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Abstract

A study on the practicality of DSP implementation of multiuser detection
techniques for CDMA systems has been performed. This study was started
with an evaluation of various multiuser detection techniques described in
literature based on their bit-error-rate performance, required knowledge of
received signal parameters and computational complexity. As a result of
this evaluation the blind adaptive MMSE (Minimum Mean Square Error)
detector and the PIC (Parallel Interference Cancellation) detector are found
to be the most suitable detectors for implementation. Further analysis of
these detectors lead to an adaptive algorithm for implementation of the blind
adaptive MMSE detector and two methods for implementation of the PIC
detector. The developed implementations for these detectors were tested
for various CDMA system and detector parameters using simulations. Sim-
ulation results were also used to study the effect of detector parameters on
detector performance and to compare the detectors to each other. The simu-
lation results show that the bit-error-rate performance of the blind adaptive
MMSE detector is superior to the conventional CDMA detector in perfect
power control CDMA systems as well as CDMA systems that suffer from
the near-far effect. The PIC detector has similar performance as the blind
adaptive MMSE detector in perfect power control systems. In systems that
suffer from the near-far effect the PIC detector does not perform well be-
cause of the amplitude estimation technique it uses. The blind adaptive
MMSE detector has been chosen for DSP implementation, because of its
better overall bit-error-rate performance and because no DSP implemen-
tation of the blind adaptive MMSE detector is known in literature. The
developed DSP implementation of the blind adaptive MMSE detector has
been used to evaluate the detected-bits-per-second performance that can be
achieved by this detector on the current generation of DSPs.
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Chapter 1

Introduction

Cellular wireless mobile telephony is an example of multiple access commu-
nications. In multiple access communications several users share a common
communications channel over which they can send information simultane-
ously. Multiple access techniques are used to share the available channel
resources with different users. In cellular wireless mobile telephony tra-
ditionally Frequency-Division Multiple Access (FDMA) and Time-Division
Multiple Access (TDMA) multiple access techniques have been used. In
these techniques frequency bands, respectively time slots are allocated to
a user. The frequency band or time slot of this user is disjoint from the
frequency band or time slot of all the other users. In this way the multiple
access channel reduces to a multiplicity of single point-to-point channels.

With the introduction of the IS-95 system in the United States and
some other countries and the rise of 3rd generation cellular wireless mobile
telephony a third multiple access technique, Code-Division Multiple Access
(CDMA), has gained importance. Instead of dividing the available channel
resources over the different users by allocating frequency or time slots, this
technique allocates all resources to all simultaneous users, controlling the
power transmitted by each to the minimum required to maintain a given
signal-to-noise ratio for the required level of performance. Each user employs
a noiselike wideband signal occupying the entire frequency allocation for as
long as it is needed. In this way, each user contributes to the interference
affecting all the users, but to the least extent possible. The interference that
a user experiences caused by the other users on a channel is called multiple
access interference (MAI). The different users on a channel can be identified
by the ‘signature’ of their noiselike wideband signal.

In the conventional method for detecting the information sent by a user
in a CDMA system, multiple access interference is not taken into account.
This method follows a single-user detection strategy in which each user is
detected separately and the interference caused by the other users is treated
as noise. Because of the nature of the multiple access interference, however,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Basic CDMA receiver block diagram

a multiuser detection method is a better strategy. Here, information about
the other users is used to improve detection of each individual user.

Over the years there has been a lot of research on the development of
multiuser detection techniques. This has lead to a few optimal and a num-
ber of suboptimal multiuser detection techniques. Until recently however,
there has not been much effort in the practical implementation of these tech-
niques. A way to study the practical implementation of multiuser detection
techniques is the development of a test-bed. The test-bed provides the en-
vironment in which these multiuser detection techniques would operate in a
as practical system as possible and therefor allows development and testing
of multiuser detection techniques in real world conditions.

1.1 Purpose and Constraints of Research

The purpose of research is to develop a DSP-based multiuser detection test-
bed that allows real-time evaluation of multiuser detection algorithms for
CDMA systems. To make this project feasible considering the time-frame of
a Master’s Thesis project and the available resources, a number of limitations
is set on the test-bed.

The test-bed is limited to the baseband part of the CDMA receiver, after
carrier-demodulation and before any error correction or other bit operations,
see Figure 1.1. In the baseband part of the CDMA receiver the signals of the
different users in the CDMA system are separated from each other. Therefor
this is the part of a CDMA receiver that is of interest for multiuser detection.

The test-bed uses a very simple multiuser additive white Gaussian noise
channel model. Real-world wireless mobile communication channels are a
lot more complicated and are not only noisy but also have multipath and
fading properties.

In a practical CDMA receiver synchronization techniques are used to
achieve synchronization with the received signal. In the test-bed, however,
it is assumed that the required synchronization information is available to
the receiver and therefor synchronization techniques are not implemented.

In a large part of this thesis it is also assumed that all the users in
the communications system are synchronized. In real-world wireless mobile
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communications systems this is often not practical because the users in the
system are located at different physical locations. In order to provide a
more complete theoretical background asynchronous CDMA systems and
detectors for asynchronous CDMA systems are still described in Chapters 2
and 3.

1.2 Organization of this Thesis

The remaining chapter of this thesis are organized as follows. Chapter 2
described CDMA systems and presents a way to represent these systems
mathematically. Chapter 3 contains an overview and comparison of the
main multiuser detection techniques for CDMA systems that have appeared
in the literature over the years with as goal the selection of detection tech-
niques that are most suitable for implementation. In Chapter 4 a more
detailed analysis is given of the blind minimum mean square error detec-
tor and the parallel interference cancellation detector, two of the multiuser
detection techniques presented in Chapter 3 that were chosen for further
research. This analysis is needed to determine the best way in which these
detectors can be implemented. Chapter 5 presents simulation results of the
blind minimum adaptive mean square error and the parallel interference
cancellation detector. The simulations are used to test if the developed al-
gorithms for these detectors work correctly and to study the effects that
the CDMA system parameters have on these detectors. In Chapter 6 im-
plementation on a DSP of the blind adaptive minimum mean square error
detector is discussed. This discussion is mainly focussed on determining
the detected-bits-per-second performance that can be achieved for the blind
adaptive minimum mean square error detector on the current generation
of DSPs. Finally Chapter 7 presents the conclusions and recommendations
that can be drawn from the research presented in this thesis.





Chapter 2

Code-Division Multiple

Access

In this chapter Code-Division Multiple Access (CDMA) systems are de-
scribed. First the principles of CDMA will be discussed. After that conti-
nuous- and discrete-time mathematical models will be given for synchronous
as well as asynchronous code-division multiple access communication chan-
nels.

2.1 CDMA Principles

CDMA uses direct-sequence spread-spectrum techniques to achieve efficient
multiple access communications. In a direct sequence spread spectrum trans-
mitter each bit of a binary nonreturn-to-zero information signal is modu-
lated by one period of a binary nonreturn-to-zero pseudo-random sequence
to generate the transmitted signal, see Figure 2.1. This pseudo-random se-
quence is also referred to as signature sequence, signature waveform, or in an
older terminology code, explaining the term code-division multiple access.
The pseudo-random sequence is composed of elementary pulses of duration
Tc commonly referred to as chips. Because the duration of a chip of the
pseudo-random sequence is usually a factor between 31 and 128 smaller
than the duration T of a bit of the information signal the modulated signal
will be a wide-band signal with nearly the same spectrum as the pseudo-
random sequence. The bandwidth expansion ratio T/Tc is also know as the
spreading gain. In a CDMA system the particular signature sequence of a
user identifies the particular point-to-point channel corresponding to that
user.

CDMA receivers employ the signature sequence of a user as the key to
recover the transmitted information. Detection of the transmitted data is ac-
complished with a correlation demodulator driven by a synchronized replica
of the signature waveform used at the transmitter, see Figure 2.2. The by

5



6 CHAPTER 2. CODE-DIVISION MULTIPLE ACCESS

Figure 2.1: Direct-sequence spread-spectrum transmitter

design low correlation between the signature waveforms of the different users
gives the CDMA system its multiple access properties.

In an ideal CDMA system orthogonal signature sequences would be used.
A CDMA system using orthogonal signature sequences will cancel out all
multiple access interference and yield single user performance. However,
fully orthogonal systems are not practical for two reasons. First, for a given
limited number of chips there only exist a limited number of orthogonal
signature sequences. Secondly, and more importantly, if the users are not
transmitting synchronously, the signature sequences are out of phase and
loose their orthogonal property. CDMA systems normally use shift-register
sequences or combinations of shift-register sequences for their signature se-

Figure 2.2: Direct-sequence spread-spectrum receiver



2.1. CDMA PRINCIPLES 7

quences. It is not possible to obtain signature sequences for any pair of users
that are orthogonal for all time offsets using this method.

Not having completely orthogonal signature sequences would not cause a
dramatic performance decrease, if the received power of the interfering signal
is smaller than the received power of the signal of the desired user. However,
if the interfering signals are much stronger than the signal of the desired
user, proper detection becomes impossible. This scenario occurs often in
practical systems. For example consider the link from a cellular phone to a
base station. If one cellular phone is transmitting from a position close to
the base station and another cellular phone is transmitting from a position
further away from the base station, then the received power of the signal of
the first cellular phone will be higher than that of the distant cellular phone,
assuming that their transmit powers are equal. Thus, the detection of the
distant user will result in a severe increase in bit errors. This situation is
generally called the near-far problem.

A natural solution to the near-far problem is the use of power control.
The power control system compares the received power levels. It uses a
control channel to transmit power status information to the cellular phones.
The cellular phone will adapt its transmitting power in such a way that
the received power at the base station is equal for all users. Power control
alleviates the near-far problem at the expense of receiver complexity and
increased bandwidth. In the next chapter it will be shown that the near-
far problem can also be solved by using detection techniques that are less
sensitive to differences between the received signal powers of the users.

The length is another property of the signature sequences that has to
be taken into consideration. Traditionally signature sequences with a length
N were used in CDMA so that NTc = T , thus the period of the signature
sequence is equal to the duration of a bit, so each bit is modulated by the
entire signature sequence. These kind of signature sequences are so called
short codes. The disadvantage of using signature sequences with a relatively
short length is that the crosscorrelations between the signature sequences
vary relatively strongly from each other. Since the crosscorrelations be-
tween the signature sequence of a channel and the signature sequence of the
other channels determines the amount of interference on the channel, vary-
ing crosscorrelations will result in a bit-error-rate performance that varies
between channels. To solve this so called long codes can be used.

Long codes are signature sequences with a period that is much longer
than the duration of a bit, for example signature sequences with a period of
242Tc. When these signature sequences are used to modulate a bit stream
each bit will be modulated by a different section of the signature sequence.
The amount of interference for a particular bit therefor depends on the
crosscorrelations between the section of the signature sequence that is used
to modulate that bit and the sections of the signature sequences that are
used to modulate the bits that are transmitted at the same time in the



8 CHAPTER 2. CODE-DIVISION MULTIPLE ACCESS

other channels. This results in an interference on each channel that varies
from bit to bit, but averaged over the bits there will be the same amount
of interference on each channel. Therefor the bit-error-rate performance on
each channel will be the same.

The use of long codes is not the only solution to the problem of the
varying bit-error-rate performance between channels of the traditional, short
code, CDMA system. In the next chapter it will be shown that it is possible
to develop detection techniques that remove or reduce multiple access inter-
ference on a channel and thus remove or reduce the influence that multiple
access interference has on bit-error-rate performance of a channel. But first,
in the next section, mathematical models for CDMA systems will be given
that can be used to develop and analyze CDMA detection techniques.

2.2 Continuous-time CDMA Models

In this section continuous time models are given of a CDMA system with a
total number of K users that transmit bits using binary antipodal modula-
tion over a white Gaussian noise channel. These models are widely used in
CDMA and multiuser detection literature. A good reference on this subject
is the bookMultiuser Detection by Sergio Verdú [15], on which this section is
largely based. The notation used in the models assumes short code systems,
but the models can be easily extended to long code systems.

2.2.1 Synchronous Channel

The basic synchronous K -user CDMA model describes the received signal
of a CDMA system in which K synchronous bit streams antipodally mod-
ulate K signature waveforms which are transmitted over an Additive White
Gaussian Noise (AWGN) channel. Both the bit streams and the signa-
ture waveforms are represented by non-return-to-zero (NRZ) signals. The
received signal for one symbol period in such a system can be expressed as:

r(t) =

K
∑

k=1

Akbksk(t) + σn(t). (2.1)

Where the following notation is used:

• sk(t) is the deterministic signature waveform assigned to the kth user,
normalized to have unit energy

||sk||2 =

∫ T

0
sk(t)dt = trianleq1. (2.2)

The signature waveforms are assumed to be zero outside the interval
[0, T ], and therefore, in an AWGN channel, there is no intersymbol
interference.
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Figure 2.3: Definition of asynchronous crosscorrelations (k < l)

• Ak is the received amplitude of the kth user’s signal. A2
k is referred to

as the energy of the kth user.

• bk ∈ {−1,+1} is bit transmitted by the kth user.

• n(t) is white Gaussian noise with zero mean and unit variance. It
models thermal noise plus other noise sources unrelated to the trans-
mitted signals. According to (2.1) the noise power in a frequency band
with bandwidth B is 2σ2B.1

The model above could for example describe the received signal on a
forward link (base-station to mobile) in a CDMA cellular system, using a
very basic channel assumption without fading or multipath.

In the next chapter it will be shown that the bit-error-rate performance
of various demodulation strategies depends on the signal-to-noise ratios,
Ak/σ, and on the similarity between the signature waveforms, quantified by
their crosscorrelations defined as

ρjk , 〈sj , sk〉 =
∫ T

0
sj(t)sk(t)dt. (2.3)

2.2.2 Asynchronous Channel

In cellular systems the reverse link (mobile-to-base-station) is often not syn-
chronized. Therefore offsets τk ∈ [0, T ), k = 1, . . . ,K are introduced to
model the lack of alignment of the bit epochs of the K different users at the
receiver. The symbol-epoch offsets are defined with respect to an arbitrary
origin. The received signal during one frame time in such a system can be
expressed as:

r(t) =
K
∑

k=1

M
∑

i=−M

Akbk[i]sk(t− iT − τk) + σn(t). (2.4)

Where the length of the frames transmitted by each user is assumed to be
equal to 2M + 1 bits.

1In the literature, the noise one-sided spectral level 2σ2 is frequently denoted by N0.
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The asynchronous model (2.4) can be viewed as a special case of the
synchronous model (2.1), what often simplifies the probability of error anal-
ysis of detectors [10]. Each bit in (2.4) {bk[i], k = 1, . . . ,K; i = −M, . . . ,M}
can be considered as coming from a different ‘user’ in a synchronous channel
whose bit interval is [−MT,MT +2T ]. In this view, the number of fictitious
users is equal to (2M + 1)K.

As already stated in section 2.2.1, the performance of various demod-
ulation strategies depends on the crosscorrelations between the signature
waveforms. For asynchronous CDMA, two crosscorrelations between every
pair of signature waveforms have to be defined, that depend on the offset
between the signals. This can be seen in Figure 2.3. This figure shows
that one symbol time for user j overlaps with two symbol times for user k.
When the offset τj of user j is smaller than the offset τk of user k the two
crosscorrelations can be defined as:

ρjk(τ) ,

∫ T

τ
sj(t)sk(t− τ)dt,

ρkj(τ) ,

∫ τ

0
sj(t)sk(t+ T − τ)dt, (2.5)

where τ ∈ [0, T ].

2.3 Discrete-time CDMA Models

Detectors commonly have a front-end whose objective is to obtain a discrete-
time representation from the received continuous-time waveform r(t). One
way of converting the received waveform into a discrete-time representation
is to pass it through a bank of matched filters, see Figure 2.4, each matched
to the signature waveform of a different user. The outputs of the matched
filters are than sampled at the end of each bit period. In other words,
the matched filter bank correlates the received signal with the signature
waveform of each individual user. To perform matched filtering for a user,
knowledge of the signature waveform and the timing of that user is required.

In this section expressions are given for the sampled matched filter out-
puts for synchronous as well as asynchronous systems, these results are again
mainly taken from Verdú [15].

2.3.1 Synchronous Channel

The matched filter bank correlates the received signal with the signature
waveform of each individual user. The output of the matched filter for a
user k for synchronous CDMA can therefor be expressed as:

yk =

∫ T

0
r(t)sk(t)dt (2.6)
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Figure 2.4: Bank of matched filters

=

∫ T

0

(

K
∑

k=1

Akbksk(t) + σn(t)

)

sk(t)dt (2.7)

=

∫ T

0



Akbk[i]sk(t) +
∑

j 6=k

Ajbjsj(t) + σn(t)



 sk(t)dt (2.8)

=

∫ T

0
Akbksk(t)sk(t)dt+

∫ T

0

∑

j 6=k

Ajbjsj(t)sk(t)dt+

∫ T

0
σn(t)sk(t)dt (2.9)

= Akbk

∫ T

0
sk(t)sk(t)dt+

∑

j 6=k

Ajbj

∫ T

0
sj(t)sk(t)dt+

σ

∫ T

0
n(t)sk(t)dt (2.10)

Now by using (2.3) and the fact that sk(t) is normalized to have unit energy
the matched filter outputs can be expressed as

yk = Akbk +
∑

j 6=k

Ajbjρjk + nk, (2.11)

where

nk , σ

∫ T

0
n(t)sk(t)dt (2.12)

is a Gaussian random variable with zero mean and variance equal to σ2.
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Equation (2.11) can be written in vector form:

y = RAb+ n, (2.13)

where

R = {ρjk}, (2.14)

y = [y1, . . . , yK ]T , (2.15)

b = [b1, . . . , bK ]T , (2.16)

A = diag{A1, . . . , AK}, (2.17)

n = [n1, . . . , nK ]T (2.18)

(2.19)

So n is a zero-mean Gaussian random vector with covariance matrix equal
to

E[nnT ] = σ2R. (2.20)

2.3.2 Asynchronous Channel

Using the same reasoning as for the synchronous channel and equations (2.4)
and (2.5) the matched filter outputs in the case of asynchronous CDMA can
be expressed as

yk[i] = Akbk[i] +
∑

j<k

Ajbj [i+ 1]ρkj +
∑

j<k

Ajbj [i]ρjk

+
∑

j>k

Ajbj [i]ρkj +
∑

j>k

Ajbj [i− 1]ρjk + nk[i], (2.21)

where

nk[i] , σ

∫ τk+iT+T

τk+iT
n(t)sk(t− iT − τk)dt, (2.22)

and it is assumed that τ1 ≤ τ2 . . . ≤ τK , that is the users are labelled
chronologically, i.e. by their time of arrival.

Equation (2.21) can be written in matrix form:

y[i] = RT [1]Ab[i+ 1] +R[0]Ab[i] +R[1]Ab[i− 1] + n[i], (2.23)

where the zero-mean Gaussian process n[i] has autocorrelation matrix

E[n[i]nT [j]] =















σ2RT [1], if j = i+ 1;
σ2R[0], if j = i;
σ2R[1], if j = i− 1;
0, otherwise,

(2.24)
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Figure 2.5: K -dimensional channel of matched filter outputs for asyn-
chronous CDMA channel.

and the matrices R[0] and R[1] are defined by

Rjk[0] ,







1, if j = k;
ρjk, if j < k;
ρkj , if j > k;

(2.25)

Rjk[1] ,

{

0, if j ≥ k;
ρkj , if j < k.

(2.26)

The vector discrete-time model in (2.23) can be represented in the z -
transform domain as

y[i] = S(z)Ab[i] + n[i], (2.27)

where
S(z) = RT [1]z +R[0] +R[1]z−1 (2.28)

is the discrete time channel transfer function, see Figure 2.5.
Matched filter banks are often used as a front-end for CDMA detectors,

as already stated in the beginning of this section. In the next chapter the
models described in this chapter will be used for analytically evaluating the
bit-error-rate performance of various CDMA detection techniques.





Chapter 3

Detection Techniques

Several detection techniques for the CDMA channel have been studied in
the literature. One way of categorizing them is to divide them into single-
user and multiuser methods [8], see Figure 3.1. A single-user detector is
defined as a receiver structure that requires no information regarding the
other (interfering) users present in the system and demodulates the data
signal of one user only.

From the definition of a single-user detector it follows that a multi-user
detector is as a receiver structure that does require information regarding
the other (interfering) users present in the system and demodulates the
data signal of all users. Multiuser detection techniques can be divided into
joint detection and decision-driven techniques. In joint detection the front-
end of the detector is traditionally (but not necessarily) a bank of matched
filters followed by linear or nonlinear transformations on the matched filter
outputs. Decision-driven techniques are characterized by the regeneration
and subtraction of data estimates.

