
Turbo Multiuser Detection
Architectures

M.Sc. Thesis

Gerben Heinen

University of Twente
Department of Electrical Engineering,

Mathematics & Computer Science (EEMCS)
Signals & Systems Group (SAS)
P.O. Box 217
7500 AE Enschede
The Netherlands

Report Number: SAS03.035
Report Date: December 4, 2003
Period of Work: 01/02/2003 – 10/12/2003
Thesis Committee: Prof. Dr. ir. C.H. Slump

ir. F.W. Hoeksema
ir. R. Schiphorst
ir. K.L. Hofstra
ir. J. Potman

Abstract

The discovery of Turbo Codes in 1996 by Berrou et. al. proved to be a
huge boost for the research of channel coding. The Turbo Principle behind
turbo codes was found to be applicable in other areas. One of these areas
is Multiuser Detection. In this thesis, Turbo Multiuser Detection is inves-
tigated in order to answer two main questions. The questions concern the
performance gain that is obtained when turbo multiuser detection is used
instead of non-turbo multiuser detection and the convergence behavior of
turbo multiuser detection.

The performance gain is determined by comparing the bit-error-rate
(BER) chart of a turbo multiuser detection architecture with the BER chart
of a non-turbo multiuser detector. It was found that turbo multiuser detec-
tion results in a dramatical performance gain when Eb/N0 > 3 dB and more
than one iteration is performed.

The convergence behavior of turbo multiuser detection is analyzed with
the help of EXIT charts. EXIT charts are recently proposed by S. ten Brink
as a tool to analyze the convergence behavior of turbo architectures. EXIT
charts are discussed in this thesis. An EXIT chart of a turbo multiuser
detection architecture is created. From this chart, the minimum number of
iterations to obtain the lowest BER possible are found.

EXIT charts are also used to analyze the difference of iterating a-
posteriori and extrinsic information in a turbo architecture. The analysis
shows that EXIT charts of a-posteriori information give results, which con-
tradict the results of simulations on turbo architectures.

i

Acknowledgements

For the electrical engineering curriculum every student has to perform a In-
dividual Research Assignment. Before I started thinking about the subject
of this assignment, I already got interested in signal processing and cellular
wireless mobile communications, because of some courses I took on these
subjects. I contacted Prof. Dr. ir. C.H. Slump of the Signals & Systems
laboratory and he told me to contact Fokke Hoeksema and Roel Schiphorst.
With them I worked on RAKE receivers for DS-CDMA systems for my in-
dividual research assignment. This experience led me to contact them again
when I was looking for a subject for my master’s thesis. They offered me
some assignments, from which I choose ’Turbo Multiuser Detection Archi-
tectures’ as the subject of my thesis. Together with Fokke and Roel, Jordy
Potman and Klaas Hofstra became my supervisors. The results of my in-
vestigation from February 2003 until December 2003, are presented in this
thesis.

First of all I wish to thank Prof. Dr. ir. C.H. Slump for allowing me
to perform my master assignment in the Signals & Systems group. I wish
to thank Fokke, Roel, Jordy and Klaas for providing guidance, support and
comments during my master’s assignment, but most of all I would like to
thank them for letting me work with them as a colleague. Whenever I en-
countered a problem, I found difficult to solve immediately, they offered me
guidance. Further I would like to thank the people of the Signals & Systems
group for providing the nice work environment and facilities that made me
able to perform my work. Last but certainly not least, I wish to thank my
family, friends and roommates for their accompany and support during my
studies.

Enschede, December 4, 2003

Gerben Heinen

iii

Contents

Abstract i

Acknowledgements iii

Table of Contents vii

List of Figures xi

List of tables xiii

1 Introduction 1

1.1 Background . 1

1.2 Capacity theory . 2

1.3 Multiuser Detection . 4

1.4 Thesis description . 6

1.5 Nomenclature definition . 9

2 Channel Coding 11

2.1 Convolutional encoders . 11

2.2 Viterbi decoder . 15

2.3 Conclusions . 19

3 Turbo Coding and The Turbo Principle 21

3.1 Concatenated Coding and Iterative Decoding 21

3.2 Turbo Encoders . 25

3.3 Turbo Decoders . 26

3.4 Interleaving . 29

3.5 The Turbo Principle . 30

3.6 Conclusions . 30

v

vi Contents

4 Turbo Multiuser Detection 33

4.1 Serial Concatenated Multiuser Detector and Convolutional
Code . 33

4.2 Hybrid Turbo Multiuser Detection 35

4.3 Conclusions . 36

5 Convergence Behavior and EXIT charts 37

5.1 Convergence Behavior . 37

5.2 Transfer Charts . 38

5.3 EXIT Charts . 44

5.4 Conclusions . 47

6 Soft-input Soft-output (SISO) Algorithms 49

6.1 Convolutional Code Decoders 50

6.1.1 MAP Decoder . 50

6.1.2 Max-Log-MAP Decoder 60

6.1.3 Log-MAP Decoder . 62

6.1.4 Performance and Complexity of MAP decoders 63

6.2 SISO Multiuser Detectors . 63

6.2.1 SISO Soft Cancellation Multiuser Detector 64

6.2.2 Soft Cancellation MUD Complexity 75

6.3 Conclusions . 75

7 Simulations 77

7.1 Implementation . 78

7.2 Verification Simulations . 79

7.2.1 PCCC architecture BER chart 79

7.2.2 PCCC architecture EXIT chart 80

7.2.3 SCCC architecture BER chart 80

7.2.4 SCCC architecture EXIT chart 80

7.2.5 Conclusions . 81

7.3 Turbo Multiuser Detection Simulations 91

7.3.1 Turbo Multiuser Detection Architecture BER chart . 91

7.3.2 Turbo Multiuser Detection Architecture EXIT chart . 92

7.3.3 Conclusions . 92

7.4 A-posteriori & Extrinsic Transfer Charts 100

7.4.1 A-posteriori & Extrinsic Transfer Charts 100

7.4.2 Conclusions . 100

7.5 Conclusions . 103

8 Conclusions and Recommendations 105

8.1 Conclusions . 105

8.2 Recommendations . 106

CONTENTS vii

Bibliography 111

List of Figures

1.1 Power-bandwidth tradeoff for error-free transmission through
noisy, bandwidth-limited channels. 3

1.2 Transmitter model for a direct spread CDMA transmitter . . 5

1.3 DS-CDMA behaviour in the frequency domain 6

1.4 Schematically representation of the organization of this thesis 8

1.5 Nomenclature for coding . 9

1.6 Nomenclature for spreading 9

2.1 Rate 1/2 systematic convolutional encoder 12

2.2 Rate 1/2 recursive systematic convolutional encoder 13

2.3 State diagram of a rate 1/2 systematic convolutional encoder 14

2.4 Trellis diagram of data bitstream ’00110’ encoded with a rate
1/2 systematic convolutional encoder 15

2.5 Trellis diagram of an all-zero dataword in a hard Viterbi decoder 16

2.6 Trellis diagram of an all-zero dataword in a soft Viterbi decoder 18

3.1 Concatenated Coding and Decoding 22

3.2 Concatenated Coding with an interleaver between the encoders 22

3.3 Arrangement of data and parity bits of the code in figure
3.2. O are received errors, X are errors created by the inner
decoder (n1,k1), + are errors created by the outer decoder
(n2,k2). 23

3.4 Generic parallel turbo encoder 25

3.5 Generic serial turbo encoder 25

3.6 Systematic parallel turbo encoder 26

3.7 Decoder for the parallel concatenated code in figure 3.4 . . . 27

3.8 Decoder for the serial concatenated code in figure 3.5 27

3.9 Block interleaver and de-interleaver operation 29

4.1 Serial concatenated Multiuser Detector and Convolutional
Code for K users . 34

ix

x List of Figures

4.2 Serial concatenated Multiuser Detector and Two Convolu-
tional Codes [30] . 35

4.3 Multiuser Detector and Two Parallel Concatenated Convolu-
tional Codes . 36

5.1 Bit error rate for SCCC and PCCC codes 38

5.2 A-priori mutual information as a function of σ 43

5.3 Simulation setup for generating transfer charts of inner de-
coders in an SCCC architecture and for both decoders in a
PCCC architecture . 43

5.4 Simulation setup for generating transfer charts for outer de-
coders in an SCCC architecture 44

5.5 Simulation setup for generating the transfer chart for a mul-
tiuser detector with four users and a AWGN channel with
variance σ2

n . 45

5.6 Simulated trajectories of iterative decoding at Eb/N0 = −1.5dB
and −1dB (symmetric PCC rate 1/3, interleaver size 16.384
systematic bits . 46

6.1 a-priori probability density function of BPSK elements 50

6.2 MAP decoder Trellis for RSC ν = 3 code 52

6.3 SISO Multiuser Detector block for a turbo multiuser detection
architecture . 64

6.4 CDMA transmitter and channel 65

6.5 DS-CDMA behavior in the time domain 66

6.6 Example of a channel model with filter coefficients gk(t) . . . 67

7.1 Simulation results for a PCCC architecture, 100 blocks of
16384 data bits, interleaver size of 16384 bits 85

7.2 Simulation results for a PCCC architecture where a-posteriori
instead of extrinsic information is iterated, 100 blocks of
16384 data bits, interleaver size of 16384 bits 86

7.3 EXIT chart for the PCCC architecture. The Eb/N0 values of
the channel are plotted next to the curves of the decoders.
The decoding trajectory for Eb/N0 = 1.0 dB is plotted in the
figure. 87

7.4 Simulation results for a SCCC architecture, 100 blocks of
16384 data bits, interleaver size of 16384 bits 88

7.5 EXIT chart for the SCCC architecture. The Eb/N0 values of
the channel are plotted next to the curves of the inner de-
coder. The decoding trajectory for Eb/N0 = 0.5 dB is plotted
in the figure. 89

7.6 Comparison of SCCC and PCCC simulations. Iteration num-
bers are next to the lines. 90

LIST OF FIGURES xi

7.7 Simulation results for a turbo multiuser detection architec-
ture, 65536 data bits per block, interleaver size of 65536 bits,
4000 errors per iteration, ρij = 0.75 and 4 users. Iteration
numbers are next to the lines. The dotted curve is iteration
3 in an architecture where extrinsic instead of a-posteriori
information is passed from the decoder to the SISO MUD . . 96

7.8 Simulation results for a turbo multiuser detection scheme
where extrinsic information is iterated between the blocks.
Iteration numbers are next to the curves 97

7.9 Simulation results for non-turbo multiuser detection architec-
tures obtained from [7] and used in [21] 98

7.10 EXIT chart for the turbo multiuser detection architecture.
The Eb/N0 values of the channel are plotted below the curves
of the SISO multiuser detector. Two transfer charts for the
decoder are given; one where the decoder outputs a-posteriori
information and one where the decoder output extrinsic in-
formation. 99

7.11 Transfer charts for an outer decoder in an SCCC architecture
which outputs a-posteriori information and extrinsic informa-
tion. The settings are the same as for the decoder in table
7.1. 101

7.12 Transfer charts for an inner decoder in an SCCC architecture
which outputs a-posteriori information and extrinsic informa-
tion. The settings are the same as for the inner decoder in
table 7.2. 102

List of Tables

6.1 Complexity of different SISO decoders (ν is the constraint
length of the encoder) taken from [23] 64

7.1 Settings for the PCCC encoder in figure 3.6 used for simulations 79
7.2 Settings for the SCCC encoder in figure 3.5 used for simulations 81
7.3 Settings for the transmitter of the users in the turbo multiuser

detection arcitecture of figure 4.1 used for simulations 91

xiii

1

Introduction

In this thesis the turbo principle, in particulary applied to turbo multiuser
detection, is described and analyzed. The turbo principle is based on two
techniques; concatenated coding and iterative decoding. The turbo princi-
ple was first used for turbo coding, but it was found that it could also be
used for other decoding processes, like turbo multiuser detection and turbo
equalization. In the turbo principle information is iterated between decoders
several times, before making a bit decision. Applying the turbo principle
to decoding problems has shown to give good performance, approaching the
Shannon limit, while the overall system’s complexity is not increased.

1.1 Background

In 1948 Claude Shannon introduced his now famous theorem on informa-
tion [34]. Besides other things, he stated that, under certain conditions, it is
possible to send data over a transmission line with an arbitrarily reliability
by using channel coding. However, there is a limit to the capacity of the
channel which depends on the signal power and bandwidth of the transmit-
ted data bits and the noise power of the channel. Shannon did tell us about
this capacity, but he did not tell us how to reach it.

For over 50 years scientist tried to find a code, that would make Shan-
non’s promises come true. A lot of good codes were found, but they still
did not come very close to the limit Shannon introduced. Eventually the
search lead to some desperate remarks like ’All codes are good, except the
ones we can think of ’ made by various people in the coding research com-
munity. Just when people started to get desperate about ever finding this
super-code, Berrou and Glavieux published a paper in 1993 in which they
showed a coding technique that approached the Shannon limit very closely
[6]. The coding technique was baptized with the name ’Turbo-Coding’ and
the corresponding codes were called ’Turbo-Codes’.

Instead of making research on codes obsolete, the discovery of turbo-

1

2 Introduction 1

coding started, what is called by many authors, the renaissance of channel
coding. Codes that were not considered for more than three decades became
interesting again due to the discovery of turbo-coding. As we will see later
the term ’turbo’, does not really apply to the encoding, but more to the
decoding. Later was found that this turbo principle, was also applicable
in other areas of signal processing, like equalization and multi-user detec-
tion. Remarkable is that turbo-coding is build on concatenated coding and
iterative decoding, two techniques that were already known for some time.

1.2 Capacity theory

To understand the need for applying a coding scheme, Shannon’s theorem
is discussed. The discussion in this section is based on [34].

Shannon’s theorem on the capacity of an additive white gaussian noise
(AWGN) channel, states that the maximum reliable transmission rate is
given by:

C

W
= log2

(
1 +

P

N0W

)
= log2

(
1 +

Eb

N0

R

W

)
bits (1.1)

where

C = channel capacity, [bits/s]

W = transmission bandwidth, [Hz]

P = EbR = signal power, [W]

N0 = single-sided noise power spectral density, [W/Hz]

Eb = energy per bit of the received signal, [J]

R = data rate, [bits/s]

So the capacity C is the maximum rate at which information can be sent over
a channel with arbitrarily high reliability, if the source is suitably matched
to the channel [34]. So in an ideal situation the transmission rate R is equal
to the channel capacity C. If we thus set R = C in equation 1.1, we have
for the ideal system

C

W
= log2

[
1 +

Eb

N0

(
C

W

)]
(1.2)

Solving equation 1.2 for Eb/N0, we obtain a relation between Eb/N0 and
C/W = R/W

Eb

N0
=

2C/W − 1

C/W
(1.3)

This equation is plotted in figure 1.1

1.2 Capacity theory 3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−5

0

5

10

15

20

25

30

35

40

45

50

C/W [bits/Hz]

E
b/

N
0

[d
B

]

power limited bandwidth limited

Figure 1.1: Power-bandwidth tradeoff for error-free transmission through
noisy, bandwidth-limited channels.

Shannon proved that if the data rate R is smaller than the channel
capacity C, it is possible to obtain error free transmission by using coding.
The following equations apply,

R ≤ W log2

(
1 +

P

N0W

)
(1.4)

and
Eb

N0
≥ 2C/W − 1

C/W
(1.5)

Using these equations in figure 1.1, we see that at points below and to the
right of the curve, no amount of coding will achieve total reliable communi-
cation. At points above and to the left of the curve error-free transmission
is possible, but perhaps at very high costs.

In figure 1.1 the region where R/W > 1 is called the bandwidth-limited
region and the region where R/W < 1 is called the power-limited region.
This means that if the number of bits/s/Hz is greater than unity, the scheme
is efficient in terms of utilizing bandwidth, while when bits/s/Hz is smaller
than unity, the scheme is efficient in terms of power utilization. Interesting
is to see that when R/W → 0 (i.e., infinite bandwidth), the limiting signal
to noise ratio (Eb/N0) becomes ln(2) or about −1.6dB.

4 Introduction 1

In the discussion above on channel capacity, arbitrarily long blocks of
bits were assumed. In a practical case, however, finite block lengths are
used. The Shannon curve does not give the minimum probability of error
in this case, although for every finite block length scheme there must exist
a minimum probability of error below which no coding scheme can perform
better. In these cases normally increasing Eb/N0 or increasing the block
length, results in a lower bit error probability.

Also it must be noticed that in the regions below or to the right of the
Shannon curve, communications are possible, although not without creating
non-repairable bit errors. This has not to be a problem, since in most
practical cases an acceptable amount of bit errors has to be achieved, instead
of no bit errors at all.

1.3 Multiuser Detection

In mobile communication systems, the ”ether”, that serves as a medium for
sending signals1, is a scarce good. So when more than one user is present
in this ”medium”, it has to share it with other users. Multiuser detection
addresses the problem of reliable demodulation of the signal of the desired
user in the presence of multiple-access interference (MAI) created by the
reception of signals from many other simultaneous users. To be able to
recover the signal of each single user from the signals of other users, the users
must be separated from each other in some kind of way. This separation can
be done in the time domain, in the frequency domain or in the code domain.

When users are separated in the time domain, each user has its own time
slot in which it is allowed to transmit its data. The signal of an user can
interfere with other users because of inter-symbol inference(ISI). A system
that uses the time domain for separation of users is called a Time Division
Multiple Access (TDMA) system.

When users are separated from each other in the frequency domain, each
user has its own private part of the bandwidth on which it can continuously
send its data. A user can interfere with the other users when a doppler
shift into the other users’ frequency band occurs. Also interference can be
caused at the transmitter or receiver because of filter limitations. A system
that uses the frequency domain for separation of users is called a Frequency
Division Multiple Access (FDMA) system.

Finally, users can be separated from each other in the code domain. In
the code domain all users have a unique codeword assigned to them. To avoid
terminology problems in later chapters, we will refer to these codewords as
spreadwords. These spreadwords contain a number of spread bits or chips.

1experiments done by Michealson and Morley have shown that the ”ether” as a medium
for electro-magnetic signals does not exist [15]. The term is used here to aid the explana-
tion of multiuser detection

1.3 Multiuser Detection 5

Spreadwords are orthogonal among each other, have a higher rate than the
data bits and have a length which is called the spreading factor. A data
bit that a user sends, is multiplied with its spreadword and the result is
sent over the channel. At the receiver, the signal is filtered with a filter
matched to the spreadword of the required user. With this system all users
can send at the same time and in the same frequency band. For a more
elaborate explanation of these terms, the reader should refer to [31]. A
system that uses the code domain for separation of users is called a Code
Division Multiple Access (CDMA) system.

The systems above can be combined to create hybrid systems. For ex-
ample, CDMA can be combined with FDMA to form a FD-CDMA system.
In such a system a group of users can be assigned to a frequency band, in
which they use CDMA to separate themselves, while another group can do
the same with the same spreading codes in a different frequency band.

datasource

spread spectrum
code generator

ck(t)

dk(t) sk(t)

Figure 1.2: Transmitter model for a direct spread CDMA transmitter

Since CDMA is used in the remainder of this thesis, we elaborate some
more on it. In section 6.2 this discussion is continued in a more thoroughly
manner. A transmitter diagram for a direct sequence CDMA (DS-CDMA)
transmitter is shown in figure 1.2. The spreadword occupies a much larger
bandwidth than the bandwidth of the data stream, the signal power of this
spreadword, however, is unity. So in a DS-CDMA system the signal power
of the data is spread over a large bandwidth. At the receiver the signal
of the required user is received, but because of other users in the area the
signal is ’polluted’ with their signal together with noise from the channel.
Because of the unique spreadword of the required user, the signal can be
de-spread and thus the sent data stream can be retrieved. In figure 1.3 the
idealized situation in the frequency domain is shown. In figure 6.5 of section
6.2.1 the situation in the time domain is shown. In this section the DS-
CDMA system is further discussed. In a practical situation the spreadwords
of the interfering users won’t be fully orthogonal because, so perfect de-
spreading can not be obtained. The spreadwords are not full orthogonal,
beacuse there only exist a limited number of spreadwords which are fully
orthogonal and the number of users is usually larger than this number of

6 Introduction 1

ω ω ω ω

databit
spread
databit

other user’s
interference

despreading of
user

residual noise after
despreading

Figure 1.3: DS-CDMA behaviour in the frequency domain

spreadwords. When multi-path is present in the channel, the orthogonality
of the spreadwords is even more affected. Together with noise added by the
channel, makes obtaining the required user a challenging task.

1.4 Thesis description

The purpose of the research in this thesis is to investigate the turbo princi-
ple applied to multiuser detection. Two questions are of interest during this
investigation. The first question is: ’what is the amount of performance
gain that can be achieved by using turbo-multiuser-detection instead of
’classical’-multiuser-detection (’classical’=no turbo) and under what condi-
tions and costs can these performance gains be achieved?’. The performance
is evaluated with bit-error-rate (BER) charts of these two systems. The sec-
ond question is: ’what is the convergence behavior of a turbo multiuser
detection architecture?’. The convergence behavior is analyzed with EXIT
charts. An EXIT chart is a newly proposed tool by S. ten Brink, to analyze
the convergence behavior of turbo architectures. The usage of EXIT charts
to analyze turbo-multiuser-detection architectures in this thesis is done for
the first time, to the best knowledge of the author. The EXIT charts are
used to determine how well the turbo-multiuser-detection architecture can
converge to a low BER under different AWGN channel conditions. The
number of users, correlation between spreadwords and used convolutional
code are kept constant in this thesis, although they could be varied to ana-
lyze their influence on the convergence behavior. From the EXIT charts the
number of iterations, to get the lowest BER that is possible, are determined.
The discussion of EXIT charts and the results obtained in this thesis, will
be used in the AWGN project [11].

In figure 1.4 on page 8 the organization of this thesis is represented in
a schematic form. The chapter numbers next to the blocks in the figure,
indicate in which chapter the subject is discussed. Chapters 2, 3, 4 and 6
describe on a system-level, turbo architectures. In these chapters, the main
subject ’Turbo Multiuser Detection’ is divided into two paths: the turbo-
principle path and the multiuser-detection path. In the turbo-principle path,

1.4 Thesis description 7

first channel coding is discussed in chapter 2. In particular convolutional
channel codes are investigated, since these codes are used in turbo architec-
tures. The Viterbi decoder is presented here, since it resembles the MAP de-
coder, which is used in all turbo architectures. The discussion of the Viterbi
decoder will aid in the understanding of convolutional-code-decoding. In
chapter 3 the turbo principle is introduced with the help of turbo codes.
Turbo code architectures contain decoding-algorithms, that accept and pro-
duce log-likelihood ratios (LLR), which are also used in turbo multiuser
detection architectures. In this chapter two turbo code architectures, the
PCCC and SCCC architectures, are introduced. These architectures are
introduced to verify the correct implementation of the decoding-algorithms,
since simulations of these architectures have already been performed in liter-
ature. Multiuser detection, which was briefly discussed in chapter 1, is then
combined with the turbo principle in chapter 4. In this chapter a commonly
used turbo multiuser detection architecture and two, for this thesis invented,
turbo multiuser detection architectures are introduced and discussed. Only
the commonly used architecture is simulated, since no time was available
to simulate the other two architectures. In chapter 6 the decoding- and
multiuser detection algorithms that are used in the turbo code and turbo
multiuser detection architectures are discussed. These algorithms are the
MAP decoder, the Max-Log-MAP decoder, the Log-Map decoder and the
soft-interference-cancellation multiuser detector.

Analysis tools for turbo architectures are the well-known BER charts
and EXIT charts. Chapter 5 describes the EXIT chart analysis-tool for
turbo architectures. First Eb/N0 regions in the BER chart of turbo code
architectures are identified and given a name, based on the EXIT charts of
these architectures. EXIT charts are found to be especially useful in the
water-fall region of BER charts. Next transfer charts are discussed, which
are needed to create EXIT charts. Simulation setups, that are used to create
EXIT charts, are introduced.

