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Abstract

The CADTES and SAS groups of the EEMCS faculty are working on the
Adaptive Wireless Networking (AWGN) project. As part of this project
adaptive algorithms are developed for digital signal processing in W-CDMA
systems. One of these algorithms is the path search algorithm that estimates
the delays of the paths between a transmitter and a receiver that are caused
by reflections. Several options exist for implementing the path search algo-
rithm. One of the questions posed within the AWGN project is: to what
extent will it be useful for the path search function to switch between differ-
ent algorithms, as the conditions between transmitter and receiver change?

First, this document presents an overview of path search algorithms from
literature. About twenty papers are discussed, the algorithms they describe
have been compared with each other on sixteen points. Based on the sim-
ilarities that are discovered, the algorithms are classified in three classes:
algorithms using a Power Delay Profile (PDP), algorithms based on a Maxi-
mum Likelihood Estimation (MLE) method and subspace-based algorithms.

Next, an algorithm is selected from each class. Both the Power Delay
Profile and the Maximum Likelihood algorithms are implemented, the sub-
space algorithm is analyzed in theory only. In order to set up meaningful
simulations channel models and simulation scenarios are investigated. The
available simulator is discussed, as well as the modifications that were made.

The algorithms’ performance is determined by simulation, results show
that the MLE algorithm outperforms the PDP algorithm in most situa-
tions. The MLE algorithm however requires more computations under all
circumstances. In view of this trade-off between performance and number
of computations the MLE algorithm should be used in case of closely spaced
paths, if time-variant path delays need to be estimated and if strong Doppler
effects occur. BER simulations will have to be carried out to quantify the
benefits of selecting the MLE algorithm in these cases.
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1

Introduction

Currently the CADTES group and the SAS group of the EEMCS faculty
are working on the Adaptive Wireless Networking (AWGN) project that is
sponsored by Freeband. The goal of the AWGN project is the development
of adaptive algorithms for digital signal processing and the mapping of these
algorithms on a flexible hardware architecture. Within the AWGN project
mostly adaptive algorithms are investigated that can be applied in CDMA
systems, such as UMTS.

One of these algorithms is the so-called path search algorithm. It is used
to estimate the delays of the different paths between a transmitter and a
receiver that are caused by reflections. Several options are available for im-
plementing the path-search algorithm. One of the questions posed within
the AWGN project is: to what extent will it be useful for a certain function
to switch between different algorithms, as the conditions between transmit-
ter and receiver change?

As part of the AWGN project, the goal of this M.Sc. thesis is to answer
this question for the path search algorithm. In order to provide an answer,
existing path search algorithms have been researched in literature. The pos-
sible implementations of the path search algorithm have been investigated
and are presented in this document (Chapter 2). If possible the circum-
stances under which these algorithms show the best performance are noted,
as well as a measure for their performance.

Before implementing the algorithms and setting up simulations first a
number of channel models are analyzed in Chapter 3. Also scenarios have
been formulated in Chapter 3 that describe the conditions in the channel
between the transmitting base station and the receiving mobile terminal.

1



2 Introduction 1

Next the algorithms that are selected in the literature study have been
implemented. The implementation of these path searchers is discussed in
detail in Chapters 4 and 5. The theory behind the subspace-based algorithm
is discussed in Appendix B. The performance of the algorithms needs to be
investigated in more detail, for this a number of simulations are carried out
(Chapter 6). Finally the conclusions of this M.Sc. thesis are presented in
Chapter 7.



2

Literature study

2.1 Overview of the literature study

To get a clearer picture of the different techniques for implementing the path
search algorithm papers have been searched in literature about this. In Sec-
tion 2.2 it is briefly discussed which sources have been used and according
to which method the papers have been searched. This resulted in about
twenty papers. In Section 2.3 a model of the received signal is presented, for
a better understanding of the papers. The algorithms have been compared
with each other on sixteen points; these points are addressed in Section 2.4.

The discussion of the algorithms that were found follows in Section 2.5.
During the literature study it turned out that there are several resemblances
between the algorithms that were found. Based on these resemblances it was
possible to classify the algorithms in three classes.

The first class that was identified consists of algorithms that use a Power
Delay Profile. This class of algorithms is described in Subsection 2.5.1, in-
cluding an overview of the papers. A second group of algorithms is based on
a Maximum Likelihood method, the papers are discussed in Subsection 2.5.2
in detail. Subspace-based algorithms form the last group (Subsection 2.5.3).

One of the questions of the AWGN project (Chapter 1) is: to what
extent is it useful to switch between several types of algorithms that can
carry out the path search function, as conditions change between transmitter
and receiver? To be able to answer this question, the algorithms will be
implemented during the next phase of this M.Sc. thesis. One algorithm
from each of the classes is selected, as will be discussed in Section 2.6.

3



4 Literature study 2

2.2 Selection of papers for the literature study

In order to find papers discussing path search algorithms a table of keywords
was drafted. This table contains a variety of combinations of one or more
words from the following list:

path multipath channel algorithm
search∗ delay estimat∗ cdma

∗ is a wildcard, ”estimat∗” can be ”estimator” or ”estimation” and so
on, ”search∗” can be ”searcher” or ”searching”. Search engines provided by
a number of organizations were used to find papers discussing techniques for
path searching, using the generated table of keywords. They include:

database: provided by: available at:

IEEExplore IEEE http://ieeexplore.ieee.org
Universiteits Bibliotheek University of Twente http://opc4.civ.utwente.nl
Picarta OCLC PICA http://picarta.pica.nl/
Web of Science ISI http://isi4.isiknowledge.com/portal.cgi/wos
Current contents ISI University of Twente library
Compendex Elsevier Engineering Information http://www.engineeringvillage2.org/
Inspec Elsevier Engineering Information http://www.engineeringvillage2.org/
Google Google http://www.google.com/
Altavista Altavista http://www.altavista.com/

This resulted in a large number of papers, which were processed in two
phases. During the first phase the most relevant papers were selected based
on their abstracts. These papers were then fully processed and the most rel-
evant ones have been selected for the literature study. They will be discussed
in detail in Section 2.5.

2.3 Received signal model

The papers present algorithms that process the signal that is received from
a multipath channel. The signal that is transmitted by user k over the
multipath channel can be described as xk(t):

xk(t) =

√

εb,k

Tb

P0−1
∑

i=0

bk
(i)sk(t − iTb) (2.1)

In (2.1) bk
(i) ∈ {−1, 1} is the ith symbol, transmitted with energy εb,k,

Tb is the symbol duration, P0 denotes the packet length and sk(t) is the
spreading waveform:

sk(t) =

Nc−1
∑

n=0

s
(n)
k ψ(t − nTc) (2.2)

In (2.2) s
(n)
k ∈ {−1, 1}, Tc is the chip duration and ψ(t) is the pulse

waveform with duration Tc. The signal xk(t) is deformed by the channel.
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The channel impulse response hk(t) can be described as a sum of L mul-
tipaths that result in a sum of superimposed versions of the transmitted
signal xk(t).

hk(t) =

L
∑

l=1

αk,lδ(t − τk,l)e
jφk,l (2.3)

In (2.3) L indicates the number of paths in the channel and αk,l and
τk,l indicate respectively their complex attenuation and delay. The received
signal r(t) can be described as follows:

r(t) =
K

∑

k=1

hkxk(t − τk,l) + w(t) (2.4)

In (2.4) K is the number of users sending over the channel and w(t)
white Gaussian noise.
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2.4 Characteristics of path search algorithms

Of each paper it will be discussed in what kind of system the path search
algorithm is applied and under what kind of circumstances. For this the
channel model that is used will be discussed, as well as the scenario. The
scenario describes the circumstances under which the algorithm is applied,
for example whether the algorithm is used in a mobile terminal or in a base
station, the number of multipaths that are present and whether there are
other mobile terminals sending over the channel. If there are other users
sending over the channel the received signal will contain signal components
from these users as well, due to the non perfect orthogonality of their codes.
This is called Multiple Access Interference (MAI) [34]. In the discussion
of the channel model it will be indicated whether it includes Doppler ef-
fects and what type of fading (see [34]) occurs (fast/slow and flat/frequency
selective fading). If possible the delay spread is noted, that indicates the
maximum path delay.

For each paper the set-up of the path search algorithm will then be dis-
cussed. It will be indicated whether the algorithm is based on a correlator
[27], a matched filter [27] or on another method. Algorithms can exploit
pilot tones (pilot aided estimation) or not (blind estimation). Most of the
algorithms consist of three parts. The first part estimates the parameters of
the paths in the channel (delay and attenuation), the second part estimates
the power of the paths that are found and the third part selects a number
of these paths for demodulation by e.g. a Rake receiver [34].

Finally, the robustness and performance of each algorithm is investi-
gated. The robustness of the algorithms is assessed by the extent to which
the algorithm is sensitive to the near-far effect [34] and to Multiple Access
Interference. The performance of the algorithms is verified by computer
simulations in the majority of the papers.

To be able to compare the performance of the algorithms with each
other, it will be discussed what aspect of the performance has been verified
in the papers. Various performance measures are used, such as Bit Error
Rate as function of Signal to Noise Ratio (BER-SNR) [34] [27], Receiver
Operating Characteristics (ROC) curves [35] [30], Mean Square Error (MSE)
of estimated delay and attenuation, performance with respect to Cramér-
Rao Lower Bounds (CRLB) [10] [2].
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2.5 Discussion of the papers

2.5.1 Power delay profile-based path searchers

A large number of papers analyzed so-called Power Delay Profile (PDP)-
based path searchers. The PDP-based path searcher is depicted in Figure
2.1:

h(t) average
set

threshold

select
maxima

compare
code

generator

x(t) r(t)

s(p)

y(n,m) z(n,m)

Threshold

z (n,m)max
delays

source channel

ADC
r(p)

sampling

Figure 2.1: Power Delay Profile-based path searcher

Algorithms of this type search paths in three steps. During the first step
the complex received baseband signal r(p) is correlated with a replica of the
user signature s(p). Generally the received signal consists of a series of pilot
symbols, which means that this signal contains the user signature. In this
way a correlated signal y(n, m) is obtained for the nth frame, that contains
a number of peaks for the different delays τi,l. These peaks correspond to
the paths in the channel between transmitter and receiver.

y(n, m) =
1

N

N−1
∑

p=0

hi(p)δ(m − τi,l

Tc
) + w̃(n, m) (2.5)

N is the correlation window size, p the discrete time index and m the
correlation index. δ(m − τi,l

Tc
) results from the autocorrelation of the user

signature si(p) of the user i and w̃(n, m) is the correlated noise.

The next step is to find the most significant paths. For this a Power
Delay Profile z(n, m) is determined based on the signal y(n, m). This PDP
is a measure for the received power in each of the paths that is found (M
indicates the length of the summation).

z(n, m) =
1

M

M−1
∑

k=0

|y(n − k, m)|2 (2.6)

Finally a limited number of paths from the PDP is selected. In order to
do this a threshold value is set for the power of the paths. There are several
methods for calculating this threshold value, for example by means of an
estimate of the power of the noise. Generally speaking, η is set as:

η = Kσn
2 (2.7)
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Estimating σ2
n is crucial for setting threshold η. Most papers base their

noise variance estimate on the PDP. As it contains peaks for the detected
paths, the PDP needs to be modified in order to determine the noise variance
estimate. Some papers suggest to subtract the strongest paths from the PDP
[13] [28] or subtract a WMSA filtered signal from the PDP [12]. In [25] the
threshold is simply set to

η =
1

P

P−1
∑

m=0

z(n, m)(a + bM c) (2.8)

M is the averaging length and P the correlation length.

In the next subsections the found power delay profile-based path searchers
will be discussed. Because of the width of the main lobe of the autocorrela-
tion most of these algorithms have a resolution of one chip period or more.

2.5.1.1. Path searcher for a WCDMA Rake receiver

In [25] an algorithm is described for finding paths that is suitable for W-
CDMA systems. The channel is modelled as a filter in discrete time, no
information concerning the type of fading is given. Paths are characterized
in the model by their delay and attenuation and the channel has a certain
delay spread (20 µs). Furthermore, no Doppler effects occur. The described
algorithm is used in the mobile terminal (downlink), the number of users in
the cell is not mentioned and their interference is considered as white noise.

The algorithm is based on a correlator that makes use of a pilot tone in
the received signal from the Primary Common Pilot Channel (P-CPICH).
By calculating the correlation over the length of a frame, a Power Delay Pro-
file is found. This PDP is then averaged over a number of previous frames,
to suppress fast fluctuations as a result of interference (non-coherent averag-
ing). Based on this average the PDP threshold is calculated. Parallel to this
maxima are searched in the average PDP based on a three points method.
The height of the found maxima (attenuation) is then compared with the
threshold. If it exceeds the threshold then the associated delay is assigned
to a finger of a Rake receiver.

Only one simulation is presented in the paper, in which a PDP is shown.
There is no data available concerning the performance of the algorithm
under varying circumstances. The algorithm does not suppress the MAI in
the received signal; this can only be compensated for by adapting the length
of the non-coherent averaging. The paper elaborates on the implementation
of the algorithm in C, the length of the code is 1688 bytes and it requires
32.8 MIPS.
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2.5.1.2. Path-search algorithm introducing path-management ta-
bles for a DS-CDMA mobile terminal

In [13] a path search algorithm is presented for wideband direct sequence
(DS) CDMA systems, that has been extended with three path management
tables. The channel model shows Rayleigh fading (2 paths), and Doppler
effects occur (fd = 5.6 Hz). The described algorithm is used in the mobile
terminal (downlink), the number of users in the cell is not mentioned and
their interference is not modelled separately.

The path searcher consists of three parts: a spreading code generator, a
correlator and a power measurement block. It uses the common pilot sym-
bols in the received signal. The correlator performs the correlation of the
received signal with the generated spreading code and the power measure-
ment block then calculates a PDP. The paper discusses the selection of the
paths in detail and proposes three management tables to aid this selection.
The first table contains the data of the path searcher (ten strongest paths
from PDP). The table is initialized on the basis of the momentaneous PDP
and is adapted by using a first order forgetting filter.

The second table resides in the Rake combiner. This table contains the
data of the paths which have been assigned to the fingers of the Rake re-
ceiver. For this the data from the channel estimator in the Rake receiver
is used. This table is also updated using a filter with a forgetting factor.
The third table is updated by multiplying the signal strength of each path
in the second table by a weighing factor and adding it to the strength of the
corresponding path in the first table. Finally the strength of the paths from
the third table is compared to a threshold.

The performance of the presented algorithm has been examined by sim-
ulating the Block Error Rate (BLER) as a function of the SNR. For com-
parison the performance of a conventional path search algorithm (without
management tables) and the performance of the ideal case (in which the two
paths are selected) are used.

2.5.1.3. Performance analysis of multipath searcher in WCDMA
system

In [28] a path search algorithm is presented that is based on the PDP as well.
The channel shows slow frequency selective Rayleigh fading and Doppler ef-
fects occur. The described algorithm is used in the base station (uplink),
the channel model takes only one user into account.
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The algorithm is based on a correlator which uses the pilot tone in the
received signal from the Dedicated Physical Control Channel (DPCCH).
The correlated signal is then accumulated (coherent or non-coherent) over
a number of slots. Finally a Power Delay Profile is calculated by squaring
this signal. Based on this PDP the paths will be selected using a certain
threshold value. Expressions are inferred for the chance of detection (Pd),
miss (Pm) and false alarm (Pf ).

