ENERGY EFFICIENT TCP

Master’ sthesis; L. Donckers
CAES/002/01

May, 2001

Universty of Twente
Department of Computer Science
Divison: Computer Architecture and Embedded Systems

Supervisors.

dr.ir. GJM. Smit

dr. ing. PJM. Havinga
ir. L.T. Smit

Energy Efficient TCP L. Donckers

SAMENVATTING

Een nieuw type handcomputer is in ontwikkding in het Moby Dick project. Door de gewenste
functionditeit en predaties, za het energie verbruik de limiterende factor zijn voor deze
handcomputer. Draadloze communicatie zal ook een belangrijke factor zijn in het project, wat
een enargie-efficiént transport protocol, compatible met TCP/IP, wensdijk maakt. Dit verdag
beschrijft het ontwerp van zo'n energie-efficiént transport protocol voor mobiele draadloze
communicatie.

Er is echter nog niet ved onderzoek gedaan naar de energie efficiéntie van trangport
protocollen. Daarom zijn e earst maten ontwikkeld om de energie efficiéntie van transport
protocollen te kunnen meten. Deze maten zijn gebruikt om de prestaies van TCP/IP op
draadloze verbindingen nauwkeurig te bestuderen. Vier probleemgebieden zijn gedefinieerd,
die TCPIP ervan weerhilden een hoog niveau van energie efficiéntie te behaen. Voor deze
probleemgebieden zijn mogdijke oplossngen aangedragen waarna de haalbaarheid er van is
onderzocht.

De resultaten van dit onderzoek zijn gebruikt om ETCP te ontwerpen. Een smulatie mode
van dit enegie-efficiénte transport protocol is geimplementeerd en onderworpen aan een
grondige evauaie Uit de resultaten kan geconcludeerd worden dat E°TCP niet dleen een
hogere energie efficiéntie heeft dan TCP/IP, maar dat het ook in Staat is beter te presteren op
meer traditionele punten: throughput en latency.

Energy Efficient TCP

L. Donckers

ABSTRACT
A new genedion handheld computer is under development in the Moby Dick project.
Because of the desred functiondity and performance, the energy consumption will be the
limiting factor for this handheld. Wirdess communication will dso be an important factor in
the project, which makes an energy-efficient trangport protocol, compatible with TCP/IP,
desrable. This thess describes the desgn of such an energy-efficient transport protocol for
mobile wirdess communication.
However, not much research has yet been done on the energy efficiency of transport
protocols. Firs metrics were developed to measure the energy efficiency of transport
protocols. These metrics were used to study the performance of TCP/IP on wirdess links
carefully. Four problem areas were defined that prevented TCP/IP from reaching high leves
of energy efficiency. For these problem areas, solutions were proposed and their feashility
was examined.
The results of this study were used to design E°TCP. A smulation model of this proposed
energy-efficient trangport protocol has been implemented and was subject to a thorough
evauation. The results show that E°TCP not only has a higher energy efficiency than TCPIIP,
but it dso manages to outpeform TCP/IP on more traditiond performance metrics
throughput and latency.

Energy Efficient TCP

L. Donckers

TABLE OF CONTENTS

PREFACE Vil
1 INTRODUCTION 1
1.1 PROBLEM AREA 1
2 MEASURING ENERGY EFFICIENCY 3
2.1 ENERGY EFFICIENCY AND ENERGY OVERHEAD 3
2.2 DATA OVERHEAD AND TIM E OVERHEAD 4
2.3 POWER MODEL OF RADIOS 4
2.4 CALCULATING DATA OVERHEAD AND TIME OVERHEAD 6
2.5 CALCULATING ENERGY OVERHEAD 7
2.6 CALCULATING ENERGY EFFICIENCY 7
2.7 SUMMARY 9
3 ASPECTSOFTCP 11
3.1 TRANSPORT CONTROL PROTOCOL 11
311 RELIABILITY 11
312 SLIDING WINDOWS 11
3.1.3 ACKNOWLEDGEMENTS AND RETRANSMISSION 12
314 TIMEOUT AND RETRANSMISSION 12
315 WINDOW SIZE AND FLOW CONTROL 13
3.1.6 RESPONSE TO CONGESTION 13
3.2 PROBLEMSOFTCP 13
321 LARGE HEADERS 14
3.2.2 SIMPLE ACKNOWLEDGEMENT SCHEME 14
3.23 LOSS IS CONSIDERED CONGESTION 15
3.24 COMPLETE RELIABILITY 15
3.3 POSSIBLE SOLUTIONS 15
331 HEADER COMPRESSION 16
332 SELECTIVE ACKNOWLEDGEMENTS 17
3.33 DELAYED ACKNOWLEDGEMENTS 18
3.34 EXPLICIT CONGESTION NOTIFICATION 19
3.35 FORWARD ERROR CORRECTION 19
3.3.6 I-TCP 20
3.37 PROTOCOLSINSPIRED BY I-TCP 20
3.38 DELAYED DUPLICATE ACKNOWLEDGEMENTS 21
3.39 MOBILE-TCP 21
3.3.10 PRTP 21
3311 OPTIMIZED WINDOW MANAGEMENT 22
3312 CONCLUSIONS 22

Energy Efficient TCP

4 E’TCP 23
4,1 ARCHITECTURE OVERVIEW 23
411 HEADERS 23
41.2 ACKNOWLEDGEMENTS 23
413 WINDOW MANAGEMENT 24
414 RELIABILITY REQUIREMENTS 25
4.2 HEADER FORMAT 25
421 |PHEADER 25
422 TCPHEADER 27
423 E°TCP HEADER 29
424 E?TCP HEADER SIZES 33
4,3 SELECTIVE ACKNOWLEDGEMENTS 33
4.4 WINDOW MANAGEMENT 35
441 CONGESTION AND FLOW CONTROL 35
442 TRANSMISSION 36
443 RETRANSMISSION 36
4.4.4 ACKNOWLEDGEMENTS AND WINDOW SIZE 36
445 ROUND TRIP TIME ESTIM ATION 37
4.4.6 BURST ERROR DETECTION 37
4.5 PARTIAL RELIABILITY 39
5 TEST RESULTS 41
51 SMULATION MODEL 41
5.2 TESTSETUP 41
5.3 ERROR MODEL AND SETUP 43
5.4 E’TCP PARAMETERS 44
541 MINIMUM WINDOW SIZE 44
54.2 MAXIMUM WINDOW SIZE 46
54.3 WINDOW SIZE AFTER A TIMEOUT 46
54.4 ERRORLIMIT 47
545 CONCLUSIONS 48
5.5 E’TCP DISSECTED 49
55.1 WINDOW MANAGEMENT 49
55.2 SELECTIVE ACKNOWLEDGEMENTS 49
5.5.3 E?TCP HEADERS 50
554 PARTIAL RELIABILITY 51
55.5 CONCLUSIONS 52
5.6 EVALUATION OF E’TCP 53
56.1 DEFAULT SETUP 53
56.2 BANDWIDTH 57
56.3 DELAY 58
56.4 TRAFFIC 59
5.6.5 PARTIAL RELIABILITY 61
5.6.6 PERFORMANCE 62
56.7 CONCLUSIONS 64
6 CONCLUSIONSAND RECOMMENDATIONS 67
BIBLIOGRAPHY 69

\

L. Donckers

PREFACE

| would like to take the opportunity to thank my supervisors Gerard Smit, Paul Havinga and
Lodewijk Smit for guiding me while | was working on this assgnment. | would dso like to
thank my mother, brother and sister for being there for me. For the same reason | thank Ella,

Jac and Jesse.

Lagt but certainly not least, | would like to thank my girlfriend: Lonneke. Without her support
thiswould have been impossible.

Enschede, May 2001

Lewie Donckers

VII

Energy Efficient TCP

Vil

L. Donckers

1 INTRODUCTION

This thesis is pat of the Moby Dick project a the Computer Science depatment of the
Universty of Twente. The Moby Dick project is a joint European project to develop and
define the architecture of a new generation of mobile handhed computers. Due to the
increesing demand for performance and functiondity, the energy consumption will be the
limting factor for the cgpabiliies of such a new generation handheld. Therefore reducing
energy consumption plays a crucid role in the architecture. An important aspect of the Moby
Dick project is wirdess communication. Because of the importance of energy efficency to
the Moby Dick project, the wirdess communication should dso be optimized to minimize
energy consumption.

Unfortunately, not a lot of research has been done on energy-efficient transport protocols.
Even though it would be quite rewarding to do so, because in mobile systems, the radio
(which is used for wirdess communication) is one of the parts that consume the most energy
[STEQ7]. Computer chips (like CPUs and memories) are becoming increasingly energy
efficient because of advances in IC desgn. Radios however smply require a certain amount
of energy to transmit and receive information. Furthermore, multimedia gpplications are using
network services more extendvely and continuoudy than before. The impact of minimizing
the energy spent on wirdless communication, will therefore only increase [HAVO0Ob].

For these reasons, it would be beneficid to the Moby Dick project if an energy-efficent
transport protocol would be designed. As a basis for such a protocol, TCP/IP (Transport
Control Protocol/Internet Protocol) is a likely candidate. This would enable the handheld to
communicate, viathe Internet, with vast numbers of systems.

Thisled to the following problem statement:

The energy efficiency of transport protocols on wireless links should be
researched. Based on that research, E°TCP —an energy efficient version of
TCP/1P- should be designed and implemented, to test its energy efficiency and
performance.

The remainder of this chapter further delinestes the problem area of E?TCP. Chapter 2
explains what energy efficiency is and how it can be caculated. Chapter 3 then describes
TCPIP, explans what keeps it from reaching high levels of energy efficiency and what can
be done to remedy this. The solutions presented in Chapter 3 were used to design E°TCP,
which is described in Chapter 4. In Chapter 5 an implementation of ETCP will be introduced
before a thorough energy efficiency and peformance evdudion will be given. Findly
Chapter 6 gives the conclusions of thisthesis.

1.1 Problem area

E°TCP will be used on a wireless link between a mobile host and a base station. The mobile
host should be able to connect to the Internet via the base dation in such a way that it is
transparent to the mobile hogt and the Internet hogt it is connected with. This means neither
the mobile host nor the Internet host should be able to tell whether ETCP is used between the
mobile host and the base dation or regular TCP/IP. (Because the behavior of TCP is highly
dependant on IP, E°TCP will have the functiondity of both TCP and IP. This maximizes the
potentid gain in energy efficiency.)

The design of this protocol is limited to the trangport layer. The lower layers (the link layer
and medium access layer (MAC) layer) should not be changed in any way. This is because the

1

Energy Efficient TCP

protocol will be used as a drop-in replacement for TCP/IP on the mobile host and should be
usable on dl wirdess links, just like TCP/IP is usable on dl wired networks. The protocol
should therefore make no assumptions about the link- and MAC layers.

Now it is clear what should not be changed, it is time to explan what is alowed to be
changed. There are three parts of the systems that can be changed. They are additive, which
means that the second proposed change dso includes the firsd and that the third proposed
change aso includes the second and fird.

The first proposed change is to replace TCP/IP at the base station with ETCP. This change
requires N0 user intervention but it is expected that by only applying this change, the increase
in energy efficency israther small.

The second proposed change is to also replace the transport protocol on the mobile host. This
requires some user intervention because the user must ingal the protocol on its mobile hodt.

Because of the user-friendliness of modern operating systems this should not be a big
problem. When this proposa is executed a truly new transport protocol can be desgned
because it does not have to communicate directly with TCP/IP. A proxy application a the
base dation can then handle the trandation of the energy efficient protocol on the wirdess
link to TCP/IIP on the wired pat of the path. The design of the proxy is not part of the
problem statement: ETCP will be the sole point of focus. It is expected that this proposa will

yidd an increase in energy efficiency compared to only the fird change. Such a setup is
shownin Figure1.1.

mobile host base station internet host
application proxy application
TCP TCP
E2TCP E2TCP
IP IP
link layer link layer | link layer link layer
MAC layer MAC layerlMAC layer| MAC layer
é}““v;i;él_e_s_s_li_r{l; ___é) é fixed link 6

Figure 1.1: Theintended setup of ETCP.

The third proposd is to change (some of) the applications on the mobile host as well. These
aoplications will then be able to optimize the energy efficient connections for their intended
use with Qudity of Servicelike (QoS-like) parameters. It is expected thet this will increase
the energy efficiency even further in certain cases, which would not have been possble with
only the first two proposed changes.
The conclusion of this chapter isthat the protocol should meet the following requirements:
: It should be a transport protocol and should be compatible with TCP/IP (through
trandation at the base ation).
It should be energy efficient.
It should make no assumptions about the lower layers and leave them unchanged.
Higher layers (applications) should be able to use ETCP just like TCP/IP. However, if
they are ETCP-aware, they should be able to optimize E°TCP connections for their
intended use with QoS-like parameters.

L. Donckers

2 MEASURING ENERGY EFFICIENCY

When researching the energy efficiency of protocols, it is of course important to know what
exactly energy efficiency (of a protocol) is and how to cdculate it. In this chapter both topics
will be discussed.

2.1 Energy efficiency and energy overhead

Energy efficiency is a measure to indicate how much energy a protocol uses to transmit data
(in a certain case) compared to an ided protocal. It will not be measured in absolute vaues
because different cases (with different amounts of payload) should be comparable. An energy
efficiency near 0% means little of the spent energy was used efficiently, while an energy
efficiency of 100% means that no energy was wasted, which can only be achieved by an ided
protocol.

It is important to know that for a given daa transmisson medium there is a minimum amount
of energy that is required to send data from source to destination. No protocol can use less
energy and gill successfully complete the transmisson. Let's cdl this minimum M. This is
probably different from the actua spent energy, cdled S. The difference between those two
vauesis cadled W; the amount of wasted energy. These values are shown in Figure 2.1.

W
+
= S
M
S = energy Spent by the protocol
w = energy Wasted by the protocol
M = Minimum amount of spent energy possible

Figure 2.1: The relation between the spent, wasted and minimum amount of energy.
Energy efficency thenis

EE=M/S
Equation 2.1: Energy efficiency.

or in words: the part of the spent energy that was used useful. If the protocol is ided and it
only uses the minimum amount of energy (S = M) the energy efficiency is 100%. Since M is
fixed and S can only increase, the energy efficiency can only become lower.

Even though this is exactly what is needed to know about the protocols in this assgnment,
enagy €ffidency is not a good way to compare various protocols. This is because the
differences in energy efficiency will be quite smdl even though the amount of wasted energy
can differ quite much. Congder the following example.

Example 2.1. The minimum amount of energy for a given data transfer is 100 (the
measure used does not matter). Protocol A spends an amount of 125 to complete
the transmisson and protocol B 150. Clearly protocol B wastes twice as much

Energy Efficient TCP

energy as protocol A (W is 50 and 25 respectively). But the energy efficiency of
protocol A is 100 / 125 = 80% and that of B is 100 / 150 = 67%. When one only
looks at the energy efficiency it is easy to see that protocol A is better than
protocol B. When one tries to see how much protocol A is better, the energy
efficiency numbers are not that convenient.

There is another measure that is closely related to energy efficiency: energy overhead. Energy
overheed is the amount of wasted energy compared to the minimum amount of energy, or:

EO=W/M
Equation 2.2: Energy overhead.

This can be seen as the amount of energy that is spent more than the minimum the protocol
requires. Because of its close reation with energy efficiency, energy overhead can be
cdculated when only energy efficiency is known, and vice versa. Unlike energy efficiency
however, energy overhead is more suited to show the differences between two protocols. This
Is shown in the next example.

Example 2.2 Congder the previous example but now the energy overhead will be
cdculated instead of energy efficiency. The energy overhead of protocol A is 25 /
100 = 25% and the energy overhead of protocol B is 50 / 100 = 50%. This shows
precisely that protocol B wastes twice as much energy as protocol A.

Energy overhead will be used to compare protocols from now on, while energy efficiency
numbers will sometimes be stated to be complete.

2.2 Data overhead and time overhead

Now a definition of energy overhead has been given, it is time to show how it is caculated.
Before this can be done it is important to understand what precisely influences the energy
efficiency and overhead of a protocol. Bascdly there are two characterigtics that influence
them. The first characteridtic is the data overhead of a protocol. When aprotocol uses more
bytes to transmit the same amount of data, more bytes are wasted. Therefore the protocol
becomes less energy efficient. The second characterigtic that influences the energy efficiency
of a protocol is time overhead. In certain cases, the longer the protocol needs to tranamit the
same amount of data, the longer the radio has to be active. When the radio is active, it requires
(extra) energy to operate. Thus, the more time a protocol requires to send the same amount of
data, its energy efficiency decreases. These two characteristics are sometimes related.

The quedion remans how much these characterisics each influence energy efficiency. The
answer redly depends on the type of transceiver (transmitter and receiver) and what kind of
link and MAC layer are used to transmit and receive the packets. For convenience the
combination of transceiver, link layer and MAC layer will be cdled a radio from now on. To
diginguish between different types of radios, a generd power mode of radios will be
presented first.

2.3 Power model of radios

A radio has various dates in which it operates. In each date the radio requires a certain
amount of power to operate. In the following table as an example, the various dates of a

4

L. Donckers

WaveLAN modem will be liged, together with a description of the amount of power
consumption [HAVOQ].

State Power consumption Wavel AN power consumption (mW)
Off none 0
Sleep low 35
Active high 1325
Tranamit dightly higher than active 1380
Receive dightly higher then active 1345

Table 2.1: Powerstates of radios.

Of course one could think that the ided radio would be in the off tate continuoudy, except
when it has to recelve or tranamit data. However, red radios behave differently. When a radio
switches between two dates it takes a certan amount of time and possbly some amount of
energy to complete the switch. Switching to and from the off mode takes so much time it is
infeasible to use it to save energy between consecutive transmits and receives. The deep State
can be used for such a purpose. To effectivdy use the deep State, however, takes extra
coordination and increases the complexity of the lower level protocols. Furthermore, a lot of
radios are not optimized for power consumption but for performance. So there are ill a lot of
radios that do not use the deep state to save power to its full effect.
It is aso important to understand the concept of a network sesson. A network session is a
period in time in which there is a established connection between the mobile and the base
gation. During a network sesson it is possble to use the network. For instance by requesting
emal from a mail server or establishing a telnet sesson with a telnet server. During a network
session it is often infeesble for the radio to enter the off State. This is because switching to
and from the off State requires much time. So before and after a network session the radio can
be put in the off Sate to save energy. However, doing this during asession is not a thing a lot
of radios are able to do.
Now a genera power model of radios has been given, some types of radios will be discussed.
There are two extreme types of radios. Not dl radios will fit in ether categories. All radios
however can be placed on a gliding scale between the those two types. These types are:
Always active. Such a type of radio is dways in the active sate during a network
sesson. Because of the smdl difference between the energy consumption levels of the
active date and the transmit and recelve dates, data overhead does not have a large
impact on energy efficiency. Time overhead is much more important because the sooner
the data has been transmitted and the network sesson can be ended, the sooner the radio
can put in the off state. WavelL AN is an example of such atype of radio.
Idedl. An ided radio would dways be in the degp- (or even off-) state during a network
session, except when it has data to transmit or receive. For such a type of radio, time
overhead would only have a very samdl impact on energy efficiency. Daa overhead, on
the other hand, is much more important. E°MaC is an example of this type of radio
[HAV9g].
So a one sde of the gliding scale, time overhead is very important and data overhead is not,
while a the other sde of the scale, data overhead is very important and time overhead is not.
Because our energy efficient protocol could be used on ether extreme of the scde, it would
be best to minimize both types of overhead.