The goal of this chapter is to select the multiuser detection techniques
that are best suited for implementation considering the performance level of
the currently available hardware and the bit-error-rate performance levels
that are currently requested from detection techniques for cellular wireless
mobile telephony systems. Therefor the chapter starts with a discussion
of the criteria for evaluation and comparison of the implementation related
issues and performance levels of detection techniques. After that, several
detection techniques for CDMA systems will be introduced. The first de-
tector that will be discussed, the well-known conventional detector, is an
example of a single-user detector. The maximum likelihood sequence es-
timator (MLSE) detector that is introduced subsequently is an example
of a nonlinear joint detection technique. The decorrelating and minimum
mean square error (MMSE) detector that are also discussed are examples
of linear joint detection techniques. Examples of decision-driven multiuser
detection techniques that are introduced in this chapter are the successive

15
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Figure 3.1: Classification of detection techniques.

interference cancellation (SIC), parallel interference cancellation (PIC) and
decision-feedback detectors. In the second last section of the chapter a com-
parison of the introduced detectors will be given. The last section of this
chapter summarizes the conclusions that can be drawn from the evaluation
of the multiuser detection techniques performed in this chapter.

3.1 Evaluation Criteria for Detection Techniques

The evaluation criteria for detection techniques can roughly be divided into
two categories: implementation related issues and performance measures.
The implementation related issues that will be considered for the detectors
discussed in this chapter are the received signal- and system parameters
that have to be estimated or known by the receiver and the computational
complexity of the detector. The performance measures that will be used are
bit-error-rate and asymptotic multiuser efficiency.

The received signal- and system parameters that have to be estimated
or known by the receiver are the signature waveforms, timing and received
amplitudes of each user and the noise level. The detectors discussed in this
chapter may require all, or only a subset of this information for demodulation
of a user, which will be indicated in the section describing the detector. A
detector that requires more information will increase the complexity of the
receiver, because the information often has to be extracted from the received
signal.

The computational complexity of any detector can be quantified by its
time complexity per bit, that is, the number of operations required by the
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detector to demodulate the transmitted information divided by the total
number of demodulated bits. For multiuser detection techniques the com-
plexity of demodulating the transmitted information of an individual user
usually increases with the total number of users K in the system. A time
complexity per bit of f(K) is written as O(g(K)) if there exists a constant
c > 0 such that for large enough K, f(K) ≤ cg(K) [15]. In the sections
describing the detectors, the computational complexity of each detector will
be given for the synchronous as well as the asynchronous case.

The bit-error-rate or probability of error performance measure is the
number of incorrectly detected bits relative to the total number of detected
bits. For some detection techniques it is possible to derive an analytical
expression for the bit-error-rate. However, for asynchronous systems this is
often not straightforward and for some of the described detection techniques
it is not possible at all. The only way to acquire a bit-error-rate for these
detection techniques is from simulation results.

The asymptotic multiuser efficiency is an alternative performance mea-
sure that is generally easier to derive than the actual probability of error. It
measures the slope with which the bit-error-rate for the kth user Pk(σ) goes
to 0 (in logarithmic scale), as σ goes to 0. So in the high signal-to-noise ratio
region. It indicates the performance of the detector when the interference
caused by the other users is dominating over the noise. The asymptotic
multiuser efficiency is defined as [15]

ηk , lim
σ→0

ek(σ)

A2
k

, (3.1)

where ek(σ) is the effective energy of user k, defined as the energy that user
k would require to achieve a bit-error-rate equal to Pk(σ) in a single-user
Gaussian channel with the same background noise level, that is,

Pk(σ) = Q

(

√

ek(σ)

σ

)

. (3.2)

where Q is is the complementary Gaussian cumulative distribution function:

Q(x) =

∫ ∞

x

1√
2π

e−t2/2dt (3.3)

In the next sections equations will be given indicating the analytical per-
formance of each detector using the performance measures described above.
These equations will be used in the second last section of this chapter to
compare the analytical performance of the different detection techniques.
In most cases the equations are just presented as is, for their derivation the
reader is referred to the literature, the book Multiuser Detection by Sergio
Verdú [15] can serve as a good starting point.
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Figure 3.2: Conventional detector.

3.2 Conventional Detector

The conventional detector consists of the front-end with the bank of matched
filters, used to obtain a discrete-time process from the received continuous-
time waveform as described in section (2.3), followed by bit decisions directly
based on the sign of the matched filter outputs

b̂k = sgn(yk), (3.4)

see Figure 3.2. The signum function sgn is defined as

sgn(x) ,

{

1 if x >= 0
−1 if x < 0

(3.5)

The input of the signum function is often referred to as a soft decision, while
the output of the signum function is often referred to as a hard decision.

Recall that yk is defined in (2.11) as

yk = Akbk +
∑

j 6=k

Ajbjρjk + nk, (3.6)

for the synchronous case, or as

yk[i] = Akbk[i] +
∑

j<k

Ajbj [i+ 1]ρkj +
∑

j<k

Ajbj [i]ρjk

+
∑

j>k

Ajbj [i]ρkj +
∑

j>k

Ajbj [i− 1]ρjk + nk[i], (3.7)
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in (2.21) for the asynchronous case.
The only received signal- and system parameters required by the con-

ventional detector to detect a user is knowledge of the signature waveform
and timing of that user.

Since the detection of a user is independent of the other users in the
system the number of computations needed for detection does not increase
with the number of users. Therefor the time complexity per bit of the
conventional detector is constant.

To start the analysis of the bit-error-rate of the conventional detector it
is illustrative to consider the case where the signature waveform of the kth
user is orthogonal to the signature waveforms of all other users. In that case
ρjk equals zero when j 6= k and the output of the matched filter for user k
is reduced to that of the single user problem. The error probability for a
single user in antipodal signaling is known to be

P (σ) = Q

(

A

σ

)

. (3.8)

Returning to the case of non-orthogonal codes it is illustrative to first analyze
the two-user synchronous case before generalizing to the K -user case. To
shorten the used notation ρ12 = ρ is used for the crosscorrelation between
the signature waveforms of the two users. The error probability of the
conventional detector for user 1 in the two-user synchronous case is:

P1 = P [b1 6= b̂1]

= P [b1 = +1]P [y1 < 0|b1 = +1] +

P [b1 = −1]P [y1 > 0|b1 = −1]. (3.9)

In the non-orthogonal case the matched filter output y1 is also dependent
on b2. So in order to find the error probability further conditioning on b2 is
needed:

P [y1 > 0|b1 = −1] = P [y1 > 0|b1 = −1, b2 = +1]P [b2 = +1] +

P [y1 > 0|b1 = −1, b2 = −1]P [b2 = −1]
= P [n1 > A1 −A2ρ]P [b2 = +1] +

P [n1 > A1 +A2ρ]P [b2 = −1]

=
1

2
Q

(

A1 −A2ρ

σ

)

+
1

2
Q

(

A1 +A2ρ

σ

)

, (3.10)

where the independence of the data bits b1, b2 and the noise term n1 is used.
It is also assumed that the users transmit +1 and -1 with equal likelihood,
setting P [b = +1] = P [b = −1] = 0.5 for both users. By symmetry the same
expression is obtained for P [y1 < 0|b1 = +1]. Therefore, the bit-error-rate
of the conventional detector in the presence of one interfering user is

P
c
1(σ) =

1

2
Q

(

A1 −A2ρ

σ

)

+
1

2
Q

(

A1 +A2ρ

σ

)

, (3.11)
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where the superscript c is used to indicate the conventional detector. The
error probability for user 2 is found in a similar way which leads to a similar
equation in which the indices 1 and 2 are interchanged.

In Verdú [15] it is shown that the reasoning above can be generalized to
an arbitrary number of users K and to the asynchronous case. The proba-
bility of error, or bit-error-rate of the conventional detector for synchronous
CDMA can be expressed as (equation 3.90 in Verdú):

P
c
k(σ) =

1
4K−1

∑

e1∈{−1,1} · · ·
∑

ej∈{−1,1},j 6=k · · ·
∑

eK∈{−1,1} Q
(

Ak

σ +
∑

j 6=k ej
Aj

σ ρjk

)

. (3.12)

For asynchronous CDMA the probability of error function becomes (equa-
tion 3.104 in Verdú):

P
c
k(σ) =

1
4K−1

∑

(e1,d1)∈{−1,1}2 · · ·
∑

(ej ,dj)∈{−1,1}2,j 6=k · · ·
∑

(eK ,dK)∈{−1,1}2 Q
(

Ak

σ +
∑

j 6=k
Aj

σ (ejρjk + djρkj)
)

. (3.13)

In these equations ej and dj represent the values of the bits on which the
probability of error is conditioned.

The asymptotic multiuser efficiency of the conventional detector for syn-
chronous CDMA is equal to (equation 3.122 in Verdú)

ηck =



max







0, 1−
∑

j 6=k

Aj

Ak
|ρjk|











2

. (3.14)

For asynchronous CDMA the asymptotic multiuser efficiency becomes (equa-
tion 3.124 in Verdú):

ηck =



max







0, 1−
∑

j 6=k

Aj

Ak
(|ρjk|+ |ρkj |)











2

. (3.15)

Therefor the asymptotic multiuser efficiency of the conventional detector
for the two-user synchronous case is equal to

ηck =

(

max

{

0, 1− A2

A1
|ρ|
})2

. (3.16)

This equation shows that the asymptotic multiuser efficiency is always equal
to 1 in orthogonal systems because for orthogonal systems σ = 0. So in
orthogonal systems the bit-error-rate plot of the conventional detector for
high signal-to-noise ratios goes to 0 (in logarithmic scale) with slope 1. In
non-orthogonal systems σ 6= 0 and the asymptotic multiuser efficiency for
user 1 decreases when the amplitude of user 2 becomes larger than the
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Figure 3.3: MLSE detector.

amplitude of user 1. When the amplitude of user 2 is huge compared to
the amplitude of user 1 the asymptotic multiuser efficiency will become 0.
This means that the bit-error-rate plot of the conventional detector for high
signal-to-noise ratios goes to 0 (in logarithmic scale) with slope 0, or in
other words the bit-error-rate of the detector does not improve when the
signal-to-noise ratio improves.

3.3 Maximum Likelihood Sequence Estimator De-

tector

The maximum likelihood sequence estimator (MLSE) detector consists of
a bank of matched filters, followed by an algorithm that chooses the input
sequence b that maximizes the likelihood function of the matched filter
outputs y. So for the synchronous case

b̂ = arg max
b∈{−1,+1}K

p(y|b), (3.17)

and for the asynchronous case

b̂ = arg max
b∈{−1,+1}K(2M+1)

p(y|b), (3.18)

when the asynchronous channel is considered as a K(2M + 1)-user syn-
chronous channel.
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In the synchronous case this is equivalent to finding the hypothesis that
minimizes the payoff function [11]:

Ω(b) =

∫ T

0

[

r(t)−
K
∑

k=1

Akbksk(t)

]2

dt. (3.19)

If the asynchronous channel is considered as a K(2M +1)-user synchronous
channel maximizing the likelihood function of the matched filter outputs is
equivalent to finding the hypothesis that minimizes the payoff function [15]:

Ω(b) =

∫ MT+2T

−MT
[r(t)− St(b)]

2 dt (3.20)

for the asynchronous case, where

St(b) =
K
∑

k=1

M
∑

i=−M

Akbk[i]sk(t− iT − τk). (3.21)

Therefor the maximum likelihood sequence estimator detector requires the
following received signal- and system parameters at the receiver: the received
amplitudes of all the users, the timing of the desired user, the timing of the
interfering users and the signature waveforms of the desired and interfering
users. In the synchronous case the requirement of knowledge of the timing
of the interfering users can of course be dropped.

It can be shown [15] that generation of all the values of Ω(b) for the syn-
chronous case can be done in a tree structure that takes O(2K) operations.
The selection of the optimum b can then be done in O(2K) operations, so
the time complexity per bit is O(2K/K). The payoff function for the asyn-
chronous case (3.21) can be expressed as a sum of (2M+1)K terms such that
each term depends on K components of b and any consecutive terms share
K − 1 arguments. An expression of that type can be maximized in O(2K)
operations [15] using a real-time version of dynamic programming called the
Viterbi Algorithm, so the time complexity per bit for the asynchronous case
is also O(2K/K). The maximum likelihood sequence estimator detector for
the asynchronous case is shown in Figure 3.3.

It is not possible to derive a closed-form analytical expression for the bit-
error-rate of the maximum likelihood sequence estimator detector. However
it is possible to derive an equation for the asymptotic multiuser efficiency
(equation 4.91 in Verdú):

ηlk = min
ε∈{−1,0,1}K ,εk=1

1

A2
k

εTARAε, (3.22)

where the superscript l is used to indicate the maximum likelihood sequence
estimator detector. ε is an error vector, defined as the normalized difference
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Figure 3.4: Decorrelating detector.

between any pair of distinct transmitted vectors. The set of error vectors
that affects the kth user is

Ek = {ε ∈ {−1, 0, 1}K , εk 6= 0}. (3.23)

3.4 Decorrelating Detector

The decorrelating detector consists of a bank of matched filters followed by
a linear transformation that multiplies the output of the matched filter bank
with the inverse of the correlation matrix, see Figure 3.4. This removes all
the interference for a user k, caused by any of the other users. The only
source of interference left is the enhanced background noise equal to R−1n.
The bit decisions are then made based on the signs of the outputs of the
linear transformation. So for the synchronous case:

b̂k = sgn((R−1y)k), (3.24)

For the asynchronous case R−1 is replaced with the inverse of the discrete-
time channel transfer function (2.28)

b̂k = sgn((S−1(z)y)k), (3.25)

with

S−1(z) = [RT [1]z +R[0] +R[1]z−1]−1. (3.26)
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From these equations it can be seen that the decorrelating detector requires
knowledge of the following received signal- and system parameters: the tim-
ing of the desired user, the timing of the interfering users and the signature
waveforms of the desired and the interfering users.

The required number of operations needed for detection of a user in-
creases linearly with the number of users K, therefor the time complexity
per bit of the decorrelating detector is O(K) for the synchronous as well as
the asynchronous case. It can be shown [15] that the decorrelating detector
can be implemented as a matched filter detector with modified filter coeffi-
cients. The computational complexity of that implementation is identical to
that of the conventional detector. A problem of both implementations of the
decorrelating detector is that if the crosscorrelations have to be calculated re-
peatedly, for example due to varying channel conditions, not only they have
to be generated from the replicas of the received signature waveforms, but a
matrix inversion of the correlation matrix has to be performed as well. Us-
ing Gaussian elimination this has a computational complexity of O(K3). A
similar problem arises when long codes are used, because than the signature
waveforms vary for each transmitted bit, also causing repeated calculation
of the crosscorrelations and the inverse of the crosscorrelation matrix.

If the normalized crosscorrelations among all the signature waveforms
are very small, the processing of the matched filter outputs with the matrix
R−1 can be approximated by processing the matched filter outputs with
2I − R. This detector is called the approximate decorrelator. An analog
approximation can be used in the asynchronous case. If the crosscorrela-
tions have to be calculated repeatedly, this approximation has the advan-
tage that it does not require any processing of the crosscorrelations supplied
by the crosscorrelators of the replicas of the signature waveforms. The ap-
proximate decorrelator is particularly advantageous in those asynchronous
CDMA channels where the period of the signature waveform is much longer
than the symbol period. In those cases, the crosscorrelations keep changing
and it is cumbersome to repeatedly perform the matrix inversion required
by the decorrelating detector.

The probability of error of the decorrelating detector for synchronous
CDMA can be expressed as (equation 5.42 in Verdú):

P
d
k(σ) = Q





Ak

σ
√

R+
kk



 , (3.27)

where + is used as a shorthand for the inverse of a matrix, so R+
kk is a

shorthand for element kk of the R−1 matrix, (R−1)kk and the superscript d
is used to indicate the decorrelating detector. The (asymptotic) multiuser
efficiency of the decorrelating detector for synchronous CDMA is equal to

ηdk =
1

R+
kk

. (3.28)
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Figure 3.5: MMSE detector.

The bit-error-rate of the asynchronous decorrelating detector is equal to
(equation 5.57 in Verdú)

P
d
k(σ) = Q





Ak

√

ηdk

σ



 , (3.29)

where ηdk is the (asymptotic) multiuser efficiency of the asynchronous decor-
relating detector that is equal to

ηdk =

(

1

2π

∫ π

−π
[RT [1]ejω +R[0] +R[1]e−jw]+kkdω

)−1

. (3.30)

3.5 Minimum Mean Square Error Detector

The minimum mean square error (MMSE) detector consists of a bank of
matched filters followed by a linear transformation, see Figure 3.5, that
maximizes the signal-to-interference ratio at the output of the linear trans-
formation. For the synchronous case it can be shown [15] that this transfor-
mation has to be equal to:

b̂k = sgn((My)k) with M = (R+ σ2A−2)−1. (3.31)

where

σ2A−2 = diag

{

σ2

A2
1

, . . . ,
σ2

A2
K

}

. (3.32)
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For the asynchronous case, the MMSE linear detector is a K -input, K -
output, linear time-invariant filter with transfer function

[RT [1]z +R[0] + σ2A−2 +R[1]z−1]−1. (3.33)

The MMSE detector can be seen as a compromise solution between the
conventional detector and the decorrelating detector. The conventional de-
tector is optimized to fight the background noise exclusively, whereas the
decorrelating detector eliminates the multiaccess interference disregarding
the background noise. In contrast, the MMSE detector takes into account
the relative importance of each interfering user and the background noise.

To construct the linear transformation the MMSE detector requires know-
ledge of the following received signal- and system parameters: the timing of
the desired user, the timing of the interfering users, the noise level at the
receiver, the received amplitudes and the signature waveforms of the desired
as well as the interfering users.

Since the MMSE detector performs a similar transformation as the decor-
relating detector its time complexity per bit is also O(K) for the synchronous
case as well as the asynchronous case. Just as the decorrelating detector, the
MMSE detector can also be implemented as a matched filter detector with
modified filter coefficients. The computational complexity of that implemen-
tation is identical to that of the conventional detector. The MMSE detector
also has the disadvantage that it requires a matrix inversion, which has to
be performed again and again when the crosscorrelations change because
the channel conditions vary or because long codes are used.

The probability of error of the MMSE detector for synchronous CDMA
is equal to (equation 3.124 in Verdú)

P
m
k (σ) = 21−K

∑

e1∈{−1,1} · · ·
∑

ej∈{−1,1},j 6=k · · ·
∑

eK∈{−1,1}

Q

(

Ak

σ
(MR)kk√
(MRM)kk

(

1 +
∑

j 6=k βjbj

)

)

, (3.34)

where,
Bj = Ak(MR)kj , (3.35)

and

βj =
Bj

Bk
. (3.36)

The superscript m is used to indicate the MMSE detector. Equation 3.34
can also be used for asynchronous systems when an asynchronous system
is viewed as a special case of a synchronous system as discussed in section
2.2.2. Of course the dimensions of the matrices in (3.34) change, since the
equivalent synchronous system has (2M + 1)K fictitious users.

The MMSE detector converges to the decorrelating detector as σ → 0
[15]. Therefor the asymptotic multiuser efficiency is identical to that of the
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decorrelator:

ηmk =
1

R+
kk

. (3.37)

in the synchronous case, and

ηmk =

(

1

2π

∫ π

−π
[RT [1]ejω +R[0] +R[1]e−jw]+kkdω

)−1

. (3.38)

in the asynchronous case.

Compared to the decorrelating detector the MMSE will therefor only
offer a slightly increased performance in low signal-to-noise ratio channels.
In exchange for that slight increase in performance, the MMSE detector
requires knowledge of the noise level at the receiver, which increases the
complexity of the receiver. The main advantage of the MMSE detector is
the ease with which it can be implemented adaptively. In literature, two
types of the adaptive MMSE detector are described [15].

The first type of adaptive MMSE detectors uses training sequences. A
training sequence is a string of data known to the receiver. When the adap-
tive MMSE detector receives the training sequence it uses an adaptive law to
adjust its linear transformation. By doing so, the receiver learns the impulse
response of the channel. If the impulse response of the channel changes over
time, training sequences can be sent periodically to readjust the receiver. It
can be shown [15] that the solution to which the adaptation law converges
is the MMSE detector. The only knowledge needed by the adaptive MMSE
detector is the timing of the desired user and the training sequence. When
the adaptive MMSE detector is implemented as a matched filter detector
with modified matched filter coefficients its time complexity per bit is con-
stant, just as that of the conventional detector. Of course the matched filter
coefficients still have to be calculated when the training sequence is received,
but this requires far less operations than calculating and inverting the trans-
formation matrix. Implementation of the adaptive MMSE detector for long
code CDMA systems is not possible because in those systems the signature
waveforms change for each bit, which would require adaptation of the detec-
tor for each bit and thus transmission of the training sequence for each bit.
This causes of course way to much overhead for practical implementation.