The performance of the algorithm is examined by simulating Pd, Pm

and Pf as a function of the threshold value. For this simulations have
been carried out for both coherent and non-coherent accumulation, both
at two different speeds of the mobile terminal. It is proven that coherent
accumulation works the best at low speeds of the mobile terminal, whereas
non-coherent accumulation performs the best at high speeds.

2.5.1.4. Path search performance and its parameter optimization
of pilot symbol-assisted coherent Rake receiver for W-CDMA mo-
bile radio

Another algorithm for W-CDMA systems that also uses coherent accumu-
lation was found in [18]. The algorithm is used in the base station (uplink).
The channel is characterized by fast frequency selective Rayleigh fading and
Doppler effects occur (ITU-R Vehicular B model). The MAI induced by
other users is not suppressed.

The algorithm is based on a correlator for pilot symbol aided path search-
ing. The correlated signal is coherently averaged to obtain a momentaneous
estimate of the channel. These estimates are averaged coherently over a
number of slots R to generate a PDP. Finally, this PDP is averaged over a
number of frames (during Tavg). Also the power of the interference and the
noise is determined by subtracting the four strongest paths from the PDP
and averaging the rest of the paths. This average is multiplied by a factor
M to calculate a threshold value.

The performance of the algorithm is analyzed by determining the re-
quired Eb/N0 of the receiver for a BER = 10−3 as a function of the threshold
value M , the averaging time Tavg and the number of slots R. This has been
done both by simulation and by lab experiments. The antenna diversity was
varied (with or without), as well as the number of users (one or two), the
Doppler frequency (fd = 80 or 320 Hz) and the number of paths (one up
to four). On the basis of these simulations and the lab experiments optimal
values for the parameters M , Tavg and R were found.
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Finally experiments have been carried out on two locations, while the
mobile terminal was moving. Here too the required Eb/N0 of the transmitter
for a BER = 10−3 was examined as a function of the threshold value M ,
averaging time Tavg and number of slots R. These experiments show that
the path search algorithm is insensitive to fluctuations in the PDP such as
those occurring in practice.

2.5.1.5. A novel channel estimation algorithm applied to UTRA-
FDD

In order to be able to set a threshold value for the selection of paths in the
PDP, it is important to establish a measure for the background noise and the
interference. In [18] this measure is determined by subtracting the strongest
paths from the average PDP. This method is sensitive to fluctuations in the
background noise. In order to reduce this sensitivity an algorithm is pre-
sented in [12] that can calculate a better estimate of the background noise.
The algorithm is used in the base station (uplink). The channel is modelled
as a filter, it is assumed that slow frequency selective Rayleigh fading occurs
without Doppler effects (ITU-R Vehicular B model). The MAI induced by
other users is considered as noise.

The algorithm is based on a matched filter that is matched to the pilot
sequence. The output of the matched filter is then filtered by a Weighted
Multi-Slot Average (WMSA) filter. By subtracting the output of this filter
from the momentaneous PDP, the unbiased variance of the PDP can be cal-
culated. This can then be used to determine a threshold value for selecting
the paths.

The performance of this algorithm has been assessed by calculating the
MSE of the noise variance estimate. For comparison the MSE has been also
determined for two algorithms that remove the strongest paths from the
PDP in order to estimate the variance [18]. The results show that the new
algorithm is significantly more precise.

Also the algorithms have been simulated in combination with a Rake
receiver. In this case the required Eb/N0 of the transmitter for a BER =
10−3 as a function of the threshold value was investigated. From this it can
also be concluded that the presented algorithm performs better. Finally the
complexity of the algorithms has been compared by calculating the number
of MIPS as a function of the number of fingers of the Rake receiver. It
turns out that in the case that three fingers or more are used the presented
algorithm will require less MIPS. (approximately 6 MIPS).
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2.5.1.6. Multipath-decorrelating receiver using adaptive path se-
lection for synchronous CDMA frequency-selective fading chan-
nels

In [4] a path search algorithm is presented for CDMA systems, with fre-
quency selective fading channels. The channel model shows Rayleigh fading
(six paths), and no Doppler effects occur. The described algorithm is used
in the base station (uplink), the number of users in the cell is ten and their
interference is suppressed partially.

The path searcher is based on a MF that is matched to the user signa-
ture. This way a delay profile is determined, from which the strongest paths
are selected using a threshold. The signals in the paths that are found are
then multiplied by a weighing factor and are forwarded to a maximal ratio
combiner [34].

The performance of the algorithm has been analyzed by simulations, the
BER has been examined as a function of the SNR. Simulations have been
carried out for several threshold values. For comparison the performance of
a conventional path searcher from literature has been incorporated in the
simulations as well. Also the performance of an algorithm has been used
that only selects a fixed number of paths, regardless of the strength of these
paths. From these simulations it becomes clear that the presented algorithm
performs considerably better. Also it is stated that the computational cost
of the algorithm is not higher than that of the other two algorithms. Finally
the near-far resistance has been examined. This has decreased, but this
deterioration can be limited by a proper choice of the threshold.

2.5.1.7. Performance analysis of multi-path searcher for mobile
station in W-CDMA system employing transmit diversity

The properties of a double-dwell serial search (DDSS) path searcher for W-
CDMA systems are investigated in [36]. The DDSS scheme detects a received
signal in two phases, rather than one. A state diagram of DDSS is provided
by [37]. The algorithm is applied in the mobile terminal (downlink). It uses
Jakes’ channel model [29] with two Rayleigh fading paths. Doppler effects
occur, as the mobile terminal is moving. Interference by other users is not
taken into consideration.

The path searcher uses the pilot symbols from the CPICH. The diagram
of the path searcher exists of an in-phase part (I) and a quadrature part
(Q), that are exactly equal to each other. First, the descrambled signal is
correlated with the pilot symbols. The result is coherently summed (over
four symbols) and then squared, to obtain a measure for the power in the
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paths. Finally the results of the coherent summation from the I and Q parts
are added and summed for post-detection integration. The system applies
Space-Time Transmit Diversity (STTD), which means that an antenna ar-
ray is used at the transmitter (in the current case two antennae are used).

To assess the performance of the algorithm, expressions are inferred for
the chance of detection (Pd) and of false alarm (Pf ). Then the ROC curve
is determined by simulation for several lengths of the post-detection inte-
gration and for several speeds of the mobile terminal. By increasing the
length of the post-detection integration, the ROC behavior is improved.
This induces a larger sensitivity for Doppler effects however, which causes a
trade-off.

2.5.1.8. Subchip multipath delay estimation for downlink WCDMA
system based on Teager-Kaiser operator

Most path search algorithms have a resolution of one or several chips. In
[17] an algorithm is presented for W-CDMA systems that can also distin-
guish between multipath components within a chip period. The algorithm
has been intended for the mobile terminal (downlink). It is assumed that
the channel has three paths, and exhibits Rayleigh fading without Doppler
effects. The delay spread is smaller than the chip time. Two to thirty users
are present in the cell.

The algorithm is based on the crosscorrelation of the received signal
with a replica of the desired user signature. Then the result is manipulated
with the Teager-Kaiser (TK) operator, which is defined in discrete time as
follows:

ΨD[x(n)] = x(n − 1)x∗(n − 1) − 1

2
(x(n − 2)x∗(n) + x(n)x∗(n − 2)) (2.9)

This produces a signal with a number of peaks that correspond to the dif-
ferent paths. Then square envelope detection is applied to this signal, after
which noncoherent averaging is performed over a number of symbols. The
first maxima in this signal correspond to the paths that are searched.

The performance of the algorithm has been simulated, for this the chance
that the algorithm correctly detects all three paths in the channel has been
investigated as a function of the near-far ratio. These simulations show the
robustness of the algorithm against MAI and near-far effects. For compar-
ison curves of three other algorithms from literature have also been deter-
mined. These are Multiple Signal Classification (MUSIC), Multipath Esti-
mating Delayed-Locked loops (MEDLL) and Pulse Subtraction (PS).
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It can be concluded from these simulations that the presented algorithm
performs similar to MUSIC and performs better than MEDLL and PS. As
the number of users increases in the cell (from two to thirty), the perfor-
mance deteriorates. Also the pulse shape that is used influences the perfor-
mance. The complexity of the algorithm is much lower than that of MUSIC.

2.5.1.9. Performance analysis of multi-path searcher for UE in
W-CDMA systems

In [37] a path searcher is described that uses double-dwell serial search as
well, as in [36]. The algorithm has been intended for usage in the mobile ter-
minal (downlink) of a W-CDMA system. Slow frequency selective Rayleigh
fading and Doppler effects occur while MAI is not taken into account.

The path searcher uses the CPICH to find the paths. The path searcher
consists of an I and a Q branch. The received signal (both the I and Q
component) is correlated, then coherently summed over a number of chips
and squared. After this the I and Q components are added to each other.
Finally post-detection integration is carried out. Expressions are inferred for
the chance of false alarm Pf and the chance of detection Pd. Pd is maximized
using the Neyman-Pearson criterion. The performance of the algorithm has
been examined by simulations, this resulted in ROC curves at several values
of the SNR. Finally a STTD-DDSS approach is presented to improve the
performance of the algorithm.
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2.5.2 Maximum Likelihood-based path searchers

A second class of path search algorithms is based on a Maximum Likelihood

(ML) approach. In this set-up the received signal r(t) is first filtered by a
matched filter and then sampled. Based on the matched filter output signal
y, a Maximum Likelihood function can be formulated. A parameter matrix
is defined first as θ with τ = [τ11, . . ., τkl]

T and α = [α11, . . ., αkl]
T :

θ = [τ α] (2.10)

with θkl = [τkl αkl]. For a compact notation the shifted versions of the
spreading waveforms skl(t) (see equation 2.2) are defined as:

s(t; θ) =
K

∑

k=1

L
∑

l=1

(skl(t)) (2.11)

The likelihood function can now be defined as follows:

Λ(θ; y) =
1

N0

[

2

∫

Do

<
(

sH(t; θ)y(t)
)

dt −
∫

Do

||s(t; θ)||2dt

]

(2.12)

In (2.12) [·]H denotes the Hermitian operator. By maximizing the ML func-
tion (or a proportional cost function) over the time interval with length Do,
the estimates of the path delays are found:

θ̂ML(y) ∈ arg max
θ

{Λ(θ; y)} (2.13)

This maximization can be carried out by several iterative algorithms, such
as Expectation Maximization (EM) [8] [9] [10] [31] [5] and Alternating Pro-

jections (AP) [9]. Following the EM approach, the path parameters θ are
determined by maximizing (2.13). The advantage of ML-based algorithms
is that they have a higher resolution than the power delay profile-based
algorithms.

2.5.2.1. Channel acquisition for wideband CDMA signals

A method for selecting paths in a channel that is suitable for Wideband
Code Division Multiple Access systems is described in [21]. The channel
between the base station and the mobile terminal is modelled as a tapped
delay line filter with a certain delay spread. Furthermore no Doppler effects
occur and the fading type is slow frequency selective Rayleigh fading.

The case is considered in which a base station has contact with ten mo-
bile terminals in its cell (uplink). The parameters of the paths of these
mobile terminals (attenuation, delay) are available in the base station. Un-
der these circumstances it is investigated what happens if there is a new
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mobile terminal coming into the cell. The question is how can the param-
eters of the paths of the new user be estimated. Using knowledge of the
structure of the MAI it is possible to reduce its impact.

The path search algorithm is based on a chip-matched filter that makes
use of a pilot tone in the received signal. As the channel is estimated, the
channel model is approached by a finite tapped delay line filter with all taps
on equal distance of each other. This means that only the delay of the first
tap (initial delay) needs to be estimated, as well as the gains of the taps.
Using a Minimum Mean Square Error (MMSE) estimate for the sent sym-
bols of the interfering mobile terminals, a Maximum Likelihood estimate of
the parameters of the new user’s paths can be made. All taps are estimated
at the same time (joint acquisition).

The second step of the algorithm is selecting the paths that contain the
most energy. In order to do this a channel model is calculated with a lim-
ited number of taps that shows the highest correlation with the estimate of
the channel that was found earlier. Besides this correlation-based method
another method for tap-reduction is presented. This method simply chooses
the most significant taps from the estimated channel model. This method
can be extended by also looking at the taps that lie in the direct vicinity of
the most significant taps.

The performance of the algorithm is examined by a number of simula-
tions. The performance measure that is used is the correlation between the
reduced channel model (step 2 of the algorithm) and the estimated channel
model (step 1 of the algorithm). This correlation is determined as a function
of the Signal to Noise Ratio. It appears that the method that selects the
most significant taps has the highest correlation for different values of SNR.
The algorithm can suppress a limited number of interfering users, using the
MMSE approach. Because of this the algorithm is MAI resistant. By re-
ducing the number of users to be suppressed, the algorithm can be made
less complex. This will deteriorate the performance of the algorithm, which
leads to a tradeoff.

2.5.2.2. A sequential algorithm for joint parameter estimation
and multiuser detection in DS/CDMA systems with multipath
propagation

In [8] an algorithm is presented that uses joint parameter estimation and
detection (JED) in a W-CDMA system with several users. The algorithm
will be used in the base station (uplink). It is assumed that there are six
users in the cell and that the channel has three paths within a certain delay
spread. The fading type is Rayleigh fading with a slow, frequency selective
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character and no Doppler effects occur. The channel model exists of an im-
pulse response that has been measured on five places in an urban area.

The algorithm has been based on a correlator and uses a preamble for
initialization. A log-likelihood function is determined for valuing both the
symbols that are sent and the parameters of the different paths. Given the
complexity of this function, it is proposed to estimate the sent symbols for
well-known parameters of the paths and to estimate the parameters of the
paths as known symbols are sent. The path parameter estimation will be
carried out by the Expectation Maximization algorithm (see also [31] for the
JED-EM the method).

For this the conditional expectation of the log-likelihood function is de-
rived. Next, this function can be maximized, starting from an initial value
for the parameters of the paths. The maximization of the function is sub-
divided into two iterative algorithms, one for valuing the delays and one for
valuing the attenuation of the paths. Initialization takes place by using a
preamble (pilot symbols).

The performance of the algorithm is analyzed by calculating the Root
Mean Squared Error (RMSE) of the attenuation estimate, for the case of
only one user and one path of which the delay is known. Also an expression
is found for the bit error probability, for the case of strong MAI induced by
the presence of other users. Using simulations, the influence of the number
of the iterations used by the algorithm on the RMSE of the attenuation
estimate is determined. It appears that the algorithm can also give a good
estimate of the attenuation under the influence of strong MAI.

The bit error probability of the algorithm has also been simulated for
strong MAI. In order to compare the results the bit error probability of a
Rake receiver with perfect estimates of the delays and attenuation is used,
as well as the bit error probability of a BPSK system with only AWGN.
The simulations show that the algorithm is much less sensitive to ISI and
MAI than the Rake receiver and it closely approaches the performance of
the BPSK/AWGN receiver.

