test setup) for this test. The energy overhead for both scenarios is 
shown in the following graphs. 
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Figure 5.43: Energy overhead of various 

protocols in scenario A. 
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Figure 5.44: Energy overhead of various 

protocols in scenario B. 
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The graphs were truncated again because of the large differences in energy overhead. This 
time at 40%. In scenario A, Tahoe has an energy overhead of 211% when the good state 
length is 1 second while in scenario B the same protocol scored 57% and 212% with good 
state lengths of 2 and 1 second respectively. 
From the graph of scenario A a few things can be deduced. First of all, PRTP (with a 
reliability of 90%) clearly has less energy overhead than Tahoe. Another interesting thing to 
note is that both PRTP and E2TCP at 90% reliability score (almost) the same independent of 
the quality of the channel. Because of the loose reliability constraints both protocols can deal 
very efficiently with errors. E2TCP with 95% reliability clearly has more trouble when the 
quality of the channel worsens because the reliability constraints are tighter. Still it manages 
to surpass PRTP in all but the worst channel conditions. 
In scenario B, the last point is also valid. That is: PRTP is more efficient than Tahoe, while 
E2TCP with a reliability of 95% surpasses the performance of PRTP in all but the worst 
channel conditions. Just like in scenario A, E2TCP with a reliability of 90% is the most energy 
efficient protocol. 

5.6.6 Performance 
So far, only the energy efficiency of E2TCP has been examined. Because of the goal of this 
thesis, this is of course a very important metric. However, it is also important to take a look at 
some traditional performance metrics, like throughput and latency. The comparison of the 
various protocols with respect to traditional performance will not be as extensive as the 
evaluation of the energy efficiency. 
Throughput is a measure to indicate the utilization of the link. It is measured in bits per 
second and can of course never exceed the bandwidth of the link. Throughput can be 
calculated by dividing the payload of the data transmission with the total time it took to 
complete the data transmission. The faster a data transmission was finished, the higher the 
throughput will be. Because the time overhead also decreases when the time to completion 
decreases (and vice versa), it can be concluded that the lower the time overhead of a protocol 
is, the higher its throughput will be. Because the time overhead of E2TCP and other versions 
of TCP have already been examined, a prediction can be made about the throughput of those 
protocols. It is expected that E2TCP will have a higher throughput than other versions of TCP. 
To test the throughput of E2TCP, the default test setup was used. Therefore the throughput can 
be no higher than 1 Mbps. In the next graphs, the throughput of E2TCP and other versions of 
TCP will be shown. 
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Figure 5.45: Throughput of various protocols 

in scenario A. 

Throughput in scenario B
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Figure 5.46: Throughput of various protocols 

in scenario B. 
 
As can be seen in both graphs, the throughput of E2TCP is clearly higher than that of the other 
versions of TCP. When channel conditions deteriorate, the difference in throughput becomes 
exceptionally large. Just as in the time overhead graphs in Paragraph 5.6.1; the other versions 
of TCP behave the same. Their absolute throughput scores may differ somewhat (especially in 
scenario A), but their graphs all show the same tendency. By optimizing E2TCP for energy 
efficiency by lowering its time overhead, the throughput was unintentionally increased. 
Because of the direct relation between time overhead and throughput, it is unnecessary to 
examine other test setups. The time overhead of E2TCP in all test setups was closely 
examined to calculate the energy overhead. In all test setups E2TCP had less time overhead 
than the other protocols and therefore, its throughput will always be higher. 
The latency of a protocol (measured in milliseconds), is another traditional performance 
metric. The latency of a packet is the time between the first transmission of the packet at the 
sending host and the successful reception of the packet by the destination host. Latency can be 
no lower than the delay of the wireless link, link layer and MAC layer combined. In case of 
retransmissions, the latency will surely increase. The average latency is the average of the 
latency of each packet. This metric will be used in this test. Unlike throughput, average 
latency has no direct relation to either data- or time overhead. Still, there is a weak relation 
between time overhead and average latency: the lower the time overhead the lower the 
average latency will probably be. Therefore, it is expected that E2TCP will perform better 
than the other protocols. The average latency of E2TCP and the other versions of TCP, were 
calculated from the results of the tests done with the default test setup and are shown in the 
two following graphs. 
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Average latency in scenario A
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Figure 5.47: Average latency of various 

protocols in scenario A. 