The second type of adaptive MMSE detector is referred to as the blind
adaptive MMSE detector, or the minimum mean output energy (MMOE)
detector. This detector minimizes the variance at the output of the receiver
with respect to the component orthogonal to the desired user’s signature
waveform, using a linear transformation in canonical form. In order to do so
the detector requires knowledge of the timing and the signature waveform
of the desired user. It can be shown that the solution to this problem is
the MMSE linear transformation [15]. The blind adaptive MMSE detector
can also be implemented as a matched filter detector with modified filter
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Figure 3.6: SIC detector.

coefficients, resulting in a constant time complexity per bit. Unfortunately
the blind adaptive MMSE detector does not work for long code systems,
because for each bit it would have to adapt to the section of the signature
waveform that is used to modulate that bit.

3.6 Successive Interference Cancellation Detector

The successive interference cancellation (SIC) detector is a detector that
belongs to the class of decision-driven detectors. The idea behind decision-
driven detectors is simple: if a decision has been made about an interfering
user’s bit, then that interfering signal can be subtracted from the received
waveform. This will cancel the interfering signal, provided that the decision
was correct; otherwise it will double the contribution of the interferer.

The simplest form of the SIC detector consists of a bank of matched
filters followed by a sorter, see Figure 3.6. In a lot of implementations the
sorter sorts the signals of the different users in order of decreasing received
energies. However, this is not necessarily best since it fails to take into
account the crosscorrelations among users. A sensible alternative is to order
users according to the signal-to-noise ratios computable using

E

[

(∫ T

0
r(t)sk(t)dt

)2
]

= σ2 +A2
k +

∑

j 6=k

A2
jρ

2
jk, (3.39)

which can be estimated easily from the matched filter outputs. Interference
cancellation for a user k is achieved by subtracting from the received signal
of user k an estimate of the multiple access interference generated by users
with higher received energies or higher signal-to-noise ratios than that of
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user k. For the synchronous case this results in the following decision rule

b̂k = sgn



yk −
k−1
∑

j=1

Ajρjk b̂j



 , (3.40)

where it is assumed that the users are numbered in order of decreasing re-
ceived energies or signal-to-noise ratios, so the user with the highest received
energy or signal-to-noise ratio has the lowest number.

Up to now it was assumed that the users in the asynchronous channel
are numbered so that their offsets are increasing, and, thus, the j th user’s
bit that overlaps with bk[i] on the right side is bj [i] if j > k. However,
as already indicated for the synchronous case, for successive interference
cancellation it is convenient to number the users in the (inverse) order they
are cancelled, which is, normally, dictated by their relative received powers
or matched filter outputs. So in the asynchronous case it is also assumed that
the users are numbered in order of decreasing received energies or signal-to-
noise ratios, so the user with the highest received energy or signal-to-noise
ratio has the lowest number. In order to still be able describe the successive
interference cancellation detector in the asynchronous case it is useful to
introduce the following notation:

δkj = 1{τk < τj}, (3.41)

so δkj equals 1 when τk < τj and 0 otherwise. Then bk[i] overlaps on the
right side with bj [i − δkj + 1] and overlaps on the left side with bj [i − δkj ].
It is now possible to generalize (3.40) to

b̂k[i] = sgn



yk[i]−
k−1
∑

j=1

Aj(ρjk b̂j [i− δkj ] + ρkj b̂j [i− δkj + 1])



 . (3.42)

The SIC detector tries to remove the multiaccess interference. Therefor
it is best compared to the decorrelating detector. But whereas the decor-
relating detector truly removes the multiple access interference, the SIC
detector may actually double the interference. Once such an error is made
in the SIC detector, it is likely to accumulate more errors. Furthermore,
the demodulation of the first user will never be done in absence of multiple
access interference. Especially in the case of a large number of users, this
may decrease the performance rapidly. For the same reason, the SIC detec-
tor operates best in an unbalanced power environment. Thus if the received
powers of the users vary heavily, the SIC detector has a better probabil-
ity of demodulating the users correctly. Another problem of the successive
interference cancellation detector is that the signals of the different users
are demodulated sequentially, which causes the delay in demodulating the
signals to grow with the number of users.



30 CHAPTER 3. DETECTION TECHNIQUES

The following knowledge about the received signal- and system param-
eters is required at the receiver by the SIC detector: the timing of the
desired user, the timing of the interfering users, the received amplitudes and
the signature waveforms of the desired and interfering users.

To detect a user the successive interference cancellation detector requires
a number of operations that increases linearly with the number of users K.
Therefor the time complexity per bit of the SIC detector is O(K). The
decision rule (3.40) indicates that the SIC detector requires the crosscorre-
lations between the signature waveforms. This causes some problems when
the SIC detector has to be used in long code CDMA systems, because in
that case the crosscorrelations will have to be calculated for each transmit-
ted bit. Fortunately this operation is a lot less complex than the matrix
inversion that would be required for each bit in the long code version of
the decorrelating or MMSE detector, or the adaptation that would have to
be performed for each bit in the blind adaptive MMSE detector. Therefor
using the SIC detector is still feasible for long code CDMA systems.

Using (2.11) and (3.40) the following expanded decision rule can be ob-
tained

b̂k = sgn



Akbk + nk +
k−1
∑

j=1

Ajρjk(bj − b̂j) +
K
∑

j=k+1

Ajρjkbj



 . (3.43)

Since the cancellation residuals depend on the other random variables inside
the sign function, an analytical exact evaluation of bit-error-rate is difficult
and only possible for very small numbers of users K. Unfortunately it is
not possible to obtain an analytical expression for the multiuser efficiency
either. Therefor performance measures for the successive interference can-
cellation detector can only be obtained by simulations or trough analytical
approximations.

3.7 Parallel Interference Cancellation Detector

The parallel interference cancellation (PIC) detector is a detector that also
belongs to the class of decision-driven detectors. It alleviates the problem of
the SIC detector that the performance of successive cancellation for a par-
ticular user is greatly affected by the order in which the users are cancelled.

The parallel interference cancellation detector is based on a technique
that employs multiple iterations in detecting the data bits and cancelling
the interference, therefor it is also referred to as multistage interference
cancellation (MIC) detector. In its simplest form the parallel interference
cancellation detector consists of two stages. The first stage consists of a
conventional bank of matched filters. The second stage performs, for each
user, reconstruction and subtraction of an estimate of the interference from
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Figure 3.7: Two stage PIC detector

all other users, see Figure 3.7. So the second stage in fact performs successive
cancellation for all users. This leads to the following decision rules:

b̂k = sgn



yk −
∑

j 6=k

Ajρjk b̂j



 (3.44)

for synchronous CDMA and

b̂k = sgn



yk −
∑

j<k

Aj(ρkj b̂j [i+ 1] +Ajρjk b̂j [i])

−
∑

j>k

Aj(ρkj b̂j [i] +Ajρjk b̂j [i− 1])



 (3.45)

for asynchronous CDMA.

The motivation for such a detector is given by comparing with the succes-
sive interference cancellation detector. In the SIC detector, the demodula-
tion of user k is carried out in the presence of the multiple access interference
of all users that have a weaker received power. After all, the SIC detector
demodulates the received signals in order of decreasing received power. By
using the PIC detector, the interference caused by all interfering users can
be estimated trough the bank of matched filters and is then cancelled out.
Another advantage of the PIC detector over the SIC detector is that the PIC
detector demodulates the signals of the individual users in parallel, therefor
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the delay in demodulating signals in the PIC detector does not increase with
the number of users.

The parallel interference cancellation detector requires the knowledge of
the same received signal- and system parameters at the receiver as the suc-
cessive interference cancellation detector. So it requires information about:
the timing of the desired user, the timing of the interfering users, the re-
ceived amplitudes and the signature waveforms of the desired and interfering
users. The time complexity per bit of the PIC detector is comparable to
the time complexity per bit of the SIC detector, it also increases linearly
with the number of users and is therefor O(K). The PIC detector also re-
quires the crosscorrelations between the signature waveforms, just as the
SIC detector. This of course causes the problem that these crosscorrelations
have to be calculated for each transmitted bit in long code CDMA systems.
However, this is not such a complex operation that implementation of PIC
detection in long code CDMA systems becomes infeasible. Obtaining an-
alytical results for the bit-error-rate or asymptotic multiuser efficiency of
the PIC detector is unfortunately not possible, the only way to obtain these
performance measures is again trough simulation results.

A very useful property of the parallel interference cancellation detector
is that it can be used for combining different detection techniques. For ex-
ample, the first stage of the PIC detector can be replaced by a decorrelating
detector, thus improving performance, but of course also increasing com-
putational complexity. Another way of expanding the parallel interference
cancellation detector is adding more stages. This will however not always
increase performance and in some cases adding another stage may actually
hurt performance.

3.8 Decorrelating Decision-Feedback Detector

In this section the decorrelating decision-feedback detector is discussed.
Decision-feedback detectors are decision-driven multiuser detectors that com-
bine several of the features of the decision-driven detectors that were dis-
cussed in the previous sections:

• As in successive cancellation, the intermediate decisions used in deci-
sion-feedback detectors are final (output) decisions.

• Decision-feedback detectors operate sequentially, demodulating one bit
at a time.

• As in multistage detection with decorrelating first stage, both linear
and nonlinear methods are used to combat multiuser interference.

The term decision-feedback is borrowed from an approach extensively used
for the demodulation of single-user channels subject to intersymbol inter-



3.8. DECORRELATING DECISION-FEEDBACK DETECTOR 33

Figure 3.8: Synchronous decorrelating decision-feedback detector.

ference, whereby previous output (”final”) decisions are used as a surrogate
transmitted data to cancel intersymbol interference.

The synchronous decorrelating decision-feedback detector consists of a
bank of matched filers followed by a sorter and two transformations, see
Figure 3.8. The sorter sorts the signals of the different users in order of
decreasing received energies. In order to obtain the two transformations a
Cholesky decomposition R = FTF (F is lower triangular) of the correlation
matrix is used [15].

The first transformation is a forward filter (FT )−1 that eliminates mul-
tiuser interference, yielding the whitened matched filter outputs

ȳ = F−Ty = FAb+ n̄, (3.46)

where n̄ is a Gaussian K -vector with independent components, each with
variance σ2. Since F is lower triangular, the first whitened matched filter
output is

ȳ1 = F11A1b1 + n̄1. (3.47)

Thus, ȳ1 contains no interference from other users. For k > 1, ȳk does
contain interference from lower-numbered users:

ȳk = FkkAkbk +
k−1
∑

j=1

FkjAjbj + n̄k. (3.48)

Following the philosophy of successive cancellation the users can be demod-
ulated sequentially by

b̂k = sgn



ȳk −
k−1
∑

j=1

FkjAj b̂j



 . (3.49)
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Figure 3.9: Asynchronous decorrelating decision-feedback detector.

The reconstruction of the multiaccess interference from the detected bits can
be written in matrix form as (F − diag{F})Ab̂, which is the second trans-
formation in Figure 3.8 that performs a feedback filter operation . Using
this expression the decision rule 3.49 can be written in matrix notation as:

b̂ = sgn(F−Ty − (F− diag{F})Ab̂). (3.50)

For asynchronous CDMA the feed-forward and feedback filters of the
decorrelating decision-feedback detector (figure 3.9) have K × K transfer
functions [15]:

G(z) = [F[0] + F[1]z]−T , (3.51)

B(z) = F[0]− diag{F}[0] + F[1]z−1. (3.52)

Where F[0] is a lower triangular matrix and F[1] is an upper triangular
matrix with zero diagonal which can be found by factoring the discrete time
channel transfer function (2.28) as

S(z) = [F[0] + F[1]z]T [F[0] + F[1]z−1]. (3.53)

The decorrelating decision-feedback requires the same knowledge about
the received signal- and system parameters at the receiver as the other de-
cision driven detectors. So it requires information about: the timing of the
desired user, the timing of the interfering users, the received amplitudes and
the signature waveforms of the desired and interfering users.
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Implementation of the feed forward and feedback filtering of a decorre-
lating decision-feedback detector requires a number of operations that in-
creases linearly with the number of users. This results in a time complexity
per bit of O(K). However the other operations involved in the decorrelat-
ing decision-feedback detector like sorting of the users according to their
received energies, generation of the forward filter using a Cholesky decom-
position and inversion of the resulting triangular matrix, make the decorre-
lating decision-feedback detector more computationally intensive than the
other decision-driven detectors. The decorrelating decision-feedback detec-
tor also has the disadvantage that these operations have to be performed
again and again when the channel conditions vary or when long codes are
used, making implementation of the decorrelating decision-feedback detector
less feasible in these systems.

The decorrelating decision-feedback detector is the only non-linear mul-
tiuser detector for which it is possible to obtain a closed-form expression for
the probability of error for an arbitrary number of users and arbitrary cross-
correlation matrices. This expression is equal to (equation 7.68 in Verdú)

P
ddf
k (σ) = 21−k

∑

(b1,...,bk−1)∈{−1,1}k−1

∑

(b̂1,...,b̂k−1)∈{−1,1}k−1

πk(b1 − b̂1, . . . , bk−1 − b̂k−1)

×
k−1
∏

j−1

[1{bj = b̂j}+ (1− 2 1{bj = (̂b)j})

×πj(b1 − b̂1, . . . , bj−1 − b̂j−1)], (3.54)

where

πk(e1, . . . , ek−1) = Q

(

Fkk
Ak

σ
+

k−1
∑

l=1

Fkl
Al

σ
el

)

. (3.55)

Here the superscript ddf is used to indicate the decorrelating decision feed-
back detector.

3.9 Comparison of Detection Techniques

An important characteristic of a detection technique is its bit-error-rate
performance. However as became clear in the previous sections, it is un-
fortunately not always possible to derive analytical expressions for the bit-
error-rate of a detector. Therefor a lot of research effort has been put into
simulating multiuser detectors. A recent paper in this field is A Simulation
Comparison of Multiuser Receivers for Cellular CDMA [2], by Buehrer and
others. This paper compares all of the detection techniques described in
the previous sections, with exception of the maximum likelihood sequence



36 CHAPTER 3. DETECTION TECHNIQUES

Figure 3.10: Capacity curves for perfect power control (Eb/N0 = 8dB and
processing gain = 31) [2] .

estimator (MLSE) detector, on the basis of common assumptions. The re-
sults published in this paper will be used here to compare the bit-error-rate
performance of the different multiuser detectors.

Figure 3.10 contains a plot of the capacity curves taken from [2] for
a CDMA system with signal-to-noise ratio Eb/N0 = 8-dB, spreading gain
N = 31, so 31 chips per symbol and perfect power control and therefor equal
received energies. Where Eb is the energy of a bit equal to A2

k and N0 is the
one sided spectral level equal to 2σ2. The simulated Parallel IC detector
has a conventional first stage followed by two cancellation stages.

The results show that the detectors can be divided into three perfor-
mance groups. The first group contains two nonlinear detectors, the PIC
detector and the decorrelating decision-feedback detector, these detectors
can handle the most users for a given bit-error-rate. The second group
contains two linear detectors, the decorrelating detector and the MMSE de-
tector, which can handle slightly less users as the detectors in the first group
for the same bit-error-rate. The third group contains the conventional de-
tector and the SIC detector which can handle even less users as the detectors
in the second group for the same bit-error-rate. The detectors in group one
and two are of the most interest because they offer the highest performance.
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Figure 3.11: BER versus Eb/N0 with perfect power control (ten users and
processing gain = 31) [2].

The linear detectors in group two roughly support three times the number of
users of the conventional detector for a given probability of error, while the
two nonlinear detectors in group one support four times the number of users
of the conventional detector for a given bit-error-rate. The performance of
the successive interference cancellation (SIC) detector is significantly poorer
due to lack of variance in the received signal powers.

Figure 3.11 shows the bit-error-rate performance plotted versus the sig-
nal-to-noise ratio Eb/N0 for K = 10 users and perfect power control. Again
the decorrelating detector, MMSE detector, PIC detector and decorrelating
decision-feedback detector provide significant improvement over the conven-
tional detector with each providing bit-error-rate improvements of over an
order of a magnitude compared to the conventional detector at 10dB signal
to noise ratio, while the SIC detector only provides a small improvement.
In this case again the performance of the nonlinear PIC and decorrelat-
ing decision-feedback detectors is better than the performance of the linear
decorrelating and MMSE detectors. Thus, in additive white gaussian noise
channels nonlinear detectors provide superior performance compared to lin-
ear detectors although the difference is minor at low signal-to-noise ratio
levels.
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Figure 3.12: Performance degradation in near-far channels (Eb/N0 = 5dB
and processing gain = 31) [2].
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Figure 3.12 presents the bit-error-rate performance of the receivers in
the presence of two interfering users, one with equal power to the desired
user and one with a power which varies from 10-dB below the desired user
to 30-dB above the desired user. Therefor this figure will give an indication
of the near-far resistance of the different detection techniques. As expected,
the conventional detector degrades quickly in the presence of strong inter-
ference. The SIC detector and the decorrelating decision-feedback detector
which benefit from diverse powers are found to be robust to strong inter-
ferers, as is the decorrelating detector which has a performance which is
independent of the user energies. The MMSE detector having a theoretical
near-far resistance identical to the decorrelating detector also displays ro-
bustness. The PIC detector is not as robust and shows slow degradation for
high interference power. This is caused by the fact that estimation of the
amplitude of the weak user is inaccurate in the first stage of cancellation
due to the dominating interference, resulting in inaccurate cancellation of
the weak user’s signal from the strong users signal. This results in an unre-
liable estimate of the signal of the strong user, causing problems when the
strong user’s signal is cancelled from the weak user’s signal in the second
stage. One way of improving the parallel interference cancellation receiver
in such situations would be to avoid cancelling the weak user since its am-
plitude estimation is unreliable.

Asymptotic multiuser efficiency plots for multiuser detectors are found
less frequently in literature. Fortunately the asymptotic multiuser efficiency
can, at least for 2 user systems, be determined analytically for all discussed
multiuser detectors [15].

Figure 3.13 contains a plot of the analytical asymptotic multiuser effi-
ciency of user 1 of all the discussed detectors for a 2 user synchronous system
with a relatively high crosscorrelation of 0.6. This plot shows that, as ex-
pected, the MLSE detector has the best asymptotic multiuser efficiency per-
formance. The performance of the conventional detector decreases rapidly
when the amplitude of the interferer increases, showing that the conven-
tional detector is really bad at combatting multiple access interference. The
decorrelating and MMSE detector have equal asymptotic multiuser efficiency
performance because the MMSE detector converges to the decorrelating de-
tector for high signal-to-noise ratios. In this particular case the performance
of both these detectors is relatively bad because of the high crosscorrelations.
The two-user asymptotic multiuser efficiency of the two stage PIC detector
is equal to that of the SIC detector in this particular situation, since the
decisions for user 1 are identical for both detectors. The figure clearly shows
that the performance of these detectors is worse than that of the conven-
tional detector for small interferer energies, whereas if the received interferer
energy is sufficiently high, then the asymptotic efficiency of these detectors
equals 1. This is caused by the fact that the decisions made about the
transmitted bit of the interferer are inaccurate when the interferers received
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Conv. MLSE Decorr. MMSE Adapt. Blind Decision
Detector Detector MMSE MMSE Driven

Signature
waveform

desired user
• • • • • •

Timing
desired
user

• • • • • • •

Received
amplitudes

• • •

Noise
level

•

Signature
waveforms
interfering

users

• • • •

Timing
interfering

users
• • • •

Training
sequence
desired
user

•

Synchronous
computational

complexity
constant O(2K) O(K) O(K) O(K) O(K) O(K)

Asynchronous
computational

complexity
constant O(2K) O(K3) O(K3) O(K) O(K)

O(K)1

O(K3)2

1For the SIC/MIC detector
2For the DDF detector

Table 3.1: Summary of requirements and computational complexity of mul-
tiuser detection techniques.

energy is small, resulting in inaccurate cancellation of the interferers signal.
When the received energy of the interferer increases, the decisions about
the interferers transmitted bit become more reliable and the accuracy of
the cancellation improves. The asymptotic multiuser efficiency for user 1
of the two-user decorrelating decision feedback (DDF) detector is equal to
that of the decorrelating detector. For user 2 the asymptotic multiuser effi-
ciency of the decorrelating decision feedback detector is equal to that of the
multistage interference cancellation detector with decorrelating first stage.
Therefor this asymptotic multiuser efficiency is plotted in the figure as well.
The plot shows that on average the decorrelating decision feedback detector
will perform better in high interference situations than the decorrelating as
well as the PIC detector.

Table 3.1 summarizes the the received signal- and system parameters
that have to be estimated or known at the receiver and the computational
complexity of the different detection techniques that have been discussed
in this chapter. All the discussed decision driven detectors (SIC, PIC and
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Decorrelating Decision Feedback) are summarized in the decision driven col-
umn, since they all require the same information about the received signal-
and system parameters at the receiver and have the same computational
complexity.

A detector that requires knowledge of more received signal- and system
parameters at the receiver will increase the complexity of the receiver, be-
cause the information will have to be extracted from the received signal.
The table shows that all multiuser detection techniques require knowledge
about more received signal- and system parameters at the receiver than the
conventional detector and thus require a more complex receiver, except for
the adaptive and blind MMSE detectors. The adaptive MMSE detector
however uses training sequences whose transmission requires bandwidth.