2.5.2.3. A new time-delay estimation in multipath

In [16] the problem of path searching is discussed in a broader sense, it not
only concerns W-CDMA systems, but also appears in sonar, radar, seismic
research etceteras. A variety of techniques exist for estimating the delays of
multipaths, e.g. Maximum Likelihood Estimation-based methods (MLE),
Least Squares (LS), Expectation Maximization (EM) and Autocorrelation
Estimation (AE).
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In this paper MLE and AE are compared with each other. A channel is
assumed that can be modelled by a tapped delay line, there are two multi-
paths and the noise is AWGN. An expression for the MLE is inferred, based
on the Power Spectral Density (PSD) of the signal. Also an expression is
presented for the sample autocorrelation function for EM. Both methods
provide an estimate of the path delays.

Next the AE method is generalized to a General Autocorrelation Esti-
mator (GAE). This method is no longer dependent on the PSD of the sent
symbols, which means that a pilot tone is no longer necessary. A cost func-
tion is derived, that is to be maximized in order to value the delays. After
estimation of the autocorrelation function the local maxima of this estimate
can be determined. Using the cost function the time delays of the paths are
then found.

The performance of the GAE algorithm is measured by calculating the
MSE of the delay estimate. Simulations are carried out with the MSE as a
function of the SNR, as well as simulations with the MSE as a function of
the delay. For comparison the MLE and AE algorithms from the first part of
the paper are used, as well as the CRLB. For low SNR values MLE seems to
perform just as badly as AE. For higher SNR levels MLE performs consider-
ably better than AE, but it requires more calculations than AE. Simulations
show that GAE approaches the CRLB for both white and colored noise.

2.5.2.4. Iterative techniques for DS/CDMA multipath channel
estimation

In [9] an algorithm is presented that uses a Maximum Likelihood approach
in a W-CDMA system with several users (see also [10]). The algorithm will
be used in the base station (uplink). It is assumed that there are ten users in
the cell and that the channel has three paths within a certain delay spread.
The tenth user has just arrived in the cell and the parameters of its paths are
now to be valued. Rayleigh fading occurs with a slow, frequency selective
character without Doppler effects. The MAI is modelled as colored Gaussian
noise and an attempt is made to suppress it. The channel is modelled as a
discrete tapped-delay line filter.

As the tenth user comes into the cell, it transmits a known training se-
quence. The received signal is first processed by a filter that is matched
to the chip waveform. Then the output of the matched filter is sampled
at the chip rate. A Maximum Likelihood function is derived for estimating
the delay and attenuation of each of the new user’s paths. This function
also contains the covariance matrix of the training sequence, this matrix is
estimated as well.



2.5 Discussion of the papers 19

In the paper two methods are presented for maximizing the ML-function.
These methods are based on Expectation Maximization (EM) and Alter-
nating projection (AP). Both methods have been formulated as an iterative
algorithm and produce an estimate of the delay and attenuation of the paths
of the new user.

With the presented algorithms several simulations have been carried out.
The deviation (RMSE) between the estimates and the real values of the at-
tenuation and delays of the paths has been examined. Also the chance has
been defined that all parameters of the new user’s three paths are correctly
valued. In the simulations the performances of the EM and AP algorithms
are compared to those of a simple correlator from literature and the CRLB.
Also the performances of the EM and AP algorithms are determined for the
case they use the exact covariance matrix, instead of an estimated version.

From the simulations it becomes clear that the EM and the AP algo-
rithms have a similar performance and approach the CRLB. The complexity
of the calculations of the EM algorithm is considerably lower than those of
the AP algorithm. On the other hand the AP algorithm requires less iter-
ations in order to converge. Therefore a proposal is made to use the AP
algorithm for initializing the EM algorithm.

2.5.2.5. Weighted RLS channel estimators for DS/CDMA signals
in multipath

In [3] an algorithm is described that can be used for estimating multipath
parameters in a W-CDMA system. No specific choice is made for using the
algorithm in the base station or the mobile terminal. It is assumed that there
are eight users in the cell. Rayleigh fading occurs with a slow, frequency
selective character without Doppler effects. The channel is considered as a
Finite Impulse Response (FIR) filter, that is constant over one symbol time.

The received signal is filtered and sampled. Then a Maximum Likelihood
cost function is defined, that has to be minimized in order to calculate an
estimate for the parameters of the channel. For this minimization a Recur-
sive Weighted Least Squares (RWLS) algorithm is described. To make sure
that the complexity of the calculations remains limited, a bank of parallel
RWLS estimators is used.

Finally the sensitivity of the presented algorithm has been examined to
synchronization mismatches using simulations. Its performance has been
compared to that of a Single User Matched Filter (SUMF) receiver and a
MMSE receiver.
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2.5.2.6. Multipath time-delay detection and estimation

In [24] an algorithm is presented for estimating the delay and the atten-
uation of paths in a multipath system in a general sense. The presented
algorithm is especially suitable for a channel in which the path delays are
closely spaced. It is assumed that the channel imposes AWGN, no MAI or
Doppler effects are mentioned.

The first step of the algorithm consists of matched filtering of the re-
ceived signal. According to the reconstruction theorem the samples at the
output of the matched filter can be expressed as a matrix multiplied by a
weighing vector plus a noise vector. The indices of the components of the
weighing vector that are nonzero, correspond to the delays of the paths. The
required weighing factors are samples of an interpolation function, such as
the sine cardinal function.

In case of oversampling with for example a factor two it is necessary
to choose a reconstruction criterion for selecting the correct reconstruction
function. Since the minimum l2 norm always leads to the same sine cardi-
nal function, it is proposed to choose the minimum l1 norm for this. The
minimization of this norm is formulated next and this turns out to be the
so-called deconvolution criterion. By minimizing this expression, the path
delays can be found.

A number of simulations have been carried out with the presented al-
gorithm. The deviation between the estimates and the real values for the
attenuations and delays of the paths has been examined. For comparison
the performances of the Complex to Real Least Squares (CRALS) and Pro-
jection Onto Convex Sets (POCS) algorithms are used. It appears that the
presented algorithm performs better than CRALS and POCS. The algorithm
also functions at low SNR, up to 20 dB lower than CRALS and POCS. The
complexity of the algorithm’s calculations is described as reasonable. An
additional advantage of the algorithm is that no initialization is required.
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2.5.3 Subspace-based path searchers

A third group of path search algorithms is based on the covariance matrix
of the received signal. First the baseband signal is correlated with the user
signature and then sampled. The next step is to calculate an estimate of
the covariance matrix of this signal.

By eigendecomposition of the covariance matrix, the eigenvectors of the
signal subspace and the noise subspace can be found. In principle the signal
subspace and the noise subspace are orthogonal and can therefore be sepa-
rated from each other. In the papers that were found this orthogonality is
exploited by respectively determining a Super Delay Profile and the use of
a Toeplitz displacement.

This way the channel can be identified and the path delays can be de-
termined. The algorithms have the advantage that they require much less
knowledge of the user signatures of all the users in a cell (unlike the ML
methods) and they can achieve a higher path delay resolution.

2.5.3.1. Multipath delay estimation using a superresolution PN-
correlation method

A number of algorithms exist for multipath delay estimation with high res-
olution. One of these algorithms is the superresolution Pseudo-Noise se-
quence correlation method (SPM), based on MUSIC. In [11] a number of
improvements for the SPM algorithm are proposed and the performance is
examined. The paper does not address techniques specific for W-CDMA
systems, but discusses the path searching problem in a broader context.
Instead of analyzing the influence of MAI, the effects of a narrowband in-
terferer are studied.

The SPM algorithm is based on a correlator that calculates the correla-
tion of the received signal with the chipping sequence. For the delay profile
vector that is determined this way, an expression is inferred:

y =
L

∑

l=1

hlr(τl) + w̃ (2.14)

In (2.14) r(τ) denotes the steering vector containing the autocorrelation
of the user signature. In short:

y = Γg + w̃ (2.15)

With Γ = [r(τ1) . . . r(τL)] and g = [h1 . . . hL]T .
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Also an expression is found for the covariance matrix Ry of vector y:

Ry = ΓGΓH + Rn (2.16)

In (2.16) G = E{ggH} and Rn = E{w̃w̃H} = σ2R0. By estimating Ry

and determining the eigenvectors v of this matrix a super resolution delay
profile (SDP) can be determined as:

SDP (τ) =
rH(τ)R0

−1r(τ)
∑L

m=M+1 |rH(τ)vm|2
(2.17)

With M as the number of samples at the output of the correlator. An
estimate of the covariance matrix can be made for time-variant channels as
well (slow frequency selective fading) to find the paths.

In many cases the covariance matrix can not be estimated precisely
enough. This can be solved by exploiting the relation between the used
carrier frequency and this matrix. By switching the carrier frequency while
the PN sequence is sent (both in the transmitter and receiver), several es-
timates of the matrix can be made. Finally a frequency smoothed (FS)
estimate of the covariance matrix is made by averaging these estimates.

If the jumps in the carrier frequency are not chosen carefully, it is pos-
sible that FS hampers the performance of SPM. In order to prevent this, a
proposal is presented to choose the jumps in the carrier frequency at ran-
dom: Random Frequency Smoothing (RFS). This technique is more able to
find the paths than FS, even for a small number of jumps in the carrier fre-
quency. The performance of the SPM/RFS algorithm has been investigated
extensively in an artificial pond with a transducer and a hydrophone.

2.5.3.2. A Toeplitz displacement method for blind multipath esti-
mation for long code DS/CDMA signals

An algorithm capable of making blind estimates of multipath parameters in
a W-CDMA system is presented in [6]. No specific choice is made for use of
the algorithm in the base station or the mobile terminal. Eight up to twelve
users are assumed to be in the cell. No Doppler effects occur, while the
type of fading is Rayleigh fading with a slow, frequency selective character.
The PN code is long (randomized spreading) and the delay spread is much
smaller than the symbol time. The MAI is modelled in detail.
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The received signal is chip-matched filtered and then sampled at the chip
rate, the matched filter output y(n) is:

y(n) =
K

∑

k=1

Ck(n)Hkbk(n) + w(n) (2.18)

In (2.18) Ck(n) denotes a spreading code matrix, containing all spreading
sequences. The channel is modelled as Hk and the sent data as bk(n). Next
an expression is inferred for the covariance matrix Ry of the received signal
from user k.

Ry = σ2
kSk(n)Ck(n)HkHk

HCk
H(n)Sk

H(n) + RI(n) + Rw(n) (2.19)

With Sk as a matched filtering matrix. By performing a Toeplitz dis-
placement of Ry the noise Rw(n) and interference RI(n) can be removed:

Rh = SCk
+
HkHk

HSCk
+H

− SCk
−
HkHk

HSCk
−H

(2.20)

The paper argues that the eigenvectors of this covariance matrix Rh

contain the estimate of the channel parameters. Eigendecomposition of Rh

leads to a matrix V containing the eigenvectors. The channel estimate is
determined by:

ĥk = arg min
||h||=1

Trace{HHPH} (2.21)

with H = [(SCkHk)
+, (SCkHk)

−] and P = I − VVH

The performance of the presented algorithm is assessed by determining
the MSE of the channel estimate using simulations. For comparison the MSE
of an algorithm from literature is used. It appears that the performance of
the presented algorithm is similar to that of the algorithm from literature.
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overlap. 3 paths as Kaiser det. + non-
paths AWGN operation coh. averag.

[11] general path slow + < 0.2Tc none high path no MAI, estimation calculate
case delay freq. sel. resolution only of super-

variation 3-4 paths narrowband covariance resolution
interference matrix delay profile

[24] general not not not none link not none deconvol. minimize
case specified specified specified specif. method with using

close K users with the min.
paths 3 paths min. L1-norm L1-norm

[37] w-cdma not Rayleigh not v = downlink none correlation sq. envelope thresholding?
specified fading specified 160 km/h K users of detect. + post

slow + L paths CPICH detection
freq. sel. coh. summ. integration

[9] w-cdma discrete Rayleigh < 0.5Ts none uplink MAI is matched ML criterion maximize
tapped fading 10 users modelled filtering of using EM
delay slow + 3 paths as colored training and AP
line freq. sel. Gauss. noise sequence

[6] w-cdma not Rayleigh << Ts none both MAI is estimation Toeplitz
specified fading links described of Displacement

slow + 8-12 users in channel covariance and eigen
freq. sel. L paths model matrix decomposition

[3] w-cdma FIR Rayleigh < 16Tc none both none ML cost minimize
filter fading links function using

slow + 8 users RWLS
freq. sel. L paths technique
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[16] simulations not specified MSE of delay MLE
algorithm +
CRLB

[17] simulations QPSK, rect chance of MUSIC +
RRC pulses detecting all paths MEDLL +
Walsh SF = 64 PS

[11] measurem. transducer and several PDP’s SPM +
hydrophone SPM-FS

[24] simulations linear FM error in delay and CRALS +
amplitude POCS
estimates

[37] simulations not specified ROC no
comparison

[9] simulations Gold seq. (31 RMSE of amp. and simple
bits), SNR = delay, chance of correlator +
MAI = 10 dB detecting all paths CRLB

[6] simulations not specified MSE of channel algorithm
estimate from

literature

[3] simulations Walsh- ? SUMF +
Hadamard MMSE
4PSK receiver
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2.6 Selection of three algorithms

One of the questions within the AWGN project (Chapter 1) is: to what
extent will it be useful to switch between different types of algorithms for
the path search function? In order to get a clear picture of the different
techniques for the implementation of the path search algorithm a number of
papers has been discussed in the literature study. The algorithms that were
found have been compared with each other (Section 2.4) and have been dis-
cussed in detail in Section 2.5. The algorithms have been classified in three
classes, based on the similarities discovered among the various algorithms.
Three algorithms are now selected for further research. Two algorithms
will be implemented: the Power Delay Profile-based path searcher (Chap-
ter 4) and the Maximum Likelihood-based path searcher (Chapter 5). The
subspace-based algorithm will be discussed in theory only, see Appendix B.

The first class consists of the Power Delay Profile-based algorithms (Sub-
section 2.5.1). These algorithms correlate the received signal with a replica
of the user signature. Next a Power Delay Profile (PDP) is calculated based
on this correlated signal, from which the strongest paths are selected us-
ing a threshold value. In [18] extensive simulations and measurements were
carried out with this method. The implementation of the PDP-based path
searcher will be performed using [25], as it describes its principle in great
detail (see Chapter 4). Improvement of this algorithm will then be possible
by calculating the threshold value according to [12].

The second group of algorithms is based on a Maximum Likelihood ap-
proach (Subsection 2.5.2). The received signal is filtered first with a matched
filter and then sampled. Based on this signal a Maximum Likelihood Esti-
mate of the path delays is formulated. By maximizing the MLE function
the delays can be determined. This maximization is carried out in [8], [16],
[10] and [9] using Expectation Maximization, as well as in [31] and [5]. The
MLE-EM method provides good performances for a low computational cost
and is therefore selected for optimizing the Maximum Likelihood function.
The implementation of the MLE-EM path searcher will be based on [8], as
it describes its principle in great detail (see Chapter 5).