Average latency in scenario B
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Figure 5.48: Average latency of various 

protocols in scenario B. 
 
Clearly, the graphs show that the average latency of E2TCP is lower than that of the other 
versions of TCP. As with throughput, the difference only increases when the channel 
conditions deteriorate. Because the default test setup was used the average latency could not 
drop below 50 ms. Taking this into account, the performance of E2TCP becomes even more 
impressing. When the channel conditions are worst, E2TCP adds about 20 ms to the minimum 
latency while the other protocols add about 100 ms. 

5.6.7 Conclusions 
In Paragraph 5.6, a performance evaluation of E2TCP was given. In the first test, Tahoe, Reno 
and NewReno were compared to E2TCP in the default test setup. It can only be said that 
E2TCP clearly has a higher energy efficiency than those other protocols. In the other tests 
Tahoe, which is the most energy efficient standard version of TCP, was compared to E2TCP 
with different bandwidths, delays and types of traffic. E2TCP consistently had a lower energy 
overhead than Tahoe. To give an indication of the efficiency of E2TCP, the average energy 
overhead of the tested protocols will be listed in the following table for both scenarios, using 
the default test setup. 
 

Protocol Scenario A (%) Scenario B (%) 
Tahoe 44.5 54.5 
Reno 68.6 63.4 
NewReno 52.2 54.9 
E2TCP 10.1 17.4 

Table 5.3: The average energy overhead of various protocols. 
 
After that, some partial reliability tests were run, which compared PRTP with E2TCP under 
various reliability constraints. Again, E2TCP was the most energy efficient protocol. To give 
an indication of the efficiency of the protocols used in those tests, the average energy 
overhead of the tested protocols will be listed in the following table for both scenarios. 
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Protocol Scenario A (%) Scenario B (%) 
PRTP (90% reliability) 9.7 19.3 
E2TCP (95% reliability) 7.1 14.6 
E2TCP (90% reliability) 4.9 12.6 

Table 5.4: The average energy overhead of various protocols under various reliability 
constraints. 

 
In Paragraph 5.6.6, a traditional performance evaluation of E2TCP was conducted. From its 
results can be concluded that for both traditional performance metrics; throughput and 
latency, E2TCP manages to outperform the other versions of TCP by a significant amount. To 
give an indication of the performance of E2TCP, the average throughput and average latency 
of the tested protocols will be listed in the following two tables for both scenarios, using the 
default test setup. 
 

Protocol Scenario A (Mbps) Scenario B (Mbps) 
Tahoe 0.71 0.61 
Reno 0.59 0.61 
NewReno 0.64 0.62 
E2TCP 0.87 0.80 

Table 5.5: The average throughput of various protocols. 
 

Protocol Scenario A (ms) Scenario B (ms) 
Tahoe 76.6 101.7 
Reno 96.1 103.5 
NewReno 74.7 100.8 
E2TCP 55.9 75.0 