All detectors in the table have higher computational complexity require-
ments than the conventional detector. The MLSE detector has a compu-
tational complexity that increases exponentially in the number of users,
which will make practical implementation impossible for larger numbers of
users. The linear dependency in the number of users of the computational
complexity of the decorrelating and MMSE detector, is only valid for the
synchronous case in short code CDMA systems. In the asynchronous case
or in long code CDMA systems the inverse of the transformation matrix
has to be calculated repeatedly, this is an O(K3) operation. The main ad-
vantage of the adaptive MMSE and blind MMSE detector over the normal
MMSE detector therefor is that these detectors have a computational com-
plexity linear in the number of users, also for the asynchronous case, while
they achieve similar bit-error-rate performance as the normal MMSE detec-
tor. The table indicates that the decision driven detectors all have a linear
computational complexity. For the SIC detector and PIC detector this is
true for the synchronous as well as the asynchronous case. These detectors
do require more operations for long code CDMA systems, but implementa-
tion remains possible for these systems. The decorrelating decision-feedback
detector however requires a matrix inversion, which has to be performed re-
peatedly in the asynchronous case or in long code CDMA systems, causing
a strongly increased computational complexity.

Looking at the performance and the requirements of the different mul-
tiuser detection techniques summarized in this section, some detection tech-
niques show properties that make them very attractive for further research.
The blind adaptive MMSE detector requires knowledge of the same param-
eters of the received signal as the conventional detector, while its bit-error-
rate performance will equal that of the MMSE detector, provided that the
adaptation algorithm has converged. The only disadvantage of the blind
adaptive MMSE detector is that it cannot be implemented for long code
CDMA systems. Of the decision-driven detectors the parallel interference
cancellation (PIC) detector shows good bit-error-rate performance results,
while it does not require the complex transformations needed by the decor-
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relating decision-feedback detector. The PIC detector can also be imple-
mented for long code CDMA systems with a relatively low increase in com-
putational complexity. Unfortunately the PIC detector is not as near-far re-
sistent as some of the other detectors, but this can be improved by avoiding
cancellation of weak users or by implementing some form of power control.
This last option of course removes one of the advantages of using multiuser
detection, operation without power control, but the improved bit-error-rate
performance compared to the conventional detector remains.

3.10 Conclusions

• The MMSE detector has good bit-error-rate performance compared to
the conventional detector, but requires knowledge of a lot of received
signal parameters.

• The blind adaptive MMSE detector, when the adaptation algorithm
has converged, will have the same bit-error-rate performance as the
MMSE detector, but only requires knowledge of the same received
signal parameters as the conventional detector.

• The blind adaptive MMSE detector cannot be implemented for long
code CDMA systems.

• The PIC detector has good bit-error-rate performance compared to
the conventional detector in non near-far systems at the expense of in-
creased required knowledge of received signal parameters and increased
computational complexity.

• The PIC detector can be implemented for long code CDMA systems
without a large increase in computational complexity.

Because of these properties the blind adaptive MMSE detector and PIC
detector are the most promising for implementation and are therefor studied
in the rest of this thesis, along with the conventional detector for comparison
purposes. This study will start with a more detailed analysis of the blind
adaptive MMSE and PIC detector in the next chapter.





Chapter 4

Blind Adaptive MMSE and

PIC Detector

In the previous chapter the blind adaptive minimum mean square error and
parallel interference cancellation detector were chosen as the most promising
detectors for implementation. The description of the blind adaptive MMSE
detector in that chapter however does not indicate how this detector can
be implemented. Therefor in this chapter an algorithm for implementation
of the blind adaptive MMSE detector will be derived. Chapter 3 briefly
described one implementation for the PIC detector. In this chapter that
implementation and another implementation for the PIC detector will be
described in more detail. This chapter also indicates how the received am-
plitudes of the individual users, that are needed by the PIC detector, can
be estimated from the received signal. Since in simulation and implemen-
tation, for which the study of the detectors in this chapter is meant, only
synchronous CDMA systems are considered, the analysis in this chapter is
also limited to the synchronous case. Extension to asynchronous systems
should however be straightforward.

4.1 Blind Adaptive MMSE Detector

In this section the blind adaptive MMSE detector will be mathematically
analyzed in more detail. This analysis is mostly taken from Hans Roelofs’
Masters Thesis [11]. First a general notation for linear multiuser detectors,
the class of multiuser detectors to which the blind adaptive MMSE detec-
tor belongs, will be developed. After that it will be shown that the blind
adaptive MMSE detector, which minimizes the mean output energy, also
minimizes the mean square error. Finally, an adaptive algorithm will be
derived for the implementation of the blind adaptive MMSE detector. For
convenience in this section it will be assumed that the desired user is user 1,
but the same reasoning can of course be applied to all users in the system.

45



46 CHAPTER 4. BLIND ADAPTIVE MMSE AND PIC DETECTOR

4.1.1 Linear Multiuser Detectors

The blind adaptive MMSE detector is an example of a linear multiuser
detector. Linear multiuser detectors apply a linear transformation to the
outputs of the matched filter bank to produce a new set of outputs, which
hopefully provide better performance when used for estimation. Other ex-
amples of linear multiuser detectors that were described in Chapter 3 are the
conventional, decorrelating and MMSE detector. In this section a common
notation for these linear detectors will be developed.

Since matched filtering is also a linear operation, the matched filter bank
followed by a linear transformation used in linear multiuser detection can
be seen as a matched filter bank with modified sequences. So the signature
sequence s is replaced by a modified signature sequence c. A linear multiuser
detector for user 1 can be characterized by the modified sequence c1, which
is the sum of two orthogonal components. One of these components is the
signature sequence of user 1, s1. The other component is denoted as x1 and
will be referred to as the x sequence, so

c1 = s1 + x1, (4.1)

with c1, s1, x1 ∈ RN , where N is the number of chips per symbol and

〈s1, x1〉 = 0. (4.2)

Since x1 is orthogonal to s1, any x1 can be chosen to minimize the corre-
lation between the multiple access interference and c1, while the correlation
with user 1 remains constant. Thus

〈s1, c1〉 = ||s1||2 , 1. (4.3)

The linear detector makes its decision for user 1 based on the sign of the
output of the matched filter for user 1 with modified sequence, so

b̂1 = sgn(〈r, c1〉). (4.4)

Every linear multiuser detector can be written in this form, so it is a
canonical representation [15] for linear multiuser detectors. For a conven-
tional detector the x1 component of the modified signature sequence is zero,
so c1 = s1 and the notation used in Chapter 2 returns. For the decorre-
lating detector in addition to being orthogonal to s1, x1, as a result of the
decorrelating property, must satisfy

〈sk, x1〉 = −ρ1k (4.5)

for all K − 1 other users k in the system. It can be shown [15] that the
MMSE detector can also be expressed using this canonical representation.
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The output of the matched filter with modified sequence for user 1 is
equal to

y1 = 〈r, c1〉
= 〈r, s1 + x1〉

= 〈A1b1s1 +

K
∑

k=2

Akbksk + σn, s1 + x1〉

= A1b1〈s1, s1 + x1〉+
K
∑

k=2

Akbk〈sk, s1 + x1〉+ σ〈n, s1 + x1〉. (4.6)

Using (4.3) and the fact that 〈s1, sk〉 = ρ1k gives

y1 = 〈r, c1〉 = A1b1 +

K
∑

k=2

Akbk(ρ1k + 〈sk, x1〉) + σ〈n, s1 + x1〉. (4.7)

With ñ1 as a shorthand notation for 〈n, s1 + x1〉 this can also be written as

y1 = 〈r, c1〉 = A1b1 +
K
∑

k=2

Akbk(ρ1k + 〈sk, x1〉) + σñ1. (4.8)

The bit-error-rate of the linear detector for user 1 can be easily derived
from the probability of error of the conventional detector (3.12) and is equal
to [6]:

P1 =
1

2K−1

∑

e2∈{−1,1}

· · ·
∑

eK∈{−1,1}

Q

(

A1〈s1, c1〉+
∑K

k=2 Akek〈sk, c1〉
σ‖c1‖

)

, (4.9)

where ek represents the bit value for user k, which is equally likely to be +1
or -1.

4.1.2 Minimizing Mean Output Energy

The blind adaptive MMSE detector in fact minimizes the mean output en-
ergy (MOE), as was stated in section 3.5. In this section it will be shown
that by minimizing the mean output energy, the mean square error (MSE)
is also minimized.

Themean output energy of a linear multiuser detector for user 1 is defined
as:

MOE , E[(〈r, c1〉)2] (4.10)

The trivial solution to minimizing this equation is setting c1 = 0. However,
since c1 is defined as the sum of s1 and x1, this solution is eliminated.
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It can be expected intuitively that minimizing the output energy of the
linear detector is a sensible approach. This is because the energy at the
output of the detector can be written as the sum of the energy due to the
desired signal plus the energy due to the interference (background noise and
multiple access interference). Any x1, as long as x1 is orthogonal to s1, can
be chosen to minimize the interference, but it will not influence the energy
of the desired signal. The x1 that minimizes the mean output energy also
minimizes the mean square error as the following reasoning shows. The
mean output energy and the mean square error of the linear detector for
user 1 can be written as, respectively,

MOE(x1) = E[(〈r, s1 + x1〉)2] (4.11)

and

MSE(x1) = E[(A1b1 − 〈r, s1 + x1〉)2]
= E[(A1b1)

2 − 2A1b1〈r, s1 + x1〉+
(〈r, s1 + x1〉)2]. (4.12)

Then the fact is used that the received signal r can be decomposed in a
desired signal portion A1b1s1 and a residue term R. The residue consists of
multiple access interference and white Gaussian noise.

MSE(x1) = E[(A1b1)
2]− E[2A1b1〈A1b1s1 +R, s1 + x1〉] +

E[(〈r, s1 + x1〉)2]. (4.13)

The last term of equation 4.13 is equal to the mean output energy MOE(x1).
Since b1 ∈ {−1,+1}, (A1b1)

2 = A1
2 and E[(A1b1)

2] = A1
2, equation 4.13

can be written as

MSE(x1) = A1
2 − E[2(A1b1)

2〈s1, s1 + x1〉]−
E[2A1b1〈R, s1 + x1〉] + MOE(x1) (4.14)

Further it is assumed that bit b1 is independent from the other bits bk, k 6= 1
and that b1 is independent the white Gaussian noise. From these two as-
sumptions, it follows that b1 is uncorrelated with the multiple access inter-
ference. Finally, by also using the obvious fact that b1 is independent from
c1 the term E[2A1b1〈R, s1 + x1〉] can be written as E[2A1b1]E[〈R, s1 + x1〉],
so

MSE(x1) = A1
2 − E[2(A1b1)

2〈s1, s1 + x1〉]−
E[2A1b1]E[〈R, s1 + x1〉] + MOE(x1) (4.15)

Since E[2A1b1] = 0, because b1 is equally likely to be 1 or -1, the term
E[2A1b1]E[〈R, s1 + x1〉] can be eliminated, resulting in

MSE(x1) = A1
2 − 2A1

2〈s1, s1 + x1〉+MOE(x1)

= A1
2 − 2A1

2‖s1‖2 +MOE(x1)

= MOE(x1)−A1
2. (4.16)
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So the mean square error and the mean output energy differ by only a
constant and the arguments that minimize both functions are the same. To
implement the MSE function in an algorithm, knowledge of the data bits for
user 1 is needed. For an implementation of the MOE function this knowledge
is not needed, which means that an algorithm based on the MOE function
does not require training sequences. It can be shown that the mean output
function MOE(x1) is strictly convex over the set of signals orthogonal to
s1. Therefor, the output energy has no local minima other than the unique
global minimum. With this property the stochastic gradient descent method
can be used to adaptively implement the blind adaptive MMSE detector [6].

4.1.3 Stochastic Gradient Decent Method

The stochastic gradient descent method is based on the gradient decent
method. The gradient descent method is used to find the parameter θmin

that minimizes the following function:

Ξ(θ) = E[g(X, θ)]. (4.17)

Where X is a random variable and g(·) is a function. If the function Ξ
is convex, then for any initial condition θ0, the gradient descent algorithm
converges to the minimum of Ξ. The algorithm follows the direction of
steepest descent (i.e., the direction opposite to the gradient ∇Ξ):

θi = θi−1 − µ∇Ξ(θi−1), (4.18)

where the subscript i is used to indicate the iteration number of the al-
gorithm. If the step size µ is arbitrarily small, then eventually θi will be
as close to θmin as desired. In practice, the step size can be progressively
decreased as the algorithm converges. According to (4.17) the probabil-
ity distribution of X has to be known in order to compute the gradient.
Though this knowledge may be available, the use of these distributions can
be avoided by using the stochastic gradient descent method.

The stochastic version of the algorithm replaces the unknown term
∇Ξ(θi−1) = ∇E[g(X, θi−1)] by the unaveraged ∇g(Xi, θi−1). With Xi the
realization of the random variable X for iteration i. This results in the
following stochastic gradient descent algorithm:

θi = θi−1 − µ∇g(Xi, θi−1). (4.19)

where the subscript i again is used to indicate the iteration number.

4.1.4 Adaptive Implementation

The stochastic gradient decent method can be used to find the x sequence
xopt that minimizes the mean output energy. The MOE function, given as
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MOE(x1) = E
[

(〈r, s1 + x1〉)2
]

, is then the equivalent of the Ξ(θ) function,
the x sequence is the equivalent of θ and the received signal r is the equiva-
lent of X. To minimize the mean output energy the x sequence is adapted
each bit period using the stochastic gradient descent algorithm (4.19). Since
subscripts are already used to indicate users the iteration number is indi-
cated with an index [i]. So the stochastic gradient descent algorithm for
adaptation of the x sequence can be written as

x1[i] = x1[i− 1]− µ∇(〈r, s1 + x1[i− 1]〉)2. (4.20)

Here r[i] indicates the received signal for the bit period of the ith bit in
the bit stream.1 x[i− 1] is the value of the x sequence obtained during the
previous iteration of the algorithm from the previous received signal r[i−1].
Note that s1 is the same for all bit periods (short codes).

Equation (4.20) requires the gradient of (〈r[i], s1+x1[i−1]〉)2 for the ith
bit interval with respect to x1. This gradient is

∇x1(〈r[i], s1 + x1[i− 1]〉)2 = 2〈r[i], s1 + x1[i− 1]〉r[i]. (4.21)

Equation (4.21) states that the gradient of the mean output energy is equal
to a scaled version of the received signal r[i]. After all, 2〈r[i], s1 +x1[i− 1]〉,
is only a constant.

At this stage, the gradient descent algorithm for the x sequence can be
modified so that it satisfies the orthogonality condition 〈s1, x1〉 = 0. This is
done by replacing the received signal r[i], by the component of r[i] which is
orthogonal to s1. The orthogonal component rort[i] is written as:

rort[i] = r[i]− 〈r[i], s1〉s1. (4.22)

By using the stochastic gradient decent algorithm for the x sequence (4.20),
the expression for the gradient (4.21) and the orthogonal component of the
received signal to s1 (4.22) the algorithm for minimizing the mean output
energy can be found:

x1[i] = x1[i− 1]− 2µ〈r[i], s1 + x1[i− 1]〉rort[i]
= x1[i− 1]− 2µ〈r[i], s1 + x1[i− 1]〉(r[i]−

〈r[i], s1〉s1) (4.23)

The expression 〈r[i], s1〉 in equation (4.23) is a normal matched filter
operation for user 1, as used in the matched filter bank described in Chapter
2. The expression 〈r[i], s1 + x1[i− 1]〉 in equation (4.23) is a matched filter
for user 1 with modified sequence (4.6). Since the x1 sequence of this filter
is adapted by the stochastic gradient descent rule this filter is referred to as

1r[i] is a vector of N samples of the received signal, sampled at the chip times, for the
ith bit period. Where N is the number of chips per symbol.
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the adaptive filter. The output of the matched filter for user 1 for the ith
bit period is written as:

Zmf1[i] = 〈r[i], s1〉. (4.24)

Analogously, the output of the adaptive filter for user 1 for the ith bit period
is written as:

Z1[i] = 〈r[i], s1 + x1[i− 1]〉. (4.25)

Substituting (4.24) and (4.25) in (4.23), the adaptation rule for the x se-
quence can be written as:

x1[i] = x1[i− 1]− 2µZ1[i](r[i]− Zmf1[i]s1). (4.26)

The output of the adaptive filter Z1[i] is used as the decision statistic of
the blind adaptive MMSE detector for user 1:

b̂1[i] = sgn(Z1[i]) = sgn〈r[i], s1 + x1[i− 1]〉. (4.27)

The output energy of the adaptive filter will be minimal when the x1 se-
quence has converged to x1,opt, the x sequence that minimizes the mean
output energy for user 1. In subsection 4.1.2 it was shown that the mean
square error is than also minimized. So when the x1 sequence has converged
to x1,opt the decision statistic for user 1 of the blind adaptive MMSE detector
is equivalent to decision statistic for user 1 of the MMSE detector. Figure 4.1
gives a graphical representation of the implementation of the blind adaptive
MMSE detector.

The natural choice for initialization of the x sequence is x1[0] = 0.
Whether the algorithm is stable depends on the value for the step size µ.
Using some approximations, it was found in [6] that the condition on µ for
stability is:

0 ≤ µ <
2

A2
max + σ2

, (4.28)

where Amax is the maximum amplitude among all users. A smaller step
size will result in a longer adaptation time. On the other hand, a smaller
step size will also result in an x1[i] which is closer to x1,opt, where x1,opt

is the orthogonal sequence component that results in a global minimum of
the mean output energy. So the best value for µ is a trade-off between
adaptation time and accuracy.

4.2 PIC Detector

In this section the parallel interference cancellation detector will be analyzed
in more detail. First the different ways in which parallel interference can-
cellation can be implemented are discussed. After that the decision rule of
the PIC detector is mathematically analyzed and the results of this analysis
are used to further refine the PIC implementation.
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Figure 4.1: Blind Adaptive MMSE detector.
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4.2.1 PIC Implementation

There are two implementations for parallel interference cancellation [2]. The
implementation that was used to describe the parallel interference cancella-
tion detector in Chapter 3 is the so-called narrowband implementation. In
this implementation interference is cancelled from the narrowband outputs
(matched filter outputs or outputs of previous stages) by using the estimates
of the data symbols and channel gains as well as the known cross-correlations
between users. This can be clearly seen from Figure 3.7 and equations (3.44)
and (3.45). The decision rule of the two-stage narrowband PIC detector for
synchronous CDMA given in Chapter 3 can be easily extended to an S -stage
narrowband PIC detector. For stage s + 1 the decision rule of the S -stage
narrowband PIC detector can be expressed as

b̂
(s+1)
k = sgn

(

Z
(s+1)
k

)

(4.29)

with

Z
(s+1)
k = yk −

∑

j 6=k

Ajρjk b̂
(s)
j (4.30)

as the decision statistic for stages s > 1 and

Z
(1)
k = yk (4.31)

as the decision statistic for stage s = 1. A schematic representation of an
S -stage narrowband PIC detector is given in figure 4.2.

The second implementation for parallel interference cancellation requires
the estimation, regeneration, and cancellation of the signal of each interferer
from the signal of each of the desired users, see Figure 4.3. Since each of
the wideband signals has to be regenerated this implementation is referred
to as the wideband implementation. The decision rule for stage s+ 1 of the
S -stage wideband PIC detector can be expressed as

b̂
(s+1)
k = sgn

(

Z
(s+1)
k

)

(4.32)

with

Z
(s+1)
k =

∫ T

0
r̂
(s)
k (t)sk(t)dt (4.33)

as the decision statistic, where the received signal r̂
(s)
k for user k at stage s

is estimated according to

r̂
(s)
k (t) = r(t)−

K
∑

j=1

û
(s)
j (t) (4.34)
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Figure 4.2: S stage narrowband PIC detector.
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Figure 4.3: S stage wideband PIC detector.
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and the signal û
(s)
j (t) corresponds to the reconstructed signal of user j at

stage s. This signal is reconstructed according to

û
(s)
k (t) = Ak b̂

(s)
k sk(t). (4.35)

At stage s = 1 there has not been any interference cancellation, therefor

r̂
(1)
k (t) = r(t). (4.36)

Both implementations of the parallel interference cancellation detector
have the same theoretical bit-error-rate performance [2]. For short-code
CDMA systems the narrowband implementation requires less computations
than the wideband implementation, because it avoids regeneration of the
wideband signal. For long-code systems this advantage disappears because
in that case the crosscorrelations have to be recalculated for each symbol. In
both cases the narrowband implementation requires more memory because
the crosscorrelations ρjk between the signature sequences of all the users
have to be stored.