Subspace-based algorithms (Subsection 2.5.3) constitute the final group.
These algorithms correlate the received signal with the user signature,
whereupon the covariance matrix of this correlated signal is estimated. Us-
ing eigendecomposition of the covariance matrix the eigenvectors of the sig-
nal and noise subspaces are found. The orthogonality of these subspaces [6]
[11] is exploited to estimate the path delays. As [6] describes an algorithm
specific for CDMA systems it provides a basis for the third path search
algorithm. The theory of the algorithm will be discussed in Appendix B.
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Simulation environment for

path search algorithms

3.1 Multipath channel models

Now that the various options for the implementation of the path search
algorithm have been investigated in the literature study, the selected al-
gorithms will be implemented. In order to set up meaningful simulations
with these algorithms first a number of channel models are analyzed in this
section. Also scenarios will be formulated in the next section that describe
the conditions in the channel between the transmitting base station and the
receiving mobile terminal.

The main features of the channel model become clear from formula (2.3),
which is repeated here for convenience:

hk(t) =
L

∑

l=1

αk,l(t)δ(t − τk,l(t))e
jφk,l (3.1)

In equation (3.1) L indicates the number of paths for user k in the channel
and αk,l(t) and τk,l(t) indicate respectively the path attenuation and delay.
The formula describes that the channel can be viewed as a sum of L multi-
paths, each having a specific delay τk,l(t) and attenuation αk,l(t).

During the literature study various channel models were encountered
that try to capture the behavior of this Rayleigh fading channel between the
base station and the mobile terminal. In the next subsections the models
will be discussed that are used in the papers from the literature study. They
include Jakes’ channel model (Subsection 3.1.1), the L-path channel model
(Subsection 3.1.2) and models from ETSI (Subsection 3.1.3).
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3.1.1 Jakes’ channel model

A classic model for Rayleigh fading that is widely used (e.g. in [36] and [19])
can be found in [29]. The field is modelled as:

E(t) = Re[T (t)ejωct] (3.2)

with

T (t) =
E0√
N

N
∑

n=1

ej(ωmt cos αn+φn) (3.3)

It is assumed that the angles of arrival are uniformly distributed, αn =
2πn/N with n in [1, N ]. The Doppler frequency is denoted as ωm. A prob-
lem of this model is that it is not Wide Sense Stationary. This issue is
analyzed in [32] and an improvement of the Jakes’ channel model is pro-
posed. Also a new block scheme for the channel simulator is presented.

Unfortunately, part of the second order statistics of the improved Jakes’
channel model is not modelled correctly. In [7] the autocorrelation and cross-
correlation of the signal quadrature component and the autocorrelation of
the squared envelope are analyzed. In [20] the correlations of the Jakes’
channel model are investigated as well. Especially the distribution of the
scatterers in the channel are investigated.

Another drawback of the Jakes’ channel model is that it does not pro-
duce uncorrelated paths under all circumstances. To solve this problem,
improvements are proposed in [15].

3.1.2 L-path channel model

In most of the papers the L-path channel model was used: [28], [18], [8] and
[11]. This model is also referred to as the tapped delay line channel model
in [21], [25], [16], [9] and [3]. It is described in [34] as:

hk(t) =

Lk
∑

l=1

hk,l(t)δ(τ − τk,l(t))e
jφk,l (3.4)

Both the attenuation and delay can change over time. This means that a
path can change in length (and thus delay), it can disappear (hk,l(t) = 0 for
certain values of t) or a new path can appear (hk,l(t) > 0 for certain values
of t).

In [22] hk,l(t) is referred to as a Wide Sense Stationary narrow-band com-
plex Gaussian process with a Jakes’ power spectrum. Also [14] denotes the
character of the stochastic process as Wide Sense Stationary Uncorrelated
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Scattering, with hk,l(t) as an independent Rayleigh distributed random vari-
able. The Rayleigh distribution is defined in [34] and [27] with the following
probability density function:

p(r) =

{

r
σ2 e

−r2

2σ2 0 ≤ r ≤ ∞
0 r < 0

(3.5)

3.1.3 3GPP and ITU-R Vehicular B channel models

In [12] one of the channel models that is used is the model specified by
3GPP (see ETSI document [1]). Of this model Case 2 and Case 3 are used
for simulations. In [1] the multipaths are defined in terms of their relative
delay and attenuation, the Case 2 channel model has three paths and the
Case 3 channel model has four paths. These models also include Doppler
effects (for respectively v = 3 km/h and v = 120 km/h), but in [12] these
models were made stationary.

The other channel model that is used in [12] (and in [18] as well) is the
ITU-R Vehicular B model (see ETSI document [23]). It models a rural or
suburban outdoor macro cell environment at a maximum velocity of v = 500
km/h. Again, the model is made stationary in [12]. It consists of a tapped
delay line and has six paths, of which the delay and attenuation are defined.
Also traffic models are established for the services that are carried by the
links in the cell (e.g. speech and web browsing).

The propagation effects are divided in three groups. The first group
is formed by the effects that cause the mean path loss. The path loss is
modelled as:

L = 40(1−4 ·10−3∆hb) log10(R)−18 log10(∆hb)+21 log10(f)+80dB (3.6)

In equation (3.6) R denotes the base station - mobile terminal separation in
km, f is the carrier frequency and ∆hb is the base station antenna height.
The second group causes slow signal variation, by shadowing and scatter-
ing. The slow signal variation is log-normally distributed. The last group
causes rapid signal variation, due to multipath effects. This is described
by the channel impulse response model, of which the six path delays and
attenuations are defined.
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3.1.4 Measurements of channel impulse responses

An alternative for modelling the channel’s impulse response is the use of
actual measurements of its impulse response. In [8] 500 different channel
impulse responses have been obtained in urban areas. For each simulation
a channel impulse is selected randomly from these measurements.

In [18] simulations are accompanied by laboratory experiments. Both
are used to optimize the path searcher’s parameters. Finally field experi-
ments are carried out to investigate the performance of the optimized path
searcher. For this a measurement vehicle has been driven along two different
courses (of length 0.6 and 1.1 km) at a number of speeds (20 to 40 km/h).
The first course is located in a factory area and the second course near a
residential area. The corresponding power delay profile measurements are
shown as a function of time in [18] and clearly display the different charac-
teristics of the two radio environments.

In the simulation environment that is available the L-path model is used.
The fading type can be set to either Rayleigh or AWGN. Also two vectors
of length L can be used to set the channel parameters for user k in terms
of the path delays τk,l and path gains αk,l. The values that will be used for
these channel parameters will be discussed in the next section.

3.2 Scenarios for simulations

As previously noted, it is necessary to analyze the channel model first in
order to set up meaningful simulations with the path search algorithms from
the literature study. Also scenarios need to be formulated that describe the
conditions in the channel between the transmitting base station and the
receiving mobile terminal. This section gives an overview of likely scenarios,
in Subsection 3.2.1 the characteristics of an outdoor rural area are discussed,
the outdoor urban area is analyzed in Subsection 3.2.2 and Subsection 3.2.3
describes an indoor office environment. Finally two effects are commented
upon in Subsection 3.2.4. These are variable path delays over time and the
so-called birth-death sequence of paths. Table 3.1 gives an overview of these
scenarios . More information on scenarios can be found in [1] and [23].

3.2.1 Outdoor rural area

The outdoor rural area is divided into large cells (macro cell) that are covered
by a small number of base stations with high transmit powers. Signals travel
over relatively long distances which causes a root mean squared delay spread
of about 370 to 4000 ns. The outdoor rural area is characterized by a low
path loss, following a R−2 rule. This is due to the low number of scatterers
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Scenario cell size transmit path r.m.s. delay mobile

power loss spread speed

Indoor office area pico / micro low variable 35 - 100 ns walking speed
Outdoor urban area micro / macro low R−6 R−4 45 - 750 ns vehicle speed
Outdoor rural area macro high R−2 370 - 4000 ns vehicle speed

Scenario Doppler fading shadowing

effects effects effects

Indoor office area v = 3 km/h Ricean, Rayleigh log-normal 12 dB
Outdoor urban area v = 50 km/h Ricean, Rayleigh log-normal 10 dB
Outdoor rural area v = 120 km/h Rayleigh log-normal <10 dB

Table 3.1: Scenarios for mobile terminal environment

and obstructions in the paths of the channel, as the terrain is mostly flat.
The fading type is mainly Rayleigh and shadowing effects are modelled by
a log-normal distribution with a standard deviation below 10 dB. Doppler
effects occur as the mobile terminal can have speeds up to 120 km/h. This
scenario corresponds to the Vehicular B channel parameters in Table 3.2.

3.2.2 Outdoor urban area

The outdoor rural area is divided into smaller cells (micro to macro cells)
that are covered by base stations with low transmit powers. The root mean
squared delay spread lies between 45 and 750 ns. The outdoor urban area
is characterized by a range of path losses (R−6 to R−4), depending on the
number of high buildings, base station antenna height, obstructions by trees
etcetera. The number of scatterers and obstructions in the paths of the
channel can vary. The fading type can be both Ricean and Rayleigh, shad-
owing effects (see [34]) are modelled by a log-normal distribution with a
standard deviation of 10 dB. Doppler effects occur as the mobile terminal
can have speeds up to 50 km/h. This scenario corresponds to the Case 3
and Pedestrian B channel parameters in Table 3.2.

3.2.3 Indoor office area

The indoor office area is divided into small cells (pico to micro cells) that
are covered by many base stations with low transmit powers. The root
mean squared delay spread lies between 35 and 100 ns, as the path lengths
tend to be short. The indoor office area is characterized by a large range
of path losses, as the number of scatterers and obstructions in the paths of
the channel can vary a lot. Walls, floors and surfaces of e.g. filing cabinets
cause both attenuation and scattering. The fading type can therefore be
both Ricean and Rayleigh, shadowing effects are modelled by a log-normal
distribution with a standard deviation of 12 dB. Doppler effects occur due to
walking speeds of the mobile terminal (3 km/h). This scenario corresponds
to the Indoor Office B channel parameters in Table 3.2.
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Vehicular B 0 300 8900 12900 17100 20000 ns
-2.5 0.0 -12.8 -10.0 -25.2 -16.0 dB

Case 3 0 260 521 781 - - ns
0.0 -3.0 -6.0 -9.0 - - dB

Pedestrian B 0 200 800 1200 2300 3700 ns
0.0 -0.9 -4.9 -8.0 -7.8 -23.9 dB

Indoor office B 0 100 200 300 500 700 ns
0.0 -3.6 -7.2 -10.8 -18.0 -25.2 dB

Table 3.2: Four path delay and power vectors

3.2.4 Propagation conditions

In most of the papers that were found during the literature study it was
assumed that the channel is stationary, or at least stationary over one sym-
bol period. This is not necessarily true, as both hk,l(t) and τk,l(t) can be
functions of time. As the mobile moves from one location the next within
a cell, or if an object passes the mobile terminal nearby, it is possible that
changes occur in the path parameters or even in the number of paths.

The path searcher needs to be sensitive to changes in path delays after it
has converged to an estimated path delay for the first time. If for example,
the delay of the lth path τk,l(t) changes, it needs to be estimated again. An
example of a changing path delay is provided in [11].

Another possibility is that the number of paths changes over time. This
can happen for example as the mobile terminal is moving from a rural area
into an urban area. The number of scatterers will increase, causing a larger
number of paths. This can be described as a change of the lth path attenu-
ation hk,l(t) from zero to a certain value. This is denoted as the ’birth’ of
a path. The opposite, hk,l(t) goes to zero, is called the ’death’ of a path.
These effects are described in [1].

3.2.5 Modifications to the simulator

A model of the downlink in a UMTS system is available in C++. As the al-
gorithms will operate in the mobile terminal they need to communicate with
the downlink receiver (see Appendix C.2). The number of modifications to
the downlink receiver (see Appendix C.3) can be kept to a minimum by cre-
ating a virtual base class for the path search algorithm (see Appendix C.1).
A number of set() and get() functions handle the communication between
the downlink receiver and the path searcher. All functions are pure virtual
functions with an empty body, as they are members of the abstract path
searcher class.
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In the header file of the downlink receiver (see Appendix C.2) the path
searchers’ abstract base classes need to be included as well as the various ver-
sions of the path searcher (such as the path searcher classes in Appendixes
C.4 and D.1). Using a pointer to the abstract base class, it is possible to
switch between different implementations of the path searcher in the source
file of the downlink receiver (see Appendix C.3).

In order to support the simulations discussed in Section 3.2.4 a second
basestation is added to the simulator. This way the situation shortly before
a handover can be simulated: the mobile terminal is at the boundary of
the first basestation’s cell and detects a second base station with a signal
strength equal or greater than that of the first basestation.

The current simulator only supports channels of which the parameters
are constant during the entire simulation run. By updating the channel
parameters for every new frame that is processed, it is possible to investi-
gate whether the algorithms can adapt to the changing channel parameters.
Moving propagation conditions are simulated by using a channel with two
paths at 0 ns of strength 0 dB. Each frame the second path is moved over
512 ns.
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A Power Delay Profile-based

path searcher

4.1 Introduction

As part of the literature study several papers have been discussed that an-
alyze so-called Power Delay Profile (PDP)-based path searchers. One of
these algorithms [25] has been selected for implementation. This chapter
discusses the PDP-based path search algorithm and its implementation in
detail. The algorithm consists of five functional blocks that will be discussed
in the following paragraphs.

The algorithm correlates the complex received signal with the pilot tone
from the Primary Common Pilot Channel (P-CPICH). By calculating the
correlation over the length of a frame, a delay profile is found (Section 4.3.1).
This delay profile is averaged over a number of previous frames (Section
4.3.2), to suppress fast fluctuations induced by interference. This results in
a Power Delay Profile (PDP). The local maxima in the PDP are selected
using a three-points method (Section 4.3.3). The height of these maxima
(attenuation) is compared with a threshold (Section 4.3.4). If it exceeds the
threshold a path is detected and the associated delay is forwarded to a Rake
receiver (Section 4.3.5). The PDP path searcher is shown in Figure 4.1.
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code

generator

x(t) r(t)
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Threshold
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ADC
r(p)
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Figure 4.1: Power Delay Profile-based path searcher
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4.2 Setting up interfaces and structuring the al-

gorithm

A model of the downlink in a UMTS system is available in C++. As the
algorithm will operate in the mobile terminal it needs to communicate with
the downlink receiver. The downlink receiver provides the path searcher
with both the conjugate of the user signature and the received signal. It
also sets the spreading factor of the path searcher as it is initialized. The
path searcher returns the number of paths and their delays to the downlink
receiver. Based on the number of paths and the path delays the downlink
receiver can set the Rake fingers accordingly.

The path searcher algorithm has been implemented in Matlab at first to
gain more insight in its structure. As the model of the UMTS downlink is
available in C++ the PDP path searcher needs to be modelled in C++ as
well. The number of modifications to the downlink receiver can be kept to a
minimum by creating a virtual base class for the path search algorithm (see
Appendix C.1). A number of set() and get() functions handle the commu-
nication between the downlink receiver and the path searcher. All functions
are pure virtual functions with an empty body, as they are members of the
abstract path searcher class.

In the header file of the downlink receiver (see Appendix C.2) the path
searcher’s abstract base class needs to be included as well as the various
versions of the path searcher (such as the PDP-based path searcher class,
see Appendix C.4). Using a pointer to the abstract base class, it is possible to
switch between different implementations of the path searcher in the source
file of the downlink receiver (see Appendix C.3).