In chapter 7 the system category and analysis-tools category are com-
bined to perform simulations. BER and EXIT charts of the PCCC and
SCCC architectures are compared with charts obtained in other literature
to verify the correct implementation of the decoding-algorithms. Next the
BER chart of the turbo multiuser detection architecture is compared with
simulations in literature to verify the correct implementation of the mul-
tiuser detection algorithm.

When all these simulations are performed, the main questions of this
thesis, described at the start of this section, are answered. The first question
is answered by comparing the BER chart of the turbo multiuser detection
architecture with the BER chart of a non-turbo multiuser detector. Areas of
Eb/N0 where the turbo multiuser detection architecture outperforms a non-
turbo multiuser detector, and the conditions that should be met in these
areas are identified and discussed. The second question is answered with an

8 Introduction 1

EXIT chart that is made for the turbo multiuser detection algorithm. For
different values of Eb/N0 the convergence behavior and the number of useful
iterations is analyzed.

Since a limited amount of time is available for the research in this thesis,
some constraints on the system are assumed. The channel considered, is
modelled as an AWGN channel. Multipath and fading are properties of real-
world channels, but were not considered in this thesis. These constraints
directly influence the multiuser detector. Only binary phase shift keying
(BPSK) is used as modulation technique. Other modulation techniques like
quadrature phase shift keying (QPSK) or quadrature amplitude modulation
(QAM) were not considered, although the system can be expanded to include
these modulation techniques. In real-world CDMA systems, synchronization
techniques are used to synchronize all the users. In this thesis, perfect
synchronization between all the users in the CDMA system is assumed.

System

Analysis Tools

Main Subject

Turbo Multiuser Detection

EXIT charts

Conclusions

Channel coding

1

Turbo Principle

Turbo Multiuser
Detection Architectures

SISO detection/decode
algorithms

11

Chpt. 2

Chpt. 3

Chpt. 4

Chpt. 6

Chpt. 5

Chpt. 7

Chpt. 8

objective
• Verify implementation of SISO
algorithms with literature.
• Verify simulation setup for EXIT
charts with literature.
• Simulate BER chart of turbo MUD
and compare with simulations
in literature.
• Apply EXIT charts to turbo MUD:
not performed in literature before.

turbo-path MUD-path

BER charts

1Simulations

Figure 1.4: Schematically representation of the organization of this thesis

1.5 Nomenclature definition 9

databit k

dataword encoder channel

codebit k

codeword

channelbit k

channelword decoder

decoded
data/codebit k

decoded
data/codeword

Figure 1.5: Nomenclature for coding

1.5 Nomenclature definition

In the following chapters different stadia in the encoding of a raw data
stream are discussed. To be able to do this, a nomenclature for the input and
output bits of different stadia are presented. In figure 1.5 the nomenclature
for encoding is presented. The input for an encoder are datawords, which
consists of databits. The output of an encoder are codewords, which consists
of code bits. When the codebits are sent over a channel, the channel outputs
channelwords, which consists of channelbits. After decoding the decoded
data- or codewords are obtained, which consists of decoded data- or codebits.
The variable k is used to denote the a bit.

In figure 1.6 the nomenclature for DS-CDMA spreading is introduced.
An unspread sequence is presented as input to a spreader. The spreader
spreads the input with a spreadword, which consists of chips. The output
of the spreader is a spread sequence.

chip

spreadword

DS-CDMA
Spreader

unspread
sequence

spread
sequence

Figure 1.6: Nomenclature for spreading

2

Channel Coding

Shannon proved that an arbitrarily reliable communication over an AWGN
channel can be achieved by using coding techniques. Since his theorem,
many different coding schemes have been developed. Each scheme has its
advantages and disadvantages, e.g. a coding scheme might achieve very low
bit error probabilities but can have a high computational complexity.

The family of codes that are used to detect and correct bit errors are
called Forward Error Correcting (FEC) codes. They can be split up into
two categories: convolutional- and block codes. Convolutional codes are
used on serial data, one or a few bits at a time, while block codes are used
on long message blocks, which are typically build up out of more than 100
bytes of data [10].

The first FEC code was a single error correcting Hamming block code.
Until that point convolutional error correcting was not seriously considered,
until it got a huge boost when Viterbi launched his now famous maximum
likelihood sequence estimation (MLSE) algorithm for decoding a convolu-
tional code [16]. The Viterbi algorithm can be used for decoding/analyzing
any process that is a markov finite state machine. Other famous block
codes are BCH (Bose-Chaudhuri-Hochquenghem) codes and special subsets
of them, like Reed-Solomon (RS) codes.

In turbo architectures convolutional codes are used, so in section 2.1
we will focus on convolutional codes. The Viterbi decoder will also be
discussed in section 2.2, because of its resemblance with a maximum a-
posteriori (MAP) decoder, which is discussed in chapter 6 and is used in
turbo architectures.

2.1 Convolutional encoders

The following description of convolutional encoders is taken from different
sources, like e.g. [25]. The information is combined and presented in a form
suitable for this thesis.

11

12 Channel Coding 2

A convolutional encoder is a markov finite state machine and takes as
input databits and outputs codebits. An encoder can be represented in dif-
ferent ways, with a generator matrix, a generator polynomial, a logic table,
a state diagram, a tree diagram or a trellis diagram. In literature a convolu-
tional encoder is normally represented with its generator polynomial, state
diagram and/or its trellis diagram. Convolutional encoders are normally
implemented by a set of linear shift registers and modulo-2 adders. The
code rate of an encoder is given by k/n, where k is the number of input
databits and n is the number of output codebits. Figure 2.1 illustrates a
commonly used shift register circuit that generates a rate 1/2 convolutional
code. Other encoders can be created in a straight forward manner, as will
be seen in the forthcoming text. Databits are shifted into the shift registers

u1

o1

o2

s1

g1 = 1 = [1 0 0]

s2

g2 = 1 + D + D2 = [1 1 1]

Figure 2.1: Rate 1/2 systematic convolutional encoder

via connection u1. Every time a new bit is inserted into the shift register,
the bits already in the register are shifted one position to the right. Mem-
ory elements of the shift register are connected to a modulo-2 adder, which
produces the output codebits. There are two modulo-2 adders, so two out-
put codebits are produced for one input databit, hence we have a rate 1/2
convolutional encoder. Which elements of the shift register are connected
to the modulo-2 adders, is determined by the generator polynomial. The
generator polynomial for output code bit o2 is g2 = 1 + D + D2. This for-
mula states that the shift register elements with delay zero (D0 = 1), delay
one (D1 = D) and delay two (D2) must be connected to the adder to ob-
tain the output o2. Since in the convolutional encoder of figure 2.1 codebit
o1 is directly connected to the input databit u1, this encoder is called a
Systematic Convolutional Encoder (SC). Convolutional Encoders with no
input databits directly connected to the output code bits, are called Non-
Systematic Convolutional Encoders (NSC). The encoder in figure 2.1 has a

2.1 Convolutional encoders 13

Memory Constraint Length η = 2. When the number of inputs are added
to the memory constraint length, the Constraint Length ν of the encoder is
found. For the encoder in figure 2.1, ν = 3. The entire generator polynomial
G(D) for the SC encoder in figure 2.1 is,

G(D) =
[
1, 1 + D + D2

]

The generator polynomial has a part before and after the comma. The ’1’
means that the first output should be directly connected to the input, and
the second output should be connected to the shift register with connections
given by 1 + D + D2. Because the largest delay element in the polynomial
is D2, it can be seen that the encoder has a η = 2 and since there is only
one polynomial in equation , there is only one input and thus ν = 3.

When a convolutional encoder has a large constraint length, the code-
words it produces are more complex and thus more powerful, because a large
constraint length results in codewords which have a large Hamming distance.
A large code rate will also produce more complex codewords, although the
amount of redundancy added with a higher code rate is also higher.

Another class of convolutional encoders are Recursive Convolutional En-
coders (RSC). These encoders have a feedback polynomial, which connects
some of the elements of the shift register through a modulo-2 adder to the
input of the shift register. See figure 2.2 for an arbitrarily example of a rate
1/2 RSC encoder with a generator matrix G(D),

G(D) =

[
1,

1 + D + D2

1 + D2

]

RSC encoders can also be systematic or non-systematic. An RSC encoder

u1

o1

o2

s1 s2

g2 = 1 + D + D2 = [1 1 1]

f1 = 1 + D2 = [1 0 1]

Figure 2.2: Rate 1/2 recursive systematic convolutional encoder

has a infinite impulse response (IIR), because of its feedback connections

14 Channel Coding 2

[8]. This results in an infinite response of ones and zeros, when an input
stream is given that consists of ’0’s with only one ’1’. In this way an input
dataword with a very low Hamming distance, results in a codeword with
an infinite Hamming distance, if you wait infinitely long. The only way to
terminate the RSC encoder is to get it back into its all-zero state. This can
be achieved by sending it a suitable terminating dataword. A non-recursive
encoder has a finite impulse response (FIR) and will create codewords with
smaller Hamming distances [8].

The convolutional encoder can also be represented as a state diagram,
which shows for every input into the shift register, to which state the shift
register will go next. The state diagram of the encoder in figure 2.1 is shown
in figure 2.3. A transition caused by a 0 as input is shown by the solid lines,
while a transition caused by a 1 as input is show by the dashed lines. The
lines are called branches. The outputs of the encoder is also shown for every
transition or branch. The first bit is output o1 and the second bit output
o2. From the state diagram it becomes clear why the codewords produced

S1S2=00

S1S2=01

S1S2=10

S1S2=11

0 0

0 1

1 1

1 0

0 1
0 0

1 0

1 1

Inputbit 0

Inputbit 1

Figure 2.3: State diagram of a rate 1/2 systematic convolutional encoder

by a convolutional encoder can be used as a FEC code. The number of
possible jumps from one state to another state is limited. Thus the databits
in a dataword encoded with a convolutional encoder follow a certain path
through the state diagram of the encoder. This path can be represented
by a trellis diagram. Figure 2.4 shows the trellis for the databit stream
’00110’ which is encoded with the convolutional encoder of figure 2.1. The
codeword output for the input dataword can be found by looking at the
output codeword at each branch. For the example in figure 2.4, the output
is ’0000111000’. The output codebits can be sent over a channel using an

2.2 Viterbi decoder 15

S1S2=00

S1S2=01

S1S2=10

S1S2=11

0 0

Inputbit 0

Inputbit 1

0 0

1 1

1 0

0 0

u1=0 u1=0 u1=1 u1=1 u1=0

Figure 2.4: Trellis diagram of data bitstream ’00110’ encoded with a rate
1/2 systematic convolutional encoder

arbitrarily modulation scheme.

Once an input databit stream is encoded to a codebit output stream,
the encoder ends in a certain state. It is possible to add input databits, that
will terminate the encoder to a certain state, e.g. state 0. When an encoder
is not terminated, is is called truncated. When an encoder is terminated
to a state, the decoder needs smaller block-lengths, to decode the codebits
with the same reliability as for a truncated encoder.

2.2 Viterbi decoder

When a codeword is sent over a channel, after modulation, a receiver re-
ceives the channelword and has to decode it to obtain the corresponding
dataword. However, the channelword is corrupted by channel imperfections
(noise, fading, inter symbol interference, etc.). The first practical decoder
for decoding a channelword to a dataword, was introduced by Viterbi [16].
The Viterbi decoder is a Maximum Likelihood Sequence Estimation (MLSE)
decoder. This means that the decoder tries to find the most likely path that
the channelword has followed through the trellis diagram, like in figure 2.4.
So the Viterbi decoder does not minimize the bit error rate (BER), but it
minimizes the error of finding a wrong path.

The Viterbi decoder exists in two forms, namely the hard-decision and
soft-decision form. The hard-decision Viterbi decoder receives hard decided
channelbits from the demodulator, while the soft-decision decoder receives
floating point values from, for example, a matched filter which quantizes
channelbits in more than 2 possible values. The soft-decision decoder out-

16 Channel Coding 2

performs the hard-decision decoder when it comes to minimizing the BER
[14].

To understand the Viterbi decoder, the hard-decision version is first
considered. We saw, that the encoder follows a specific path through the
trellis in order to encode a dataword, by jumping from state to state. The
Viterbi decoder uses the fact that a state transition from one state to an-
other can only consist out of a finite set of possible jumps. Figure 2.5 shows
an all-zero codeword, that is received with errors and is entered in a Viterbi
decoder, which determines the most likely path. In the figure the dataword,

dataword: 0 0 0 0
codeword: 00 00 00 00
channelword : 10 00 10 00
decoded dataword : 0 0 0 0

00

11

00

11

01

10

1 1 2 2

1

2

4

2

3

3

3 4

3

5

4

discarded paths

random decision

s1;s2 = 0;0

s1;s2 = 0;1

s1;s2 = 1;0

s1;s2 = 1;1

Figure 2.5: Trellis diagram of an all-zero dataword in a hard Viterbi decoder

codeword, channelword and the decoded dataword are shown. We assume
that the encoder started in state (S1S2 = 00). The two first codebits are
’00’. Due to channel errors, the receiver received the channelbits as ’10’. It
is known from the state diagram, that the encoder could only have gone to
state (S1S2 = 00) or state (S1S2 = 10) from its beginning state (S1S2 = 00).
At this point there are thus two possible paths in the trellis that could have
been followed by the encoder. A transition to state (S1S2 = 00) would have
occurred when two ’00’ channelbits would have been received and a transi-
tion to state (S1S2 = 10) would have occurred if two ’11’ channelbits had
been received. We calculate the difference between the received channelbits
and the two possible channelbits, to get a metric for the two different paths
that we are considering. The difference we calculate is called the branch-

2.2 Viterbi decoder 17

metric. We assign the branch-metric to the state where the transition from
one state leads to and do that for each possible transition. The branch-
metric can be computed in different ways, where the calculation method
should be selected based upon the channel. In the hard-decision example of
figure 2.5, the Hamming distance is used as branch-metric. The Hamming
distance between the channelbits ’00’ and ’10’ is 1. The Hamming distance
between channelbits ’11’ and ’10’ is also 1. Then the next two channelbits
are considered. For state (S1S2 = 00) the only possible next states are
again state (S1S2 = 00) and state (S1S2 = 10). The next two channelbits
we received are ’00’, for which we can again calculate the Hamming dis-
tances between the two possible bits ’00’ and ’11’ that could have caused
the transition. The Hamming distance between ’00’ and ’00’ is 0, the Ham-
ming distance between ’00’ and ’11’ is 2. We now add these distances to
the already acquired distance 1 of state (S1S2 = 00) in the first step and
put them at the next two possible states (see figure 2.5). The other state
(S1S2 = 10), which got a branch-metric assigned to it, can only go to the
next states (S1S2 = 01) and (S1S2 = 11). These transitions can only occur
when code bits ’01’ or ’10’ were transmitted. The Hamming distances be-
tween these two possible transitions and the received channelbits is 1. This
branch-metric is again added to the already acquired distance of the path
and assigned to the next state. When we continue to the next transition,
we see that the path from states (S1S2 = 00) to (S1S2 = 00) and the path
from state 01 to 00, merge together. We now only keep the path with the
lowest accumulated metric, which is the path from state (S1S2 = 00) to
(S1S2 = 00). Since we want to have the path with the lowest accumulated
metric in the end, we can prove that the path which had the highest metric
at this point, will never get a lower metric than the other path [25]. The
path that ’survives’ is called the survivor path. In figure 2.5 we also see that
two paths merge with the same accumulated metric. In that case the path
that survives can be chosen arbitrarily. Each of these two paths would have
continued the same way and so they both would have accumulated the same
metric in the end. These two paths would have had the same likelihood
and since the Viterbi decoder decides between paths based upon maximum
likelihood, it cannot determine which of these two paths would have been
the better one. On each point in time, the Viterbi decoder has a number of
paths that is the same as the number of states in the state diagram.

When the Viterbi decoder has to make a decision about the data bits
at some time, it examines all the paths it has tracked until then. The path
with the lowest accumulated metric is chosen to be the most likely path. It
then outputs the data bits which correspond with this path, by tracing the
path back to its initial state.

The soft-decision Viterbi algorithm operates in the same way, only the
branch-metric is calculated differently. The soft-decision algorithm receives
channelbits from a matched filter. The received channelbits are not com-

18 Channel Coding 2

pared with the codebits, but with the modulated codebits. To illustrate
this, we examine an example with BPSK modulation. Figure 2.6 shows
a trellis in a soft-decision Viterbi decoder. We assume that the Viterbi

dataword: +1 +1 +1 +1
codeword: +1+1 +1+1 +1+1 +1+1
channelword : +0.8 -0.8 +0.5 +1.1 +0.9 -0.1 +0.7 +1.5
decoded dataword : +1 +1 +1 +1

+1 +1

-1 -1

+1 +1

-1 -1

+1 -1

-1 +1

0 1.6 2.4 4.6

0

-0.6

-0.4

0.6

-1.6

-0.2

-2.4

1.4

0.6

2.2

s1;s2 = 0;0

s1;s2 = 0;1

s1;s2 = 1;0

s1;s2 = 1;1

+1 -1

Figure 2.6: Trellis diagram of an all-zero dataword in a soft Viterbi decoder

encoder started in state (S1S2 = 00). From the matched filter two channel-
bits with values +0.8 and −0.8 are received. Again the only possible two
next states are (S1S2 = 00) and (S1S2 = 10). The transition from state
(S1S2 = 00) to state (S1S2 = 00) could only have produced the channelbits
+1,+1. The first received channelbit is multiplied with the first possible
channelbit and the second channelbit with the second possible channelbit
and the two results are added, which gives the branch-metric. So we have
(0.8 × +1) + (−0.8 × +1) = 0. This branch-metric is again assigned to the
state where the branch leads to. This way of calculating branch-metrics
can be seen as a bonus/penalty system. When a channelbit matches the
possible channelbit in a high degree, the branch metric is assigned a high
value, while when it doesn’t match it might get a lower value or even the

2.3 Conclusions 19

value can be subtracted from it. So when a decision about the data bits has
to be made, the path with the largest accumulated metric is chosen to be
the correct path.

Until now the point where a decision on the data bits was made, was
chosen arbitrarily. In section 1.2 it was concluded that the best results in
terms of BER are obtained when block lengths are very high. Since this also
implies very long delays, it is not practical in some situations. In literature
about Viterbi decoders the time of decision on the data bits is done after 5ν
or 5 times the constraint length of the encoder.

2.3 Conclusions

In this chapter convolutional codes were introduced. In section 2.1 a rate
1/2 systematic non-recursive convolutional encoder and a rate 1/2 recursive
systematic encoder were introduced. The terminology for describing a con-
volutional encoder was introduced, like generator polynomial and the state
transition diagram. In section 2.2 two Viterbi decoders were introduced,
which can decode channelwords to their corresponding datawords.

In the next chapter the results of this chapter will be used to describe
turbo codes and the turbo principle.

3

Turbo Coding and The
Turbo Principle

In 1993 Berrou et. al. discovered a new channel code, which offered superior
performance over already existing codes [6]. This new channel code was
found by combining two already known techniques: concatenated coding
and iterative decoding. However, their approach was different. They gave
this new code the name ’Turbo Code’. Later it was found that ’the Turbo
Principle’ could also be used on other decoding problems.

Section 3.1 explains concatenated coding and iterative decoding and ex-
plores these techniques to obtain turbo coding and decoding. The contents
of this section are mainly based on [8], but with some adaptations to fit in
this thesis. Section 3.2 discusses two types of turbo encoders and explains
their structure. Section 3.3 gives the decoder structures needed to decode
the codewords generated by the turbo encoders of section 3.2. Section 3.4
discusses interleavers and the properties they need to have in a turbo archi-
tecture. Section 3.5 explains the turbo principle and why it can be used on
many different decoding areas.

3.1 Concatenated Coding and Iterative Decoding

In section 2.1 it was concluded that the power of a FEC code to correct a
series of errors in a bitstream, depends on the constraint length ν of the
encoder. A larger constraint length will result in a more powerful code.
Increasing the constraint length of the encoder, however, will increase the
complexity of the decoder exponentially. To overcome this shortcoming,
concatenation of codes can be used [8]. See figure 3.1 for the principle of
concatenated coding. In concatenated coding multiple ’simple’ encoders are
connected to each other. The first encoder is called the outer coder and is
applied first/removed last. The last encoder is called the inner coder and is
applied last/removed first. The codewords created at the output are much

21

22 Turbo Coding and The Turbo Principle 3

more complex than the codewords that would have been created by a single
encoder. Decoding is done by the ’simple’ decoders of the used codes, also
concatenated to each other.

encoder 1 encoder 2 encoder n

decoder 1 decoder 2 decoder n

inner codeouter code channel

Figure 3.1: Concatenated Coding and Decoding

The most dramatical drawback of this way of coding is the phenomenon
of error propagation. When a decoder makes a decoding error, due to an
overwhelming amount of errors imposed on the channelwords, the next de-
coder receives the wrongly decoded channelwords and might not be able to
correct these extra errors. It even might impose more errors onto the chan-
nelwords. At the end, none of the decoders might be able to correct the
errors and the result is a wrongly decoded dataword.

To avoid this problem of error propagation, the channel errors should
be spread over the codewords. To achieve this we can use an interleaver.
An interleaver permutes the order of bits in a data stream in a known way.
At the receiver a de-interleaver puts the bits back in their original order. A
burst of errors imposed on the data stream by the channel, is in this way
spread over the entire data stream. Interleavers are discussed in section 3.4.

The interleaver can now be connected between two encoders in figure
3.1, resulting in the system shown in figure 3.2.

π inner
encoder

outer
encoder

π-1 inner
decoder

outer
decoder

channel

Figure 3.2: Concatenated Coding with an interleaver between the encoders

With the system in figure 3.2, turbo decoding can be explained. We
take for the two encoders in figure 3.2 two block encoders. A block encoder
produces a codeword of length n, of which the first k bits consist of the
original dataword and the last n-k bits are parity bits. The outer encoder
has data length k1 and code length n1. The inner encoder has data length
k2 and code length n2. The block interleaver has a dimension of k2 rows
and n1 columns. The code generated with this concatenated encoder can be

3.1 Concatenated Coding and Iterative Decoding 23

arranged in data and parity bits as in figure 3.3. The rows of the upper left
k2 by k1 sub-matrix in figure 3.3 are the input to the outer encoder. The
outer encoder takes k1 input bits (one row) and generates n1−k1 parity bits,
which are added to the end of the row. Now the rows of length n1 are the
input for the interleaver. The output of the interleaver is fed to the inner
encoder. This means that the columns of the upper k2 by n1 sub-matrix are
the input to the inner encoder. The inner encoder takes k2 input bits (the
columns of the upper sub-matrix) and generates n2 − k2 parity bits, which
are added below the column. Now the rows in figure 3.3 are the data and
parity bits of the outer encoder, while the columns are the data and parity
bits of the inner encoder.

O

X+O

O+X

O

n1

k1

k2

n2

Outer code
data + parity (row)

Inner code
parity (column)

Check on
Checks

Figure 3.3: Arrangement of data and parity bits of the code in figure 3.2.
O are received errors, X are errors created by the inner decoder (n1,k1), +
are errors created by the outer decoder (n2,k2).

After the inner encoder has finished, the resulting codebit stream is sent
over the channel by reading the matrix in figure 3.3 column by column. In
figure 3.3 the ’O’s show a pattern of errors in the received channelbits. The

24 Turbo Coding and The Turbo Principle 3

channelbits are presented first to the inner decoder (see figure 3.2). The
output of the inner decoder is de-interleaved and presented to the outer
decoder. We assume that both decoders can only correct one error. First
the inner encoder starts decoding the columns of the matrix in figure 3.3.
The first two columns don’t have any errors in them, so no problems there.
However, the third column has two errors. Because the inner decoder can
only correct one error, it can not correct the error in this column. It will
correct only one error and introduce a new error denoted by the ’X’. When
it reaches the fifth column, the same problem occurs. When the inner de-
coder is finished, the bit stream is de-interleaved and presented to the outer
decoder. Because of the de-interleaving, the outer decoder starts decoding
the rows of the matrix in figure 3.3. The first two rows give no problems,
since no errors are present here (anymore). The third row, however, has got
one channel error and one error caused by the inner decoder. Since the outer
decoder also can correct only one error, it will not be able to correct all the
errors and may even cause an extra error, denoted by the ’+’ in figure 3.3.
The same problem occurs with the fourth row.