Energy Efficient TCP

2.4 Calculating data overhead and time overhead

The problem of measuring energy efficiency has now boiled down to two smpler problems.
How to measure data overhead and how to measure time overhead. Data overhead will be
caculated asfollows:

DO=S/D-1
Equation 2.3: Data overhead.

where:

DO isData Overhead.

D is the amount of Data that should be transmitted by the protocol (measured in bytes).
Thisisthe payload of the protocol and is often referred to as user data.

S is the amount of data the protocol actualy Sent, to transmit the payload D to the
receiver (measured in bytes). This includes retransmitted packets, packet headers and
acknowledgements.

Congder the following examples:

Example 2.3: when TCP/IP is used to €nd 1000 bytes in one packet, that would
generate one 1040 byte packet (40 bytes header and 1000 bytes payload) and one
40 byte acknowledgement. That would result in:

D = 1000
S=1040 + 40 = 1080

DO =1080/1000-1=8%

Example 2.4: when TCP/IP is used to send 1000 bytes in one packet (just like in
Example 2.3) but this packet is lost upon firgt transmission, it would have to be
retransmitted. That would result in:

D = 1000
S=1040 + 1040 + 40 = 2120

DO =2120/1000—-1=212%
Time overhead will be caculated as follows:

TO=T/(D/B)-1
Equation 2.4: Time overhead.

where:

TO isTime Overhead.

T is the Time the protocol required to transmit the payload D to the receiver (measured in
seconds). Time is measured until the detination has received dl data and the sender is
aware that this has happened.

B Isthe Bandwidth available on the link (measured in bytes per second).

L. Donckers

Example 2.5: when a protocol requires 1 seconds to transmit 1000 bytes over a
link with a bandwidth of 1500 bytes per second, that would result in:

D = 1000
T=1
B = 1500

TO=1/(1000/ 1500) — 1 = 50%

2.5 Calculating energy overhead

Now it is clear how data- and time overhead are caculated, it is time to show how to cdculate
energy overhead. It has been shown, in this chepter, that energy overhead (and efficiency)
depends on data and time overhead. It has aso been shown that how much each
characterigic influences energy overhead depends on the type of radio used. Because of this
energy overhead will be cdculated as the weighed average of data overhead and time
overhead. Three ratios will be used, which are al assumed to correspond closely to a certain
type of radio. It should aso be noted that the ‘aways active and ‘ided’ types of radio were
assumed to be dmogt aways active and dmost ided. So they are not as far on the extreme
ends of the scale as mentioned in Paragraph 2.3. They are listed in the following table.

Typeof Radio | Data Ratio | Time Ratio
Always active 0.1 0.9
Intermediate 0.5 0.5
Idedl 0.9 0.1

Table 2.2: Data- and time ratios for different types of radios.
Energy overhead can then be calculated like this:

EO=DRr* DO+ TRr* TO
Equation 2.5: Energy overhead.

where:

EO isEnergy Overhead.

DRr isDaaRaiowithradio R.
TRr isTimeRatiowithradio R.

2.6 Calculating energy efficiency

Like energy overhead is the weighed average of data- and time overhead, energy efficiency is
the weighed average of data and time effidency. From the definition of energy efficiency it
is easy to deduce the definitions of data and time efficiency. Data efficiency is the part of the
amount of data actualy sent to complete the transmisson, that was used for the payload. And
time efficiency is the part of the time it took the protocol to complete the transmission, that
the minimum time is. So they will be caculated asfollows

Energy Efficient TCP

DE=D/S
Equation 2.6: Data efficiency.

TE=(D/B)/T
Equation 2.7: Time efficiency.
where:

DE isDataEfficiency.
TE isTimeEffidency.

Please note that both data= and time efficiency (just like energy efficiency) are percentages
and are dways larger than 0% and less than or equa to 100%. As can be seen data efficiency
and data overhead are closely related. One can be used to calculate the other:

DE=1/(1+DO)
Equation 2.8: Data efficiency as a function of data overhead.

because:
DE=1/(1+DO)
DE=1/(1+(S/D -1))
DE=1/(S/D)
DE=D/S

and:

DO=(1/DE)-1
Equation 2.9: Data overhead as a function of data efficiency.

because:
DO=(1/DE)-1
DO=(1/(D/9)-1
DO=S/D-1

Time efficiency and time overhead are smilarly reated:

TE=1/(1+TO)
Equation 2.10: Time efficiency as a function of time overhead.

because:

TE=1/(1+TO)
TE=1/(1+T/(D/B)-1)
TE=1/(T/(D/B))
TE=(D/B)/T

and:

L. Donckers

TO=1/TE-1
Equation 2.11: Time overhead as a function of time efficiency.

because:
TO=1/TE-1
TO=1/((D/B)/T)-1
TO=T/(D/B)-1

With the same ratios liged in Table 2.2, it is now possble to cdculae the energy efficiency of
atrangmisson:

EE=DRr* DE+TRr* TE
Equation 2.12: Energy efficiency.

where:
EE isEnegy Efficdency.

2.7 Summary

In this chapter, two measures were introduced that say something about the amount of spent
energy of a protocol: energy efficiency and energy overhead. It was dso shown that, even
though the god of this thess was the desgn of an energy efficient protocol, energy efficiency
is not the best measure to compare the performance of different protocols. Energy overhead is
more suited for this.

To cdculate energy overhead (and efficiency) it was daed that two characteristics of a
protocol should be know: the data overhead and the time overhead. How much each
characteridic influences the energy overhead depended on the type of radio used. Different
types of radios were shown and explained, after which it was shown how to cadculae energy
overhead. Findly, the caculation of energy efficiency was discussed.

Energy Efficient TCP

10

L. Donckers

3 ASPECTS OF TCP

The protocol known as TCP has become the de facto standard high level protocol used in
large (inter)networks. It became the best known transport protocol, through the enormous
growth of the Internet in both sze and popularity. In this chapter, it will be explaned how
TCP works, what keeps it from reaching high levels of energy efficiency on wirdess links and
what can be done to remedy this.

3.1 Transport Control Protocol

At the lowest leve, computer communications networks provide unrelidble packet deivery.
Packets can be bst or destroyed when transmisson errors interfere with data, when network
hardware fails, or when networks become too heavily loaded to accommodate the load
presented. Networks that route packets dynamicdly can deliver them out of order, ddiver
them after a subgtantid delay, or deliver duplicates. At the highest level however, gpplications
programs often need to send large volumes of data from one computer to another. A generd
purpose (connection oriented) protocol that provides reliable in-order delivery of data over dl
these kinds of low level networks, is required to be able to efficiently code networked
gpplications and to provide a means to knit networks together into one large (globa) network.
TCP providesjust this.

3.11 Reliability

To be able to provide rdiable delivery, even though TCP packets themsdves may be logt or
duplicated, TCP uses postive acknowledgements (with retransmissions). Such schemes are
aso known as ARQ (Automatic Repeat reQuests) schemes. It requires the recipient to
communicate with the sender, by sending back an acknowledgement message for each packet
it receives correctly. The sender keeps a record of each packet it sends and waits for an
acknowledgement before sending the next packet. The sender dso starts a timer when it sends
a packet and retransmits the packet if the timer expires before the acknowledgement arrives.
In this way packets tha ae lot will be retrangmitted untili the sender receves an
acknowledgement indicating the recipient has correctly received the packet.

The second reliability problem arises when the underlying packet ddivery system duplicates
packets. Duplicates can dso arise when networks experience high delays that cause premature
refransmissons. To solve this problem each packet is assgned a sequence number and the
receiver is required to remember which sequence numbers it has received. To avoid confuson
caused by ddayed or duplicate acknowledgements, each acknowledgement carries the same
sequence number as the packet it is supposed to acknowledge.

3.1.2 Sliding Windows

The retransmisson scheme mentioned above leaves a subgtantid amount of bandwidth
unused because it must delay sending a new packet until it receives an acknowledgement for
the previous packet. To operate more efficiently TCP uses a diding window scheme. Such a
scheme dlows the sender to trangmit multiple packets before wating for an
acknowledgement. The easest way to envison the operation of a diding windows scheme is
to think of a sequence of packets to be transmitted. The protocol then places a smdl window
on the sequence and tranamits al packets that lie ingde the window. Once the sender receives
an acknowledgement for the first packet in the window, it dides the window aong and sends
the next packet.

11

Energy Efficient TCP

A packet is cdled unacknowledged if it has been transmitted but no acknowledgement has
been received. So the number of unacknowledged packets is congtrained by the window size.
With a window sSze of one packet, this diding window scheme behaves exactly the same as
the scheme mentioned above. By <Hting the window Sze to a large enough vaue, it is
possble to eiminate network idle time completely. A sequence of packets with a diding
window is shown in the figure below.

1 2 3 4 5| 6 7 8 9 110 11

window
>

acknowledged packet
upon reception of an
nacknowledged packet acknowledgeme_nt for
! wiedged p packet 5 the window
will slide to the right like
untransmitted packet the arrow indicates

Figure 3.1: The sliding window mechanism.

3.1.3 Acknowledgements and Retransmission

Because TCP may send data in variable length packets, and retransmitted packets can include
more (or less) data then the origina, acknowledgements cannot easily refer to packets. Instead
they refer to a podtion in the stream (the data that needs to be transmitted) usng stream
sequence numbers. At any time, the recaeiver will have reconstructed zero or more bytes
contiguoudy from the beginning of the stream, but may have additiond pieces of the stream
from packets that arived out of order. The recaelver adways acknowledges the longest
contiguous prefix of the stream that has been received correctly.

This acknowledgement scheme is cdled cumulative because it reports how much of the
sdream has accumulated a the recever. Such a scheme has both advantages and
disadvantages. One advantage is that acknowledgements are both easy to generate and
unambiguous. Another advantage is that lost acknowledgements do not necessarily force
retransmisson. A disadvantage however is that the sender does not receive information about
al successful trangmissions.

3.14 Timeout and Retransmission

Like other reliable protocols, TCP expects the dedtination to send acknowledgements
whenever it successfully receives new octets from the data stream. Every time it sends a
packet, TCP darts a timer and waits for an acknowledgement. If the timer expires before data
in the packet was acknowledged, TCP assumes that the packet was lost or corrupted and
retranamitsit.

TCP however, is intended for use in an internet environment. In an internet, a packet traveling
between a par of machines may traverse a sngle, low-delay network, or it may travel across
multiple intermediate high-dday links. Furthermore, the tota delay between the origin and
degtination of data, depends on network traffic on intermediate links, and can therefore vary

12

L. Donckers

over time. Thus it is impossible to choose a timeout vaue a priori that will suit each Stuation
optima. To solve this problem, TCP does not use a fixed timeout vaue but measures the
round trip time of data and updates its timeout vaue accordingly.

3.15 Window Size and Flow Control

TCP dlows the sze of the diding window to vary over time. Each acknowledgement contains
a window advertisement that specifies how much data the recipient is prepared to accept. This
can be seen as gpecifying the receiver’s current buffer Sze. In response to an increased
window advertisement the sender increases the size of its diding window and in response to a
decreased window advertisement it does the opposite.

The advantage of a variable window sze is that it provides flow control. Through these
window advertissments the recelver can control the rate a which the sender tranamits data
Having a mechanism for flow control is essentid in an internet environment, where machines
of various speeds and sizes communicate through networks and routers of various speeds and
capecities. There are redly two independent flow problems. Fird, internet protocols need end-
to-end flow control between the sender and the ultimate receiver. Window advertisements
provide this kind of flow control. Second, internet protocols need intermediate flow control to
handle congestion on intermediate networks.

3.16 Response to Congestion

Congedtion is a condition of severe delay caused by an overload of packets a an intermediate
switching point (eg., a router). When congestion occurs, delays increase and the router starts
to queue packets until it can route them. Of course each queued packet is stored in memory
and a router has only finite memory. In the worst case, the total number of packets arriving at
the congested router grows until the router reaches capacity and starts to drop packets.

Endpoints do not usudly know if, where and how congestion occurred. Senders only
experience timeouts for the packets that were dropped by the router. Under normal
crcumglances TCP would smply retransmit the packet, thereby increesng treffic. This
aggravates congestion indtead of dleviding it.

To avoid congestion, the TCP standard recommends using two techniques known as dow-
dat (with congestion avoidance) and multiplicative decrease. To control congestion TCP
maintans a second limit to the window Sze (besdes the advertissd window). This limit is
cdled the congestion window limit. The alowed window sze of the sender is then at dl times
the minimum of both limits

Multiplicative decrease reduces the congestion window limit by haf, upon every loss of a
packet. So multiplicative decrease can be seen as the mechanism that dows TCP down in case
of congestion. When TCP no longer experiences congestion on its path, it uses dow-start
(edditive) recovery. Sow gart begins with a congestion window limit of one and ncreases it
for every acknowledgement it receives. Once the congestion window limit reaches one haf of
its origind dze before the congedtion, congestion avoidance tekes over. During congestion
avoidance, it increases the congestion window only if dl packets in the window have been
acknowledged.

3.2 Problems of TCP

In this chapter some characteristics of TCP will be discussed tha make it less suiteble for
wirdesslinks.

13

Energy Efficient TCP

3.2.1 Large headers

TCP was intended to be a highly deployable transport protocol. It has a bt of festures and
options, some of them rarely used, which make it suitable for operation on a wide range of
(inter)networks. When TCP became popular, an increesng number of changes and additiond
options were proposed. Some of these options are widely used today. To accommodate the
most basic features, TCP has a header size of 40 bytes. This is a fixed Sze, which means tha
even though not al header fidds will be used, the header size will Hill be 40 bytes. When
widely used options are activated the size can grow to 80 bytes.

This means that for every packet, there are 40 to 80 bytes overhead. An acknowledgement
adds another 40 to 80 bytes to the overhead. This means that for packets with a 1000 byte
payload, TCP has a data overhead of about 8% (without retransmissions). As can be seen,
thereislots of room for optimization here.

3.2.2 Simple acknowledgement scheme

The acknowledgement scheme employed by TCP is farly smple and does not dlow an
efficient retransmisson scheme. Even though some optimizations have been proposed, TCP's
sandard scheme dway's remained unchanged, o no incompatibilities were introduced.

Standard TCP can only generate postive cumulative acknowledgements. This means tha
when the end dtation receives an out-of-order packet (due o packet reordering or packet 10ss)
it is unable to send this information to the sender. Based on this incomplete information the
sender can not know what the most energy-efficient retransmisson scheme will be. A more
advanced acknowledgement scheme will be easy to implement and will undoubtedly increase
the energy efficiency. An example of wha the receiver acknowledges and how that differs
from the actud Stuation is given next.

Example 3.1. Condder the following receiver dstate and the sender’s view of it
both listed in Figure 3.2.

receiver state

1 2 3 4 5| 6 7 8 9| 10| 11

sender’s view of receiver state

1 2 3 4 5| 6 7 8 9110 11

received packet

unreceived packet

Figure 3.2: Example based on the acknowledgement scheme of standard TCP.

Assume the sender has sent a totd of 9 packets. As can be seen the receiver has
received al packets up to and including packet 5. Packet 6 and 7 were logt
however, after which the receiver received packet 8 and 9. Upon reception of both
packets, the receiver has to send an acknowledgement. Because of the postive

14

L. Donckers

cumulative acknowledgement scheme, the receiver sends acknowledgements for
packet 5.

Because the sender receives multiple acknowledgements for packet 5, it knows
something went wrong. It can safely assume packet 6 was lost but nothing nore. It
now has two options, both of which are potentidly inefficient. It can ether send
one packet (number 6) or dl packets (numbers 6 up to and including 9).

If it would retransmit all packets, two packets would be sent too much. However,
if the sender follows the standard and retranamits only packet 6, it must wait for
the acknowledgement before it can decide what and how much to send next. Thus,
it reverts to a dmple protocol and may lose the advantage of having a large
window.

3.2.3 Loss is considered congestion

TCP was desgned with highly rdidble links in mind. When it encounters packet loss it
interprets this as congestion. In a (highly reliable) wired network this is a valid choice because
in such setups congegtion is the maor source of packet loss. On wireess links however, the
higher bit error rates cause much more packet loss (due to errors) than generaly encountered
on wired links. Interpreting al packet loss as congestion is not a redigic solution on wireless
links, because from an energy efficiency point of view the ided response to congestion differs
from that to (burst) errors. Using an optimized window size management scheme, which aso
condders (burst) erors as the cause of logt packets will probably yield an increase in energy
efficiency.

3.24 Complete reliability

Complete rdiability may not seem a problem, but there are gStuations in which TCP's
complete reiability is undesirable. When recelving streaming audio (or video) with TCP, the
protocol will rerequest dl lost data. These rerequests will make sure the application (eg. a
media player) will receive dl data The extra latency introduced, will probably make the
playback gal for a time and then fast-forward to the part where it was supposed to be by then.
So rerequesting lost data has little use in such Stuations because the data will arive too late.
Since sreaming media can usualy be enhanced to cope with reasonable amounts of data loss,
it would be better not to send rerequests for lost data (up to areasonable level) in that case.

Note that UDP (user datagram protocol) could be considered as a replacement for TCP in
such cases. Just like TCP, UDP is a protocol that works on top of the IP protocol. Unlike
TCP, it is connectionless and offers no rdiability & dl. Bascdly UDP offers too little
features and too low reliability to be a red improvement over TCP. Usng UDP shifts the
problem to the application, because when usng UDP, the application is responsble for
connection setup/termination and the creation/handling of acknowledgements.

3.3 Possible solutions

In this chapter possble solutions to the energy efficiency problems of TCP will be discussed.
Some of these solutions are mere concepts while others are extensions to existing protocols or
even complete new protocols. All of these protocols try to optimize TCP (for wirdess
networks) in one way or another. Unfortunately most of them try to optimize the performance
of TCP ingead of the energy efficiency. Energy efficiency, however, depends only on byte-
and time overhead. These two metrics are also often used to measure the performance of TCP,
so thereisalarge overlap.

15

Energy Efficient TCP

3.31 Header compression

To address the data overhead of TCP severd proposas have been voiced to compress the
headers of TCP. This was often done with low-bandwidth serid (wirdess) links in mind.
TCP/IP header compresson was firs standardized with RFC 1144 [JAC90] (and later with
RFC 2507 [DEG99], RFC 2508 [CAS99] and RFC 2509 [ENG99]). The scheme only works
on sngle hop links (i.e. there are no intermediate hosts) and needs to be supported by both
end points. Although it only works on single hop links, this only gpplies to the compression of
the TCP connection. The actud connection can gill travd a path with many intermediate
hops. The compression is trangparent to other hosts except for the two end points of the single
hop link on which the compression takes place.

In [JACO0] the standard TCP/IP header fields were andyzed and for each field the way the
vaues change during a TCP/IP connection were examined. Four different types of changes
are defined and for each type a (new) representation method is chosen. For ingtance large
integers, which only change dightly with each packet ae represented by a smdl integer,
which only represents the change from the last packet. This type of change is known as a
delta change and the new representation is caled a delta vaue accordingly. Almost al header
fields are made optiona and are only included if a certain flag in the compressed header is set.

One interesting optimization is the replacement of the IP addresses and port fieds with a
connection identifier. Each TCP/IP headers stores the IP address and the port of both the
sender and the recelver. Combined, these fields require 12 bytes of the header. Since these
fidds do not change during a connection, a connection identifier gets assgned to the
connection during the connection establishment. From then on the compressed headers in the
connection only carry the 1- byte connection identifier.