4.3 Discussion of the PDP algorithm in detail

4.3.1 Estimating the delay profile using correlation

The path searcher itself is described in the source file, see Appendix C.5.
The algorithm requires initialization before the path search operation can be
performed. As mentioned previously the algorithm consists of five functional
blocks. The first block correlates the complex received signal r(p) with a
replica of the user signature s(p) for the nth frame (p is the discrete time
index). This replica of the user signature is provided to the path searcher
by the downlink receiver (it is obtained by the cell searcher). Generally the
received signal consists of a series of pilot symbols, which means that this
signal contains the user signature s(p).
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r(p) =
L

∑

l=1

hl(p)s(p − τl

Tc
) + w(p) (4.1)

The received signal consists of the signal components of the transmitter
travelling through L paths with complex channel coefficients hl(p). Both
the Multiple Access Interference and the Additive White Gaussian Noise
are contained by w(p).

Next the correlated signal y(n, m) is obtained, that contains a number
of peaks for the different delays (n is the frame index and m is the corre-
lation index). These peaks correspond to the paths in the channel between
transmitter and receiver.

y(n, m) =
1

N

N−1
∑

p=0

r(p + m)s∗(p) (4.2)

y(n, m) =
1

N

N−1
∑

p=0

L
∑

l=1

hl(p)δ(m − τl

Tc
) + w̃(n, m) (4.3)

N is the correlation window size, m ∈ [0, P − 1], P is the correlation
length, δ(m− τl

Tc
) results from the autocorrelation of the user signature s(p)

and w̃(n, m) is the correlated noise. The correlated signal is stored in a
matrix, each row corresponds to a frame with index n.

4.3.2 Calculating the Power Delay Profile

Next the correlated signal y(n, m) is averaged with the correlated signal from
the previous M frames, in order to find the most significant paths. This way
a Power Delay Profile z(n, m) is determined. The PDP is a measure for the
received power in each of the paths that is found (M indicates the length of
the summation).

z(n, m) =
1

M

M−1
∑

k=0

|y(n − k, m)|2 m ∈ [0, P − 1] (4.4)

4.3.3 Detection of local maxima in the PDP

Local maxima are detected in the PDP by checking the height of each sample
in the PDP. If it exceeds the height of both the preceding and subsequent
sample a local maximum is found. Its index and height are each stored in a
vector for further processing. The number of maxima is counted as well.
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4.3.4 Setting a threshold for the PDP

Finally a limited number of peaks from the PDP is selected. In order to
do this a threshold value η is set for the power of the peaks. In [25] the
threshold is set to:

η =
1

P

P−1
∑

m=0

z(n, m)(2 +
4√
M

) (4.5)

M is the length of the averaging process and P the length of the corre-
lation.

4.3.5 Selecting the paths from the PDP

Each peak from the PDP is compared to the threshold, if it exceeds the
threshold a path is detected. The corresponding index and height are each
stored in a vector. The number of paths is counted as well. Finally sig-
nal values are stored in a status file for visualization of the path searching
process.

4.4 Simulation of the PDP path searcher

The correct functioning of the algorithm has been verified by simulation (see
Figure 4.2). A path search was carried out for a Rayleigh fading channel
with paths at 0 and 8 samples (0 ns and 2050 ns). Both paths had a gain of
0 dB, the SNR was 10 dB and the mobile speed 3 km/h. Both paths were
found correctly by the algorithm. More detailed simulations will be carried
out to analyze the performance differences of the Power Delay Profile-based
algorithm compared to a Maximum Likelihood-based algorithm.
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Figure 4.2: Simulation for a channel with two paths
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A Maximum Likelihood

Estimation algorithm

5.1 Introduction

As part of the literature study several papers have been discussed that ana-
lyze so-called Maximum Likelihood Estimation (MLE) path searchers using
Expectation Maximization (EM). One of these algorithms [8] has been se-
lected for implementation. This chapter presents the MLE-EM path search
algorithm and its implementation in detail. The algorithm is implemented
in C++ and uses the same interfaces to the downlink receiver as the Power
Delay Profile algorithm.

For a better understanding of the algorithm a model for the received
complex baseband signal will be discussed first (Section 5.2). Then the
principles of both Maximum Likelihood Estimation (Section 5.3) and Ex-
pectation Maximization (Section 5.4) are stated. The MLE-EM algorithm
consists of five functional blocks and will be discussed in detail in Section
5.5. The C++ code can be found in Appendices D.1 and D.2.

41



42 A Maximum Likelihood Estimation algorithm 5

5.2 Model of the baseband received signal

The complex baseband signal u(t) of the transmitter travels to the receiver
through a channel via L paths [5][26]. Each path contributes to the complex
baseband signal y(t) in the receiver:

s(t, )è
l

s(t, )èL
Lth path

u(t)

xL(t)
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l
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Figure 5.1: Multipaths

The contribution of the lth path with complex gain αl and delay τl is:

s(t, θl) = αlu(t − τl) θl , [αl, τl] (5.1)

Each signal is corrupted by complex white gaussian noise nl(t), which
leads to xl(t). The signal xl(t) is defined as:

xl(t) = s(t, θl) +

√

N0βl

2
nl(t) (5.2)

n(t) =
L

∑

l=1

nl(t) nl(t) =
√

βln(t) (5.3)

The noise n(t) is divided over xl(t) by the factors βl, with
∑L

l=1 βl = 1.
The received signal y(t) is related to the signals xl(t) as follows:

y(t) =
L

∑

l=1

xl(t) (5.4)

The complex baseband received signal y(t) can therefore be described as
the sum of the path signals and a complex white gaussian noise term n(t):

y(t) =
L

∑

l=1

s(t, θl) +

√

N0

2
n(t) (5.5)
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5.3 Principle of Maximum Likelihood Estimation

A likelihood function can now be defined in terms of y(t) and the path
parameters θ , [θ1, . . . , θL]T as was done in [8], [5] and [26]:

Λ(θ; y) ,
1

N0

[

2

∫

Do

<
(

s∗(t, θ)y(t)

)

dt −
∫

Do

||s(t, θ)||2dt

]

(5.6)

In (5.6) Do denotes the time span over which paths are searched (the
correlation window), s(t, θ) =

∑L
l=1 s(t, θl). By maximizing the likelihood

function the estimates of the path parameters are found:

θ̂ML(y) ∈ arg max
θ

{Λ(θ; y)} (5.7)

As the complexity of this calculation requires a vast amount of compu-
tational power, the likelihood function is split up into L parts (see (5.4)):

Λ(θl; xl) ,
1

N0βl

[

2

∫

Do

<
(

s∗(t, θl)xl(t)

)

dt −
∫

Do

||s(t, θl)||2dt

]

(5.8)

(

θ̂l

)

ML
(xl) ∈ arg max

θl

{Λ(θl; xl)} (5.9)

5.4 Principle of Expectation Maximization

The maximization (5.9) of the derived likelihood function (5.8) can be car-
ried out by Expectation Maximization (EM). As the data xl(t) is not avail-
able, it is estimated in terms of the conditional expectation of xl(t) using
y(t) and a previous estimate of the channel parameters θ̂.

Each iteration µ of the algorithm is divided into two steps. The first
step provides an estimate x̂l(t) of xl(t) and the second step calculates the
value of θl that maximizes the likelihood function.

Expectation step:

x̂l(t, θ̂(µ)) , E
θ̂(µ)

[

xl(t)
∣

∣

∣y

]

(l = 1, . . . , L) (5.10)

Maximization step:

θ̂l(µ + 1) = arg max
θl

{

Λ
(

θl, x̂l

(

t, θ̂(µ)
)

)

}

(l = 1, . . . , L) (5.11)
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A general diagram of the Expectation Maximization algorithm is shown
in Figure 5.2 [5]. It can be implemented by first estimating the signals x̂l(t)
using the estimate of θ̂ from the previous iteration. This decomposition of
y(t) follows from (5.4), θ̂(0) is the initial value.

The next step is to carry out L Maximum Likelihood Estimations to find
all values for θ̂. If the algorithm has converged sufficiently θ̂ML is assigned
its value.
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Figure 5.2: Expectation Maximization

5.5 Discussion of the MLE-EM algorithm in detail

The algorithm (see Figure 5.3) is an iterative algorithm that consists of five
different operations. These operations will be discussed in the following sub-
sections. The algorithm attempts to decompose the complex received signal
y(t) into L path signals x̂l(t). This is referred to as the Expectation step.
First the shifted scrambling codes are formed (Subsection 5.5.1) and then
the path signals are estimated (Subsection 5.5.2).

The next step of the algorithm is the Maximization step. First, a max-
imum likelihood function is calculated for the estimated path signals (Sub-
section 5.5.3). This function is then maximized to determine an estimate of
the path parameters (Subsection 5.5.4).

Before proceeding to the next iteration, the convergence rate of the al-
gorithm is determined (Subsection 5.5.5). If the algorithm has converged
sufficiently, it stops iterating.
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The following diagram shows the MLE-EM algorithm in more detail [26]:
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Figure 5.3: Expectation Maximization in detail

5.5.1 Expectation: Forming the shifted scrambling codes

As discussed in the previous sections (see Figure 5.1 and equation (5.5)),
the received signal y(t) can be described in terms of the shifted scrambling
codes s(t, θl) and a noise term n(t). In order to do this, the first step of the
MLE-EM algorithm is to form the shifted scrambling codes. Each signal
s(t, θl) can be formed by shifting the complex baseband signal u(t) of the
transmitter over τl and multiplying it with a complex gain αl. Equation
(5.1) is repeated for convenience here:

s(t, θl) = αlu(t − τl) θl , [αl, τl] (5.12)

As a known pilot signal is transmitted, u(t) is available in the receiver
after a coarse timing synchronization has been achieved. During the first
iteration of the algorithm, an initial value θ̂(0) will be used to form all
s(t, θl). After the first iteration an estimate θ̂(1) of the path parameters
is available, which will be used instead of θ̂(0). The initial value θ̂(0) is
set with all values of τl and αl to zero. As the first iteration will lead to a
non-zero value for θ̂ the algorithm will start to converge on the channel’s
paths, due to its monotonicity property (see [5]).
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5.5.2 Expectation: Determining the path signal estimates

The next step will be to estimate the path signals x̂l(t) using equation (5.2).
This step is referred to as the Expectation step of the MLE-EM algorithm
(5.10). Exploiting the knowledge of the composition of y(t), the path signals
can be calculated as following (see [8], [5] and [26]):

x̂l(t, θ̂) = s(t, θ̂l) + βl

[

y(t) −
L

∑

l′=1

s(t, θ̂l′)

]

(5.13)

βl is a parameter of the algorithm that determines what amount of n(t)
is added to each signal s(t, θl), to form the path signal estimate x̂l(t). The
values of βl need to be set and can be chosen freely, except for the constraint
that

∑L
l=1 βl = 1. The noise will be equally divided over the path signals by

setting βl = 1
L
∀l, as was done in [8]. This concludes the Expectation step

(5.10), in which decomposition of the received signal y(t) into the signals
x̂l(t) is performed.

5.5.3 Maximization: Correlating the path signal estimates

with the scrambling code

Having finished the Expectation step (5.10), the algorithm proceeds with the
Maximization step (5.11). This requires calculating the likelihood functions

Λ
(

θl, x̂l

(

t, θ̂
)

)

l = 1, . . . , L. The likelihood function can be implemented

by correlating each estimated path signal x̂l(t) with the pilot signal u(t) (see
[5] and [26]):

z(τ, x̂l) ,

∫

Do

u∗(t − τ)x̂l(t)dt (5.14)

5.5.4 Maximization: Estimating the path parameters

Having obtained expressions for each path’s likelihood function in the form
of the MLEs z(τ, x̂l), the path parameters can now be estimated by maxi-
mizing these MLEs. Expressions for the values that maximize the likelihood
function have been derived:

(

τ̂l

)

ML
(xl) = arg max

τ
{|z(τ, xl)|} (5.15)

(

α̂l

)

ML
(xl) =

1

TP
z

(

(

τ̂l

)

ML
(xl), xl

)

(5.16)

T denotes the length of the transmitted pilot signal u(t) and P the
transmitted power. As the MLE-EM algorithm is an iterative algorithm
each iteration leads to an estimate θ̂ of the path parameters.
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5.5.5 Determining the convergence rate of the parameter es-

timates

Now that a new parameter estimate θ̂ is available, the first iteration of the
algorithm has finished. During the second iteration the scrambling codes
s(t, θl) can be formed using the parameter estimate θ̂(1) that has just been
obtained, replacing the previous value of θ̂(0).

If the algorithm has converged sufficiently, that is dθ(µ) < c, with c
a criterion for convergence, θ̂ML is assigned its value and the algorithm
stops iterating. The criterion dθ is calculated by determining the sum of the
difference between the current parameter estimate and the previous estimate
of each path:

dθ(µ) ,

L
∑

l=1

∣

∣

∣
θ̂l(µ + 1) − θ̂l(µ)

∣

∣

∣

∣

∣

∣θ̂l(µ)
∣

∣

∣

< c (5.17)

To make sure that the number of iterations that the algorithm can carry
out is limited a parameter µmax is defined. If the algorithm still has not
converged sufficiently to meet the criterion c and is about to start a new
iteration with µ equal to µmax, it will stop iterating as well.

5.6 Simulation of the MLE-EM path searcher

The correct functioning of the algorithm has been verified by simulation (see
Figure 5.4). A path search was carried out for a Rayleigh fading channel
with two paths at 0 and 1 samples. The second path was 3 dB weaker than
the first, the SNR was 3 dB and the mobile speed 1 km/h. Both paths were
found correctly by the algorithm. More detailed simulations will be carried
out to analyze the performance differences of the MLE-EM algorithm com-
pared to the Power Delay Profile-based algorithm.

A number of remarks can be made with regard to the properties of the
MLE-EM algorithm. First of all, it requires the number of paths L to be
known before the path search operation starts. The value of L can be esti-
mated using Akaike’s and Rissanen’s criteria [5]. If the incorrect number of
paths is provided, e.g. three paths are searched while the channel has only
two paths, the algorithm will not converge. The MLE-EM algorithm finds
the channel’s two paths and will hop between different delays for the third
path. As the algorithm can not converge for the third path, it will use the
maximum number of iterations, resulting in a slow behavior. If the correct
number of paths is known, slow convergence can be dealt with by setting a
less strict constraint c (5.17) and a lower value for µmax.
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Figure 5.4: Simulation for a channel with two paths

Currently, the value of βl is set to 1
L
. Another scheme is possible, in

which βl = 1. This is called the SAGE algorithm [5]. The SAGE algo-
rithm differs from the MLE-EM algorithm in that it does not re-estimate
the entire value of θ̂ during each iteration, but only a subset of αl and τl

values. Therefore, the computational complexity of an entire iteration cycle
of the SAGE algorithm is equal to that of a single MLE-EM iteration step [5].

Another issue is the algorithm’s behavior during fast fades or birth and
death of paths, causing the path delay profile to change within a frame.
Currently, a low velocity of the mobile terminal is assumed resulting in
negligible Doppler effects and slow fading. This is equivalent to a large co-
herence time Tcoh of the channel: Tcoh ≈ 1

Bd
with Bd the Doppler spread [33].