We have seen that this way of decoding, where the bit stream only passes
each decoder once, results in decoded databits which still have errors in it.
We also notice that, if we first would have decoded the stream with the outer
decoder, there would have been a correct decoding, since the rows do not
contain more than one error. The inner decoder can then also decode the
bitstream without any extra errors, since there are no more than one error
in the columns left. The bitstream can then be passed to the outer encoder,
to correct more errors, and so on, and so on.

Here we have encountered the principle of turbo decoding. By letting
the same channelbits iterate over the two decoders until no errors are left
anymore, a better decoding can be achieved. However in the given example,
there still is error propagation. Therefor we need one extra ingredient to
make turbo decoding work.

In the example, hard-decision decoding was used. If we would have
used soft-decision decoding, the decoding performance would have increased
dramatically. Soft decision was already introduced in section 2.2. We re-
interpret ’soft information’ as the reliability of the hard bit. If one of the
decoders outputs a low reliability for a decoded data or codebit, the other
decoder might decide otherwise on this data or codebit, to achieve a better
decoding result.

When we use soft information for the decoding of the bit, we need a
decoder that uses and creates soft information. The soft Viterbi decoder in
section 2.2, used soft information to decode the channelwords, but did not
create soft information about the codebits or databits. A decoder that does
this, is called a Soft In-Soft Out (SISO) decoder. For now we are going to
assume we have decoder that is capable of that. Such a decoder is described
in chapter 6.

3.2 Turbo Encoders 25

3.2 Turbo Encoders

The contents of this section are mostly derived from [4]. In the previous
section we used a serial concatenated encoder. In the original paper about
Turbo-codes of Berrou [6], a parallel concatenated encoder architecture was
used to create the turbo codes. In figure 3.4 a parallel turbo encoder is
shown and in figure 3.5 a serial turbo encoder is shown.

π

encoder 2

encoder 1

channel

datastream

multi-plexer

Figure 3.4: Generic parallel turbo encoder

Parallel codes were already exhaustively researched before Berrou pub-
lished his papers. The main performance increase achieved by Berrou’s
encoder was due to the used interleaver.

π inner
encoder

outer
encoder

channeldataword

Figure 3.5: Generic serial turbo encoder

The encoders in figure 3.4 and 3.5 can be any type of encoder. The
encoders most commonly used are recursive systematic encoders (RSC),
because they combine the qualities of a systematic encoder together with
the superior performance of a non-systematic encoder (NSC)[8].

Figure 3.6 gives the parallel turbo encoder, when two systematic encoders
are used. The systematic or data bits and only the parity bits of the encoders
are passed to the MUX, because the two encoder would both produce the
systematic bit. It is possible to puncture the parity bits of the two encoder
to create a rate 1/2 encoder. When puncturing is used not all the parity
bits of every encoder is send, but only the half of the parity bits. So with
the first systematic bit, only the first parity bit of the first encoder is sent
and with the second systematic bit only the second parity bit of the second
encoder is sent. When with every systematic bits, two parity bits are sent,
the resulting encoder has a rate 1/3.

The performance of a turbo encoder depends on the feedback and parity
polynomials used for the RSC encoder and the type of interleaver that is
used [6], [3], [5], [26].

26 Turbo Coding and The Turbo Principle 3

π

encoder 2

encoder 1 channeldatastream multi-plexer
parity1

parity2

systematic

Figure 3.6: Systematic parallel turbo encoder

In section 2.1 we saw that a RSC encoder can produce codewords with
a large Hamming distance, but there is also a possible input sequence which
lets the encoder return to its all-zero state. This results in a codeword with
a small Hamming distance. The interleaver has to permute the order of the
input data in such a way, that if one encoder gets an input that results in a
codeword with a small Hamming distance, the other will get the permuted
sequence which results in a codeword with a large Hamming distance. Using
a properly designed interleaver will result in at least one of the encoders
outputting a codeword with a large Hamming distance. However, there
is a probability that a parallel concatenated code will output a codeword
with a small Hamming distance. This results in an error floor of a parallel
concatenated code at high Eb/N0. A serial code is less sensitive to codewords
with small Hamming distances and thus does not show this error floor [4].
However, for certain values of Eb/N0 the PCCC architectures outperforms
the SCCC architecture as can be seen in chapter 7.

An optimal set of generator polynomials have been investigated in [5].

3.3 Turbo Decoders

For the serial turbo encoder and parallel turbo encoder, different decoders
are needed. In figure 3.7 a parallel turbo decoder is shown and in figure 3.8
a serial turbo decoder is shown. These decoders are derived from [4]. The
SISO decoders take as input Log-Likelihood Ratios (LLR) of the databits
and codebits, which provide soft-information about the bits. The input
LLR’s are normally referred to as a-priori information, while the output
LLR’s are normally referred to as a-posteriori information. However, in
figure 3.7 the decoder outputs extrinsic information. The difference between
extrinsic and a-posteriori information will be discussed in the remainder of
this section. For both the codebits and databits output LLR’s are created.

3.3 Turbo Decoders 27

ππππ

ππππ

ππππ-1

channel

a-
pr

io
ri

in
fo

rm
at

io
n

ex
tr

in
si

c
in

fo
rm

at
io

n

In: LLR databits

Decoder 1

In: LLR codebits

Out: LLR databits

Out: LLR codebits

In: LLR databits

Decoder 2

In: LLR codebits

Out: LLR databits

Out: LLR codebits

a-
pr

io
ri

in
fo

rm
at

io
n

ex
tr

in
si

c
in

fo
rm

at
io

n

Decision

Figure 3.7: Decoder for the parallel concatenated code in figure 3.4

The LLR (Λ) of a databit dkε{0, 1} given a channelbit yk is defined as

Λ(dk) , ln
P (dk = 0|yk)

P (dk = 1|yk)
(3.1)

The LLR is the conditional probability of the bit being a ’0’ divided by the
conditional probability that it is a ’1’.

In the parallel turbo decoder, decoder 1 decodes the stream from encoder
1 and decoder 2 decodes the stream from encoder 2. In a parallel turbo
decoder architecture the order in which the decoders operate on the received
elements is arbitrarily. However, care has to be taken on interleaving or
de-interleaving the produced LLR’s before they are delivered to the next
decoder. Both decoders in a parallel turbo decoder, take as codebit LLR
input the channelbits for every iteration. The output LLR of the databits
are properly (de-)interleaved and provided as databit LLR input to the next
decoder. The codebit LLR output is not used. When an LLR input is
not connected to an LLR output or no LLR output is yet available, the
input LLR is set to zero. After some iterations a decision is made about
the databits. The decision is performed on a single bit dk and is decided
to have been a ’0’ when Λ(dk) > 0 and decided to have been a ’1’ when
Λ(dk) < 0. In the serial turbo decoder the inner decoder decodes the stream

ππππ-1

ππππchannel

a-
pr

io
ri

in
fo

rm
at

io
n

ex
tr

in
si

c
in

fo
rm

at
io

n

In: LLR databits

Inner Decoder

In: LLR codebits

Out: LLR databits

Out: LLR codebits

In: LLR databits

Outer Decoder

In: LLR codebits

Out: LLR databits

Out: LLR codebits

a-
pr

io
ri

in
fo

rm
at

io
n

ex
tr

in
si

c
in

fo
rm

at
io

n

Decision

Figure 3.8: Decoder for the serial concatenated code in figure 3.5

of the inner encoder and the outer decoder decodes the stream of the outer
encoder. The order in which these decoders are placed is not arbitrarily in
a serial turbo decoder: the inner decoder has to decode the stream first,

28 Turbo Coding and The Turbo Principle 3

followed by the outer decoder, because the output of the inner encoder in
figure 3.5 is sent over the channel. The inner decoder takes as codebit LLR
input the channelbits and as databit LLR input the codebit LLR output of
the previous decoder. When the last is not yet available, the input is set to
zero. The codebit LLR output of the inner decoder is not used. Its databit
LLR output is properly de-interleaved and given as codebit LLR input to
the outer decoder, because the codebits from the outer encoder are used
as databits for the inner encoder. After some iterations the databit LLR
output of the outer decoder is used to make a decision about the data bits.
This decision is done in the same way as with the parallel decoder.

From now on, we are going to refer to the parallel turbo code encoder
and decoder as a Parallel Concatenated Convolutional Code (PCCC) ar-
chitecture and to the serial turbo code encoder and decoder as a Serial
Concatenated Convolutional Code (SCCC) architecture.

A-posteriori information of a SISO decoder can be build up out of two
components, namely the intrinsic information and the extrinsic information.
This can be seen by applying the Bayes’ rule to equation 3.1,

Λ(dk) , ln
P (dk = 0|yk)

P (dk = 1|yk)

= ln
P (dk = 0

⋂
yk)/P (yk)

P (dk = 1
⋂

yk)/P (yk)

= ln
P (yk|dk = 0) · P (dk = 0)/P (yk)

P (yk|dk = 1) · P (dk = 1)/P (yk)

= ln
P (yk|dk = 0)

P (yk|dk = 1)︸ ︷︷ ︸
intrinsic

+ ln
P (dk = 0)

P (dk = 1)︸ ︷︷ ︸
extrinsic

(3.2)

The intrinsic information is the information that is delivered to the decoder
by the channel. The extrinsic information is the information obtained by
the decoding of the code, so the information supplied by the known trellis
of the encoder, and is not conditioned on the channel. The extrinsic infor-
mation is the information that should be passed to the next decoder, since
this information is not available to the next decoder, while the intrinsic in-
formation is already available at the next decoder. When the decoders are
delivered new and unknown information about the data- and codebits, it
can make a better decision about the code or data bits. However, after a
number of iterations the extrinsic information of the two decoders will be-
come more and more correlated, resulting in less performance increase [26],
[8]. In figures 3.7 and 3.8 it is assumed that the LLR outputs of the de-
coders are only build up out of extrinsic information. Extrinsic and intrinsic
information will be more extensively discussed in chapter 6. In chapter 7,
transfer charts, discussed in chapter 5, will be used to analyze extrinsic and
a-posteriori information.

3.4 Interleaving 29

987654321

Input data

16151413

1211109

8765

4321

Interleaver
(π)

14106213951

Interleaved data
16151413

1211109

8765

4321

de-interleaver
(π -1)

987654321

de-interleaved data

Figure 3.9: Block interleaver and de-interleaver operation

Setting LLR values to zero corresponds to P (dk = 1) = P (dk = 0) = 0.5.

3.4 Interleaving

In section 3.1 a block interleaver was already discussed. In this section, we
elaborate a little more on interleavers.

The two main criteria in the design of an interleaver are 1) the minimum
distance spectrum of the output and 2) the correlation between its input and
output sequence. The interleaver has to create a large minimum distance
spectrum and the correlations should be as low as possible. The second
criteria is some times referred to as the iterative decoding suitability (IDS).
When the input and output stream of the interleaver are less correlated the
performance of the iterative decoder improves in terms of BER. The choice
of a good interleaver is especially important when small blocks are used [24].

An interleaver is a permutation i 7→ π(i) that changes the order of a data
stream. Each interleaver has its corresponding de-interleaver (π−1), that is
able to restore the interleaved stream to its original order [24].

The two types of interleavers that are considered are block interleavers
and pseudo-random interleavers.

A block interleaver is a matrix with a number of rows and columns. The
data stream that has to be permuted, is written in this matrix row by row.
The permutation is obtained by reading the data out of the matrix column
by column. A block interleaver with more rows and columns is better able
to fulfill the two criteria, than one with less rows and columns. Figure 3.9
illustrates a block interleaver.

A pseudo-random interleaver permutes the data by generating randomly
a permutation matrix, in which the new order of the bits in the input stream
is stored. When a longer input stream is used, the interleaver will be able
to fulfill the two criteria even better.

Since pseudo-random interleavers fulfill the two criteria better than a
block interleaver, therefore only pseudo-random interleavers are considered

30 Turbo Coding and The Turbo Principle 3

in the remainder of this paper.

3.5 The Turbo Principle

From the discussion in section 3.1, it is clear that in fact the ’turbo’ in
turbo-codes, does not apply to the code itself, but to the iterative way of
decoding. The title Turbo is taken from the principle of the turbo engine.
Inside a turbo engine, exhaust gasses are used to blow more air into the
engine. Together with more fuel this gives more power to the engine. Since
in turbo decoding, the output of the decoding process is also re-used to give
more ’power’ to the system in total, they gave it the name turbo-codes.

In the turbo engine, however the output of the engine is given as an
input back to it. In turbo coding the input of a decoder should not be
its own output, since it already knows its own output and so there is no
gain to achieve. The turbo concept can thus be used when there are two or
more sources with information about the databit that should be decoded.
The information contained in these two information sources, should be as
uncorrelated as possible, to obtain the largest improvement in the decod-
ing process. The obtained information from each of these sources is then
iterated between the decoders of the information sources, until the correla-
tion between the information is at its maximum. This can be determined
real-time or the decoding process can be set at a fixed number of iterations.

In turbo coding the two independent information sources are the coded
original data-stream and the coded interleaved data-stream. The interleaver
has to guarantee the orthogonality between these two information sources.
Orthogonality can also be achieved by using two different encoders, which
produce different codes.

So the turbo principle can be used anywhere where a decision about
a system is needed and there exist two different uncorrelated sources of
information about that system. When this is the case, a large performance
increase can be achieved. The drawback is that iterating more than once
over a set of decoders, requires more computational power.

3.6 Conclusions

In this chapter the turbo principle was introduced. Concatenated coding and
iterative decoding were discussed in section 3.1. From these two techniques
turbo codes were derived. Two turbo code architectures were introduced:
the parallel concatenated convolutional code (PCCC) architecture and the
serial concatenated convolutional code (SCCC) architecture. For these ar-
chitectures, the encoders and decoders were discussed. Interleavers used in
a turbo architecture were shortly discussed in section 3.4. In chapter 7 sim-
ulations are performed on an SCCC and a PCCC architecture to check the

3.6 Conclusions 31

correct implementation of the decoding-algorithms. The simulation setup
will be the same as in [4] to make comparisons.

In section 3.5 the turbo principle was finally derived. The turbo principle
is applicable in a decoding situation, where two or more information sources
are available about the decoded information source, e.g. in parallel turbo
coding these two information resources are the original coded datawords and
the interleaved coded datawords.

4

Turbo Multiuser Detection

In chapter 3 the turbo principle was discussed and it was found that it
could also be used for other decoding problems. In turbo multiuser detec-
tion (turbo-MUD), concatenated architectures of a multiuser detector and
a convolutional code are commonly used [1][22][17][18][32][20]. By iterating
the soft output of the convolutional code decoder back to the multiuser de-
tector, a turbo multiuser detector architecture is created. In section 4.1 a
standard turbo-MUD architecture is presented. In section 4.2 other turbo-
MUD architectures are presented.

4.1 Serial Concatenated Multiuser Detector and
Convolutional Code

The most commonly used turbo multiuser detector is a soft-input/soft-
output multiuser-detector concatenated serially to a convolutional-code de-
coder [1][22][17][18][32][20].

This architecture is shown in figure 4.1 for K users. Datawords of every
user are encoded with the same convolution encoder. The output of the
convolutional encoder is interleaved with a pseudo-random interleaver which
is different for each user. The output of the interleaver is spread with a
unique spreadword. The channel is modelled as FIR filter, to be able to
expand it to a multipath channel, with additive white gaussian noise. The
spread sequence is sent over this channel with filter coefficients gu where u =
1..K. The signal at the receiver is a superposition of the spread sequences
of all users and gaussian distributed white noise.

At the receiver the soft-in/soft-out multiuser detector receives the spread
channelwords. Together with the a-priori log-likelihood ratio input of the
code bits, the multiuser detector outputs log-likelihood values for the codeb-
its of every user present in the system. During the first iteration, when no
a-priori information is yet present, the a-priori input is set to zero. The log-
likelihood output values are de-interleaved and passed to the convolutional

33

34 Turbo Multiuser Detection 4

spreader
s2

encoder π1
spreader

s1

spreader
sK

d1

d2

dK

b1

b2

bK

dk bk

channel
g2 +

n(t)

r(t)

channel
g1

channel
gK

x1

x2

xK

xk

y1

y2

yK

yk

User
1

User
2

User
K

π1
-1 π1

In: LLR databits

Decoder User 1

In: LLR codebits

Out: LLR databits

Out: LLR codebits

π2

πK

decision
user 1

π1
-1 π1

In: LLR databits

Decoder User 1

In: LLR codebits

Out: LLR databits

Out: LLR codebits

decision
user 2

π1
-1 π1

In: LLR databits

Decoder User 1

In: LLR codebits

Out: LLR databits

Out: LLR codebits

decision
user K

1 3

Soft-In
Soft-Out
Multiuser
Detector

encoder

encoder

Figure 4.1: Serial concatenated Multiuser Detector and Convolutional Code
for K users

code decoder as code bit log-likelihoods. The log-likelihood output of the
decoder’s code bits are interleaved and passed to the multiuser detector to
improve its detection during the next iteration. The log-likelihood output
of the decoder’s databits can be used to estimate the transmitted data bits
of every user.

The presented turbo multiuser detection architecture is principally the
same as the SCCC architecture presented in section 3.2 and section 3.3. In
the turbo multiuser detection architecture the inner code is replaced by the
channel and the inner decoder is the multiuser detector.

X. Wang and V.Poor in [20] don’t use the a-posteriori values of the log-
likelihoods to pass from block to block (as is done in figure 4.1), but the
extrinsic values (see figure 1 in [20]). The soft-in soft-out multiuser detector
that is used in this thesis (section 6.2.1) is a soft-interference cancellation
detector, which needs the best possible estimates of the codebits, which are
the a-posteriori values. In chapter 7 simulations will be performed that
prove that using a-posteriori information gives better results than extrinsic
information.

4.2 Hybrid Turbo Multiuser Detection 35

4.2 Hybrid Turbo Multiuser Detection

The iterative structure of a turbo architecture makes it possible to create
hybrid systems, which contain PCCC and SCCC architectures. The only
consideration that has to be taken is that each decoder gets the right input.
Only two hybrid systems are presented here, although many more could be
invented. The EXIT charts in section 5.3 make it possible to analyze these
architectures. In chapter 7 simulations will be performed on these settings.

Hybrid System 1: Multiuser Detector with two serial concatenated

codes

The system in figure 4.2 is created by adding one extra convolutional en-
coder to the system in figure 4.1. For simplicity only one user is assumed.
A similar architecture, from which the architecture in figure 4.2 is derived,

encoder 1 π1 spreader +

n(t)

r(t)
channeldata encoder 2 π2

SISO
MUD

π2
-1

π2

Decoder
2

π1
-1

π1

Decoder
1

decision

Figure 4.2: Serial concatenated Multiuser Detector and Two Convolutional
Codes [30]

is investigated by M. Tüchler in [30]. At the receiver soft information can
be iterated between the SISO Mud and Decoder 2 and between Decoder 2
and Decoder 1. Care should be taken to feed the correct information to the
decoder. The code bits from the SISO MUD go to the code bits input of
Decoder 2, while the data bits output of Decoder 2 go to the code bits input
of Decoder 1.

Hybrid System 2: Multiuser Detector with parallel concatenated

code

The system in figure 4.3 is created by connecting the SISO multiuser detector
together with a parallel concatenated code. This hybrid system is invented
by the author of this thesis. For simplicity only one user is assumed. This
architecture is more flexible than the multiuser detector with two serial con-
catenated codes. At the receiver soft information can be iterated between
all the processes. The only constraint is that the multiuser detector needs
to run first. When iterating information care needs to be taken that every

36 Turbo Multiuser Detection 4

π1

spreader +

n(t)

r(t)
channel

data

SISO
MUD

π2
-1

π2

decision

MUXencoder 1

encoder 2

π2

systematic

parity 1

parity 2

π1

π1
-1

11

1 1

Decoder
2

code

data

code

data

code

data

code

data

1
Decoder

1

Figure 4.3: Multiuser Detector and Two Parallel Concatenated Convolu-
tional Codes

block gets the correct interleaved version of the bits it needs. The decision
on the databits can be made from the LLR databit output of decoder 1 or
decoder 2. The a-priori input for the SISO MUD can come from the LLR
codebit output of decoder 1 or decoder 2.

4.3 Conclusions

In this chapter three turbo multiuser detection architectures were given.
The architecture in section 4.1 is the most common used in literature. The
two architectures in section 4.2 were invented for this thesis, to illustrate
the hybrid nature of the turbo principle. Because of time constraints the
hybrid architectures are not further considered in this thesis. The turbo
multiuser detection architecture of section 4.1 is simulated in chapter 7. A
BER chart of this architecture is created and compared to the BER chart
obtained in literature. This comparison is made to verify the implementation
of the SISO multiuser detector. Next the BER chart is used to compare the
turbo multiuser detection architecture to a non-turbo multiuser detector, to
answer the first question of this thesis given in chapter 1. An EXIT chart
is made for the turbo multiuser detection architecture to answer the second
question of this thesis, also given in chapter 1. An EXIT chart is an analysis
tool for turbo architectures and is discussed in chapter 5.

5

Convergence Behavior and
EXIT charts

Iterative or turbo architectures are notoriously complex and hard to an-
alyze with conventional BER charts. A recently proposed tool by S. ten
Brink in [28] to analyze the convergence behavior of a turbo architecture is
an extrinsic information transfer (EXIT) chart. In an EXIT chart the de-
coding blocks are treated as ’black boxes’ of which the input/output transfer
function of the extrinsic information is known. With a transfer chart the
interplay between the blocks can be analyzed. This has proven to be very
useful in regions of low SNR, since in these regions the convergence behavior
of a turbo architecture is hard to analyze with a ’traditional’ BER chart.
An EXIT chart is build up out of two transfer charts. In section 5.1 the con-
vergence behavior of turbo architectures is discussed. In section 5.2 transfer
charts are introduced, which are needed to create an EXIT chart. In section
5.3 the EXIT charts are discussed.

5.1 Convergence Behavior

In turbo architectures, the iterating of log-likelihood ratios, makes it very
hard to analyze the behavior of the architecture. When the bit error rate
at a certain signal to noise ratio of such a architecture is wanted, simu-
lations have to be performed, which take a lot of time and computational
power. Also it is hard to see if the decoder blocks in a turbo architecture are
matched to each other, or that they perhaps are a very bad combination. In
figure 5.1 a sketch is drawn of the BER as a function of Eb/N0 for an SCCC
and a PCCC architecture. These results can be found in different papers on
turbo coding, like [4] and [27]. For a PCCC architecture three regions can
be defined.
I.) Pinch-off Region: In this region the BER remains constant and iterating
does not improve the BER significantly.

37

38 Convergence Behavior and EXIT charts 5

II.) Waterfall Region: In this region the BER decreases dramatically when
the signal to noise ratio is increased.
III.) Wide-open Region: The BER is at a very low value and more iterations
will not improve the BER.
An SCCC architecture does not have the error floor that a PCCC archi-
tecture has. The chosen nomenclature for these regions can be understood
when in section 5.3 EXIT charts are discussed.

bit error rate

Eb/N0

100

10-5

PCCC
SCCC

I II III

Figure 5.1: Bit error rate for SCCC and PCCC codes

5.2 Transfer Charts

An EXIT chart is created with two transfer charts from decoder blocks. A
transfer chart, relates the a-priori to the a-posteriori information contents
of a decoder block. This section discusses the creation of such a transfer
chart. Its contents are taken from [29] and adapted to fit in this thesis.

The mutual information contents of the a-priori and a-posteriori knowl-
edge is described by the mutual information I(a; b) [13]. Consider a noisy
channel over which a symbol ai from an alphabet A is sent and a symbol bj

from an alphabet B is received. The probability that ai was sent is P (ai)
(a-priori) and the probability that an ai is decoded at the decoder given
the received bj is P (ai|bj). The mutual information I(ai; bj) is defined as
the difference between the uncertainty of the symbol ai before and after
transmission [13].