A typicd compressed header Sze is 3 bytes with the proposed scheme instead of 40 bytes. Of
course this is a great improvement. In order to reach it however, the protocol has become less
robust. Because the connection identifier is not adways included and the two most used
options are replaced by ddta vaues, a lost packet can cause dl subsequent packets to be
misinterpreted. Naturally, checks are proposed to remedy this, but the necessary error
recovery scheme can ill cause normd valid packets to be discarded. This extra overhead will
probably cause severe performance pendties on wirdess links because of the high packet loss
generdly encountered. A less extreme compresson method will dmost certainly atan less
data overhead than this scheme in case of high packet loss. Thisis shown in the next example.

Example 3.2. Condder a transmisson of 25000 bytes with packets that have a
1000 byte payload. Upon transmission one of the necessary 25 packets will be
logt. Three versons of TCP will be compared. The first verson is standard TCP
with 40 byte headers and acknowledgements. The second is TCP with a robust
form of header compresson, which has 8 byte headers and acknowledgements.
The find verdgon is TCP with the described header compression. This verson has
3 byte headers and acknowledgements but the loss of the packet will cause the
next two packets to be misnterpreted and retransmitted. The amounts of
transmitted bytes then are:

26 * 1040 + 25 * 40 = 28040 bytes for norma TCP
26 * 1008 + 25 * 8 = 26408 bytes for TCP with robust header compression
28* 1003 + 25 * 3 = 28159 bytes for TCP with described header compression

16

L. Donckers

As can be seen, the described header compresson would have a higher data
overhead than norma TCP in this dtuation. A more robust header compression

method would perform best however.

3.3.2 Selective acknowledgements

The sdective acknowledgement scheme is an extension to the TCP protocol that addresses
some of TCP's problems by enhancing the acknowledgement scheme. It was standardized in
RFC 2018 [MAT96] but a SACK (as sdective acknowledgements are caled) scheme was
dready mentioned in RFC 1072 [JACS8]. (An extenson to RFC 2018 was published under
RFC number 2883 [FLOO0Q].) Both end points of the TCP connection need to support the
SACK option in order to be effective.

The SACK scheme adds extra information to acknowledgements about the receiver's date
eech time TCPs dandard podtive cumulative acknowledgement scheme is lacking. This
happens when there are ‘gagps in the data the dedtination host has received. Standard TCP
would acknowledge dl data up to the first gap but TCP with SACK can effectively bridge a
gap by sending an extra SACK block. By sending more information in acknowledgements the
sender is better able to react to the actud dae of the link and the receiver. The difference in
supplied informetion to the sender is shown in the next figure.

Example 3.3. Condder the same dtuation as in Example 3.1. However, this time

there is dso a SACK enabled recelver. The recaiver sate and both the senders
view of it are represented in the next figure.

receiver state

1 2 3 4 5| 6 7 8 9| 10| 11

sender’s view of receiver’s state (standard TCP)

1 2 3 4 5| 6 7 8 91]110| 11

sender’s view of receiver’s state (SACK enabled TCP)

1 2 3 4 5| 6 7 8 9| 10| 11

received packet

unreceived packet

Figure 3.3: Example based on the acknowl edgement scheme of standard TCP and
SACK enabled TCP.

Remember that the standard TCP sender had to choose between two potentidly
inefficient courses of actions. The SACK enabled sender, however, knows what
packets were lost and can smply retranamit those. This is adways the most
efficient method.

17

Energy Efficient TCP

The SACK scheme can include any number of SACK blocks up to a maximum of four. This
IS because there is a limit on the sze of TCP headers. All TCP options (including SACK
blocks) are included in a specid TCP header fidd called TCP options. The more options a
TCP implementation uses the less space there is left for SACK blocks. In generd TCP
implementations that include SACK support, there is enough space left for three SACK
blocks.

Even though its headers are larger, a TCP implementation with SACK support generdly has
less data and time overhead than a comparable implementation without SACK support,
because it can handle retranamits more efficiently. Because of the less daa and time
overhead SACK dso peforms better (in terms of throughput) than other protocols as was
shown in [FAL96].

3.3.3 Delayed acknowledgements

In principle a TCP recelver should acknowledge each packet that it receives. So each packet
that reaches its dedtination immediately triggers a 40 byte acknowledgement (sometimes it
can be piggybacked on norma packets bound for the other host however). This can of course
be consdered as a waste of bandwidth. To remedy this the TCP standard alows for a receiver
to dday the sending of an acknowledgement for a period of time (with a maximum of 500
millissconds) [COM95]. In this way multiple acknowledgements can be combined and/or the
acknowledgement(s) can be piggybacked on a normal data packet.

This of course reduces data overhead. Unfortunately there are also a few drawbacks. The first
disadvantage is that the importance of an acknowledgement increases. Tha is if such an
acknowledgement is lost more information on the dtate of the receiver is logt than would be
the case with a unddayed acknowledgement. Because more information is log, the
consequences can be more severe, possbly increesng data and time overhead. The second
drawback is that time overhead will probably increase because the receiver will not
immediately send an acknowledgement but will wait for a period of time before doing so.
Thiswill cause the sender’ s window to be built up more dowly.

Because TCP relies on acknowledgements to accuratdy estimate the round trip time, the
sender is not adlowed to combine too much acknowledgements. For every second data packet
an acknowledgement should be sent, further reducing the decrease in data overhead.

Bedow are listed two graphs that show the energy overhead for Tahoe (a verson of TCP) with
and without delayed acknowledgements. For more information on the used te method and
why only these grgphs suffice to compare the performance, see Chapter 5 and especidly
Paragraphs 5.1, 5.2, 5.3 and 5.6.1. In these paragraphs, everything needed to understand these
graphs will be explained. At this time, the grgphs could use some explanation. While the left
axis spesks for itsdf the lower axis might be unintdligible. It roughly resembles the qudity of
the channd. The left Sde of the axis resembles a high qudity channd (little errors) while the
right Sde of the axis resembles a low qudity channd (lots of errors). Above the graphs a
scenario is mentioned. The scenario indicates the error modd used. Scenario A uses fixed
length bad states (burst errors) while scenario B uses variable length bad sates.

18

L. Donckers

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)

250 /ﬁ /ﬁ
/. /
150 / / / /
i
/

[/
SZ‘M OHM

300/0.1 8/0.1 6/0.1 5/0.1 4/01 301 201 1/01 20120 12/1.2 8/0.8 505 4/04 303 202 101

300

N
a
o

200

Energy overhead (%)
Energy overhead (%)
=
o
o

o
o

Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|—0—without delayed acknowledgements —&— with | |+ without delayed acknowledgements —&— with |
Figure 3.4: Energy overhead of delayed Figure 3.5: Energy overhead of delayed
acknowledgements in scenario A. acknowledgements in scenario B.

In both graphs it is quite clear that the use of delayed acknowledgements incresses the energy
overhead of a protocol and thus decreases its energy efficiency. From an energy efficency
standpoint, delayed acknowledgements should be avoided.

3.34 Explicit congestion notification

TCP's flow control mechanisms rely on packet drops to detect congestion. When this happens
TCP is dready late in reacting because the congestion dready occurred. It would be better if
TCP could be notified when it is about to cause congestion so that it can react before packets
are lost. Lost packets should be avoided because they will have to be retransmitted, increasing
data (and time) overhead.

To improve TCP, an explicit congestion notification (ECN) sysem was proposed in RFC
2481 [RAM99]. In the proposed configuration both routers and end points should be ECN
capable. When a router predicts that congestion will occur, it marks packets by setting a
specid ECN fied in TCP packets. The recelver of the packet can then take appropriate
measures to make sure the transmisson rate of the connection will be reduced. In such a way
congestion can often be avoided.

Although this scheme can decrease data- and tme overhead (because less retransmits should
be necessary) it is dso possble it increases time overhead. When a TCP connection is
incorrectly told to decrease its transmisson rate for ingance. Overdl this scheme can
decrease energy efficiency but is only suited for multi-hop paths. E*TCP will be used on a
dngle-hop path. Thus it will not experience congestion on intermediate nodes, which is the
reason there is no need to make use of explicit congestion natification in E*TCP.

3.35 Forward error correction

Forward eror correction (FEC) is often mentioned or proposed when the performance of
(multimedia) streams over (wirdess) links is found to be lacking. FEC protects data by adding
a little bit of redundancy to each data unit. When errors occur on the wirdess link and the data
unit has errors in it, the FEC scheme can correct those errors (up to a certain amount). When
the amount of FEC is increased the protected data can withstand more errors. On the other

19

Energy Efficient TCP

hand the processing power increases as well as the totad Sze of the data that needs to be
trangmitted. This of course aso resultsin increased transmission times.

ARQ schemes provide exactly as much error correction as is needed, because they only kick
in when errors actualy occur. The amount of error correction used in FEC schemes however,
does not directly depend on the amount of errors that occurred. It in steed depends on the
amount of expected erors and so the amount of FEC is decided upon in advance.
Unfortunately predicting the future is gill impossible, even for FEC schemes. So most of the
time FEC schemes will ether offer too much protection or too little. When too much
protection is offered, too much data has been sent which means data- and time overhead could
have been reduced. When too little protection was offered, the receiver could not correct the
errors in the packet and the packet should be transmitted again. This is of course aso the case
when using an ARQ scheme but with the FEC scheme the packets are larger because of the
added protection. So ARQ schemes can be said to be more energy efficient than FEC schemes
[HAV99].

Furthermore using FEC in the transport layer is only possible when the lower layers dso hand
packets with errors to the transport layer. Because no assumptions were to be made about the
lower |ayers FEC can not be used in E°TCP.

3.3.6 I-TCP

Indirect TCP [BAK95] is a solution gpecificdly desgned to be used with wirdess
connections. It was one of the first proposds to use split connections. The connections are
named so because connections between the mobile host and fixed hosts are split up in two
Separate connections at the base dation: one regular TCP connection between the base station
and the fixed host and another connection between the mobile host and the base station. This
last connection is a dngle-hop connection over a wirdess link and there is no need to use
standard TCP. Rather a more optimized wirdless-link protocol can be used which solves some
of TCPs problems on wirdess links. Ancther advantage of split connections is tha it
effectivdly separates the flow and congestion control a the base dation. This way flow and
congestion control on each sublink can be optimized separately from the other.

Indirect TCP largely refrains from changing the protocol on the wirdess link and soldy
focuses on the split connection principle. Still this proposd is able to obtain impressive results
[BAK97] and the split connection principle is very well suited for wireless access to a TCP/IP
network.

3.3.7 Protocols inspired by I-TCP

The obvious advantages of the split connections approach inspired some other protocols.
These protocols dl use a (lightly) optimized verson of TCP on the wirdess links to further
improve performance over I-TCP.

The Berkeley Snoop Module [BAL95] is another proposa to tackle the performance problems
of TCP on wirdess links. Just like FTCP it proposes a split connection setup but the Snoop
Module is more active than the FTCP setup. The Snoop Module caches packets and performs
locd retrangmissons as soon as packet loss is detected. This further increases performance
over |-TCP.

The M-TCP protocol [BRO97] aso performs ingant loca retransmissions, just like the Snoop
Module. Furthermore it adds user data compression support to decrease the payload sze and
through specid flow control mechanisms it alows the sender to resume sending after bresks
(like handoffs) at full speed.

L. Donckers

In [RAT98] another protocol for networks with wireless links is proposed: WTCP. It closdy
resembles |-TCP but stresses the importance of accurate round trip time sampling and is
congtructed accordingly.

3.3.8 Delayed duplicate acknowledgements

The delayed duplicate acknowledgement scheme [VAIQ9] tries to mimic the behavior of the
Snoop protocol but does it TCP-unaware, unlike the Sioop Module, which is TCP-aware. A
TCP-aware protocol needs to look in the TCP headers in order to take appropriate measures.
It is possible however that the TCP headers are not readable by intermediate hosts (because of
encryption). This scheme tries to behave in the same way as the Snoop Module without
examining the TCP headers. Because this scheme has less information to base its decisons
on, it peforms dightly worse than the Snoop Module. On the other hand it can be used in
more Stuations.

3.3.9 Mobile-TCP

The Mobile-TCP protocol as described in [HAA97] is one of the few protocols that try to
optimize for energy efficency. It dso employs the split connection principle but dragticaly
changes the protocol on the wirdess link. An asymmetric protocol is proposed: the protocol
dack running a the mobile host is kept as smdl and smple as possble and as much
processing is offloaded to the base ation.

In order to save energy the protocol uses very smal custom headers and makes use of the
connection 1D principle, known from header compresson. The implementation a the mobile
host aso features as few timers as possible and the protocol does not use the diding windows
principle, dlowing for smadler buffers. Furthermore, the protocol for ingtance, does not
support flow control or resequencing.

Oveadl this protocol sacrifices s much in order to save on processng power, it will
undoubtedly spend more energy on retfranamits than other (energy efficient) protocols.
Because the relative power consumption of pocessors, compared to radios, keeps decreasing,
it is not that interesting to focus on minimizing required processng power. Minimizing data
and time overhead seems a better way to increase energy efficiency.

3.3.10 PRTP

The patid reliable trangport protocol (PRTP) [BRUOO] was not specificaly designed with
wirdess links in mind but with a type of traffic. The grict riability guarantees of TCP make
it less suited for many multimedia applications. Often when dreaming media experiences
gmal amounts of data loss, retransmisson is actudly undesirable. They cause the playback to
ddl and the retransmitted data will dready have ‘expired upon ariva. Furthermore most
dreaming media can withstand smal amounts of data loss without a noticeable loss in qudity.
For such connections the partid reiability trangport protocol, which is compeatible with TCP,
offersa solution.

It dlows the application to set a lower limit on the rdiability. When the overdl rdiability
does not drop below the limit, the recaeiver will not ask for a retransmisson. If the overdl
reliability of the connection is in danger, the recaeiver will ask for retransmissons in the
standard TCP manner. This enables a PRTP receiver to correctly operate with a TCP sender.

When the application can ded with data loss the reiability can be set to values as low as 90%.
In [GAROQQ] it is shown that with an optimized JPEG coder, images can tolerate up to 10%
dataloss before the quaity of the images becomes noticeably less.

21

Energy Efficient TCP

In case of packet loss PRTP performs very well compared to other versons of TCP. Please
note that this does mean that the PRTP receiver recelves not al data. Because wirdess links
generdly experience much packet drops, PRTP is extremey wel suited for streaming media
over wirdesslinks.

3.3.11 Optimized window management

One might think that this concept does not deserve it's own paragraph. However, the way in
which TCP reacts to (burst) errors on wirdess links leaves a lot to be desired. Every packet
loss is consdered to be caused by congestion. For each packet loss TCP will drasticaly
reduce its transmisson speed SO experienced congestion will quickly be cleared. The
assumption that each packet loss is caused by congestion is valid in wired networks. Because
of the high rdiability of such links, the largest portion of packet loss is indeed caused by
congestion. However, on wirdess links, the assumption is not vdid. Because of the reatively
low channd qudity of wirdess links, a lot of packets will be corrupted while in trandgt. For
each of those errors TCP will dso reduce its tranamisson speed. A huge loss in time overhead
can therefor be reached by optimizing the window management scheme of a protocol for
wirdess links.

3.3.12 Conclusions

Some of the concepts and protocols presented in this chapter are not gpplicable when
optimizing for energy efficiency. They ather focus on ways to improve performance that do
not increase energy efficiency or they optimize the power consumption of the wrong part of
the sysem. The other concepts presented here will be used in order to design a energy-
efficient trangport protocol and these include:
: gplit connections

amadl headers

selective acknowledgements

patid reiability

optimized window management

L. Donckers

4 E2TCP

In this chapter, ETCP will be described in detal. First an overview of the architecture of
E*TCP will be given, where the reasons for and expectations of the changes to TCP will be
discussed. After that, the header format will be explaned in detal, followed by the sdective
acknowledgement scheme. Findly, the window management will be described, as wel as the
partid reigbility mechaniam.

4.1 Architecture overview

One of the primary gods of this project was to design a transport protocol that would be
compatible with TCP. It was therefore only sdf-evident that TCP would serve as a bass for
this new protocol. Because E*TCP is derived of TCP, its architecture and mechanisms are
roughly the same. On four points, however, adjustments were made to increase the energy
efficiency of the protocol. These points are the headers, the acknowledgements, the window
management and the rdiability requirements. All four changes will be introduced in the

following paragraphs.

41.1 Headers

The large header sze of TCP was firg introduced as a problem in Paragraph 3.2.1. The
unnecessrily large headers are the cause of equaly-unnecessary data overhead. The custom
headers of E*TCP are the result of a rather sraightforward implementation of some of the
ideas of header compresson standards, presented in Paragraph 3.3.1. The main principle that
was used was if it is not necessary to transmit a certain header fidd, don't do it. This
principle is so sdf-evident; one could wonder why such a system was not incorporated in the
TCP standard.

All header fidds of TCP/IP datagrams were andyzed whether they should be included in the
headers of ETCP at dl, whether they should always be sent or whether they were to be made
optional. Such an optiona header feld will then only be sent if it is necessary to do s0. Care
was taken to keep the headers robust because the problems of a non-robust compressed header
system, explained in Example 3.2, have to be avoided.

The header size is reduced from 40 bytes to 8 bytes (in most Stuations). When using 1000
byte packets for instance, the data overhead introduced by the headers of ETCP will be 1.6%
as opposed to 8.0% for the headers of standard TCP. Because less data has to be transmitted,
the time overhead will probably aso decrease somewhat, dthough perhaps not as much as the
data overhead. This will probably result in a decrease in energy overhead of about 5%. The
details of the headers of EETCP will be discussed in Paragraph 4.2.

4.1.2 Acknowledgements

The smple acknowledgement scheme of TCP, introduced as a problem in Paragraph 3.2.2, is
another point of TCP that could be improved to increase energy efficiency. In case of missng
packets the sender smply has rot enough information about the state of the receiver. On those
occasons, it is possble the sender not always decides on the optima course of action. A
solution to this problem is the use of sdective acknowledgements, which were introduced in
Paragraph 3.3.2.

An E?TCP receiver is able to construct sdlective acknowledgements. It does this by adding
one or more SACK blocks to an acknowledgement. The headers (also used as
acknowledgements) of ETCP alow a maximum of two SACK Hocks to be sent. This enables
the receiver to fully acknowledge a received stream with two sets of subsequent missng

23

Energy Efficient TCP

packets. When the sender receives such an acknowledgement it is dways able to choose the
most energy efficient course of action. Because of the diminishing retuns of adding more
SACK blocks and the fact that SACK blocks increase the size of the acknowledgements, a
maximum of two SACK blocksis used.

Although SACK blocks increase data overhead because the acknowledgements increase in
dze when these blocks are used, the effect of sdective acknowledgements on the energy
efficiency will be postive. This is because the sender is able to react in an optimd way to lost
packets, which dightly decreases data overhead (because of less retransmits) and reduces time
overhead subgtantidly (because of a better utilization of the available bandwidth). However,
giving an exact edimae of the increese in energy efficdency is impossble The
implementation of sdective acknowledgements in E°TCP will be explained in detal in
Paragraph 4.3.

4.1.3 Window management

The problems of TCP on wirdess links with respect to its window management were
introduced in Paragraph 3.2.3. The assumption of TCP that each packet loss is an indication
of congedtion is vaid on wired networks, but has little vaue on wireless links. This is because
the inherent unrdiability of wirdess networks, which causes a subgantid amount of packets
to be lost because of errors on the link itsdlf. So, the window management of TCP should be
dtered to include (burst) errors as a possble source of packet loss, as was indicated in
Paragraph 3.3.11.