The current MLE-EM algorithm will search paths in the interval τl ∈
[0, Do] in each frame. According to [1] the delay profile of a channel can
change after 191 ms, which is rather slow compared to the frame time of 10
ms. Also the simulator used for testing the MLE-EM path search algorithm
does not support path delay profiles that change over time. However, should
the algorithm need to track fast changes of the delay profile, it is possible
to split the received frames in blocks and perform the path search operation
for each block [8].



6

Performance of the PDP and

MLE algorithms

6.1 Goal of the simulations

The correctness of the functional behavior of both the PDP and MLE al-
gorithm was verified by simulation as the algorithms were implemented. In
order to investigate the performance of the two algorithms, additional sim-
ulations have been carried out. This chapter discusses the results of these
simulations, the conclusions can be found in Section 7.2. The goal is to
answer the following questions:

1. How do the algorithms perform at various levels of the SNR?

2. Which algorithm parameters influence the behavior the most?

3. Which algorithm can resolve closely spaced paths the best?

4. Do the algorithms have an acquiring and a tracking phase ?

In order to answer the first question (Section 6.2) simulations have been car-
ried out with a Rayleigh fading channel as described in the UMTS standard
([1] and [23]), see Table 6.1. Doppler effects are investigated in Section 6.3,
at first the mobile terminal velocity v is set to 3 km/h. The SNR is varied
from -5 dB to 20 dB in 5 dB steps. The chip energy Ec is set to unit energy,
the levels of both the DPCH and P-CPICH are set to -10 dB.

The second question, which parameters influence the algorithms’ behav-
ior the most, can be answered by varying one parameter at a time (Section
6.4). For the PDP algorithm the averaging length M and the threshold η
can be varied. For the MLE algorithm the maximum number of iterations
µmax and the distribution of the noise βl can be varied. Simulations are
carried out at both low and high values of the SNR.

49
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Vehicular B 0 300 8900 12900 17100 20000 ns
-2.5 0.0 -12.8 -10.0 -25.2 -16.0 dB

Case 3 0 260 521 781 - - ns
0.0 -3.0 -6.0 -9.0 - - dB

Pedestrian B 0 200 800 1200 2300 3700 ns
0.0 -0.9 -4.9 -8.0 -7.8 -23.9 dB

Indoor office B 0 100 200 300 500 700 ns
0.0 -3.6 -7.2 -10.8 -18.0 -25.2 dB

Table 6.1: Four path delay and power vectors

The resolution issue (Section 6.5) - which algorithm resolves closely
spaced paths the best - is investigated by simulating a 2-path channel with
the first delay equal to 0 ns. The second delay is varied by setting it to a
small value and making it smaller in each simulation. The minimal distance
between two paths can be one sample, by oversampling (OSF > 1) it is
possible to search paths within a chip. It is interesting to see whether such
a high resolution estimate will be still possible if the SNR is lower.

Finally the results of the simulations are analyzed to see whether an
acquiring and a tracking phase can be identified (Section 6.6). Possibly the
channel estimate improves for every new frame that is processed, or the
number of iterations required by the MLE algorithm goes down.

Two additional questions are of interest (Section 6.7):

1. How sensitive are both algorithms to interference?

2. Can the algorithms handle changes in the channel parameters?

In order to answer these questions, a second basestation was added to
the simulator. This way the situation shortly before a handover can be sim-
ulated: the mobile terminal is at the edge of the first basestation’s cell and
detects a second basestation with a signal strength equal or greater than
that of the first basestation. The question is: how is the path searcher’s
performance affected by the interfering signal of the second base station?

The current simulator only supports channels of which the parameters
are constant during the entire simulation run. By modifying the simulator
dynamic channel parameters can be supported. The parameters can then
be varied from one frame to the next. This way it is possible to investi-
gate whether the algorithms can adapt to the changing channel parameters.
Two situations of interest are described in the UMTS standard [1]: mov-
ing propagation conditions (path delay variations in time) and birth-death
propagation conditions (appearance of new paths etc.).
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6.2 Performance of the algorithms in Rayleigh

fading channels

6.2.1 Vehicular B channel model

A number of simulations has been carried out using the Vehicular B channel
parameters (see Table 6.1) with the SNR varying over a range of -5 dB to
20 dB and an OSF equal to one. All data is averaged over twelve frames.
Figure 6.1 shows the average number of correct path delay estimates. Espe-
cially the MLE algorithm benefits from the increasing SNR level, whereas
the PDP algorithm performs the same. Also, the MLE algorithm finds on
average one path more than the PDP algorithm.

Figure 6.2 shows the averaged power delay profiles (normalized w.r.t.
the strongest path). All curves follow the same trend, the main difference is
that the MLE algorithm does find the weak path at 17100 ns at high SNR.
Figure 6.3 shows this as well: the MLE algorithm detects weak paths much
better than the PDP algorithm. Also, the PDP algorithm cannot detect
both paths at 0 ns and 300 ns at the same time (the sum of these detection
percentages equals 100%), while the MLE algorithm detects both paths over
80% of the frames. The influence of the SNR on detection of weaker paths
can be seen by taking a look at the path at 20,000 ns, the MLE algorithm
detects this path 17% of the frames at -5 dB up to 75% of the frames at 20
dB.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

-10 -5 0 5 10 15 20 25SNR (dB)

A
v
e
ra

g
e

n
u

m
b

e
r

o
f

c
o

rr
e
c
t

p
a
th

d
e
la

y
e
s
ti

m
a
te

s

PDP

MLE

Figure 6.1: Vehicular B - Average number of correct path delay estimates
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6.2.2 Pedestrian B channel model

Using the Pedestrian B channel parameters the next series of simulations
has been carried out, again with the SNR varying over a range of -5 dB to
20 dB. The OSF is set to four. All data is averaged over twelve frames.
Figure 6.4 shows the average number of correct path delay estimates. Both
algorithms benefit from the increasing SNR level. For low SNR levels the
MLE algorithm finds on average one path more than the PDP algorithm.

Figure 6.5 shows the averaged power delay profiles (normalized w.r.t. the
strongest path). It can be seen clearly that the MLE algorithm estimates
the path power much better, especially at 0 ns, 200 ns and 800 ns. Again,
weak paths are detected better by the MLE algorithm. It does find the weak
path at 3700 ns for SNR levels of 5 dB and higher. Figure 6.6 shows this as
well. Also, the PDP algorithm has trouble detecting the path at 1200 ns,
while the MLE algorithm detects this path much better.
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6.2.3 Case 3 channel model

A number of simulations has been carried out using the Case 3 channel pa-
rameters with the SNR varying over a range of -5 dB to 20 dB and an OSF
equal to four. All data is averaged over twelve frames. Figure 6.7 shows the
average number of correct path delay estimates. Both algorithms benefit
from the increasing SNR level.

Figure 6.8 shows the averaged power delay profiles (normalized w.r.t.
the strongest path). The PDP and MLE curves do not follow the same
trend, the PDP algorithm estimates less power in the paths than the MLE
algorithm. The MLE algorithm finds the weak path at 781 ns more often,
as can be seen in Figure 6.9 as well.
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Figure 6.7: Case 3 - Average number of correct path delay estimates
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6.2.4 Office B channel model

Using the Office B channel parameters the next series of simulations has
been carried out, again with the SNR varying over a range of -5 dB to 20
dB. The OSF is set to four. All data is averaged over twelve frames. Figure
6.10 shows the average number of correct path delay estimates. Only the
MLE algorithm benefits from the increasing SNR level. On average the PDP
algorithm finds about one path, whereas the MLE algorithm finds two to
three paths depending on the SNR.

Figure 6.11 shows the averaged power delay profiles (normalized w.r.t.
the strongest path). It can be seen clearly that paths can only be detected
if they are separated in time by at least 100 ns. Both algorithms miss the
paths at 100 ns and 300 ns. Again, weak paths are detected better by the
MLE algorithm. It does find the weak paths at 500 ns and 700 ns. Figure
6.12 shows this as well. The Office B model clearly illustrates the resolution
issues, which will be investigated in Section 6.5 in more detail.
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6.3 Doppler effects

The influence of Doppler effects on the performance of the algorithms has
been investigated by carrying out a number of simulations using the Case 3
channel parameters. The SNR is set to both 0 dB and 10 dB and the OSF
equals four. All data is averaged over twelve frames. Figure 6.13 shows the
averaged power delay profiles (normalized w.r.t. the strongest path) and
Figure 6.14 shows the path delay detection percentage. The PDP algorithm
seems to be affected more by the Doppler effects than the MLE algorithm,
that only shows a small degradation in path delay detection.
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6.4 Influence of the algorithms’ parameters on

their performance

6.4.1 Parameters of the PDP algorithm

Averaging length M

The averaging process with length M causes the PDP algorithm to be less
sensitive to fluctuations in the channel parameters. In case of changing
channel parameters this becomes a disadvantage and M needs to be set to
one (see Section 6.7). On the other hand, averaging is necessary to detect
weak paths. To illustrate this, simulations have been carried out with a
channel with paths at 700 ns (0 dB) and 2100 ns (-15 dB). The OSF is set
to one, v to 3 km/h and the SNR to 0 dB. The results are presented in Table
6.2. The strong path at 700 ns is always detected, but the detection of the
weak path at 2100 ns only improves if M increases.

M paths detect detect avg. power avg. power average
found path 1 path 2 path 1 path 2 threshold

1 1.50 100% 50% 0.00 dB -13.07 dB -15.21 dB

2 1.67 100% 67% -0.11 dB -14.04 dB -16.29 dB

3 1.83 100% 83% -0.16 dB -14.82 dB -16.86 dB

4 2.00 100% 100% -0.21 dB -15.24 dB -17.28 dB

Table 6.2: Influence of averaging length M on detection of weak paths

Also, as M increases, the threshold is set to a lower value. This is due
to the way the threshold is calculated, using M .

Threshold η

The threshold η is calculated using the averaged power delay profile z(m):

η =
1

P

P−1
∑

m=0

z(m)(a + bM c) (6.1)

See also Equations (2.8) and (4.5) from [25]. P is the correlation length,
m the correlation index and M the averaging length. According to [25]
a = 2, b = 4, c = −0.5 gives the best results. A number of simulations has
been carried out using the Case 3 channel model with OSF = 4, v = 3 km/h
and SNR = 0 dB. At first, a is varied from 4 down to 0, which makes no
difference in the performance of the PDP algorithm. Setting b = 2 while
a = 0 results in a threshold value that is too low, in this case up to four
false paths are detected in addition to the desired paths. The algorithm
does function correctly with these settings at higher SNR levels (10 dB).
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In general it can be said that the peaks at the output of the correla-
tor that correspond to actual paths are significantly higher than the peaks
resulting from the noise. This allows for high threshold values. Other meth-
ods for calculating a threshold value based on z(m) are proposed in [13] and
[28] (subtracting the strongest paths from z(m)) and in [12] (subtracting a
WMSA filtered signal from z(m)).

6.4.2 Parameters of the MLE algorithm

Number of paths to be estimated L

Simulations have been carried out using the Vehicular B channel (see Table
6.1) with SNR = 15 dB and OSF = 1. All data is averaged over twelve
frames. Figure 6.15 shows the averaged power delay profiles (normalized
w.r.t. the strongest path). It can be seen clearly that if not all six paths (L <
6) need to be found the weakest path at 17100 ns is omitted. Figure 6.16
shows this as well. In Table 6.3 the average number of correctly found paths
and the average number of iterations is shown. Allowing the algorithm to
search just the strongest four paths results in almost the same performance
as in the case that five paths are searched. This way the number of iterations
can be reduced by 30% causing only a slight drop in performance.
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Number of paths searched Number of paths found Number of iterations

6 4.42 47.4

5 4.17 40.3

4 3.83 28.3

Table 6.3: Effect of searching less paths than the existing number of paths
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Figure 6.16: Correct estimation of path delays as function of L

Maximum number of iterations allowed µmax

In order to study the effect of forcing the MLE algorithm to search paths
using a fixed maximum number of iterations simulations have been carried
out using the Vehicular B channel parameters. The SNR is set to 15 dB and
the OSF equal to one. All data is averaged over twelve frames. Figure 6.17
shows the averaged power delay profiles (normalized w.r.t. the strongest
path). For µmax equal to ten the algorithm is not capable of finding the
weakest path at 17100 ns. Also for twenty iterations the power delay profile
differs from those for higher values of µmax, but all paths are detected. This
can be concluded from Figure 6.18 as well. Only in the case of ten iterations
the weakest path is not found.

Distribution of noise over path signal estimates βl

The factors βl divide the estimate of the noise over the estimates of the path
signals. Currently, the noise is spread evenly over all path signal estimates
by setting βl = 1

L
. Another option is to spread the noise estimate over the

path signal estimates by strength: a larger share of the noise estimate is
added to a stronger path signal estimate: βl = αl

∑L
l=1 αl

. Using the Case

3 channel parameters simulations have been carried out to investigate the
effects (OSF = 1, v = 3 km/h). Figure 6.19 shows that for high SNR the

αl
∑L

l=1 αl

scheme does not perform better than the 1
L

scheme and for low SNR

performs far worse. Also, the 1
L

scheme requires less calculations.
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6.5 Resolution of the algorithms: resolving closely

spaced paths

In order to find out to what extent it is possible to separate paths from each
other with the PDP and MLE algorithm a number of simulations has been
carried out. A channel is used with paths at 0 ns and 391 ns, both with a
gain of 0 dB. The SNR = 0 dB and v = 3 km/h. Next the path delay of
the second path is decreased step by step. If the two paths can no longer be
separated from each other the oversample factor is increased. The results
are shown in Figure 6.20. It can be seen that if the two paths are spaced
at a distance of 131 ns the MLE algorithm is still able to separately detect
both paths using an OSF = 1. The PDP algorithm already requires an OSF
= 3. Also for paths at a distance of 66 ns the MLE algorithm requires an
OSF = 2, while the PDP algorithm requires OSF = 6.
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Figure 6.20: Resolution as function of the over sample factor

The performance of both algorithms for equal resolutions (i.e. 131 ns,
66 ns and 44 ns) is listed in Table 6.4. Due to the oversampling process
less power is contained in the samples. Therefore the peaks at the correla-
tor output of both algorithms will be lower, as can be concluded from the
detected power in dB for the two paths. As the PDP algorithm requires
an OSF of factor three higher than the MLE algorithm to achieve the same
resolution, the path power diminishes rapidly. At 44 ns the first path is
no longer detected and the second path only 8% of time. With an average
detection of 0.08 paths the PDP algorithm no longer functions.
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resolution 131 ns 131 ns 66 ns 66 ns 44 ns 44 ns

algorithm MLE PDP MLE PDP MLE PDP

OSF 1 3 2 6 3 9

paths found 1.83 1.58 1.42 1.08 1.25 0.08

iterations 13.1 - 22.3 - 25.3 -

det. path 1 83% 58% 50% 83% 58% 0%

pow. path 1 -0.34 dB -10.13 dB -8.06 dB -11.62 dB -7.29 dB -

det. path 2 100% 100% 92% 25% 67% 8%

pow. path 2 0.00 dB -9.07 dB -3.71 dB -15.76 dB -6.56 dB -20.72 dB

Table 6.4: Performance at higher over sample factors

6.6 Acquiring and tracking

Finally all simulations results are analyzed to see whether an acquiring and
a tracking phase can be identified. Possibly the channel estimate improves
for every new frame that is processed. Another question is: does the num-
ber of iterations required by the MLE algorithm go down as more frames
have been processed? This way an acquiring phase can be defined, during
which the algorithms search the channel’s paths. Having found the paths,
the algorithms need to hold on to these paths during the tracking phase.
During the tracking phase the channel estimates should converge and less
computations should be required than during the acquiring phase.