5.2 Transfer Charts 39

Consider an AWGN channel over which discrete-time signals are re-
ceived,

ξ = x + n; (5.1)

the conditional probability density functions then can be written as,

p(ξ|X = x) =
1√

2πσn

e−((ξ−x)2)/2σ2
n) (5.2)

where the binary random values X denotes the transmitted bits xε{−1, +1}.
The corresponding LLR values Λ are calculated as,

Λ = ln
p(ξ|X = +1)

p(ξ|X = −1)
(5.3)

which can be simplified with equation 5.2 to,

Λ =
2

σ2
n

· ξ =
2

σ2
n

· (x + n) (5.4)

The noise variable n is gaussian distributed with mean zero and variance
σ2

n = N0/2. We can formulate equation 5.4 also as,

Λ = µΛ · x + nΛ (5.5)

The following expression can be found for µΛ,

µΛ = E[Λ]

=
∑

i

E[Λ|xi] · px
i

=
∑

i

2

σ2
n

· px
i

=
2

σ2
n

(5.6)

where px
i = 0.5 is the probability of x. nΛ is gaussian distributed with mean

zero and variance,

σ2
Λ = E{Λ2} − E{Λ}2

= E

{(
2

σ2
n

x +
2

σ2
n

n

)2
}

−
(

2

σ2
n

)2

= E

{(
2

σ2
n

)2

x2 + 2

(
2

σ2
n

)2

xn +

(
2

σ2
n

)2

n2

}
−
(

2

σ2
n

)2

=

(
2

σ2
n

)2

+

(
2

σ2
n

)2

σ2
n −

(
2

σ2
n

)2

=
4

σ2
n

(5.7)

40 Convergence Behavior and EXIT charts 5

where we made us of the known properties: x2 = 1, E{n} = 0 and E{n2} =
σ2

n. We see that the mean and variance of Λ are connected by,

µΛ =
σ2

Λ

2
(5.8)

So the mean of the log-likelihood ratio is the half of its variance. This rela-
tion will prove to be useful for modelling the a-priori information contents
later in this section.

In a turbo architecture the mutual information between a log-likelihood
value and a sent symbol is wanted. Assuming that ai is a binary send
symbol and aiε{−1, +1} and Λi is the log-likelihood value of this symbol at
the receiver, the mutual information I(ai; Λ) is [13],

I(ai; Λi) =
1

2

∑

ai={−1,+1}

∫ +∞

−∞
P (Λi|ai)

log2

[
2 · P (Λi|ai)

P (Λi|a = −1) + P (Λi|a = +1)

]
dξ (5.9)

and
0 ≤ I(ai; Λi) ≤ 1 (5.10)

The probability density functions (pdf) P (Λi|ai), P (Λi|a = −1) and
P (Λi|a = +1) in equation 5.9 can be evaluated numerically by Monte Carlo
simulations. However, since we are using BPSK modulation over an AWGN
channel in this paper, we can simplify the equation, because the pdf’s have
the following two properties [30], they are,

symmetric: p(Λi|ai = +1) = p(−Λi|ai = −1) (5.11)

and
consistent: p(Λi|ai = +1) = p(−Λi|ai = +1) · eΛi (5.12)

With these properties equation 5.9 simplifies to,

I(ai; Λi) = 1 −
∫ +∞

−∞
p(Λi|ai = +1) · log2(1 + e−Λi) (5.13)

This equation is the expectation E[1− log2(1+e−Λi)] over the pdf p(Λi|ai =
+1),

I(ai; Λi) = E
[
1 − log2(1 + e−Λi)

]
(5.14)

By evoking the ergodic assumption, this expectation is arbitrarily closely
approximated by the time average [12],

I(ai; Λi) ≈ 1 − 1

N

N∑

n=1

log2(1 + e−ai·Λi) (5.15)

5.2 Transfer Charts 41

In [33], it was observed that the LLR output of a SISO block, approaches
a gaussian distribution for an increasing number of iterations. We can thus
use equation 5.15 to calculate the mutual information of the LLR output of
the databits,

IdN
(dk; Λdk

) , 1 − 1

N

N∑

n=1

log2(1 + e−dk·Λdk) (5.16)

so the mutual information IdN
of N databits dk can be calculated with N

values of databit dk and their corresponding LLR’s Λdk
at the output of the

decoder.
The mutual information of the code bits can be obtained by averaging

over M code bits that are mapped on one information bit,

IcN
(ci,m; Λci,m

) =
1

M

M∑

m=1

I(ci,m; Λci,m
) (5.17)

with

I(ci,m; Λci,m
) , 1 − 1

N

N∑

n=1

log2(1 + e−ci,m·Λci,m) (5.18)

where ci,m={1..M} is the mth codebit of the M codebits mapped on ai and
Λci,m

is the corresponding log-likelihood value. So the mutual information
IcN

can be calculated by calculating the mutual information I(ci,m; Λci,m
)

for N codebits ci,m and then averaging I(ci,m; Λci,m
) for every codebit.

To create the transfer chart the mutual information of the a-priori input
IA and the extrinsic output IE are related to each other by the transfer
function T [28]. For an inner decoder in an SCCC architecture or for both
the decoders in a PCCC architecture (see section 3.2 and 3.3), IE is not only
a function of IA, but also of the signal to noise ratio Eb/N0 of the channel,
so

IE = T (IA, Eb/N0) (5.19)

The transfer chart of a decoder is obtained by supplying its a-priori LLR
input with known mutual information and measuring the mutual informa-
tion of the desired output. For the a-priori LLR values it has been observed
by simulation [33] that, 1) For large interleavers the a-priori values are highly
uncorrelated from the channel observations and 2) the extrinsic LLR output
approaches a gaussian like distribution with an increasing number of itera-
tions. Since the extrinsic LLR output becomes the a-priori LLR input, we
can model the a-priori input A with the above observations as,

A = µA · x + ηA (5.20)

where x is a known transmitted systematic bit and ηA is a gaussian dis-
tributed variable with mean zero and variance σ2

A. Thus for the a-priori

42 Convergence Behavior and EXIT charts 5

LLR input the relation between its mean and variance is the same as in
equation 5.8. When we combine equations 5.2, 5.8 and 5.13 we can obtain
a relation between the variance of a gaussian distribution and its mutual
information,

IA(σA) = 1 −
∫ +∞

−∞

1√
2πσA

e−((ξ−(σ2
A/2)·x)2)/2σ2

A) · log2(1 + e−Λi)dΛi (5.21)

For abbreviation we define [29],

J(σ) = IA(σA = σ) (5.22)

with
lim
σ→0

J(σ) = 0 and lim
σ→∞

J(σ) = 1 (5.23)

Equation 5.21 can not be expressed in a closed form. However, it is mono-
tonically increasing [29], so it is reversible,

σA = J−1(IA) (5.24)

With this equation we can find for a desired mutual information of the a-
priori input, the variance, and thus mean with the help of equation 5.8, of
the gaussian input. In figure 5.2 equation 5.21 is plotted1.

Figure 5.3 shows the simulation setup to generate the transfer chart for
the inner decoder in an SCCC architecture and for both the decoders in a
PCCC architecture. Randomly generated databits are encoded to codebits.
The rate and generator polynomials can be chosen arbitrarily, however the
decoder should be the corresponding SISO decoder of this encoder. The
codebits are sent over an AWGN channel with a certain Eb/N0 for which
the EXIT chart is desired. The channelbits are converted to LLR values
with the help of equation 5.4, by multiplying the received channelbits with
2/σ2

n. The LLR values for the codebits are offered to the decoder as codebit
LLR input. The a-priori information is created by multiplying the databits
with a gaussian variable. This gaussian variable has a mean µA and σA that
corresponds to a certain mutual information IA. The σA that corresponds
to a certain mutual information IA can be calculated with equation 5.24.
With equation 5.8 the mean µA can also be found.

Both these streams are offered to the decoder. The LLR output of the
codebits is discarded. The mutual information of the LLR data output is
calculated according to equation 5.16.

Figure 5.4 shows the simulation setup to generate the transfer chart for
the outer decoder in a SCCC architecture or for the decoder in the turbo

1A numerical evaluation of equation 5.21 gives numerical problems for certain ranges
of σ. Figure 5.2 is therefor plotted with Wolframs’ Research Mathematica, which fortu-
nately indicated the regions where numerical problems occur, so that different calculation
methods could be used [Hoeksema].

5.2 Transfer Charts 43

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigma
A

I A
(s

ig
m

a A
)

Figure 5.2: A-priori mutual information as a function of σ

In: LLR databits

Decoder

In: LLR codebits

Out: LLR databits

Out: LLR codebits

databits {-1,+1}

Encoder
channel
(0,σn

2)

2/σn
2

LLR conversion

gaussian
with mutual

information IA

EB/N0

: multiply1-log2[1+e-Le] Average

LCh

LA

Id(ai,Λi)

LE

Figure 5.3: Simulation setup for generating transfer charts of inner decoders
in an SCCC architecture and for both decoders in a PCCC architecture

multiuser detector of figure 4.1. This decoder only receives LLR values of
its codebits as input. Randomly generated databits are encoded to codeb-
its. A rate 1/2 encoder is used for practical purposes, because only two
codebits need to be combined. The codebits are multiplied with a gaus-
sian distributed variable with a certain mutual information. The mutual

44 Convergence Behavior and EXIT charts 5

information is determined in the same was as for the inner decoder. These
codebits with a certain mutual information are offered to the decoder. The
LLR data input of the decoder is set to zero, as it would be in an SCCC ar-
chitecture. The mutual information of the LLR codebit output is calculated
according to equation 5.18.

In: LLR databits

Decoder

In: LLR codebits

Out: LLR databits

Out: LLR codebitsdatabits {-1,+1}
Encoder
rate ½

gaussian
with mutual

information IA

: multiply

1-log2[1+e-Le] Average

LCh

LA

Ic(ai,Λi)

LE

1-log2[1+e-Le] Average

½ Σ
codebit 1:

codebit 2:

Figure 5.4: Simulation setup for generating transfer charts for outer decoders
in an SCCC architecture

Figure 5.5 shows the simulation setup to generate the transfer chart for a
multiuser detector for an AWGN channel with variance σ2

n. The simulation
setup is for a system with four users. It is assumed that the spreading codes
of the users have an equal correlation coefficient. This assumption is made,
so that the a-priori input of every user of the MUD detector can be supplied
with the same value for the mutual information. The mutual information
outputs Id1, Id2, Id3 and Id4 should all have about the same values at every
iteration.

5.3 EXIT Charts

An EXIT chart consists of two transfer charts from decoder blocks. The two
transfer charts are plotted in one figure, where one of the transfer charts has
its axes swapped. Since the output of one block is the input of the other in
an iterative architecture, the information trajectory of a turbo architecture
can be analyzed.

For a PCCC architecture, the extrinsic output of the first decoder is in-
terleaved and given as a-priori input to the second decoder. The interleaving
operation does not change the mutual information [29]. The extrinsic out-
put of the second decoder is de-interleaved and given to the first decoder
as a-priori input, again the de-interleaving does not change the mutual in-
formation. In figure 5.6 an example EXIT chart of a PCCC architecture is
shown. The transfer chart of decoder 1 is directly plotted in the EXIT chart,
which is the upper line: on the x-axis its a-priori input and on the y-axis

5.3 EXIT Charts 45

User 1:

User 2:

User 3:

User 4:

spreader s1

spreader s2

spreader s3

spreader s4

n(t)
(0,σn

2)

Gaussian with
mutual information IA

1 2 3 4

r(t)

1-log2[1+e-Le1] Id1

1-log2[1+e-Le2]

1-log2[1+e-Le3]

1-log2[1+e-Le4]

data1 ∈{-1,+1}

data2 ∈{-1,+1}

data3 ∈{-1,+1}

data4 ∈{-1,+1}

LE1

LE2

LE3

LE4

Id2

Id3

Id4

Average

Average

Average

Average

MUD

: multiply

Figure 5.5: Simulation setup for generating the transfer chart for a multiuser
detector with four users and a AWGN channel with variance σ2

n

its extrinsic output. The axes of the transfer chart of the second decoder
are swapped and plotted in the same EXIT chart: on the y-axis its a-priori
input and on the x-axis its extrinsic output. Now the extrinsic mutual in-
formation transfer of the two decoders can be followed through the chart,
because the output of one decoder, becomes the input of the other.

We define IAm,n and IEm,n as respectively the a-priori information of
the mth decoder during the nth iteration and the a-posteriori information of
the mth decoder during the nth iteration and Tm is the information transfer
function of decoder m. At the first iteration IA1,0

= 0. With fixed Eb/N0

the extrinsic output of the first decoder becomes IE1,0
= T1(IA1,0

). The
extrinsic mutual information output is then given to the second decoder as
a-priori input, IA2,0

= IE1,0
. The extrinsic mutual information output of

the second decoder then becomes IE2,0
= T2(IA2,0

) or IE2,0
= T2(T1(IA1,0

)).
This can be generalized by IA2,n

= IE1,n
, IA1,n+1

= IE2,n
, IE1,n

= T1(IA1,n
)

and IE2,n
= T2(IA2,n

). Note that interleaving does not change the mutual

46 Convergence Behavior and EXIT charts 5

information.

Iterating over the two decoders is only useful, when at each itera-
tion some extra information is gained. So iterations proceed as long as
IE2,n+1

> IE2,n
. With IE2,n+1

= T2(T1(IE2,n
)) or T−1

2 (IE2,n+1
) = T1(IE2,n

)

we can formulate this as T1(IE2,n
) > T−1

2 (IE2,n+1
). So iterations stop when

IE2,n+1
= IE2,n

or T1(IE2,n
) = T−1

2 (IE2,n+1
). This situation corresponds to

an intersection of the transfer charts of the two decoders in the EXIT chart.

In figure 5.6 the transfer charts at −1.5dB for the two decoders in the
lower left corner of the figure, intersect quite early in the iteration process,
while the transfer chart at −1dB never intersect before a mutual information
of 1 is reached.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

output I
E2

 of second decoder becomes input I
A1

 to first decoder

ou
tp

ut
 I E

1 o
f f

irs
t d

ec
od

er
 b

ec
om

es
 in

pu
t I

A
2 to

 s
ec

on
d

de
co

de
r

EbN0=−1dB

EbN0=−1.5dB

Figure 5.6: Simulated trajectories of iterative decoding at Eb/N0 = −1.5dB
and −1dB (symmetric PCC rate 1/3, interleaver size 16.384 systematic bits

For low Eb/N0 values the two transfer charts in an EXIT chart become
closer to each other. When they are so close that they just intersect at some
point, the turbo architecture will not be able to converge to a point where
a mutual information of 1 is reached. The EXIT chart can thus be used to
analyze a turbo architecture’s convergence behavior for different Eb/N0.

From the above, the nomenclature for the different regions that is used

5.4 Conclusions 47

in section 5.1 can be understood. In the pinch-off region the transfer charts
of the two decoders, intersect at some stage, so the turbo architecture is
pinched off. In the waterfall region the EXIT chart just opens up. When
the chart is ’opened’ up a little more the turbo architecture iterates even
faster to IE = 1. In the wide-open region the transfer charts are very far
apart and are thus wide open.

A point of interest is the BER that can be reached when IA ≈ 1 and IE ≈
1. In [29] equation (31) gives a relation between the bit error probability
Pb, the mutual informations IA and IE and Eb/N0 of the channel. This
formula is valid to calculate the BER from IA and IE in regions of low
Eb/N0. Readers are referred to the paper for more information.

5.4 Conclusions

In this chapter EXIT charts were introduced. An EXIT chart can be used
as an analysis-tool for the convergence behavior of a turbo architecture. An
EXIT chart is made from two transfer charts of the algorithms in a turbo
architecture. Transfer charts are made of individual algorithms, without
their implementation in the architecture where they are used.

In section 5.1 the convergence behavior of turbo architectures were di-
vided in three regions: the pinch-off region, the waterfall region and the
wide-open region. The names of these regions are obtained from EXIT
charts. In section 5.2 simulation setups for creating the transfer charts were
shown. With the transfer charts an EXIT chart was created for these turbo
architectures. EXIT charts were shown to be a useful tool to determine
when a turbo architecture is just able to improve the BER by iterating.

In chapter 7 EXIT charts for the SCCC and PCCC architectures of
chapter 3 are created to verify the tool with which the EXIT charts are
created.

Next an EXIT chart for the turbo multiuser detector of chapter 4 is
created, to answer the second question of this thesis, given in chapter 1.

6

Soft-input Soft-output
(SISO) Algorithms

As stated in section 3.3 a decoder in a turbo architecture, must accept
LLR soft information about the code and data bits and produce LLR soft
information about the code and data bits. These decoder are sometimes
referred to as A-Posteriori Probability (APP) decoders.

The most famous convolutional code decoder invented in 1974 by Bahl,
Cocke, Jelinek and Raviv is the Maximum A-Posteriori (MAP) decoder [2].
It is sometimes referred to as the BCJR algorithm, based upon the first
letters of the inventors names. This algorithm can be used to decode con-
volutional and block-codes by minimizing the bit error rate. However, until
the discovery of turbo codes it was not used often, because of its complexity.
It also only performs slightly better (in a non-turbo configuration) than the
Viterbi algorithm. When turbo-codes were discovered, it became interesting
again. The MAP algorithm is discussed in section 6.1.1.

A lot of work has been done through the years to reduce the complexity
of the MAP algorithm. This resulted in the Log-MAP algorithm, which
has the same performance as the MAP algorithm, and the suboptimal Max-
Log-Map algorithm. The Log-MAP algorithm transforms the calculations
of the MAP algorithm to the logarithmic domain, which makes computa-
tions much simpler, while no approximations are made. The Max-Log-MAP
algorithm makes an approximation in some of its calculations, which makes
it suboptimal. The Log-MAP decoder is discussed in section 6.1.3 and the
Max-Log-MAP decoder in section 6.1.2.

For turbo multiuser detection a multi user detector is needed which
accepts and creates LLR soft information of all the code bits of every user
available. Such a detector is discussed in section 6.2.1. This detector is
derived from [20].

49

50 Soft-input Soft-output (SISO) Algorithms 6

6.1 Convolutional Code Decoders

6.1.1 MAP Decoder

The following section is mainly based on [14], but adapted to fit this the-
sis. We assume a binary system with BPSK modulation: a databit ’0’ is
represented by a BPSK-modulated databit ’+1’ and a databit ’1’ is repre-
sented by a BPSK-modulated databit ’-1’. The BPSK-modulated databits
will from now on be referred to as ’databits’.

To understand the MAP algorithm, a mind-experiment is set up. In
this experiment a stream of databits is sent over an AWGN channel and
received with some kind of antenna at a receiver. First we only send a
stream of ’-1’ databits over the channel. When we measure the received
channelbits at the receiver for a certain period, the conditional probability
density function (pdf) of the ’-1’ databits can be created. This conditional
pdf is denoted with p(yk|dk = −1), where yk is the received channelbit and
dk is the sent databit. We do the same for a stream of ’+1’ databits to obtain
the conditional pdf p(yk|dk = +1). Figure 6.1 shows these measurements.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

received channelbit

pr
ob

ab
ili

ty

+1 databit
−1 databit

pdf1

pdf2

d
m

Figure 6.1: a-priori probability density function of BPSK elements

After creating these pdf’s a random stream of databits is sent over the
channel. At the receiver a measurement dm of a received channelbit is made.
The measurement dm corresponds with two values on the pdf’s in figure 6.1,
namely pdf1 and pdf2. The maximum likelihood rule states that the databit
corresponding to the received channelbit, is the element that has the highest

6.1 Convolutional Code Decoders 51

likelihood. In this case pdf1 has the highest likelihood and thus the received
element is decided to be a ’+1’ databit. This rule corresponds to looking
at the sign of the received channelbit to determine the sent databit. This
decision rule is called the a-priori rule, since the decision is already known
without any channelbits being received..

Another rule which can be used to decide what databits was sent is the
maximum a-posteriori (MAP) rule. Instead of determining the largest a-
priori likelihood function p(yk|dk = ±1), the largest a-posteriori probability
p(dk = ±1|y) is determined. We see here that the elements are first received,
before a decision is made on what was received. Also y is a block of received
channelbits, so a decision on dk is based on a block of channelbits.

Let us define two hypotheses H1 and H2, where if hypothesis H1 is
true the databit is a ’+1’ and if hypothesis H2 is true the databit is a ’-1’.
Equation 6.1 gives the MAP decision rule

P (dk = +1|y) ≷H1

H2
P (dk = −1|y) (6.1)

so if P (dk = +1|y) is larger than P (dk = −1|y), hypothesis H1 is assumed
to be true and hypothesis H2 is true in the other case. This equation is the
basis for a MAP decoder. In section 3.3 the log-likelihood ratio was defined.
If we rewrite equation 6.1, we see why this ratio can be useful

P (dk = +1|y)

P (dk = −1|y)
≷H1

H2
1 (6.2)

The derivation of the MAP decoder from this equation is done with the use
of the Bayes’ rule. The Bayes’ rule is shown in equation 6.3, where | is the
conditional symbol and ∩ is the ’AND’ symbol.

P (A ∩ B) = P (A|B)P (B) = P (B|A)P (A) (6.3)

The Bayes’ rule allows us to rewrite equation 6.1 in two different ways, as
is shown in equation 6.4 and equation 6.5.

P (dk = +1 ∩ y)

P (y)
≷H1

H2

P (dk = −1 ∩ y)

P (y)
(6.4)

and

P (y|dk = +1)P (dk = +1)

P (y)
≷H1

H2

P (y|dk = −1)P (dk = −1)

P (y)
(6.5)

In [14] equation 6.4 is used to determine the MAP receiver, while in [26]
equation 6.5 is used to obtain the MAP decoder. The choice of formula does
not matter. For no apparent reason we use equation 6.4 as a base to start
the derivations of the MAP decoder.

52 Soft-input Soft-output (SISO) Algorithms 6

Another observation which can be made from equation 6.5, is that this
MAP rule converts to the ML rule, when P (dk = +1) = P (dk = −1) = 0.5,
so when the bit probabilities are known.

We rewrite equation 6.4 to give us the log-likelihood ratio L(dk|y),

Λ(dk|yk) , ln

(
P (dk = +1 ∩ yk)

P (dk = −1 ∩ yk)

)
(6.6)

The decision rule now becomes,

Λ(dk|yk) ≷H1

H2
0 (6.7)

If the LLR Λ(dk|yk) is positive the probability of a ’+1’ was larger than the
probability of a ’-1’ and vice-versa.

To obtain an expression for the log-likelihood in equation 6.6, we have
to take a look at the trellis of the used code. See figure 6.2 for the trellis of
an RSC code with constraint length ν = 3. A state transition shown by a
solid line, is caused by an input element of ’+1’, while a broken line shows
the transitions caused by an input element ’-1’.

Sk-3 Sk-2 Sk-1 Sk Sk+1

s’

s

ykyj<k yj>k

αk-1(s’) γk(s’,s) βk(s)

Figure 6.2: MAP decoder Trellis for RSC ν = 3 code

In figure 6.2 the states at discrete time points Sk−3, Sk−2, Sk−1, Sk and
Sk+1 are shown. A state transition from state s′ to one of its two possible
next states s determines which bit was sent. So the probability of an ’-1’
input element, is the probability of all the state transitions caused by a ’-1’
(the broken lines in figure 6.2). The same holds for an ’+1’ as input element.
We can therefor rewrite equation 6.6 as,

Λ(dk|y) = ln

(∑
(s′,s)=⇒dk=+1 P (Sk−1 = s′ ∩ Sk = s ∩ y)

∑
(s′,s)=⇒dk=−1 P (Sk−1 = s′ ∩ Sk = s ∩ y)

)
(6.8)

6.1 Convolutional Code Decoders 53

where (s′, s) =⇒ dk = +1 is the set of transition from previous state Sk−1

to current state Sk that can occur for dk = +1, vice versa for dk = −1.
Until now we have assumed that we wanted to know the log-likelihood of

the data bit. In our SISO decoder we also want to know the log-likelihood
of the code bits. When, for example, we want to know the log-likelihood
Λ(c1|y) of the code bit c1, formula 6.8 becomes

Λ(c1|y) = ln

(∑
(s′,s)=⇒c1=+1 P (Sk−1 = s′ ∩ Sk = s ∩ y)

∑
(s′,s)=⇒c1=−1 P (Sk−1 = s′ ∩ Sk = s ∩ y)

)
(6.9)

So the summation is over all branches where c1 = +1 in the numerator and
c1 = −1 in the denominator.