The window management mechanism of E>TCP differs on four points from that of TCP. First
of dl, E°TCP features immediate retransmits. When the receiver indicates it has recaved an
out-of-order packet, the sender can immediatdy retransmit the missng packets, because
ETCP will be used on a single-hop link and no packet reordering can take place on such a
link. Under the same conditions TCP would wait on a timeout before it would retransmit the
lost packet, causng subdantid delays. This change will therefore primarily decrease the time
overhead.

The second change is that E°TCP reacts to (burst) errors in a different way. If few errors
occur, E°TCP considers this to be the result of normd static and bardy reduces its
transmission speed. When lots of errors occur, ETCP considers a burst error to be the cause
and drastically reduces its transmisson speed. This way, E°TCP reacts to (burst) errors in a
very energy efficient way, as will be shown in Paragraph 5.6. It should be noted that this new
window management scheme relies on sdective acknowledgements to detect the number of
errors. Both data and time overhead will decrease because of this change.

E°TCP dso fedtures a minimum window size, which is the third point on which the window
management of TCP and E°TCP differ. This minimum window size causes ETCP to quickly
recuperate after aburst error, which will decrease time overhead.

The find change to the window management of TCP is the use of an extra timer. The timers
used in ETCP are smilar to the transmission timer in TCP, only one is used for transmissions
and one is used for retrangmissons. An extra timer increases the responsveness of the
protocol to changes on the channd but dso increases the complexity of the protocol. One
extratimer is considered to be a good tradeoff. This change will aso decrease time overheed.

The four changes will undoubtedly cause a decrease in energy overhead but it is impossible to
give an edimaion of the dze of tha decrease. The deals of the implementation of the
window management scheme can be found in Paragraph 4.4.

24

L. Donckers

414 Reliability requirements

Because the drict reiability requirements of a TCP connection are not dways desrable, as
was shown in Paragraph 3.2.4, the concept of partid rdiability was developed, which was
introduced in Paragraph 3.3.10. When transmitting streaming media, energy can be saved if
unwanted retransmits can be avoided. Partid rdiability provides a way to do this, by enabling
the gpplication to st the minimum desired religbility of the channd.

The implementation of patid rdiability in E°TCP is rather sraightforward. The receiver
keeps track of how much data was successfully received and how much was logt. If it detects
pecket loss it will check if the actud rdidbility gill exceeds the minimum desred rdigbility
and if so, will smply acknowledge the logt packet. The sender will think it was received
correctly and will refrain from retranamitting.

This dmple mechanism will be able to decrease the energy overhead. How much is uncertain
but its effect will increese when channd conditions deteriorate. This is because the effect of
sopping retransmits increases when more packets are lost. The detalls of the implementation
will be discussed in Paragraph 4.4.6.

4.2 Header format

The headers of E°TCP packets will be explained in this paragraph. Because ETCP needs to
be compatible with TCP/IP, the headers of IP and TCP will be examined first. Based on that
information, a decison can be made on wha header filds should be induded in E°TCP
headers, which will be explained in Paragrgph 4.2.3.

42.1 IP header

The Internet cdls its basic trandfer unit an (IP) datagram. Such a datagram is divided into a
header (of 20 bytes) and adata areain the following way:

header user data

IP datagram

Figure4.1: An IP datagram.

According to [DEG99], dl fiedds in headers can be classfied into one of the following four
categories depending on how they are expected to change between consecutive headers in a
pa:ket stream. These four categories are:
Inferred: The field contains a vaue that can be inferred from other vaues, and thus need
not be transmitted.
Nochange: The field is not expected to change during the packet stream. Such a vaue
only hasto be tranamitted once.
Ddta The fidd may change often but usudly the difference from the fidd in the
previous header is smdl, so that is more efficient to send the deviation from the
previous vaue rather than the current vaue.
Random: The field changes unpredictably and should therefore probably be sent in full.

Now the generd layout of a datagram and the classes of headers has been described, the
header can be described in more detail. The following figure presents the IP (verson 4)
header format:

25

Energy Efficient TCP

0 4 8 16 19 24 31
VERS HLEN SERVICE TYPE TOTAL LENGTH
IDENTIFICATION FLAGS FRAGMENT OFFSET
TIME TO LIVE PROTOCOL HEADER CHECKSUM

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

Figure 4.2: The IP header format.

The header fidds of an IP datagram are:

Field

Type Description

Protocol verson
(VERS)

nochange | This field contains the verson of the IP protocol that
was used to create the datagram and is of course not
expected to change within a packet stream. On the
wireless link, ETCP will operate and it does not need
to know which verson of TCP is used on the wired
pat of the connection. Therefore this fiddd can be

omitted from the E°TCP header.

Header length
(HLEN)

inferred This fidd contains the length of the header but this
can be determined by other means as wdl, so0 there is
no need to include it in the header of an E°TCP

packet.

Sarvice type

nochange | With this fidd the sender can specify the type of
trangport desired. It is, however, often ignored by
hosts and routers and is not expected to change.
E°TCP does not support different types of services
and it does not need to incude this fidd in its

headers.

Totd length

inferred This fidd contans the length of the complete

datagram but that will dso be gpecified by any
reasonable link-level protocol. It is unnecessary to

indudeit in E2TCP headers.

|dentification

random For each datagram a unique number is gtored in this
fidd. It is used to refragment split up datagrams. On a
point-to-point link (where E*TCP will operate) no
fragmentation will teke place and each packet will be
identified by its sequence number
acknowledgement number (TCP header fidds).

Hags

random These flags contral the fragmentation of the datagram

and can be |eft out of the header.

Fragment offset

random This fidd is used in datagran refragmentation and
does not need to be included in E*TCP headers.

26

L. Donckers

Field

Type

Description

Timetolive

nochange

This fidd contains the maximum number of hops the
datagram is dlowed to take over the internet and is
not expected to change. Because ETCP operates on a
angle-hop link this field would serve no purpose.

Protocol

nochange

This field indicates the next level protocol used in the
data portion of the IP datagram. Because ETCP only
has one mode of operation this fidd can dso be
omitted.

Header checksum

random

This is a checksum on the header only. In E°TCP a
checksum will be used but like the checksum field of
a TCP header it will protect the entire datagram and
not just the header.

Source |P address

nochange

This fidd stores the source address and will be
included in E°TCP headers.

Dedtination IP address | nochange

The dedination address is contained in this fidd and
will be induded in an E*TCP header just like the
source | P address.

Table 4.1;: ThelP header fields.

IP ds0 dlows some optiond extra information to be sent in its headers. Timestamps and
source routes are among them. As said these fields are optional and need not be supported by
E*TCP. Furthermore the base station can still support most of them, so these options can be

used on the wired path of the connection.

Of dl these header fidds only three will be induded (in one way or another) in the E°TCP
header: the source- and destination |P address and the checksum.

422 TCP header

A TCP packet is encapsulated in an IP datagram and is divided into a header (of 20 bytes) and
payload in away smilar to an IP datagram.

IP header

user data: TCP datagram

IP datagram

TCP header user data

TCP datagram

Figure 4.3: A TCP datagram within an |P datagram.

A TCP header can be presented as follows:

27

Energy Efficient TCP

0 4

10

16 24 31

SOURCE PORT

DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

HLEN RESERVED

CODE BITS WINDOW

CHECKSUM

URGENT POINTER

Figure 4.4: The TCP header format.

Thefidds of a TCP header are:

Field

Type

Description

Source port

nochange

The port number of the sender is stored in this
fild and should be induded in E*TCP headers
S0 it is compatible with TCP.

Dedtination port

nochange

This fidd dores the port number of the
receiving Sde and should dso be induded in an
E*TCP header.

Sequence number

ddta

This field indicates what part of the data stream
is induded in this daagram. This fidd is
required to interoperate with TCP.

Acknowledgement number

ddta

This fidld dsores a number, which indicates
what pat of the data stream has aready been
received by the destination and should not be
omitted from the headers of E’TCP.

Header length
(HLEN)

random

In this fidd the length of the TCP heeder is
stored. It is unnecessary to include it in ETCP
headers.

Code hits

random

Thisfidd contains 6 code bits. These are:
URG, which indicates whether the urgent
pointer fidd isvdid or not.
ACK, which indicates whether or not the
acknowledgement fidd is vdid.
PSH, indicates if this packet requests a
push.
RST, indicates if the connection should be
reset.
SYN, indicates if the sequence numbers
should be synchronized.
FIN, indicates if the sender has reached
the end of its byte stream.

Window

random

The window fidd is used by the receiving sde
to exercise flow control over the sender. It will
be induded in E?TCP so flow and congestion
control is possible.

28

L. Donckers

Field Type Description

Checksum random As indicated in the previous paagraph, a
checksum will be induded in the E°TCP
heeders, which will protect the entire E°TCP
datagram.

Urgent pointer random This field indicates which data in the packet is
of a specid urgent type, which deserves specid
treetment from the receiver. In order to
interoperate with TCP, this fidd will be
included in the headers.

Table 4.2: The TCP header fields.

TCP dso alows some optiond extra information to be sent in TCP headers. Timestamps and
SACK blocks are among them. As said these fields are optional and need not be supported by
E*TCP. Furthermore the base station can still support most of them, so these options can be
used on the wired path of the connection.

Of dl thee hesder fidds the following will be used in E°TCP headers. source- and
degtination port numbers, sequence and acknowledgement numbers, window, urgent pointer
and, as dready sad, the checksum.

4.2.3 E°TCP header

To get an overview of the fields that were chosen to be included in the heeders of ETCP, they
will be listed again with their type and Size.

Field Type Size (in bytes)
Source | P address nochange 4
Dedtination | P address nochange 4
Source port number nochange 2
Dedtination port number nochange 2
Sequence number ddta 4
Acknowledgement number delta 4
Window random 2
Urgent pointer random 2
Checksum random 2

Table 4.3; The ETCP header fields.

But that is not dl information that should be included in an ETCP heeder. Some flags to use
for connection startup and termination (like the SYN and FIN code bits in TCP headers) are
dso required. Furthermore E?TCP will have sdective acknowledgement support so some
SACK blocks should be included as well.

Because the source- and destination IP addresses and ports require 12 bytes of storage and
will not change during a connection, they will only be sent the firs time In the E°TCP
headers a connection identifier fidld will aso be incduded. During connection dartup a
connection identifier will be chosen, which —from then o~ will only be used for tha
combination of source- and degtination IP addresses and ports until the connection is
terminated. This type of header compression is adso used in various standards as was seen in
Paragraph 3.3.1.

29

Energy Efficient TCP

In the code bits field in a TCP header two bits are included that indicate whether or not the
urgent pointer and acknowledgement fidlds are vaid. One could wonder why they are dill
included in the TCP headers when they are not vdid: if the code bits indicate they are not
vdid there is no reason to include the fidds in the headers a dl. To optimize the ETCP
headers, fidds tha will not dways be included will have a hit in the header indicating
whether or not they are included. When they are included the recelver should conclude they

aedsovdid.

An actud EXTCP header will then look like this:

FLAGS

EXTRA FLAGS

CONNECTION IDENTIFIER

SENDER IP ADDRESS

R

ECEIVER IP ADDRESS

SENDER PORT NUMBER

RECEIVER PORT NUMBER

SEQUENCE NUMBER

URGENT POINTER

ACKNOWLEDGEMENT NUMBER

FIRST SACK BLOCK

SECOND SACK BLOCK

WINDOW SIZE

N N DM D DN D NN DD R R R

CHECKSUM

next to each field its size (in bytes) is listed

a * indicates the field is optional

Figure 4.5: The E°TCP header format.

The fidds mentioned in the figure will now be explained in detall.

4231 Flags

This fidd contains certain gatus hits that indicate how to interpret the rest of the header. Its
size is one byte and it is not optiona. This means every ETCP packet will festure this header

fidd. Thefidd lookslikethis:

0

4 5 6 7

R

E

F

S U A w

The bit fidds are

Figure 4.6: The flags field format.

30

L. Donckers

Bit field Size (in bits) Description

Reserved 1| This bit fidd is ressrved for future
extensonsiversons of E°TCP. For now it
should alwaysbe‘0'.

Extraflagsincluded 1| This bit fidd indicates whether or not the
extraflag fidd isincluded in the header.

Full addresses included 1| If this fidd is set, the full addresses of both
the sender and the recelver are included. This
means the source- and destination IP address
and port fields are included in the header.

Sequence number included 1| This bit fidd indicates whether the sequence
number field isincluded in the header or not.

Urgent pointer included 1| This fied is used to indicate if the urgent
pointer field in included.

Acknowledgement type 2| This fidd indicstes wha kind of
acknowledgement isincluded in the header.

. ‘00 means there ae no
acknowledgement fields included.
‘01’ means only the acknowledgement
number fidd isincluded.
‘10 means that besde the
acknowledgement number fidd, dso
the first SACK block isincluded
‘11 means that al acknowledgement
fidds ae included (the
acknowledgement number and both
SACK blocks).

Window included 1| This bit fidd indicaes whether or not the
window fidd isincluded.

Table 4.4: The bit fields of the flags field.
4232 Extra flags

This fidd contains extra status bits that are needed on certain occasions. Its Sze is one byte

anditisoptiond. Thefidd lookslike this.

0 1

3

4 5 6 7

RESERVED

SYN| FIN

Figure 4.7: The extra flags field format.

The bit fidlds of the extraflag fidd are:

Bit fidd | Size(in bits) |

Description

Reserved 6| This bit fidd is resaved for future extensonsversons of
E?TCP. For now it should always be ‘000000’ .

31

Energy Efficient TCP

Bit field | Size(in bits) Description
SYN 1| This bit fidd is used to indicate that the sequence numbers
should be synchronized. Thisis used on connection sstup.
FIN 1| This hit field is used to indicate that the sender has reached the
end of its data stream. It is used to terminate connections.

Table 4.5: The bit fields of the extra flags field.

4.2.3.3 Connection identifier

This field is used to store the connection identifier of the packet. Its Sze is one byte and it is
not optiona. The 1-byte size means that a mobile host running E?TCP to connect to a base
dation (and the internet) has a maximum of 256 dImultaneous connections. This should be
more than enough, even for heavy use of the Internet.

4234 Sender IP address

In this field the IP address of the sender is stored. Its Size is four bytes and it is optiond. This
fied should only be sent until a connection identifier has been agreed upon.

4235 Receiver IP address

In this field the IP address of the recalver is gtored. Its Size is four bytes and it is optiond.
Thisfied should only be sent until a connection identifier has been agreed upon.

4.2.3.6 Sender port number

This fidd is used to store the port number of the sender. Its Size is two bytes and it is optiond.
Thisfied should only be sent until a connection identifier has been agreed upon.

4.2.3.7 Receiver port number

This fidd is used to store the port number of the recaver. Its dze is two bytes and it is
optiond. Thisfidd should only be sent until a connection identifier has been agreed upon.

4.2.3.8 Sequence number

In this fied the sequence number of the last byte in the packet is stored. Its size is four bytes
because complete sequence numbers are stored. Even though the type of the corresponding
TCP header field was deta, E°TCP will adways transmit complete sequence numbers and not
the difference with the last packet. Upon data loss a scheme which, only transmits the
difference, can lose multiple packets because the correct decoding of each packet depends on
the correct decoding of the previous packet. On wirdess links with a high number of errors,
such a scheme is unacceptable. The sequence number fidd is optiond and is only used when
the sender transmits data to the receiver. The following example shows which sequence
number is stored:

Example 4.1: Consider an BTCP packet, which payload consists of bytes 5, 6, 7
and 8 of the data stream. The sequence number field would then be used to store
the number eight.

Please note that this differs dightly from the TCP sequence number fid. Care must be taken
that the base station converts the values.

32

L. Donckers

4.2.3.9 Urgent pointer
This fidd is used to indicate urgent data is included in the packet. It is two bytes large and

optiona. When the urgent pointer included bit is set, a dream of urgent data is included in the
payload of the packet. The urgent pointer indicates the end of the urgent data stream.

4.2.3.10 Acknowledgement number

This fidd is used to acknowledge data by the recaiver. Its Sze is four bytes because sequence
numbers are used to indicate what has been received and what not. For the same reason the
full sequence number is stored in the sequence number fidd, it is done here as well. This fidd
is dso optional and will only be sent when the receiver needs to acknowledge data to the
sender. For more information on how acknowledgement numbers are chosen, see Paragraph
4.3.

4.2.3.11 First SACK block

This fidd is used to dore the fird SACK block and is optiond. It will only be used in certain
cases where the recelver wants to acknowledge data to the sender. Its size is four bytes. For
more information on SACK blocks, see Paragraph 4.3.

42.3.12 Second SACK block

This field is used to store the second SACK block is used in the same way as the firsda SACK
block.

4.2.3.13 Window size

This fidd is used to store the limit on the window size the receiver sets for the sender. Its sze
is two bytes because TCP uses 16 bit unsgned integers to store the window size. The fidd is
optiond.

4.2.3.14 Checksum

In this fied the checksum of the complete E°TCP packet is stored. Its size is two bytes
because the same checksum agorithm as in TCP is used. This fied is not optiond and should
be transmitted with each packet to protect it.

4.2.4 E°TCP header sizes

Because dmost dl fidds in the E°TCP headers are optionad and only need to be transmitted
when they are required, E°TCP heeders are usudly quite smal. A norma data packet will
have a header of 8 bytes versus a 40 byte TCP header. Especidly with small payloads the
overhead will be reduced dramaticaly. Norma acknowledgements will have a sze between 8
and 16 bytes depending on how many SACK blocks are used. TCP acknowledgements have a
sze of 40, 50 or 60 bytes (with none, one and two SACK blocks respectively) up to a
maximum of 80 bytesif more options are used.

4.3 Selective acknowledgements

E°TCP not only supports sdective acknowledgements but dso relies on them to effectively
increae its energy efficiency. Because E°TCP will work on a single-hop link and performs
locd retransmissons, it will know, when a packet is receved out of order, that the
intermediate packets were logt. It is able to do o0, because no packet reordering can take place
on a sngle-hop link. Upon noticing out of order packets, the receiver will indicate to the
sender (with sdective acknowledgements), that it has not received the intermediate packets.

33

Energy Efficient TCP

Upon reception of an acknowledgement with SACK blocks the sender can immediately
refranamit the lost packets and does not have to wat on timeouts or duplicate
acknowledgements. This will reduce the time overhead of E°TCP without incressing the data
overhead.

When the destination host recelves a packet it should aways send an acknowledgement and
acknowledge a much data as possble Because E°TCP depends on sdlective
acknowledgements the receiver is aways required to send as much SACK blocks as possible.

The acknowledgement number fidd should contain the number of the last byte in the
contiguous received prefix of the stream. The following example shows this

Example 4.2: Consder the following receiver Sate.

receiver state

1 2 3 4 5 6 7 8 9]110| 11

received packet

unreceived packet

Figure 4.8: Example of a receiver state.

Because the recever must acknowledge as much data as possble, it should
acknowledge dl packets up to and including packet 5. It is not dlowed to only
indicate it has received dl packets up to and including packet 4, even though,
drictly spesking, that would aso be true.

This is dightly different from the acknowledgement number field in TCP and the base dation
should take care in converting the values.

The SACK blocks resemble their TCP counterparts even less. This is because the TCP
vaiants are unnecessxily large. Their dze is ten bytes for eech SACK block. Two full
sequence numbers of four bytes each that indicate the beginning and ending of the block and a
two byte option field. E°TCP does things differently. Because the SACK block will aways
fdl within the maximum possble window Sze (because no more has been transmitted) the
difference in sequence numbers between the acknowledgement numbers and the beginning
and ending of the SACK blocks is adways representable by a 16 bit number. So ETCP only
requires two two byte numbers for each SACK block.

A SACK block is congructed in the following way:

BEGIN 2
END 2

next to each field its size (in bytes) is listed

Figure 4.9: The SACK block field format.

L. Donckers

The firg number indicates the dtarting podtion of the SACK block. It is measured as the
difference between the sequence number of the firs pogtion of the SACK block and the
second sequence number after the previoudy highest acknowledged sequence number in this
packet (either by the acknowledgement number or the previous SACK block). The second
number indicates the ending postion of the SACK block and is measured as the difference
between the sequence number of the end and the sequence number of the beginning of the
block. The following example shows this:

Example 4.3: Congder the following recelver date.

receiver state

1 2 3 4 5| 6 7 8 9 |10 11| 12

received byte

unreceived byte

Figure 4.10: An example of areceiver state.

As has been shown, the acknowledgement number would be 5. The firs SACK
block should acknowledge bytes 8 and 9. The begin fied of the firsd SACK block
would be: 8 —5 — 2 = 1 and the end fiddd would be: 9 — 8 = 1. The second SACK
block should acknowledge byte 11. The begin fidd of the second SACK block
would then be: 11 — 9 — 2 =0 and the end field would be: 11— 11 = 0.

4.4 Window management

E°TCP fedtures a window management scheme that is optimized for energy efficiency on
wirdess sngle-hop links. Firgt the congestion and flow control mechanisms will be explained,
followed by how E?TCP transmits and retransmits packets. After that will be shown how
acknowledgements influence the window sze and findly the round trip time estimation will
be discussed.

44.1 Congestion and flow control

As told in the chapter on TCP, congestion can occur on the intermediate hosts (Ssmply caled
congestion problems) and a the endpoints of the connection (caled flow problems). Because
E°TCP operates on a single-hop link there is no red distinction between congestion and flow
control.

Flow control is provided by the window fidd in the E°TCP header. If the receiver includes
this fiddd in one of its acknowledgements the maximum window Sze of the sender will be st
to the induded vaue The maximum sze will remain o until the recaelver specifies otherwise
This will hdp reduce data overhead because only when changes occur, the new vaue will be
sent. When a connection is setup the maximum window size will be st to its default vaue.

Energy Efficient TCP

442 Transmission

E°TCP will transmit a much as the current window size dlows. With each trangmission it
will set the trangmisson timer to a vaue dightly higher than the round trip edimae to
compensate for amdl variations in the actua round trip time. When not dl packets ae
acknowledged before the timer expires, dl sent unacknowledged non-retransmitted data
within the current window will be trangmitted again. All sent unacknowledged non
retransmitted data out of the current window is marked to be transmitted again as soon as the
window dlows for it. After a transmisson timeout the window size will be st to a fixed smal
vadue. Tranamitted packets will be trangmitted again after a transmisson timeout or will be
retrangmitted after packet loss (there is a subtle difference). If dl transmitted packets are
acknowledged and the transmission timer is dill active, it is canceled.

4.4.3 Retransmission

When E*TCP detects packet loss it will immediately retransmit those lost packets. As sad in
Paragraph 4.1.3, E°TCP dso fedtures a refransmission timer. With each retransmitted packet
the retranamisson timer will be s in the same way the trangmisson timer is s&t. This is
different from TCP because normd TCP implementations have only one transmisson timer.
By adding one timer so regular transmissons and retransmissons esch have ther own timer,
the retransmisson scheme can be made more energy efficient. This is because with a tota of
two timers, the time it takes before one of them expires is bound to be lower than with only
one timer. Thus burst errors will be noticed sooner and E*TCP will be more responsive to
vaiaions in the qudity of the channd, which reduces time overhead. The following example
will show this

Example 4.4: Consider the following situation. Both a TCP and a E*TCP sender
will retranamit a packet at time 1 and tranamit a new packet a time 5. The timers
will be st to expirein 6 time units.

At time 1, a TCP sender will st its timer to 7 and reset it to 11 when it transmits
the packet a time 5. So no sooner than time 11, it is able to detect both packet
losses.

An ETCP sender, however, will st its retransmission timer to 7 at time 1 and its
transmission timer to 11 a time 5. At time 7 it is dready able to detect the loss of
a packet.

When not dl retransmitted packets are acknowledged before the retransmission timer expires,
al unacknowledged dready retrangmitted packets within the current window will be
retrangmitted again. All unacknowledged dready retransmitted packet out of the current
window are marked for future retransmisson and will be sent as soon as the window dlows
for it. After a retranamisson timeout the window sze will be set to a samdl fixed vaue. If dl
retranamitted packets are acknowledged and the retransmisson timer is ill active, it is
canceled.

4.4.4 Acknowledgements and window size

TCP dways consders packet loss to be the result of congestion. This is one of the reasons
TCP is not energy efficient on wirdess links, as was shown in Paragraph 3.2.3. EETCP dso
congders sngle and burst errors on the wireless channel to be the cause of lost packets.

Upon reception of an acknowledgement a scoreboard, which keeps track of acknowledged
data, is updated to reflect the changes. Each acknowledgement is andyzed to see if it informs

36

L. Donckers

the sender of new lost packets. If the amount of newly reported errors is zero, the window size
is enlarged. If the amount of newly reported errors is ill below a certain error limit, ETCP
congders the packet loss to be the result of norma satic on the chamne and will decrease the
window size but not below the minimum window sze. It is dso posshble the amount of errors
exceeds the limit. ETCP considers this to be the result of a burst error and the window size is
st to its minimum vaue In this way E>TCP discriminates between single errors and burst
errors and is able to achieve a higher energy efficiency.

445 Round trip time estimation

Because ETCP operates on a single-hop link the delay will not vary much, even though it's a
wirdess link. E°TCP can therefore refran from using timestamps in its headers, which
normdly increase data overhead. Round trip time edimations are only done on transmitted
packets. No more than one measurement can teke place a the same time. Upon packet
tranamisson, a new round trip time measurement is darted if possble If the round trip time
measurement is not finished before the transmisson timer expires, the measurement is
canceled. If the sender receives the acknowledgement that was triggered by the packet that
started he measurement, the round trip time is recorded. If an acknowledgement arives that
acknowledges data with higher sequence numbers than the packet that darted the
measurement, the measurement is cancded. This way only accurate measurements are
recorded. E°TCP remembers the last five measurements and uses them to cdculate
estimations on the current round trip time, which are used to set the (re)transmisson timers.

4.4.6 Burst error detection

Although E*TCP has an improved window management scheme to ded with (burst) errors
more efficiently than dsandard TCP, another more sophigticated mechanism was origindly
intended to be used. Unfortunately it did not perform very well and was abandoned for a
cleaner and smpler verson that did perform as intended, as was described in Paragraph 4.4.

On a channd with burgt erors it is very important that the transport protocol reacts in the
right way to burst errors. When the burst error encountered is very smal it is best to keep
sending a the origind pace. This is because the protocol has no time to react. Once it has
noticed the burst error, it has dready passed. When the burst error is long however, it would
be best to stop sending until the burst error has passed. There are a few problems that have to
be overcome before a scheme like this can be implemented. Fird, it is unknown a priori when
a burst error will start and end. Therefore, the protocol has to detect it by itsdf, which takes at
leest as long as the delay on the channd. This aso means that the length of the burst error is
not known a priori. The second problem is that when the protocol stops sending in case of a
long burst error, it has no way of teling the burst eror is over. So it dways has to keep
sending some packets. Something that can be thought of as palling.

A scheme was developed that would be able to guess the length of the next burst error, based
on the measured lengths of the last burst errors. This scheme kept track of the date of the
channd and defined the states as. normd, possible burst error and burst error. When it was in
the normd date, it would operate very much like the scheme that is now used. When it
suddenly detected a timeout or a lot of errors it would switch to burst error mode. It would set
the window sze to a very smal fixed vaue and would guess the time the burst error Started.
Once out of the burst error it would guess the time the burst error ended and would remember
the caculated length of the burst error. If the protocol was in the norma state and would only
notice a few errors it would guess the time of the start of the errors and switch to the possble
burst error state. When the errors would continue it would then switch to the burst error State

37

Energy Efficient TCP

and continue as stated above. When the errors would stop however, it would conclude it was
no burst error after al and switch back to the normal dtete.

If enough burst error lengths were recorded the mechanism added an action. Upon noticing
the start of a burst error it would guess its bngth. If it was below a certain limit it would il
decrease its window size but only dightly. This way the protocol could ill send a dmogt full
speed. If the burst error was indeed as smdl as predicted it would react in an optima way. If
the burst error was longer than predicted however, it is possble the protocol would react in a
very inefficient way. If the predicted length was above the limit it would st the window sze
to a very smdl vaue and set a timer to the predicted end of the burst eror. When the timer
expired, it would start sending again at near full speed.

As told, this mechanism did not peform very well. It was not stable enough because its
measurements were unfortunately very inaccurate. There is no reliable way to accurately
measure the start and end times of a burst error for instance. This caused the recorded burst
error lengths to be quite inaccurate. When the mechanism then tried to guess the length of the
next burst error, it would be based on the inaccurate information. Therefore it would not be
veary rdiddle itsdf. Furthemore it can be argued if the length of the next burs error
corresponds in any way with the lengths of the previous burst errors. It was clear that in order
to make the mechanism more robust the length measurements could not be used. This caused
the scheme to become quite ample but a lot more energy efficient. The performance of this
mechanism will be compared with the current mechanism in the following graphs.

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)
25 50
45
A /\
2 __ 40 / \
s S 35
o ° / \
[[+
o 15 o 30
£ £ A \
g ¢
2 2 R / li/i\h
= 10 = 20 /ﬁ—-—ﬁ/
(=2} j=2}
S -/%-/ 5 15 /(
=t =
Us 410
5
0 T T T T T T 0 T T T T T T
300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/01 1/01 20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 101
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|+ Proposed burst error detection —@— Current burst error detection | |+ Proposed burst error detection —#— Current burst error detection |

Figure 4.11: Energy overhead of burst error Figure 4.12: Energy overhead of burst error
detection mechanismsin scenario A. detection mechanismsin scenario B.

In scenario A, the difference between the two burst error detection mechanisms is quite small.
Sill it should be dear that the current (dmple) mechanism has a dightly lower energy
overhead in dl Stuations. The superiority of the current scheme becomes especidly clear
when the grgph of scenario B is examined. Clealy the current scheme is more energy
efficient than the other.

It is dso interesting to note the decrease in energy overhead on the right sde of the graph in
Figure 4.12. Both mechaniams experience this decrease dlthough the decrease in energy
overhead of the proposed mechanism is much more pronounced. The decrease is the result of
the window management of E°TCP. When the lengths of bad states drop below a certain

38

L. Donckers

point, E°TCP correctly decides to keep transmitting. This is an efficient solution because the
bad state is so short, it will be over before ETCP has decreased its transmission speed. The
graphs show that not decreasing the transmission speed under these conditions is indeed an
energy efficient solution.

4.5 Partial reliability

Patid reiability is only reevant to the recaver. An gpplication will be able to st a certan
amount of rdiability for each connection with a Qudity of Service-like parameter. This
parameter: the religbility level, can be set from 0% to 100% in one percent steps. Of course
E*TCP defaults to full reliability when an application does not set a new rdiability (because it
is unaware of the partia rdiability option for example). When the recever encounters lost
packets, it checks its current rdiability leve. If it is gill above the specified limit, the receiver
will fadsdy acknowledge as much logt packets as possble without violating the rdiability
demand, so the sender will not retrangmit them. After that the receiver will of course update
its current reigbility leve. If the rdiability demand is not met, the recaver will send a norma
acknowledgement; so dl lost datawill be retranamitted.

Thus it is possble the application a the sender only recaves pats of the stream. The
goplication itsdf is respongble for handling the gaps in the stream.

39

Energy Efficient TCP

L. Donckers

) TEST RESULTS

In this chapter a thorough performance evauation of E*TCP will be given. To measure the
performance and energy efficiency of ETCP and compare the protocol with other versions of
TCP, an implementation of E°TCP was made in the Network Simulator 2 (NS2) [FALOQ.
NS2 is an open source discrete event smulator targeted a network research and has
Substantia support for TCP over wired and wirdess links. Because NS2 is free and features
implementations of al kinds of smulated applications, versons of TCP, MAC layers, link
layers and interconnects like duplex point-to-point links, LANS, wirdless LANS, €ic, it has
become a very popular tool in network research to evaluate (new) protocols.

In this chepter an explanation on wha is involved in the tets comes fird, followed by an
explanation of the home built error model used in the tests. The choice of default vaues for
the parameters, briefly mentioned in the previous chapter, will be discussed after that,
followed by a look a how much each method, adopted to make E*TCP energy efficient,
makes a difference. Findly the energy efficiency of ETCP will be compared to that of other
TCP variants.

5.1 Simulation model

NS2 is a amulator and not a red environment. Therefore the modd of the protocol has been
amplified. Sometimes because of limitations in NS2 and sometimes because a pat of the
protocol was not required to measure the energy performance of the protocol. Differences
between the specification and the implementation in NS2 ae liged bedow. All other
mechanisms are implemented according to the specification.
There is no flow control. This is a limitation of NS2 and flow control is therefore dso
not used in other protocols in NS2. This is not a problem because ETCP will be tested
on a sngle-hop wirdess link to measure its energy efficiency. The absence of flow
control does not hamper or improve its basic performance.
The dream is not byte oriented but packet oriented. This means that al sequence
numbers are messured in packets instead of bytes. Packets will have a fixed Szed
payload of 1000 bytes. Because ETCP will be tested on a single-hop link this is not a
problem a dl. This dso means the sze of the windows is measured in packets instead
of bytes.
There is no connection setup and termination phase. An ETCP state machine, as TCP
has, is not implemented. This is done because it has very little influence on the overdl
energy efficiency and the TCP variants in NS2 dso lack this part of the protocol.
Sequence numbers can not overflow. No mechanism is in place to let the sequence
numbers wrap around when its maximum vaue (2%?) has been reached. Because the
implementation aso lacks a connection startup phase, the sequence numbers will dways
dart a 0. Since sequence numbers apply to packets ingtead of bytes this means dmost 4
Terabytes can be sent in the amulation before a problem will arise. This is more than
enough to measure the performance of EZTCP.

5.2 Test setup

The test setup condsts of two hosts connected by a wirdess LAN. Because they are the only
hosts on the LAN, it can dso be seen as a full duplex point-to-point link. Concern may arise
that this setup is not representative for wirdess LANs with more hosts, but because modern
MAC protocols use collison avoidance, the performance of such networks will srongly

41

Energy Efficient TCP

resemble a LAN with two hosts and a lower bandwidth. It is not important which host will
modd the mohile host and which the base station because E*TCP is a symmetrica protocol.
Each hogt will be running E°TCP and together they will creste one E*TCP connection that
connects both hosts. The sender will dart the transmisson and during the test, al kinds of
data will be collected so the energy efficiency can be caculated. Each test will be run 10
times, of which the average will be used.

There are a lot of parameters to each test, which will influence the outcome. The bandwidth
and dday of the channd, the length of the burst errors and the periods between them, the
verson of TCP used and the kind of traffic.

The bandwidth and dday parameters goply to the wirdess LAN itsdf. This includes the
physicd medium, the MAC layer and the link layer. ETCP should be evaluated with various
vaues for both characteristics but a ‘default’ vaue should be chosen for tests in which these
characterisics are not the man concern. The default bandwidth will be 1 Mbps. This
resembles IEEE 802.11 [IEE99] and Bluetooth [BLUO1]. A closer look to the effect of
bandwidth will be taken by varying the bandwidth from 0.5 to 5 Mbps, resembling anything
from lower speed serid links to the new high speed IEEE 802.11b standard [IEE99b]. For the
delay the default vaue will be 50 ms. This is an edimation of the delays introduced by a
typicd |IEEE 80211 physcd layer, link layer and MAC layer combined, based on
measurements by [CHE94]. The effects of the dday on the energy efficiency of various
protocols will aso be examined by varying the delay between 40 and 70 ms.

An error modd is attached to the wirdess LAN modd in NS2. Such an error modd can cause
packets to be dropped because of random noise or burst errors. Because the hookup that is
supposed to connect one of the standard error models to the wirdess LAN model was broken
in the verson of NS2 that was used, a custom error modd was written. This modd will be
explained in the next paragraph.

The protocols that will be compared to each other are three standard versions of TCP. Tahoe,
Reno and NewReno, PRTP in the partid reliability tests, and of course ETCP. For PRTP a
NS2 implementation was kindly supplied by the PRTP team from the Karlsad Universty of
Sweden. Tahoe, Reno and NewReno were chosen because these are widely known versions of
TCP and they are dready implemented in NS2.

Various forms of traffic will be smulated to modd different types of agpplications. A (mass)
data transfer will be used as the default goplication. This resembles file transfer, browsing the
Internet and sending and receiving emals. In the tests where a closer look will be taken a the
effect of the type of traffic, an interactive traffic modd will be used as well as a congant bit
rate mode. The interactive traffic models gpplications that feature more or less randomly
interspersed smdl amounts of daa This ressmbles interactive applications like telnet
sessons, indant messaging services, chatting and possbly browsng and sending and
receiving emails (when the requested pages or emals are redively smdl). The condant hit
rate traffic resembles streaming media, like audio and video.

The (default) test setup then looks like this:

42

L. Donckers

sender receiver
application application
E2TCP E2TCP
link layer link layer
MAC layer MAC layer
/I\ error /I\
Vphysical model N~
layer

Figure 5.1: The default test setup.

5.3 Error model and setup

As sad, a cusom eror model was created to be used in the tests. A smple two-state error
model was chosen because with two dtates it is dready possible to redigicdly mode random
noise and burst erors. Each date has three parameers its minimum length, its maximum
length and its eror rae. When the minimum length does not equa the maximum length, a
random length is chosen between the extreme vaues a each switch to that state. The more the
vaue gpproaches one of the extremes the less likdly it will be chosen. This way, the chosen
vaue will be near the center of the range most of the time and will sometimes be a lot amdler
or larger. The error modd will then switch between these two states constantly. The error rate
of the state applies to packets because the implementations of the various protocols in NS2 are
packet oriented as well. All packets on the wirdess LAN are transparently routed through the
error model, which randomly corrupts the packets with a chance that corresponds to the error
rate of the date it is currently in. This way the corrupted packet will ill travel the physicd
medium and use bandwidth but will be dropped by the MAC layer, just likein red life.

Typicdly one date will be sstup in such a way it resembles a high qudity channd with some
modest random noise and the other state will represent a burst error with a very high error
rae. For the good date an eror rate of 0.05% was chosen which corresponds to
measurements done by [ECK96]. For the bad state an error rate of 80% was chosen, causing
an average of 4 out of 5 packets to be corrupted. These values were fixed during the tests and
the lengths of the dtates were varied to modd different channel conditions. These two dates
and the trangitions between them are shown in Figure 5.2.

Figure 5.2: Sates and transitions of the error model.