All simulation data of the PDP algorithm for the four channels (see Ta-
ble 6.1) at v = 3 km/h and SNR = -5 dB to 20 dB is analyzed. The power
of a single path (of strength 0 dB) is determined as a function of the frame
number. It turns out that the path power is estimated as -5 dB in frame
1 and rises to 0 dB in frame 8 (Figure 6.21). This makes sense, as the
averaging length M = 8. Most simulations show a 3 dB drop in frame 9.
Additional simulations show that a different realization of the noise signal
does not lead to this power drop. Also simulations over the double amount
of frames show that the algorithm recovers after the drop. Simulations with
longer averaging (M = 12) show a slower convergence of the power estimate.

The MLE algorithm does not show this build up in path power, also the
number of iterations does not decrease over time. In fact, the algorithm
requires 20 to 30 iterations to estimate all paths, only frame 9 results in 40
to 50 iterations. Additional simulations have been carried out with L paths
of 0 dB at equal distance (300, 600, 900, 1200, 1500 and 1800 ns), SNR =
20 dB and v = 3 km/h. These simulations show that for for L = 1 to 6
the number of iterations does not go down in time. In fact, the number of
iterations can be approximated as µ ≈ 8.2L − 4.4.
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Figure 6.21: Case 3: Estimated power in path at 0 ns (0 dB) over 12 frames

6.7 Extension of the simulator

Now that the simulations with the current simulator have been concluded,
it will be extended in order to answer two other questions: how sensitive are
both algorithms to interference? Can the algorithms handle changes in the
channel parameters?

6.7.1 Handover to a second basestation

First of all, a second basestation is added to the simulator. This way the
situation shortly before a handover can be simulated: the mobile terminal
is at the boundary of the first basestation’s cell and detects a second base
station with a signal strength equal or greater than that of the first bases-
tation. The first basestation transmits trough a channel with paths at 521
ns (0 dB) and 1573 ns (-3 dB) and the interfering basestation’s channel has
paths at 0 ns (0 dB), 1060 ns (-3 dB) and 1573 ns (-3 dB).

algorithm SIR SNR paths path 1 path 2 iterations

MLE 0 dB 0 dB 1.83 92% -5.24 dB 92% -6.07 dB 12.2

PDP 0 dB 0 dB 1.92 92% -3.68 dB 100% -3.85 dB -

MLE -8 dB 0 dB 0.67 25% 0.00 dB 42% -3.32 dB 12.3

PDP -8 dB 0 dB 1.83 83% -2.97 dB 100% -2.59 dB -

Table 6.5: Simulation conditions for interference
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As can be seen from Table 6.5, the PDP algorithm outperforms the
MLE algorithm in the presence of a second basestation (both at low and
high signal to interference ratios). The algorithm detects more paths and
estimates the delays correctly more often than the MLE algorithm.

6.7.2 Moving propagation conditions

The current simulator only supports channels of which the parameters are
constant during the entire simulation run. By modifying the simulator dy-
namic channel parameters can be supported. The parameters can then
be varied from one frame to the next. This way it is possible to investi-
gate whether the algorithms can adapt to the changing channel parameters.
Moving propagation conditions are simulated by using a channel with two
paths at 0 ns of strength 0 dB. Each frame the second path is moved over
512 ns.

1 2 3 4 5 6 7 8 9 10 11 12

MLE v = 3

MLE v = 120

PDP M = 1 v = 3

PDP M = 2 v = 3

PDP M = 4 v = 3
PDP M = 8 v = 3

PDP M = 8 v = 120

PDP M = 8 v = 120

PDP M = 8 v = 3

PDP M = 4 v = 3

PDP M = 2 v = 3

PDP M = 1 v = 3

MLE v = 120

MLE v = 30

1

2

3

4

5

6

7

8

9

N
u

m
b

e
r

o
f

p
a
th

s

Frame number

Figure 6.22: Moving propagation conditions

Figure 6.22 shows the effect of the averaging length M on the perfor-
mance of the PDP algorithm. Only when no averaging occurs (M = 1) the
PDP algorithm performs as well as the MLE algorithm. For M = 2 the
PDP algorithm detects three paths, where only two paths exist. For larger
values of M this behavior becomes even more problematic (five paths for
M = 4 and up to nine paths are detected for M = 8). Hence, M should
be kept as low as possible if channel parameters change rapidly. If M is
too large, the number of paths that is found rises linearly with the frame
number, up to frame M + 1.
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6.7.3 Birth-death propagation conditions
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Figure 6.23: Birth-death propagation conditions

Another situation in which channel parameters change is in the case of
birth-death propagation conditions. In this case paths suddenly appear or
disappear. Simulations have been carried out with paths at 521 ns and 2050
ns (both 0 dB), the SNR is set to 10 dB. These channel parameters are used
during the first four frames. Next, the path at 521 ns disappears and a new
path appears at 1563 ns (0 dB). Again this situation holds for four frames,
after which the path at 2050 ns disappears. At the same time a path appears
at 1025 ns (0 dB).

Figure 6.23 shows that the MLE algorithm has difficulties finding the
second path in the third frame (SNR = 0 and 10 dB) and in the fourth and
fifth frame (SNR = 0 dB). The PDP algorithm on the other hand tends to
find too many paths for higher values of M . For M = 8 (SNR is 0 dB and 10
dB) the algorithm finds a third path from the sixth frame on and a fourth
path from the tenth frame on. A lower value of M results in the detection of
less paths, for M = 4 a third path is found in frames 6, 7, 8, 10, 11 and 12.
When M is set to two, a third path is found only in frames 6 and 10. This
shows that the length M of the averaging process influences the detection of
paths that have already disappeared. Without averaging (M = 1) the best
results are obtained.
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6.8 Computational power requirements

An important issue is the cost of the two algorithms in terms of computa-
tions. For this, the source code of both algorithms has been analyzed in
order to determine the number of operations O they require for processing a
single frame. Additions, subtractions, multiplications and divisions of vari-
ables are considered as operations. This has led to the following expressions:

OPDP = OSFPDP (4 + 6P + 2NP ) (6.2)

OMLE = µOSFMLE (N + 4L + PL + 4NL + 2NPL) (6.3)

R =
OMLE

OPDP

= µ
OSFMLE

OSFPDP

(N + 4L + PL + 4NL + 2NPL)

(4 + 6P + 2NP )
(6.4)

In these equations N and P are respectively the window size and length of
the correlation, L is the number of searched paths and µ is the number of
iterations required. From Figure 6.24 it can be concluded that the ratio R
between the number of operations of the MLE and PDP algorithms increases
linearly with the number of iterations µ. Figures 6.25 and 6.26 show that R
is independent of both N and P and increases linearly with L:

R ≈ µL
OSFMLE

OSFPDP

N, P À 1 (6.5)
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7

Conclusions and future work

7.1 Summary of work

In this M.Sc. thesis it has been investigated to what extent it is useful for the
path search function to switch between different algorithms, as conditions
between transmitter and receiver change. First, a number of papers were
discussed in a literature study to get a clear picture of different algorithms
that were candidates for implementing the path search function (Chapter 2).
These algorithms were compared with each other and have been classified
in three classes, based on the similarities that were discovered.

Before implementing the algorithms and setting up simulations first a
number of channel models were analyzed in Section 3.1. Also scenarios have
been formulated in Section 3.2 that describe the conditions in the channel
between the transmitting base station and the receiving mobile terminal.
A number of modifications to the simulator have been discussed, as well as
their implementation in C++ (Subsection 3.2.5).

Next the algorithms that were selected in the literature study have been
implemented. The implementation of the Power Delay Profile (PDP)-based
path searcher has been discussed in Chapter 4. In Chapter 5 the implemen-
tation of the Maximum Likelihood Estimation (MLE) path searcher has
been presented. The theory behind the subspace-based algorithm has been
discussed in Appendix B, but this algorithm has not been implemented.

The correctness of the functional behavior of both the PDP and MLE
algorithm was verified by simulation as the algorithms were implemented.
In order to investigate the performance of both algorithms in more detail,
a number of simulations has been carried out (Chapter 6). The simulation
results are discussed in Section 7.2, switching conditions are discussed in
Section 7.3 and issues for further research are listed in Section 7.4.

71
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7.2 Comparison of the PDP and MLE algorithms

The goal of the simulations of the PDP and MLE algorithms was to answer
to following questions:

1. How do the algorithms perform at various levels of the SNR?

2. Which algorithm parameters influence the behavior the most?

3. Which algorithm can resolve closely spaced paths the best?

4. Do the algorithms have an acquiring and a tracking phase?

5. How sensitive are both algorithms to interference?

6. Can the algorithms handle changes in the channel parameters?

1. How do the algorithms perform at various levels of the SNR?

From the simulation results in Section 6.2 it can be concluded that the MLE
algorithm detects one path more than the PDP algorithm for the Vehicular
B and Pedestrian B channel models. In case of the Office B channel model
the MLE algorithm even detects two paths more. This is due to the fact
that that MLE algorithm can detect weak paths much better than the PDP
algorithm, as can be seen clearly in Figures 6.3, 6.6, 6.9 and 6.12. Both
algorithms benefit from high SNR values. The influence of Doppler effects
is the largest on the PDP algorithm’s performance (Section 6.3).

2. Which algorithm parameters influence the behavior the most?

From Section 6.4 it can be concluded that the PDP algorithm’s performance
strongly improves by increasing the averaging length. Weaker paths can then
be detected better. The threshold value η has much less influence on the
performance of the PDP algorithm.

The MLE algorithm is mainly sensitive to the number of paths L it
has to detect and the maximum number of iterations µmax it is allowed to
use for this. Simulation results show that the number of iterations can be
reduced by allowing the algorithm to skip searching the weakest path in the
channel. In this case, the other paths can be found in only 10 iterations. In
the case that all paths need to be detected it is useful to strongly decrease
µmax. This will lead to a minor loss in performance. Finally an alternative
distribution of βl was investigated which has not lead to an improvement of
the algorithm.
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3. Which algorithm can resolve closely spaced paths the best?

The ability of both algorithms to detect closely spaced paths has been dis-
cussed in Section 6.5. From the simulation results it can be concluded that
the MLE algorithm can detect path delays that are a factor three smaller
than the path delays that the PDP algorithm can detect for the same over-
sample factor. Also, the PDP algorithm can not detect weaker paths as the
oversample factor is increased.

4. Do the algorithms have an acquiring and a tracking phase?

The behavior of both algorithms over time has been discussed in Section
6.6. The PDP algorithm shows an improvement of the path power estimates
as more frames are processed. Depending on the averaging length M the
convergence of the PDP algorithm is either fast or slow. The MLE algorithm
on the other hand does not show this convergence in its power estimates.
Also the number of iterations it requires does not become smaller as more
frames are processed. Therefore it is not possible to identify an acquiring
and tracking phase.

5. How sensitive are both algorithms to interference?

The influence of interference on the algorithms’ performance has been in-
vestigated in Subsection 6.7.1. Simulations have been carried out with an
interferer that transmits with a power equal to or larger than that of the de-
sired base station, as is the case shortly before a handover. In both cases the
PDP algorithm is less sensitive to the interference than the MLE algorithm.

6. Can the algorithms handle changes in the channel parameters?

In addition to the discussion in Section 6.6 on acquiring and tracking, simu-
lations have been carried out for channels with path parameters that change
from frame to frame. Changing path delays were investigated (Subsection
6.7.2), as well as the birth and death of paths (Subsection 6.7.3). In both
cases the PDP’s ability to track changing paths is hampered by the aver-
aging length M . Without averaging the best results (close to those of the
MLE algorithm) can be obtained.

Computational cost

In most cases the MLE algorithm outperforms the PDP algorithm. This is
however at a certain cost, see Section 6.8. The MLE algorithm requires a
factor µLOSFMLE

OSFPDP
more computations than the PDP algorithm. For equal

oversample factors this means that if several paths need to be estimated, the
MLE algorithm requires far more computations than the PDP algorithm.
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By setting µmax to a low value, the number of computations performed
by the MLE algorithm can be kept relatively small. Also, when only a
few paths need to be estimated, the influence of the factor L is relatively
small. Under these circumstances the MLE algorithm requires the lowest
amount of computations and will outperform the PDP algorithm, especially
for channels with weak paths that need to be estimated. In the case of
closely spaced paths the ratio OSFMLE

OSFPDP
can be as low as 1

3 , further reducing
the number of computations for the MLE algorithm with respect to the PDP
algorithm.

7.3 Switching conditions

From the discussion in Section 7.2 it becomes clear that the MLE algorithm
outperforms the PDP algorithm in a number of situations. Also, the MLE
algorithm will require more computations under all circumstances. In the
case of a Vehicular B or Pedestrian B channel the PDP algorithm can not
detect the weaker paths, while the MLE algorithm can. But the advantage
of using the MLE algorithm is small, as these weak paths contain little en-
ergy and require a large number of iterations (Subsection 6.4). The PDP
algorithm should therefore be selected.

In the case of strong paths that are closely spaced (e.g. Office B channel)
the MLE algorithm is superior to the PDP algorithm. If only a few paths
exist (L = 2) at 131 ns distance from each other, 13.1 iterations are required
resulting in a ratio of operations R = µLOSFMLE

OSFPDP
= 8.73. In this case the

PDP algorithm detects almost 10 dB less power in the paths (Table 6.4)
and the path detection percentages are lower. The improvement of the path
estimation justifies the increase of the number of computations.

Also the ability of the MLE algorithm to estimate time-variant path de-
lays is superior to that of the PDP algorithm (Section 6.7). Again, if only
two or three strong paths need to be estimated, the MLE algorithm should
be selected. In addition the influence of Doppler effects should be taken into
account (Section 6.3). If strong Doppler effects occur, the MLE algorithm
is superior and should therefore be selected.

Another set of circumstances that is worth further investigation is in the
case of strong interference (Subsection 6.7.1). Sofar no explanation is avail-
able for the superior performance of the PDP algorithm at high SIR levels.
Other issues qualified for further investigation are discussed in Section 7.4.
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7.4 Recommendations

The trade-off between performance and number of computations should be
investigated further for the cases described in Section 7.3. BER simulations
are required to quantify the benefits of selecting the MLE algorithm instead
of the PDP algorithm.

Some issues concerning the PDP algorithm are of interest for further re-
search. First of all, the estimation of the noise variance σ2

n can be improved
by using the method of [12]. This way a better calculation of the threshold is
possible. Another option is to subtract the strongest paths from the power
delay profile, before using it to set the threshold (as was proposed in [13]
and [28]). Finally, the detection of closely spaced paths can be improved
by performing the Teager-Kaiser operation after the correlation step in the
PDP algorithm [17].

Some improvements to the MLE algorithm are worth further investiga-
tion as well. Should the MLE algorithm need to track fast changes of the
delay profile, it is possible to split the received frames in blocks and perform
the path search operation for each block [8].