Table 5.6: The average latency of various protocols. 
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6 CONCLUSIONS AND RECOMMENDATIONS 
From the results of the simulations presented in Chapter 5, the most important conclusion is 
that E2TCP is indeed energy efficient. When comparing E2TCP to standard versions of TCP, 
like Tahoe, Reno and NewReno, it is clear E2TCP consistently has less energy overhead and 
therefore, a higher energy efficiency. 
E2TCP is optimized for energy efficiency on four points. Each optimization addresses one of 
the four problems of TCP, that keep it from reaching high levels of energy efficiency. The 
first point is the acknowledgement scheme of TCP, which is unable to provide the sending 
host with enough information about the state of the destination host. E2TCP uses selective 
acknowledgements to overcome this problem. These selective acknowledgements are also 
required for the second optimization: the window management. This optimization is the result 
of efforts to make TCP aware of burst errors. Because burst errors are a major cause of packet 
loss on wireless links and TCP considers all packet loss to be the result of congestion, TCP 
was unable to react to burst errors in an energy efficient way. These two optimizations, which 
effect cannot really be determined separately, cause the greatest decrease in energy overhead: 
about 75% of the total decrease in energy overhead. The third optimization is the use of 
partial reliability to limit unwanted retransmits during the transmission of streaming media. 
This optimization is the cause of about 13% of the total decrease in energy overhead. The 
final optimization is the use of custom headers, which rely on techniques from header 
compression standards to minimize wasted energy. This optimization is the cause of the last 
12% of the total decrease in energy overhead. 
E2TCP has been compared to standard TCP under various conditions. The bandwidth, delay, 
type of traffic and channel conditions were widely varied to get a complete overview of the 
energy efficiency characteristics of E2TCP. The bandwidth was varied from 0.5 Mbps, 
representing lower speed serial links, to 5 Mbps, representing the new high speed IEEE 
802.11b wireless network standard. From the results can be concluded that E2TCP has less 
energy overhead than TCP for each bandwidth/quality of channel combination. In most cases 
TCP even has an energy overhead that is at least twice as large as that of E2TCP. The second 
conclusion is that independent of bandwidth, E2TCP scales better than TCP when channel 
conditions deteriorate. It should also be clear that E2TCP does not scale worse than TCP when 
bandwidth increases. 
The delay of the wireless link, link layer and MAC layer combined was varied from 40 ms to 
70 ms, representing all kinds of wireless links. Two conclusions can be drawn by studying the 
results. The first conclusion is that E2TCP has a lower energy overhead than TCP on all 
delay/channel quality combinations and thus is more energy efficient. The second conclusion 
is that E2TCP scales much better than TCP, when the channel delay increases. 
Three types of traffic were used in the simulations of E2TCP: interactive traffic (representing 
chatting and instant messaging for example), mass data transfers (representing file transfers, 
browsing and emailing for example) and constant bit rate traffic (representing streaming 
media). From the results can be concluded that E2TCP continuously manages to outperform 
TCP in terms of energy efficiency, with every kind of traffic and all channel qualities. 
A traditional performance evaluation of E2TCP was also conducted. It consisted of throughput 
and latency comparisons with the standard versions of TCP. Because of the optimizations to 
reduce data and time overhead, the throughput of E2TCP was increased. Therefore, no version 
of TCP was able to reach a higher throughput than E2TCP. The delay of E2TCP was also 
lower than that of other versions of TCP. 
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This could raise the question whether or not optimizing for energy efficiency is the same as 
optimizing for throughput and/or latency. This is not so. An example that shows that a 
protocol with a high throughput does not automatically have a high energy efficiency, is a 
TCP sender that transmits at the highest possible speed. Such a sender would have a very high 
throughput. However, it would also waste a substantial amount of energy because it would 
also transmit at the highest possible speed during burst errors. Therefore, optimizations for 
energy efficiency are distinct from optimizations for throughput and/or latency. 
As for future research, four areas are recommended to be examined. First of all, the 
assumptions made on energy efficiency and how it is calculated, should be subject to further 
examinations. As with all assumptions, it is unclear how accurately they portray reality. 
Therefore, a detailed study to how the actual energy consumption caused by a protocol can be 
measured and calculated from evident data, is desirable. 
The second area of recommended research is the characteristics of burst errors. Little research 
can be found on what kind of error characteristics wireless links experience. Therefore, it is 
unclear how to accurately model errors in simulated environments. If more information would 
be available on the length of burst errors, the time between consecutive burst errors and the bit 
error rate of the wireless link under normal conditions and during burst errors, more accurate 
models could increase the reliability of simulations. 
Furthermore, simulations for the base station should be designed and implemented. This 
would allow for simulations of the entire setup, instead of just the wireless part. Information 
on the performance of a complete connection (from mobile to internet host and vice versa) 
would be valuable. The most important reason for implementing the base station is to examine 
the effect of a complete connection on the energy efficiency of E2TCP (at the mobile host). 
The final recommendation for future research is to compare E2TCP to other protocols for 
wireless links. A lot of adaptions of TCP have been proposed for wireless links. Such 
protocols generally focus on optimizing performance of the connection with respect to 
throughput and/or delay. Because of the overlap of optimizing for traditional performance and 
for energy efficiency, it is certainly possible these protocols are more energy efficient than 
standard TCP. Whether or not they are able to surpass E2TCP, remains to be seen, but is 
certainly an interesting research area. For such a comparison implementations of these 
protocols in NS2 would have to be obtained. 
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