From now on we will write P (Sk−1 = s′ ∩ Sk = s ∩ y) as P (s′ ∩ s ∩ y).
We split up the received channelword in three parts: the channelbits that
belong to the present transition s′ =⇒ s is called yk, the sequence before the
present transition is called yj<k and the sequence after the present transition
is called yj>k. In figure 6.2 these three parts are shown. We now can write
for the individual probability P (s′ ∩ s ∩ y),

P (s′ ∩ s ∩ y) = P (s′ ∩ s ∩ yj<k ∩ yk ∩ yj>k) (6.10)

If we assume that the channel is memoryless, we know that the sequence
yj>k, that still has to be received, only depends on the current state s and
not on the previous state s′. Assuming a memoryless channel also implies
that the already received sequence yj<k only depends on the previous state
s′ and not on the current state s. Together with Bayes’ rule in equation 6.3,
we can expand equation 6.10 into

P (s′ ∩ s ∩ y) = P (yj>k|s′ ∩ s ∩ yj<k ∩ yk) · P (s′ ∩ s ∩ yj<k ∩ yk)

= P (yj>k|s) · P (s′ ∩ s ∩ yj<k ∩ yk)

= P (yj>k|s) · P (yk ∩ s|s′ ∩ yj<k) · P (s′ ∩ yj<k)

= P (yj>k|s) · P (yk ∩ s|s′) · P (s′ ∩ yj<k) (6.11)

On the second line of equation 6.11 we substituted P (yj>k|s′∩ s∩yj<k ∩yk)
with P (yj>k|s), because the conditional probability of yj>k does not depend
on anything that happened before state s. Subsequently the same is done
for the conditional probability of yk ∩ s.

Remember that each state transition is caused by N codebits, where N
is the rate of the encoder. So the variable yk consists of N channelbits. The
k subscript is still used to denote these N channelbits, to make it easier to
see to which databit dk these N codebits belong.

From equation 6.11 we see that we have written the probability P (s′ ∩
s ∩ y) as a set of multiplications of probabilities of events happening on,
before and after time k. We rewrite equation 6.11 as,

P (s′ ∩ s ∩ y) = βk(s) · γk(s
′, s) · αk−1(s

′) (6.12)

54 Soft-input Soft-output (SISO) Algorithms 6

where
αk−1(s

′) , P (s′ ∩ yj<k) (6.13)

which is the probability that the state at time k-1 is s′ and the received
sequence up to that point is yj<k.

βk(s) , P (yj>k|s) (6.14)

which is the probability that after the trellis state s, the future received
sequence is yj>k.

γk(s
′, s) , P (yk ∩ s|s′) (6.15)

which is the probability that the state at time k-1 is s′ and the state at time
k is s, given the received element yk.

Figure 6.2 shows the meaning of αk−1(s
′), βk(s) and γk(s

′, s). These
values can be found by a recursive algorithm, which will be outlined in the
next part of this section. When all the values are found, they can be used in
equation 6.6 to calculate the log-likelihood for the databit(s) and codebit(s).

Forward Recursive Calculation of αk(s)
To obtain the algorithm for recursively calculating αk(s), we rewrite equa-
tion 6.13 to,

αk(s) = P (s ∩ yj<k+1) (6.16)

= P (s ∩ yj<k ∩ yk)

=
∑

alls′

P (s′ ∩ s ∩ yj<k ∩ yk)

together with Bayes rule and the assumption that the channel is memoryless,
we can follow the same procedure as with equation 6.11,

αk(s) =
∑

alls′

P (s ∩ yk|s′ ∩ yj<k) · P (s′ ∩ yj<k) (6.17)

=
∑

alls′

P (s ∩ yk|s′) · P (s′ ∩ yj<k)

=
∑

alls′

γk(s
′, s) · αk−1(s

′)

From equation 6.17 we see that the value of αk(s) can be calculated re-
cursively once the value for γk(s

′, s) is known. We only need some initial
conditions,

α0(S0 = 0) = 1 (6.18)

α0(S0 = s) = 0 for all s 6= 0

where we assume that the encoder started in state 0, so that state is the
only possible start state.

6.1 Convolutional Code Decoders 55

Backward recursive calculation of βk(s) values
To recursively calculate the values of βk(s), we follow the same procedure
as for the αk(s) values. We can write for βk−1(s

′),

βk−1(s
′) = P (yj>k−1|s′) (6.19)

Again assuming the channel is memoryless and using Bayes’ rule, we obtain,

βk−1(s
′) =

∑

all s

P (yj>k−1 ∩ s|s′) (6.20)

=
∑

all s

P (yk ∩ yj>k ∩ s|s′)

=
∑

all s

P (yj>k|s′ ∩ s ∩ yk) · P (s ∩ yk|s′)

=
∑

all s

P (yj>k|s) · P (s ∩ yk|s′)

=
∑

all s

βk(s) · γk(s
′, s)

We see again that the values of βk(s) can be calculated backward recursively
once the value of γk(s

′, s) are known.
The initial values of βk(s) are a little bit more difficult to find. Berrou

[6] used the same initial conditions for βk(s) as for αk(s). However from
equation 6.14, we saw that βk(s) is the probability of the data stream that
is received after state s. Only after the last symbol N has been received, no
further sequence will be received anymore. We can find an answer, when we
consider βN−1(s) in equation 6.14,

βN−1(s
′) = P (yN |s′) (6.21)

=
∑

all s

P (yN ∩ s|s′)

=
∑

all s

γN (s′, s)

From the recursion of equation 6.20 we find,

βN−1(s
′) =

∑

all s

βN (s) · γN (s′, s) (6.22)

If we want both equations to be satisfied, we must have,

βN (s) = 1 for all s (6.23)

If the trellis is terminated in state 0, then the values of γ will take care of the
fact that for the last 2ν state transitions, there can only be one possible path

56 Soft-input Soft-output (SISO) Algorithms 6

from the current to the next state. However implementing βN (s = 1) = 1,
βN (s 6= 1) = 0 and calculating γ normally from the inputs is much easier to
implement and therefor used more often.

The calculation of γk(s
′, s)

We saw that the calculations of the αk(s) and βk(s) values all require the
value of γk(s

′, s). We now determine how to calculate this value from equa-
tion 6.15 and Bayes’ rule,

γk(s
′, s) = P (yk ∩ s|s′) (6.24)

= P (yk|s′ ∩ s) · P (s|s′)
= P (yk|s′ ∩ s) · P (dk)

where dk is the data bit causing the transition from s′ to s and P (dk) is the
a-priori probability of this data bit.

To find an expression for P (dk) in equation 6.24, we use the log-likelihood
Λ(dk) of the data bit probability P (dk),

Λ(dk) , ln

(
P (dk = +1)

P (dk = −1)

)
(6.25)

we can write for P (dk = +1),

eΛ(dk) =
P (dk = +1)

1 − P (dk = +1)
(6.26)

P (dk = +1) =
eΛ(dk)

1 + eΛ(dk)

=
1

1 + e−Λ(dk)

Similarly for,

P (dk = −1) =
1

1 + e+Λ(dk)
(6.27)

=
e−Λ(dk)

1 + e−Λ(dk)

From these two equations an expression for P (dk) can be derived in two
different ways.

P (dk) =
edkΛ(dk)

1 + edkΛ(dk)
(6.28)

and

P (dk) =
e[(dk+1)/2]Λ(dk)

1 + eΛ(dk)
(6.29)

In both equation we made us of dkε{−1, +1}. Equation 6.28 can be rewritten
in a term independent of dk and a term dependent on dk. This is useful,

6.1 Convolutional Code Decoders 57

when during the calculation of the LLR, the term independent of dk will
cancel out in the numerator and denominator,

P (dk) =

(
e−Λ(dk)/2

1 + e−Λ(dk)

)
· edkΛ(dk)/2 (6.30)

= C1 · edkΛ(dk)/2

where

C1 =

(
e−Λ(dk)/2

1 + e−Λ(dk)

)
(6.31)

For equation 6.29 the same can be done.

P (dk) =

(
1

1 + eΛ(dk)

)
· e[(dk+1)/2]Λ(dk) (6.32)

= C2 · e[(dk+1)/2]Λ(dk)

where

C2 =

(
1

1 + eΛ(dk)

)
(6.33)

We see that C1 and C2 do not depend on dk.

Now the same can be done for the term P (yk|s′ ∩ s) in equation 6.24.
We define a codeword xk that consists of n codebits and is created by the
encoding of one data bit dk. Also we define a channelword yk that is the
received xk after transmission over an AWGN channel. Since the transition
from state s′ to state s is caused by the codeword xk, we can also write
P (yk|s′ ∩ s) as P (yk|xk). So assuming the channel is memoryless, we can
write,

P (yk|s′ ∩ s) = P (yk|xk) =
n∏

l=1

P (ykl|xkl) (6.34)

where ykl and xklε{−1, +1} are respectively channelbit l and codebit l of
the channel- and codeword.

We can express P (ykl|xkl) in terms of the log-likelihood by using the
same approach as we did in formulas 6.25 to 6.32.

Λ(ykl|xkl) , ln

(
P (ykl|xkl = +1)

P (ykl|xkl = −1)

)
(6.35)

and subsequently we find

P (ykl|xkl) =

(
e−Λ(ykl|xkl)/2

1 + e−Λ(ykl|xkl)

)
· exkl·Λ(ykl|xkl)/2 (6.36)

= C3 · exkl·Λ(ykl|xkl)/2

58 Soft-input Soft-output (SISO) Algorithms 6

where

C3 =

(
e−Λ(ykl|xkl)/2

1 + e−Λ(ykl|xkl)

)
(6.37)

and

P (ykl|xkl) =

(
1

1 + eΛ(ykl|xkl)

)
· e[(xkl+1)/2]·Λ(ykl|xkl) (6.38)

= C4 · e[(xkl+1)/2]·Λ(ykl|xkl)

where

C4 =

(
1

1 + eΛ(ykl|xkl)

)
(6.39)

We now use equations 6.30, 6.34 and 6.36 in equation 6.24 to obtain an
expression for γk(s

′, s)

γk(s
′, s) = C · edkΛ(dk)/2 ·

n∏

l=1

exkl·Λ(ykl|xkl)/2 (6.40)

where
C = C1 · C3 (6.41)

Now we can take equation 6.8 and equation 6.12 and use our previous
results to obtain an expression for the log-likelihood ratio Λ(dk|y) of the
data bit dk,

Λ(dk|y) = ln

(∑
(s′,s)=⇒dk=+1 P (Sk−1 = s′ ∩ Sk = s ∩ y)

∑
(s′,s)=⇒dk=−1 P (Sk−1 = s′ ∩ Sk = s ∩ y)

)
(6.42)

= ln

(∑
(s′,s)=⇒dk=+1 αk−1(s

′) · βk(s) · γk(s
′, s)

∑
(s′,s)=⇒dk=−1 αk−1(s′) · βk(s) · γk(s′, s)

)

= ln

(∑
(s′,s)=⇒dk=+1 αk−1(s

′) · βk(s) · C · edkΛ(dk)/2 ·
∏n

l=1 exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒dk=−1 αk−1(s′) · βk(s) · C · edkΛ(dk)/2 ·∏n

l=1 exkl·Λ(ykl|xkl)/2

)

= ln

(∑
(s′,s)=⇒dk=+1 αk−1(s

′) · βk(s) · edkΛ(dk)/2 ·∏n
l=1 exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒dk=−1 αk−1(s′) · βk(s) · edkΛ(dk)/2 ·∏n

l=1 exkl·Λ(ykl|xkl)/2

)

We can rewrite this as

Λ(dk|y) = ln

(
eΛ(dk) ·

∑
(s′,s)=⇒dk=+1 αk−1(s

′) · βk(s) ·
∏n

l=1 exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒dk=−1 αk−1(s′) · βk(s) ·

∏n
l=1 exkl·Λ(ykl|xkl)/2

)

= ln
(
eΛ(dk)

)
+ ln

(∑
(s′,s)=⇒dk=+1 αk−1(s

′) · βk(s) ·
∏n

l=1 exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒dk=−1 αk−1(s′) · βk(s) ·

∏n
l=1 exkl·Λ(ykl|xkl)/2

)

= Λ(dk) + ln

(∑
(s′,s)=⇒dk=+1 αk−1(s

′) · βk(s) ·
∏n

l=1 exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒dk=−1 αk−1(s′) · βk(s) ·

∏n
l=1 exkl·Λ(ykl|xkl)/2

)
(6.43)

= Λ(dk) + Λe(dk|y) (6.44)

6.1 Convolutional Code Decoders 59

with

Λe(dk|y) = ln

(∑
(s′,s)=⇒dk=+1 αk−1(s

′) · βk(s) ·
∏n

l=1 exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒dk=−1 αk−1(s′) · βk(s) ·

∏n
l=1 exkl·Λ(ykl|xkl)/2

)

= ln

∑

(s′,s)=⇒dk=+1

αk−1(s
′) · βk(s) ·

n∏

l=1

exkl·Λ(ykl|xkl)/2

−

ln

∑

(s′,s)=⇒dk=−1

αk−1(s
′) · βk(s) ·

n∏

l=1

exkl·Λ(ykl|xkl)/2

 (6.45)

In equation 6.43 the data bit dk is in the numerator always +1 and in the
denominator always −1. It can therefor be put in front of the fraction. In
equation 6.45 Λe(dk|y) is the extrinsic information, as was discussed in equa-
tion 3.2 in section 3.3. The extrinsic information is passed to the next de-
coder. Keep in mind that for the calculation of αk−1(s

′) and βk(s), γk(s
′, s)

as in equation 6.40 has to be calculated. The constant factor C, however,
doesn’t need to be calculated, since it will cancel out in the log-likelihood
calculation.

The same can be done for the log-likelihood of a code bit xkm

Λ(xkm|y) = ln

(∑
(s′,s)=⇒xkm=+1 αk−1(s

′) · βk(s) · edkΛ(dk)/2 ·∏n
l=1 exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒xkm=−1 αk−1(s′) · βk(s) · edkΛ(dk)/2 ·

∏n
l=1 exkl·Λ(ykl|xkl)/2

)
(6.46)

= ln

(
eΛ(ykm|xkm) ·

∑
(s′,s)=⇒ck=+1 αk−1(s

′) · βk(s) · edkΛ(dk)/2 ·∏n
l=1,l 6=m exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒ck=−1 αk−1(s′) · βk(s) · edkΛ(dk)/2 ·∏n

l=1,l 6=m exkl·Λ(ykl|xkl)/2

)

= Λ(ykm|xkm) + ln

(∑
(s′,s)=⇒ck=+1 αk−1(s

′) · βk(s) · edkΛ(dk)/2 ·∏n
l=1,l 6=m exkl·Λ(ykl|xkl)/2

∑
(s′,s)=⇒ck=−1 αk−1(s′) · βk(s) · edkΛ(dk)/2 ·

∏n
l=1,l 6=m exkl·Λ(ykl|xkl)/2

)

Here the extrinsic information is also in the fraction, so that part is the only
part that needs to be calculated for the next decoder.

Special case: code bit LLR input from AWGN channel
In a PCCC architecture, both the decoders take their code elements input
from the channel. In an SCCC architecture only the inner decoder takes
input from the channel. For a memoryless AWGN channel with BPSK
modulation we find for P (ykl|xkl),

P (ykl|xkl) =
1√
2πσ

exp

(
− Eb

2σ2
(ykl − axkl)

2

)
(6.47)

where Eb is the transmitted energy per bit, σ2 is the noise variance of the
channel and a is the fading amplitude (a=1 for non-fading channels and
0 < a < 1 for flat fading channels).

60 Soft-input Soft-output (SISO) Algorithms 6

When we use this equation in equation 6.35 we get for the log-likelihood
Λ(ykl|xkl),

Λ(ykl|xkl) = ln

(
P (ykl|xkl = +1)

P (ykl|xkl = −1)

)

= ln

1√
2πσ

exp
(
− Eb

2σ2 (ykl − a)2
)

1√
2πσ

exp
(
− Eb

2σ2 (ykl + a)2
)

= − Eb

2σ2
(ykl − a)2 +

Eb

2σ2
(ykl + a)2

=
2Eba

σ2
ykl (6.48)

In this formula it is clear that the channel elements should be multiplied by
a constant, based upon channel characteristics, to get the log-likelihood for
the decoder. A simpler version of this equation was also found in section
5.2 in equation 5.4.

6.1.2 Max-Log-MAP Decoder

The calculations of the standard MAP decoder need a lot of computations,
because of the exponentials in the formulas. To solve the computational
complexity problem, the Max-Log-MAP algorithm transfers the calculations
of αk−1(s

′), βk(s) and γk(s
′, s) into the logarithmic domain. We define Ak(s),

Bk(s) and Γk(s
′, s),

Ak(s) , ln(αk(s)) (6.49)

Bk(s) , ln(βk(s)) (6.50)

Γk(s
′, s) , ln(γk(s

′, s)) (6.51)

The formulas of the conventional MAP algorithm for αk−1(s
′), βk(s) and

γk(s
′, s) can be substituted into the equations 6.49, 6.50 and 6.51. By doing

so, we can rewrite equation 6.49,

Ak(s) , ln(αk(s))

= ln

(
∑

all s’

αk−1(s
′)γk(s

′, s)

)

= ln

(
∑

all s’

exp[Ak−1(s
′) + Γk(s

′, s)]

)
(6.52)

6.1 Convolutional Code Decoders 61

For Bk(s) we can find the same expression,

Bk(s) , ln(βk(s))

= ln

(
∑

all s’

βk+1(s)γk(s
′, s)

)

= ln

(
∑

all s’

exp[Bk+1(s) + Γk(s
′, s)]

)
(6.53)

The calculation of Γk(s
′, s) is as follows,

Γk(s
′, s) , ln(γk(s

′, s))

= ln

(
C · edkΛ(dk)/2 ·

n∏

l=1

exkl·Λ(ykl|xkl)/2

)

= Ĉ +
1

2
dkΛ(dk) +

1

2
xklΛ(ykl|xkl) (6.54)

with
Ĉ = ln(C) (6.55)

The exponential in equations 6.52 and 6.53 can be avoided by making
use of the following simplification.

ln

(
∑

i

exi

)
, max

i
{xi} (6.56)

This simplification becomes more clear, when we write it as,

ln

(
∑

i

exi

)
= ln

exn +
∑

i,i6=n

exi

= ln

exn(1 +
∑

i,i6=n

exi−xn

= ln (exn) + ln

(1 +
∑

i,i6=n

e

<0︷ ︸︸ ︷
xi − xn

≈ ln (exn) = xn ,when: xn = max
i

xi

The approximation can only be made when (xi − xn) is small enough and
thus the exponential can be neglected.

Applying this simplification to equations 6.52 and 6.53 results in

Ak(s) ≈ max
s′

(Ak−1(s
′) + Γk(s

′, s)) (6.57)

62 Soft-input Soft-output (SISO) Algorithms 6

For Bk(s) we can find the same expression,

Bk(s) ≈ max
s

(Bk+1(s) + Γk(s
′, s)) (6.58)

In equation 6.57 we see that a new value Ak(s) is calculated by adding
the branch metric Γk(s

′, s) to the previous Ak−1(s
′). From the two paths

reaching a state, only the state that has the highest metric is kept. This is
the same as the Viterbi algorithm, since one path is being selected as the
survivor and the other is discarded. The same holds for the calculation of
Bk(s).

For the LLR in equation 6.42, we can now find

Λ(dk|y) = ln

(∑
(s′,s)=⇒dk=+1 αk−1(s

′) · βk(s) · γk(s
′, s)

∑
(s′,s)=⇒dk=−1 αk−1(s′) · βk(s) · γk(s′, s)

)

= ln

(∑
(s′,s)=⇒dk=+1 exp(Ak−1(s

′) + Bk(s) + Γk(s
′, s))

∑
(s′,s)=⇒dk=−1 exp(Ak−1(s′) + Bk(s) + Γk(s′, s))

)

≈ max
(s′,s)=⇒dk=+1

(Ak−1(s
′) + Bk(s) + Γk(s

′, s))

− max
(s′,s)=⇒dk=−1

(Ak−1(s
′) + Bk(s) + Γk(s

′, s)) (6.59)

= max
(s′,s)=⇒dk=+1

(Ak−1(s
′) + Bk(s) +

1

2
dkΛ(dk) +

1

2
xklΛ(ykl|xkl))

− max
(s′,s)=⇒dk=−1

(Ak−1(s
′) + Bk(s) +

1

2
dkΛ(dk) +

1

2
xklΛ(ykl|xkl))

We obtain the expression for the LLR with the extrinsic information term
like in equation 6.45,

Λe(dk|y) = max
(s′,s)=⇒dk=+1

(Ak−1(s
′) + Bk(s) +

n∑

l=1

1

2
xklΛ(ykl|xkl))

− max
(s′,s)=⇒dk=−1

(Ak−1(s
′) + Bk(s) +

n∑

l=1

1

2
xklΛ(ykl|xkl))

(6.60)

6.1.3 Log-MAP Decoder

The Max-Log-MAP algorithm uses the approximation of equation 6.56,
which makes it suboptimal. However, this equation can be made more exact
by using the equation,

ln(ex1 + ex2) = ln
[
ex1(1 + ex2−x1)

]

= x1 + ln
(
1 + ex2−x1

)
(6.61)

6.2 SISO Multiuser Detectors 63

If instead taking x1 out of the logarithm in equation 6.61, the largest of x1

and x2 is taken out of the algorithm,

ln(ex1 + ex2) = max(x1, x2) + ln
(
1 + e−|x1−x2|

)

= max(x1, x2) + fc(δ)

= g(x1, x2) (6.62)

and
fc(δ) = ln

(
1 + e|x1−x2|

)
(6.63)

Equation 6.62 only accepts two arguments, while there are normally more
than two transitions caused by a dk = +1 or dk = −1. This problem can be
solved by nesting the g(x1, x2) function.

ln

(
I∑

i=1

exi

)
= g(xI , g(xI−1, . . . , g(x3, g(x2, x1))) . . .) (6.64)

From equation 6.62 and equation 6.64, we see that the Log-Map algorithm
is in essential the same as the Max-Log-MAP algorithm. To obtain the
Log-MAP algorithm from the Max-Log-MAP algorithm, for every MAX
operation a correction term fc(δ) has to be added to the maximum value.

It has been found in [14] that the correction term fc(δ) does not need to
be calculated every time, but only for eight values between 0 and 5.

6.1.4 Performance and Complexity of MAP decoders

If the SISO decoders are grouped according to performance with the best
decoder first and worst decoder last, it would be MAP, Log-MAP and Max-
Log-MAP [23]. The complexity of implementing the decoders, from large
to small, gives the same group. The MAP decoder is never considered in
literature for implementation. This is because of its very high complexity
and because the Log-MAP decoder gives the same performance for a lesser
complexity, as will be seen later.

Simulations done in [23] show that the Log-MAP and MAP decoder
perform equally best for bit-noise ratios ranging from 1.0dB to 2.5dB. Max-
Log-MAP performs 0.5dB worse than Log-MAP.

The complexity of the SISO decoders is given in [23], however these
results have not been checked with the SISO decoders in this thesis. These
results are copied in table 6.1.

6.2 SISO Multiuser Detectors

The soft multiuser detector of figure 4.1 in chapter 4 needs to accept a-
priori LLR’s of the codebits and needs to produce a-posteriori LLR’s of the

64 Soft-input Soft-output (SISO) Algorithms 6

Operation Max-Log-MAP Log-MAP

max ops 5x2ν − 2 5x2ν − 2
additions 10x2ν + 11 15x2ν + 9

mult. by ± 1 8 8

Table 6.1: Complexity of different SISO decoders (ν is the constraint length
of the encoder) taken from [23]

codebits for every user. It can do this by using the knowledge from the
received signal, the multi path channel and the spreadword of the desired
user or users. There exist a lot of multiuser detectors, like the de-correlating
detector and the decision driven detectors, who all produce hard decisions
of the received bits. For detailed description of multiuser detectors see the
master’s thesis of J. Potman [21]. The existing detectors need to be adapted
to accept and produce soft information.