Also another scheme is possible for βl in which it is set to one. Currently,
the value of βl is set to 1

L
. The alternative scheme is called the SAGE algo-

rithm [5]. The SAGE algorithm differs from the MLE-EM algorithm in that
it does not re-estimate the entire value of θ̂ during each iteration, but only
a subset of αl and τl values. Therefore, the computational complexity of
an entire iteration cycle of the SAGE algorithm is equal to that of a single
MLE-EM iteration step [5].

Finally, it would be useful to determine the convergence of the MLE
algorithm per path. This way, path parameter estimates that have already
converged in the first few iterations of the algorithm, do not need to be
estimated again as the algorithm attempts to further improve the other pa-
rameter estimates. A reduction of the number of computations in subsequent
iterations can be achieved this way.
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B

A Subspace-based path

searcher

B.1 Introduction

As part of the literature study several papers have been discussed that an-
alyze so-called Subspace-based path searchers. One of these algorithms [6]
has been selected from the class of Subspace-based algorithms. This chapter
presents the theory behind the selected Subspace-based path search algo-
rithm.

For a better understanding of the algorithm a model for the received
complex baseband signal will be discussed first (Section B.2). Then the
principle of the Subspace algorithm is stated in Section B.3. In short, the
baseband signal is correlated with the user signature and then an estimate of
the covariance matrix of the correlated signal is calculated. By eigendecom-
position of this covariance matrix, the eigenvectors of the signal subspace
and the noise subspace can be found. In principle the signal subspace and
the noise subspace are orthogonal and can therefore be separated from each
other. This orthogonality is exploited by using a Toeplitz displacement.

In this way, the channel can be identified and the path delays can be
determined. The algorithm has the advantage that it requires much less
knowledge of the user signatures of all the users in a cell compared to the
MLE method and it can achieve a higher path delay resolution [6].
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B.2 Model of the baseband received signal

The received baseband signal rk(n) for user k is of length aN +M − 1, with
N the spreading gain, M the channel length and a the number of symbols.
This signal can be modelled as:

rk(n) =

K
∑

k=1

αkCkHkbk(n) + w(n) (B.1)

With rk(n) = [rk(n), . . . , rk(n + aN + M − 2)]T , αk the complex amplitude
and n the discrete time index. The additive, circularly symmetric Gaussian
noise process with variance σ2

w is denoted as: w(n) = [w(n), . . . , w(n + aN + M − 2)]T

and the (a+2)×1 -sized vector of data bits as: b(n) =
[

b
⌊

n
N

⌋

− 1, . . . , b
⌊

n
N

⌋

+ a
]T

.
The channel matrix for user k is then:

Hk = hk ⊗ Ia+2 (B.2)

In (B.2) the Kronecker operator is denoted as ⊗, hk = [hk(0), . . . , hk(M − 1)]T

is the filtered and sampled complex channel impulse response and Ia+2 is
the (a + 2) × (a + 2) identity matrix.

Next, expressions for the spreading code matrix Ck in (B.1) are de-
rived. First of all, a matrix of width M for vector ck(n) is denoted as:
C (ck(n), M). This is the convolution matrix of the spreading code vec-
tor ck(n) = [ck(n), . . . , ck(n + N − 1)]T of length N with another vector of
length M . Therefor, C (ck(n), M) is of size (N + M − 1) × M .

C1
k,M (n) is then defined as the first N rows of C (ck(n), M) and C2

k,M (n)
as the last M −1 rows of C (ck(n), M). This way, the spreading code matrix
Ck(n) for user k of size (aN + M − 1) × (a + 2)M can be denoted as:

Ck(n) =









C2

k,M (n − N) C1

k,M (n)

C2

k,M (n) C1

k,M (n + N) 0

C2

k,M (n + N) C1

k,M (n + 2N)

0
. . .

. . .

C2

k,M (n + aN) C̃1

k,M (n + (a + 1)N)









In the expression for Ck(n) the matrix C̃1
k,M (n + (a + 1)N) consists of the

first M − 1 rows of C1
k,M (n + (a + 1)N).

Instead of processing the received signal itself, it is filtered by a set of
M matched filters per symbol, which leads to the observation vector y(n)
of length aM :

y(n) = S1(n)r(n) = S1(n)

(

K
∑

k=1

αkCkHkbk(n)

)

+ S1w(n) (B.3)
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The matched filtering matrix S1 can be formulated as follows:

ST
1 (n) =











C1

1,M (n)

C2

1,M (n) C1

1,M (n + N) 0

C2

1,M (n + N) C1

1,M (n + 2N)

0
. . .

. . .

C1

1,M (n + aN)

C2

1,M (n + aN)











(B.4)

B.3 Principle of Subspace-based path searcher

Now that the matched filtered signal y(n) (see (B.3)) can be observed, a
covariance matrix can be calculated as follows:

Ry = E
[

y(n)y(n)H
]

= σ2
1S1(n)C1(n)H1H

H
1 C1(n)HS1(n)H +RI(n)+Rw(n)

with σ2
1 = E

{

α2
1b1(n)2

}

, Rw(n) as the noise autocorrelation matrix and
RI(n) as the multiple access interference from the other users with k 6= 1.

Averaging Ry(n) over time leads to:

Ry =
1

Ns

Ns
∑

n=1

Ry(n) (B.5)

=
σ2

1

Ns

Ns
∑

n=1

S1(n)C1(n)H1H
H
1 C1(n)HS1(n)H + RI + Rw (B.6)

=
N,Ns→∞≈ σ2

1SC1H1H
H
1 SC

H

1 +
K

∑

k=2

σ2
kR(hk) + σ2

wI (B.7)

With SC1 = 1
Ns

Ns
∑

n=1
S1(n)C1(n) and Ns as the number of samples used to

estimate the covariance matrix.

Using a Toeplitz Displacement, the channel can be estimated by remov-
ing the contribution of Rw and RI from Ry as follows:

Rh = Ry (2 : aM, 2 : aM) − Ry (1 : aM − 1, 1 : aM − 1) (B.8)

= R
+
y − R

−
y (B.9)

=
(

SC1H1

)+ (

SC1H1

)+H

−
(

SC1H1

)− (

SC1H1

)−H

(B.10)

= SC
+
1 H1H

H
1 SC

+H

1 − SC
−
1 H1H

H
1 SC

−H

1 (B.11)

In (B.8) SC
−
1 = SC1(2 : M, 1 : M) and SC

+
1 = SC1(1 : M − 1, 1 : M).
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The matrix Rh should now be a function of the channel of user 1:

Rh ≈











h+
1 h+

1
H

0
h1h

H
1

. . .

0 h1h
H
1











−











h1h
H
1 0

h1h
H
1

. . .

0 h−
1 h−

1
H











Eigendecomposition of Rh gives:

Rh =
aM−1
∑

i=1

λiviv
H
i (B.12)

Finally the channel can be estimated by solving the following subspace fitting
problem:

ĥ1 = arg min
h,W

‖H − V W‖2
F (B.13)

With H =
[

(

SC1H1

)+
,
(

SC1H1

)−
]

and V = [v1, . . . ,va+1,vaM−a−1, . . . ,vaM−1]

containing all the eigenvectors of Rh.
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A Power Delay Profile-based

path searcher in C++

C.1 path searcher TOP h

#ifndef __Path_Searcher_TOP_h

#define __Path_Searcher_TOP_h

#include "itcomm.h"

//! Abstract base class for Path_Searcher_TOP classes.

class Path_Searcher_TOP {

public:

Path_Searcher_TOP() { };

//! Enable or disable messages.

virtual void set_verbose(bool in_verbose) = 0;

//! Returns message status.

virtual bool get_verbose() = 0;

//! Enable logging and set log file name.

virtual void set_status_filename(char *in_status_filename) = 0;

//! Returns logging status.

virtual bool get_save_status() = 0;

//! Reset the frame counter that is used by logging.

virtual void reset_frame_counter() = 0;

//! Set the oversample factor.

virtual void set_oversample_factor(int in_oversample_factor) = 0;

//! Returns the oversample factor.

virtual int get_oversample_factor() = 0;

//! Set the number of frames that the path searcher averages

//! to estimate a multipath profile.

virtual void set_no_averaged_frames(int in_auto_corr_hist_length) = 0;

//! Returns the number of frames that the path searcher averages

//! to estimate a multipath profile.

virtual int get_no_averaged_frames() = 0;

//! Set the length of the autocorrelation that is used.

virtual void set_auto_corr_length(int in_auto_corr_length) = 0;

//! Returns the length of the autocorrelation that is used.

virtual int get_auto_corr_length() = 0;

//! Set the length of the autocorrelation window.

virtual void set_auto_corr_window(int in_auto_corr_window) = 0;
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//! Returns the length of the autocorrelation window.

virtual int get_auto_corr_window() = 0;

//! Give the path searcher the conjugate of the primary scramble code

//! that is used to scramble the received signal.

virtual void set_conj_scrmbl_code(cvec &in_conj_scrmbl_code) = 0;

//! Returns the found delay profile.

virtual ivec &get_del_vec() = 0;

//! Returns the found power profile.

virtual vec &get_pow_vec() = 0;

//! Returns the found number of paths.

virtual int get_num_paths() = 0;

//! Perform path search operation.

virtual void operator()(const cvec &in_chips) = 0;

};

#endif
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C.2 downlink receiver h

#ifndef __downlink_receiver_h

#define __downlink_receiver_h

#include "itcomm.h"

#include "cell_searcher.h"

#include "channel_estimator.h"

#include "my_pulse_shape.h"

#include "path_searcher_TOP.h"

#include "path_searcher.h"

#include "pdp_path_searcher.h"

#include "wcdma_modulator.h"

//! Downlink receiver class.

class Downlink_Receiver {

public:

Downlink_Receiver(void);

~Downlink_Receiver(void);

//! Enable logging and set log filename.

void set_status_filename(char *in_status_filename);

//! Returns logging status.

bool get_save_status() { return save_status; };

//! Reset the frame counter that is used by logging.

void reset_frame_counter() { frame_counter = 1; };

//! Enable or disable messages.

void set_verbose(bool in_verbose);

//! Returns message status.

bool get_verbose() { return verbose; };

//! Set the oversample factor.

void set_oversample_factor(int in_oversample_factor);

//! Returns the oversample factor.

int get_oversample_factor(void) { return oversample_factor; };

//! Enable or disable pulse shaping.

void set_pulse_shape(bool in_pulse_shape) { pulse_shape = in_pulse_shape; };

//! Get pulse shaping status.

bool get_pulse_shape(void) { return pulse_shape; };

//! Set the length (number of taps) of the pulse shape filter.

void set_pulse_shape_filter_length(int in_pulse_shape_filter_length);

//! Returns the length (number of taps) of the pulse shape filter.

int get_pulse_shape_filter_length(void) { return pulse_shape_filter_length; };

//! Get cell search status.

bool get_search_cell() { return search_cell; };

//! Enable or disable cell searcher messages.

void set_cell_search_verbose(bool in_verbose) { cell_searcher.set_verbose(in_verbose); };

//! Returns cell searcher message status.

bool get_cell_search_verbose() { return cell_searcher.get_verbose(); };

//! Enable cell searcher logging and set cell searcher log file name.

void set_cell_search_status_filename(char *in_status_filename)

{ cell_searcher.set_status_filename(in_status_filename); };

//! Set the number of slots the cell searcher uses to identify

//! the primary scrambling code of the cell.

void set_num_cell_search_slots(int in_num_search_slots)

{ cell_searcher.set_num_search_slots(in_num_search_slots); };

//! Returns the number of slots the cell searcher uses to identify

//! the primary scrambling code of the cell.

int get_num_cell_search_slots() { return cell_searcher.get_num_search_slots(); };

//! Set the threshold for the number of votes a scrambling code should receive
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//! before it is identified as the primary scrambling code of the cell.

void set_cell_search_votes_treshold(int in_votes_treshold)

{ cell_searcher.set_votes_treshold(in_votes_treshold); };

//! Returns the threshold for the number of votes a scrambling code should receive

//! before it is identified as the primary scrambling code of the cell.

int get_cell_search_votes_treshold() { return cell_searcher.get_votes_treshold(); };

//! Set the primary scramble code and disable cell search.

void set_p_scrmbl_code(int in_scrmbl_code_group, int in_p_scrmbl_code_index)

{ cell_searcher.set_p_scrmbl_code(in_scrmbl_code_group, in_p_scrmbl_code_index);

search_cell = false; };

//! Returns the complex conjugate of the primary scramble code that the cell searcher found.

cvec &get_conj_p_scrmbl_code() { return cell_searcher.get_conj_p_scrmbl_code(); };

//! Returns the code group of the primary scramble code that the cell searcher found.

int get_scrmbl_code_group() { return cell_searcher.get_scrmbl_code_group(); };

//! Returns the index of the primary scramble code that the cell searcher found.

int get_p_scrmbl_code_index() { return cell_searcher.get_p_scrmbl_code_index(); };

//! Give the receiver the delay profile of the channel so no path search is required.

void set_del_vec(ivec in_delay_vec) { del_vec = in_delay_vec; search_paths = false; };

//! Returns the delay profile that is known to the receiver.

ivec &get_del_vec() { return del_vec; };

//! Get path search status.

bool get_search_paths() { return search_paths; };

//! Enable or disable path searcher messages.

void set_path_search_verbose(bool in_verbose) { path_searcher -> set_verbose(in_verbose); };

//! Returns path searcher message status.

bool get_path_search_verbose() { return path_searcher -> get_verbose(); };

//! Enable path searcher logging and set path searcher log file name.

void set_path_search_status_filename(char *in_status_filename)

{ path_searcher -> set_status_filename(in_status_filename); };

//! Set the number of frames that the path searcher averages to estimate a multipath profile.

void set_path_search_no_averaged_frames(int in_no_averaged_frames)

{ path_searcher -> set_no_averaged_frames(in_no_averaged_frames); };

//! Returns the number of frames that the path searcher averages to estimate a multipath profile.

int get_path_search_no_averaged_frames() { return path_searcher -> get_no_averaged_frames(); };

//! Set the maximum delay in samples that the path searcher should be able to resolve.

void set_path_search_max_delay(int in_auto_corr_length)

{ path_searcher -> set_auto_corr_length(in_auto_corr_length); };

//! Returns the maximum delay in samples that the path searcher is able to resolve.

int get_path_search_max_delay() { return path_searcher -> get_auto_corr_length(); };

//! Set the length of the autocorrelation window that the path searcher uses.

void set_path_search_auto_corr_window(int in_auto_corr_window)

{ path_searcher -> set_auto_corr_window(in_auto_corr_window); };

//! Returns the length of the autocorrelation window that the path searcher uses.

int get_path_search_auto_corr_window() { return path_searcher -> get_auto_corr_window(); };

//! Returns the delay profile that the path searcher found.

ivec &get_path_search_del_vec() { return path_searcher -> get_del_vec(); };

//! Returns the power profile that the path searcher found.

vec &get_path_search_pow_vec() { return path_searcher -> get_pow_vec(); };

//! Return the number of multipaths that the path searcher found.

int get_path_search_num_paths() { return path_searcher -> get_num_paths(); };
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//! Set the number of rake fingers of the receiver.

void set_num_rake_fingers(int in_num_rake_fingers);

//! Returns the number of rake fingers of the receiver.

int get_num_rake_fingers(void) { return num_rake_fingers; };

//! