

ENERGY EFFICIENT TCP

Master’s thesis: L. Donckers
CAES/002/01

May, 2001

University of Twente
Department of Computer Science
Division: Computer Architecture and Embedded Systems

Supervisors:
dr. ir. G.J.M. Smit
dr. ing. P.J.M. Havinga
ir. L.T. Smit

Energy Efficient TCP L. Donckers

 I

SAMENVATTING
Een nieuw type handcomputer is in ontwikkeling in het Moby Dick project. Door de gewenste
functionaliteit en prestaties, zal het energie verbruik de limiterende factor zijn voor deze
handcomputer. Draadloze communicatie zal ook een belangrijke factor zijn in het project, wat
een energie-efficiënt transport protocol, compatible met TCP/IP, wenselijk maakt. Dit verslag
beschrijft het ontwerp van zo’n energie-efficiënt transport protocol voor mobiele draadloze
communicatie.
Er is echter nog niet veel onderzoek gedaan naar de energie efficiëntie van transport
protocollen. Daarom zijn er eerst maten ontwikkeld om de energie efficiëntie van transport
protocollen te kunnen meten. Deze maten zijn gebruikt om de prestaties van TCP/IP op
draadloze verbindingen nauwkeurig te bestuderen. Vier probleemgebieden zijn gedefinieerd,
die TCP/IP ervan weerhielden een hoog niveau van energie efficiëntie te behalen. Voor deze
probleemgebieden zijn mogelijke oplossingen aangedragen waarna de haalbaarheid er van is
onderzocht.
De resultaten van dit onderzoek zijn gebruikt om E2TCP te ontwerpen. Een simulatie model
van dit energie-efficiënte transport protocol is geïmplementeerd en onderworpen aan een
grondige evaluatie. Uit de resultaten kan geconcludeerd worden dat E2TCP niet alleen een
hogere energie efficiëntie heeft dan TCP/IP, maar dat het ook in staat is beter te presteren op
meer traditionele punten: throughput en latency.

Energy Efficient TCP

II

 L. Donckers

 III

ABSTRACT
A new generation handheld computer is under development in the Moby Dick project.
Because of the desired functionality and performance, the energy consumption will be the
limiting factor for this handheld. Wireless communication will also be an important factor in
the project, which makes an energy-efficient transport protocol, compatible with TCP/IP,
desirable. This thesis describes the design of such an energy-efficient transport protocol for
mobile wireless communication.
However, not much research has yet been done on the energy efficiency of transport
protocols. First metrics were developed to measure the energy efficiency of transport
protocols. These metrics were used to study the performance of TCP/IP on wireless links
carefully. Four problem areas were defined that prevented TCP/IP from reaching high levels
of energy efficiency. For these problem areas, solutions were proposed and their feasibility
was examined.
The results of this study were used to design E2TCP. A simulation model of this proposed
energy-efficient transport protocol has been implemented and was subject to a thorough
evaluation. The results show that E2TCP not only has a higher energy efficiency than TCP/IP,
but it also manages to outperform TCP/IP on more traditional performance metrics:
throughput and latency.

Energy Efficient TCP

IV

 L. Donckers

 V

TABLE OF CONTENTS
PREFACE VII

1 INTRODUCTION 1

1.1 PROBLEM AREA 1

2 MEASURING ENERGY EFFICIENCY 3

2.1 ENERGY EFFICIENCY AND ENERGY OVERHEAD 3
2.2 DATA OVERHEAD AND TIME OVERHEAD 4
2.3 POWER MODEL OF RADIOS 4
2.4 CALCULATING DATA OVERHEAD AND TIME OVERHEAD 6
2.5 CALCULATING ENERGY OVERHEAD 7
2.6 CALCULATING ENERGY EFFICIENCY 7
2.7 SUMMARY 9

3 ASPECTS OF TCP 11

3.1 TRANSPORT CONTROL PROTOCOL 11
3.1.1 RELIABILITY 11
3.1.2 SLIDING WINDOWS 11
3.1.3 ACKNOWLEDGEMENTS AND RETRANSMISSION 12
3.1.4 TIMEOUT AND RETRANSMISSION 12
3.1.5 WINDOW SIZE AND FLOW CONTROL 13
3.1.6 RESPONSE TO CONGESTION 13
3.2 PROBLEMS OF TCP 13
3.2.1 LARGE HEADERS 14
3.2.2 SIMPLE ACKNOWLEDGEMENT SCHEME 14
3.2.3 LOSS IS CONSIDERED CONGESTION 15
3.2.4 COMPLETE RELIABILITY 15
3.3 POSSIBLE SOLUTIONS 15
3.3.1 HEADER COMPRESSION 16
3.3.2 SELECTIVE ACKNOWLEDGEMENTS 17
3.3.3 DELAYED ACKNOWLEDGEMENTS 18
3.3.4 EXPLICIT CONGESTION NOTIFICATION 19
3.3.5 FORWARD ERROR CORRECTION 19
3.3.6 I-TCP 20
3.3.7 PROTOCOLS INSPIRED BY I-TCP 20
3.3.8 DELAYED DUPLICATE ACKNOWLEDGEMENTS 21
3.3.9 MOBILE-TCP 21
3.3.10 PRTP 21
3.3.11 OPTIMIZED WINDOW MANAGEMENT 22
3.3.12 CONCLUSIONS 22

Energy Efficient TCP

VI

4 E2TCP 23

4.1 ARCHIT ECTURE OVERVIEW 23
4.1.1 HEADERS 23
4.1.2 ACKNOWLEDGEMENTS 23
4.1.3 WINDOW MANAGEMENT 24
4.1.4 RELIABILITY REQUIREMENTS 25
4.2 HEADER FORMAT 25
4.2.1 IP HEADER 25
4.2.2 TCP HEADER 27
4.2.3 E2TCP HEADER 29
4.2.4 E2TCP HEADER SIZES 33
4.3 SELECTIVE ACKNOWLEDGEMENTS 33
4.4 WINDOW MANAGEMENT 35
4.4.1 CONGESTION AND FLOW CONTROL 35
4.4.2 TRANSMISSION 36
4.4.3 RETRANSMISSION 36
4.4.4 ACKNOWLEDGEMENTS AND WINDOW SIZE 36
4.4.5 ROUND TRIP TIME ESTIM ATION 37
4.4.6 BURST ERROR DETECTION 37
4.5 PARTIAL RELIABILITY 39

5 TEST RESULTS 41

5.1 SIMULATION MODEL 41
5.2 TEST SETUP 41
5.3 ERROR MODEL AND SETUP 43
5.4 E2TCP PARAMETERS 44
5.4.1 MINIMUM WINDOW SIZE 44
5.4.2 MAXIMUM WINDOW SIZE 46
5.4.3 WINDOW SIZE AFTER A TIMEOUT 46
5.4.4 ERROR LIMIT 47
5.4.5 CONCLUSIONS 48
5.5 E2TCP DISSECTED 49
5.5.1 WINDOW MANAGEMENT 49
5.5.2 SELECTIVE ACKNOWLEDGEMENTS 49
5.5.3 E2TCP HEADERS 50
5.5.4 PARTIAL RELIABILITY 51
5.5.5 CONCLUSIONS 52
5.6 EVALUATION OF E2TCP 53
5.6.1 DEFAULT SETUP 53
5.6.2 BANDWIDTH 57
5.6.3 DELAY 58
5.6.4 TRAFFIC 59
5.6.5 PARTIAL RELIABILITY 61
5.6.6 PERFORMANCE 62
5.6.7 CONCLUSIONS 64

6 CONCLUSIONS AND RECOMMENDATIONS 67

BIBLIOGRAPHY 69

 L. Donckers

 VII

PREFACE
I would like to take the opportunity to thank my supervisors: Gerard Smit, Paul Havinga and
Lodewijk Smit for guiding me while I was working on this assignment. I would also like to
thank my mother, brother and sister for being there for me. For the same reason I thank Ella,
Jac and Jessie.
Last but certainly not least, I would like to thank my girlfriend: Lonneke. Without her support
this would have been impossible.

Enschede, May 2001

Lewie Donckers

Energy Efficient TCP

VIII

 L. Donckers

 1

1 INTRODUCTION
This thesis is part of the Moby Dick project at the Computer Science department of the
University of Twente. The Moby Dick project is a joint European project to develop and
define the architecture of a new generation of mobile handheld computers. Due to the
increasing demand for performance and functionality, the energy consumption will be the
limiting factor for the capabilities of such a new generation handheld. Therefore reducing
energy consumption plays a crucial role in the architecture. An important aspect of the Moby
Dick project is wireless communication. Because of the importance of energy efficiency to
the Moby Dick project, the wireless communication should also be optimized to minimize
energy consumption.
Unfortunately, not a lot of research has been done on energy-efficient transport protocols.
Even though it would be quite rewarding to do so, because in mobile systems, the radio
(which is used for wireless communication) is one of the parts that consume the most energy
[STE97]. Computer chips (like CPUs and memories) are becoming increasingly energy
efficient because of advances in IC design. Radios however simply require a certain amount
of energy to transmit and receive information. Furthermore, multimedia applications are using
network services more extensively and continuously than before. The impact of minimizing
the energy spent on wireless communication, will therefore only increase [HAV00b].
For these reasons, it would be beneficial to the Moby Dick project if an energy-efficient
transport protocol would be designed. As a basis for such a protocol, TCP/IP (Transport
Control Protocol/Internet Protocol) is a likely candidate. This would enable the handheld to
communicate, via the Internet, with vast numbers of systems.
This led to the following problem statement:

The energy efficiency of transport protocols on wireless links should be
researched. Based on that research, E2TCP –an energy efficient version of
TCP/IP– should be designed and implemented, to test its energy efficiency and
performance.

The remainder of this chapter further delineates the problem area of E2TCP. Chapter 2
explains what energy efficiency is and how it can be calculated. Chapter 3 then describes
TCP/IP, explains what keeps it from reaching high levels of energy efficiency and what can
be done to remedy this. The solutions presented in Chapter 3 were used to design E2TCP,
which is described in Chapter 4. In Chapter 5 an implementation of E2TCP will be introduced
before a thorough energy efficiency and performance evaluation will be given. Finally
Chapter 6 gives the conclusions of this thesis.

1.1 Problem area
E2TCP will be used on a wireless link between a mobile host and a base station. The mobile
host should be able to connect to the Internet via the base station in such a way that it is
transparent to the mobile host and the Internet host it is connected with. This means neither
the mobile host nor the Internet host should be able to tell whether E2TCP is used between the
mobile host and the base station or regular TCP/IP. (Because the behavior of TCP is highly
dependant on IP, E2TCP will have the functionality of both TCP and IP. This maximizes the
potential gain in energy efficiency.)
The design of this protocol is limited to the transport layer. The lower layers (the link layer
and medium access layer (MAC) layer) should not be changed in any way. This is because the

Energy Efficient TCP

2

protocol will be used as a drop-in replacement for TCP/IP on the mobile host and should be
usable on all wireless links, just like TCP/IP is usable on all wired networks. The protocol
should therefore make no assumptions about the link- and MAC layers.
Now it is clear what should not be changed, it is time to explain what is allowed to be
changed. There are three parts of the systems that can be changed. They are additive, which
means that the second proposed change also includes the first and that the third proposed
change also includes the second and first.
The first proposed change is to replace TCP/IP at the base station with E2TCP. This change
requires no user intervention but it is expected that by only applying this change, the increase
in energy efficiency is rather small.
The second proposed change is to also replace the transport protocol on the mobile host. This
requires some user intervention because the user must install the protocol on its mobile host.
Because of the user-friendliness of modern operating systems this should not be a big
problem. When this proposal is executed a truly new transport protocol can be designed
because it does not have to communicate directly with TCP/IP. A proxy application at the
base station can then handle the translation of the energy efficient protocol on the wireless
link to TCP/IP on the wired part of the path. The design of the proxy is not part of the
problem statement: E2TCP will be the sole point of focus. It is expected that this proposal will
yield an increase in energy efficiency compared to only the first change. Such a setup is
shown in Figure 1.1.

E2TCP

link layer

MAC layer

link layer

MAC layer

application application

mobile host internet host

TCP

IP
E2TCP

link layer

MAC layer

proxy

base station

link layer

MAC layer

TCP

IP

wireless link fixed link
Figure 1.1: The intended setup of E2TCP.

The third proposal is to change (some of) the applications on the mobile host as well. These
applications will then be able to optimize the energy efficient connections for their intended
use with Quality of Service-like (QoS-like) parameters. It is expected that this will increase
the energy efficiency even further in certain cases, which would not have been possible with
only the first two proposed changes.
The conclusion of this chapter is that the protocol should meet the following requirements:
• It should be a transport protocol and should be compatible with TCP/IP (through

translation at the base station).
• It should be energy efficient.
• It should make no assumptions about the lower layers and leave them unchanged.
• Higher layers (applications) should be able to use E2TCP just like TCP/IP. However, if

they are E2TCP-aware, they should be able to optimize E2TCP connections for their
intended use with QoS-like parameters.

 L. Donckers

 3

2 MEASURING ENERGY EFFICIENCY
When researching the energy efficiency of protocols, it is of course important to know what
exactly energy efficiency (of a protocol) is and how to calculate it. In this chapter both topics
will be discussed.

2.1 Energy efficiency and energy overhead
Energy efficiency is a measure to indicate how much energy a protocol uses to transmit data
(in a certain case) compared to an ideal protocol. It will not be measured in absolute values
because different cases (with different amounts of payload) should be comparable. An energy
efficiency near 0% means little of the spent energy was used efficiently, while an energy
efficiency of 100% means that no energy was wasted, which can only be achieved by an ideal
protocol.
It is important to know that for a given data transmission medium there is a minimum amount
of energy that is required to send data from source to destination. No protocol can use less
energy and still successfully complete the transmission. Let's call this minimum M. This is
probably different from the actual spent energy, called S. The difference between those two
values is called W; the amount of wasted energy. These values are shown in Figure 2.1.

S

M

W

S = energy Spent by the protocol
W = energy Wasted by the protocol
M = Minimum amount of spent energy possible

+

=

Figure 2.1: The relation between the spent, wasted and minimum amount of energy.

Energy efficiency then is:

EE = M / S

Equation 2.1: Energy efficiency.

or in words: the part of the spent energy that was used useful. If the protocol is ideal and it
only uses the minimum amount of energy (S = M) the energy efficiency is 100%. Since M is
fixed and S can only increase, the energy efficiency can only become lower.
Even though this is exactly what is needed to know about the protocols in this assignment,
energy efficiency is not a good way to compare various protocols. This is because the
differences in energy efficiency will be quite small even though the amount of wasted energy
can differ quite much. Consider the following example.

Example 2.1: The minimum amount of energy for a given data transfer is 100 (the
measure used does not matter). Protocol A spends an amount of 125 to complete
the transmission and protocol B 150. Clearly protocol B wastes twice as much

Energy Efficient TCP

4

energy as protocol A (W is 50 and 25 respectively). But the energy efficiency of
protocol A is 100 / 125 = 80% and that of B is 100 / 150 = 67%. When one only
looks at the energy efficiency it is easy to see that protocol A is better than
protocol B. When one tries to see how much protocol A is better, the energy
efficiency numbers are not that convenient.

There is another measure that is closely related to energy efficiency: energy overhead. Energy
overhead is the amount of wasted energy compared to the minimum amount of energy, or:

EO = W / M

Equation 2.2: Energy overhead.

This can be seen as the amount of energy that is spent more than the minimum the protocol
requires. Because of its close relation with energy efficiency, energy overhead can be
calculated when only energy efficiency is known, and vice versa. Unlike energy efficiency
however, energy overhead is more suited to show the differences between two protocols. This
is shown in the next example.

Example 2.2: Consider the previous example but now the energy overhead will be
calculated instead of energy efficiency. The energy overhead of protocol A is 25 /
100 = 25% and the energy overhead of protocol B is 50 / 100 = 50%. This shows
precisely that protocol B wastes twice as much energy as protocol A.

Energy overhead will be used to compare protocols from now on, while energy efficiency
numbers will sometimes be stated to be complete.

2.2 Data overhead and time overhead
Now a definition of energy overhead has been given, it is time to show how it is calculated.
Before this can be done it is important to understand what precisely influences the energy
efficiency and overhead of a protocol. Basically there are two characteristics that influence
them. The first characteristic is the data overhead of a protocol. When a protocol uses more
bytes to transmit the same amount of data, more bytes are wasted. Therefore the protocol
becomes less energy efficient. The second characteristic that influences the energy efficiency
of a protocol is time overhead. In certain cases, the longer the protocol needs to transmit the
same amount of data, the longer the radio has to be active. When the radio is active, it requires
(extra) energy to operate. Thus, the more time a protocol requires to send the same amount of
data, its energy efficiency decreases. These two characteristics are sometimes related.
The question remains how much these characteristics each influence energy efficiency. The
answer really depends on the type of transceiver (transmitter and receiver) and what kind of
link and MAC layer are used to transmit and receive the packets. For convenience the
combination of transceiver, link layer and MAC layer will be called a radio from now on. To
distinguish between different types of radios, a general power model of radios will be
presented first.

2.3 Power model of radios
A radio has various states in which it operates. In each state the radio requires a certain
amount of power to operate. In the following table as an example, the various states of a

 L. Donckers

 5

WaveLAN modem will be listed, together with a description of the amount of power
consumption [HAV00].

State Power consumption WaveLAN power consumption (mW)
Off none 0
Sleep low 35
Active high 1325
Transmit slightly higher than active 1380
Receive slightly higher than active 1345

Table 2.1: Powerstates of radios.

Of course one could think that the ideal radio would be in the off state continuously, except
when it has to receive or transmit data. However, real radios behave differently. When a radio
switches between two states it takes a certain amount of time and possibly some amount of
energy to complete the switch. Switching to and from the off mode takes so much time it is
infeasible to use it to save energy between consecutive transmits and receives. The sleep state
can be used for such a purpose. To effectively use the sleep state, however, takes extra
coordination and increases the complexity of the lower level protocols. Furthermore, a lot of
radios are not optimized for power consumption but for performance. So there are still a lot of
radios that do not use the sleep state to save power to its full effect.
It is also important to understand the concept of a network session. A network session is a
period in time in which there is a established connection between the mobile and the base
station. During a network session it is possible to use the network. For instance by requesting
email from a mail server or establishing a telnet session with a telnet server. During a network
session it is often infeasible for the radio to enter the off state. This is because switching to
and from the off state requires much time. So before and after a network session the radio can
be put in the off state to save energy. However, doing this during a session is not a thing a lot
of radios are able to do.
Now a general power model of radios has been given, some types of radios will be discussed.
There are two extreme types of radios. Not all radios will fit in either categories. All radios
however can be placed on a gliding scale between the those two types. These types are:
• Always active. Such a type of radio is always in the active state during a network

session. Because of the small difference between the energy consumption levels of the
active state and the transmit and receive states, data overhead does not have a large
impact on energy efficiency. Time overhead is much more important because the sooner
the data has been transmitted and the network session can be ended, the sooner the radio
can put in the off state. WaveLAN is an example of such a type of radio.

• Ideal. An ideal radio would always be in the sleep- (or even off-) state during a network
session, except when it has data to transmit or receive. For such a type of radio, time
overhead would only have a very small impact on energy efficiency. Data overhead, on
the other hand, is much more important. E2MaC is an example of this type of radio
[HAV98].

So at one side of the gliding scale, time overhead is very important and data overhead is not,
while at the other side of the scale, data overhead is very important and time overhead is not.
Because our energy efficient protocol could be used on either extreme of the scale, it would
be best to minimize both types of overhead.

Energy Efficient TCP

6

2.4 Calculating data overhead and time overhead
The problem of measuring energy efficiency has now boiled down to two simpler problems.
How to measure data overhead and how to measure time overhead. Data overhead will be
calculated as follows:

DO = S / D – 1

Equation 2.3: Data overhead.

where:
DO is Data Overhead.
D is the amount of Data that should be transmitted by the protocol (measured in bytes).

This is the payload of the protocol and is often referred to as user data.
S is the amount of data the protocol actually Sent, to transmit the payload D to the

receiver (measured in bytes). This includes retransmitted packets, packet headers and
acknowledgements.

Consider the following examples:

Example 2.3: when TCP/IP is used to send 1000 bytes in one packet, that would
generate one 1040 byte packet (40 bytes header and 1000 bytes payload) and one
40 byte acknowledgement. That would result in:

D = 1000
S = 1040 + 40 = 1080

DO = 1080 / 1000 – 1 = 8%

Example 2.4: when TCP/IP is used to send 1000 bytes in one packet (just like in
Example 2.3) but this packet is lost upon first transmission, it would have to be
retransmitted. That would result in:

D = 1000
S = 1040 + 1040 + 40 = 2120

DO = 2120 / 1000 – 1 = 212%

Time overhead will be calculated as follows:

TO = T / (D / B) – 1

Equation 2.4: Time overhead.

where:
TO is Time Overhead.
T is the Time the protocol required to transmit the payload D to the receiver (measured in

seconds). Time is measured until the destination has received all data and the sender is
aware that this has happened.

B is the Bandwidth available on the link (measured in bytes per second).

 L. Donckers

 7

Example 2.5: when a protocol requires 1 seconds to transmit 1000 bytes over a
link with a bandwidth of 1500 bytes per second, that would result in:

D = 1000
T = 1
B = 1500

TO = 1 / (1000 / 1500) – 1 = 50%

2.5 Calculating energy overhead
Now it is clear how data- and time overhead are calculated, it is time to show how to calculate
energy overhead. It has been shown, in this chapter, that energy overhead (and efficiency)
depends on data- and time overhead. It has also been shown that how much each
characteristic influences energy overhead depends on the type of radio used. Because of this
energy overhead will be calculated as the weighed average of data overhead and time
overhead. Three ratios will be used, which are all assumed to correspond closely to a certain
type of radio. It should also be noted that the ‘always active’ and ‘ideal’ types of radio were
assumed to be almost always active and almost ideal. So they are not as far on the extreme
ends of the scale as mentioned in Paragraph 2.3. They are listed in the following table.

Type of Radio Data Ratio Time Ratio
Always active 0.1 0.9
Intermediate 0.5 0.5
Ideal 0.9 0.1

Table 2.2: Data- and time ratios for different types of radios.

Energy overhead can then be calculated like this:

EO = DRR * DO + TRR * TO

Equation 2.5: Energy overhead.

where:
EO is Energy Overhead.
DRR is Data Ratio with radio R.
TRR is Time Ratio with radio R.

2.6 Calculating energy efficiency
Like energy overhead is the weighed average of data- and time overhead, energy efficiency is
the weighed average of data- and time efficiency. From the definition of energy efficiency it
is easy to deduce the definitions of data- and time efficiency. Data efficiency is the part of the
amount of data actually sent to complete the transmission, that was used for the payload. And
time efficiency is the part of the time it took the protocol to complete the transmission, that
the minimum time is. So they will be calculated as follows:

Energy Efficient TCP

8

DE = D / S

Equation 2.6: Data efficiency.

TE = (D / B) / T

Equation 2.7: Time efficiency.

where:
DE is Data Efficiency.
TE is Time Efficiency.

Please note that both data- and time efficiency (just like energy efficiency) are percentages
and are always larger than 0% and less than or equal to 100%. As can be seen data efficiency
and data overhead are closely related. One can be used to calculate the other:

DE = 1 / (1 + DO)

Equation 2.8: Data efficiency as a function of data overhead.

because:
DE = 1 / (1 + DO)
DE = 1 / (1 + (S / D – 1))
DE = 1 / (S / D)
DE = D / S

and:

DO = (1 / DE) – 1

Equation 2.9: Data overhead as a function of data efficiency.

because:
DO = (1 / DE) – 1
DO = (1 / (D / S)) – 1
DO = S / D – 1

Time efficiency and time overhead are similarly related:

TE = 1 / (1 + TO)

Equation 2.10: Time efficiency as a function of time overhead.

because:
TE = 1 / (1 + TO)
TE = 1 / (1 + T / (D / B) – 1)
TE = 1 / (T / (D / B))
TE = (D / B) / T

and:

 L. Donckers

 9

TO = 1 / TE – 1

Equation 2.11: Time overhead as a function of time efficiency.

because:
TO = 1 / TE – 1
TO = 1 / ((D / B) / T) – 1
TO = T / (D / B) – 1

With the same ratios listed in Table 2.2, it is now possible to calculate the energy efficiency of
a transmission:

EE = DRR * DE + TRR * TE

Equation 2.12: Energy efficiency.

where:
EE is Energy Efficiency.

2.7 Summary
In this chapter, two measures were introduced that say something about the amount of spent
energy of a protocol: energy efficiency and energy overhead. It was also shown that, even
though the goal of this thesis was the design of an energy efficient protocol, energy efficiency
is not the best measure to compare the performance of different protocols. Energy overhead is
more suited for this.
To calculate energy overhead (and efficiency) it was stated that two characteristics of a
protocol should be know: the data overhead and the time overhead. How much each
characteristic influences the energy overhead depended on the type of radio used. Different
types of radios were shown and explained, after which it was shown how to calculate energy
overhead. Finally, the calculation of energy efficiency was discussed.

Energy Efficient TCP

10

 L. Donckers

 11

3 ASPECTS OF TCP
The protocol known as TCP has become the de facto standard high level protocol used in
large (inter)networks. It became the best known transport protocol, through the enormous
growth of the Internet in both size and popularity. In this chapter, it will be explained how
TCP works, what keeps it from reaching high levels of energy efficiency on wireless links and
what can be done to remedy this.

3.1 Transport Control Protocol
At the lowest level, computer communications networks provide unreliable packet delivery.
Packets can be lost or destroyed when transmission errors interfere with data, when network
hardware fails, or when networks become too heavily loaded to accommodate the load
presented. Networks that route packets dynamically can deliver them out of order, deliver
them after a substantial delay, or deliver duplicates. At the highest level however, applications
programs often need to send large volumes of data from one computer to another. A general
purpose (connection oriented) protocol that provides reliable in-order delivery of data over all
these kinds of low level networks, is required to be able to efficiently code networked
applications and to provide a means to knit networks together into one large (global) network.
TCP provides just this.

3.1.1 Reliability
To be able to provide reliable delivery, even though TCP packets themselves may be lost or
duplicated, TCP uses positive acknowledgements (with retransmissions). Such schemes are
also known as ARQ (Automatic Repeat reQuests) schemes. It requires the recipient to
communicate with the sender, by sending back an acknowledgement message for each packet
it receives correctly. The sender keeps a record of each packet it sends and waits for an
acknowledgement before sending the next packet. The sender also starts a timer when it sends
a packet and retransmits the packet if the timer expires before the acknowledgement arrives.
In this way packets that are lost will be retransmitted until the sender receives an
acknowledgement indicating the recipient has correctly received the packet.
The second reliability problem arises when the underlying packet delivery system duplicates
packets. Duplicates can also arise when networks experience high delays that cause premature
retransmissions. To solve this problem each packet is assigned a sequence number and the
receiver is required to remember which sequence numbers it has received. To avoid confusion
caused by delayed or duplicate acknowledgements, each acknowledgement carries the same
sequence number as the packet it is supposed to acknowledge.

3.1.2 Sliding Windows
The retransmission scheme mentioned above leaves a substantial amount of bandwidth
unused because it must delay sending a new packet until it receives an acknowledgement for
the previous packet. To operate more efficiently TCP uses a sliding window scheme. Such a
scheme allows the sender to transmit multiple packets before waiting for an
acknowledgement. The easiest way to envision the operation of a sliding windows scheme is
to think of a sequence of packets to be transmitted. The protocol then places a small window
on the sequence and transmits all packets that lie inside the window. Once the sender receives
an acknowledgement for the first packet in the window, it slides the window along and sends
the next packet.

Energy Efficient TCP

12

A packet is called unacknowledged if it has been transmitted but no acknowledgement has
been received. So the number of unacknowledged packets is constrained by the window size.
With a window size of one packet, this sliding window scheme behaves exactly the same as
the scheme mentioned above. By setting the window size to a large enough value, it is
possible to eliminate network idle time completely. A sequence of packets with a sliding
window is shown in the figure below.

1 2 3 4 5 6 7 8 9 10 11

window

acknowledged packet

unacknowledged packet

 untransmitted packet

upon reception of an
acknowledgement for
packet 5 the window

will slide to the right like
the arrow indicates

Figure 3.1: The sliding window mechanism.

3.1.3 Acknowledgements and Retransmission
Because TCP may send data in variable length packets, and retransmitted packets can include
more (or less) data then the original, acknowledgements cannot easily refer to packets. Instead
they refer to a position in the stream (the data that needs to be transmitted) using stream
sequence numbers. At any time, the receiver will have reconstructed zero or more bytes
contiguously from the beginning of the stream, but may have additional pieces of the stream
from packets that arrived out of order. The receiver always acknowledges the longest
contiguous prefix of the stream that has been received correctly.
This acknowledgement scheme is called cumulative because it reports how much of the
stream has accumulated at the receiver. Such a scheme has both advantages and
disadvantages. One advantage is that acknowledgements are both easy to generate and
unambiguous. Another advantage is that lost acknowledgements do not necessarily force
retransmission. A disadvantage however is that the sender does not receive information about
all successful transmissions.

3.1.4 Timeout and Retransmission
Like other reliable protocols, TCP expects the destination to send acknowledgements
whenever it successfully receives new octets from the data stream. Every time it sends a
packet, TCP starts a timer and waits for an acknowledgement. If the timer expires before data
in the packet was acknowledged, TCP assumes that the packet was lost or corrupted and
retransmits it.
TCP however, is intended for use in an internet environment. In an internet, a packet traveling
between a pair of machines may traverse a single, low-delay network, or it may travel across
multiple intermediate high-delay links. Furthermore, the total delay between the origin and
destination of data, depends on network traffic on intermediate links, and can therefore vary

 L. Donckers

 13

over time. Thus it is impossible to choose a timeout value a priori that will suit each situation
optimal. To solve this problem, TCP does not use a fixed timeout value but measures the
round trip time of data and updates its timeout value accordingly.

3.1.5 Window Size and Flow Control
TCP allows the size of the sliding window to vary over time. Each acknowledgement contains
a window advertisement that specifies how much data the recipient is prepared to accept. This
can be seen as specifying the receiver’s current buffer size. In response to an increased
window advertisement the sender increases the size of its sliding window and in response to a
decreased window advertisement it does the opposite.
The advantage of a variable window size is that it provides flow control. Through these
window advertisements the receiver can control the rate at which the sender transmits data.
Having a mechanism for flow control is essential in an internet environment, where machines
of various speeds and sizes communicate through networks and routers of various speeds and
capacities. There are really two independent flow problems. First, internet protocols need end-
to-end flow control between the sender and the ultimate receiver. Window advertisements
provide this kind of flow control. Second, internet protocols need intermediate flow control to
handle congestion on intermediate networks.

3.1.6 Response to Congestion
Congestion is a condition of severe delay caused by an overload of packets at an intermediate
switching point (e.g., a router). When congestion occurs, delays increase and the router starts
to queue packets until it can route them. Of course each queued packet is stored in memory
and a router has only finite memory. In the worst case, the total number of packets arriving at
the congested router grows until the router reaches capacity and starts to drop packets.
Endpoints do not usually know if, where and how congestion occurred. Senders only
experience timeouts for the packets that were dropped by the router. Under normal
circumstances TCP would simply retransmit the packet, thereby increasing traffic. This
aggravates congestion instead of alleviating it.
To avoid congestion, the TCP standard recommends using two techniques known as slow-
start (with congestion avoidance) and multiplicative decrease. To control congestion TCP
maintains a second limit to the window size (besides the advertised window). This limit is
called the congestion window limit. The allowed window size of the sender is then at all times
the minimum of both limits.
Multiplicative decrease reduces the congestion window limit by half, upon every loss of a
packet. So multiplicative decrease can be seen as the mechanism that slows TCP down in case
of congestion. When TCP no longer experiences congestion on its path, it uses slow-start
(additive) recovery. Slow start begins with a congestion window limit of one and increases it
for every acknowledgement it receives. Once the congestion window limit reaches one half of
its original size before the congestion, congestion avoidance takes over. During congestion
avoidance, it increases the congestion window only if all packets in the window have been
acknowledged.

3.2 Problems of TCP
In this chapter some characteristics of TCP will be discussed that make it less suitable for
wireless links.

Energy Efficient TCP

14

3.2.1 Large headers
TCP was intended to be a highly deployable transport protocol. It has a lot of features and
options, some of them rarely used, which make it suitable for operation on a wide range of
(inter)networks. When TCP became popular, an increasing number of changes and additional
options were proposed. Some of these options are widely used today. To accommodate the
most basic features, TCP has a header size of 40 bytes. This is a fixed size, which means that
even though not all header fields will be used, the header size will still be 40 bytes. When
widely used options are activated the size can grow to 80 bytes.
This means that for every packet, there are 40 to 80 bytes overhead. An acknowledgement
adds another 40 to 80 bytes to the overhead. This means that for packets with a 1000 byte
payload, TCP has a data overhead of about 8% (without retransmissions). As can be seen,
there is lots of room for optimization here.

3.2.2 Simple acknowledgement scheme
The acknowledgement scheme employed by TCP is fairly simple and does not allow an
efficient retransmission scheme. Even though some optimizations have been proposed, TCP’s
standard scheme always remained unchanged, so no incompatibilities were introduced.
Standard TCP can only generate positive cumulative acknowledgements. This means that
when the end station receives an out-of-order packet (due to packet reordering or packet loss)
it is unable to send this information to the sender. Based on this incomplete information the
sender can not know what the most energy-efficient retransmission scheme will be. A more
advanced acknowledgement scheme will be easy to implement and will undoubtedly increase
the energy efficiency. An example of what the receiver acknowledges and how that differs
from the actual situation is given next.

Example 3.1. Consider the following receiver state and the sender’s view of it,
both listed in Figure 3.2.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

sender’s view of receiver state

receiver state

received packet

unreceived packet

Figure 3.2: Example based on the acknowledgement scheme of standard TCP.

Assume the sender has sent a total of 9 packets. As can be seen the receiver has
received all packets up to and including packet 5. Packet 6 and 7 were lost
however, after which the receiver received packet 8 and 9. Upon reception of both
packets, the receiver has to send an acknowledgement. Because of the positive

 L. Donckers

 15

cumulative acknowledgement scheme, the receiver sends acknowledgements for
packet 5.
Because the sender receives multiple acknowledgements for packet 5, it knows
something went wrong. It can safely assume packet 6 was lost but nothing more. It
now has two options, both of which are potentially inefficient. It can either send
one packet (number 6) or all packets (numbers 6 up to and including 9).
If it would retransmit all packets, two packets would be sent too much. However,
if the sender follows the standard and retransmits only packet 6, it must wait for
the acknowledgement before it can decide what and how much to send next. Thus,
it reverts to a simple protocol and may lose the advantage of having a large
window.

3.2.3 Loss is considered congestion
TCP was designed with highly reliable links in mind. When it encounters packet loss it
interprets this as congestion. In a (highly reliable) wired network this is a valid choice because
in such setups congestion is the major source of packet loss. On wireless links however, the
higher bit error rates cause much more packet loss (due to errors) than generally encountered
on wired links. Interpreting all packet loss as congestion is not a realistic solution on wireless
links, because from an energy efficiency point of view the ideal response to congestion differs
from that to (burst) errors. Using an optimized window size management scheme, which also
considers (burst) errors as the cause of lost packets will probably yield an increase in energy
efficiency.

3.2.4 Complete reliability
Complete reliability may not seem a problem, but there are situations in which TCP’s
complete reliability is undesirable. When receiving streaming audio (or video) with TCP, the
protocol will rerequest all lost data. These rerequests will make sure the application (e.g. a
media player) will receive all data. The extra latency introduced, will probably make the
playback stall for a time and then fast-forward to the part where it was supposed to be by then.
So rerequesting lost data has little use in such situations because the data will arrive too late.
Since streaming media can usually be enhanced to cope with reasonable amounts of data loss,
it would be better not to send rerequests for lost data (up to a reasonable level) in that case.
Note that UDP (user datagram protocol) could be considered as a replacement for TCP in
such cases. Just like TCP, UDP is a protocol that works on top of the IP protocol. Unlike
TCP, it is connection-less and offers no reliability at all. Basically UDP offers too little
features and too low reliability to be a real improvement over TCP. Using UDP shifts the
problem to the application, because when using UDP, the application is responsible for
connection setup/termination and the creation/handling of acknowledgements.

3.3 Possible solutions
In this chapter possible solutions to the energy efficiency problems of TCP will be discussed.
Some of these solutions are mere concepts while others are extensions to existing protocols or
even complete new protocols. All of these protocols try to optimize TCP (for wireless
networks) in one way or another. Unfortunately most of them try to optimize the performance
of TCP instead of the energy efficiency. Energy efficiency, however, depends only on byte-
and time overhead. These two metrics are also often used to measure the performance of TCP,
so there is a large overlap.

Energy Efficient TCP

16

3.3.1 Header compression
To address the data overhead of TCP several proposals have been voiced to compress the
headers of TCP. This was often done with low-bandwidth serial (wireless) links in mind.
TCP/IP header compression was first standardized with RFC 1144 [JAC90] (and later with
RFC 2507 [DEG99], RFC 2508 [CAS99] and RFC 2509 [ENG99]). The scheme only works
on single hop links (i.e.: there are no intermediate hosts) and needs to be supported by both
end points. Although it only works on single hop links, this only applies to the compression of
the TCP connection. The actual connection can still travel a path with many intermediate
hops. The compression is transparent to other hosts except for the two end points of the single
hop link on which the compression takes place.
In [JAC90] the standard TCP/IP header fields were analyzed and for each field the way the
values change during a TCP/IP connection were examined. Four different types of changes
are defined and for each type a (new) representation method is chosen. For instance large
integers, which only change slightly with each packet are represented by a small integer,
which only represents the change from the last packet. This type of change is known as a
delta change and the new representation is called a delta value accordingly. Almost all header
fields are made optional and are only included if a certain flag in the compressed header is set.
One interesting optimization is the replacement of the IP addresses and port fields with a
connection identifier. Each TCP/IP headers stores the IP address and the port of both the
sender and the receiver. Combined, these fields require 12 bytes of the header. Since these
fields do not change during a connection, a connection identifier gets assigned to the
connection during the connection establishment. From then on the compressed headers in the
connection only carry the 1-byte connection identifier.
A typical compressed header size is 3 bytes with the proposed scheme instead of 40 bytes. Of
course this is a great improvement. In order to reach it however, the protocol has become less
robust. Because the connection identifier is not always included and the two most used
options are replaced by delta values, a lost packet can cause all subsequent packets to be
misinterpreted. Naturally, checks are proposed to remedy this, but the necessary error
recovery scheme can still cause normal valid packets to be discarded. This extra overhead will
probably cause severe performance penalties on wireless links because of the high packet loss
generally encountered. A less extreme compression method will almost certainly attain less
data overhead than this scheme in case of high packet loss. This is shown in the next example.

Example 3.2: Consider a transmission of 25000 bytes with packets that have a
1000 byte payload. Upon transmission one of the necessary 25 packets will be
lost. Three versions of TCP will be compared. The first version is standard TCP
with 40 byte headers and acknowledgements. The second is TCP with a robust
form of header compression, which has 8 byte headers and acknowledgements.
The final version is TCP with the described header compression. This version has
3 byte headers and acknowledgements but the loss of the packet will cause the
next two packets to be misinterpreted and retransmitted. The amounts of
transmitted bytes then are:

26 * 1040 + 25 * 40 = 28040 bytes for normal TCP
26 * 1008 + 25 * 8 = 26408 bytes for TCP with robust header compression
28 * 1003 + 25 * 3 = 28159 bytes for TCP with described header compression

 L. Donckers

 17

As can be seen, the described header compression would have a higher data
overhead than normal TCP in this situation. A more robust header compression
method would perform best however.

3.3.2 Selective acknowledgements
The selective acknowledgement scheme is an extension to the TCP protocol that addresses
some of TCP’s problems by enhancing the acknowledgement scheme. It was standardized in
RFC 2018 [MAT96] but a SACK (as selective acknowledgements are called) scheme was
already mentioned in RFC 1072 [JAC88]. (An extension to RFC 2018 was published under
RFC number 2883 [FLO00].) Both end points of the TCP connection need to support the
SACK option in order to be effective.
The SACK scheme adds extra information to acknowledgements about the receiver’s state
each time TCP’s standard positive cumulative acknowledgement scheme is lacking. This
happens when there are ‘gaps’ in the data the destination host has received. Standard TCP
would acknowledge all data up to the first gap but TCP with SACK can effectively bridge a
gap by sending an extra SACK block. By sending more information in acknowledgements the
sender is better able to react to the actual state of the link and the receiver. The difference in
supplied information to the sender is shown in the next figure.

Example 3.3. Consider the same situation as in Example 3.1. However, this time
there is also a SACK enabled receiver. The receiver state and both the senders’
view of it are represented in the next figure.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

sender’s view of receiver’s state (standard TCP)

receiver state

received packet

unreceived packet

1 2 3 4 5 6 7 8 9 10 11

sender’s view of receiver’s state (SACK enabled TCP)

Figure 3.3: Example based on the acknowledgement scheme of standard TCP and

SACK enabled TCP.

Remember that the standard TCP sender had to choose between two potentially
inefficient courses of actions. The SACK enabled sender, however, knows what
packets were lost and can simply retransmit those. This is always the most
efficient method.

Energy Efficient TCP

18

The SACK scheme can include any number of SACK blocks up to a maximum of four. This
is because there is a limit on the size of TCP headers. All TCP options (including SACK
blocks) are included in a special TCP header field called TCP options. The more options a
TCP implementation uses the less space there is left for SACK blocks. In general TCP
implementations that include SACK support, there is enough space left for three SACK
blocks.
Even though its headers are larger, a TCP implementation with SACK support generally has
less data- and time overhead than a comparable implementation without SACK support,
because it can handle retransmits more efficiently. Because of the less data- and time
overhead SACK also performs better (in terms of throughput) than other protocols as was
shown in [FAL96].

3.3.3 Delayed acknowledgements
In principle a TCP receiver should acknowledge each packet that it receives. So each packet
that reaches its destination immediately triggers a 40 byte acknowledgement (sometimes it
can be piggybacked on normal packets bound for the other host however). This can of course
be considered as a waste of bandwidth. To remedy this the TCP standard allows for a receiver
to delay the sending of an acknowledgement for a period of time (with a maximum of 500
milliseconds) [COM95]. In this way multiple acknowledgements can be combined and/or the
acknowledgement(s) can be piggybacked on a normal data packet.
This of course reduces data overhead. Unfortunately there are also a few drawbacks. The first
disadvantage is that the importance of an acknowledgement increases. That is, if such an
acknowledgement is lost more information on the state of the receiver is lost than would be
the case with a undelayed acknowledgement. Because more information is lost, the
consequences can be more severe, possibly increasing data- and time overhead. The second
drawback is that time overhead will probably increase because the receiver will not
immediately send an acknowledgement but will wait for a period of time before doing so.
This will cause the sender’s window to be built up more slowly.
Because TCP relies on acknowledgements to accurately estimate the round trip time, the
sender is not allowed to combine too much acknowledgements. For every second data packet
an acknowledgement should be sent, further reducing the decrease in data overhead.
Below are listed two graphs that show the energy overhead for Tahoe (a version of TCP) with
and without delayed acknowledgements. For more information on the used test method and
why only these graphs suffice to compare the performance, see Chapter 5 and especially
Paragraphs 5.1, 5.2, 5.3 and 5.6.1. In these paragraphs, everything needed to understand these
graphs will be explained. At this time, the graphs could use some explanation. While the left
axis speaks for itself the lower axis might be unintelligible. It roughly resembles the quality of
the channel. The left side of the axis resembles a high quality channel (little errors) while the
right side of the axis resembles a low quality channel (lots of errors). Above the graphs a
scenario is mentioned. The scenario indicates the error model used. Scenario A uses fixed
length bad states (burst errors) while scenario B uses variable length bad states.

 L. Donckers

 19

Energy overhead in scenario A
 (type of radio: Intermediate)

0

50

100

150

200

250

300

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

without delayed acknowledgements with

Figure 3.4: Energy overhead of delayed

acknowledgements in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

50

100

150

200

250

300

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

without delayed acknowledgements with

Figure 3.5: Energy overhead of delayed

acknowledgements in scenario B.

In both graphs it is quite clear that the use of delayed acknowledgements increases the energy
overhead of a protocol and thus decreases its energy efficiency. From an energy efficiency
standpoint, delayed acknowledgements should be avoided.

3.3.4 Explicit congestion notification
TCP’s flow control mechanisms rely on packet drops to detect congestion. When this happens
TCP is already late in reacting because the congestion already occurred. It would be better if
TCP could be notified when it is about to cause congestion so that it can react before packets
are lost. Lost packets should be avoided because they will have to be retransmitted, increasing
data (and time) overhead.
To improve TCP, an explicit congestion notification (ECN) system was proposed in RFC
2481 [RAM99]. In the proposed configuration both routers and end points should be ECN
capable. When a router predicts that congestion will occur, it marks packets by setting a
special ECN field in TCP packets. The receiver of the packet can then take appropriate
measures to make sure the transmission rate of the connection will be reduced. In such a way
congestion can often be avoided.
Although this scheme can decrease data- and time overhead (because less retransmits should
be necessary) it is also possible it increases time overhead. When a TCP connection is
incorrectly told to decrease its transmission rate for instance. Overall this scheme can
decrease energy efficiency but is only suited for multi-hop paths. E2TCP will be used on a
single-hop path. Thus it will not experience congestion on intermediate nodes, which is the
reason there is no need to make use of explicit congestion notification in E2TCP.

3.3.5 Forward error correction
Forward error correction (FEC) is often mentioned or proposed when the performance of
(multimedia) streams over (wireless) links is found to be lacking. FEC protects data by adding
a little bit of redundancy to each data unit. When errors occur on the wireless link and the data
unit has errors in it, the FEC scheme can correct those errors (up to a certain amount). When
the amount of FEC is increased the protected data can withstand more errors. On the other

Energy Efficient TCP

20

hand the processing power increases as well as the total size of the data that needs to be
transmitted. This of course also results in increased transmission times.
ARQ schemes provide exactly as much error correction as is needed, because they only kick
in when errors actually occur. The amount of error correction used in FEC schemes however,
does not directly depend on the amount of errors that occurred. It in stead depends on the
amount of expected errors and so the amount of FEC is decided upon in advance.
Unfortunately predicting the future is still impossible, even for FEC schemes. So most of the
time FEC schemes will either offer too much protection or too little. When too much
protection is offered, too much data has been sent which means data- and time overhead could
have been reduced. When too little protection was offered, the receiver could not correct the
errors in the packet and the packet should be transmitted again. This is of course also the case
when using an ARQ scheme but with the FEC scheme the packets are larger because of the
added protection. So ARQ schemes can be said to be more energy efficient than FEC schemes
[HAV99].
Furthermore using FEC in the transport layer is only possible when the lower layers also hand
packets with errors to the transport layer. Because no assumptions were to be made about the
lower layers FEC can not be used in E2TCP.

3.3.6 I-TCP
Indirect TCP [BAK95] is a solution specifically designed to be used with wireless
connections. It was one of the first proposals to use split connections. The connections are
named so because connections between the mobile host and fixed hosts are split up in two
separate connections at the base station: one regular TCP connection between the base station
and the fixed host and another connection between the mobile host and the base station. This
last connection is a single-hop connection over a wireless link and there is no need to use
standard TCP. Rather a more optimized wireless-link protocol can be used which solves some
of TCP’s problems on wireless links. Another advantage of split connections is that it
effectively separates the flow and congestion control at the base station. This way flow and
congestion control on each sublink can be optimized separately from the other.
Indirect TCP largely refrains from changing the protocol on the wireless link and solely
focuses on the split connection principle. Still this proposal is able to obtain impressive results
[BAK97] and the split connection principle is very well suited for wireless access to a TCP/IP
network.

3.3.7 Protocols inspired by I-TCP
The obvious advantages of the split connections approach inspired some other protocols.
These protocols all use a (lightly) optimized version of TCP on the wireless links to further
improve performance over I-TCP.
The Berkeley Snoop Module [BAL95] is another proposal to tackle the performance problems
of TCP on wireless links. Just like I-TCP it proposes a split connection setup but the Snoop
Module is more active than the I-TCP setup. The Snoop Module caches packets and performs
local retransmissions as soon as packet loss is detected. This further increases performance
over I-TCP.
The M-TCP protocol [BRO97] also performs instant local retransmissions, just like the Snoop
Module. Furthermore it adds user data compression support to decrease the payload size and
through special flow control mechanisms it allows the sender to resume sending after breaks
(like handoffs) at full speed.

 L. Donckers

 21

In [RAT98] another protocol for networks with wireless links is proposed: WTCP. It closely
resembles I-TCP but stresses the importance of accurate round trip time sampling and is
constructed accordingly.

3.3.8 Delayed duplicate acknowledgements
The delayed duplicate acknowledgement scheme [VAI99] tries to mimic the behavior of the
Snoop protocol but does it TCP-unaware, unlike the Snoop Module, which is TCP-aware. A
TCP-aware protocol needs to look in the TCP headers in order to take appropriate measures.
It is possible however that the TCP headers are not readable by intermediate hosts (because of
encryption). This scheme tries to behave in the same way as the Snoop Module without
examining the TCP headers. Because this scheme has less information to base its decisions
on, it performs slightly worse than the Snoop Module. On the other hand it can be used in
more situations.

3.3.9 Mobile-TCP
The Mobile-TCP protocol as described in [HAA97] is one of the few protocols that try to
optimize for energy efficiency. It also employs the split connection principle but drastically
changes the protocol on the wireless link. An asymmetric protocol is proposed: the protocol
stack running at the mobile host is kept as small and simple as possible and as much
processing is offloaded to the base station.
In order to save energy the protocol uses very small custom headers and makes use of the
connection ID principle, known from header compression. The implementation at the mobile
host also features as few timers as possible and the protocol does not use the sliding windows
principle, allowing for smaller buffers. Furthermore, the protocol for instance, does not
support flow control or resequencing.
Overall this protocol sacrifices so much in order to save on processing power, it will
undoubtedly spend more energy on retransmits than other (energy efficient) protocols.
Because the relative power consumption of processors, compared to radios, keeps decreasing,
it is not that interesting to focus on minimizing required processing power. Minimizing data-
and time overhead seems a better way to increase energy efficiency.

3.3.10 PRTP
The partial reliable transport protocol (PRTP) [BRU00] was not specifically designed with
wireless links in mind but with a type of traffic. The strict reliability guarantees of TCP make
it less suited for many multimedia applications. Often when streaming media experiences
small amounts of data loss, retransmission is actually undesirable. They cause the playback to
stall and the retransmitted data will already have ‘expired’ upon arrival. Furthermore most
streaming media can withstand small amounts of data loss without a noticeable loss in quality.
For such connections the partial reliability transport protocol, which is compatible with TCP,
offers a solution.
It allows the application to set a lower limit on the reliability. When the overall reliability
does not drop below the limit, the receiver will not ask for a retransmission. If the overall
reliability of the connection is in danger, the receiver will ask for retransmissions in the
standard TCP manner. This enables a PRTP receiver to correctly operate with a TCP sender.
When the application can deal with data loss the reliability can be set to values as low as 90%.
In [GAR00] it is shown that with an optimized JPEG coder, images can tolerate up to 10%
data loss before the quality of the images becomes noticeably less.

Energy Efficient TCP

22

In case of packet loss PRTP performs very well compared to other versions of TCP. Please
note that this does mean that the PRTP receiver receives not all data. Because wireless links
generally experience much packet drops, PRTP is extremely well suited for streaming media
over wireless links.

3.3.11 Optimized window management
One might think that this concept does not deserve it’s own paragraph. However, the way in
which TCP reacts to (burst) errors on wireless links leaves a lot to be desired. Every packet
loss is considered to be caused by congestion. For each packet loss TCP will drastically
reduce its transmission speed so experienced congestion will quickly be cleared. The
assumption that each packet loss is caused by congestion is valid in wired networks. Because
of the high reliability of such links, the largest portion of packet loss is indeed caused by
congestion. However, on wireless links, the assumption is not valid. Because of the relatively
low channel quality of wireless links, a lot of packets will be corrupted while in transit. For
each of those errors TCP will also reduce its transmission speed. A huge loss in time overhead
can therefor be reached by optimizing the window management scheme of a protocol for
wireless links.

3.3.12 Conclusions
Some of the concepts and protocols presented in this chapter are not applicable when
optimizing for energy efficiency. They either focus on ways to improve performance that do
not increase energy efficiency or they optimize the power consumption of the wrong part of
the system. The other concepts presented here will be used in order to design a energy-
efficient transport protocol and these include:
• split connections
• small headers
• selective acknowledgements
• partial reliability
• optimized window management

 L. Donckers

 23

4 E2TCP
In this chapter, E2TCP will be described in detail. First an overview of the architecture of
E2TCP will be given, where the reasons for and expectations of the changes to TCP will be
discussed. After that, the header format will be explained in detail, followed by the selective
acknowledgement scheme. Finally, the window management will be described, as well as the
partial reliability mechanism.

4.1 Architecture overview
One of the primary goals of this project was to design a transport protocol that would be
compatible with TCP. It was therefore only self-evident that TCP would serve as a basis for
this new protocol. Because E2TCP is derived of TCP, its architecture and mechanisms are
roughly the same. On four points, however, adjustments were made to increase the energy
efficiency of the protocol. These points are the headers, the acknowledgements, the window
management and the reliability requirements. All four changes will be introduced in the
following paragraphs.

4.1.1 Headers
The large header size of TCP was first introduced as a problem in Paragraph 3.2.1. The
unnecessarily large headers are the cause of equally-unnecessary data overhead. The custom
headers of E2TCP are the result of a rather straightforward implementation of some of the
ideas of header compression standards, presented in Paragraph 3.3.1. The main principle that
was used was: if it is not necessary to transmit a certain header field, don’t do it. This
principle is so self-evident; one could wonder why such a system was not incorporated in the
TCP standard.
All header fields of TCP/IP datagrams were analyzed whether they should be included in the
headers of E2TCP at all, whether they should always be sent or whether they were to be made
optional. Such an optional header field will then only be sent if it is necessary to do so. Care
was taken to keep the headers robust because the problems of a non-robust compressed header
system, explained in Example 3.2, have to be avoided.
The header size is reduced from 40 bytes to 8 bytes (in most situations). When using 1000
byte packets for instance, the data overhead introduced by the headers of E2TCP will be 1.6%
as opposed to 8.0% for the headers of standard TCP. Because less data has to be transmitted,
the time overhead will probably also decrease somewhat, although perhaps not as much as the
data overhead. This will probably result in a decrease in energy overhead of about 5%. The
details of the headers of E2TCP will be discussed in Paragraph 4.2.

4.1.2 Acknowledgements
The simple acknowledgement scheme of TCP, introduced as a problem in Paragraph 3.2.2, is
another point of TCP that could be improved to increase energy efficiency. In case of missing
packets the sender simply has not enough information about the state of the receiver. On those
occasions, it is possible the sender not always decides on the optimal course of action. A
solution to this problem is the use of selective acknowledgements, which were introduced in
Paragraph 3.3.2.
An E2TCP receiver is able to construct selective acknowledgements. It does this by adding
one or more SACK blocks to an acknowledgement. The headers (also used as
acknowledgements) of E2TCP allow a maximum of two SACK blocks to be sent. This enables
the receiver to fully acknowledge a received stream with two sets of subsequent missing

Energy Efficient TCP

24

packets. When the sender receives such an acknowledgement it is always able to choose the
most energy efficient course of action. Because of the diminishing returns of adding more
SACK blocks and the fact that SACK blocks increase the size of the acknowledgements, a
maximum of two SACK blocks is used.
Although SACK blocks increase data overhead because the acknowledgements increase in
size when these blocks are used, the effect of selective acknowledgements on the energy
efficiency will be positive. This is because the sender is able to react in an optimal way to lost
packets, which slightly decreases data overhead (because of less retransmits) and reduces time
overhead substantially (because of a better utilization of the available bandwidth). However,
giving an exact estimate of the increase in energy efficiency is impossible. The
implementation of selective acknowledgements in E2TCP will be explained in detail in
Paragraph 4.3.

4.1.3 Window management
The problems of TCP on wireless links with respect to its window management were
introduced in Paragraph 3.2.3. The assumption of TCP that each packet loss is an indication
of congestion is valid on wired networks, but has little value on wireless links. This is because
the inherent unreliability of wireless networks, which causes a substantial amount of packets
to be lost because of errors on the link itself. So, the window management of TCP should be
altered to include (burst) errors as a possible source of packet loss, as was indicated in
Paragraph 3.3.11.
The window management mechanism of E2TCP differs on four points from that of TCP. First
of all, E2TCP features immediate retransmits. When the receiver indicates it has received an
out-of-order packet, the sender can immediately retransmit the missing packets, because
E2TCP will be used on a single-hop link and no packet reordering can take place on such a
link. Under the same conditions TCP would wait on a timeout before it would retransmit the
lost packet, causing substantial delays. This change will therefore primarily decrease the time
overhead.
The second change is that E2TCP reacts to (burst) errors in a different way. If few errors
occur, E2TCP considers this to be the result of normal static and barely reduces its
transmission speed. When lots of errors occur, E2TCP considers a burst error to be the cause
and drastically reduces its transmission speed. This way, E2TCP reacts to (burst) errors in a
very energy efficient way, as will be shown in Paragraph 5.6. It should be noted that this new
window management scheme relies on selective acknowledgements to detect the number of
errors. Both data and time overhead will decrease because of this change.
E2TCP also features a minimum window size, which is the third point on which the window
management of TCP and E2TCP differ. This minimum window size causes E2TCP to quickly
recuperate after a burst error, which will decrease time overhead.
The final change to the window management of TCP is the use of an extra timer. The timers
used in E2TCP are similar to the transmission timer in TCP, only one is used for transmissions
and one is used for retransmissions. An extra timer increases the responsiveness of the
protocol to changes on the channel but also increases the complexity of the protocol. One
extra timer is considered to be a good tradeoff. This change will also decrease time overhead.
The four changes will undoubtedly cause a decrease in energy overhead but it is impossible to
give an estimation of the size of that decrease. The details of the implementation of the
window management scheme can be found in Paragraph 4.4.

 L. Donckers

 25

4.1.4 Reliability requirements
Because the strict reliability requirements of a TCP connection are not always desirable, as
was shown in Paragraph 3.2.4, the concept of partial reliability was developed, which was
introduced in Paragraph 3.3.10. When transmitting streaming media, energy can be saved if
unwanted retransmits can be avoided. Partial reliability provides a way to do this, by enabling
the application to set the minimum desired reliability of the channel.
The implementation of partial reliability in E2TCP is rather straightforward. The receiver
keeps track of how much data was successfully received and how much was lost. If it detects
packet loss it will check if the actual reliability still exceeds the minimum desired reliability
and if so, will simply acknowledge the lost packet. The sender will think it was received
correctly and will refrain from retransmitting.
This simple mechanism will be able to decrease the energy overhead. How much is uncertain
but its effect will increase when channel conditions deteriorate. This is because the effect of
stopping retransmits increases when more packets are lost. The details of the implementation
will be discussed in Paragraph 4.4.6.

4.2 Header format
The headers of E2TCP packets will be explained in this paragraph. Because E2TCP needs to
be compatible with TCP/IP, the headers of IP and TCP will be examined first. Based on that
information, a decision can be made on what header fields should be included in E2TCP
headers, which will be explained in Paragraph 4.2.3.

4.2.1 IP header
The Internet calls its basic transfer unit an (IP) datagram. Such a datagram is divided into a
header (of 20 bytes) and a data area in the following way:

header user data

IP datagram
Figure 4.1: An IP datagram.

According to [DEG99], all fields in headers can be classified into one of the following four
categories depending on how they are expected to change between consecutive headers in a
packet stream. These four categories are:
• Inferred: The field contains a value that can be inferred from other values, and thus need

not be transmitted.
• Nochange: The field is not expected to change during the packet stream. Such a value

only has to be transmitted once.
• Delta: The field may change often but usually the difference from the field in the

previous header is small, so that is more efficient to send the deviation from the
previous value rather than the current value.

• Random: The field changes unpredictably and should therefore probably be sent in full.

Now the general layout of a datagram and the classes of headers has been described, the
header can be described in more detail. The following figure presents the IP (version 4)
header format:

Energy Efficient TCP

26

VERS HLEN SERVICE TYPE TOTAL LENGTH

HEADER CHECKSUM

IDENTIFICATION

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

TIME TO LIVE PROTOCOL

FRAGMENT OFFSET FLAGS

0 19 16 8 4 31 24

Figure 4.2: The IP header format.

The header fields of an IP datagram are:

Field Type Description
Protocol version
(VERS)

nochange This field contains the version of the IP protocol that
was used to create the datagram and is of course not
expected to change within a packet stream. On the
wireless link, E2TCP will operate and it does not need
to know which version of TCP is used on the wired
part of the connection. Therefore this field can be
omitted from the E2TCP header.

Header length
(HLEN)

inferred This field contains the length of the header but this
can be determined by other means as well, so there is
no need to include it in the header of an E2TCP
packet.

Service type nochange With this field the sender can specify the type of
transport desired. It is, however, often ignored by
hosts and routers and is not expected to change.
E2TCP does not support different types of services
and it does not need to include this field in its
headers.

Total length inferred This field contains the length of the complete
datagram but that will also be specified by any
reasonable link-level protocol. It is unnecessary to
include it in E2TCP headers.

Identification random For each datagram a unique number is stored in this
field. It is used to refragment split up datagrams. On a
point-to-point link (where E2TCP will operate) no
fragmentation will take place and each packet will be
identified by its sequence number or
acknowledgement number (TCP header fields).

Flags random These flags control the fragmentation of the datagram
and can be left out of the header.

Fragment offset random This field is used in datagram refragmentation and
does not need to be included in E2TCP headers.

 L. Donckers

 27

Field Type Description
Time to live nochange This field contains the maximum number of hops the

datagram is allowed to take over the internet and is
not expected to change. Because E2TCP operates on a
single-hop link this field would serve no purpose.

Protocol nochange This field indicates the next level protocol used in the
data portion of the IP datagram. Because E2TCP only
has one mode of operation this field can also be
omitted.

Header checksum random This is a checksum on the header only. In E2TCP a
checksum will be used but like the checksum field of
a TCP header it will protect the entire datagram and
not just the header.

Source IP address nochange This field stores the source address and will be
included in E2TCP headers.

Destination IP address nochange The destination address is contained in this field and
will be included in an E2TCP header just like the
source IP address.

Table 4.1: The IP header fields.

IP also allows some optional extra information to be sent in its headers. Timestamps and
source routes are among them. As said these fields are optional and need not be supported by
E2TCP. Furthermore the base station can still support most of them, so these options can be
used on the wired path of the connection.
Of all these header fields only three will be included (in one way or another) in the E2TCP
header: the source- and destination IP address and the checksum.

4.2.2 TCP header
A TCP packet is encapsulated in an IP datagram and is divided into a header (of 20 bytes) and
payload in a way similar to an IP datagram.

IP header user data: TCP datagram

IP datagram

user data TCP header

TCP datagram
Figure 4.3: A TCP datagram within an IP datagram.

A TCP header can be presented as follows:

Energy Efficient TCP

28

DESTINATION PORT

WINDOW

CHECKSUM

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

HLEN RESERVED

0 16 10 4 31 24

SOURCE PORT

CODE BITS

URGENT POINTER

Figure 4.4: The TCP header format.

The fields of a TCP header are:

Field Type Description
Source port nochange The port number of the sender is stored in this

field and should be included in E2TCP headers
so it is compatible with TCP.

Destination port nochange This field stores the port number of the
receiving side and should also be included in an
E2TCP header.

Sequence number delta This field indicates what part of the data stream
is included in this datagram. This field is
required to interoperate with TCP.

Acknowledgement number delta This field stores a number, which indicates
what part of the data stream has already been
received by the destination and should not be
omitted from the headers of E2TCP.

Header length
(HLEN)

random In this field the length of the TCP header is
stored. It is unnecessary to include it in E2TCP
headers.

Code bits random This field contains 6 code bits. These are:
• URG, which indicates whether the urgent

pointer field is valid or not.
• ACK, which indicates whether or not the

acknowledgement field is valid.
• PSH, indicates if this packet requests a

push.
• RST, indicates if the connection should be

reset.
• SYN, indicates if the sequence numbers

should be synchronized.
• FIN, indicates if the sender has reached

the end of its byte stream.
Window random The window field is used by the receiving side

to exercise flow control over the sender. It will
be included in E2TCP so flow and congestion
control is possible.

 L. Donckers

 29

Field Type Description
Checksum random As indicated in the previous paragraph, a

checksum will be included in the E2TCP
headers, which will protect the entire E2TCP
datagram.

Urgent pointer random This field indicates which data in the packet is
of a special urgent type, which deserves special
treatment from the receiver. In order to
interoperate with TCP, this field will be
included in the headers.

Table 4.2: The TCP header fields.

TCP also allows some optional extra information to be sent in TCP headers. Timestamps and
SACK blocks are among them. As said these fields are optional and need not be supported by
E2TCP. Furthermore the base station can still support most of them, so these options can be
used on the wired path of the connection.
Of all these header fields the following will be used in E2TCP headers: source- and
destination port numbers, sequence and acknowledgement numbers, window, urgent pointer
and, as already said, the checksum.

4.2.3 E2TCP header
To get an overview of the fields that were chosen to be included in the headers of E2TCP, they
will be listed again with their type and size.

Field Type Size (in bytes)
Source IP address nochange 4
Destination IP address nochange 4
Source port number nochange 2
Destination port number nochange 2
Sequence number delta 4
Acknowledgement number delta 4
Window random 2
Urgent pointer random 2
Checksum random 2

Table 4.3: The E2TCP header fields.

But that is not all information that should be included in an E2TCP header. Some flags to use
for connection startup and termination (like the SYN and FIN code bits in TCP headers) are
also required. Furthermore E2TCP will have selective acknowledgement support so some
SACK blocks should be included as well.
Because the source- and destination IP addresses and ports require 12 bytes of storage and
will not change during a connection, they will only be sent the first time. In the E2TCP
headers a connection identifier field will also be included. During connection startup a
connection identifier will be chosen, which –from then on– will only be used for that
combination of source- and destination IP addresses and ports until the connection is
terminated. This type of header compression is also used in various standards as was seen in
Paragraph 3.3.1.

Energy Efficient TCP

30

In the code bits field in a TCP header two bits are included that indicate whether or not the
urgent pointer and acknowledgement fields are valid. One could wonder why they are still
included in the TCP headers when they are not valid: if the code bits indicate they are not
valid there is no reason to include the fields in the headers at all. To optimize the E2TCP
headers, fields that will not always be included will have a bit in the header indicating
whether or not they are included. When they are included the receiver should conclude they
are also valid.
An actual E2TCP header will then look like this:

1

7

FLAGS

EXTRA FLAGS

SENDER IP ADDRESS

CONNECTION IDENTIFIER

SENDER PORT NUMBER

RECEIVER PORT NUMBER

SEQUENCE NUMBER

URGENT POINTER

ACKNOWLEDGEMENT NUMBER

FIRST SACK BLOCK

SECOND SACK BLOCK

RECEIVER IP ADDRESS

WINDOW SIZE

CHECKSUM

1

1

4

4

2

2

4

2

4

4

4

2

2

*

*

*

*

*

*

*

*

*

*

*

0

next to each field its size (in bytes) is listed
a * indicates the field is optional

Figure 4.5: The E2TCP header format.

The fields mentioned in the figure will now be explained in detail.

4.2.3.1 Flags
This field contains certain status bits that indicate how to interpret the rest of the header. Its
size is one byte and it is not optional. This means every E2TCP packet will feature this header
field. The field looks like this:

R E F S U A W

0 1 2 3 4 5 6 7

Figure 4.6: The flags field format.

The bit fields are:

 L. Donckers

 31

Bit field Size (in bits) Description
Reserved 1 This bit field is reserved for future

extensions/versions of E2TCP. For now it
should always be ‘0’.

Extra flags included 1 This bit field indicates whether or not the
extra flag field is included in the header.

Full addresses included 1 If this field is set, the full addresses of both
the sender and the receiver are included. This
means the source- and destination IP address
and port fields are included in the header.

Sequence number included 1 This bit field indicates whether the sequence
number field is included in the header or not.

Urgent pointer included 1 This field is used to indicate if the urgent
pointer field in included.

Acknowledgement type 2 This field indicates what kind of
acknowledgement is included in the header.
• ‘00’ means there are no

acknowledgement fields included.
• ‘01’ means only the acknowledgement

number field is included.
• ‘10’ means that beside the

acknowledgement number field, also
the first SACK block is included

• ‘11’ means that all acknowledgement
fields are included (the
acknowledgement number and both
SACK blocks).

Window included 1 This bit field indicates whether or not the
window field is included.

Table 4.4: The bit fields of the flags field.

4.2.3.2 Extra flags
This field contains extra status bits that are needed on certain occasions. Its size is one byte
and it is optional. The field looks like this:

SYN RESERVED FIN

0 1 2 3 4 5 6 7

Figure 4.7: The extra flags field format.

The bit fields of the extra flag field are:

Bit field Size (in bits) Description
Reserved 6 This bit field is reserved for future extensions/versions of

E2TCP. For now it should always be ‘000000’.

Energy Efficient TCP

32

Bit field Size (in bits) Description
SYN 1 This bit field is used to indicate that the sequence numbers

should be synchronized. This is used on connection setup.
FIN 1 This bit field is used to indicate that the sender has reached the

end of its data stream. It is used to terminate connections.

Table 4.5: The bit fields of the extra flags field.

4.2.3.3 Connection identifier
This field is used to store the connection identifier of the packet. Its size is one byte and it is
not optional. The 1-byte size means that a mobile host running E2TCP to connect to a base
station (and the internet) has a maximum of 256 simultaneous connections. This should be
more than enough, even for heavy use of the Internet.

4.2.3.4 Sender IP address
In this field the IP address of the sender is stored. Its size is four bytes and it is optional. This
field should only be sent until a connection identifier has been agreed upon.

4.2.3.5 Receiver IP address
In this field the IP address of the receiver is stored. Its size is four bytes and it is optional.
This field should only be sent until a connection identifier has been agreed upon.

4.2.3.6 Sender port number
This field is used to store the port number of the sender. Its size is two bytes and it is optional.
This field should only be sent until a connection identifier has been agreed upon.

4.2.3.7 Receiver port number
This field is used to store the port number of the receiver. Its size is two bytes and it is
optional. This field should only be sent until a connection identifier has been agreed upon.

4.2.3.8 Sequence number
In this field the sequence number of the last byte in the packet is stored. Its size is four bytes
because complete sequence numbers are stored. Even though the type of the corresponding
TCP header field was delta, E2TCP will always transmit complete sequence numbers and not
the difference with the last packet. Upon data loss a scheme which, only transmits the
difference, can lose multiple packets because the correct decoding of each packet depends on
the correct decoding of the previous packet. On wireless links with a high number of errors,
such a scheme is unacceptable. The sequence number field is optional and is only used when
the sender transmits data to the receiver. The following example shows which sequence
number is stored:

Example 4.1: Consider an E2TCP packet, which payload consists of bytes 5, 6, 7
and 8 of the data stream. The sequence number field would then be used to store
the number eight.

Please note that this differs slightly from the TCP sequence number field. Care must be taken
that the base station converts the values.

 L. Donckers

 33

4.2.3.9 Urgent pointer
This field is used to indicate urgent data is included in the packet. It is two bytes large and
optional. When the urgent pointer included bit is set, a stream of urgent data is included in the
payload of the packet. The urgent pointer indicates the end of the urgent data stream.

4.2.3.10 Acknowledgement number
This field is used to acknowledge data by the receiver. Its size is four bytes because sequence
numbers are used to indicate what has been received and what not. For the same reason the
full sequence number is stored in the sequence number field, it is done here as well. This field
is also optional and will only be sent when the receiver needs to acknowledge data to the
sender. For more information on how acknowledgement numbers are chosen, see Paragraph
4.3.

4.2.3.11 First SACK block
This field is used to store the first SACK block and is optional. It will only be used in certain
cases where the receiver wants to acknowledge data to the sender. Its size is four bytes. For
more information on SACK blocks, see Paragraph 4.3.

4.2.3.12 Second SACK block
This field is used to store the second SACK block is used in the same way as the first SACK
block.

4.2.3.13 Window size
This field is used to store the limit on the window size the receiver sets for the sender. Its size
is two bytes because TCP uses 16 bit unsigned integers to store the window size. The field is
optional.

4.2.3.14 Checksum
In this field the checksum of the complete E2TCP packet is stored. Its size is two bytes
because the same checksum algorithm as in TCP is used. This field is not optional and should
be transmitted with each packet to protect it.

4.2.4 E2TCP header sizes
Because almost all fields in the E2TCP headers are optional and only need to be transmitted
when they are required, E2TCP headers are usually quite small. A normal data packet will
have a header of 8 bytes versus a 40 byte TCP header. Especially with small payloads the
overhead will be reduced dramatically. Normal acknowledgements will have a size between 8
and 16 bytes depending on how many SACK blocks are used. TCP acknowledgements have a
size of 40, 50 or 60 bytes (with none, one and two SACK blocks respectively) up to a
maximum of 80 bytes if more options are used.

4.3 Selective acknowledgements
E2TCP not only supports selective acknowledgements but also relies on them to effectively
increase its energy efficiency. Because E2TCP will work on a single-hop link and performs
local retransmissions, it will know, when a packet is received out of order, that the
intermediate packets were lost. It is able to do so, because no packet reordering can take place
on a single-hop link. Upon noticing out of order packets, the receiver will indicate to the
sender (with selective acknowledgements), that it has not received the intermediate packets.

Energy Efficient TCP

34

Upon reception of an acknowledgement with SACK blocks the sender can immediately
retransmit the lost packets and does not have to wait on timeouts or duplicate
acknowledgements. This will reduce the time overhead of E2TCP without increasing the data
overhead.
When the destination host receives a packet it should always send an acknowledgement and
acknowledge as much data as possible. Because E2TCP depends on selective
acknowledgements the receiver is always required to send as much SACK blocks as possible.
The acknowledgement number field should contain the number of the last byte in the
contiguous received prefix of the stream. The following example shows this:

Example 4.2: Consider the following receiver state.

1 2 3 4 5 6 7 8 9 10 11

receiver state

received packet

unreceived packet

Figure 4.8: Example of a receiver state.

Because the receiver must acknowledge as much data as possible, it should
acknowledge all packets up to and including packet 5. It is not allowed to only
indicate it has received all packets up to and including packet 4, even though,
strictly speaking, that would also be true.

This is slightly different from the acknowledgement number field in TCP and the base station
should take care in converting the values.
The SACK blocks resemble their TCP counterparts even less. This is because the TCP
variants are unnecessarily large. Their size is ten bytes for each SACK block. Two full
sequence numbers of four bytes each that indicate the beginning and ending of the block and a
two byte option field. E2TCP does things differently. Because the SACK block will always
fall within the maximum possible window size (because no more has been transmitted) the
difference in sequence numbers between the acknowledgement numbers and the beginning
and ending of the SACK blocks is always representable by a 16 bit number. So E2TCP only
requires two two byte numbers for each SACK block.
A SACK block is constructed in the following way:

2

7

BEGIN

END 2

0

next to each field its size (in bytes) is listed

Figure 4.9: The SACK block field format.

 L. Donckers

 35

The first number indicates the starting position of the SACK block. It is measured as the
difference between the sequence number of the first postion of the SACK block and the
second sequence number after the previously highest acknowledged sequence number in this
packet (either by the acknowledgement number or the previous SACK block). The second
number indicates the ending position of the SACK block and is measured as the difference
between the sequence number of the end and the sequence number of the beginning of the
block. The following example shows this:

Example 4.3: Consider the following receiver state.

1 2 3 4 5 6 7 8 9 10 11

receiver state

received byte

unreceived byte

12

Figure 4.10: An example of a receiver state.

As has been shown, the acknowledgement number would be 5. The first SACK
block should acknowledge bytes 8 and 9. The begin field of the first SACK block
would be: 8 – 5 – 2 = 1 and the end field would be: 9 – 8 = 1. The second SACK
block should acknowledge byte 11. The begin field of the second SACK block
would then be: 11 – 9 – 2 = 0 and the end field would be: 11 – 11 = 0.

4.4 Window management
E2TCP features a window management scheme that is optimized for energy efficiency on
wireless single-hop links. First the congestion and flow control mechanisms will be explained,
followed by how E2TCP transmits and retransmits packets. After that will be shown how
acknowledgements influence the window size and finally the round trip time estimation will
be discussed.

4.4.1 Congestion and flow control
As told in the chapter on TCP, congestion can occur on the intermediate hosts (simply called
congestion problems) and at the endpoints of the connection (called flow problems). Because
E2TCP operates on a single-hop link there is no real distinction between congestion and flow
control.
Flow control is provided by the window field in the E2TCP header. If the receiver includes
this field in one of its acknowledgements the maximum window size of the sender will be set
to the included value. The maximum size will remain so until the receiver specifies otherwise.
This will help reduce data overhead because only when changes occur, the new value will be
sent. When a connection is setup the maximum window size will be set to its default value.

Energy Efficient TCP

36

4.4.2 Transmission
E2TCP will transmit as much as the current window size allows. With each transmission it
will set the transmission timer to a value slightly higher than the round trip estimate to
compensate for small variations in the actual round trip time. When not all packets are
acknowledged before the timer expires, all sent unacknowledged non-retransmitted data
within the current window will be transmitted again. All sent unacknowledged non-
retransmitted data out of the current window is marked to be transmitted again as soon as the
window allows for it. After a transmission timeout the window size will be set to a fixed small
value. Transmitted packets will be transmitted again after a transmission timeout or will be
retransmitted after packet loss (there is a subtle difference). If all transmitted packets are
acknowledged and the transmission timer is still active, it is canceled.

4.4.3 Retransmission
When E2TCP detects packet loss it will immediately retransmit those lost packets. As said in
Paragraph 4.1.3, E2TCP also features a retransmission timer. With each retransmitted packet
the retransmission timer will be set in the same way the transmission timer is set. This is
different from TCP because normal TCP implementations have only one transmission timer.
By adding one timer so regular transmissions and retransmissions each have their own timer,
the retransmission scheme can be made more energy efficient. This is because with a total of
two timers, the time it takes before one of them expires is bound to be lower than with only
one timer. Thus burst errors will be noticed sooner and E2TCP will be more responsive to
variations in the quality of the channel, which reduces time overhead. The following example
will show this.

Example 4.4: Consider the following situation. Both a TCP and a E2TCP sender
will retransmit a packet at time 1 and transmit a new packet at time 5. The timers
will be set to expire in 6 time units.
At time 1, a TCP sender will set its timer to 7 and reset it to 11 when it transmits
the packet at time 5. So no sooner than time 11, it is able to detect both packet
losses.
An E2TCP sender, however, will set its retransmission timer to 7 at time 1 and its
transmission timer to 11 at time 5. At time 7 it is already able to detect the loss of
a packet.

When not all retransmitted packets are acknowledged before the retransmission timer expires,
all unacknowledged already retransmitted packets within the current window will be
retransmitted again. All unacknowledged already retransmitted packet out of the current
window are marked for future retransmission and will be sent as soon as the window allows
for it. After a retransmission timeout the window size will be set to a small fixed value. If all
retransmitted packets are acknowledged and the retransmission timer is still active, it is
canceled.

4.4.4 Acknowledgements and window size
TCP always considers packet loss to be the result of congestion. This is one of the reasons
TCP is not energy efficient on wireless links, as was shown in Paragraph 3.2.3. E2TCP also
considers single and burst errors on the wireless channel to be the cause of lost packets.
Upon reception of an acknowledgement a scoreboard, which keeps track of acknowledged
data, is updated to reflect the changes. Each acknowledgement is analyzed to see if it informs

 L. Donckers

 37

the sender of new lost packets. If the amount of newly reported errors is zero, the window size
is enlarged. If the amount of newly reported errors is still below a certain error limit, E2TCP
considers the packet loss to be the result of normal static on the channel and will decrease the
window size but not below the minimum window size. It is also possible the amount of errors
exceeds the limit. E2TCP considers this to be the result of a burst error and the window size is
set to its minimum value. In this way E2TCP discriminates between single errors and burst
errors and is able to achieve a higher energy efficiency.

4.4.5 Round trip time estimation
Because E2TCP operates on a single-hop link the delay will not vary much, even though it’s a
wireless link. E2TCP can therefore refrain from using timestamps in its headers, which
normally increase data overhead. Round trip time estimations are only done on transmitted
packets. No more than one measurement can take place at the same time. Upon packet
transmission, a new round trip time measurement is started if possible. If the round trip time
measurement is not finished before the transmission timer expires, the measurement is
canceled. If the sender receives the acknowledgement that was triggered by the packet that
started the measurement, the round trip time is recorded. If an acknowledgement arrives that
acknowledges data with higher sequence numbers than the packet that started the
measurement, the measurement is canceled. This way only accurate measurements are
recorded. E2TCP remembers the last five measurements and uses them to calculate
estimations on the current round trip time, which are used to set the (re)transmission timers.

4.4.6 Burst error detection
Although E2TCP has an improved window management scheme to deal with (burst) errors
more efficiently than standard TCP, another more sophisticated mechanism was originally
intended to be used. Unfortunately it did not perform very well and was abandoned for a
cleaner and simpler version that did perform as intended, as was described in Paragraph 4.4.
On a channel with burst errors it is very important that the transport protocol reacts in the
right way to burst errors. When the burst error encountered is very small it is best to keep
sending at the original pace. This is because the protocol has no time to react. Once it has
noticed the burst error, it has already passed. When the burst error is long however, it would
be best to stop sending until the burst error has passed. There are a few problems that have to
be overcome before a scheme like this can be implemented. First, it is unknown a priori when
a burst error will start and end. Therefore, the protocol has to detect it by itself, which takes at
least as long as the delay on the channel. This also means that the length of the burst error is
not known a priori. The second problem is that when the protocol stops sending in case of a
long burst error, it has no way of telling the burst error is over. So it always has to keep
sending some packets. Something that can be thought of as polling.
A scheme was developed that would be able to guess the length of the next burst error, based
on the measured lengths of the last burst errors. This scheme kept track of the state of the
channel and defined the states as: normal, possible burst error and burst error. When it was in
the normal state, it would operate very much like the scheme that is now used. When it
suddenly detected a timeout or a lot of errors it would switch to burst error mode. It would set
the window size to a very small fixed value and would guess the time the burst error started.
Once out of the burst error it would guess the time the burst error ended and would remember
the calculated length of the burst error. If the protocol was in the normal state and would only
notice a few errors it would guess the time of the start of the errors and switch to the possible
burst error state. When the errors would continue it would then switch to the burst error state

Energy Efficient TCP

38

and continue as stated above. When the errors would stop however, it would conclude it was
no burst error after all and switch back to the normal state.
If enough burst error lengths were recorded the mechanism added an action. Upon noticing
the start of a burst error it would guess its length. If it was below a certain limit it would still
decrease its window size but only slightly. This way the protocol could still send at almost full
speed. If the burst error was indeed as small as predicted it would react in an optimal way. If
the burst error was longer than predicted however, it is possible the protocol would react in a
very inefficient way. If the predicted length was above the limit it would set the window size
to a very small value and set a timer to the predicted end of the burst error. When the timer
expired, it would start sending again at near full speed.
As told, this mechanism did not perform very well. It was not stable enough because its
measurements were unfortunately very inaccurate. There is no reliable way to accurately
measure the start and end times of a burst error for instance. This caused the recorded burst
error lengths to be quite inaccurate. When the mechanism then tried to guess the length of the
next burst error, it would be based on the inaccurate information. Therefore it would not be
very reliable itself. Furthermore it can be argued if the length of the next burst error
corresponds in any way with the lengths of the previous burst errors. It was clear that in order
to make the mechanism more robust the length measurements could not be used. This caused
the scheme to become quite simple but a lot more energy efficient. The performance of this
mechanism will be compared with the current mechanism in the following graphs.

Energy overhead in scenario A
 (type of radio: Intermediate)

0

5

10

15

20

25

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Proposed burst error detection Current burst error detection

Figure 4.11: Energy overhead of burst error

detection mechanisms in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

5

10

15

20

25

30

35

40

45

50

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Proposed burst error detection Current burst error detection

Figure 4.12: Energy overhead of burst error

detection mechanisms in scenario B.

In scenario A, the difference between the two burst error detection mechanisms is quite small.
Still it should be clear that the current (simple) mechanism has a slightly lower energy
overhead in all situations. The superiority of the current scheme becomes especially clear
when the graph of scenario B is examined. Clearly the current scheme is more energy
efficient than the other.
It is also interesting to note the decrease in energy overhead on the right side of the graph in
Figure 4.12. Both mechanisms experience this decrease allthough the decrease in energy
overhead of the proposed mechanism is much more pronounced. The decrease is the result of
the window management of E2TCP. When the lengths of bad states drop below a certain

 L. Donckers

 39

point, E2TCP correctly decides to keep transmitting. This is an efficient solution because the
bad state is so short, it will be over before E2TCP has decreased its transmission speed. The
graphs show that not decreasing the transmission speed under these conditions is indeed an
energy efficient solution.

4.5 Partial reliability
Partial reliability is only relevant to the receiver. An application will be able to set a certain
amount of reliability for each connection with a Quality of Service-like parameter. This
parameter: the reliability level, can be set from 0% to 100% in one percent steps. Of course
E2TCP defaults to full reliability when an application does not set a new reliability (because it
is unaware of the partial reliability option for example). When the receiver encounters lost
packets, it checks its current reliability level. If it is still above the specified limit, the receiver
will falsely acknowledge as much lost packets as possible without violating the reliability
demand, so the sender will not retransmit them. After that the receiver will of course update
its current reliability level. If the reliability demand is not met, the receiver will send a normal
acknowledgement; so all lost data will be retransmitted.
Thus it is possible the application at the sender only receives parts of the stream. The
application itself is responsible for handling the gaps in the stream.

Energy Efficient TCP

40

 L. Donckers

 41

5 TEST RESULTS
In this chapter a thorough performance evaluation of E2TCP will be given. To measure the
performance and energy efficiency of E2TCP and compare the protocol with other versions of
TCP, an implementation of E2TCP was made in the Network Simulator 2 (NS2) [FAL00].
NS2 is an open source discrete event simulator targeted at network research and has
substantial support for TCP over wired and wireless links. Because NS2 is free and features
implementations of all kinds of simulated applications, versions of TCP, MAC layers, link
layers and interconnects like duplex point-to-point links, LANs, wireless LANs, etc, it has
become a very popular tool in network research to evaluate (new) protocols.
In this chapter an explanation on what is involved in the tests comes first, followed by an
explanation of the home built error model used in the tests. The choice of default values for
the parameters, briefly mentioned in the previous chapter, will be discussed after that,
followed by a look at how much each method, adopted to make E2TCP energy efficient,
makes a difference. Finally the energy efficiency of E2TCP will be compared to that of other
TCP variants.

5.1 Simulation model
NS2 is a simulator and not a real environment. Therefore the model of the protocol has been
simplified. Sometimes because of limitations in NS2 and sometimes because a part of the
protocol was not required to measure the energy performance of the protocol. Differences
between the specification and the implementation in NS2 are listed below. All other
mechanisms are implemented according to the specification.
• There is no flow control. This is a limitation of NS2 and flow control is therefore also

not used in other protocols in NS2. This is not a problem because E2TCP will be tested
on a single-hop wireless link to measure its energy efficiency. The absence of flow
control does not hamper or improve its basic performance.

• The stream is not byte oriented but packet oriented. This means that all sequence
numbers are measured in packets instead of bytes. Packets will have a fixed sized
payload of 1000 bytes. Because E2TCP will be tested on a single-hop link this is not a
problem at all. This also means the size of the windows is measured in packets instead
of bytes.

• There is no connection setup and termination phase. An E2TCP state machine, as TCP
has, is not implemented. This is done because it has very little influence on the overall
energy efficiency and the TCP variants in NS2 also lack this part of the protocol.

• Sequence numbers can not overflow. No mechanism is in place to let the sequence
numbers wrap around when its maximum value (232) has been reached. Because the
implementation also lacks a connection startup phase, the sequence numbers will always
start at 0. Since sequence numbers apply to packets instead of bytes this means almost 4
Terabytes can be sent in the simulation before a problem will arise. This is more than
enough to measure the performance of E2TCP.

5.2 Test setup
The test setup consists of two hosts connected by a wireless LAN. Because they are the only
hosts on the LAN, it can also be seen as a full duplex point-to-point link. Concern may arise
that this setup is not representative for wireless LANs with more hosts, but because modern
MAC protocols use collision avoidance, the performance of such networks will strongly

Energy Efficient TCP

42

resemble a LAN with two hosts and a lower bandwidth. It is not important which host will
model the mobile host and which the base station because E2TCP is a symmetrical protocol.
Each host will be running E2TCP and together they will create one E2TCP connection that
connects both hosts. The sender will start the transmission and during the test, all kinds of
data will be collected so the energy efficiency can be calculated. Each test will be run 10
times, of which the average will be used.
There are a lot of parameters to each test, which will influence the outcome. The bandwidth
and delay of the channel, the length of the burst errors and the periods between them, the
version of TCP used and the kind of traffic.
The bandwidth and delay parameters apply to the wireless LAN itself. This includes the
physical medium, the MAC layer and the link layer. E2TCP should be evaluated with various
values for both characteristics but a ‘default’ value should be chosen for tests in which these
characteristics are not the main concern. The default bandwidth will be 1 Mbps. This
resembles IEEE 802.11 [IEE99] and Bluetooth [BLU01]. A closer look to the effect of
bandwidth will be taken by varying the bandwidth from 0.5 to 5 Mbps, resembling anything
from lower speed serial links to the new high speed IEEE 802.11b standard [IEE99b]. For the
delay the default value will be 50 ms. This is an estimation of the delays introduced by a
typical IEEE 802.11 physical layer, link layer and MAC layer combined, based on
measurements by [CHE94]. The effects of the delay on the energy efficiency of various
protocols will also be examined by varying the delay between 40 and 70 ms.
An error model is attached to the wireless LAN model in NS2. Such an error model can cause
packets to be dropped because of random noise or burst errors. Because the hookup that is
supposed to connect one of the standard error models to the wireless LAN model was broken
in the version of NS2 that was used, a custom error model was written. This model will be
explained in the next paragraph.
The protocols that will be compared to each other are three standard versions of TCP: Tahoe,
Reno and NewReno, PRTP in the partial reliability tests, and of course E2TCP. For PRTP a
NS2 implementation was kindly supplied by the PRTP team from the Karlstad University of
Sweden. Tahoe, Reno and NewReno were chosen because these are widely known versions of
TCP and they are already implemented in NS2.
Various forms of traffic will be simulated to model different types of applications. A (mass)
data transfer will be used as the default application. This resembles file transfer, browsing the
Internet and sending and receiving emails. In the tests where a closer look will be taken at the
effect of the type of traffic, an interactive traffic model will be used as well as a constant bit
rate model. The interactive traffic models applications that feature more or less randomly
interspersed small amounts of data. This resembles interactive applications like telnet
sessions, instant messaging services, chatting and possibly browsing and sending and
receiving emails (when the requested pages or emails are relatively small). The constant bit
rate traffic resembles streaming media, like audio and video.
The (default) test setup then looks like this:

 L. Donckers

 43

E2TCP E2TCP

link layer

MAC layer

error
model

link layer

MAC layer

physical
layer

application application

sender receiver

Figure 5.1: The default test setup.

5.3 Error model and setup
As said, a custom error model was created to be used in the tests. A simple two-state error
model was chosen because with two states it is already possible to realistically model random
noise and burst errors. Each state has three parameters: its minimum length, its maximum
length and its error rate. When the minimum length does not equal the maximum length, a
random length is chosen between the extreme values at each switch to that state. The more the
value approaches one of the extremes the less likely it will be chosen. This way, the chosen
value will be near the center of the range most of the time and will sometimes be a lot smaller
or larger. The error model will then switch between these two states constantly. The error rate
of the state applies to packets because the implementations of the various protocols in NS2 are
packet oriented as well. All packets on the wireless LAN are transparently routed through the
error model, which randomly corrupts the packets with a chance that corresponds to the error
rate of the state it is currently in. This way the corrupted packet will still travel the physical
medium and use bandwidth but will be dropped by the MAC layer, just like in real life.
Typically one state will be setup in such a way it resembles a high quality channel with some
modest random noise and the other state will represent a burst error with a very high error
rate. For the good state an error rate of 0.05% was chosen which corresponds to
measurements done by [ECK96]. For the bad state an error rate of 80% was chosen, causing
an average of 4 out of 5 packets to be corrupted. These values were fixed during the tests and
the lengths of the states were varied to model different channel conditions. These two states
and the transitions between them are shown in Figure 5.2.

good
state

bad
state

Figure 5.2: States and transitions of the error model.

The choice of state lengths is somewhat more difficult. It is not sufficient to examine the
proportions of the good state and the bad state lengths, to see how well a protocol will
perform. The length of the bad state itself can have a large impact on the energy efficiency. A

Energy Efficient TCP

44

protocol can behave quite differently when the good state and bad state lengths are changed
from 20 seconds and 2 seconds to 10 seconds and 1 second respectively, even though the
proportions remain the same. So not one but two scenarios were chosen. The first scenario
(scenario A) has a fixed bad state length of 0.1 second and the good state length varies from
300 seconds to 1 second. This corresponds to a nearly perfect channel (the tests were
constructed to be finished within 300 seconds of simulated time) to a very bad channel. In this
scenario the proportions between the good state and bad state length are gradually worsened.
In the other scenario (scenario B) the proportions are fixed so the channel’s quality remains
the same. The good state lengths vary from 20 to 1 second, with the bad state length always
being one tenth of the good state length. This allows the protocols energy efficiency to be
examined with varying bad state lengths while the proportions between the good state and bad
state length remain the same.

5.4 E2TCP parameters
In the previous chapters a few parameters of E2TCP were mentioned. These include the
minimum window size, the maximum window size, the window size after a timeout and the
error limit. In this paragraph will be explained what kind of effects each parameter has and
how the default values were chosen.

5.4.1 Minimum window size
An E2TCP sender initializes its window size to the minimum window size and unless a
timeout occurs it will not set its window size below this value. The window size is an
important parameter because it has a large effect on the energy efficiency of the protocol.
When the minimum window size increases the time overhead will diminish. This is because
the sender’s minimum speed will be higher. An increased minimum window size also means
that in case of (long) burst errors the data overhead will increase too, because the sender’s
transmission rate during burst errors will be quite high. Choosing a good value for this
parameter is partly a tradeoff between a decreased time overhead and an increased data
overhead. In the following graphs, the performance of minimum window sizes of 5, 10, 15
and 20 packets are given.

 L. Donckers

 45

Energy overhead in scenario A
 (type of radio: Intermediate)

0

5

10

15

20

25

30

35

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

5 10 15 20 packets

Figure 5.3: Energy overhead of E2TCP with
various minimum window sizes in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

5

10

15

20

25

30

35

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

5 10 15 20 packets

Figure 5.4: Energy overhead of E2TCP with
various minimum window sizes in scenario B.

As can be seen from the graphs the higher the minimum window size is set, the lower the
energy overhead becomes. One might assume that choosing the highest value possible would
be best. The situation is a little bit more complicated however. First of all, the higher the
minimum window size the higher the data overhead in certain situations (high bad state
lengths in scenario B for example). This causes the energy overhead (with an ideal type of
radio) of a minimum window size of 20 packets to be higher than the others in those
situations. So a high minimum window size is not always the best solution. The mentioned
data overhead and energy overhead figures are shown in the following blown up graphs.

Byte overhead in scenario B

4

5

6

7

8

9

10

11

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4

Good state length/bad state length (s/s)

B
yt

e
o

ve
rh

ea
d

 (
%

)

5 10 15 20 packets

Figure 5.5: Byte overhead of E2TCP with

various minimum window sizes in scenario A.

Energy overhead in scenario B
 (type of radio: Ideal)

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

20/2.0 12/1.2 8/0.8

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

5 10 15 20 packets

Figure 5.6: Energy overhead of E2TCP with
various minimum window sizes in scenario B.

Furthermore, it is important that E2TCP remains adaptive. The higher the minimum window
size, the smaller the difference will be between the minimum and maximum window size.

Energy Efficient TCP

46

This reduces the adaptivity of E2TCP and makes it less suitable for a wide variation of
situations. For these two reasons, a default value of 12 packets was chosen.

5.4.2 Maximum window size
The maximum window size also has quite a large impact on energy efficiency. An E2TCP
sender will never set its window size higher than the maximum window size. The higher this
value, the greater the bandwidth the protocol can fully utilize. So large values decrease the
time overhead, especially on high bandwidth links. Unfortunately very large values can
hamper performance on low bandwidth links. A large maximum window size also causes high
data overhead in case of (long) burst errors because more traffic is ‘in flight’ and it takes
longer for the protocol to reach an acceptable window size. The maximum size should not be
too close to the minimum window size because the protocol can not adapt itself enough to the
various channel situations. Choosing a good default value can only be done by making a
tradeoff between performance on low and high speed links and time versus data overhead. In
the following graphs, the performance of maximum window sizes of 15, 20, 25, 35 and 45
packets are given.

Energy overhead in scenario A
 (type of radio: Intermediate)

0

5

10

15

20

25

30

35

40

45

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

15 20 25 35 45 packets

Figure 5.7: Energy overhead of E2TCP with

various maximum window sizes in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

5

10

15

20

25

30

35

40

45

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

15 20 25 35 45 packets

Figure 5.8: Energy overhead of E2TCP with
various maximum window sizes in scenario B.

Perhaps it is difficult to see but E2TCP with a maximum window size of 20 or 25 packets
scores best in scenario A. A lower or higher value causes the energy overhead to increase.
Because of the long bad state lengths in scenario B, the lower the maximum window size the
better E2TCP performs (as was predicted). Care should also be taken to make the difference
between the minimum and maximum large enough for E2TCP to remain adaptive. This all
makes the choice for this parameter quite difficult. A default value of 25 packets was chosen
because this value satisfies all requirements best.

5.4.3 Window size after a timeout
The window size is set to this value when a (re)transmission timeout occurs. A large value
causes the sender to quickly recover after a burst error but causes extra data overhead during
the burst error itself. So again, choosing a default value boils down to making a tradeoff
between data and time overhead. As you can see in the graphs however, this parameter does

 L. Donckers

 47

not have a tremendous effect on the energy overhead. The following graphs show the energy
overhead of E2TCP with the following window sizes after a timeout: 1, 2, 5 and 10 packets.

Energy overhead in scenario A
 (type of radio: Intermediate)

0

5

10

15

20

25

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

1 2 5 10 packets

Figure 5.9: Energy overhead of E2TCP with

various window sizes after a timeout in
scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

5

10

15

20

25

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

1 2 5 10 packets

Figure 5.10: Energy overhead of E2TCP with

various window sizes after a timeout in
scenario B.

The differences are minute but a value of 5 packets has the lowest energy overhead in
scenario A. In the other scenario the differences are somewhat larger and a size of 10 packets
performs best. The longer the bad state length however, the better the lower values perform.
Because of the small differences this parameter does not warrant too much attention. A value
of 5 packets seems to be the best overall performer.

5.4.4 Error limit
The error limit parameter decides when an E2TCP sender thinks of the channel as being in a
burst error state. So the higher this value the more errors should occur before E2TCP
drastically reduces its transmission speed. With a large value E2TCP will have a smaller time
overhead in case of (small burst) errors. On the other hand it will have a higher data overhead
in case of long burst errors because E2TCP is slower in reacting. And yet again a tradeoff
must be made between data- and time overhead before a good default value can be chosen.
The energy overhead of E2TCP with error limits of 1, 2, 5 and 10 errors is presented in the
following graphs.

Energy Efficient TCP

48

Energy overhead in scenario A
 (type of radio: Intermediate)

0

5

10

15

20

25

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

1 2 5 10 errors

Figure 5.11: Energy overhead of E2TCP with

various error limits in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

5

10

15

20

25

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

1 2 5 10 errors

Figure 5.12: Energy overhead of E2TCP with

various error limits in scenario B.

As can be seen the error limit does not have a large impact on the energy overhead of E2TCP.
In scenario A, E2TCP performs better as the error limit increases. This is because the bad state
lengths are so short, decreasing the transmission speed serves no purpose. In scenario B
however, the energy overhead of E2TCP becomes lower as the error limit decreases. The bad
states are long enough in this scenario to warrant slowdowns. A tradeoff between these two
scenarios yields a default value of 5 errors.

5.4.5 Conclusions
By studying the performance of E2TCP with different parameters, a set of optimal parameters
was chosen as the default values. Most of the times the selection of values for these
parameters was quite difficult and often it was necessary to make a tradeoff by increasing a
performance metric for a certain situation and decreasing another performance metric
(possibly for another situation). The minimum- and maximum window size both have quite a
large impact on energy efficiency, especially compared to the window size after a timeout and
the error limit, which both hardly influence the energy efficiency of E2TCP. In certain
situations, choosing another value for both the minimum- and the maximum window size
could yield a maximum decrease in energy overhead of about 25%. Still the chosen default
values are considered to be the best overall values. To summarize the selection of values, they
will be listed in the following table.

Parameter Default value
Minimum window size 12 packets
Maximum window size 25 packets
Window size after a timeout 5 packets
Error limit 5 errors

Table 5.1: The default values for the parameters of E2TCP.

 L. Donckers

 49

5.5 E2TCP dissected
In this paragraph a performance evaluation of the various methods to increase energy
efficiency in E2TCP will be given. The methods used are optimized window management,
selective acknowledgements, small headers and partial reliability. The performance evaluation
will start by comparing Tahoe with E2TCP, which only has optimized window management
enabled. The comparison will be done with Tahoe because it is the most energy efficient
version of TCP, as will be shown in Paragraph 5.6.1. After that selective acknowledgements
will be added to E2TCP, followed by its own headers and finally partial reliability. All tests
will be done with the default setup.

5.5.1 Window management
In this test, E2TCP only has its own window management enabled. Unfortunately, the window
management scheme of E2TCP relies on selective acknowledgements to operate properly.
This version of E2TCP will therefore be severely crippled. The energy overhead of both
protocols is shown in the following two graphs.

Energy overhead in scenario A
 (type of radio: Intermediate)

0

50

100

150

200

250

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe E2TCP (Window management only)

Figure 5.13: Energy overhead of various

protocols in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

50

100

150

200

250

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe E2TCP (Window management only)

Figure 5.14: Energy overhead of various

protocols in scenario B.

In scenario A, it is clear that E2TCP is too crippled to reach low levels of energy overhead.
Tahoe clearly scores better. Certainly there is a lot of room for improvement. In scenario B,
E2TCP already outperforms Tahoe and is therefore the more energy efficient protocol of the
two.

5.5.2 Selective acknowledgements
Selective acknowledgements will also be enabled for E2TCP in this test. This should also
make the window management scheme perform better because it directly depends on SACK.
The energy overhead for both scenarios is shown in the following graphs.

Energy Efficient TCP

50

Energy overhead in scenario A
 (type of radio: Intermediate)

0

50

100

150

200

250

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Tahoe

E2TCP (Window management only)

E2TCP (Window management + SACK)

Figure 5.15: Energy overhead of various

protocols in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

50

100

150

200

250

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Tahoe

E2TCP (Window management only)

E2TCP (Window management + SACK)

Figure 5.16: Energy overhead of various

protocols in scenario B.

As can be seen in the graphs, E2TCP has less energy overhead than Tahoe in scenario A this
time. Clearly E2TCP depends on selective acknowledgements in this scenario. In scenario B,
the gain is less impressive but especially with small good and bad state lengths E2TCP with
selective acknowledgements is more energy efficient than E2TCP with window management
only. Clearly selective acknowledgements make E2TCP more energy efficient in both
scenarios.

5.5.3 E2TCP headers
The custom headers of E2TCP were also used in this test. Because they are much smaller than
standard TCP/IP headers they should also contribute to less energy overhead. Enabling the
custom headers gets E2TCP up to full strength. If all versions would be listed in the graphs,
they would become quite hard to study. Therefore, only E2TCP with both its window
management and selective acknowledgements enabled will be used to compare standard
E2TCP with. The energy overhead of both versions of E2TCP will be shown in the following
graphs.

 L. Donckers

 51

Energy overhead in scenario A
 (type of radio: Intermediate)

0

5

10

15

20

25

30

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

E2TCP (Window management + SACK) E2TCP

Figure 5.17: Energy overhead of various

protocols in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

5

10

15

20

25

30

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

E2TCP (Window management + SACK) E2TCP

Figure 5.18: Energy overhead of various

protocols in scenario B.

It should be clear from the graphs that enabling the custom headers, lowers the energy
overhead of E2TCP in both scenarios in all situations with about 5%.

5.5.4 Partial reliability
In the previous paragraph was shown what the energy overhead of standard E2TCP was.
When an application allows for it, E2TCP can also enter a partial reliable mode of operation.
This will further enhance its energy efficiency. In this test E2TCP will be used at 100% and
90% reliability. The energy overhead of both reliabilities is shown in the following graphs.

Energy overhead in scenario A
 (type of radio: Intermediate)

0

5

10

15

20

25

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

E2TCP E2TCP (90% reliability)

Figure 5.19: Energy overhead of various

protocols in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

5

10

15

20

25

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

E2TCP E2TCP (90% reliability)

Figure 5.20: Energy overhead of various

protocols in scenario B.

In both scenarios partial reliability manages to improve the energy efficiency of E2TCP
considerably. Partial reliability obviously has a larger effect when the quality of the channel

Energy Efficient TCP

52

deteriorates. The reason for this is that when more packets are lost, the advantage of not
retransmitting them increases.

5.5.5 Conclusions
By ‘dissecting’ E2TCP, it became clear how much each energy efficient method present in
E2TCP, contributed to the overall energy efficiency of E2TCP. Only enabling the window
management scheme of E2TCP, clearly crippled E2TCP so much it was unable to perform
better than Tahoe in scenario A. When selective acknowledgements were added, E2TCP
already became quite energy efficient and had less energy overhead than Tahoe in both
scenarios. Using E2TCP’s custom headers further increased its energy efficiency just like
enabling partial reliability. To give an indication of the energy overhead of all versions, the
average energy overhead will be listed in the following table for each version and both
scenarios.

Protocol version Scenario A (%) Scenario B (%)
Tahoe 44.5 54.5
E2TCP (Window management only) 102.4 39.6
E2TCP (Window management + SACK) 14.7 22.4
E2TCP 10.1 17.4
E2TCP (90% reliability) 4.9 12.6

Table 5.2: The average energy overhead of various protocol versions.

In Paragraph 1.1, three proposals were mentioned to deploy E2TCP. The first proposal only
allowed the transport protocol at the base station to be replaced with E2TCP. The second
proposal was to replace the transport protocol at both the base station and the mobile host,
while the third proposal was to change the applications at the mobile (and possibly the
internet) host as well. It was expected that the first proposal would yield the smallest gain in
energy efficiency, while the third proposal would yield the largest gain in energy efficiency.
Now E2TCP has been ‘dissected’, it is possible to check if those expectations were correct.
When only the base station is running a version of E2TCP, its possible to use the optimized
window management method. There are two problems however. First E2TCP with only its
window management enabled can have a higher energy efficiency than Tahoe, but also a
considerably higher one. It depends on the situation. The second problem is that only when
the base station is the sender, energy can be saved. The first problem is solved when the
mobile host is running a SACK enabled version of TCP, but still it is quite useless to consider
the first proposal. As said, it is unclear if energy will be saved and if energy is saved it will be
at the base station and not at the mobile host, where it is needed.
When the second proposal is executed things become more interesting. Both the base station
and the mobile host will be running E2TCP so there is no problem in using both the window
management scheme and selective acknowledgements. It has been shown that when both are
enabled, E2TCP clearly is more energy efficient than other protocols and the mobile host will
definitely save energy. This is because the energy overhead of other protocols is two to three
times as high as that of E2TCP. Furthermore, E2TCP can use its own headers further
increasing its energy efficiency. Then the energy overhead of other protocol is three to four
times as high as that of E2TCP. The energy efficiency (based on the average energy overhead)
of Tahoe is 69% and 65% in scenario A and B respectively, while E2TCP scores 91% and
85% respectively.

 L. Donckers

 53

Partial reliability can be enabled when the third proposal is executed: changing the
applications at the mobile- and internet hosts. This causes the energy overhead of E2TCP to
drop even further to levels that are anywhere from four to nine times as small as normal TCP.
The energy efficiency (based on the average energy overhead) of E2TCP with partial
reliability is 95% and 89% in scenario A and B respectively. However, partial reliability can
only be used with streaming media.

5.6 Evaluation of E2TCP
The evaluation of E2TCP will begin with a detailed look at the default setup. Next, a closer
examination of its performance on wireless links with different bandwidths. After that a closer
look will be taken at the influence of different delays, traffic and finally the effect of partial
reliability will be studied.

5.6.1 Default setup
In this test all parameters will be set to their defaults. This means that the bandwidth will be 1
Mbps, the delay 50 ms and the protocols compared will be Tahoe, Reno, NewReno and
E2TCP. The partial reliability mechanism of E2TCP will be disabled so E2TCP is 100%
reliable, just like the other protocols. The simulated traffic will be a mass data transfer of 20
MB in total. Both error scenarios will be used.
This first time a performance evaluation will be given, a closer look will be taken at the data
overhead and the time overhead before examining energy overhead. In later evaluations these
graphs will be omitted because finally only energy overhead counts. Should a later test yield
interesting results in respect to data- or time overhead, the graphs will be included.

Byte overhead in scenario A

0

5

10

15

20

25

30

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

B
yt

e
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.21: Byte overhead of various

protocols in scenario A.

Byte overhead in scenario B

0

5

10

15

20

25

30

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

B
yt

e
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.22: Byte overhead of various

protocols in scenario B.

As can be seen, E2TCP has less data overhead than the other TCP versions, in both scenarios,
at all points. This can be attributed to the small headers and its optimized window
management in combination with selective acknowledgements. Especially in scenario A it is
clear that when the quality of the channel deteriorates, the data overhead increases. It is
interesting to note the decrease in data overhead in scenario B for E2TCP at the right side of

Energy Efficient TCP

54

the graph. Unlike standard TCP, E2TCP does not decrease its transmission speed for very
small burst errors, resulting in a very low data overhead when burst errors are very small.
Another characteristic of the graphs that should be noted is that all three standard versions of
TCP behave the same. The absolute values in data overhead may differ somewhat but the
tendency of each version closely resembles that of the others.

Time overhead in scenario A

0

100

200

300

400

500

600

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

T
im

e
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.23: Time overhead of various

protocols in scenario A.

Time overhead in scenario B

0

100

200

300

400

500

600

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

T
im

e
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.24: Time overhead of various

protocols in scenario B.

Because of the enormous differences in time overhead, it is hard to see how much the time
overhead of E2TCP differs from that of the other protocols in the left sides of the graphs.
When examining the source data for the graphs, it is clear that E2TCP has a time overhead
that is about twice as small as the other protocols in the worst cases. Especially when the
quality of the channel deteriorates (the right side of the graphs), the difference in time
overhead between E2TCP and the other protocols increases. This means that (considering time
overhead) E2TCP scales much better than the other protocols when the quality of the channel
worsens.
Just like with data overhead, the three versions of TCP tested behave in the same way. The
absolute values differ somewhat again, but they all have the same tendency. It should also be
clear that the other versions of TCP have much more time overhead than data overhead.
Because of the way energy overhead is calculated, there will probably be large differences
between the different types of radios.
What this means for the energy overhead will be shown in the following graphs. For each
scenario three graphs will be shown, each graph corresponding to a certain type of radio.

 L. Donckers

 55

Energy overhead in scenario A
 (type of radio: Always active)

0

100

200

300

400

500

600

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.25: Energy overhead of various

protocols in scenario A.

Energy overhead in scenario B
 (type of radio: Always active)

0

100

200

300

400

500

600

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno EETCP

Figure 5.26: Energy overhead of various

protocols in scenario B.

Energy overhead in scenario A
 (type of radio: Intermediate)

0

50

100

150

200

250

300

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.27: Energy overhead of various

protocols in scenario A.

Energy overhead in scenario B
 (type of radio: Intermediate)

0

50

100

150

200

250

300

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno EETCP

Figure 5.28: Energy overhead of various

protocols in scenario B.

Energy Efficient TCP

56

Energy overhead in scenario A
 (type of radio: Ideal)

0

10

20

30

40

50

60

70

80

90

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.29: Energy overhead of various

protocols in scenario A.

Energy overhead in scenario B
 (type of radio: Ideal)

0

10

20

30

40

50

60

70

80

90

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe Reno NewReno EETCP

Figure 5.30: Energy overhead of various

protocols in scenario B.

The first thing that can be concluded is that E2TCP has a significantly lower energy overhead
than the other three protocols, in both scenarios and with all types of radios. Thus E2TCP has
a higher energy efficiency than the other protocols in this test. Usually E2TCP has an
overhead that is at least twice as small as that of another protocol, but the difference can
increase with shorter bad state lengths to 16 times as small.
Another important thing to note is that just as with data- and time overhead, the three versions
of TCP behave in the same way. From now on only one other protocol will be used to
compare the performance of E2TCP to. If the graphs are studied closely, Tahoe can be said to
be the most energy efficient protocol of the three and will therefore be used.
It should also be clear that the energy overhead obtained by the protocols on an ideal type of
radio is much lower than that on the other types of radio. This is because for an ideal type of
radio time overhead has not a big impact. As seen, (for the standard TCP versions) time
overhead is much higher than data overhead, which causes the increased energy overhead for
the first two types of radios.
The final remark that will be made, is that although the absolute values for energy overhead
differ between the three types of radios, the tendencies of each protocol are the same
regardless of what type of radio is used. Therefore, only one type of radio will be used in
future tests. The intermediate type will be chosen because the other types are at the extremes
of the scale. The intermediate type will therefore probably be better suited to be compared to
real radios. To be complete, the energy efficiency graphs for the intermediate type of radio
and both scenarios will be listed below.

 L. Donckers

 57

Energy efficiency in scenario A
 (type of radio: Intermediate)

0

10

20

30

40

50

60

70

80

90

100

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
ef

fi
ci

en
cy

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.31: Energy efficiency of various

protocols in scenario A.

Energy efficiency in scenario B
 (type of radio: Intermediate)

0

10

20

30

40

50

60

70

80

90

100

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
ef

fi
ci

en
cy

 (%
)

Tahoe Reno NewReno E2TCP

Figure 5.32: Energy efficiency of various

protocols in scenario B.

As was already concluded from the energy overhead graphs, it is clear that E2TCP has a
higher energy efficiency than the other protocols.

5.6.2 Bandwidth
In this test the impact of the channel’s bandwidth on the energy overhead will be examined.
The test setup equals the default setup except for a few changes. The bandwidth will not be
fixed at 1 Mbps but four different bandwidths will be used: 0.5, 1, 2 and 5 Mbps. As told in
the previous paragraph, only Tahoe and E2TCP will be used and only the energy overhead
graphs of the intermediate type of radio will be shown. The results of the test can be seen in
the following graphs:

Energy overhead in scenario A
(type of radio: Intermediate)

0

50

100

150

200

250

300

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

0.5 1 2 5 Mbps

Figure 5.33: Energy overhead of Tahoe with

various bandwidths in scenario A.

Energy overhead in scenario A
(type of radio: Intermediate)

0

50

100

150

200

250

300

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

0.5 1 2 5 Mbps

Figure 5.34: Energy overhead of E2TCP with

various bandwidths in scenario A.

Energy Efficient TCP

58

Energy overhead in scenario B
(type of radio: Intermediate)

0

50

100

150

200

250

300

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

0.5 1 2 5 Mbps

Figure 5.35: Energy overhead of Tahoe with

various bandwidths in scenario B.

Energy overhead in scenario B
(type of radio: Intermediate)

0

50

100

150

200

250

300

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

0.5 1 2 5 Mbps

Figure 5.36: Energy overhead of E2TCP with

various bandwidths in scenario B.

Because of the terribly high overhead of Tahoe on high bandwidth low quality links, the
graphs were truncated at 300% overhead. On links with the smallest good state length Tahoe
had 441% and 1128% energy overhead on 2 and 5 Mbps links respectively for scenario A and
444% and 1125% for scenario B.
Upon close examination of the graphs, it can be seen that E2TCP has less energy overhead
than Tahoe for each bandwidth/quality of channel combination. In most cases Tahoe even has
an energy overhead that is at least twice as large as that of E2TCP. This means that E2TCP is
more energy efficient than Tahoe (in this test). The second conclusion is that independent of
bandwidth, E2TCP scales better than Tahoe when channel conditions deteriorate. It should
also be clear that E2TCP does not scale worse than Tahoe when bandwidth increases. This is
an important characteristic of E2TCP because the bandwidths on new wireless standards are
rapidly increasing.

5.6.3 Delay
The impact of the delay of the channel on the energy overhead of Tahoe and E2TCP was
examined in this test. The test setup equals the default setup except for the following changes:
the delay was not fixed at 50 ms but the test was run with delays of 40, 50, 60 and 70 ms. The
energy overhead for both scenarios is shown in the following graphs.

 L. Donckers

 59

Energy overhead in scenario A
(type of radio: Intermediate)

0

20

40

60

80

100

120

140

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Tahoe - 40 ms Tahoe - 50 ms Tahoe - 60 ms

Tahoe - 70 ms E2TCP - 40 ms E2TCP - 50 ms

E2TCP - 60 ms E2TCP - 70 ms

Figure 5.37: Energy overhead of Tahoe and

E2TCP with various delays in scenario A.

Energy overhead in scenario B
(type of radio: Intermediate)

0

20

40

60

80

100

120

140

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Tahoe - 40 ms Tahoe - 50 ms Tahoe - 60 ms

Tahoe - 70 ms E2TCP - 40 ms E2TCP - 50 ms

E2TCP - 60 ms E2TCP - 70 ms

Figure 5.38: Energy overhead of Tahoe and

E2TCP with various delays in scenario B.

Again the graphs were truncated because of the large differences in overhead. This time at
140%. On links with the smallest good state length Tahoe had 211%, 351% and 524% energy
overhead on links with 50, 60 and 70 ms delay respectively for scenario A and 211%, 340%
and 540% for scenario B.
Two conclusions can be drawn by studying the graphs. The first conclusion is that E2TCP
again has a lower energy overhead than Tahoe on all delay/channel quality combinations and
thus is more energy efficient. The second conclusion is that E2TCP scales much better when
the channel delay increases.

5.6.4 Traffic
In this test the energy overhead of Tahoe and E2TCP will be examined for various types of
traffic. Up to now, all tests were done with a simulation of a (mass) data transfer. In this test
two other types of traffic will be used for the simulation. The first simulation will be done
with an interactive application model that models interactive types of traffic like telnet
sessions, chatting and instant messages. The second simulation will be done with a constant
bit rate application, that models streaming audio and video.
The interactive traffic model works a bit different than the data transfer model. With an
interactive traffic model the delay between consecutive packets can be set. The application
will then randomly create packets in such a way that the average delay between packets
equals the set value. In this test interdeparture times of 0.5, 0.2, 0.1 and 0.05 seconds were
used, which resemble data rates of 16 to 160 Kbps (2 to 20 KBps). The energy overhead for
both scenarios is shown in the following graphs.

Energy Efficient TCP

60

Energy overhead in scenario A
(type of radio: Intermediate)

0

2

4

6

8

10

12

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Tahoe - 0.5 s Tahoe - 0.2 s Tahoe - 0.1 s

Tahoe - 0.05 s E2TCP - 0.5 s E2TCP - 0.2 s

E2TCP - 0.1 s E2TCP - 0.05 s

Figure 5.39: Energy overhead of Tahoe and
E2TCP with various interdeparture times in

scenario A.

Energy overhead in scenario B
(type of radio: Intermediate)

0

2

4

6

8

10

12

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Tahoe - 0.5 s Tahoe - 0.2 s Tahoe - 0.1 s

Tahoe - 0.05 s E2TCP - 0.5 s E2TCP - 0.2 s

E2TCP - 0.1 s E2TCP - 0.05 s

Figure 5.40: Energy overhead of Tahoe and
E2TCP with various interdeparture times in

scenario B.

As can be seen, the performance of both protocols, in scenario A, barely changes when the
interdeparture times are altered. In that scenario Tahoe consistently has about twice as much
energy overhead as E2TCP. In scenario B, the differences are not as large but E2TCP still
manages to score lower energy overhead scores.
The constant bit rate traffic model resembles the interactive model somewhat. It too sends
data at a specified rate. To model streaming media, data rates of 0.25, 0.5 and 1 Mbps were
used. The energy overhead for both scenarios is shown in the following graphs.

Energy overhead in scenario A
(type of radio: Intermediate)

0

10

20

30

40

50

60

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Tahoe - 0.25 Mbps Tahoe - 0.5 Mbps

Tahoe - 1 Mbps E2TCP - 0.25 Mbps

E2TCP - 0.5 Mbps E2TCP - 1 Mbps

Figure 5.41: Energy overhead of Tahoe and
E2TCP with various data rates in scenario A.

Energy overhead in scenario B
(type of radio: Intermediate)

0

10

20

30

40

50

60

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (
%

)

Tahoe - 0.25 Mbps Tahoe - 0.5 Mbps

Tahoe - 1 Mbps E2TCP - 0.25 Mbps

E2TCP - 0.5 Mbps E2TCP - 1 Mbps

Figure 5.42: Energy overhead of Tahoe and
E2TCP with various data rates in scenario B.

Because of the large differences in energy overhead both graphs were truncated at 60%. In
scenario A with a good state length of 1 second, Tahoe scores 89% and 211% for data rates of
0.5 and 1 Mbps respectively in scenario A and 87% and 212% respectively in scenario B.

 L. Donckers

 61

From the graphs can be concluded that in scenario A, E2TCP is much more energy efficient
than Tahoe. Furthermore E2TCP scales better when data rates increase. In scenario B, Tahoe
is able to equal E2TCP’s energy overhead when bad states are long and data rates low. E2TCP
however, is more energy efficient when data rates increase and/or bad state lengths shorten.
So E2TCP has a higher energy efficiency in this test.
Another conclusion that can be drawn from the graphs is that even though the absolute
numbers differ when E2TCP is used with different data rates, the tendencies do not. This
means that for different data rates E2TCP behaves the same.
The 1 Mbps constant bit rate traffic is able to completely saturate the link because it has a
bandwidth of 1 Mbps itself. Because of this, that traffic behaves exactly the same as a mass
data transfer. Closely examining the source data of the graphs, proved this.

5.6.5 Partial reliability
In this test the partial reliability of E2TCP will be examined. The default setup will be used
with the following protocols: Tahoe, PRTP and E2TCP. Tahoe is of course fully reliable.
E2TCP will be set to 95% and 90% reliability while PRTP will be used at 90% reliability. It
was the intention to test PRTP at 95% reliability as well, but PRTP does not allow for such
fine-tuning of the reliability. Apparently with E2TCP the application has a more fine-grained
control over the reliability of the connection.
It is only useful to use partial reliability on certain types of traffic. Streaming media
applications and sometimes mass data transfer (images, audio and video) applications are
suited to adapt to partial reliability. Therefore only the constant bit rate and mass data transfer
models should be used in this test. In the previous paragraph it was shown that for a data rate
of 1 Mbps the constant bit rate application behaves exactly the same as the mass data transfer
application. Furthermore it was shown that E2TCP behaves the same when different data rates
are used for the constant bit rate application. Therefore it is sufficient to use the mass data
transfer (as in the default test setup) for this test. The energy overhead for both scenarios is
shown in the following graphs.

Energy overhead in scenario A
(type of radio: Intermediate)

0

5

10

15

20

25

30

35

40

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe PRTP - 90% E2TCP - 95% E2TCP - 90%

Figure 5.43: Energy overhead of various

protocols in scenario A.

Energy overhead in scenario B
(type of radio: Intermediate)

0

5

10

15

20

25

30

35

40

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

E
n

er
g

y
o

ve
rh

ea
d

 (%
)

Tahoe PRTP - 90% E2TCP - 95% E2TCP - 90%

Figure 5.44: Energy overhead of various

protocols in scenario B.

Energy Efficient TCP

62

The graphs were truncated again because of the large differences in energy overhead. This
time at 40%. In scenario A, Tahoe has an energy overhead of 211% when the good state
length is 1 second while in scenario B the same protocol scored 57% and 212% with good
state lengths of 2 and 1 second respectively.
From the graph of scenario A a few things can be deduced. First of all, PRTP (with a
reliability of 90%) clearly has less energy overhead than Tahoe. Another interesting thing to
note is that both PRTP and E2TCP at 90% reliability score (almost) the same independent of
the quality of the channel. Because of the loose reliability constraints both protocols can deal
very efficiently with errors. E2TCP with 95% reliability clearly has more trouble when the
quality of the channel worsens because the reliability constraints are tighter. Still it manages
to surpass PRTP in all but the worst channel conditions.
In scenario B, the last point is also valid. That is: PRTP is more efficient than Tahoe, while
E2TCP with a reliability of 95% surpasses the performance of PRTP in all but the worst
channel conditions. Just like in scenario A, E2TCP with a reliability of 90% is the most energy
efficient protocol.

5.6.6 Performance
So far, only the energy efficiency of E2TCP has been examined. Because of the goal of this
thesis, this is of course a very important metric. However, it is also important to take a look at
some traditional performance metrics, like throughput and latency. The comparison of the
various protocols with respect to traditional performance will not be as extensive as the
evaluation of the energy efficiency.
Throughput is a measure to indicate the utilization of the link. It is measured in bits per
second and can of course never exceed the bandwidth of the link. Throughput can be
calculated by dividing the payload of the data transmission with the total time it took to
complete the data transmission. The faster a data transmission was finished, the higher the
throughput will be. Because the time overhead also decreases when the time to completion
decreases (and vice versa), it can be concluded that the lower the time overhead of a protocol
is, the higher its throughput will be. Because the time overhead of E2TCP and other versions
of TCP have already been examined, a prediction can be made about the throughput of those
protocols. It is expected that E2TCP will have a higher throughput than other versions of TCP.
To test the throughput of E2TCP, the default test setup was used. Therefore the throughput can
be no higher than 1 Mbps. In the next graphs, the throughput of E2TCP and other versions of
TCP will be shown.

 L. Donckers

 63

Throughput in scenario A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

T
h

ro
u

g
h

p
u

t (
M

b
p

s)

Tahoe Reno NewReno E2TCP

Figure 5.45: Throughput of various protocols

in scenario A.

Throughput in scenario B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

T
h

ro
u

g
h

p
u

t (
M

b
p

s)

Tahoe Reno NewReno E2TCP

Figure 5.46: Throughput of various protocols

in scenario B.

As can be seen in both graphs, the throughput of E2TCP is clearly higher than that of the other
versions of TCP. When channel conditions deteriorate, the difference in throughput becomes
exceptionally large. Just as in the time overhead graphs in Paragraph 5.6.1; the other versions
of TCP behave the same. Their absolute throughput scores may differ somewhat (especially in
scenario A), but their graphs all show the same tendency. By optimizing E2TCP for energy
efficiency by lowering its time overhead, the throughput was unintentionally increased.
Because of the direct relation between time overhead and throughput, it is unnecessary to
examine other test setups. The time overhead of E2TCP in all test setups was closely
examined to calculate the energy overhead. In all test setups E2TCP had less time overhead
than the other protocols and therefore, its throughput will always be higher.
The latency of a protocol (measured in milliseconds), is another traditional performance
metric. The latency of a packet is the time between the first transmission of the packet at the
sending host and the successful reception of the packet by the destination host. Latency can be
no lower than the delay of the wireless link, link layer and MAC layer combined. In case of
retransmissions, the latency will surely increase. The average latency is the average of the
latency of each packet. This metric will be used in this test. Unlike throughput, average
latency has no direct relation to either data- or time overhead. Still, there is a weak relation
between time overhead and average latency: the lower the time overhead the lower the
average latency will probably be. Therefore, it is expected that E2TCP will perform better
than the other protocols. The average latency of E2TCP and the other versions of TCP, were
calculated from the results of the tests done with the default test setup and are shown in the
two following graphs.

Energy Efficient TCP

64

Average latency in scenario A

0

20

40

60

80

100

120

140

160

180

300/0.1 8/0.1 6/0.1 5/0.1 4/0.1 3/0.1 2/0.1 1/0.1

Good state length/bad state length (s/s)

A
ve

ra
g

e
la

te
n

cy
 (

m
s)

Tahoe Reno NewReno E2TCP

Figure 5.47: Average latency of various

protocols in scenario A.

Average latency in scenario B

0

20

40

60

80

100

120

140

160

180

20/2.0 12/1.2 8/0.8 5/0.5 4/0,4 3/0.3 2/0.2 1/0.1

Good state length/bad state length (s/s)

A
ve

ra
g

e
la

te
n

cy
 (

m
s)

Tahoe Reno NewReno E2TCP

Figure 5.48: Average latency of various

protocols in scenario B.

Clearly, the graphs show that the average latency of E2TCP is lower than that of the other
versions of TCP. As with throughput, the difference only increases when the channel
conditions deteriorate. Because the default test setup was used the average latency could not
drop below 50 ms. Taking this into account, the performance of E2TCP becomes even more
impressing. When the channel conditions are worst, E2TCP adds about 20 ms to the minimum
latency while the other protocols add about 100 ms.

5.6.7 Conclusions
In Paragraph 5.6, a performance evaluation of E2TCP was given. In the first test, Tahoe, Reno
and NewReno were compared to E2TCP in the default test setup. It can only be said that
E2TCP clearly has a higher energy efficiency than those other protocols. In the other tests
Tahoe, which is the most energy efficient standard version of TCP, was compared to E2TCP
with different bandwidths, delays and types of traffic. E2TCP consistently had a lower energy
overhead than Tahoe. To give an indication of the efficiency of E2TCP, the average energy
overhead of the tested protocols will be listed in the following table for both scenarios, using
the default test setup.

Protocol Scenario A (%) Scenario B (%)
Tahoe 44.5 54.5
Reno 68.6 63.4
NewReno 52.2 54.9
E2TCP 10.1 17.4

Table 5.3: The average energy overhead of various protocols.

After that, some partial reliability tests were run, which compared PRTP with E2TCP under
various reliability constraints. Again, E2TCP was the most energy efficient protocol. To give
an indication of the efficiency of the protocols used in those tests, the average energy
overhead of the tested protocols will be listed in the following table for both scenarios.

 L. Donckers

 65

Protocol Scenario A (%) Scenario B (%)
PRTP (90% reliability) 9.7 19.3
E2TCP (95% reliability) 7.1 14.6
E2TCP (90% reliability) 4.9 12.6

Table 5.4: The average energy overhead of various protocols under various reliability
constraints.

In Paragraph 5.6.6, a traditional performance evaluation of E2TCP was conducted. From its
results can be concluded that for both traditional performance metrics; throughput and
latency, E2TCP manages to outperform the other versions of TCP by a significant amount. To
give an indication of the performance of E2TCP, the average throughput and average latency
of the tested protocols will be listed in the following two tables for both scenarios, using the
default test setup.

Protocol Scenario A (Mbps) Scenario B (Mbps)
Tahoe 0.71 0.61
Reno 0.59 0.61
NewReno 0.64 0.62
E2TCP 0.87 0.80

Table 5.5: The average throughput of various protocols.

Protocol Scenario A (ms) Scenario B (ms)
Tahoe 76.6 101.7
Reno 96.1 103.5
NewReno 74.7 100.8
E2TCP 55.9 75.0

Table 5.6: The average latency of various protocols.

Energy Efficient TCP

66

 L. Donckers

 67

6 CONCLUSIONS AND RECOMMENDATIONS
From the results of the simulations presented in Chapter 5, the most important conclusion is
that E2TCP is indeed energy efficient. When comparing E2TCP to standard versions of TCP,
like Tahoe, Reno and NewReno, it is clear E2TCP consistently has less energy overhead and
therefore, a higher energy efficiency.
E2TCP is optimized for energy efficiency on four points. Each optimization addresses one of
the four problems of TCP, that keep it from reaching high levels of energy efficiency. The
first point is the acknowledgement scheme of TCP, which is unable to provide the sending
host with enough information about the state of the destination host. E2TCP uses selective
acknowledgements to overcome this problem. These selective acknowledgements are also
required for the second optimization: the window management. This optimization is the result
of efforts to make TCP aware of burst errors. Because burst errors are a major cause of packet
loss on wireless links and TCP considers all packet loss to be the result of congestion, TCP
was unable to react to burst errors in an energy efficient way. These two optimizations, which
effect cannot really be determined separately, cause the greatest decrease in energy overhead:
about 75% of the total decrease in energy overhead. The third optimization is the use of
partial reliability to limit unwanted retransmits during the transmission of streaming media.
This optimization is the cause of about 13% of the total decrease in energy overhead. The
final optimization is the use of custom headers, which rely on techniques from header
compression standards to minimize wasted energy. This optimization is the cause of the last
12% of the total decrease in energy overhead.
E2TCP has been compared to standard TCP under various conditions. The bandwidth, delay,
type of traffic and channel conditions were widely varied to get a complete overview of the
energy efficiency characteristics of E2TCP. The bandwidth was varied from 0.5 Mbps,
representing lower speed serial links, to 5 Mbps, representing the new high speed IEEE
802.11b wireless network standard. From the results can be concluded that E2TCP has less
energy overhead than TCP for each bandwidth/quality of channel combination. In most cases
TCP even has an energy overhead that is at least twice as large as that of E2TCP. The second
conclusion is that independent of bandwidth, E2TCP scales better than TCP when channel
conditions deteriorate. It should also be clear that E2TCP does not scale worse than TCP when
bandwidth increases.
The delay of the wireless link, link layer and MAC layer combined was varied from 40 ms to
70 ms, representing all kinds of wireless links. Two conclusions can be drawn by studying the
results. The first conclusion is that E2TCP has a lower energy overhead than TCP on all
delay/channel quality combinations and thus is more energy efficient. The second conclusion
is that E2TCP scales much better than TCP, when the channel delay increases.
Three types of traffic were used in the simulations of E2TCP: interactive traffic (representing
chatting and instant messaging for example), mass data transfers (representing file transfers,
browsing and emailing for example) and constant bit rate traffic (representing streaming
media). From the results can be concluded that E2TCP continuously manages to outperform
TCP in terms of energy efficiency, with every kind of traffic and all channel qualities.
A traditional performance evaluation of E2TCP was also conducted. It consisted of throughput
and latency comparisons with the standard versions of TCP. Because of the optimizations to
reduce data and time overhead, the throughput of E2TCP was increased. Therefore, no version
of TCP was able to reach a higher throughput than E2TCP. The delay of E2TCP was also
lower than that of other versions of TCP.

Energy Efficient TCP

68

This could raise the question whether or not optimizing for energy efficiency is the same as
optimizing for throughput and/or latency. This is not so. An example that shows that a
protocol with a high throughput does not automatically have a high energy efficiency, is a
TCP sender that transmits at the highest possible speed. Such a sender would have a very high
throughput. However, it would also waste a substantial amount of energy because it would
also transmit at the highest possible speed during burst errors. Therefore, optimizations for
energy efficiency are distinct from optimizations for throughput and/or latency.
As for future research, four areas are recommended to be examined. First of all, the
assumptions made on energy efficiency and how it is calculated, should be subject to further
examinations. As with all assumptions, it is unclear how accurately they portray reality.
Therefore, a detailed study to how the actual energy consumption caused by a protocol can be
measured and calculated from evident data, is desirable.
The second area of recommended research is the characteristics of burst errors. Little research
can be found on what kind of error characteristics wireless links experience. Therefore, it is
unclear how to accurately model errors in simulated environments. If more information would
be available on the length of burst errors, the time between consecutive burst errors and the bit
error rate of the wireless link under normal conditions and during burst errors, more accurate
models could increase the reliability of simulations.
Furthermore, simulations for the base station should be designed and implemented. This
would allow for simulations of the entire setup, instead of just the wireless part. Information
on the performance of a complete connection (from mobile to internet host and vice versa)
would be valuable. The most important reason for implementing the base station is to examine
the effect of a complete connection on the energy efficiency of E2TCP (at the mobile host).
The final recommendation for future research is to compare E2TCP to other protocols for
wireless links. A lot of adaptions of TCP have been proposed for wireless links. Such
protocols generally focus on optimizing performance of the connection with respect to
throughput and/or delay. Because of the overlap of optimizing for traditional performance and
for energy efficiency, it is certainly possible these protocols are more energy efficient than
standard TCP. Whether or not they are able to surpass E2TCP, remains to be seen, but is
certainly an interesting research area. For such a comparison implementations of these
protocols in NS2 would have to be obtained.

 L. Donckers

 69

BIBLIOGRAPHY
[BAK95] Bakre A.V., Badrinath B.R., I-TCP: Indirect TCP for mobile hosts, Proceedings

of the 15th international conference on distributed computing systems, May 1995.
[BAK97] Bakre A.V., Badrinath B.R., Implementation and performance evaluation of

indirect TCP, IEEE transactions on computers, V. 46 N. 3, March 1997.
[BAL95] Balakrishnan H., Srinivasan S., Katz R.H., Improving reliable transport and

handoff performance in cellular wireless networks, ACM wireless networks, V. 1
N. 4, 1995.

[BLU01] Bluetooth Special Interest Group, Specification of the Bluetooth system – volume
1: Core, Version 1.1, http://www.bluetooth.com/, February 2001.

[BRO97] Brown K., Singh S., M-TCP: TCP for mobile cellular networks, Computer
communications review, V. 27 N. 5, October 1997.

[BRU00] Brunstrom A., Asplund K., Garcia J., Enhancing TCP performance by allowing
controlled loss, Proceedings of SSGRR 2000 computer & ebusiness conference,
L’Aquila, Italy, August 2000.

[CAS99] Casner S., Jacobson V., Compressing IP/UDP/RTP headers for low-speed serial
links, RFC 2508, February 1999.

[CHE94] Chen K., Medium access control of wireless LANs for mobile computing, IEEE
network magazine, V. 8 N. 5, September 1994.

[COM95] Comer D.E., Internetworking with TCP/IP – volume 1: Principles, protocols and
architecture, 3rd edition, Prentice-Hall, Upper Saddle River, The United States of
America, 1995.

[DEG99] Degermark M., Nordgren B., Pink S., IP header compression, RFC 2507,
February 1999.

[ECK96] Eckhardt D., Steenkiste P., Measurement and analysis of the error characteristics
of an in-building wireless network, Proceedings of the ACM SIGCOMM ’96
conference, October 1996.

[ENG99] Engan M., Casner S., Bormann C., IP header compression over PPP, RFC 2509,
February 1999.

[FAL96] Fall K., Floyd S., Simulation-based comparison of Tahoe, Reno and SACK TCP,
Computer Communication Review, V. 26 N. 3, July 1996.

[FAL00] Fall K., Varadhan K., The NS manual, The VINT project,
http://www.isi.edu/nsnam/ns/, October 2000.

[FLO00] Floyd S., Mahdavi J., Mathis M., Podolsky M., An extension to the selective
acknowledgement (SACK) option for TCP, RFC 2883, July 2000.

[GAR00] Garcia J., Brunstrom A., A robust JPEG coder for a partially reliable transport
service, Proceedings of the 7th international workshop IDMS 2000, Enschede, The
Netherlands, October 2000.

[HAA97] Haas Z.J., Agrawal P., Mobile-TCP: an assymetric transport protocol design for
mobile systems, ICC ’97, Montreal, Canada, June 1997.

[HAV98] Havinga P.J.M., Smit G.J.M., E2MaC: an energy efficient MAC protocol for
multimedia traffic, Moby Dick technical report,
http://www.cs.utwente.nl/~havinga/, 1998.

[HAV99] Havinga P.J.M., Energy efficiency of error correction on wireless systems, IEEE
wireless communications and networking conference, September 1999.

Energy Efficient TCP

70

[HAV00] Havinga P.J.M., Smit G.J.M., Energy-efficient TDMA medium access control
protocol scheduling, Proceedings of the Asian International Mobile Computing
Conference (AMOC 2000), November 2000.

[HAV00b] Havinga P.J.M, Smit G.J.M., Bos M., Energy efficient adaptive wireless network
design, The 5th symposium on computers and communications (ISCC’00),
Antibes, France, July 2000.

[IEE99] IEEE, Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications, IEEE standard 802.11, 1999.

[IEE99b] IEEE, Higher speed physical layer (PHY) extension in the 2.4 GHz band, IEEE
standard 802.11b, 1999.

[JAC88] Jacobson V., Braden R., TCP extensions for long-delay paths, RFC 1072, October
1988.

[JAC90] Jacobson V., Compressing TCP/IP headers for low-speed serial links, RFC 1144,
February 1990.

[MAT96] Mathis M., Mahdavi J., Floyd S., Romanov S., TCP selective acknowledgement
options, RFC 2018, October 1996.

[RAM99] Ramakrishnan K., Floyd S., A proposal to add explicit congestion notification
(ECN) to IP, RFC 2481, January 1999.

[RAT98] Ratnam K., Matta I., WTCP: an efficient mechanism for improving TCP
performance over wireless links, Proceedings of the 3rd IEEE symposium on
computer and communications, June 1998.

[STE97] Stemm M., Katz R.H., Measuring and reducing energy consumption of network
interfaces in hand-held devices, IEICE transactions on communications, V. E80-B
N. 8, 1997.

[VAI99] Vaidya N.H., Mehta M., Perkins C., Montenegro G., Delayed duplicate
acknowledgements: a TCP-unaware approach to improve performance of TCP
over wireless, Technical report 99-003, Computer science department, Texas
A&M University, February 1999.