The choice of date lengths is somewhat more difficult. It is not sufficient to examine the
proportions of the good date and the bad sate lengths, to see how well a protocol will
perform. The length of the bad date itsdf can have a large impact on the energy efficiency. A

43

Energy Efficient TCP

protocol can behave quite differently when the good state and bad state lengths are changed
from 20 seconds and 2 seconds to 10 seconds and 1 second respectively, even though the
proportions remain the same. So not one but two scenarios were chosen. The first scenario
(scenario A) has a fixed bad date length of 0.1 second and the good state length varies from
300 seconds to 1 second. This corresponds to a nearly perfect channe (the tests were
congtructed to be finished within 300 seconds of smulated time) to a very bad channd. In this
scenario the proportions between the good state and bad dtate length are gradually worsened.
In the other scenario (scenario B) the proportions are fixed so the channd’s qudity remains
the same. The good date lengths vary from 20 to 1 second, with the bad date length aways
being one tenth of the good date length. This dlows the protocols energy efficiency to be
examined with varying bad date lengths while the proportions between the good state and bad
date length remain the same.

5.4 E°TCP parameters

In the previous chapters a few parameters of E°TCP were mentioned. These include the
minimum window dze, the maximum window Sze, the window Sze dter a timeout and the
eror limit. In this paragraph will be explaned what kind of effects each parameter has and
how the default values were chosen.

541 Minimum window size

An E*TCP sender initidizes its window sze to the minimum window sSze and unless a
timeout occurs it will not set its window sze bdow this vaue The window dze is an
important parameter because it has a large effect on the energy efficiency of the protocol.
When the minimum window Sze increases the time overhead will diminish. This is because
the sender’s minimum speed will be higher. An increased minimum window Sze dso means
that in case of (long) burst errors the data overhead will increase too, because the sender’s
transmisson rate during burst errors will be quite high. Choosng a good vadue for this
parameter is partly a tradeoff between a decreased time overhead and an increased data
overhead. In the following graphs, the performance of minimum window szes of 5, 10, 15
and 20 packets are given.

L. Donckers

Energy overhead in scenario A
(type of radio: Intermediate)

. 1
- /
. /N

. A

10

Energy overhead (%)

5

04
300/0.1 8/0.1

6/0.1 5/0.1 4/01 301 201 1/0.1

Good state length/bad state length (s/s)

|—0—5 —@— 10 —— 15 —%— 20 packets |

Energy overhead in scenario B
(type of radio: Intermediate)

s
>
0 A

25

x s

S———

10

™

Energy overhead (%)

5

0 T T T T T T
2020 12/1.2 8/08 505 4/04 3/03 2/02 101

Good state length/bad state length (s/s)

|+5 —@— 10 —a— 15 —— 20 packets |

Figure 5.3: Energy overhead of E>TCP with

various minimum window sizesin scenario A.

Figure 5.4: Energy overhead of E>TCP with
various minimum window sizes in scenario B.

As can be seen from the graphs the higher the minimum window sSze is s, the lower the
energy overhead becomes. One might assume that choosing the highest vaue possible would
be best. The dtuation is a little bit more complicated however. Firg of dl, the higher the
minimum window Sze the higher the data overhead in cetan gtuations (high bad date
lengths in scerario B for example). This causes the energy overhead (with an ided type of
radio) of a minimum window sSze of 20 packets to be higher than the others in those
gtudtions. So a high minimum window sze is not dways the best solution. The mentioned
data overhead and energy overhead figures are shown in the following blown up graphs.

Byte overhead in scenario B

11

10

|z
==

Byte overhead (%)

8/0.8 5/0.5
Good state length/bad state length (s/s)

12/1.2 4/0,4

|—o—5 —&— 10 —A— 15 —%— 20 packets |

Energy overhead in scenario B
(type of radio: Ideal)

9.0

8.5 A
€ 80 /
Ee]
g =
c 75
E //
o 7.0
>
5 /
2 6.5
] /

6.0 V

55+ T

20/2.0 12/1.2 8/0.8
Good state length/bad state length (s/s)
|+ 5 —@— 10 —A— 15 —%— 20 packets |

Figure 5.5: Byte overhead of ETCP with

Figure 5.6: Energy overhead of E>TCP with

various minimum window sizesin scenario A. various minimum window Sizes in scenario B.

Furthermore, it is important that ETCP remains adaptive The higher the minimum window
qze, the smdle the difference will be between the minimum and maximum window Sze

Energy Efficient TCP

This reduces the adaptivity of E°TCP and makes it less suitable for a wide variation of
Stuations. For these two reasons, a default value of 12 packets was chosen.

54.2 Maximum window size

The maximum window Sze dso has quite a large impact on energy efficdiency. An E*TCP
sender will never st its window Sze higher than the maximum window Sze. The higher this
vaue, the greater the bandwidth the protocol can fully utilize. So large vaues decrease the
time overhead, especidly on high bandwidth links. Unfortunately very large vaues can
hamper performance on low bandwidth links. A large maximum window Sze aso causes high
data overhead in case of (long) burst erors because more traffic is ‘in flight and it tekes
longer for the protocol to reach an acceptable window sze. The maximum sze should not be
too close to the minimum window sSize because the protocol can not adapt itsedf enough to the
various channd gtuations. Choosing a good default value can only be done by meking a
tradeoff between performance on low and high speed links and time versus data overhead. In
the following graphs, the performance of maximum window szes of 15, 20, 25, 35 and 45
packets are given.

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)

8 &® &8 &

B
§\

=
o

Energy overhead (%)
8
N
W

Energy overhead (%)
N
o

=
o

o
o

300/0.1 8/0.1 601 5/0.1 4/01 301 201 101 2020 12/1.2 8/0.8 505 4/04 3/03 2/02 101

Good state length/bad state length (s/s) Good state length/bad state length (s/s)

|—0—15 —@—20 —k— 25 —>— 35 —— 45 packets | |—0—15 —@— 20 —— 25 —»— 35 —— 45 packets |

Figure5.7: Energy overhead of E°TCP with Figure 5.8: Energy overhead of E°TCP with
various maximum window sizesin scenario A. various maximum window sizesin scenario B.

Perhaps it is difficult to see but E°TCP with a maximum window size of 20 or 25 packets
scores best in scenario A. A lower or higher vaue causes the energy overhead to increase.
Because of the long bad date lengths in scenario B, the lower the maximum window Sze the
better ETCP performs (as was predicted). Care should aso be taken to make the difference
between the minimum and maximum large enough for E°TCP to remain adaptive. This all
makes the choice for this parameter quite difficult. A default vaue of 25 packets was chosen
because this value satisfies al requirements best.

54.3 Window size after a timeout

The window Sze is st to this vdue when a (ré)transmisson timeout occurs. A large vaue
causes the sender to quickly recover after a burst error but causes extra data overhead during
the burst error itsdf. So again, choosng a default vaue boils down to making a tradeoff
between data and time overhead. As you can see in the graphs however, this parameter does

46

L. Donckers

not have a tremendous effect on the energy overhead. The following graphs show the energy
overhead of E*TCP with the following window sizes after atimeout: 1, 2, 5 and 10 packets.

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)

P —

P
S—

10

3 R
Dy |
3 R

™~

10

Energy overhead (%)
Energy overhead (%)

5

5

0 T T T T T T 0 T T T T T T
300/0.1 8/0.1 601 501 401 301 201 101 2020 12/1.2 8/08 505 4/04 3/03 2/02 101

Good state length/bad state length (s/s) Good state length/bad state length (s/s)

|+1 —i#— 2 —&— 5 —¢— 10 packets | |—0—1—E—2 +5—)<—10packets|

Figure 5.9: Energy overhead of E°TCP with Figure 5.10: Energy overhead of E°TCP with
various window sizes after atimeout in various window sizes after a timeout in
scenario A. scenario B.

The differences are minute but a vaue of 5 packets has the lowest energy overhead in
scenario A. In the other scenario the differences are somewhat larger and a size of 10 packets
peforms best. The longer the bad state length however, the better the lower values perform.
Because of the smal differences this parameter does not warrant too much attention. A value
of 5 packets seemsto be the best overal performer.

544 Error limit

The error limit parameter decides when an E>TCP sender thinks of the channd as being in a
burst error state. So the higher this vaue the more errors should occur before E°TCP
drastically reduces its transmission speed. With a large vaue E°TCP will have a smdler time
overhead in case of (smal burst) errors. On the other hand it will have a higher data overhead
in case of long burst errors because E°TCP is dower in reacting. And yet again a tradeoff
must be made between data- and time overhead before a good default value can be chosen.
The energy overhead of E*TCP with error limits of 1, 2, 5 and 10 errors is presented in the
following graphs.

47

Energy Efficient TCP

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)

—

. =
—

10

5] »
T —
N N
o (41

N

=
o

Energy overhead (%)
Energy overhead (%)

o

5

0 T T T T T T 0 T T T T T T

300/0.1 8/0.1 601 5/0.1 4/01 301 2/01 101 20/20 12/1.2 8/0.8 5/0.5 4/04 3/03 2/02 10.1
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|+1+2+5—)<—10 errors | |—0—1—E—2 +5—)(—10errors|

Figure 5.11: Energy overhead of E°TCP with Figure 5.12: Energy overhead of EZTCP with
various error limitsin scenario A. various error limitsin scenario B.

As can be seen the error limit does not have a large impact on the energy overhead of ETCP.
In scenario A, ETCP performs better as the error limit incresses. This is because the bad state
lengths are so short, decreasng the transmisson speed serves no purpose. In scenario B
however, the energy overhead of ETCP becomes lower as the error limit decreases. The bad
dates are long enough in this scenario to warrant dowdowns. A tradeoff between these two
scenarios yields a default value of 5 errors.

545 Conclusions

By studying the performance of E2TCP with different parameters, a set of optima parameters
was chosen as the default values Most of the times the sdection of values for these
parameters was quite difficult and often it was necessary to make a tradeoff by increasing a
performance metric for a certain dtuation and decreasng another performance metric
(possbly for another dtuation). The minimum- and maximum window Size both have quite a
large impact on energy efficiency, especidly compared to the window Sze after a timeout and
the eror limit, which both hardly influence the energy effidency of E°TCP. In certain
gtudions, choosng another vaue for both the minimum- and the maximum window gSze
could yidd a maximum decrease in energy overhead of about 25%. Still the chosen default
vaues are consdered to be the best overall vaues. To summarize the sdection of vaues, they
will be liged in the following teble.

Par ameter Default value
Minimum window Sze 12 packets
Maximum window Sze 25 packets
Window size after atimeout 5 packets
Error limit 5errors

Table 5.1: The default values for the parameters of E°TCP.

L. Donckers

5.5 E2TCP dissected

In this paragraph a peformance evauation of the various methods to increase energy
effidency in E°TCP will be given. The methods used are optimized window management,
sective acknowledgements, smal headers and partia reiability. The performance evauation
will start by comparing Tahoe with E°TCP, which only has optimized window management
enabled. The comparison will be done with Tahoe because it is the most energy efficient
verson of TCP, as will be shown in Paragraph 5.6.1. After that selective acknowledgements

will be added to E°TCP, followed by its own heeders and findly partid rdiability. All tests
will be done with the default setup.

55.1 Window management

In this test, E’TCP only has its own window management enabled. Unfortunately, the window
management scheme of E°TCP reies on sdective acknowledgements to operate properly.
This verson of E*TCP will therefore be severdy crippled. The energy overhead of both
protocolsis shown in the following two graphs.

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)

N
a1
o

250

N
o
=]
=¢-

200]

//]
W/

[
a
o

[
a
o

[
o
o

Energy overhead (%)
Energy overhead (%)

*Lf TM/

o
o

0+

300/0.1 8/0.1 6/0.1 5/0.1 4/(I).l 3/(I).l 2/OI.1 1/0.1 2020 12/1.2 8/(;.8 5/(;.5 4/(I),4 3/(;.3 2/(;.2 1/0.1
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|+ Tahoe —&— E2TCP (Window management only) | |—0—Tahoe —&— E2TCP (Window management only) |
Figure 5.13: Energy overhead of various Figure 5.14: Energy overhead of various
protocolsin scenario A. protocolsin scenario B.

In scenario A, it is clear tha E*TCP is too crippled to reach low levels of energy overhead.
Tahoe clearly scores better. Certainly there is a lot of room for improvement. In scenario B,

E*TCP dready outperforms Tahoe and is therefore the more energy efficient protocol of the
two.

5.5.2 Selective acknowledgements

Sdective acknowledgements will aso be enabled for E°TCP in this test. This should aso

make the window management scheme perform better because it directly depends on SACK.
The energy overhead for both scenarios is shown in the following graphs.

49

Energy Efficient TCP

Energy overhead in scenario A
(type of radio: Intermediate)

4

i

Energy overhead (%)

s

A

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1
Good state length/bad state length (s/s)

—e— Tahoe
—@— E2TCP (Window management only)

—a&— E2TCP (Window management + SACK)

1/0.1

Energy overhead (%)

0+

Energy overhead in scenario B
(type of radio: Intermediate)

4

/

//]

/]

2020 12/1.2 808 505 4/04 303 202

Good state length/bad state length (s/s)

—e—Tahoe
—@— E2TCP (Window management only)
—a&— E2TCP (Window management + SACK)

1/0.1

Figure 5.15: Energy overhead of various
protocolsin scenario A.

Figure 5.16: Energy overhead of various
protocolsin scenario B.

As can be seen in the graphs, ETCP has less energy overhead than Tahoe in scenario A this
time. Clealy E°TCP depends on selective acknowledgements in this scenario. In scenaio B,
the gain is less impressve but especidly with smal good and bad state lengths E°TCP with
sdective acknowledgements is more energy efficient than E2TCP with window management

only. Clearly sdective acknowledgements make E*TCP more energy efficient in both
scenarios.

55.3 E°TCP headers

The custom headers of ETCP were dso used in this test. Because they are much smaller than
gandard TCP/IP headers they should aso contribute to less energy overhead. Enabling the
custom headers gets E>TCP up to full strength. If &l versions would be listed in the graphs,
they would become quite hard to study. Therefore, only E°TCP with both its window
management and sdective acknowledgements enabled will be used to compare standard
E°TCP with. The energy overhead of both versions of ETCP will be shown in the following
graphs.

L. Donckers

Energy overhead in scenario A

Energy overhead in scenario B
(type of radio: Intermediate)

(type of radio: Intermediate)

30

30
b //'\o

25 b, 25
- 2 } - 20
3 3 /
< /'// £
o 15 o 15
3 3 '/E/
> /‘/‘—’*,/;/J/ > 0
2 10 © 10
(] [
[= [=
w w

5 5

0 0

300/0.1 8/0.1 601 50.1 401 301 201 101 2020 12/1.2 8/08 505 4/04 3/03 2/02 101

Good state length/bad state length (s/s) Good state length/bad state length (s/s)

|+ E2TCP (Window management + SACK) —&— E2TCP | |—0— E2TCP (Window management + SACK) —&— E2TCP|

Figure 5.17: Energy overhead of various Figure 5.18: Energy overhead of various
protocolsin scenario A. protocolsin scenario B.

It should be clear from the graphs that enabling the cusom headers, lowers the energy
overhead of E°TCP in both scenariosin dl situations with about 5%.

554 Partial reliability

In the previous paragraph was shown what the energy overhead of standard E°TCP was.
When an gpplication alows for it, E°TCP can adso enter a partia reliable mode of operation.
This will further enhance its energy efficiency. In this test E*TCP will be used a 100% and
90% reiagbility. The energy overhead of both reiabilitiesis shown in the following graphs.

Energy overhead in scenario A

Energy overhead in scenario B
(type of radio: Intermediate)

(type of radio: Intermediate)

25

25

" b " /\»

S g
E 5 / E 5 /‘//‘/ﬂ/ﬂ\
% 10 % 10
ws = - - - —— ws
0 T r T T T T 0 T T T T T T
300/0.1 8/0.1 601 501 401 301 2/01 1/0.1 20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 101
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|+ E2TCP —&@— E2TCP (90% reliability)| |+ E2TCP —@— E2TCP (90% reliability) |
Figure 5.19: Energy overhead of various Figure 5.20: Energy overhead of various
protocols in scenario A. protocols in scenario B.

In both scenarios partid reliability manages to improve the energy efficiency of E°TCP
condderably. Partid rdiability obvioudy has a larger effect when the qudity of the channd

51

Energy Efficient TCP

deteriorates. The reason for this is that when more packets are lost, the advantage of not
retranamitting them increases.

555 Conclusions

By ‘dissecting E°TCP, it became clear how much esch energy efficient method present in
E°TCP, contributed to the overal energy dfficiency of E*TCP. Only enabling the window
management scheme of E*TCP, clearly crippled E°TCP s0 much it was unable to perform
better than Tahoe in scenario A. When sdective acknowledgements were added, E°TCP
dready became quite energy efficient and had less energy overhead than Tahoe in both
scenarios. Using E*TCP's custom headers further incressed its energy efficiency just like
enabling partid rdiability. To give an indication of the energy overhead of dl versons the
average energy overhead will be liged in the following table for each verson and both
scenarios.

Protocol version Scenario A (%) | Scenario B (%)
Tahoe 445 54.5
E“TCP (Window management only) 102.4 39.6
E“TCP (Window management + SACK) 14.7 224
E°TCP 10.1 17.4
E“TCP (90% rdigbility) 4.9 12.6

Table 5.2: The average energy overhead of various protocol versions.

In Paragraph 1.1, three proposds were mentioned to deploy E°TCP. The first proposd only
adlowed the transport protocol a the base station to be replaced with E°TCP. The second
proposal was to replace the transport protocol at both the base station and the mobile hog,
while the third proposd was to change the applications a the mobile (and posshbly the
internet) host as well. It was expected tha the first proposa would yidd the smdlest gain in
energy efficiency, while the third proposal would yidd the largest gain in energy efficiency.
Now E*TCP has been ‘dissected’, it is possible to check if those expectations were correct.

When only the base sation is running a verson of E°TCP, its possible to use the optimized
window management method. There are two problems however. Firss ETCP with only its
window management enabled can have a higher energy efficiency than Tahoe but dso a
congderably higher one. It depends on the gStuaion. The second problem is that only when
the base dation is the sender, energy can be saved. The firs problem is solved when the
mobile hogt is running a SACK enabled verson of TCP, but 4ill it is quite usdess to congder
the firgt proposa. As sad, it is unclear if energy will be saved and if energy is saved it will be
at the base station and not at the mobile host, where it is needed.

When the second proposa is executed things become more interesting. Both the base station
and the mobile host will be running E°TCP o there is no problem in using both the window
management scheme and sdlective acknowledgements. It has been shown that when both are
enabled, E>TCP dearly is more energy efficient than other protocols and the mobile host will
definitdly save energy. This is because the energy overhead of other protocols is two to three
times as high as tha of E°TCP. Furthermore, E°’TCP can use its own headers further
increasing its energy efficiency. Then the energy overhead of other protocol is three to four
times as high as that of ETCP. The energy efficiency (based on the average energy overheed)
of Tahoe is 69% and 65% in scenario A and B respectively, while ETCP scores 91% and

85% respectively.

52

L. Donckers

Patid reliability can be enabled when the third proposd is executed: changing the
aoplications a the mobile- and internet hosts. This causes the energy overhead of E°TCP to
drop even further to leves that are anywhere from four to nine times as smdl as normd TCP.
The energy efficiency (based on the average energy overhead) of E?TCP with partid
reliability is 95% and 89% in scenario A and B respectively. However, patia reiability can
only be used with streaming media.

5.6 Evaluation of E’TCP

The evaduation of ETCP will begin with a detailed look a the default setup. Next, a closer
examination of its performance on wirdess links with different bandwidths. After that a closer

look will be taken a the influence of different ddays, traffic and findly the effect of partid
reliability will be studied.

5.6.1 Default setup

In this test al parameters will be set to their defaults. This means that the bandwidth will be 1
Mbps, the dedlay 50 ms and the protocols compared will be Tahoe, Reno, NewReno and
E°TCP. The partid rdiability mechanism of E°TCP will be dissbled so E*TCP is 100%
relidble, just like the other protocols. The smulated traffic will be a mass data transfer of 20
MB in totd. Both error scenarioswill be used.

This firgt time a performance evaduation will be given, a doser look will be taken a the daa
overhead and the time overhead before examining energy overhead. In later evauations these
graphs will be omitted because findly only energy overhead counts. Should a later test yield
interesting results in respect to data- or time overhead, the graphs will be included.

Byte overhead in scenario A Byte overhead in scenario B

w
o

30

N
a
Do
N |

25

N
o

20

/
7

=
o

15

10 >/(/\
5/

Byte overhead (%)
Byte overhead (%)

[
o

o

M <
0 T T T T T T 0 T T T T T T
300/0.1 8/0.1 6/0.1 5/0.1 4/01 3/0.1 2/01 1/01 2020 12/1.2 8/0.8 5/0.5 4/04 3/0.3 2/0.2 1/0.1
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|+Tahoe —i#— Reno —&— NewReno —>— E2TCP | |+Tahoe —i#— Reno —&— NewReno —>¢— E2TCP |
Figure 5.21: Byte overhead of various Figure 5.22: Byte overhead of various
protocolsin scenario A. protocolsin scenario B.

As can be seen, ETCP has less data overhead than the other TCP versions, in both scenarios,
a dl points. This can be atributed to the small headers and its optimized window
management in combination with sdective acknowledgements. Especidly in scenario A it is
clear that when the qudity of the channel deteriorates, the data overhead increases. It is
interesting to note the decrease in data overhead in scenario B for ETCP at the right side of

53

Energy Efficient TCP

the graph. Unlike standard TCP, E*TCP does not decrease its transmission speed for very
small burst errors, resulting in avery low data overhead when burst errors are very small.

Ancther characteristic of the graphs that should be noted is that dl three standard versons of
TCP behave the same. The absolute vaues in data overhead may differ somewhat but the
tendency of each version closely resemblesthat of the others.

Time overhead in scenario A Time overhead in scenario B

600

D
o
o

!

500]

400 / /
300 300

/ /
/i /

100 m7»\-'-_f/'/
0 . . ; e —— 03 . X :

a
o
o

N
o
o

Time overhead (%)
Time overhead (%)

=
o
o

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1 20/2.0 12/1.2 8/(IJ.8 5/(IJ.5 4/(I),4 3/(;.3 2/0.2 1/0.1
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|+ Tahoe —#— Reno —&— NewReno —»— E2TCP| |—0—Tahoe —&— Reno —a— NewReno —%— E2TCP |
Figure 5.23: Time overhead of various Figure 5.24: Time overhead of various
protocolsin scenario A. protocolsin scenario B.

Because of the enormous differences in time overhead, it is hard to see how much the time
overhead of E°TCP differs from that of the other protocols in the left sides of the graphs.
When examining the source data for the graphs, it is clear that E°TCP has a time overhead
that is about twice as smdl as the other protocols in the worst cases. Especidly when the
quaity of the channd deteriorates (the right dde of the graphs), the difference in time
overhead between ETCP and the other protocols increases. This means that (considering time
overhead) E°TCP scales much better than the other protocols when the quality of the channel
WOrsens.

Just like with data overhead, the three versons of TCP tested behave in the same way. The
absolute vaues differ somewhat again, but they dl have the same tendency. It should aso be
clear that the other versons of TCP have much more time overhead than data overhead.
Because of the way energy overhead is cdculated, there will probably be large differences
between the different types of radios.

What this means for the energy overhead will be shown in the following graphs. For each
scenario three graphs will be shown, each graph corresponding to a certain type of radio.

L. Donckers

Energy overhead in scenario A
(type of radio: Always active)

600

;]
; i

0

300/0.1 8/0.1 6/0.1 5/0.1 4/01 301 201 1/01

Energy overhead (%)

Good state length/bad state length (s/s)

|—0— Tahoe —#— Reno —&— NewReno —»— E2TCP |

Energy overhead in scenario B
(type of radio: Always active)

600

500

400 ;
/1
200 //

100

Energy overhead (%)

0 T T T T T T
20120 12/1.2 8/0.8 505 4/04 303 202 101

Good state length/bad state length (s/s)

|—0—Tahoe —#— Reno —&— NewReno —>¢— EI:_l'CP|

Figure 5.25: Energy overhead of various
protocolsin scenario A.

Figure 5.26: Energy overhead of various
protocolsin scenario B.

Energy overhead in scenario A
(type of radio: Intermediate)

300)‘
250 /
9
g h
5 200 1
©
< / /
=
5 150
>
o
>
5 100
[}
c
w
50
M
o® !. —¢ : . . .

300/0.1 8/0.1 6/0.1 5/0.1 4/01 301 2/01 1/0.1
Good state length/bad state length (s/s)

|—0— Tahoe —#— Reno —&— NewReno —»— E2TCP |

Energy overhead in scenario B
(type of radio: Intermediate)

300

]
200 / 2
)/
/
J

50

Og_/_)‘:—r‘!:"/

20120 12/1.2 8/08 505 4/04 303 202 101

Energy overhead (%)

Good state length/bad state length (s/s)

|—0—Tahoe —#— Reno —&— NewReno —>¢— EETCP|

Figure 5.27: Energy overhead of various
protocolsin scenario A.

Figure 5.28: Energy overhead of various
protocolsin scenario B.

Energy Efficient TCP

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Ideal) (type of radio: Ideal)
90 0
80 80
S)i s ™
S o /;r S % /I‘
£y // £y //
% 40 // % 40 //
¥/ —7
[[
&G 2 /“/A/ & 2
10 F‘Sﬁiﬁ:f//:j—x//’ i .F%Eﬁ/\
0F—= T T T T T 0+ T T T T T T
300/0.1 8/0.1 6/0.1 5/0.1 4/01 3/0.1 2/01 101 20/2.0 12/1.2 8/0.8 5/05 4/0,4 3/0.3 2/0.2 1/0.1
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|—0—Tahoe —&— Reno —A— NewReno —— E2TCP| |+ Tahoe —#— Reno —— NewReno —%— EETCP |
Figure 5.29: Energy overhead of various Figure 5.30: Energy overhead of various
protocolsin scenario A. protocolsin scenario B.

The first thing that can be concluded is that ETCP has a significantly lower energy overhead
than the other three protocols, in both scenarios and with al types of radios. Thus ETCP has
a higher energy efficiency than the other protocols in this test. Usudly E?TCP has an
overhead that is a least twice as smdl as that of another protocol, but the difference can
increase with shorter bad state lengths to 16 times as small.

Another important thing to note is that just as with data- and time overhead, the three versons
of TCP behave in the same way. From now on only one other protocol will be used to
compare the performance of ETCP to. If the graphs are studied closdly, Tahoe can be said to
be the most energy efficient protocol of the three and will therefore be used.

It should dso be clear that the energy overhead obtained by the protocols on an ided type of
radio is much lower than that on the other types of radio. This is because for an ided type of
radio time overhead has not a big impact. As seen, (for the standard TCP versons) time
overhead is much higher than data overhead, which causes the increased energy overhead for
the first two types of radios.

The find remak that will be made, is that dthough the absolute vaues for energy overhead
differ between the three types of radios, the tendencies of each protocol are the same
regardiess of what type of radio is used. Therefore, only one type of radio will be used in
future tests. The intermediate type will be chosen because the other types are at the extremes
of the scde. The intermediate type will therefore probably be better suited to be compared to
red radios. To be complete, the energy efficiency graphs for the intermediate type of radio
and both scenarios will be listed below.

L. Donckers

Energy efficiency in scenario A
(type of radio: Intermediate)

]
60 \
N

Energy efficiency (%)
o
o

0 T T T T T T
300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 301 201 1/0.1

Good state length/bad state length (s/s)

|—0— Tahoe —#— Reno —&— NewReno —»— E2TCP |

Energy efficiency in scenario B
(type of radio: Intermediate)

100
90 ‘I’
80 W
70

60 ‘i\
50 \

40
30
20
10
0 T T T T T T
20120 12/1.2 8/0.8 505 4/04 303 202 101

Energy efficiency (%)

Good state length/bad state length (s/s)

|—0—Tahoe —#— Reno —&— NewReno —>¢— E2TCP|

Figure 5.31: Energy efficiency of various
protocolsin scenario A.

As was dready concluded from the energy overhead graphs, it is cdlear tha E°TCP has a
higher energy efficiency than the other protocols.

5.6.2 Bandwidth

Figure 5.32: Energy efficiency of various
protocolsin scenario B.

In this test the impact of the channd’s bandwidth on the energy overhead will be examined.
The test setup equas the default setup except for a few changes. The bandwidth will not be
fixed a 1 Mbps but four different bandwidths will be used: 0.5, 1, 2 and 5 Mbps. As told in
the previous paragraph, only Tahoe and E°TCP will be used and only the energy overhead

graphs of the intermediate type of radio will be shown. The reaults of the test can be seen in

the following graphs

Energy overhead in scenario A
(type of radio: Intermediate)

300

250 l /

%200 v/x//(// /F

e [/}

E A
e e

(O
300/0.1 8/0.1 6/0.1 5/0.1 4/01 301 2/01 1/01

Good state length/bad state length (s/s)

|+o.5 —&— 1 —&—2 —»—5 Mbps |

Energy overhead in scenario A
(type of radio: Intermediate)

300

250

200

150

100 /

S——
50

o — "_‘é

300/0.1 8/0.1 6/0.1 501 4/01 301 201 101

Energy overhead (%)

Good state length/bad state length (s/s)

|+o.5 ——1 —4&—2—%5 Mbps|

Figure 5.33: Energy overhead of Tahoewith Figure 5.34: Energy overhead of EZTCP with

various bandwidths in scenario A.

various bandwidths in scenario A.

57

Energy Efficient TCP

Energy overhead in scenario B Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)

300 / / 300
250 / / 250
200 an ¥

200

150

Energy overhead (%)
Energy overhead (%)

// 150
100 /‘/I‘/ A 100 e e % M
50 E ;4»\‘, — 50
20/20 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1 2020 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|+0.5 —a—1 +2—)<—5Mbps| |—0—0.5—E—1—A—2—)<—5Mbps|

Figure 5.35: Energy overhead of Tahoe with Figure 5.36: Energy overhead of E°TCP with
various bandwidths in scenario B. various bandwidths in scenario B.

Because of the teribly high overheed of Tahoe on high bandwidth low qudity links the
graphs were truncated a 300% overhead. On links with the smalest good state length Tahoe
had 441% and 1128% energy overhead on 2 and 5 Mbps links respectively for scenario A and
444% and 1125% for scenario B.

Upon close examination of the graphs, it can be seen that E*TCP has less energy overhead
than Tahoe for each bandwidth/qudity of channd combination. In most cases Tahoe even has
an energy overhead that is at least twice as large as that of ETCP. This means that ETCP is
more energy efficient than Tahoe (in this test). The second conclusion is that independent of
bandwidth, E°TCP scales better than Tahoe when channel conditions deteriorate. It should
also be clear that ETCP does not scale worse than Tahoe when bandwidth increases. This is
an important characteristic of E°TCP because the bandwidths on new wirdess standards are
rapidly increasing.

5.6.3 Delay

The impact of the delay of the channd on the energy overhead of Tahoe and E°TCP was
examined in this test. The test setup equals the default setup except for the following changes
the delay was not fixed at 50 ms but the test was run with delays of 40, 50, 60 and 70 ms. The
energy overhead for both scenariosis shown in the following graphs.

L. Donckers

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)
140 140
I/ 2 A/ 2
< 120 < 120
S S
= 100 I/ = 100 [/
: AL/ : /]
£ 80 £ 80
[[
3 60 g 60
3 3
5 40 5 40
= =
w204 w20
s PR IR NN N
300/0.1 8/0.1 6/0.1 5/0.1 4/01 3/01 2/0.1 1/0.1 20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 101
Good state length/bad state length (s/s) Good state length/bad state length (s/s)

——Tahoe - 40 ms —&——Tahoe - 50 ms —&—— Tahoe - 60 ms —&—Tahoe - 40 ms —&—— Tahoe - 50 ms —a&—— Tahoe - 60 ms
—>—Tahoe-70ms ---X--- E2TCP-40ms ---®-- - E2TCP - 50 ms —>—Tahoe-70ms ---X--- E2TCP-40ms ---@-- - E2TCP - 50 ms
-ie+ . E2TCP-60mS =« ==+ - E2TCP - 70 ms “iet . E2TCP-60MS =« ==+ - E2TCP - 70 ms

Figure 5.37: Energy overhead of Tahoeand Figure 5.38: Energy overhead of Tahoe and
E°TCP with various delays in scenario A. E2TCP with various delaysin scenario B.

Agan the graphs were truncated because of the large differences in overhead. This time a
140%. On links with the smallest good state length Tahoe had 211%, 351% and 524% energy
overhead on links with 50, 60 and 70 ms dday respectively for scenario A and 211%, 340%
and 540% for scenario B.

Two conclusions can be drawn by studying the graphs. The first condusion is that E*TCP
agan has a lower energy overhead than Tahoe on dl dday/channd qudity combinations and
thus is more energy efficient. The second conclusion is tha E°TCP scales much better when
the channdl delay increases.

564 Traffic

In this test the energy overhead of Tahoe and E*TCP will be examined for various types of
traffic. Up to now, dl tests were done with a smulation of a (mass) data trandfer. In this test
two other types of traffic will be used for the amulaion. The fird smulaion will be done
with an interactive gpplication modd that modes interactive types of traffic like telnet
sessions, chatting and indant messages. The second smulation will be done with a congtant
bit rate gpplication, that models streaming audio and video.

The interactive traffic mode works a bit different than the data transfer modd. With an
interactive traffic modd the delay between consecutive packets can be sat. The application
will then randomly creste packets in such a way that the average delay between packets
equals the set vaue. In this test interdeparture times of 0.5, 0.2, 0.1 and 0.05 seconds were
used, which resemble data rates of 16 to 160 Kbps (2 to 20 KBps). The energy overhead for
both scenarios is shown in the fallowing graphs.

59

Energy Efficient TCP

Energy overhead in scenario A
(type of radio: Intermediate)

12
= /'/}
E 8
:]
> -8
5 6 ,;:';"i’
> ST

4 z
[R 3
5] Xo o he .,gtr';':fzfii
§ 2 IRNDULY. SITLE STPIPE L)

RS UL S
0

300/0.1 8/0.1 601 5/0.1 4/01 301 201 101
Good state length/bad state length (s/s)

Energy overhead in scenario B
(type of radio: Intermediate)

Energy overhead (%)

0 T T T T T T
2020 12/1.2 8/0.8 505 4/04 3/03 2/02 101

Good state length/bad state length (s/s)

—<@—Tahoe - 0.5 s —i@#—Tahoe-0.2s —a&—Tahoe-0.1s
—>—Tahoe-0.05s ---X--- E2TCP-05s ---®--- E2TCP-02s

ek o= E2TCP-01§ ---= - E2TCP-0.05s

—&—Tahoe - 0.5 s —i@—Tahoe-0.2s —a&—Tahoe-0.1s
—>—Tahoe-0.05s ---X- -- E2TCP-05s ---®--- E2TCP-0.2s

- o= E2TCP-01§ =---= - E2TCP-0.05s

Figure 5.39: Energy overhead of Tahoeand Figure 5.40: Energy overhead of Tahoe and

E2TCP with variousinterdeparture timesin

scenario A.

E“TCP with various interdeparture timesin

scenario B.

As can be seen, the performance of both protocols, in scenario A, barely changes when the
interdeparture times are dtered. In that scenario Tahoe consstently has about twice as much
energy overhead as E*TCP. In scenaio B, the differences are not as large but E°TCP ill

manages to score lower energy overhead scores.
The congant bit rate traffic modd resembles the interactive modd somewhat. It too sends

data at a specified rate. To model streaming media, data rates of 0.25, 0.5 and 1 Mbps were
used. The energy overhead for both scenariosis shown in the following graphs.

Energy overhead in scenario A
(type of radio: Intermediate)

60

]
L/
f A
%20 / / A'
g 10

T e X

300/0.1 8/0.1 601 501 401 301 2/01 1/0.1

Good state length/bad state length (s/s)

—&—— Tahoe - 0.25 Mbps —#&— Tahoe - 0.5 Mbps
—aA—Tahoe-1Mbps ---X--- E2TCP - 0.25 Mbps
-+-%-- E2TCP-05Mbps ---®--- E2TCP -1 Mbps

Energy overhead in scenario B
(type of radio: Intermediate)

; |
< |
e}

g © 7]
=
g A
[=)
§2O
Q
g 10
0+

20/20 12/1.2 8/0.8 505 4/04 3/03 2/02 101
Good state length/bad state length (s/s)

—&—— Tahoe - 0.25 Mbps —&— Tahoe - 0.5 Mbps
—aA— Tahoe - 1 Mbps --X--- E2TCP - 0.25 Mbps
---X--- E2TCP-0.5Mbps ---®--- E2TCP - 1 Mbps

Figure 5.41: Energy overhead of Tahoeand Figure 5.42: Energy overhead of Tahoe and
E2TCP with various data rates in scenario A. E?TCP with various data ratesin scenario B.

Because of the large differences in energy overhead both graphs were truncated at 60%. In
scenario A with a good state length of 1 second, Tahoe scores 89% and 211% for data rates of
0.5 and 1 Mbps respectively in scenario A and 87% and 212% respectively in scenario B.

60

L. Donckers

From the graphs can be concluded that in scenario A, E°TCP is much more energy efficient
than Tahoe. Furthermore E*TCP scales better when data rates increase. In scenario B, Tahoe
is able to equal ETCP's energy overhead when bad states are long and data rates low. ETCP
however, is more energy efficient when data rates increase and/or bad state lengths shorten.
So E*TCP has a higher energy efficiency in thistest.

Another concluson that can be drawn from the grephs is that even though the absolute
numbers differ when E°TCP is used with different data rates, the tendencies do not. This
means that for different data rates E*TCP behaves the same.

The 1 Mbps congant bit rate traffic is able to completdy saturate the link because it has a
bandwidth of 1 Mbps itsdf. Because of this, that traffic behaves exactly the same as amass
data transfer. Closely examining the source data of the graphs, proved this.

5.6.5 Partial reliability

In this test the partid relighility of E°TCP will be examined. The default setup will be used
with the following protocols Tahoe, PRTP and E*TCP. Tahoe is of course fully rdiable
E?TCP will be st to 95% and 90% rdliability while PRTP will be used a 90% reiahility. It
was the intention to test PRTP a 95% rdiability as well, but PRTP does not alow for such
fine-tuning of the reliability. Apparently with E°TCP the application has a more fine-grained
control over the reliability of the connection.

It is only ussful to use patid rdiability on cetan types of traffic. Streaming media
goplications and sometimes mass data transfer (images, audio and video) agpplications are
suited to adapt to partid reliability. Therefore only the congtant bit rate and mass data transfer
models should be used in this test. In the previous paragraph it was shown that for a data rate
of 1 Mbps the congtant bit rate agpplication behaves exactly the same as the mass data transfer
application. Furthermore it was shown that ETCP behaves the same when different data rates
are used for the condant bit rate application. Therefore it is sufficient to use the mass data
transfer (as in the default test setup) for this test. The energy overhead for both scenarios is
shown in the following graphs.

Energy overhead in scenario A Energy overhead in scenario B
(type of radio: Intermediate) (type of radio: Intermediate)

. i . /

35 35
g® g® A v
=] =]
g / g ® v
~ K=
- R N
> >
o / o \
& 15 > 15
9] / } @ M \’\ A
5 10 - -— p 5 10

5 9 ray a3 ¢ 5

0 T T T T T T 0 T T T T T T

300/0.1 8/0.1 601 501 401 301 2/01 1/0.1 20/20 12/1.2 8/08 5/0.5 4/04 3/03 2/02 101

Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|—0—Tahoe —&— PRTP - 90% —&— E2TCP - 95% —>— E2TCP - 90% | |—0—Tahoe —&— PRTP - 90% —&— E2TCP - 95% —>¢— E2TCP - 90% |
Figure 5.43: Energy overhead of various Figure 5.44: Energy overhead of various
protocolsin scenario A. protocolsin scenario B.

61

Energy Efficient TCP

The graphs were truncated again because of the large differences in energy overhead. This
time a 40%. In scenario A, Tahoe has an energy overhead of 211% when he good state
length is 1 second while in scenario B the same protocol scored 57% and 212% with good
dtate lengths of 2 and 1 second respectively.

From the graph of scenario A a few things can be deduced. Firg of dl, PRTP (with a
reliability of 90%) clearly has less energy overhead than Tahoe. Ancther interesting thing to
note is that both PRTP and BTCP a 90% rdiability score (most) the same independent of
the quality of the channd. Because of the loose reliability condraints both protocols can ded
very effidently with errors E2TCP with 95% rdiability dlearly has more trouble when the
quaity of the channd worsens because the rdiability condraints are tighter. Still it manages
to surpass PRTPin al but the worst channel conditions.

In scenario B, the lagt point is dso vdid. That is PRTP is more efficient than Tahoe, while
E°TCP with a relishility of 95% surpasses the peformance of PRTP in dl but the worst
channd conditions. Just like in scenario A, ETCP with a reliability of 90% is the most energy
efficient protocol.

5.6.6 Performance

So far, only the energy efficiency of ETCP has been examined. Because of the god of this
thesis, this is of course a very important metric. However, it is dso important to take a look at
some traditiond performance metrics, like throughput and latency. The comparison of the
various protocols with respect to traditiona performance will not be as extensve as the
evauation of the energy efficiency.

Throughput is a measure to indicate the utilization of the link. It is measured in bits per
second and can of course never exceed the bandwidth of the link. Throughput can be
cdculated by dividing the payload of the data tranamisson with the totd time it took to
complete the data transmisson. The faster a data trangmisson wes finished, the higher the
throughput will be. Because the time overhead adso decreases when the time to completion
decreases (and vice versq), it can be concluded that the lower the time overhead of a protocol
is, the higher its throughput will be. Because the time overhead of ETCP and other versions
of TCP have dready been examined, a prediction can be made about the throughput of those
protocols. It is expected that E*TCP will have a higher throughput than other versions of TCP.

To test e throughput of ETCP, the default test setup was used. Therefore the throughput can
be no higher than 1 Mbps. In the next graphs, the throughput of ETCP and other versions of
TCP will be shown.

62

L. Donckers

Throughputin scenario A Throughputin scenario B

1.0 1.0
W\ ————
0.8 1 _ 0.8
T/ —
-~ *\o\\ > =
o 0.7 f\ = 0.7 3
Z 06 Iy ™ Z 06
5 \m \ 5
a 05 a 05
ey ey
2 04 \‘\\ 2 04
o o
"g 0.3 1\\\ "g 0.3 \\
0.2 x 0.2 \ﬁ
0.1 0.1
0.0 T T T T T T 0.0 T T T T T T
300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1 2020 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|+ Tahoe —#— Reno —&— NewReno —¢— E2TCP | |—0— Tahoe —#— Reno —&— NewReno —»— E2TCP |

Figure 5.45: Throughput of various protocols Figure 5.46: Throughput of various protocols
in scenario A. in scenario B.

As can be seen in both graphs, the throughput of ETCP is clearly higher than that of the other
vergons of TCP. When channd conditions deteriorate, the difference in throughput becomes
exceptiondly large. Just as in the time overhead graphs in Paragraph 5.6.1; the other versons
of TCP behave the same. Their absolute throughput scores may differ somewhat (especidly in
scenaio A), but their graphs dl show the same tendency. By optimizing E°TCP for energy
efficiency by lowering its time overhead, the throughput was unintentionaly increased.
Because of the direct relation between time overhead and throughput, it is unnecessary to
examine other tet setups. The time overhead of E’TCP in dl test setups was closdy
examined to caculate the energy overhead. In dl test setups E°TCP had less time overhead
than the other protocols and therefore, its throughput will dways be higher.

The latency of a protocol (measured in milliseconds), is another traditional performance
metric. The latency of a packet is the time between the fird transmisson of the packet at the
sending host and the successful reception of the packet by the destination host. Latency can be
no lower than the delay of the wirdess link, link layer and MAC layer combined. In case of
refransmissions, the latency will surey increese. The average latency is the average of the
latency of each packet. This metric will be used in this test. Unlike throughput, average
latency has no direct relation to ether data- or time overhead. Stll, there is a wesk reation
between time overhead and average latency: the lower the time overhead the lower the
average laency will probably be. Therefore, it is expected that E*TCP will perform better
than the other protocols. The average latency of ETCP and the other versions of TCP, were
cdculated from the results of the tests done with the default test setup and are shown in the
two following graphs.

Energy Efficient TCP

Average latency in scenario A Average latency in scenario B

180

[
@
o

160

160
o 140 - 140 ;él
% 120 /// % 120 /
& 100 & 100
=] e ————
g 60 § 60 3
< 40 << 40
20 20
0 T T T T T T 0 T T T T T T
300/0.1 8/0.1 6/0.1 5/0.1 4/01 301 2/01 1/0.1 20/2.0 12/1.2 8/0.8 5005 4/04 3/0.3 2/0.2 1/0.1
Good state length/bad state length (s/s) Good state length/bad state length (s/s)
|—0—Tahoe —##— Reno —&— NewReno —%— E2TCP | |—0—Tahoe —i#— Reno —&— NewReno —>— E2TCP|
Figure 5.47: Average latency of various Figure 5.48: Average latency of various
protocolsin scenario A. protocolsin scenario B.

Clearly, the graphs show that the average latency of E*TCP is lower than that of the other
varsons of TCP. As with throughput, the difference only increases when the channd
conditions deteriorate. Because the default test setup was used the average latency could not
drop below 50 ms. Taking this into account, the performance of ETCP becomes even more
impressing. When the channd conditions are worst, ETCP adds about 20 ms to the minimum
latency while the other protocols add about 100 ms.

56.7 Conclusions

In Paragraph 5.6, a performance evaluation of ETCP was given. In the first test, Tahoe, Reno
and NewReno were compared to E°TCP in the default test setup. It can only be sad that
E°TCP dearly has a higher energy efficiency than those other protocols. In the other tests
Tahoe, which is the most energy efficient standard version of TCP, was compared to ETCP
with different bandwidths, ddlays and types of traffic. E°TCP consistently had a lower energy
overhead than Tahoe To give an indication of the efficiency of E>TCP, the average energy
overhead of the tested protocols will be listed in the following table for both scenarios, using
the default test setup.

Protocol | Scenario A (%) | Scenario B (%)
Tahoe 44,5 54.5
Reno 68.6 63.4
NewReno 52.2 54.9
E°TCP 10.1 17.4

Table 5.3: The average energy overhead of various protocols.

After that, some partia reliability tests were run, which compared PRTP with E?TCP under
various rdiability consraints. Again, E°TCP was the most energy efficient protocol. To give
an indication of the efficiency of the protocols used in those teds, the average energy
overhead of the tested protocols will be listed in the following table for both scenarios.

L. Donckers

Pr otocol

Scenario A (%)

Scenario B (%)

PRTP (90% rdichility) 9.7 19.3
E“TCP (95% rdidhility) 7.1 14.6
E“TCP (90% rdligbility) 4.9 12.6

Table 5.4: The average energy overhead of various protocols under various reliability

constraints.

In Paragraph 5.6.6, a traditiond performance evauaion of E°TCP was conducted. From its
results can be concluded that for both traditiona performance metrics, throughput and
latency, E°TCP manages to outperform the other versions of TCP by a significant amount. To
give an indication of the performance of ETCP, the average throughput and average latency
of the tested protocols will be listed in the following two tables for both scenarios, using the

default test setup.

Protocol | Scenario A (Mbps) | Scenario B (Mbps)
Tahoe 0.71 0.61
Reno 0.59 0.61
NewReno 0.64 0.62
E°TCP 0.87 0.80

Table 5.5: The average throughput of various protocols.

Protocol | Scenario A (ms) | Scenario B (ms)
Tahoe 76.6 101.7
Reno 96.1 103.5
NewReno 74.7 100.8
E°TCP 55.9 75.0

Table 5.6: The average latency of various protocols.

Energy Efficient TCP

L. Donckers

6 CONCLUSIONS AND RECOMMENDATIONS

From the results of the smulations presented in Chapter 5, the most important conclusion is
that E>TCP is indeed energy efficient. When comparing E>TCP to standard versions of TCP,
like Tahoe, Reno and NewReno, it is clear ETCP consistently has less energy overhead and
therefore, a higher energy efficiency.

E*TCP is optimized for energy efficiency on four points. Each optimization addresses one of
the four problems of TCP, that keep it from reaching high leves of energy efficiency. The
fird point is the acknowledgement scheme of TCP, which is unable to provide the sending
host with enough information about the state of the destination host. E°TCP uses selective
acknowledgements to overcome this problem. These sdective acknowledgements are dso
required for the second optimization: the window management. This optimization is the result
of efforts to make TCP aware of burst errors. Because burst errors are a mgjor cause of packet
loss on wireless links and TCP condders al packet loss to be the result of congestion, TCP
was unable to react to burst errors in an energy efficient way. These two optimizations, which
effect cannot redly be determined separately, cause the grestest decrease in energy overhead:
about 75% of the tota decrease in energy overhead. The third optimization is the use of
patid rdidbility to limit unwanted retranamits during the trangmisson of dreaming media
This optimization is the cause of about 13% of the total decrease in energy overhead. The
find optimization is the use of custom headers, which rely on techniques from heeder
compresson standards to minimize wasted energy. This optimization is the cause of the last
12% of the total decrease in energy overhead.

E*TCP has been compared to standard TCP under various conditions. The bandwidth, delay,
type of traffic and channel conditions were widdy varied to get a complete overview of the
energy efficiency charecteristics of E°TCP. The bandwidth was varied from 05 Mbps,
representing lower speed serid links, to 5 Mbps, representing the new high speed IEEE
802.11b wirdess network standard. From the results can be concluded that E*TCP has less
energy overhead than TCP for each bandwidth/qudity of channd combination. In most cases
TCP even has an energy overhead that is at least twice as large as that of ETCP. The second
conclusion is tha independent of bandwidth, E°TCP scdes better than TCP when channé
conditions deteriorate. It should also be clear that EETCP does not scale worse than TCP when
bandwidth increases.

The delay of the wirdess link, link layer and MAC layer combined was varied from 40 ms to
70 ms, representing dl kinds of wirdess links. Two conclusons can be drawn by studying the
results. The first conclusion is tha E°TCP has a lower energy overhead than TCP on all
delay/channd qudity combinaions and thus is more energy efficient. The second conclusion
is that E*TCP scales much better than TCP, when the channel delay increases.

Three types of traffic were used in the smulations of E°TCP: interactive traffic (representing
chatting and indant messaging for example), mass data transfers (representing file transfers,
browsng and emaling for example) and congant bit rate traffic (representing Sreaming
media). From the results can be concluded that E°TCP continuoudy manages to outperform
TCPinterms of energy efficiency, with every kind of traffic and dl channd qudities.

A traditiond performance evauation of ETCP was aso conducted. It consisted of throughput
and latency comparisons with the standard versons of TCP. Because of the optimizations to
reduce data and time overhead, the throughput of BTCP was increased. Therefore, no version
of TCP was able to reach a higher throughput than ETCP. The delay of E°TCP was adso
lower than that of other versions of TCP.

67

Energy Efficient TCP

This could rase the question whether or not optimizing for energy efficiency is the same as
optimizing for throughput and/or latency. This is not so. An example that shows that a
protocol with a high throughput does not autometicaly have a high energy efficiency, is a
TCP sender that transmits at the highest possible speed. Such a sender would have a very high
throughput. However, it would dso waste a substantiad amount of energy because it would
dso transmit a the highest possble speed during burst errors. Therefore, optimizations for
energy efficiency are distinct from optimizations for throughput and/or latency.

As for future research, four areas are recommended to be examined. Firg of dl, the
assumptions made on energy efficiency and how it is cdculated, should be subject to further
examinations. As with al assumptions, it is unclear how accuratdly they portray redity.
Therefore, a detailled study to how the actud energy consumption caused by a protocol can be
measured and caculated from evident data, is desirable.

The second area of recommended research is the characteristics of burst errors. Little research
can be found on what kind of error characteristics wireless links experience. Therefore, it is
unclear how to accuratedly modd errors in Smulated environments. If more information would
be avalable on the length of burst errors, the time between consecutive burst errors and the bit
error rate of the wirdess link under norma conditions and during burst errors, more accurate
models could increase the reliability of smulations.

Furthermore, smulations for the base dation should be designed and implemented. This
would dlow for amulations of the entire setup, ingtead of just the wirdess part. Information
on the peformance of a complete connection (from mobile to internet host and vice versa)
would be vauable. The most important reason for implementing the base detion is to examine
the effect of a complete connection on the energy efficiency of E°TCP (at the mobile host).

The find recommendation for future research is to compare E°TCP to other protocols for
wirdess links. A lot of adaptions of TCP have been proposed for wirdess links. Such
protocols generdly focus on optimizing peformance of the connection with respect to
throughput and/or delay. Because of the overlgp of optimizing for traditiond performance and
for energy efficiency, it is certanly possble these protocols are more energy efficient than
standard TCP. Whether or not they are able to surpass E°TCP, remains to be seen, but is
cetainly an interesting research aea. For such a comparison implementations of these
protocolsin NS2 would have to be obtained.

L. Donckers

[BAK OS]
[BAK97]

[BAL95]

[BLUOI]
[BROY7]

[BRUOO]

[CASO9]
[CHE94]

[COM95]

[DEGO9]

[ECK96]

[ENG99]
[FAL96]
[FALOO]
[FLOOO]

[GAROO]

[HAAQT]

[HAV OS]

[HAVO9]

BIBLIOGRAPHY

Bakre A.V., Badrinath B.R., I-TCP: Indirect TCP for mobile hosts Proceedings
of the 15" international conference on distributed computing systems, May 1995.
Bakre A.V., Badrinath B.R., Implementation and performance evaluation of
indirect TCP, |IEEE transactions on computers, V. 46 N. 3, March 1997.
Bdakrishnan H., Srinivasan S., Kaz RH., Improving reliable transport and
handoff performance in cellular wireless networks ACM wireless networks, V. 1
N. 4, 1995.

Bluetooth Specid Interest Group, Specification of the Bluetooth system — volume
1. Core, Verson 1.1, http://www.bluetooth.conv, February 2001.

Brown K., Singh S, M-TCP: TCP for mobile cellular networks Computer
communications review, V. 27 N. 5, October 1997.

Brunstrom A., Asplund K., Garcia J,, Enhancing TCP performance by allowing
controlled loss, Proceedings of SSGRR 2000 computer & ebusiness conference,
L’ Aquila, 1taly, August 2000.

Casner S., Jacobson V., Compressing |P/UDP/RTP headers for low-speed serial
links RFC 2508, February 1999.

Chen K., Medium access control of wireless LANs for mobile computing, IEEE
network magazine, V. 8 N. 5, September 1994.

Comer D.E., Internetworking with TCP/IP — volume 1. Principles, protocols and
architecture, 3¢ edition, Prentice-Hall, Upper Saddle River, The United States of
America, 1995.

Degermark M., Nordgren B., Pink S, IP header compression, RFC 2507,
February 1999.

Eckhardt D., Steenkiste P., Measurement and analysis of the error characteristics
of an in-building wireless network, Proceedings of the ACM SIGCOMM '96
conference, October 1996.

Engan M., Casner S, Bormann C., IP header compression over PPP, RFC 2509,
February 1999.

Fal K., Floyd S, Smulation-based comparison of Tahoe, Reno and SACK TCP,
Computer Communication Review, V. 26 N. 3, duly 1996.

Fdl K. Vaadhan K. The NS manual, The VINT project,
http://www.is .edu/nsnam/ng/, October 2000.

Floyd S, Mahdavi J., Mathis M., Podolsky M., An extension to the selective
acknowl edgement (SACK) option for TCP, RFC 2883, July 2000.

Garcia J.,, Brunstrom A., A robust JPEG coder for a partially reliable transport
service, Proceedings of the 7" international workshop IDMS 2000, Enschede, The
Netherlands, October 2000.

Haas Z.J., Agrawa P., Mobile-TCP: an assymetric transport protocol design for
mobile systems ICC 97, Montreal, Canada, June 1997.

Havinga P.JM., Smit G.JM., E?MaC: an energy efficient MAC protocol for
multimedia traffic, Moby Dick technica report,
http://mww.cs.utwente.nl/~havingal, 1998.

Havinga P.JM., Energy efficiency of error correction on wireless systems, IEEE
wireless communications and networking conference, September 1999.

69

Energy Efficient TCP

[HAVO0]

[HAV00b]

[IEE99]

Havinga PJM., Smit G.JM., Energy-efficient TDMA medium access control
protocol scheduling, Proceedings of the Asan Internationd Mobile Computing
Conference (AMOC 2000), November 2000.

Havinga P.JM, Smit G.JM., Bos M., Energy efficient adaptive wireless network
design, The 5" symposum on computers and communications (ISCC'00),
Antibes, France, July 2000.

IEEE, Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications, |EEE standard 802.11, 1999.

[|EE99b)]
[JACBS]
[JAC90]
[MAT96]
[RAM99]

[RATOS]

[STE97]

[VAI9Q]

|EEE, Higher speed physical layer (PHY) extension in the 2.4 GHz band, IEEE
standard 802.11b, 1999.

Jacobson V., Braden R., TCP extensions for long-delay paths, RFC 1072, October
1988.

Jacobson V., Compressing TCP/IP headers for low-speed serial links RFC 1144,
February 1990.

Mathis M., Mahdavi J.,, Floyd S., Romanov S., TCP selective acknowledgement
options, RFC 2018, October 1996.

Ramakrishnan K., FHloyd S, A proposal to add explicit congestion notification
(ECN) to IP, RFC 2481, January 1999.

Ratnam K., Matta I., WTCP: an efficient mechanism for improving TCP
performance over wireless links Proceedings of the 3 IEEE symposum on
computer and communications, June 1998.

Stemm M., Katz RH., Measuring and reducing energy consumption of network
interfaces in hand-held devices, IEICE transactions on communications, V. ES80-B
N. 8, 1997.

Vaidya N.H.,, Mehta M., Pekins C.,, Montenegro G., Delayed duplicate
acknowledgements. a TCP-unaware approach to improve performance of TCP
over wireless, Technica report 99-003, Computer science department, Texas
A&M Universty, February 1999.

70