4.2.2 Amplitude Estimation

The equations for the decision rules of the narrowband implementation
(4.30) and the wideband implementation (4.35) show that both implemen-
tations require knowledge of the received amplitudes of the signals of all
the users. Since this information is not directly available at the receiver,
the received amplitudes have to be estimated. A common way to do this
is to use the matched filter outputs or outputs of a previous stage, which
are both referred to as soft decisions, as a joint estimation of the detected
bits and the received signal amplitudes, avoiding the use of separate channel
estimation algorithms that increase the overall complexity of the receiver.
In this case the decision statistic of the narrowband PIC detector for stages
s > 1 (4.30) can be rewritten as

Z
(s+1)
k = yk −

∑

j 6=k

Z
(s)
j ρjk (4.37)

and the equation for the reconstructed signal of the wideband PIC detector
for stages s > 1 (4.35) can be rewritten as

û
(s)
k (t) = Z

(s)
k sk(t). (4.38)

Unfortunately the amplitude estimates derived from the output of the mat-
ched filter bank are, especially in the first stages, not very accurate because
they still contain a lot of interference. Therefor enhanced performance can
be achieved at the cost of increased receiver complexity by using separate
adaptive channel estimation algorithms. Nevertheless is will be assumed in
the rest of this thesis that the amplitude estimates are obtained using the
matched filter bank outputs.
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4.2.3 PIC Decision Rule Analysis

In Correal et al. [3] it is shown that straightforward implementation of
wideband parallel interference cancellation based on complete subtraction of
the interference estimates results in a biased decision statistic. The bias has
its strongest effect in the first stage of interference cancellation, in the sub-
sequent stages its effect diminishes. However if the bias leads to incorrect
cancellation at the first stage the effects of these errors may be observed at
the next stages. In this section it is shown that the decision statistic of a
straightforward implementation of narrowband parallel interference cancel-
lation based on complete subtraction of the interference is also biased.

Following the same reasoning as Correal et al. analysis is started with
a two user synchronous system. The decision statistic at stage s = 1 (i.e.
before any interference cancellation) for b1, a bit of user 1, is the output of
the matched filter for user 1:

Z
(s=1)
1 = A1b1 +A2b2ρ+ n1 (4.39)

where

n1 = σ

∫ T

0
n(t)s1(t)dt (4.40)

and ρ is the crosscorrelation between the signature sequences of user 1 and
user 2. Similarly, for user 2 at stage s = 1, the decision statistic is given by

Z
(s=1)
2 = A2b2 +A1b1ρ+ n2. (4.41)

At stage 2, the interference caused by user 2 is subtracted from the
matched filter output for user 1 to form a new soft decision for user 1 at
stage 2. Using (4.37) the decision statistic for user 1 at stage 2 can be
written as

Z
(s=2)
1 = Z

(s=1)
1 − Z

(s=1)
2 ρ (4.42)

Substitution of the decision statistics of users 1 and 2 from (4.39) and (4.41),
and cancelling common terms results in

Z
(s=2)
1 = A1b1 −A1b1ρ

2 + n1 − n2ρ (4.43)

Conditioning on b1 and taking the expected value of the decision statistic
yields

E[Z
(s=2)
1 |b1] = A1b1 −A1b1E[ρ2], (4.44)

as E[n1] = E[n2] = 0 because n is white Gaussian noise with 0 mean and
unit variance. According to Verdú [15]

E[ρ2] =
1

N
(4.45)
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where N is the processing gain, so (4.44) becomes

E[Z
(s=2)
1 |b1] = A1b1

(

1− 1

N

)

. (4.46)

Since the estimate of the interference caused by user 2 is correlated with user
1’s amplitude and bit value, a bias is produced when it is used to remove
the interference. The bias in the mean of the decision statistic is evident in
(4.46).

Following a similar approach this result can be extended to a K -user
system, resulting in

E[Z
(s=2)
1 |b1] = A1b1

(

1− K − 1

N

)

. (4.47)

So the bias in the mean increases linearly with the system load (number of
users K ) and is inversely propertional to the processing gain N.

In Correal et al. [3] a simple method to mitigate the effect of the bias
and improve the performance of parallel multistage interference cancellation
is proposed. This method is based on multiplying the amplitude estimates

with a partial-cancellation factor 0 ≤ C
(s)
K ≤ 1 that varies with the stage of

cancellation s and system load K. This multiplication has to be be performed
before the amplitude estimates are used to subtract the interference in case
of the narrowband implementation, or before the amplitude estimates are
used to reconstruct the signal in case of the wideband implementation. This
can be interpreted as modifying equation (4.30) and (4.34) to include a

partial-cancellation factor C
(s)
K resulting in respectively

Z
(s+1)
k = yk −

∑

j 6=k

C
(s)
K Ajρjk b̂

(s)
j (4.48)

and

r̂
(s)
k (t) = r(t)− C

(s)
K

K
∑

j=1

û
(s)
j (t). (4.49)

4.3 Conclusions

• By minimizing the mean output energy the blind adaptive MMSE
detector also minimizes the minimum mean square error.

• The derivation of an adaptive algorithm for implementation of the
blind adaptive MMSE detector has been shown.

• The adaptation time, stability and accuracy of the the adaptive algo-
rithm all depend on the step size µ.
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• There are two possible implementations for the PIC detector, a nar-
rowband implementation and a wideband implementation, that have
the same bit-error-rate performance, but different computational com-
plexity.

• The amplitude estimates needed by the PIC detector can be obtained
by using the soft decisions of the previous stage of the PIC detector
as joint estimation of the detected bit and the received amplitude.

• Both implementations of the PIC detector have a bias in their decision
statistic.

• The effect of this bias can be reduced by the introduction of a partial
cancellation factor.

In the next chapter the adaptive implementation of the blind MMSE
detector will be simulated and the influence of the step size µ on adapta-
tion time, stability and accuracy will be studied. In the next chapter also
both the narrowband and the wideband implementation of the PIC detector
will be simulated and the effects of amplitude estimation, the bias in the
decision statistics and the partial-cancellation factor on the bit-error-rate
performance will be studied.





Chapter 5

Simulation

In this chapter first the development of a simulator for the conventional,
blind adaptive MMSE and parallel interference cancellation detectors will
be described. After that, simulation results for these detectors obtained with
this simulator will be presented, analyzed and compared with the simula-
tion results that were used in Chapter 3 to select the algorithms of interest
for implementation. Finally the conclusions that can be drawn from the
obtained simulation results will be summarized.

5.1 Simulator

Nowadays a simulator usually is an implementation of a system model on
a digital computer. The simulator described in this section implements the
synchronous CDMA model as described in Chapter 2 and the conventional,
blind adaptive MMSE and parallel interference cancellation detectors that
were desctribed in Chapter 3 and further analyzed in Chapter 4. Since the
model is implemented on a digital computer it has to be converted to a
discrete-time model. In the simulator the received signal model is therefor
evaluated every chip time and the detectors operate on this sampled model.
This is different from the discrete-time model in Chapter 2 that is sampled
at the symbol time, because in the simulator information about the signals
at the chip level is needed.

The CDMA model as described in Chapter 2 basically consists of two
major parts, the transmitter and the channel, both described in subsection
5.1.1. The detectors that are supported by the simulator are described in
subsection 5.1.2. The CDMA model has as input the data streams that the
different users want to transmit and the amplitudes they use to transmit
that data. The contents of the data streams and the amplitudes the differ-
ent users use for transmission depend on the kind of simulation that has to
be performed. The different simulation modes that the simulator supports
are described in subsection 5.1.3. Subsection 5.1.4 describes how the simula-
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tion modes and simulation parameters can be specified to the simulator. It
also describes the format the simulator uses to return the simulation results.
Finally subsection 5.1.5 describes the choices regarding implementation re-
lated issues that were made during the implementation process.

5.1.1 Transmitter and Channel

The transmitter part of the simulator generates the transmitted signal for
one symbol period from the bits that the different users in the system want
to transmit and the amplitudes they use for transmission, according to the
first part of equation (2.1):

r(t) =
K
∑

k=1

Akbksk(t). (5.1)

Since the simulator operates on chip level this equation has to be sampled
at the chip times:

r(pTc) =
K
∑

k=1

Akbksk(pTc), (5.2)

where p is the chip index. Defining sk as a vector representation of the
signature sequence of user k sampled at the chip times and defining v as
a vector representation of the transmitted signal sampled at the chip times
this can also be written as:

v =
K
∑

k=1

Akbksk. (5.3)

Since the CDMA model described in Chapter 2 assumes an additive
white gaussian noise (AWGN) channel the simulator has to add noise to the
sampled transmitted signal to generate the received signal. The standard
deviation σ of the noise is calculated from the signal-to-noise ratio (SNR)
and the amplitude A of a user k as:

σ =

√

A2
k

2 10
SNRk

10

. (5.4)

The 2 appears into the denumerator of this equation because the signal-to-
noise is expressed in the signal energy for one bit period Eb = Ak

2 and the
noise one sided spectral density N0, which is equal to 2σ2. Noise is than
added for each sample of the transmitted signal by adding the output of a
normally distributed random number generator with mean 0 and standard
deviation 1 (Gaussian distribution) multiplied with the calculated standard
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deviation. This results in the following equation for the received signal for
one symbol period.

r =

K
∑

k=1

Akbksk + σn. (5.5)

The normally distributed random number generator uses the boxmuller
[1] algorithm to generate a normally distributed random number from the
output of a uniformly distributed random number generator. As a uniformly
distributed random number generator the Mersenne Twister [9] is used.

5.1.2 Detectors

The simulator can simulate the conventional detector, the blind adaptive
MMSE detector and the narrowband and wideband implementations of the
PIC detector. Each detector takes as input the received signal for one symbol
period and the desired user (the user whose bits have to be detected) and
outputs the detected bit of the desired user.

The simulated conventional detector correlates the received signal with
the signature sequence of the desired user as indicated by equation (3.6).
It than outputs the sign of the correlator output as the detected bit as
indicated by (3.4).

The simulated blind adaptive MMSE detector implements equations
(4.24), (4.25), (4.26) and (4.27). The implementation has two operation
modes. The first mode is a ‘training mode’ in which the x sequence is
updated according to the adaptation rule (4.26). The second mode is a
‘detection’ mode in which the x sequence is not updated and the detector
basically operates as a conventional detector that uses a signature sequence
modified by the addition of the x sequence.

The narrowband implementation of the PIC detector in the simulator
is implemented according to equations (4.29) and (4.48). The wideband
implementation is implemented according to the equivalent equations for the
wideband case: (4.32), (4.33), (4.49) and (4.35). Since the detectors in the
simulator both are based on the equations that include a partial-cancellation
factor, the simulator can be used to study the influence of the bias and the
partial-cancellation factor on detector performance. Both implementations
of the detector also have the option to use either actual amplitudes, or
amplitudes estimated from the matched filter outputs or previous stages,
so the influence of amplitude estimation on detector performance can be
studied as well.

5.1.3 Simulation Modes

The simulator supports six simulation modes. The simulation mode deter-
mines the bit streams that the different users transmit and the parameter
of the synchronous CDMA model that is varied during the simulation.
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The data simulation mode simulates a communications system in which
the desired user is instructed to transmit either only ones, or only minus
ones, or random ones and minus ones. The other users can be instructed
independently to transmit either only ones, or only minus ones, or random
ones and minus ones as well. The simulator outputs the number of trans-
mitted bits, the number of incorrectly detected bits and the bit-error-rate.
In this simulation mode all the synchronous CDMA model parameters are
kept constant during simulation.

The file simulation mode simulates the transmission of a file by the
desired user. So the bit stream of the desired user consists of the bits of
the file that has to be transmitted. The other users in the system again
transmit either only ones, or only minus ones, or random ones and minus
ones. The simulator outputs again the number of transmitted bits, the
number of incorrectly detected bits and the bit-error-rate, but it also writes
the detected bits to a file. This way the received file can be compared to
the file that was transmitted. Again all the synchronous CDMA model
parameters are kept constant during simulation.

The next four simulation modes all generate bit-error-rate (BER) esti-
mates as a function of a series of values for a synchronous CDMA system
model or detector parameter. The probability of a detection error for a bit
of the desired user depends on the bits of the other users in the system that
were transmitted at the same time, because those bits determine the inter-
ference present in the system. Therefor the simulator has to simulate all
the possible combinations of bits for the other users in the system in order
to get a good estimate of the bit-error-rate. The bit that is transmitted by
the desired user however is not important and is kept 1 all the time. This
is similar to the conditioning on the bits of the other users that was needed
in Chapter 3 to obtain an analytical expression for the probability of error.
Because the occurrence of a detection error is a rare event a large number of
transmitted and detected bits may have to be simulated in order to obtain
enough detection errors to reliably estimate the bit-error-rate. These four
simulation modes therefor repeat the simulation of all the possible combi-
nations of bits for the other users in the system until a certain number of
detection errors is reached. This whole procedure is repeated for each value
of the series of values of the CDMA model or detector parameter that is
varied. Apart from the bit-error-rate these simulation modes all also out-
put the number of detection errors and the number of transmitted bits that
were simulated, for each value of the series of values of the CDMA model or
detector parameter that is varied.

The BER/SNR simulation mode can be used to obtain estimates of the
bit-error-rate for different values of the signal-to-noise ratio (SNR). The
other CDMA model parameters are kept constant during simulation.

The BER/users simulation mode can be used to obtain estimates of the
bit-error-rate for different values of the number of active users in the system.
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The other CDMA model parameters are kept constant during simulation.
The BER/NFR simulation mode can be used to obtain estimates of

the bit-error-rate for different values of the received energy of one of the
interfering users in the system. This simulates the near-far effect. The
other CDMA model parameters are kept constant during simulation.

The BER/I simulation mode can be used to obtain estimates of the bit-
error-rate of the blind adaptive MMSE detector as a function of the number
of iterations of the adaptation rule. So after each iteration of the adaptation
rule the bit-error-rate is determined. The CDMA model parameters are kept
constant during simulation.

5.1.4 Simulator Input and Output

Simulator input and output is performed trough files. The simulator reads
the properties of the system that has to be simulated and the simulation
mode that has to be used from a file and writes the simulation results to a
file. This has the advantage that both the simulation results and the system
properties that were used to generate those results are saved.

Matlab functions are provided to generate plots from the simulation
results of the BER/SNR, BER/users, BER/NFR and BER/I simulation
modes. These functions can plot the confidence intervals of the estimated
bit-error-rate. A confidence interval gives the probability that, given a prob-
ability distribution function P (x) with mean µ, a measurement falls within
an interval x centered around µ, so

CI(x) = CI(x− µ, x+ µ) =

∫ µ+x

µ−x
P (x)dx. (5.6)

Since the simulated transmitter, channel and detectors are all memoryless,
detection errors occur as a sequence of independent random events in time
and can therefor be modelled as a Poisson process. Therefor in this case
P (x) is the probability distribution function of the Poisson process. The
number of detection errors obtained from the simulator is then used as a
mean for creation of a Poisson distribution. The inverse Poisson probability
distribution function in Matlab is now used to calculate the lower- and
upper bounds on the number of detection errors from the created Poisson
distribution, for a specified percentage of confidence. These bounds, together
with the simulated number of bits, are then used to plot the confidence
intervals.

5.1.5 Implementation

The simulator is implemented as a command line program, written in the C
programming language. Command line programs have the advantage that
they can easily be called from within other applications, like for example
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Matlab. This allows the use of Matlab scripts for automated execution of a
number of simulations with different simulation parameters.

The C programming language was chosen because it generates fast run-
ning programs compared to for example Matlab, which is important con-
sidering the large number of transmitted and detected bits that have to be
simulated to obtain reliable results. C also has the advantage that it is
supported by most DSP platforms, so algorithms implemented for the sim-
ulator can be ported relatively easily to a DSP. A disadvantage of using C
compared to Matlab is that C does not provide all the library functions that
Matlab provides for simulating communications systems.

All synchronous CDMA model and detector parameters in the simulator
are represented as double precision floating point numbers for the most
accurate representation. This comes at the cost of increased simulation
times because double precision floating point operations on most processors
require more clock cycles to execute than their single precision equivalents.

5.2 Simulation Results

In this section the simulation results, obtained with the simulator described
in the previous section, for the conventional, blind adaptive MMSE and PIC
detectors will be presented.

In all simulations a maximal length sequence with length 31 is used to
generate the spreading sequences for the different users. Since short codes
are used the processing gain in the simulations is also 31. A maximal length
sequence with length 31 can generate only 31 different spreading sequences,
therefor the simulated systems supports 31 users maximum. Maximal length
sequences can be generated using a linear feedback shift register [5]. To gen-
erate the sequences used for the simulations in this section a linear feedback
shift register with 5 states and feedback connections for bit 2 and 5 is used.

5.2.1 Conventional Detector

Figure 5.1 shows the bit-error-rate of the conventional detector as a function
of the signal-to-noise ratio (SNR) of the desired user in a ten user CDMA
system with perfect power control. Plotted are the simulation result and
the analytical expression for the bit-error-rate of the conventional detector
(3.12) that was obtained in Chapter 3. The 95% confidence intervals of
the simulation result are plotted as well. From the figure it can be clearly
seen that the plot of the simulation result and the plot of the analytical
expression are almost identical. The plot of the analytical expression for the
bit-error-rate of the conventional detector lies within the 95% confidence
intervals of the simulation result. This indicates that the simulator gives
reliable simulation results for the bit-error-rate of the conventional detector.
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Figure 5.1: BER/SNR plot conventional detector (ten users, processing gain
= 31, perfect power control)
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Figure 5.2: BER/SNR plot conventional detector for two different sets of
signature sequences (ten users, processing gain = 31, perfect power control)
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When Figure 5.1 is compared to Figure 3.11 it can be seen that the
simulated conventional detector delivers a similar level of bit-error-rate per-
formance as the conventional detector in Figure 3.11. The difference can be
explained by the fact that the exact signature sequences that were used by
Buehrer and others [2] to obtain Figure 3.11 are not known. The simulation
results in this Chapter are therefor obtained using (probably) different sig-
nature sequences. That the used signature sequences can cause a relatively
large difference in bit-error-rate can be clearly seen from Figure 5.2. This fig-
ure again shows the bit-error-rate of the conventional detector as a function
of the signal-to-noise ratio, but this time for two different sets of signature
sequences. Sequence set 1 is the set of signature sequences that was used to
obtain Figure 5.1 and is used for all the other simulations described in this
section. Sequence set 2 is a set of signature sequences with length 31 that
can be generated by a 5 state linear feedback shift register with feedback
connections for bit 1, 2 and 5. Although sequence set 2 appears to deliver
better bit-error-rate performance, the other simulations described in this
section will all use sequence set 1, because it was already used to generate
a lot of the simulation results before the performance of sequence set 2 was
studied.

5.2.2 Blind Adaptive MMSE Detector

Before the blind adaptive MMSE detector can be simulated a proper step
size µ has to be found that results in an x sequence that is close to xopt,
where xopt is the x sequence that results in a global minimum of the mean
output energy and thus the minimum mean square error. According to
equation (4.28) the maximum value for µ is determined by the maximum
amplitude among all users in the system and the noise level. In the case
of perfect power control with the amplitudes of all the users in the system
equal to 1 for 1dB of signal-to-noise ratio equation (4.28) indicates that
blind adaptive MMSE algorithm will run stable for a step size µ = 1.4 or
smaller. However, when the blind adaptive MMSE detector is simulated
with this step size, all amplitudes equal to 1 and a signal-to-noise ratio of
1dB, the algorithm turns out to be unstable. So equation (4.28) appears,
at least for this particular case, to be incorrect. In [6] it is stated that the
approximations that were used to derive equation (4.28) become exact when
the crosscorrelations between the signature sequences in the system go to
zero. So equation (4.28) may not give a reliable upper limit for the step
size µ because the crosscorrelations between the used signature sequences
are too high. However this assumption has not been verified.

By starting at a step-size µ = 1 and gradually reducing the step size
it was found that the blind adaptive MMSE algorithm is stable and will
generate an x sequence that is close to xopt for a 10 user 10dB signal-to-
noise ratio, perfect power control system with a step size of µ = 10−4.
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Figure 5.3: Convergence for 5 elements of the x sequence for varying CDMA
model parameters. Default parameters: µ = 10−4, 10 users, 10dB SNR,
Perfect Power Control
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In Figure 5.3 the values of the first 5 elements of the 31 element long
x sequence of the blind adaptive MMSE detector are plotted as a function
of the number of iterations of the adaptation algorithm for the x sequence
4.26). In each of the subfigures one of the CDMA model parameters or the
blind adaptive MMSE step size µ is changed. The adaptation algorithm
for the x sequence performs one iteration each symbol time. Since the the
simulator uses short code signature sequences with a length of 31 chips one
iteration has a duration of 31 chip times.

In Figure 5.3(a) the values of the first 5 elements of the 31 element x
sequence of an blind adaptive MMSE detector with µ = 10−4 are plotted for
a 10 user, perfect power control CDMA system where the amplitudes of all
the users are equal to 1 and the signal-to-noise ratio is 10dB. It can be seen
that the values of the plotted elements of the x sequence have converged
to the values of the optimal x sequence after about 12000 iterations of the
adaptation rule. This can be seen because the values hardly change anymore
after that number of iterations, indicating that the minimum of the output
energy has been reached. Since one iteration corresponds with one symbol
time, 12000 iterations correspond with 1.25 seconds when a symbol rate of
9600bps is used.

For Figure 5.3(b) the step size of the blind adaptive MMSE detector
is increased to µ = 5 · 10−4, all the other parameters are kept the same
as in 5.3(a). The figure clearly shows that the values of the elements of
the x sequence converge after fewer iterations as in 5.3(a). The estimated
values for the elements of the x sequence however continue to vary for each
iteration after convergence has been reached. Therefor the obtained estimate
for the optimal x signature at any iteration number after the x signature
has converged is less accurate than in Figure 5.3(a).

In Figure 5.3(c) the step size is changed back to µ = 10−4 and the signal-
to-noise ratio is decreased to 5dB. If this figure is compared to Figure 5.3(a)
it appears that the signal-to-noise ratio does not have a lot of influence on
the convergence or accuracy of the values of the x sequence.

For Figure 5.3(d) the signal-to-noise ratio is changed back to 10dB and
the amplitudes of the interfering users in the system are changed to 20. The
elements of the x sequence converge to their optimal value very fast, but,
as in Figure 5.3(b), the obtained estimates for the optimal values of the
elements of the x sequence at any iteration number after the x sequence has
converged is less accurate. For this particular case it would be beneficial to
choose a smaller step size µ to trade a larger number of iterations needed
for convergence for a more accurate estimate of the optimal x sequence.

Finally in Figure 5.3(e) the total number of users in the system is de-
creased to 5 and the amplitudes of the interfering users are changed back
to 1, so the situation of perfect power control returns. In this situation the
x sequence reaches convergence after fewer iterations than in Figure 5.3(a).
The values that the elements of the x sequence converge to are also smaller
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Figure 5.4: BER/I plot. Blind adaptive MMSE detector (µ = 10−4, ten
users, processing gain = 31, A interferers 20)

than the values to which the elements converge in 5.3(a). Since the system
contains less users, there are less possible combinations for the interference
and therefor the optimal value for the x sequence is found sooner. Also be-
cause the system contains less users, more elements of the x sequence can be
used to cancel the interference caused by one interfering user and therefor
the individual components of the x sequence can remain smaller.

To show the influence of the x sequence on the bit-error-rate in Figure
5.4 the bit-error-rate of the blind adaptive MMSE detector with µ = 10−4

is plotted as a function of the number of iterations of the adaptation rule
for the x sequence. So after each iteration of the adaptation rule the bit-
error-rate is determined. The system that is simulated is a ten user CDMA
system with interferer amplitudes 20. This system was also simulated to
obtain Figure 5.3(d). Figure 5.4 shows that the x sequence is converged
after about 100 iterations, after which the bit-error-rate begins to vibrate.
From the low bit-error-rate performance that the detector achieves it can be
concluded that the obtained estimate of the optimal x sequence is not very
accurate.
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Figure 5.5: BER/I plot. Blind adaptive MMSE detector (µ = 5 · 10−5, ten
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In the discussion of Figure 5.3(d) it was suggested that the accuracy
of the estimate of the optimal x sequence in a system with large interferer
amplitudes can be improved by using a smaller step size µ. This is done in
Figure 5.5. For this figure the same simulation is performed as for Figure
5.4, but this time the blind adaptive MMSE detector has a step size of
µ = 5 · 10−5. When Figure 5.5 is compared to Figure 5.4 it clearly shows
that convergence of the x sequence to its optimal value takes more iterations,
but the bit-error-rate performance that the detector achieves after the x
sequence is converged is also better.

From the simulations described above it can be concluded that the x se-
quence of the blind adaptive MMSE detector has to converge to the optimal
x sequence xopt in order for the detector to achieve its optimal bit-error-rate
performance. It can also be concluded that the values for the elements of the
x sequence that are obtained when adaptation of the x sequence is stopped
after it has converged are not necessarily the most accurate estimation of
the values of the elements of the xopt sequence, because the values of the x
sequence continue to ’vibrate’ around the optimal values. So the x sequence
basically goes trough two stages: during the first stage it converges to the
optimal sequence xopt and during the second stage the values of x ’vibrate’
around the optimal values.

The blind adaptive MMSE detector in the simulator can operate in two
modes, a ‘training’ mode and a ‘detection’ mode, as described in subsection
5.1.2. Only during the ‘training’ mode the x sequence of the detector is
updated. During the ‘detection’ mode the x sequence is kept constant. The
‘training’ mode of the simulated detector is used when the values of the x
sequence have not yet converged to the values of the optimal x sequence and
the detector therefor is not adapted to the simulated system. The ‘detection’
mode is always used after the training mode, so when the detector has
adapted to the simulated system. Since the x sequence goes trough two
stages, the ‘training’ mode of the blind adaptive MMSE detector consists of
two stages as well. In the first stage the x sequence is just updated according
to the adaptation rule for a certain number of iterations. It is assumed
that this number of iterations is enough for the x sequence to converge, so
this stage can be called the ‘convergence’ stage. In the second stage the x
sequence is also updated for a certain number of iterations, but the average
x sequence over this stage is calculated as well. At the end of the stage the x
sequence of the detector is replaced by the calculated averaged x sequence, so
this stage can be called the ‘averaging’ stage. This way an averaged estimate
of the values of the optimal x sequence is obtained that are hopefully closer
to the actual values of the optimal x sequence than a single estimate. The
number of iterations for each of these stages can be specified by the user of
the simulator. In order to be able to chose the number of iterations for the
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‘convergence’ stage the user should have an idea about how many iterations
of the adaptation rule for the x sequence are required for the x sequence to
converge to the optimal value for the system that is simulated. The number
of iterations that is chosen for the ‘averaging stage’ is less important, but
should be relatively large in order to get a proper average.

For each simulation mode that is described in section 5.1.3 the simulator
always starts the blind adaptive MMSE detector in the ‘training’ mode.
In this mode all users in the system, including the desired user, transmit
random bits for the number of iterations that the user of the simulator
specified for the ‘convergence’ and ‘averaging’ stages. These random bits are
used to adapt the detector to the system that is simulated. After that the
detector is switched to the ‘detection’ mode and the users start to transmit
the bit streams as indicated in the description of the simulation modes in
section 5.1.3. In case of a simulation mode in which one parameter of the
synchronous CDMA model or the detector is varied this whole procedure is
repeated for each value of the series of values for this parameter. When a
BER/SNR simulation for a signal-to-noise ratio varying from 0 to 10dB with
1dB increments is used as an example this means that the detector is started
in the ‘training’ mode. The ‘convergence’ and ‘averaging’ stages are than
executed to adapt the detector to the system with a signal-to-noise ratio
of 0dB. When the user specified number of iterations for ‘convergence’ and
‘averaging’ stages are executed the detector is switched to the ‘detection’
mode and the bit-error-rate of the system with a signal-to-noise ratio of
0dB is determined. The simulation for a signal-to-noise ratio of 0dB is now
complete, so the detector is switched back to the ‘training’ mode. Again the
‘convergence’ and ‘averaging’ stages are executed, but this time to adapt
the detector to the system with a signal-to-noise ratio of 1dB. After that
the detector is switched to ‘detection’ mode again and the bit-error-rate for
1dB signal-to-noise ratio is determined. This process is continued for the
whole range of signal-to-noise ratios.

It is not practical to include a ‘training’ mode in implementations of the
blind adaptive MMSE detector for use in actual CDMA systems, because
than the detector would have to be switched to ‘training’ mode each time
when one of the CDMA system parameters changes. This would interrupt
the normal detection process which is of course not possible. So the blind
adaptive MMSE detector in actual CDMA systems has to adapt its x se-
quence during normal detection. This results of course in a lot of detection
errors when the detector is just turned on and has not yet adapted. This
will have to be solved by using error detection or error correction. However
after a certain number of detected bits the detector will have reached con-
vergence and achieve its optimal bit-error-rate for the system. Provided that
the CDMA system parameters change gradually from now on the detector
will not drift far from convergence, because the adaptation algorithm can
quickly adapt to small changes in the CDMA system parameters.
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Figure 5.6: BER/SNR plot for ‘trained’ and ‘untrained’ blind adaptive
MMSE detector (µ = 10−4, ten users, processing gain = 31, perfect power
control)
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That the ‘training’ mode is very important for the bit-error-rate perfor-
mance of the blind adaptive MMSE detector can be clearly seen from Figure
5.6. In this figure two BER/SNR simulations of the blind adaptive MMSE
detector with step size µ = 10−4 are plotted for a ten user, perfect power
control CDMA system. In the first BER/SNR simulation the number of
iterations for the ‘convergence’ and ‘averaging’ stages are both set to 0, so
the detector is not adapted to the system when the detector is switched to
‘detection’ mode and simulation to determine the bit-error-rate is started.
Contrary to a ‘normal’ BER/SNR simulation of the blind adaptive MMSE
detector the x sequence of the detector now is updated during the simulation
to determine the bit-error-rate. The second BER/SNR simulation is a ‘nor-
mal’ BER/SNR simulation of the blind adaptive MMSE detector in which
the detector is first adapted to the system in the ‘convergence’ and ‘averag-
ing’ stages of the ‘training’ mode before the bit-error-rate is determined. In
this particular case 25000 iterations are chosen for the ‘convergence’ stage
and 10000 iterations are chosen for the ‘averaging’ stage. The minimum
number of iterations required for the ‘convergence’ stage can be determined
from Figure 5.3(a) in which the components of the x sequence are plotted
as a function of the number of iterations of the adaptation rule for the x
sequence. The number of iterations for the ‘convergence’ stage that is used
here is chosen a widely larger than the number of iterations needed for con-
vergence of the x sequence as shown in Figure 5.3(a) just to be certain that
the x sequence has converged. Figure 5.6 clearly shows for each value of
the signal-to-noise ratio that has been simulated that the blind adaptive
MMSE detector that is adapted to the system has a better bit-error-rate
performance than the detector that has not had the chance to adapt to the
system.

The answer to the question if it is realistic to assume that the blind
adaptive MMSE detector is always adapted to the CDMA system and thus
achieves its optimal bit-error-rate performance depends on the system the
detector is used in. If for example the number of active users in the system
changes often it is probably not realistic to assume that the blind adaptive
MMSE detector has enough time to converge its x sequence to the optimal
x sequence before the system changes again. When simulating those kinds
of systems it is not realistic to have a training mode that is long enough for
complete convergence of the x sequence. How long it takes to converge the x
sequence depends on the data rate used in the system, since the x sequence is
adapted for each received symbol. So in high data rate systems convergence
is reached faster than in low data rate systems. The systems simulated in
this thesis are assumed to change relatively slowly, so in those systems the
blind adaptive MMSE detector will have enough time to converge. Therefor
in all simulations of the blind adaptive MMSE detector in this thesis the
training mode is long enough for complete convergence of the x sequence
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Figure 5.7: BER/SNR plot. MMSE detector and blind adaptive MMSE
detector (µ = 10−4, ten users, processing gain = 31, perfect power control)

unless it is stated otherwise.

In Figure 5.7 the bit-error-rate of the simulated blind adaptive MMSE
detector is compared with the analytical bit-error-rate of the MMSE detector
(3.34) for a number of signal-to-noise ratios. The figure shows that the blind
adaptive MMSE detector achieves the same bit-error-rate performance as the
MMSE detector when the x sequence of the blind adaptive MMSE detector
has converged to xopt, the value of the x sequence that results in a global
minimum of the output energy and thus in a global minimum of the mean
square error.

5.2.3 PIC Detector

In this subsection the statements made about the PIC detector in section
4.2 will be verified with simulation results. One of the first statements made
about the PIC detector in section 4.2 is that both implementations of the
detector, the narrowband implementation and the wideband implementa-
tion, have the same theoretical performance. Since both implementations of
the PIC detector are available in the simulator, this statement can be easily
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Figure 5.8: BER/SNR plot. Narrowband / wideband PIC detector (ten
users, processing gain = 31, perfect power control)

verified with a simulation.

In Figure 5.8 BER/SNR simulations are shown for a 2-stage narrowband
and a 2-stage wideband PIC detector used in a ten user CDMA system
with perfect power control. The figure clearly shows that both detectors
have exactly the same bit-error-rate performance. Since the narrowband
implementation of the PIC detector requires less computations for detection
of a bit than the wideband implementation, for the short code systems
considered in this thesis, it is used for the rest of the simulations of the
PIC detector in this section.

In Figure 5.9 the influence of the number of stages of the PIC detector
on its bit-error-rate performance is studied. The figure shows the bit-error-
rate as a function of the signal-to-noise ratio of a 2-stage and a 3-stage
narrowband PIC detector in a ten user CDMA system with perfect power
control. It can be seen that the 3-stage PIC detector achieves a lower bit-
error-rate in the high signal-to-noise ratio region. This can be explained by
the fact that the 3-stage PIC detector can produce more reliable estimates
for the multiple access interference and therefor also more reliably cancels
the multiple access interference. Since the influence of the multiple access
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Figure 5.9: BER/SNR plot. 2-stage / 3-stage narrowband PIC detector (ten
users, processing gain = 31, perfect power control)
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Figure 5.10: BER/SNR plot. Full-cancellation / partial-cancellation 3-stage
narrowband PIC detector (ten users, processing gain = 31, perfect power
control)

interference on the bit-error-rate becomes more important in the high signal-
to-noise ratio region, the advantages of the 3-stage PIC detector mainly
become apparent for higher signal-to-noise ratios.

In section 4.2 it was shown that the decision statistic of the PIC detector
is biased, which will have a negative effect on the bit-error-rate performance.
To improve this performance it was suggested to introduce partial cancel-
lation factors into the cancellation stages of the PIC detector as proposed
by Correal et al. [3]. In Figure 5.10 BER/SNR simulations are shown for
two 3-stage narrowband PIC detectors in a 10 user CDMA system with
perfect power control. The partial cancellation factors of both the first and
the second stage of cancellation of the first detector are set to 1. So this
detector in fact performs full cancellation in both of the cancellation stages.
The partial cancellation factors of the first stage of cancellation of the sec-
ond detector are set to 0.5. The partial cancellation factors of the second
stage of cancellation of this detector are set to 1. So this detector performs
partial cancellation in its first cancellation stage and full cancellation in its
second cancellation stage. Figure 4.2 shows that the detector that uses par-
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Figure 5.11: BER/SNR plot. Actual amplitudes / estimated amplitudes
3-stage partial cancellation narrowband PIC detector (ten users, processing
gain = 31, perfect power control)

tial cancellation has a better performance in the high signal-to-noise ratio
region. Again the fact that this improvement mainly shows in the high
signal-to-noise ratio region can be explained by the fact that in that region
multiple access interference becomes of more importance for the bit-error-
rate. So when a detector is better capable of cancelling this multiple access
interference, this will mainly show in the high signal-to-noise ratio region.

So far all the PIC detectors simulated in this section have had perfect
knowledge of the received amplitudes of the signals of all the users in the
system. As was already stated in section 4.2 this information is normally not
directly available to the detector, but has to be estimated from the received
signal. One way of doing this is using the soft decisions for each user in the
system as an estimate for the received amplitude of that user. In Figure
5.11 the effect on the bit-error-rate of using estimated amplitudes instead of
actual amplitudes is shown. Figure 5.11 displays the BER/SNR curves of
two 3-stage narrowband PIC detectors with a partial cancellation factor of
0.5 for the first cancellation stage in a 10 user CDMA system with perfect
power control. One of the detectors has perfect knowledge of the received
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Figure 5.12: BER/SNR detector comparison with perfect power control (ten
users, processing gain = 31)

amplitudes of all the users in the system, the other detector estimates the
received amplitudes from the soft decisions. In this figure it can be clearly
seen that using estimated amplitudes results in less reliable cancellation of
multiple access interference, since the detector using estimated amplitudes
has higher bit-error-rates in the high signal-to-noise ratio region than the
detector using the actual amplitudes. This is caused by the fact that the
soft decisions are not very reliable estimates of the received amplitudes.
The estimates improve however after more stage of cancellation have been
performed.

5.2.4 Detector Comparison

In this subsection the performance of the conventional, the blind adaptive
MMSE and the PIC detectors will be be compared for a number of CDMA
systems using simulations.

In Figure 5.12 the bit-error-rate simulation results of the conventional,
blind adaptive MMSE and PIC detector arecompared for a range of signal-
to-noise ratios for a 10 user CDMA system with perfect power control. For
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comparison purposes the analytical bit-error-rates for the conventional and
the MMSE detector are shown as well. Before the bit-error-rate is deter-
mined the simulated blind adaptive MMSE detector is adapted to the system
in ‘training’ mode during 25000 ‘convergence’ stage iterations and 10000 ‘av-
eraging’ stage iterations, using a step size µ = 10−4 for every value in the
range of signal-to-noise ratios. The simulated PIC detector is a 3-stage nar-
rowband PIC detector using estimated amplitudes with partial cancellation
factor 0.5 for the first stage of cancellation and partial cancellation factor
1 for the second stage of cancellation. The figure clearly shows that the
multiuser PIC and blind adaptive MMSE detectors achieve a far lower bit-
error-rate than the conventional detector for the same signal-to-noise ratio.
So using multiuser detection is even advantageous in a perfect power con-
trol system, in which the conventional detector performs a lot better than
in systems without power control. When Figure 5.12 is compared to Fig-
ure 3.11, which is taken from Buehrer and others [2], it can be seen that
the conventional, blind adaptive MMSE and PIC detector simulated in this
section achieve similar performance as the conventional, MMSE and PIC
detector simulated by Buehrer and others [2]. The small differences that are
found can be explained by the fact that the exact signature sequences used
by Buehrer are not known.

In Figure 5.13 the simulations of Figure 5.12 are repeated for a CDMA
system without power control, in which the amplitudes of the interfering
users are 20 times the amplitude of the desired user. The bit-error-rate
performance of the conventional as well as the PIC detector reduces to about
0.5 for this system, while the performance of the blind adaptive MMSE
detector is not affected at all. This result could already be expected from
studying Figure 3.12, which is also taken from Buehrer and others [2]. Figure
3.12 shows the bit-error-rate for the desired user of a number of detectors
as a function of the received energy ratio between the desired user and
an interfering user. The figure clearly shows that the bit-error-rate of the
conventional and the PIC detector worsens when the received energy of the
interfering user becomes larger than the received energy of the desired user.

For the conventional detector this can be explained by the fact that
it treats multiple access interference as noise, so when the received energy
of the interfering user increases it has the same effect as an increased noise
level in the system. The PIC detector however is supposed to cancel multiple
access interference and should therefor not show such a bad increase in bit-
error-rate when the multiple access interference increases. Unfortunately
the PIC detector has to know the amplitudes of the components of the
individual users in the received signal to perform cancellation. Since these
amplitudes are not known at the detector they have to be estimated from the
received signal. These estimates are not very reliable for the weak users in
the first stage of cancellation, which can still be noticed in the later stages of
cancellation and therefor also in the detection results, as already explained
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Figure 5.13: BER/SNR detector comparison with A interferers 20 (ten users,
processing gain = 31)
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Figure 5.14: Performance degradation in near-far channels detector compar-
ison (three users, SNR = 5dB, processing gain = 31)

in Chapter 3. This explains the high bit-error-rates of the simulated PIC
detector for large interferer amplitudes. When the PIC detector in some way
can obtain reliable amplitude estimates, for the small as well as the large
amplitude users, the bit-error-rate of the PIC detector actually improves
when the the interferer amplitudes increase [14].

Figure 5.14 shows the bit-error-rate for the desired user of the conven-
tional, blind adaptive MMSE and PIC detector as a function of the received
energy ratio between the desired user and one of the interfering users in a
three user CDMA system. The received energy of the other interfering user
is equal to the received energy of the desired user. So this figure is similar
to Figure 3.12 and shows the performance of the detectors in near-far sit-
uations. The simulated blind adaptive MMSE detector is adapted to the
system in ‘training’ mode for every value in the range of received energy
ratios before the bit-error-rate for that received energy ratio is determined,
using the same ‘training’ mode parameters as before. The simulated PIC
detector again is a 3-stage narrowband PIC detector using estimated ampli-
tudes with partial cancellation factor 0.5 for the first stage of cancellation
and partial cancellation factor 1 for the second stage of cancellation.
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Figure 5.15: User capacity detector comparison, (SNR = 8dB, processing
gain = 31, perfect power control)

Figure 5.14 shows a similar degradation in bit-error-rate for the conven-
tional detector as Figure 3.12 for increasing interference. The degradation
in bit-error-rate for the PIC detector in Figure 5.14 however is by far not as
strong as in Figure 3.12.

It is assumed that this is caused by the fact that the crosscorrelation of
the signature sequence of the desired user with the signature sequence of the
strong interferer used to obtain Figure 3.12 is larger than the crosscorrelation
of the sequences of these users used for Figure 5.14. In case of a larger
crosscorrelation, more interference from the strong interferer will show up
in the soft decisions of the desired user. Since the exact signature sequences
used by Buehrer are not known, this can unfortunately not be proved.

Figure 5.15 shows a plot of the bit-error-rate of the simulated conven-
tional, blind adaptive MMSE and PIC detectors as a function of the number
of users in the CDMA system. The signal-to-noise ratio is set to 8dB and
it is assumed that the CDMA system has perfect power control. The simu-
lated blind adaptive MMSE detector is adapted to the system in ‘training’
mode for every number of users before the bit-error-rate for that number of
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users is determined, using the same ‘training’ mode parameters as before.
The simulated PIC detector again is a 3-stage narrowband PIC detector
using estimated amplitudes with partial cancellation factor 0.5 for the first
stage of cancellation and partial cancellation factor 1 for the second stage of
cancellation. The plotted curves show that the bit-error-rates of all three de-
tectors increase when the number of active users in the system and thus the
multiple access interference increases. The plotted curves also show that
the blind adaptive MMSE detector and the PIC detector (in this perfect
power control situation) can better deal with the increased multiple access
interference than the conventional detector. When Figure 5.15 is compared
to 3.10 which is a similar plot for a similar system from Buehrer and others
[2] it can be seen that both figures are quite similar up to about ten users.
For larger numbers of users the bit-error-rates in Figure 5.15 increase more
rapidly than those in Figure 3.10. This may be explained by the fact that
the set of signature sequences used by Buehrer has lower crosscorrelations
for the signature sequences of the higher numbered users.

To get an idea about how big the differences in bit-error-rate between the
different detectors really are Figure 5.16 shows the results of a simulation
of an image transmission by one user in a ten user CDMA system without
power control. The received amplitudes of the other users are 20 times the
amplitude of the user that is transmitting the image. The image is a 267 by
400 pixel uncompressed image with 24 bit RGB data per pixel, so the total
image size is 2563200 bits. In Figure 5.16(a) the original image is shown.

Figure 5.16(b) shows the reconstructed image when the conventional
detector is used to detect the bits of the image transmission in the CDMA
system described above. The simulated conventional detector achieves a
bit-error-rate of 0.44 (1135278 errors in 2563200 detected bits).

Figure 5.16(c) shows the reconstructed image when an blind adaptive
MMSE detector that is not yet adapted to the system is used to detect
the bits of the image transmission. The simulated blind adaptive MMSE
detector does adapt its x sequence with a step size µ = 10−4 while the
image bits are received and achieves a bit-error-rate of 0.11 (281887 errors
in 2563200 detected bits).

Finally Figure 5.16(d) shows the reconstructed image when an blind
adaptive MMSE detector that is adapted to the system is used to detect
the bits of the image transmission. The simulated blind adaptive MMSE
detector is adapted in training mode during a 25000 iterations ‘convergence’
stage and a 10000 iterations ‘averaging’ stage with a step size µ = 10−4 and
achieves a bit-error-rate of 0.000032 (82 errors in 2563200 detected bits).

A PIC detector that uses amplitudes estimated from the soft decisions
achieves a similar bit-error-rate as the conventional detector for the high
interference CDMA system that is considered here. So the reconstructed
image for the PIC detector would be similar to the reconstructed image of
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the conventional detector and is therefor not shown in Figure 5.16.

5.3 Conclusions

• A simulator for synchronous CDMA systems using the conventional,
blind adaptive MMSE, or narrowband or wideband PIC detectors has
been developed.

• The developed simulator can simulate the supported detectors for a
variety of synchronous CDMA system and detector parameters.

• Comparison of the simulated bit-error-rate results of the conventional
detector with analytically obtained bit-error-rate results shows that
the simulator works correctly.

• Simulation of the conventional detector with two different sets of sig-
nature sequences shows that the bit-error-rate quite heavily depends
on the used signature sequences.

• The equation for the maximum value of the step size µ for which
the blind adaptive MMSE detector is stable, that was mentioned in
Chapter 4, appears to be incorrect.

• The x sequence of the blind adaptive MMSE detector has to converge
to the optimal x sequence xopt before the detector will achieve its
optimal bit-error-rate performance.

• The values for the elements of the x sequence that are obtained when
adaptation of the x sequence is stopped after it has converged are not
necessarily the most accurate estimation of the values of the elements
of the xopt sequence, because the values of the x sequence continue to
’vibrate’ around the optimal values after convergence has been reached.

• In order to achieve the optimal bit-error-rate performance with the
blind adaptive MMSE detector the simulator uses a two stage ‘training’
mode to adapt to the CDMA system before the actual simulation is
performed.

• It has been shown that this ‘training’ mode has a large influence on
the bit-error-rate simulation results that are obtained for the blind
adaptive MMSE detector.

• When the blind adaptive MMSE detector is adapted to the CDMA
system it achieves the same bit-error-rate performance as the MMSE
detector.
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(a) Original image (b) Conventional detector

(c) ’Untrained’ blind adaptive MMSE detec-
tor

(d) ’Trained’ blind adaptive MMSE detector

Figure 5.16: Simulation of transmission of an image (ten users, SNR = 10dB,
A interferers 20).
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• The simulation results show that the narrowband and the wideband
implementation of the PIC detector achieve exactly the same bit-error-
rate performance.

• The bit-error-rate performance of the PIC detector can be improved
by adding additional cancellation stages.

• Experiments with a partial cancellation factor in the first cancellation
stage of the PIC detector show that the bit-error-rate performance can
be improved by using a partial cancellation factor.

• Simulation results show that amplitude estimation from the soft deci-
sions stages has a quite large negative influence on the bit-error-rate
performance of the PIC detector. So there is room for improvement
by using better amplitude estimation techniques.

• Using the blind adaptive MMSE and PIC multiuser detectors is even
advantageous in perfect power control CDMA systems in which the
conventional detector achieves its optimal performance.

• The performance of the blind adaptive MMSE detector is hardly in-
fluenced by different received amplitudes.

• The PIC detector however shows disappointing performance in case of
different received amplitudes, because of the fact that the amplitude
estimation technique it uses becomes unreliable in case of strongly
differing received amplitudes. This effect so far has not been studied
extensively in literature.

• The bit-error-rate of all three of the detectors increases when the num-
ber of active users in a perfect power control CDMA system increases.
The blind adaptive MMSE and PIC detector however can support a
larger number of active users in the system while still achieving the
same bit-error-rate as the conventional detector for a smaller number
of active users. This shows that the PIC detector handles multiple ac-
cess interference better than the conventional detector as long as the
received amplitudes do not differ strongly.

The converged blind adaptive MMSE detector and the PIC detector
achieve almost similar bit-error-rate performance in perfect power control
CDMA systems. In systems with different received amplitudes the bit-error-
rate performance of the converged blind adaptive MMSE detector is far
better than the bit-error-rate performance of the PIC detector. This is
the first reason for choosing the blind adaptive MMSE detector for DSP
implementation. The second reason for choosing the blind adaptive MMSE
detector for DSP implementation is that no existing DSP implementations
of this detector are known, while DSP implementations of the PIC do exist.





Chapter 6

Blind Adaptive MMSE DSP

Implementation

In this chapter implementation of the blind adaptive MMSE detector on the
Texas Instruments ’C6711 DSP starter kit is described. The blind adap-
tive MMSE detector is chosen for DSP implementation for two reasons, as
already stated in the previous chapter. The first reason is that in systems
with different received amplitudes the bit-error-rate performance of the con-
verged blind adaptive MMSE detector is far better than the bit-error-rate
performance of the PIC detector. The second reason for choosing the blind
adaptive MMSE detector for DSP implementation is that no existing DSP
implementations of this detector are known, while DSP implementations of
the PIC do exist.

Considering the time-frame of the project it was not possible to create a
real-time implementation of the blind adaptive MMSE detector that oper-
ates on real-time generated received signals. Instead it was chosen to study
the detected-bits-per-second performance of the blind adaptive MMSE de-
tector that can be achieved on a ’C6711 DSP. This performance test consists
of detection on a received CDMA signal that is stored in memory on the
DSP board. During the detection process the blind adaptive MMSE detec-
tor code can be timed to obtain the detected-bits-per-second performance.
The detected bits are also stored in memory on the DSP board so that they
can be compared with, for example, the detected bits of the simulator for
the same received CDMA signal. This way it can be ensured that the DSP
implementation of the blind adaptive MMSE detector is functionally correct.

In the next section the ’C6711 DSP starter kit will be described briefly.
After that the overall implementation of the blind adaptive MMSE per-
formance test is discussed. Then the architecture of the ’C6711 DSP is
explained in order to understand how the blind adaptive MMSE detector
algorithm can be optimized for the ’C6711 DSP. Optimization of the blind
adaptive MMSE detector algorithm for the ’C6711 DSP is discussed after

93
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that. The last section of this chapter presents the conclusions that can be
drawn from the DSP implementation of the blind adaptive MMSE detector.

6.1 C6711 DSP Starter Kit

The Texas Instruments ’C6711 DSP starter kit is a DSP board containing
an 150 MHz Texas Instruments TMS320C6711 floating point digital signal
processor (DSP), 16 MB SDRAM, 128 KB Flash memory and a Texas In-
struments TLC320AD535 16-bit data converter. The DSP starter kit can
be connected to a PC trough a parallel port cable.

The ’C6711 DSP starter kit is accompanied by a number of development
tools consisting of a C compiler, assembler, linker and an integrated develop-
ment environment containing a visual debugger and profiler. The provided
C compiler provides useful feedback about how C code can be further opti-
mized and can achieve performances exceeding 70% of the performance of
similar code written in hand optimized assembly [4].

The ’C6711 DSP Starter Kit was chosen because it is one of the DSP
platforms available at the Laboratory of Signals & Systems that satisfies
the two main requirements for implementation of the blind adaptive MMSE
performance test: a floating point DSP and a relatively large memory. Im-
plementation of the blind adaptive MMSE detector does not require a float-
ing point processor, but it simplifies and speeds up the development process
because fixed point arithmetic precision does not have to be taken into ac-
count. A fixed point implementation of the algorithm can than always be
derived from the working floating point implementation. The DSP plat-
form requires a relatively large memory because the received signal and the
detected bits have to be stored.

6.2 Blind Adaptive MMSE Performance Test Im-

plementation

The blind adaptive MMSE performance test consists of two C programs, one
running on the DSP and one running on the PC to which the DSP is con-
nected. These two programs communicate trough real-time data exchange
(RTDX) [7]. RTDX enables transmission and reception of data between a
host computer (PC) and a DSP target system using so called RTDX channels
without stopping the applications running on the PC and the DSP.

The task of the PC program is to read received CDMA signal data
from disk and transfer it to the DSP and to retrieve the detected bits from
the DSP and store them in a file on the PC. The received CDMA signal
data is generated by the simulator described in the previous chapter. The
simulator code has been modified to include an option to save the received
signal to disk as a binary stream of floating point numbers. In addition the
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simulator saves the originally transmitted bits and the detected bits of the
simulated detector. In this way, the detected bits of the DSP detector and
the simulated detector can be compared to each other and to the originally
transmitted bits.

The DSP program takes care of the DSP side of the RTDX communi-
cation process, stores the received signal in memory and of course performs
blind adaptive MMSE detection. The implementation of the blind adaptive
MMSE detector on the DSP always operates in the mode in which the x
sequence is updated, this in contrast to the simulator (see subsection 5.1.2).
This mode of the blind adaptive MMSE detector is the most computation-
ally intensive and therefor limits the detected-bits-per-second performance.
So, for a fair comparison of the detection results, the DSP blind adaptive
MMSE detector has to be compared with a simulated blind adaptive MMSE
detector that has not been ’trained’ and updates its x sequence during de-
tection.

To simplify the code of the blind adaptive MMSE detector for the DSP,
it is limited to using length 31 spreading sequences. By default the detec-
tor uses the first spreading sequence that is generated by the linear shift
feedback register that was used to generate the spreading sequences for the
simulations described in Chapter 5. This spreading sequence is hard-coded
into the C program that is running on the DSP. So, in order to change the
used spreading sequence the DSP program has to be recompiled.

Using RTDX turned out to be quite cumbersome because the RTDX
channels have limitations for the amount of data that can be transferred
in one RTDX data transfer. Since the received signal of, for example, a
bit-error-rate simulation for a number of signal-to-noise ratios, is a few
megabytes large, the received signal has to be transferred to the DSP in
a number of RTDX transfers. Since the overhead of an RTDX data transfer
appears to be quite large, transferring the received signal to the DSP over
the parallel port interface takes quite some time. RTDX also limits the pos-
sibilities of profiling the code on the DSP, since it appears to use some of
the same resources as the profiler. So either RTDX or the profiler can be
active. Even with these limitations RTDX still appeared to be the only way
to transfer a relatively large amount of data from the PC to the memory on
the DSP board and back when the DSP board is connected to the PC using
a parallel port or JTAG interface. When an internal PCI DSP board is used
there are probably other and better ways of transferring data between the
PC and the DSP.

6.3 ’C6711 Architecture

In this section the ’C6711 architecture and instructions are summarized.
This summary is limited to the information that is needed for implementa-
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tion and optimization of the blind adaptive MMSE detector algorithm for the
’C6711 DSP. More information about the architecture of the TMS320C6000
series of DSPs to which the ’C6711 belongs can be found in [12] or in [4].

As with conventional processors, the ’C6711 is composed of three main
parts: the Central Processing Unit (CPU), memories and peripherals, all
connected by internal buses. In addition the ’C6711 has an External Memory
Interface (EMIF) for connection to common memory devices and also a Host
Port Interface (HPI).

The CPU, which is the heart of the DSP, is on its turn composed of
four elements: the program control unit, two data paths, control registers
and test, emulation, control and interrupt logic. The program control unit
fetches, dispatches and decodes instructions. The two data paths are then
used to execute these instructions. The control registers are used for inter-
rupt control and to support floating point operations.

The two data paths in the CPU are known as data path 1 and data
path 2. Each data path has four execution units known as .L, .M, .S, and
.D, a register file containing 16 32-bit general-purpose registers and multiple
busses for data communication between each data path and memory, data
communication within each data path and data communication between the
two data paths. See Figure 6.1. Since the register files of data path 1 and 2
are known as respectively register file A and register file B, data path 1 is
also referred to as data path A and data path 2 is also referred to as data
path B. These names for the data paths are used in Figure 6.1.

In the execution units of each data path the instructions are executed.
Execution of an instruction is pipelined on a pipeline with ten phases. Dif-
ferent types of instruction require a different number of these phases and
thus a different number of clock cycles to complete their execution. It is
however possible to schedule instructions so that execution of an instruction
on an execution unit starts just one cycle after execution of the previous in-
struction on the same execution unit has started. This way each execution
unit can output a result every cycle as long as there are enough instructions
that can be scheduled in such a way that the pipelines of all the execution
units remain completely filled.

All four execution units in a data path operate on 32-bit operands and
execute instructions simultaneously. However, the .L and .S units can also
operate on 40-bit operands. Each unit executes a specific set of operations,
which can be seen as a limitation because, for example, only one multipli-
cation per cycle can be executed on a data path.

The .L units (.L1 for datapath 1 and .L2 for datapath 2) are 40-bit in-
teger and 32-bit floating point Arithmetic and Logic Units (ALUs). These
two units can be used for:

• 32/40-bit integer arithmetic and compare operations
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Figure 6.1: ’C67xx CPU Data Paths
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• single/double precision floating point arithmetic operations

• integer to floating point and floating point to integer conversions

• 32-bit logical operations

• normalization and bit count operations

• saturated arithmetic for 32/40-bit operations.

The .M units (.M1 and .M2) are two hardware multiplier units capable of
performing 16-bit by 16-bit signed and unsigned integer multiplications and
single and double precision floating point multiplications.

The .S units (.S1 and .S2) contain 32-bit integer ALUs and 40-bit shifters.
These units can be used for:

• 32-bit integer arithmetic, logic and bit field operations

• single/double precision floating point compare operations

• single/double precision floating point absolute value operations

• single/double precision floating point reciprocal/square root reciprocal
estimation

• 32/40-bit shifts

• branches (.S2 only when using a register)

• register transfers to and from the control registers (.S2 only)

• Constant generation.

The data units (.D1 and .D2) can be used for the following operations:

• Load and store with 5-bit constant offset

• Load and store with 15-bit constant offset (.D2 only)

• Load double word (64-bit data) with 5-bit constant offset

• 32-bit additions/subtractions

• Linear and circular address calculations.

Each data path contains a register file composed of 16 32-bit general
purpose registers (A0-A15 for data path 1 and B0-B15 for data path 2).
These registers can support 32- and 40-bit integer or fixed point data and
64-bit double precision floating point data. To create 40- or 64-bit operands
two registers have to be concatenated; these registers must be from the
same data path and ordered as odd (MSB) first and even (LSB) second.
The general-purpose registers can be used for:
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Instruction Cycles .L .M .S .D

MPYSP 4
√

ADDSP 4
√

SUBSP 4
√

SUB 1
√ √

B 6
√

LDW 5
√

LDDW 5
√

STW 1
√

CMPLTSP 1
√

Table 6.1: Overview of clock cycles and execution units for the instructions
used by the blind adaptive MMSE detector algorithm.

• data

• data address pointers

• conditional registers

The blind adaptive MMSE detector algorithm uses the floating point
multiply and add operations to calculate the matched filter and adaptive
filter outputs. To calculate the updated x sequence in addition the floating
point subtract operation is needed. In contrast to the simulator the blind
adaptive MMSE performance test uses single precision floating point num-
bers, therefor for all these operations the single precision variant is used. So
the blind adaptive MMSE detector implementation used by the blind adap-
tive MMSE performance test uses the following floating point arithmetic
instructions: MPYSP, ADDSP and SUBSP.

Calculation of the matched filter outputs, the adaptive filter outputs
and the updated x sequence all require loops that execute a fixed num-
ber of times. These loops can be implemented using the integer subtract
instruction (SUB) and the branch instruction (B).

To load the received signal and the filter coefficients from memory the
load word instruction (LDW) is used. On the ’C6711 DSP it is possible
to load two single-precision floating point numbers at once using the load
double word instruction (LDDW). To store the updated x sequence the store
word instruction (STW) is used.

The detected bit that the blind adaptive MMSE detector returns depends
on the sign of the output value of the adaptive filter. This can for example
be implemented by using the single-precision floating point compare-for-less-
than instruction (CMPLTSP).

Table 6.1 indicates for each of these instructions the number of clock
cycles they take to complete and the execution units they can be executed
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on. This table can be used as an easy reference during optimization of the
blind adaptive MMSE detector algorithm in the next section.

6.4 Blind Adaptive MMSE Detector Optimization

In this section optimization of the blind adaptive MMSE detector algorithm
for the ’C6711 DSP is described. All C code in this section is compiled
using the C compiler that accompanies the ’C6711 DSP starter kit with op-
timizations enabled. After each optimization step the blind adaptive MMSE
detector algorithm is tested by comparing the detected bits that the algo-
rithm generates with the detected bits generated by the simulator to ensure
that the optimized blind adaptive MMSE detector algorithm still functions
correctly.

The blind adaptive MMSE detector algorithm is described by equations
(4.24), (4.25), (4.26) and (4.27) in Chapter 4. A direct translation of these
equations into C code leads to the following code:

int sgn(float a) {

if (a >= 0)

return 1;

else

return -1;

}

int blind_adaptive_mmse(float *r, float *s, float *x) {

float Zmf, Z;

int c;

Zmf = 0;

Z = 0;

for (c = 0; c < NUM_CHIPS; c++)

Zmf += r[c] * s[c];

for (c = 0; c < NUM_CHIPS; c++)

Z += r[c] * (s[c] + x[c]);

for (c = 0; c < NUM_CHIPS; c++)

x[c] = x[c] - 2 * MU * Z * (r[c] - Zmf * s[c]);

return sgn(Z);

}

The r pointer points to an array of 31 floats, containing samples of the
received signal, s points to an array of 31 floats containing the signature
sequence and x points to an array of 31 floats in which the x sequence is
stored. The variable Zmf is used to store the output of the matched filter
and the variable Z is used to store the output of the blind adaptive MMSE
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Instruction Cycles

function overhead + prolog loop 1 19
loop 1 9 * 7 = 63
epilog loop 1 + prolog loop 2 39
loop 2 8 * 5 = 40
epilog loop 2 + prolog loop 3 60
loop 3 6 * 10 = 60
epilog loop 3 + function overhead 47

Total 328

Table 6.2: Clock cycles used by different parts of the blind adaptive MMSE
detector algorithm.

filter. NUM_CHIPS is a constant with value 31, the number of chips of the
used signature sequence. MU is a constant with value 10−4, the step size of
the blind adaptive MMSE detector.

The number of clock cycles that this implementation of the blind adap-
tive MMSE detector algorithm takes to execute on the ’C6711 can be found
by counting the number of cycles used by the blind_adaptive_mmse func-
tion in the assembly code that the C compiler outputs. To obtain the correct
number of total used cycles the number of cycles used in loops have of course
to be multiplied by the number of times the loop is executed. Since the C
compiler often unrolls loops the number of times the assembly loop is exe-
cuted is often smaller than the number of times the C loop is executed. The
number of cycles used by the blind_adaptive_mmse function above is split
out over the different parts of the function in table 6.2.

The code above is not optimal for a number of reasons. A first opti-
mization can be seen by realizing that the second loop can also be written
as:

for (c = 0; c < NUM_CHIPS; c++)

Z += r[c] * x[c];

Z += Zmf;

This greatly reduces the number of additions required to calculate Z. A
second optimization is to combine the first and the second loop into one
loop. This is possible since the first and second loop both run over the
number of chips and the second loop is not dependent on the result of the
first loop. Combining the first and second loop into one loop reduces the loop
overhead and thus makes the code more efficient. A third optimization can
be realized by reducing the number of calculation performed in the third loop
by moving the calculation of 2 * MU * Z out of this loop. This is possible
because both MU and Z are independent of the loop variable c. A fourth and
last optimization can be realized by replacing the call to the sgn function
with the code of this function, which removes the call overhead. These last
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two optimizations are probably performed as well by the C compiler when
optimizations are turned on. Implementing all these optimizations results
in the following code:

int blind_adaptive_mmse(const float * restrict r,

const float * restrict s,

float * restrict x) {

float Zmf, Z, MU2Z;

int c;

Zmf = 0;

Z = 0;

for (c = 0; c < NUM_CHIPS; c++)

{

Zmf += r[c] * s[c];

Z += r[c] * x[c];

}

Z += Zmf;

MU2Z = 2 * MU * Z;

for (c = 0; c < NUM_CHIPS; c++)

x[c] -= MU2Z * (r[c] - Zmf * s[c]);

if (Z >= 0)

return 1;

else

return -1;

}

The const keywords in the function declaration indicate to the C com-
piler that the values pointed to by the r and s pointers are not modified by
the function. The restrict keywords in the function declaration indicate
to the C compiler that the r, s and x pointers point to different objects in
memory that do not overlap. This helps the compiler to optimize memory
access, because it now knows that instructions that are accessing memory
trough different pointers are not accessing the same memory location and
can therefor be executed in parallel.

The number of cycles used by the optimized blind_adaptive_mmse func-
tion is split out over the different parts of the function in table 6.3. The
table shows that the second loop in the optimized C code uses the same
number of cycles as the third loop in the original C code indicating that
the compiler did indeed already perform the two optimizations for the third
loop of the original code. The first loop of the optimized C code however
only takes 63 cycles to execute, while it performs the work of the first and
the second loop of the original code.

To further optimize the blind adaptive MMSE detector algorithm for
the ’C6711 DSP the lengths of the arrays used to store the samples of the
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Instruction Cycles

function overhead + prolog loop 1 18
loop 1 9 * 7 = 63
epilog loop 1 + prolog loop 2 53
loop 2 6 * 10 = 60
epilog loop 2 + function overhead 47

Total 241

Table 6.3: Clock cycles used by different parts of the optimized blind adap-
tive MMSE detector algorithm.

received signal, the signature sequence and the x sequence all have to be
increased by one. Since these arrays are now an even number of floats long
(32 to be exact) the LDDW instruction of the ’C6711 DSP can now be used
to read two floating point numbers from these arrays at once. To make the
C compiler produce code that uses the LDDW instruction the code of the
blind adaptive MMSE algorithm has to be modified as follows:

int blind_adaptive_mmse(const double * restrict r,

const double * restrict s,

double * restrict x) {

float Zmf0, Z0, Zmf1, Z1, MU2Z;

int c;

Zmf0 = 0;

Z0 = 0;

Zmf1 = 0;

Z1 = 0;

for (c = 0; c < ((NUM_CHIPS + 1) / 2); c++)

{

Zmf0 += _itof(_hi(r[c])) * _itof(_hi(s[c]));

Zmf1 += _itof(_lo(r[c])) * _itof(_lo(s[c]));

Z0 += _itof(_hi(r[c])) * _itof(_hi(x[c]));

Z1 += _itof(_lo(r[c])) * _itof(_lo(x[c]));

}

Zmf0 += Zmf1;

Z0 += Z1;

Z0 += Zmf0;

MU2Z = MU2 * Z0;

for (c = 0; c < ((NUM_CHIPS + 1) / 2); c++)

{

x[c] = _itod(_ftoi(_itof(_hi(x[c])) - MU2Z *

(_itof(_hi(r[c])) - Zmf0 * _itof(_hi(s[c])))),

_ftoi(_itof(_lo(x[c])) - MU2Z *
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Instruction Cycles

function overhead + prolog loop 1 13
loop 1 7 * 16 = 112
epilog loop 1 + prolog loop 2 27
loop 2 8 * 8 = 64
epilog loop 2 + function overhead 41

Total 257

Table 6.4: Clock cycles used by different parts of the optimized blind adap-
tive MMSE detector algorithm using double reads.

(_itof(_lo(r[c])) - Zmf0 * _itof(_lo(s[c])))));

}

if (Z0 >= 0)

return 1;

else

return -1;

}

The pointers in the function declaration are changed to double pointers
to read two float values as one double from the received signal, signature
sequence and x sequence arrays. Since in the loop two float values are read
at once, the loop counters have to be divided by two and the operation in
the loop has to be performed twice. The code in the loop uses the _hi(),
_lo() and _itof() intrinsics to access the individual float values in the
read doubles. The _ftoi() and _itod() intrinsics are used to store two
float values in one double to update the x sequence. Intrinsics usually are
special functions that map directly to inlined ’C6711 instructions, but the
specific intrinsics used here do not map to any instructions but provide
direct access to the two individual 32-bit components in a 64-bit value and
circumvent the C type system. More information about intrinsics can be
found in the TMS320C6000 Programmer’s Guide [13].

The number of cycles used by the optimized blind_adaptive_mmse func-
tion using double reads is split out over the different parts of the function in
table 6.4. The table shows that the number of cycles used by the algorithm
has increased compared to the previous version. This is caused by the fact
that the first loop almost uses double the number of cycles compared to the
previous version. The second loop together with its epilog actually uses less
cycles as the second loop plus epilog in the previous version.

Studying the information provided in the assembly output of the first
loop of the code shows why the loop takes so many cycles. The first reason
is that the compiler for some reason has not unrolled the loop. The second
reason is that the compiler did not optimally divide the instructions over
the available execution units:
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;* Resource Partition:

;* A-side B-side

;* .L units 3* 1

;* .S units 0 1

;* .D units 2 1

;* .M units 3* 1

;* .X cross paths 1 1

;* .T address paths 2 1

The execution units on data path A are used more than the execution units
on data path B. This is mainly caused by the uneven number of instructions
in the loops that have to be executed on the .D units with the result that
the .D units are used an uneven number of times.

The TMS320C6000 Programmer’s Guide [13] suggest unrolling the loop
as a solution for uneven used resources. Unrolling the first loop results in
the following code for the unrolled first loop:

Zmf0 = 0;

Z0 = 0;

Zmf1 = 0;

Z1 = 0;

Zmf2 = 0;

Z2 = 0;

Zmf3 = 0;

Z3 = 0;

for (c = 0; c < ((NUM_CHIPS + 1) / 4); c+=2)

{

Zmf0 += _itof(_hi(r[c])) * _itof(_hi(s[c]));

Zmf1 += _itof(_lo(r[c])) * _itof(_lo(s[c]));

Z0 += _itof(_hi(r[c])) * _itof(_hi(x[c]));

Z1 += _itof(_lo(r[c])) * _itof(_lo(x[c]));

Zmf2 += _itof(_hi(r[c + ((NUM_CHIPS + 1) / 4)])) *

_itof(_hi(s[c + ((NUM_CHIPS + 1) / 4)]));

Zmf3 += _itof(_lo(r[c + ((NUM_CHIPS + 1) / 4)])) *

_itof(_lo(s[c + ((NUM_CHIPS + 1) / 4)]));

Z2 += _itof(_hi(r[c + ((NUM_CHIPS + 1) / 4)])) *

_itof(_hi(x[c + ((NUM_CHIPS + 1) / 4)]));

Z3 += _itof(_lo(r[c + ((NUM_CHIPS + 1) / 4)])) *

_itof(_lo(x[c + ((NUM_CHIPS + 1) / 4)]));

}

Zmf0 = Zmf0 + Zmf1 + Zmf2 + Zmf3;

Z0 = Z0 + Z1 + Z2 + Z3;

Z0 += Zmf0;

The rest of the code remains the same as the code in the optimized
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Instruction Cycles

function overhead + prolog loop 1 21
loop 1 9 * 4 = 36
epilog loop 1 + prolog loop 2 36
loop 2 8 * 8 = 64
epilog loop 2 + function overhead 41

Total 198

Table 6.5: Clock cycles used by the optimized blind adaptive MMSE detector
algorithm using double reads with unrolled first loop

version of the blind adaptive MMSE algorithm that uses double reads. The
number of cycles used by the optimized blind_adaptive_mmse function
using double reads with an unrolled first loop is given in table 6.5. So
manually unrolling the first loop results in the loop taking only 36 cycles
to execute. The table actually shows that the compiler unrolled loop 1 one
more time, since the loop code is only executed 4 times.

The first loop of the optimized blind adaptive MMSE algorithm in total
has to perform 64 multiplications (2 multiplications for each of the 32 chips
in the signature sequence). The ’C6711 contains two hardware multipliers
that can deliver one multiplication result per cycle each when their pipelines
are kept full constantly. So the theoretical minimum number of cycles in
which the first loop of the optimized blind adaptive MMSE detector can
execute is 32 cycles. The obtained 36 cycles for this loop is quite close to
this optimum and further optimization of this loop is not useful.

There might still be some room for improvement for the second loop of
the double read version of the optimized blind adaptive MMSE algorithm.
The information for this loop provided by the compiler in the assembly
output shows that the used resources are not divided equally over data path
A and data path B. There are however no C optimization tricks left that
might improve the resource allocation. It is possible to rewrite the loop
in assembly which makes manual resource allocation possible and might
result in a further optimized loop. The time constraints of the project this
thesis describes unfortunately made further exploration in this direction
impossible.

6.5 Detected Bits Per Second Performance

Time constraints and difficulties with profiling severely limited the detected
bits per second performance analysis that could be performed on the blind
adaptive MMSE algorithm optimized for the ’C6711 DSP. In this section
the few results for the detected bits per second performance that could be
obtained will be discussed.
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The number of clock cycles used by the ’C6711 optimized blind adaptive
MMSE algorithm, as obtained in the previous section, gives an indication
for the theoretical minimum number of cycles that is required by the detec-
tion algorithm for detection of a bit. It is a minimum because the required
number of cycles can increase because of, for example, pipeline stalls caused
by slow memory access. Since these effects cannot be seen in the generated
code, the only way to obtain a realistic value for the number of cycles that
the implemented detector requires for detection of a bit is trough profiling.
From the profile results that have been obtained it appeared that the ac-
tual number of cycles required for detection of a bit is a lot higher than the
number of cycles that execution of the blind_adaptive_mmse theoretically
requires. Not enough profile results have been obtained however to make a
reliable statement about this. Therefor the number of clock cycles required
by the ’C6711 optimized blind adaptive MMSE algorithm for detection of
a bit that was obtained in the previous section will be used for some cal-
culations about the theoretical detected bits per second performance that
can be achieved by an ’C6711 implementation of the blind adaptive MMSE
detector.

The last version of the optimized blind adaptive MMSE detector algo-
rithm described in the previous section required 198 clock cycles for detec-
tion of a bit. For easier calculations this number is rounded to 200 cycles.
The ’C6711 DSP has a 150MHz clock which means that the detector can
detect 750000 bits per second. In Table 6.6 the number of channels a single
’C6711 DSP can detect and the number of DSPs necessary to detect a single
channel for a number of often used data rates in wireless communications is
shown. One channel in this table corresponds with one user. So in case of a
base station with a single DSP for a 9600bps CDMA system, 77 users can
be active simultaneously in the cell of this base station. In the calculation
of the Channel/DSP numbers in Table 6.6 the time it takes the DSP to
switch from detection of one user to detection of another user is not taken
into account. In the calculation of the DSPs/Channel numbers in Table 6.6
the overhead of inter-DSP communication is not taken into account. For all
calculations in Table 6.6 it is assumed that the DSP performs no other tasks
than blind adaptive MMSE detection.

Time constraints did not allow for further research on the hardware that
is currently used in cellular wireless telephony base stations. Therefor it is
unfortunately not possible to draw any conclusions about the practicality
of using blind adaptive MMSE detectors in, for example, cellular wireless
telephony base stations from these results.
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Data rate (bps) Channels/DSP DSPs/Channel

9600 (GSM) 77 0.01
21400 (GPRS 1 time slot) 35 0.03
171200 (GPRS 8 time slots) 4 0.23
144000 (UMTS moving vehicle) 5 0.19
2000000 (UMTS indoor) 0 2.67

Table 6.6: Number of channels supported by a ’C6711 implementation of
the blind adaptive MMSE detector for often used data rates

6.6 Conclusions

• The blind adaptive MMSE detector has been implemented on a Texas
Instruments TMS320C6711 DSP to determine the detected bits-per-
second performance of the blind adaptive MMSE detector on the cur-
rent generation of DSPs.

• The implemented blind adaptive MMSE detector has been optimized
for the ’C6711 architecture.

• The optimized blind adaptive MMSE detector can theoretically detect
750000 bits/s on a 150MHz TMS320C6711 DSP.

• In case of a base station with a single DSP for a 9600bps CDMA
system using blind adaptive MMSE detection, 77 users can be active
simultaneously in the cell of this base station.

• Actual measurements of the demodulated bits per second performance
of the optimized blind adaptive MMSE detector could not be per-
formed because of time constraints.



Chapter 7

Conclusions and

Recommendations

In this chapter the conclusions that can be drawn from the research on
multiuser detection described in this thesis are presented. Recommendations
for further research based on the work described in this thesis are given as
well.

7.1 Conclusions

Several multiuser detection techniques for CDMA systems have been de-
scribed. These detection techniques have been evaluated on their bit-error-
rate performance, required knowledge of received signal parameters and
computational complexity. As a result of this evaluation, the blind adaptive
minimum mean square error detector and the parallel interference cancella-
tion detector have been chosen as the most promising multiuser detectors for
implementation. Both detectors achieve a significantly improved bit-error-
rate, performance compared to the conventional CDMA detector at the cost
of an increased computational complexity. In case of the PIC detector, when
compared to the conventional and blind adaptive MMSE detector, additional
required knowledge of received signal parameters is necessary.

Further analysis of the blind adaptive MMSE detector showed that, by
minimizing the mean output energy, the blind adaptive MMSE detector also
minimizes the mean square error. Therefor the blind adaptive MMSE detec-
tor will achieve the same bit-error-rate performance as the normal MMSE de-
tector. Also, an algorithm for implementation of the blind adaptive MMSE
detector has been derived.

Further literature study of the PIC detector showed that it can be imple-
mented using either a narrowband implementation or a wideband implemen-
tation. Both implementations achieve the same bit-error-rate performance,

109
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but have different computational complexities. Also a method for estimat-
ing the received amplitudes, that are required by the PIC detector but not
by the blind adaptive MMSE detector, is found. The study also showed that
both implementations have a bias in their decision statistic. The effect of
this bias can be reduced by introduction of a partial cancellation factor.

In order to get more experience with the detection algorithms and to
verify the simulation results found in literature, a simulator for the con-
ventional, the blind adaptive MMSE and the PIC detector in synchronous
CDMA systems has been developed. Simulation results obtained with this
simulator confirm the simulation results found in literature.

From simulation of the blind adaptive MMSE detector it appears that the
upper limit on the step size for stability of the adaptation algorithm of this
detector, that is given in literature [6], is incorrect. Simulation of the blind
adaptive MMSE detector further showed that the x sequence of this detector
has to converge to the x sequence that minimizes the mean square error
in order for this detector to obtain its optimal bit-error-rate performance.
To reach this convergence the adaptation algorithm of the blind adaptive
MMSE detector needs a certain amount of time that depends on the CDMA
system parameters and the step size of the adaptation algorithm. When
the CDMA system parameters change, the x sequence that minimizes the
mean square error changes as well and the x sequence of the detector has to
converge again. The blind adaptive MMSE detector will therefor not reach
its optimum bit-error-rate performance in CDMA systems where the system
parameters change within the convergence time of the adaptation algorithm.

Simulation of the PIC detector showed that introduction of a partial
cancellation factor has a positive influence on the bit-error-rate performance
of this detector. The simulation results also showed that the amplitude
estimation that is used in the PIC detector has a negative influence on the
bit-error-rate performance.

Comparison of the simulation results of the conventional, the blind adap-
tive MMSE and the PIC detector shows that both multiuser detectors
achieve a much better bit-error-rate performance than the conventional de-
tector in a perfect power control synchronous CDMA system. Without
power control (and therefor different received amplitudes) the bit-error-rate
performance of the conventional and the PIC detectors deteriorates strongly.
For the conventional detector this is expected because it completely relies on
power control to obtain reasonable bit-error-rate performance. For the PIC
detector the strong deterioration in bit-error-rate performance is caused by
the fact that its amplitude estimation technique is not very reliable with
different received amplitudes. Until now, this effect of the received ampli-
tudes on the bit-error-rate of the PIC detector using amplitude estimation
has not been studied in literature very extensively. When the number of
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active users in the CDMA system increases the bit-error-rate performance
of all three detectors deteriorates. However the blind adaptive MMSE and
the PIC detector continue to have a better bit-error-rate performance than
the conventional detector. This also shows that the PIC detector handles
multiple access interference better than the conventional detector as long as
the received amplitudes do not vary strongly.

A DSP implementation of the blind adaptive MMSE detector has been
developed because this detector performs better in CDMA systems with dif-
ferent received amplitudes and DSP implementation of this detector is not
known to have been shown in literature before. The experience obtained
from simulation of the blind adaptive MMSE detector have been used for
implementation of this detector on the DSP. The main goal of the DSP
implementation of the blind adaptive MMSE detector is to determine the
detected-bits-per-second performance that can be achieved by this detector
on the current generation of digital signal processors. In order to obtain the
maximum level of performance the blind adaptive minimum mean square
error algorithm has been optimized for the architecture of the Texas In-
struments ’C6711 DSP. The optimized blind adaptive MMSE detector can
theoretically detect one user of a 750000 bits per second synchronous CDMA
system on a 150MHz DSP. Actual measurements of the detected-bits-per-
second performance could not be obtained because of time constraints.

In order to make a statement about the practicality of the use of a
DSP implementation of the blind adaptive MMSE detector in CDMA base
stations two research steps will still have to be performed. First the data
rate, number of supported users and other requirements on the base sta-
tion have to be studied in order to determine the processing power require-
ments of the base station. After that a single DSP test-bed can be used to
do detected-bits-per-second measurements of the DSP version of the blind
adaptive MMSE detector to determine if and at what cost the processing
power requirements of the base station can be met.

The DSP implementation of the blind adaptive minimum mean square
error detector is not the DSP-based multiuser detection test-bed that allows
real-time evaluation of multiuser detection algorithms for CDMA systems
that was envisioned when the project that this thesis describes started. Nev-
ertheless the developed simulator has been used to study a lot of the aspects
of multiuser detection. The developed DSP implementation of the blind
adaptive MMSE detector gives an indication of detected-bits-per-second per-
formance that can be achieved by a DSP implementation of this detector.
One problem that at least needs to be solved for development of a real-time
version is the data transfer between the DSP and the host PC.
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7.2 Recommendations

• Actual measurements of the detected bits per second performance of
the DSP implementation of the blind adaptive MMSE detector have
to be performed.

• The processing power of the signal processing other than detection that
has to be performed in CDMA receivers has to be studied to determine
the processing power required by the complete CDMA receiver.

• The processing power currently available in CDMA base stations has
to be studied in order to make a statement about the practicality of
the blind adaptive MMSE detector in these base stations.

• Implementation of the blind adaptive MMSE detector in programmable
hardware, as for example an FPGA, could be studied to determine if
a DSP is actually the most suitable hardware for implementation of
such a detector.

• A DSP implementation of the PIC detector could be developed in order
to compare the detected bits per second performance of this detector
with that of the blind adaptive MMSE detector.

• The use of other amplitude estimation techniques in the PIC detector
could be studied.

• The influence of the partial cancellation factor on the bit-error-rate of
the PIC detector for large interferer amplitudes could be studied.

• The stability condition for the blind adaptive MMSE detector can be
studied more thoroughly, starting with an analysis of the validity of
the stability condition given in literature, e.g. [6].

• Testing of DSP implementations of multiuser detectors could be sim-
plified by using PCI based DSP boards, because this simplifies data
exchange between the DSP and the host PC.
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