All multiuser detectors have a bank of matched filters in common. For
every user in the system there is a matched filter, which is matched to the
spreadword of that user. The blocks that follow the bank of matched filters
determine the kind of multiuser detector.

6.2.1 SISO Soft Cancellation Multiuser Detector

The multiuser detector investigated in this thesis, was developed by X. Wang
and V. Poor in [20]. It consists of a bank of matched filters followed by a soft
interference cancellation stage and a Minimum Mean Square Error (MMSE)
filter and finally the calculation of the soft outputs. See figure 6.3 for the
block diagram of the multiuser detector. This multiuser detector is used in

r(t)

matched filter

matched filter

matched filter

s2

s1

sK

Soft

Interference

Cancellation

MMSE

filtering

LLR

Calculation

a-posteriori
LLR

of code bits
of every

user

a-priori LLR
information

y2(i)

yK(i)

y1(i)

y2(i)

yK(i)

y1(i)

z2(i)

zK(i)

z1(i)

λ[b2(i)]

λ[bK(i)]

λ[b1(i)]

Figure 6.3: SISO Multiuser Detector block for a turbo multiuser detection
architecture

the architectures of figures 4.1, 4.2 and 4.3 of chapter 4. The matched filters
are matched to the spreadwords of the users in the system. The output of

6.2 SISO Multiuser Detectors 65

the matched filters is led to a soft cancellation block, which uses the a-priori
information of the code bits of every user to remove the interference of the
other users. The output of the soft cancellation block is led to a MMSE
filter, which filters for the bit of the desired user. From the output of the
MMSE filter, the LLR of the codebits of each user is calculated. This is the
a-posteriori information of the codebit, which is passed to the convolutional
code decoder as the a-priori information. The soft-interference cancelling
multiuser detector of Wang and Poor in [20] is described in more detail in
the remainder of this section.

System Description

In section 1.3 the DS-CDMA receiver is briefly discussed. We continue here
to give a mathematical description. The transmitter and channel that are
used are shown in figure 6.4. There are K users in the system. We consider

channel
encoder

interleaver
spreader

s2

channel
encoder

interleaver
spreader

s1

channel
encoder

interleaver spreader
sK

d1

d2

dK

b1

b2

bK

dk bk

channel
g2 +

n(t)

r(t)

channel
g1

channel
gK

x1

x2

xK

xk

y1

y2

yK

yk

User
1

User
2

User
K

Figure 6.4: CDMA transmitter and channel

the signals b1, b2, . . . , bK after the interleaver, where bk is the coded data
symbol of the kth user and bk ∈ {−1, +1}. This signal is spread with nor-
malized spreadwords s1, s2, . . . , sK , where sk is the spreadword of the kth

user and sk ∈ {−1, +1}. sk is build up out of chips, where each chip has
duration TC . The transmitted signal due to the kth user is given by,

xk(t) = Ak

M−1∑

i=0

bk(i)sk(t − iT) (6.65)

where M is the number of symbols bk per user per frame, T is the duration
of a symbol bk, Ak is the amplitude of the kth user. It is assumed that sk(t)
is only supported on the interval [0, T] and has unit energy. See figure 6.5
for an illustration of the spreading. The kth user’s signal travels through
the channel gk(t), which has a baseband impulse response,

gk(t) =

Lk−1∑

l=0

gklδ(t − τkl) (6.66)

66 Soft-input Soft-output (SISO) Algorithms 6

where Lk are the number of paths in the kth user’s channel, gkl is the complex
gain of the lth path of the kth user’s channel and τkl is the delay of the lth

path of the kth user’s channel and can be defined in the terms of chip or
symbol durations depending on the path. See figure 6.6 for what gk(t) would
look like for some arbitrary values of gkl and τkl. For the signal yk we can

bk

sk

xk

0 T 2T 3T 4T

+1
-1

+1
-1

TC

+1
-1

Figure 6.5: DS-CDMA behavior in the time domain

now write,

yk(t) = xk(t) ⊗ gk(t)

= Ak

M−1∑

i=0

bk(i)

Lk−1∑

l=0

gklsk(t − iT − τkl) (6.67)

where ⊗ denotes convolution. The signal r(t) at the receiver is a superpo-
sition of the signals y1(t), . . . , yK(t) together with additive white gaussian
noise (AWGN) n(t) with zero mean, unit power spectral density and variance
σ2,

r(t) =
K∑

k=1

yk(t) + σn(t)

=
K∑

k=1

Ak

M−1∑

i=0

bk(i)

Lk−1∑

l=0

gklsk(t − iT − τkl) + σn(t) (6.68)

Single path, no delay, synchronous CDMA channel model

The signal r(t) is received at the receiver and given as input to the bank of
matched filters. We first assume a very simple channel for every user,

gk(t) = δ(t) ,for k=1,. . . ,K (6.69)

6.2 SISO Multiuser Detectors 67

gk=[1;2;3;1]
τk=[2;6;8;11]

1
2
3
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

time

gk

Figure 6.6: Example of a channel model with filter coefficients gk(t)

we now can write the received signal r(t) as,

r(t) =

K∑

k=1

Ak

M−1∑

i=0

bk(i)sk(t − iT) + σn(t) (6.70)

The output y
k
(i) of the kth matched filter for one bit bk becomes,

y
k
(i) ,

∫ T

0
sk(t)r(t)dt, k=1,. . . ,K

=

∫ T

0
sk(t)

K∑

j=1

Ajbj(i)sj(t) + σn(t)

 dt

=
K∑

j=1

Ajbj(i)

∫ T

0
sj(t)sk(t) + σnk (6.71)

=
K∑

j=1

Ajbj(i)ρjk + σnk

= Akbk(i) +
∑

j 6=k

Ajbj(i)ρjk + σnk (6.72)

where,

ρjk =

∫ T

0
sj(t)sk(t) (6.73)

The term σn(t) in equation 6.71 is not affected by the matched filter, because
of convolution properties of white noise with unit spectral density. The
following equations summarize these properties,

E[< n, s >] = 0

E[< n, s >2] =‖ s ‖2= 1

Equation 6.72 can be written in vector notation. We define the following,

y(i) = [y1, . . . , yK]T

68 Soft-input Soft-output (SISO) Algorithms 6

b(i) = [b1, . . . , bK]T

A = diag{A1, . . . , AK}

R = {ρjk} =

ρ11 ρ21 . . . ρK1

ρ12 ρ22 . . . ρK2
...

...
...

...
ρ1K ρ2K . . . ρKK

n = nk

n is a zero-mean Gaussian random vector independent of b with covariance
matrix equal to,

E[nnT] = σ2R

We now can write equation 6.72 in vector notation,

y1

y2
...

yK

=

ρ11 ρ21 . . . ρK1

ρ12 ρ22 . . . ρK2
...

...
...

...
ρ1K ρ2K . . . ρKK

A1 0 . . . 0
0 A2 . . . 0
...

...
. . . 0

0 0 0 AK

b1

b2
...

bK

+

n1

n2
...

nK

y(i) = RAb(i) + σn (6.74)

By using the bank of matched filters, we replaced y(t) with y(i), this can
be done without loss of optimality [31].

Soft Interference Cancellation

Now we have derived a sufficient model for our channel, we can start to
derive the soft interference cancellation block. This is done by calculating
soft estimates of the code bits of all the users from the a-priori information
and then substracting these estimates from the received signal vector y.

In order to calculate a soft estimate of a bit, we recall the log-likelihood
ratio,

Λk(bk) = log
P (bk = +1)

P (bk = −1)
(6.75)

Rewriting this equation gives an expression for P (bk = +1) and P (bk = −1).
First for P (bk = +1),

eΛk(bk) =
P (bk = +1)

1 − P (bk = +1)

P (bk = +1) =
eΛk(bk)

1 + eΛk(bk)

=
1

1 + e−Λk(bk)
(6.76)

6.2 SISO Multiuser Detectors 69

where in the first equation P (bk = −1) is replaced with (1 − P (bk = +1)).
The same can be done for P (bk = −1),

eΛ
k (bk) =

1 − P (bk = −1)

P (bk = −1)

P (bk = −1) =
1

1 + eΛk(bk)

=
e−Λk(bk)

1 + e−Λk(bk)
(6.77)

From equation 6.76 and 6.77 we can derive a more general equation for
P (bk = bj) (bj ∈ {+1,−1}),

P (bk = bj) =
ebjΛk(bj)

1 + ebjΛk(bj)
(6.78)

With some manipulations and the use of the following equations,

sinh(z) =
1

2
(ez − e−z) (6.79)

cosh(z) =
1

2
(ez + e−z) (6.80)

tanh(z) =
sinh(z)

cosh(z)
(6.81)

=
ez − e−z

ez + e−z

=
e2z − 1

e2z + 1

we can derive for equation 6.78,

P (bk) =
ebkΛk(bk)

1 + ebkΛk(bk)

e−
1

2
bkΛk(bk)

e−
1

2
bkΛk(bk)

=
e

1

2
bkΛk(bk)

e−
1

2
bkΛk(bk) + e

1

2
bkΛk(bk)

=
1
2(bk + 1)e

1

2
Λk(bk) + 1

2(1 − bk)e
− 1

2
Λk(bk)

e−
1

2
Λk(bk) + e

1

2
Λk(bk)

=

1
2

(
e

1

2
Λk(bk) + e−

1

2
Λk(bk)

)
+ bk

1
2

(
e

1

2
Λk(bk) − e−

1

2
Λk(bk)

)

e−
1

2
Λk(bk) + e

1

2
Λk(bk)

=
cosh

[
1
2Λk(bk)

]
+ sinh

[
1
2Λk(bk)

]

2 cosh
[

1
2Λk(bk)

]

=
cosh

[
1
2Λk(bk)

]
+ cosh

[
1
2Λk(bk)

]
tanh

[
1
2Λk(bk)

]

2 cosh
[

1
2Λk(bk)

]

=
1

2

[
1 + bk tanh

(
1

2
Λk(bk)

)]
(6.82)

70 Soft-input Soft-output (SISO) Algorithms 6

In equation 6.82, equality 3 can be written because bk ∈ {−1, +1}. Equality
5 and 6 follows from equations 6.79, 6.80 and 6.81.

With the expression for the bit probability, a soft estimate b̃j(i) of code
bit i can be made for all the users,

b̃j(i) ,
∑

bj∈{−1,+1}
bjP (bj)

=
∑

bj∈{−1,+1}

bj

2

[
1 + bj tanh

(
1

2
Λj [bj(i)]

)]

=
1

2

[
1 + tanh

(
1

2
Λj [bj(i)]

)]
− 1

2

[
1 − tanh

(
1

2
Λj [bj(i)]

)]

=
1

2
+

1

2
tanh

(
1

2
Λj [bj(i)]

)
− 1

2
+

1

2
tanh

(
1

2
Λj [bj(i)]

)

= tanh

(
1

2
Λj [bj(i)]

)
(6.83)

We now order the soft bit estimates of code bit i of all users into a vector,

b̃(i) =
[
b̃1(i), . . . , b̃K(i)

]T
(6.84)

From this vector we derive a vector b̃
k
(i) with the kth vector set to zero,

b̃
k
(i) =

[
b̃1(i), . . . , b̃k−1(i), 0, b̃k+1(i), . . . , b̃K(i)

]T
(6.85)

The soft interference calculation is now performed on the output of every
matched filter in 6.74. This is done by substracting the cancellation vec-
tor in 6.85 from the matched filter output, to obtain the soft interference
cancellation output y

k
(i),

y
k
(i) , y(i) − RAb̃

k
(i)

= RA[b(i) − b̃
k
(i)] + σn (6.86)

Minimum Mean Square Error filtering

To suppress resulting interference in the output y
k
(i) of the soft interference

cancellation stage, an instantaneous MMSE filter is applied. This filter is
constructed to minimize the mean-square error between the ith code bit of
user k, bk(i). The output of this filter is,

zk(i) = ωk(i)
Ty

k
(i) (6.87)

6.2 SISO Multiuser Detectors 71

where ωk(i) ∈ <K are the filter taps of user k,

ωk(i) =
[
ω1(i), . . . , ωK(i)

]
(6.88)

To minimize the mean-square error between the filter output and the code
bit bk(i), ωk(i) must satisfy the following equation,

ωk(i) = arg min
ω∈<K

E

{[
bk(i) − ωTy

k
(i)
]2}

= arg min
ω∈<K

ωT E
{
y

k
(i)y

k
(i)T

}
ω

−2ωT E
{

bk(i)yk
(i)
}

(6.89)

To minimize the term in equation 6.89, we differentiate to ω,

∂ωk(i)

∂ω
= 2ωT E

{
y

k
(i)y

k
(i)T

}
− 2E

{
bk(i)yk

(i)
}

(6.90)

and set the equation to zero,

2ωT E
{
y

k
(i)y

k
(i)T

}
− 2E

{
bk(i)yk

(i)
}

= 0

ωk(i) =
E
{

bk(i)yk
(i)
}

E
{
y

k
(i)y

k
(i)T

}

= E
{

bk(i)yk
(i)
}

E
{
y

k
(i)y

k
(i)T

}−1
(6.91)

We use equation 6.86 to find an expression for the expectation terms in
equation 6.91,

E
{
y

k
(i)y

k
(i)T

}
= RAcov

{
b(i) − b̃

k
(i)
}

AR + σ2R (6.92)

where,

cov
{
b(i) − b̃

k
(i)
}

= diag[var{b1(i)}, . . . , var{bk−1(i)}, 1
, var{bk+1(i)}, . . . , var{bK(i)}] (6.93)

and

var{bk(i) = E{bk(i)
2} − [E{bk(i)}]2

= 1 − b̃k(i) (6.94)

thus,

cov
{
b(i) − b̃

k
(i)
}

= diag[1 − b̃1(i), . . . , 1 − b̃k−1(i), 1

, 1 − b̃k+1(i), . . . , 1 − b̃K(i)] (6.95)

72 Soft-input Soft-output (SISO) Algorithms 6

We define the following term and rewrite it,

V k(i) , Acov
{
b(i) − b̃

k
(i)
}

A

= A2
keje

T
k +

∑

j 6=k

A2
j [1 − b̃j(i)

2]eje
T
k (6.96)

where ek is a column-vector with all zeros except the kth element, which is
1. The term eje

T
k gives a matrix of dimension KxK with all zeros, except

the kth element on the diagonal, which is a 1. The term A2
keje

T
k is outside

the summation because in the matrix cov
{
b(i) − b̃

k
(i)
}

the kth element on

the diagonal is a 1. For the other expectation term in equation 6.91,

E
{

bk(i)yk
(i)
}

= RAE
{

bk(i)
[
b(i) − b̃

k
(i)
]}

= RAek (6.97)

The last expression in equation 6.97 is due to the expectancy of the term

b(i) − b̃
k
(i), which is a vector with all zeros, except for the kth position,

where the expected value of bk(i) ∈ {−1, +1} should be. This vector is
exactly ek.

Now we can substitute equations 6.92, 6.96 and 6.97 into equation 6.91,

ωk(i) = RAek

[
RV k(i)R + σ2R

]−1
(6.98)

= AkR
−1
[
V k(i) + σ2R−1

]−1
ek (6.99)

Now substituting equation 6.98 and 6.86 into equation 6.87, gives us an
expresion for the MMSE filter output,

zk(i) = AkR
−1
[
V k(i) + σ2R−1

]−1
ek

[
y(i) − RAb̃

k
(i)
]

= Akek

[
V k(i) + σ2R−1

]−1
[
R−1y(i) − Ab̃

k
(i)
]

(6.100)

In equation 6.100 the term R−1y(i) is the output of a decorrelating mul-
tiuser detector.

Log-likelihood calculation

From the output of the MMSE filter, the LLR of the code bit i of every user
can be calculated. In [19] it is shown that in the output of a MMSE filter,
the residual interference and noise, is well approximated by a Gaussian dis-
tribution. So we can see the output zk(i) of the MMSE filter as an additive
white Gaussian noise channel with input bit bk(i),

zk(i) = µk(i)bk(i) + ηk(i) (6.101)

6.2 SISO Multiuser Detectors 73

where µk(i) is the amplitude at the output of the kth user’s signal and
ηk(i) ∼ (0, ν2

k(i)) is the Gaussian noise at the output with variance ν2
k(i).

When we rewrite the formula to an expression for ηk(i), we get,

ηk(i) = zk(i) − µk(i)bk(i) (6.102)

Since ηk(i) is gaussian distributed the term right of the equal sign is also
gaussian distributed. For a gaussian distribution the probability function
is known. In the equation above the term bk(i) enables us to write the
probability function as a conditional probability,

P [zk(i)|bk(i)] =
1

σ
√

2π
exp

{−[zk(i) − µk(i)bk(i)]
2

2ν2
k(i)

}
(6.103)

With the conditional probability we can write an expression for the log-
likelihood ratio Λout[bk(i)] from the output of the MMSE filter,

Λout[bk(i)] = log
P [zk(i)|bk(i) = +1]

P [zk(i)|bk(i) = −1]

= log
exp

{
−[zk(i)−µk(i)]2

2ν2
k
(i)

}

exp
{

−[zk(i)+µk(i)]2

2ν2
k
(i)

}

= log

[
exp

{−[zk(i) − µk(i)]
2

2ν2
k(i)

}]
+ log

[
exp

{
[zk(i) + µk(i)]

2

2ν2
k(i)

}]

=
−[zk(i) − µk(i)]

2

2ν2
k(i)

+
[zk(i) + µk(i)]

2

2ν2
k(i)

=
2zk(i)µk(i)

ν2
k(i)

(6.104)

To calculate Λout[bk(i)] we need an expression for µk(i) and ν2
k(i). µk(i) can

be found by using equation 6.87 and 6.86,

µk(i) = E{zk(i)bk(i)}
= E

{
Ake

T
k

[
V k(i) + σ2R−1

]−1
[
R−1

(
RA[b(i) − b̃

k
(i)] + σn

)]
bk(i)

}

= Ake
T
k

[
V k(i) + σ2R−1

]−1
E
{
Abk(i)[b(i) − b̃

k
(i)] + bk(i)R

−1σn
}

= A2
ke

T
k

[
V k(i) + σ2R−1

]−1
ek

= A2
k

[[
V k(i) + σ2R−1

]−1
]

kk
(6.105)

The expectancy term in the third step of equation 6.105 contains two terms
who are added. The first term was also used in equation 6.97 and the same
steps are followed here. The second term is zero, because the expectancy of

74 Soft-input Soft-output (SISO) Algorithms 6

the noise term is zero, as was given by definition. For ν2
k(i) we find,

ν2
k(i) = var{zk(i)}

= E{zk(i)
2} − µk(i)

2

= ωk(i)E{yk(i)yk(i)
T }ωk(i) − µk(i)

2

= A2
ke

T
k

[
V k(i) + σ2R−1

]−1
ek − µk(i)

2

= µk(i) − µk(i)
2 (6.106)

We can use equation 6.106 in equation 6.104,

Λout[bk(i)] =
2zk(i)µk(i)

µk(i) − µk(i)2

=
2zk(i)

1 − µk(i)
(6.107)

MMSE filter output special cases

The MMSE filter output in 6.100 can be viewed in the context of some
special cases, where there is no a-priori input and when there is perfect a-
priori input. No a-priori information means that Λj [bj(i)] = 0. In this case

b̃
k
(i) = 0 and thus V k(i) = A2. Then 6.100 becomes,

zk(i) = Akek

[
A2 + σ2R−1

]−1 [
R−1y(i)

]

= Akek

[
R + σ2A−2

]−1
y(i) (6.108)

which is simply the output of a lineair MMSE filter [31].
The other case, when there is perfect a-priori information, results in

Λj [bj(i)] = ±∞. In this case b̃
k
(i) = [b1(i), . . . , bk−1(i), 0, bk+1(i), . . . , bK(i)],

so there are perfect estimates of the bits bk(i) of all the other users. This
results in V k(i) = A2

keke
T
k . Substituting these results in 6.98,

ωk(i) = AkR
−1
[
A2

keke
T
k + σ2R−1

]−1
ek

=
Ak

A2
k + σ2

ek (6.109)

which then results in the output zk(i),

zk(i) = ωk(i)
Ty

k
(i)

=
Ak

A2
k + σ2

ekyk
(i)

=
Ak

A2
k + σ2

ek

yk(i) −
∑

j 6=k

Ajρkjbj(i)

 (6.110)

6.3 Conclusions 75

we see that in this case, the output of the MMSE filter is just a scaled version
of the kth user’s matched filter output after perfect soft interference cancel-
lation. The soft interference calculation is perfect, since perfect estimates of
all other users’ bits are available.

6.2.2 Soft Cancellation MUD Complexity

The computational complexity of the multi user detector is mostly deter-
mined by outer and inner vector products. The computation of zk(i) in
equation 6.100 involves two vector inner products, one for computating the
decorrelating output and one in computing the final zk(i) output. In [20]
the a recursive method is offered for calculating the inverse of a matrix.
This methode has two calculations which both involve K vector outer prod-
ucts. So with the recursive methode, the dominant computation per user
per symbol involves two vector inner and two vector outer products. The
complexity of the SISO multi user detector is then O(K2).

6.3 Conclusions

In this chapter the main building blocks for the turbo architectures in chap-
ters 3 and 4 were introduced and described.

In section 6.1 three convolutional code decoders were described; the MAP
decoder, the Max-Log-MAP decoder and the Log-MAP decoder. These
decoders are used in the PCCC and SCCC turbo architecture of section
3.3. They are also used in the turbo multiuser detectors of section 4.1 and
section 4.2. Performance differences between the decoders were investigated
in [23] and are not repeated in this thesis.

In section 6.2 a SISO turbo multiuser detector was introduced and de-
scribed. It was developed by X. Wang and V. Poor in [20] and is used in
the turbo multiuser architectures of section 4.1 and section 4.2.

In chapter 7 the building blocks of this chapter will be used to perform
simulations on the PCCC, SCCC and turbo multiuser detection architec-
tures.

7

Simulations

In this chapter simulations are performed on the SCCC, PCCC and turbo
multiuser detection architectures presented in previous chapters.

The SCCC and PCCC architectures are presented in chapter 3. The
used decoder is the Log-MAP decoder. BER charts and EXIT charts of these
architectures are made, to compare them with simulations done in literature.
BER charts of these architectures are simulated in [4]. EXIT charts of similar
turbo code architectures are simulated in [29] and [28]. The simulations in
this chapter will be done with the same settings as in [4]. When the BER
charts correspond to the BER charts in [4], the implementation of the Log-
MAP decoder is concluded to be correct. When the EXIT charts in this
chapter are similar to the EXIT charts in [29] and [27], the tool for creating
EXIT charts is considered to be implemented correctly.

The turbo multiuser detector architecture that is simulated, is presented
in section 4.1. This architecture was also simulated by X.Wang and V.Poor
in [20]. The simulations in this chapter will be done with the same settings
as in [20] to be able to compare the results. When the results are the same,
the turbo multiuser detector architecture is concluded to be implemented
correctly.

To answer the first question of this thesis, given in section 1.4, simulation
results of non-turbo multiuser detectors presented by R.M. Buehrer in [7]
are re-printed in this thesis. These results are compared to the BER chart
of the turbo multiuser detection architecture.

To answer the second question, an EXIT chart is made for the turbo
multiuser detection architecture. With this EXIT chart, the convergence
behavior of the architecture is analyzed.

In the simulations of the BER chart for the turbo multiuser detection ar-
chitecture, the a-posteriori information seems to give better results than the
extrinsic information. To analyze the difference between iterating extrin-
sic and a-posteriori information in a turbo architecture, transfer charts are
made for the mutual information of extrinsic and a-posteriori information

77

78 Simulations 7

from a Log-MAP decoder.

7.1 Implementation

The turbo architectures and their building blocks, that will be simulated,
are implemented in C++. The DSP and communications library IT++ [9]
is used to implement the architectures. From this library, predefined signal
processing functions, like a spreader, an AWGN channel and pseudo-random
interleaver, are used. The simulation software is described in the software
manual that accompanies this document and with comments given in the
source code. The document and the source code can be found on the ac-
companying cdrom. The simulations are performed on a system with an
AMD 2.8Ghz processor with 2GB of memory. Simulation times varied from
15 minutes to one hour.

The Eb/N0 ratio, used in the following sections as a parameter for the sim-
ulations, is always the signal to noise ratio of the databits. Thus Eb is the
signal energy of the databits. The signal energy Ec of the codebits in the
simulations is always 1 and is related to Eb as Ec = R · Eb, where R is the
code rate. The following procedure is used to calculate the variance σ2

n of
the channel from (Eb/N0)[dB], where (Eb/N0)[dB] is Eb/N0 in dB’s,

Eb/N0 = 10(1

10
(Eb/N0[dB]))

N0 = Eb/10(1

10
Eb/N0)

= Ec/R · 10(1

10
Eb/N0)

= 1/R · 10(1

10
Eb/N0)

and thus with BPSK modulation,

σ2
n = N0/2 (7.1)

When an EXIT chart is made, care has to be taken with the calculation
of the noise variance of the channel. When, for example, the EXIT chart
of the PCCC architecture of section 3.3 on page 26 is made, we take each
decoder out of the architecture and use the simulation setup of figure 5.3 to
make the transfer chart of that decoder. In the simulation setup of figure 5.3
the encoder of section 3.2 on page 25 now seems to have a code rate R = 1/2.
However in the PCCC architecture, this decoder received channelbits which
came from a channel, whose variance was calculated according to a code rate
R = 1/3. So the channel variance in a transfer-chart simulation-setup, also
has to be calculated with the code rate R of the turbo architecture where
the decoder came from.

7.2 Verification Simulations 79

7.2 Verification Simulations

In this section the BER charts and EXIT charts for the SCCC and PCCC
architecture are created. At the end of the section, conclusions are drawn
based on these charts.

7.2.1 PCCC architecture BER chart

In this section the PCCC architecture discussed in section 3.2 and section
3.3 is simulated.

The PCCC encoder that is used for these simulations is shown in figure
3.6 on page 26. Its settings are shown in table 7.1. The PCCC decoder that

Encoder 1

type: RSC
rate: 1/2

polynomial:
[
1, 1+D+D3+D4

1+D3+D4

]

ν: 5
final state: truncated

Encoder 2

type: RSC
rate: 1/2

polynomial:
[
1, 1+D+D3+D4

1+D3+D4

]

ν: 5
final state: truncated

Interleaver
type: pseudo-random
size: 16384 bits

Multiplexer no-puncturing

Output systematic,parity1,parity2

PCCC encoder rate 1/3

Channel AWGN

Iterations 15

Table 7.1: Settings for the PCCC encoder in figure 3.6 used for simulations

is used is shown in figure 3.7 on page 27. The decoders are implemented
as Log-MAP decoders of section 6.1.3. Simulations were performed on 100
blocks of 16384 databits. For each block the encoders are reset to their
initial state 0. For each simulation all settings remain constant, except
for the Eb/N0 values of the channel, which serve as a parameter for the
simulations.

The results of these simulations are shown in figure 7.1 on page 85, where
the BER is plotted against the number of iterations and against the signal
to noise ratio in [dB]. Because of time limitations, the simulations were not
done until for every iteration a minimum number of bit errors was detected.

80 Simulations 7

This can be seen in the simulation results, in the form of curves which do
not continue to low BER values.

In figure 7.2 on page 86 the same simulation is shown as in figure 7.1 on
page 85, only in this simulation a-posteriori information is iterated between
the decoders, instead of extrinsic information.

7.2.2 PCCC architecture EXIT chart

In this section the EXIT chart of the PCCC architecture is presented. The
settings of the decoders are given in table 7.1. The transfer charts are made
with the simulation setup of figure 5.3 in section 5.2 by using 106 input
databits. It should be noted that the systematic bits of one of the RSC
encoders, in the PCCC encoder of figure 3.6, is punctured. The effective code
rate of the RSC encoders therefor becomes R = 1/3. So when creating the
transfer chart of a decoder in a PCCC architecture, every second systematic
bit in the received channelword, should be put to zero. In this way the
decoder gets the same amount of information as it would have gotten in
the PCCC architecture. The transfer charts are made for Eb/N0 = −0.5 dB,
Eb/N0 = 0.2 dB, Eb/N0 = 0.3 dB, Eb/N0 = 0.5 dB and Eb/N0 = 1.0 dB. The
EXIT chart is plotted in figure 7.3 on page 87. In this figure the decoding
trajectory is drawn for Eb/N0 = 1.0 dB.

7.2.3 SCCC architecture BER chart

In this section the SCCC architecture discussed in section 3.2 and section
3.3 is simulated.

The SCCC encoder that is used for these simulations is shown in figure
3.5 on page 25. Its settings are shown in table 7.2. The SCCC decoder that
is used is shown in figure 3.8 on page 27. The decoders are implemented
as Log-MAP decoders of section 6.1.3. Simulations were performed on 100
blocks of 16384 databits. For each block the encoders are reset to their
initial state 0. For each simulation all settings remain constant, except
for the Eb/N0 values of the channel, which serve as a parameter for the
simulations.

The results of these simulations are shown in figure 7.4 on page 88, where
the BER is plotted against the number of iterations and against the signal
to noise ratio. Because of time limitations, the simulations were not done
until for every iteration a minimum number of bit errors was detected. This
can be seen in the simulation results, in the form of curves which do not
continue to low BER values.

7.2.4 SCCC architecture EXIT chart

In this section the EXIT chart of the SCCC architecture is presented. The
settings of the decoders are given in table 7.2. The transfer chart of the

7.2 Verification Simulations 81

Inner encoder

type: RSC
rate: 1/2

polynomial:
[
1, 1+D+D3

1+D

]

ν: 5
final state: truncated

Outer encoder

type: SC
rate: 1/2
polynomial:

[
1, 1 + D + D3

]

ν: 5
final state: truncated

Interleaver
type: pseudo-random
size: 16384 bits

SCCC encoder rate 1/4

Channel AWGN

Iterations 15

Table 7.2: Settings for the SCCC encoder in figure 3.5 used for simulations

inner decoder is made with the simulation setup of figure 5.3 in section 5.2
and the transfer chart of the outer decoder is made with the simulation
setup of figure 5.4 in the same section. The transfer charts are made with
106 input databits. Since no puncturing is used in the SCCC architecture,
no channelbits need to be put to zero, as was done with the EXIT chart
of the PCCC architecture in section 7.2.2. The transfer charts are made
for Eb/N0 = −0.5 dB, Eb/N0 = −0.3 dB, Eb/N0 = −0.1 dB and Eb/N0 =
0.5 dB. The EXIT chart is plotted in figure 7.5 on page 89. In this figure
the decoding trajectory for Eb/N0 = 0.5 dB is drawn.

7.2.5 Conclusions

PCCC architecture BER chart

The simulations of the PCCC architecture in figure 7.1 on page 85 can be
compared with the results in figure 6 of [4], since the simulation setup is
exactly the same. In [4] a bit error probability of 10−4 is reached after 5
iterations with a signal to noise ratio Eb/N0 = 0.45 dB. In figure 7.1 a BER
of 10−4 after 5 iteration is reached when Eb/N0 = 0.83 dB. Thus, the PCCC
architecture in this thesis performs ≈ 0.40 dB worse than in [4]. A possible
explanation for this performance difference is that in [4] an ’Additive Sliding
Window SISO (ASW-SISO)’ algorithm is used. However, the ASW-SISO
algorithm should be sub-optimal compared to the Log-MAP algorithm of
this thesis, since it operates on shorter block lengths. Because of this sub-
optimality, it is expected that the ASW-SISO would perform worse than

82 Simulations 7

the Log-MAP. A more detailed investigation of the ASW-SISO algorithm
is needed, to explain the difference between the simulation results in this
thesis and in [4].

In chapter 5 a bit-error-floor for a PCCC architecture was introduced.
This error-floor is encountered in literature on PCCC architectures, like
figure 8 in [4]. The simulations in this thesis do not show such an error
floor. Simulations with more blocks of databits were performed to see if
the error-floor would occur at lower BER. Even then the error-floor was not
observed. These simulations are not reproduced in this thesis. Why there
is no error-floor observed, is not known.

In figure 7.2 the simulations show that using a-posteriori information to
iterate between the decoders, gives a lower performance in terms of BER,
than when extrinsic information is used. So in a PCCC architecture, iterat-
ing extrinsic information gives better results in term of BER than iterating
a-posteriori information.

PCCC architecture EXIT chart

The EXIT chart of the PCCC architecture used in this thesis, is given in
figure 7.3 on page 87 for different Eb/N0 values. Similar simulations have
been done by S. ten Brink in [29]. The simulations in [29] are done for a
PCCC architecture with code rate R = 1/2, while the PCCC architecture
used in this thesis has a code rate R = 1/3. The EXIT chart for the
PCCC architecture in this thesis, just opens up at Eb/N0 = 0.2 dB, however
the opening is very narrow so iterating to a low BER is possible, but will
take a lot of iterations. In figure 6 of [29] the EXIT chart just opens up at
Eb/N0 = 0.7 dB. So the difference in code rate between the two architectures
seems to result in a 0.5 dB worse performance for the PCCC architecture in
[29].

The iteration trajectory is drawn in figure 7.3 for Eb/N0 = 1.0 dB. After
4 iterations the trajectory has reached IE ≈ 1. In the BER chart of figure
7.1 on page 85 after 4 iterations at Eb/N0 = 1.0 dB, a BER of ≈ 2 · 10−5 is
reached. These findings correspond, since a low BER implies a large mutual
information IE .

SCCC architecture BER chart

The results of the simulations of the SCCC architecture in figure 7.4 on
page 88 can not directly be compared with the results of the simulations of
the SCCC architecture in figure 7 of [4]. In [4] the outer-encoder is non-
systematic. The outer encoder of the SCCC architecture in this thesis is
systematic. Although a direct comparison is hard to make, we see that the
results differ only tenths of dB’s. For example, in figure 7.4 at Eb/N0 =
0.30 dB after almost 10 iterations a BER of 10−5 is reached. In [4] this BER

7.2 Verification Simulations 83

is reached after 10 iterations at Eb/N0 = 0.10 dB. At Eb/N0 = 0.00 dB,
in [4] after 13 iterations a BER of 10−5 is reached. In figure 7.4 after 13
iterations at Eb/N0 = 0.03 dB a BER of ≈ 2 · 10−3 is reached. Thus, the
SCCC architecture in [4] outperforms the SCCC architecture in this thesis.
A performance difference was also observed for the PCCC architecture and it
is assumed the same reasons, namely the usage of the ASW-SISO algorithm
in [4], can account for it.

In figure 7.6 on page 90, Eb/N0 curves are drawn for the SCCC and
PCCC architectures of figures 7.1 and 7.4 in one plot. Figure 8 in [4] gives
the same figure. The SCCC and PCCC architecture used in figure 8 of [4]
have the same code rate and complexity, the SCCC and PCCC architecture
in this thesis do not have the same rate and complexity. This makes a direct
comparison of the SCCC and PCCC architectures in this thesis not really
possible. We see that at Eb/N0 > 1 dB after 3 iterations the PCCC archi-
tecture outperforms the SCCC architecture, although the PCCC encoder is
rate 1/3 and the SCCC encoder is rate 1/4. In section 2.1 it was concluded
that an encoder with a large code rate can produce more powerful code-
words, however in the above situation the PCCC architecture with its lower
code rate outperforms the SCCC architecture. At iteration 10 the SCCC
architecture always outperforms the PCCC architecture for a BER as low
as 10−5.

SCCC architecture EXIT chart

The EXIT chart of the SCCC architecture used in this thesis, is given in
figure 7.5 on page 89 for different Eb/N0 values. The transfer chart for the
inner decoder is made with the same procedure as the transfer charts of the
decoder in the PCCC architecture. The difference in shape is caused by the
puncturing of the systematic bits for the decoder in a PCCC architecture.
The transfer chart for the outer decoder is also made by S. ten Brink in [28].
In [28] the settings of the decoder are not exactly the same, however the
shape of the transfer chart is comparable.

In figure 7.5 the EXIT chart of the SCCC architecture used in this thesis,
just opens up at Eb/N0 = −0.1 dB. In the BER chart of the SCCC archi-
tecture in figure 7.4 on page 88, at Eb/N0 = −0.1 dB, after 15 iterations the
BER decreased to ≈ 2 ·10−3. The EXIT chart suggests that more iterations
would have led to an even lower BER. For Eb/N0 = 0.5 dB the decoding
trajectory is given in the EXIT chart of figure 7.5. The trajectory reaches
IE ≈ 1 after 6 iterations. In the BER chart of figure 7.4 at Eb/N0 = 0.5 dB
after 6 iterations a BER of ≈ 10−4 is reached. Iteration 7 is not shown in the
BER chart, however when the curve of iteration 15 is examined, iteration 7
would have results in an even lower BER. These findings correspond, since
a low BER implies a large mutual information IE .

Because the BER charts of the PCCC and SCCC architectures in this

84 Simulations 7

thesis show the same performance as in [4], we conclude that the imple-
mentations of the Log-MAP decoder is correct. We therefor can use the
Log-MAP decoder for the simulations of the turbo multiuser detection ar-
chitecture. Since the EXIT charts of these architectures also correspond
with the simulations in [28] and [29], we conclude that the tool to make
EXIT charts works correctly and we can use it to make an EXIT chart for
the turbo multiuser detection algorithm.

7.2 Verification Simulations 85

2 4 6 8 10 12 14

10
−4

10
−3

10
−2

10
−1

10
0

iterations

bi
t e

rr
or

 r
at

e
EbN0=0.30dB
EbN0=0.43dB
EbN0=0.56dB
EbN0=0.70dB
EbN0=0.83dB
EbN0=0.97dB
EbN0=1.10dB
EbN0=1.23dB
EbN0=1.37dB
EbN0=1.50dB

(a) bit error rate versus the number of iterations

−0.5 0 0.5 1 1.5

10
−4

10
−3

10
−2

10
−1

10
0

EbN0dB

bi
t e

rr
or

 r
at

e

1

2

3

45

6

15

(b) bit error rate versus the signal to noise ratio, iteration numbers are next to the curves

Figure 7.1: Simulation results for a PCCC architecture, 100 blocks of 16384
data bits, interleaver size of 16384 bits

86 Simulations 7

2 4 6 8 10 12 14

10
−4

10
−3

10
−2

10
−1

10
0

iterations

bi
t e

rr
or

 r
at

e

EbN0=−0.5dB
EbN0=0dB
EbN0=0.5dB
EbN0=1dB
EbN0=1.5dB

(a) bit error rate versus the number of iterations

−0.5 0 0.5 1 1.5

10
−4

10
−3

10
−2

10
−1

10
0

EbN0dB

bi
t e

rr
or

 r
at

e

1

2

3

4

(b) bit error rate versus the signal to noise ratio, iteration numbers are next to the curves

Figure 7.2: Simulation results for a PCCC architecture where a-posteriori
instead of extrinsic information is iterated, 100 blocks of 16384 data bits,
interleaver size of 16384 bits

7.2 Verification Simulations 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

output I
E2

 of decoder 2 becomes input I
A1

 of decoder 1

ou
tp

ut
 I E

1 o
f d

ec
od

er
 1

 b
ec

om
es

 in
pu

t I
A

2 o
f d

ec
od

er
 2

Decoder 1
Decoder 2

0.5dB

0.
5d

B

0.2dB

0.3dB

0.5dB
1.0dB

0.
2d

B

0.3dB

0.
5d

B
1.

0d
B

Figure 7.3: EXIT chart for the PCCC architecture. The Eb/N0 values of
the channel are plotted next to the curves of the decoders. The decoding
trajectory for Eb/N0 = 1.0 dB is plotted in the figure.

88 Simulations 7

2 4 6 8 10 12 14

10
−4

10
−3

10
−2

10
−1

10
0

iterations

bi
t e

rr
or

 r
at

e

EbN0dB=−0.37dB
EbN0dB=−0.23dB
EbN0dB=−0.10dB
EbN0dB=0.03dB
EbN0dB=0.17dB
EbN0dB=0.30dB
EbN0dB=0.43dB
EbN0dB=0.56dB
EbN0dB=1.10dB
EbN0dB=1.50dB

(a) bit error rate versus the number of iterations

−0.5 0 0.5 1 1.5

10
−4

10
−3

10
−2

10
−1

10
0

EbN0dB

bi
t e

rr
or

 r
at

e

1

2

3

4

5
6

15

(b) bit error rate versus the signal to noise ratio, iteration numbers are next to the curves

Figure 7.4: Simulation results for a SCCC architecture, 100 blocks of 16384
data bits, interleaver size of 16384 bits

7.2 Verification Simulations 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

output I
E2

 of outer decoder becomes input I
A1

 of inner decoder

ou
tp

ut
 I E

1 o
f i

nn
er

 d
ec

od
er

 b
ec

om
es

 in
pu

t I
A

2 o
f o

ut
er

 d
ec

od
er

 Outer decoder
Inner decoder

0.5dB

 0.1dB

 0.5dB

 0.3dB

Figure 7.5: EXIT chart for the SCCC architecture. The Eb/N0 values of the
channel are plotted next to the curves of the inner decoder. The decoding
trajectory for Eb/N0 = 0.5 dB is plotted in the figure.

90 Simulations 7

0.5 0 0.5 1 1.5

10
 4

10
 3

10
 2

10
 1

10
0

EbN0dB

bi
t e

rr
or

 r
at

e

SCCC
 PCCC

3

10

3

10

Figure 7.6: Comparison of SCCC and PCCC simulations. Iteration numbers
are next to the lines.

7.3 Turbo Multiuser Detection Simulations 91

7.3 Turbo Multiuser Detection Simulations

In this section a BER chart and an EXIT chart are created for the turbo
multiuser detection architecture. At the end of the section conclusions are
drawn based on these charts. These conclusions answer the main questions
of this thesis, given in chapter 1.

7.3.1 Turbo Multiuser Detection Architecture BER chart

In this section the turbo multiuser detection architecture discussed in section
4.1 is simulated. The architecture is shown in figure 4.1 on page 34. The used
soft-in/soft-out multiuser detector is the SISO multiuser detector of section
6.2.1 and is shown in figure 6.3 on page 64. The decoders are implemented as
Log-MAP decoders of section 6.1.3. The settings of the transmitter are given
in table 7.3. Simulations are performed on blocks of 65536 databits. In [20]

Encoder

type: RSC
rate: 1/2

polynomial:
[
1, 1+D+D2+D4

1+D3+D4

]

ν: 5
final state: truncated

(for every user the same)

Spreader
type: direct spread CDMA
spreadingsfactor: 16
correlation coefficient ρij : 0.75

Interleaver
type: pseudo-random
size: 6536 bits

(different for every user)

Users 4, all have equal power

Channel AWGN

Iterations 5

Table 7.3: Settings for the transmitter of the users in the turbo multiuser
detection arcitecture of figure 4.1 used for simulations

blocks of 128 databits were used. These small blocks are not used here, since
the encoder is not terminated to a state. The influence of the block length
was discussed in chapter 2. Simulations were stopped when at iteration 5
at least 4000 bit errors were simulated. More iterations did not increase the
performance of the architecture. The results of these simulations are shown
in figure 7.7 on page 96.

In the last part of section 4.1 the use of a-posteriori information instead
of extrinsic information was discussed. In figure 7.8 on page 97 simulation
results are given when the turbo multiuser detection architecture of figure 1

92 Simulations 7

in [20] is used. In this architecture extrinsic information is iterated between
blocks, instead of a-posteriori information as is done in figure 4.1 on page
34. The settings are also given in table 7.3.

In figure 7.7 on page 96 the upper dotted curve represents the BER curve
for iteration 3 of a turbo multiuser detection architecture where extrinsic
information is passed from the decoder to the SISO MUD and a-posteriori
information is passed from the SISO MUD to the decoder.

7.3.2 Turbo Multiuser Detection Architecture EXIT chart

In this section the EXIT chart of the Turbo multiuser detection architecture
is presented. The settings are the same as in that section, and thus given in
table 7.3. The transfer chart of the SISO MUD is made with the simulation
setup of figure 5.5 and the transfer chart of the decoder is made with the
simulation setup for the outer decoder of figure 5.4. For the decoder two
transfer charts are plotted; one for a decoder with a-posteriori output and
one for a decoder with extrinsic output. This enables us to compare the
convergence with extrinsic and a-posteriori output. The transfer charts are
made with 106 input databits. Since no puncturing is used in the turbo
multiuser detection architecture, no channelbits need to be put to zero, as
was done with the EXIT chart of the PCCC architecture. The transfer
charts are made for Eb/N0 = 1 dB, Eb/N0 = 2 dB, Eb/N0 = 3 dB and
Eb/N0 = 4 dB. The EXIT chart is plotted in figure 7.10 on page 99. In this
figure the decoding trajectory is drawn for Eb/N0 = 4 dB.

7.3.3 Conclusions

SISO Multiuser Detector Implementation Verification

The simulation results of the turbo multiuser detector architecture in figure
7.7 on page 96 are also given in figure 3 of [20]. The difference between the
architecture in this thesis and the architecture in [20] was described at the
end of section 4.1 on page 33. The simulation results in figure 7.8 on page 97
show that the architecture presented in figure 1 of [20] does not iterate to a
lower BER. For the first iteration the results are the same as in the figure of
[20], but for more iterations the results differ. For 3 or more iterations the
BER seems to converge to ≈ 0.15 in figure 7.8. An explanation for this can be
given by examining equation 3.2 on page 28. Extrinsic information is created
by subtracting the intrinsic information from the a-posteriori information.
Extrinsic information contains therefor less information about the data- or
codebit than a-posteriori information. Since the SISO multiuser detector
performs soft-cancellation, as was explained in section 6.2.1 on page 64, it
needs the best possible estimate of the codebit and that is provided by the
a-posteriori information.

7.3 Turbo Multiuser Detection Simulations 93

When the architecture of figure 4.1 is used, the simulation results can
be compared with the simulation results in figure 3 of [20]. The single user
curve in figure 7.7 is at a slightly lower BER when Eb/N0 = 0 dB and at
a slightly larger BER when Eb/N0 = 4 dB. The curves for iteration 1,2&3
when Eb/N0 = 4 dB have a larger BER in figure 7.7 than in [20]. However,
at iteration 4&5 the curves of figure 7.7 and [20] are at about the same BER.

The upper dotted curve in figure 7.7 is at a higher BER than the curve for
iteration 3 of the architecture in figure 4.1. This dotted curve is made when
extrinsic information is send from the decoder to the multiuser detector,
and a-posteriori information is send from multiuser detector to the decoder.
So although only extrinsic information is passed from decoder to multiuser
detector, the architecture still performs worse than when all a-posteriori
information was used. We conclude that using a-posteriori information in a
turbo multiuser detection architecture gives better results. An explanation
can be found in section 3.3 on page 26. There it was said that a decoding
block should never get information it already has. The decoder in a turbo
multiuser detection architecture, however, has no other information than the
information about the codebits. So offering it less information will result in a
worse performance. So, it could be concluded that in the SCCC architecture,
the outer decoder should also receive a-posteriori information to obtain a
performance increase. However simulations showed that this is not true and
a worse performance is obtained. These simulations are not presented in
this thesis. No explanation can be given for this behavior. The discussion
about a-posteriori and extrinsic information is continued in section 7.4.

The results above show that using a-posteriori information to iterate
between the blocks in a turbo multiuser detection architecture gives better
results than using extrinsic information as is done in [20]. When we as-
sume that in [20] also a-posteriori information was used (this is not reported
there), to obtain the simulation results, we can conclude that the implemen-
tation of the SISO multiuser detection architecture works correctly.

Turbo & non-Turbo Multiuser Detection Comparison

In figure 7.9 on page 98, simulation results are shown for non-turbo multiuser
detectors. This chart has been copied from [7] and is also used in [21]. The
multiuser detector in figure 7.9 that is comparable with the SISO multiuser
detector in this thesis is the ’Successive Interference Canceller (Succ IC)’.
For a detailed description of this multiuser detector refer to [21]. The two
multiuser detectors will be compared at Eb/N0 = 4 dB. In the turbo mul-
tiuser detector architecture the SISO multiuser detector is followed by a con-
volutional code decoder. During the first iteration, no a-priori information
is available at the SISO MUD, so it acts like a set of matched-filters. Since
the multiuser detector in the turbo multiuser detection architecture can not
operate on its own, we have to compare the entire turbo multiuser detector

94 Simulations 7

architecture with the successive interference cancelling multiuser detector.
The simulations of figure 7.9 were done with 10 users and a spreading factor
31, while the simulations in this thesis are done with 4 users and a spreading
factor of 16. Also the correlation factors of the spreading sequences of the
non-turbo multiuser detector are not given in [7], however in our simulations
of the turbo multiuser detector they are ρij = 0.75 and obviously quite large.

When we compare figure 7.9 and figure 7.7, we see that the turbo archi-
tecture only performs better than the Succ IC at Eb/N0 > 3 dB. For this
performance increase the turbo architecture has to iterate at least two times.
When only one iteration is used, the successive IC and all the other multiuser
detectors of figure 7.9 outperform the turbo architecture for all Eb/N0, even
though the number of users in the non-turbo simulations (U=10) is higher
than in the turbo simulations (U=4). Because of the convolutional code, the
single user bound of the turbo architecture descends much faster to low BER
at increasing Eb/N0 than the single user bound of the successive IC. Sim-
ulations on the turbo architecture have not been done for Eb/N0 > 4 dB,
however when the BER curves are extrapolated to higher Eb/N0, we see
that iterating 5 times in a turbo architecture gives a dramatically increase
in performance in terms of BER.

Overall we can conclude that the turbo multiuser detector of this thesis
gives an increased performance over the non-turbo multiuser detectors of
figure 7.9 when Eb/N0 > 3 dB and more than one iteration is performed.
When these conditions are fulfilled, the turbo multiuser detector will give
a high performance increase in terms of BER, compared to the non-turbo
multiuser detector. However, the performance increase in terms of the BER
should be able to make up for the increase in complexity and required com-
putational power. In [21] the complexity of the Succ IC is given on page
30. The complexity of the SISO multiuser detector in this thesis is given in
section 6.2.2 and the complexity of the Log-MAP decoder is given in section
6.1.4. In case the complexity increase of a turbo architecture poses no prob-
lem and the BER needs to be very low or the number of users in an area
is very high, a turbo multiuser detector is a better choice than a non-turbo
multiuser detector.

Turbo Multiuser Detection Architecture EXIT chart

The EXIT chart of the turbo multiuser detection architecture used in this
thesis, is given in figure 7.10 on page 99 for different Eb/N0 values. Similar
simulation results were not found in literature. In figure 7.10 two curves
for the decoder are drawn, one for the decoder with a-posteriori output and
one for the decoder with extrinsic output. In section 7.3.1 it was concluded,
that iterating a-posteriori information gives better results than extrinsic in-
formation. In figure 7.10 the decoder transfer chart for extrinsic information,
intersects the transfer chart of the SISO multiuser detector earlier than the

7.3 Turbo Multiuser Detection Simulations 95

transfer chart of the a-posteriori information. Thus the EXIT charts con-
firms that a-posteriori information gives better results in the turbo multiuser
detection algorithm.

The a-posteriori transfer chart intersects the SISO multiuser detector
transfer chart for low Eb/N0 values earlier than for higher values. This also
can be see in the BER chart of figure 7.7 on page 96, when at low Eb/N0

iterating does not improve BER significantly.
Although the transfer chart of the decoder reaches the point where

IE ≈ 1, the transfer chart of the SISO multiuser detector does not reach
this point for the simulated Eb/N0 values. This implies that the turbo mul-
tiuser detector does not converge to a low BER of ≈ 10−5 for every value
for Eb/N0 as was seen with the PCCC and SCCC architectures of the pre-
vious sections, provided that the curves in the EXIT chart of the PCCC
and SCCC architecture do not intersect before this point is reached. In the
EXIT chart the transfer charts of the SISO multiuser detector are vertically
shifted upwards for higher Eb/N0 values. If the Eb/N0 value becomes high
enough, it is expected that the transfer chart of the SISO multiuser detector
will also reach IE ≈ 1.

In figure 7.10 the iterative trajectory for Eb/N0 = 4 dB is given. When
this trajectory is quickly examined, it appears that the two transfer charts
intersect after 3 iterations. However, in figure 7.7 on page 96 the fourth and
fifth iteration still give a lower BER than the third iteration. In the EXIT
chart of figure 7.10 the transfer chart of the decoder, makes a very steep rise
at the end of the trajectory. Here, a small addition of mutual information by
the SISO multiuser detector, will give a large addition of mutual information
by the decoder.

96 Simulations 7

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

EbN0dB

bi
t e

rr
or

 r
at

e

1

2

3

4

5

extrinsic info
to SISO MUD

single user

Figure 7.7: Simulation results for a turbo multiuser detection architecture,
65536 data bits per block, interleaver size of 65536 bits, 4000 errors per
iteration, ρij = 0.75 and 4 users. Iteration numbers are next to the lines.
The dotted curve is iteration 3 in an architecture where extrinsic instead of
a-posteriori information is passed from the decoder to the SISO MUD

7.3 Turbo Multiuser Detection Simulations 97

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

EbN0dB

bi
t e

rr
or

 r
at

e

1

2

3

4

Figure 7.8: Simulation results for a turbo multiuser detection scheme where
extrinsic information is iterated between the blocks. Iteration numbers are
next to the curves

98 Simulations 7

Figure 7.9: Simulation results for non-turbo multiuser detection architec-
tures obtained from [7] and used in [21]

7.3 Turbo Multiuser Detection Simulations 99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

output I
E2

 of LogMAP decoder becomes input I
A1

 for MUD

ou
tp

ut
 I E

1 o
f M

U
D

 b
ec

om
es

 in
pu

t I
A

2 fo
r

Lo
g

M
A

P
 d

ec
od

er

SISO multiuser detector

decoder with a

posteriori output
decoder with extrinsic output

1dB

2dB

3dB

4dB

Figure 7.10: EXIT chart for the turbo multiuser detection architecture.
The Eb/N0 values of the channel are plotted below the curves of the SISO
multiuser detector. Two transfer charts for the decoder are given; one where
the decoder outputs a-posteriori information and one where the decoder
output extrinsic information.

100 Simulations 7

7.4 A-posteriori & Extrinsic Transfer Charts

Because of the discussion about a-posteriori and extrinsic information in
previous sections, these subjects are further investigated. In this section
transfer charts of the a-posteriori and extrinsic information output of a Log-
MAP decoder are presented. With these transfer charts the difference of
the information contents of a-posteriori and extrinsic information can be
evaluated. At the end of the section conclusions will be given.

7.4.1 A-posteriori & Extrinsic Transfer Charts

In figure 7.11 on page 101 the transfer function of an outer decoder in an
SCCC architecture is plotted for an output of extrinsic and a-posteriori
information. The setting of the outer decoder is the same as the setting of
the decoder in table 7.1.

In figure 7.12 on page 102 the transfer function of an inner decoder in
an SCCC architecture is plotted for an output of extrinsic and a-posteriori
information. The setting of the inner decoder is the same as the setting of
the decoder in table 7.2.

7.4.2 Conclusions

In figure 7.11 on page 101 the transfer function of an outer decoder in an
SCCC architecture is plotted for an output of extrinsic and a-posteriori
information. In figure 7.12 on page 102 the transfer function of an inner
decoder in an SCCC architecture is plotted for an output of extrinsic and
a-posteriori information.

In all these figures the a-posteriori information has a higher mutual in-
formation value than the extrinsic information. This can be explained, by
referring to equation 3.2 on page 28. The extrinsic information is made
by subtracting the intrinsic information from the a-posteriori information,
thus the extrinsic information contains less information about the databit
dk than the a-posteriori information.

In the figures the mutual information of the extrinsic and a-posteriori
information converge to each other for large mutual information inputs.
Thus, the extra information obtained for every iteration becomes less when
more iterations are performed, as was concluded in chapter 5.

From the transfer charts of figure 7.12, it can be concluded that when
the a-posteriori transfer charts are used to make an EXIT chart, the transfer
charts will intersect not as early as when the transfer charts of the extrinsic
information are used, because the transfer chart of the a-posteriori informa-
tion is concave and the transfer chart of the extrinsic information is convex.
From this, it can be concluded that using a-posteriori information to iter-
ate between the decoders in a PCCC or an SCCC architecture will give a

7.4 A-posteriori & Extrinsic Transfer Charts 101

better performance in terms of BER. However, in figure 7.2 on page 86 us-
ing a-posteriori information gives worse results in terms of BER than when
extrinsic information is used, as in figure 7.1.

A possible explanation for this can be found in the procedure for cal-
culating the mutual information of the output. To calculate the mutual
information, the LLR output was assumed to be Gaussian distributed. A-
posteriori information might not have a Gaussian distribution. To calculate
the mutual information of the a-posteriori information, without assuming
any distribution, equation 5.9 on page 40 can be used. In this formula the
probability density function is needed to calculate the mutual information.
Further investigations are needed on this.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A

I E

a−posteriori
extrinsic

Figure 7.11: Transfer charts for an outer decoder in an SCCC architec-
ture which outputs a-posteriori information and extrinsic information. The
settings are the same as for the decoder in table 7.1.

102 Simulations 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A

I E

extrinsic
a−posteriori

(a) transfer chart for Eb/N0 = −0.5 dB of the channel

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A

I E

a−posteriori
extrinsic

(b) transfer chart for Eb/N0 = 0.5 dB of the channel

Figure 7.12: Transfer charts for an inner decoder in an SCCC architecture
which outputs a-posteriori information and extrinsic information. The set-
tings are the same as for the inner decoder in table 7.2.

7.5 Conclusions 103

7.5 Conclusions

In this chapter simulations were performed on the PCCC and SCCC ar-
chitectures of chapter 3 to verify the correct implementation of the used
algorithms. Also simulations were performed on the turbo multiuser detec-
tion architecture of chapter 4 to answer the main questions of this thesis,
which were formulated in chapter 1. Since simulations showed very different
behavior of the architectures when a-posteriori or extrinsic information was
used, transfer charts were made to analyze this difference.

In section 7.2 simulations were performed on the PCCC and SCCC archi-
tectures to verify the correctness of the implementations of the Log-MAP
decoder and the EXIT chart tool. BER charts were used to make compar-
isons with BER charts from the same architectures in other literature. Since
the BER charts in this thesis correspond to the BER charts in other liter-
ature, it was concluded that the implementation of the Log-MAP decoder
is correct. EXIT charts were used to make comparisons with EXIT charts
for the same architectures in other literature. Since the EXIT charts in this
thesis were similar to EXIT charts in literature, and that the conclusions
drawn from EXIT charts and BER charts corresponded with each other, it
was concluded that the tool to make EXIT charts works correctly.

With the EXIT chart for the PCCC architecture, it was concluded that
the minimum value for Eb/N0, to make it iterate to a low BER, is 0.2 dB.
For the SCCC architecture this minimum value for Eb/N0 was found to be
−0.1 dB.

In section 7.3 simulations were performed on the turbo multiuser detection
architecture. BER charts were used to make comparisons with simulation
results in literature. Since the BER charts in this thesis correspond to the
BER chart in literature, it was concluded that the implementation of the
SISO multiuser detector is correct. EXIT charts for a turbo multiuser detec-
tion architecture were created to analyze the convergence behavior. EXIT
charts were applied to turbo multiuser detection for the first time.

From the BER charts, it was concluded that a-posteriori information
needs to be iterated between the decoding blocks, instead of extrinsic infor-
mation as is done in [20]. The BER charts were also used to compare the
turbo multiuser detection architecture with a non-turbo multiuser detector.
It was found that the turbo multiuser detection architecture outperforms the
non-turbo multiuser detector dramatically, when Eb/N0 > 3 dB and more
than one iteration is performed. The comparisons were performed for the
Succ IC, which is similar to SISO multiuser detector in this thesis.

The EXIT charts showed that for lower values of Eb/N0, the transfer
charts of an EXIT chart intersect earlier. The EXIT charts also showed
that the turbo multiuser detection architecture does not reach the point

104 Simulations 7

where IE ≈ 1, for the simulated values of Eb/N0. The PCCC and SCCC
architectures were found to always be able to converge to this point, pro-
vided that the transfer charts in the EXIT chart of the PCCC or SCCC
architecture do not intersect before this point is reached. It is assumed
that for higher Eb/N0 the turbo multiuser detection architecture also will
converge to IE ≈ 1, since for higher Eb/N0 the transfer chart of the SISO
multiuser detector shifts upwards. In the EXIT chart it was also seen, that
the transfer chart for a decoder that outputs extrinsic information, intersects
the transfer chart of the SISO multiuser detector for a lower input mutual
information value, than for a decoder that outputs a-posteriori information.
This corresponds with the conclusions that a-posteriori information gives a
better performance in terms of BER than extrinsic information, which were
taken from the BER charts.

From the transfer charts with a-posteriori and extrinsic information curves
for a decoder, it seemed that using a-posteriori information to iterate be-
tween the blocks of a PCCC or an SCCC architecture gives better results
in terms of BER than using extrinsic information. This, however, does not
comply with BER simulations of a-posteriori information. A possible expla-
nation is that the mutual information of the LLR values is calculated with
a Gaussian distribution imposed on these values. A-posteriori information
might not have a Gaussian assumption. However, the EXIT chart of the
turbo multiuser detector architecture seems to be more correct, when the
transfer chart for a-posteriori information of the decoder is used. These
findings contradict each other. This behavior can not be explained without
further investigations.

8

Conclusions and
Recommendations

In this chapter conclusions are drawn for the main questions of this the-
sis described in chapter 1. Also conclusions will be drawn for some other
questions that arose during the investigation in this thesis. Next, some rec-
ommendations are made for further research on the topic of turbo multiuser
detection.

8.1 Conclusions

In this thesis the turbo principle applied to multiuser detection was investi-
gated. Two main questions were formulated in chapter 1, which are answered
successively below.

The first question was: ’what is the amount of performance gain that can be
achieved by using turbo-multiuser-detection instead of ’classical’-multiuser-
detection (’classical’=no turbo) and under what conditions and costs can
these performance gains be achieved?’. This question was answered by com-
paring the BER chart of the turbo multiuser detection architecture with the
BER chart of a non-turbo multiuser detector. The BER chart showed that
a turbo multiuser detection architecture outperforms a non-turbo multiuser
detector dramatically for Eb/N0 > 3 dB and when more than one iteration is
performed. The costs of this performance gain were not evaluated. However,
a reference to literature, where the complexity of the non-turbo multiuser
detector and a reference to the sections in this thesis where the complexity
of the turbo multiuser detection architecture can be found, were given. The
results of the simulations to answer this question can be found in section
7.3.1. More elaborate conclusions can be found in section 7.3.3.

The second question was: ’what is the convergence behavior of a turbo

105

106 Conclusions and Recommendations 8

multiuser detection architecture?’. The convergence behavior of the turbo
multiuser detection architecture was analyzed with an EXIT chart. The
EXIT chart showed that for lower values of Eb/N0, the transfer charts of an
EXIT chart intersect at lower input mutual information values and thus the
BER of the architecture will not converge to a low value. The EXIT charts
also showed that the turbo multiuser detection architecture does not reach
the point where IE ≈ 1, for the simulated values of Eb/N0. The PCCC and
SCCC architectures were found to always be able to converge to this point,
provided that the transfer charts in the EXIT chart of the PCCC or SCCC
architecture do not intersect before this point is reached. It is assumed
that for higher Eb/N0 the turbo multiuser detection architecture also will
converge to IE ≈ 1, since for higher Eb/N0 the transfer chart of the SISO
multiuser detector shifts upwards. The results of the simulations to answer
this question can be found in section 7.3.2. More elaborate conclusions can
be found in section 7.3.3.

For this thesis software was created that can be used to simulate turbo
architectures. Also a tool to create EXIT charts was made. Simulations on
PCCC and SCCC architectures were done, to verify the implementations
of the algorithms used in the turbo multiuser detection architecture and to
verify the tool to create EXIT charts. The implementations and the tool
were found to be correct.

During the investigation of the turbo architectures, questions arose about
the difference between a-posteriori and extrinsic information. Transfer
charts of a Log-MAP decoder that outputs a-posteriori and extrinsic in-
formation were made to answer these questions. The transfer charts showed
that using a-posteriori information in a PCCC or SCCC architecture should
give better results in terms of BER. Simulations of these architectures con-
tradict these findings. On the other hand, when the transfer chart of the
decoder with a-posteriori output is used in the EXIT chart of the turbo mul-
tiuser detection architecture, the findings seem to correspond better with
simulations. An explanation for this can not be given. More conclusions
can be found in section 7.4.

8.2 Recommendations

• EXIT charts can be used to determine how many iterations of a turbo
architecture are useful to obtain a low BER. This can be used in the
AWGN project [11], where adaptive wireless networking is researched.
EXIT charts can be made for a number of situations and stored in
the decoder or can be perhaps made semi-real-time to adaptively alter
the number of iterations. A total real-time implementation will not

8.2 Recommendations 107

be possible, since the mutual information is calculated from a block
of LLR values. So a number of LLR values first have to be created
before the calculation can be done, which causes a time delay. How-
ever, computing an EXIT chart semi-real-time might need too much
computational power to be feasible.

• Simulations to obtain BER charts are very time consuming. Investi-
gations could be performed to reduce the time needed for these simu-
lations.

• No simulations were performed on the hybrid turbo multiuser detec-
tion architectures of section 4.2. Techniques developed in [30] could
be used to create 3-dimensional EXIT charts for these architectures
and determine the optimal order of activation.

• The EXIT charts of the turbo multiuser detection architecture were
created with the assumption that the mutual information of every user
increased with the same value at every iteration. This implies that the
correlation coefficient between the spreadwords of all the users is about
the same and that the power-control of the systems is perfect. Since in
practical situations these assumptions might not hold, their influence
on the EXIT chart could be investigated.

• The transfer charts of chapter 7 were created by assuming a Gaussian
distribution on the output LLR values. The validity of this assumption
could be checked by calculating the mutual information of the LLR
values based on the probability density function. When the probability
density function is known, equation 5.9 on page 40 can be used to
calculate the mutual information.

• Other SISO multiuser detectors, that are suitable for usage in a turbo
architecture, are presented in literature, e.g. [32][18][17][22][1]. Their
performance could be evaluated by creating the appropriate EXIT
charts.

• The settings for the encoders could be changed to find a code, that
gives better results when used in a turbo multiuser detection architec-
ture than the codes that are used in this thesis.

• For the PCCC architecture in this thesis, no bit-error floor was ob-
served, although this error floor is observed in literature like [4]. Fur-
ther investigations on this bit-error floor could be performed.

Bibliography

[1] P.D. Alexander, M.C. Reed, J.A. Asenstorfer, and C.B. Schlegel. It-
erative multiuser interference reduction: Turbo cdma. IEEE Trans on
Comm., 47(7), July, 1999.

[2] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of
linear codes for minimizing symbol error rate. IEEE Trans. on Infor-
mation Theory, March 1974.

[3] A.S. Barbulescu and S.S. Pietrobon. Interleaver design for turbo codes.
Electr. Letters, December 1994.

[4] S. Benedetto and G. Montorsi. Iterative decoding of serially concate-
nated convolutional codes. Electr. Letters, 32(13), June 1996.

[5] S. Benedetto and G. Montorsi. Design of parallel concatenated convo-
lutional codes. IEEE. Trans. Comm, May 1996.

[6] C. Berrou and A. Glavieux. Near optimum error correcting coding and
decoding: Turbo-codes. IEEE Trans. Comm., 44, October 1996.

[7] R.M. Buehrer, N.S. Correal-Mendoza, and B.D. Woerner. A simulation
comparision of multiuser receivers for cellular cdma. IEEE Transactions
on Vehicular Technology, 4(49):1065–1085, July, 2000.

[8] A. Burr. Turbo-codes: the ultimate error control codes. Electronics
and Communication Engineering Journal, August 2001.

[9] Open Source Community. It++ 3.7.1 c++ library. http://itpp.

sourceforge.net, 2003.

[10] C. Flemming. A tutorial on convolutional coding with viterbi decoding.
http://pweb.netcom.com/%7Echip.f/Viterbi.html, 2003.

[11] ir. F.W. Hoeksema, ir. J. Potman, and Prof. Dr. ir. C.H. Slump.
Adaptive wireless networking (awgn) project. http://www.sas.

109

110 Bibliography

el.utwente.nl/research/wireless_communication/adaptive_w%

ireless_networking/, 2003.

[12] J. Hagenauer. Log-likelihood ratios, mutual information and exit charts
- a primer. 12th Joint Conference on Communications and Coding, Saas
Fe, Switzerland.

[13] R.W. Hamming. Coding and Information Theory. Prentice Hall, Inc.,
1986.

[14] L. Hanzo, T.H. Liew, and B.L. Yeap. Turbo Coding, Turbo Equalisation
and Space-Time Coding for Transmission over fading channels. John
Wiley & Sons, 2002.

[15] S. Hawking. A brief history of time. Bantam Books, 1988.

[16] J.F. Hayes. The viterbi algorithm applied to digital data transmission.
IEEE Comm magazine, 50th anniversary, May 2002.

[17] Q. Li, X. Wang, and C.N. Georghiades. Turbo multiuser detection
for turbo-coded cdma in multipath fading channels. IEEE Trans. on
Vehicular Techn., 51(5), September, 2002.

[18] L. Liu, W.K. Leung, and L. Ping. Simple iterative chip-by-chip mul-
tiuser detection for cdma systems. Department of Electronic Engineer-
ing, City University of Hong Kong.

[19] H.V. Poor and S. Verdú. Probability of error in mmse multiuser detec-
tion. IEEE Trans. Inform. Theory, 43, May 1997.

[20] H.V. Poor and X. Wang. Iterative (turbo) soft interference cancellation
and decoding for coded cdma. IEEE Trans. Comm., 47(7), July 1999.

[21] J. Potman. Development of a multiuser detection testbed. Master’s
thesis, University of Twente, Department of electrical engineering, Lab-
oratory of Signals & Systems.

[22] D. Reynolds and X. Wang. Turbo multiuser detection with unknown
interferers. IEEE Trans. on Comm., 50(4), April, 2002.

[23] P. Robertson, E. Villebrun, and P. Hoeher. A comparison of optimal
and sub-optimal map decoding algorithms operating in the log domain.
Proc.ICC ’95, Seattle, USA, June 1995.

[24] H. R. Sadjadpour, N. J. A. Sloane, M. Salehi, and G. Nebe. Interleaver
design for turbo codes.

[25] C. Schlegel and L. Perez. Trellis and Turbo Coding. IEEE Press, 2002.

BIBLIOGRAPHY 111

[26] B. Sklar. A primer on turbo code concepts. IEEE Comm. Magazine,
December 1997.

[27] S. ten Brink. Rate one-half code for approaching the shannon limit by
0.1db. Electronics Letters, 36(15), July 2000.

[28] S. ten Brink. Convergence of iterative decoding. Electronics Letters,
35(10), May 1999.

[29] S. ten Brink. Convergence behavior of iteratively decoded parallel con-
catenated codes. IEEE Trans. Comm., 49(10), October 2001.

[30] M. Tuchler. Convergence prediction for iterative decoding of three-
fold concatenated systems. Institute for Communications Engineering,
Munich University of Technology, Germany.

[31] S. Verdú. Multiuser Detection. Cambridge Univ. Press, 1998.

[32] C. Wang, J. Hsu, S. Shih, and J. Wen. A soft-input soft-output decor-
relating block decision-feedback multiuser detector for turbo-coded ds-
cdma systems. Wireless Personal Communications, 17.

[33] N. Wiberg. Codes and decoding on general graphs. Ph.D. dissertation,
Linkoping Univ. Sweden.

[34] R.E. Ziemer and R.L. Peterson. Introduction to digital communication.
Prentice Hall, Inc., 2001.

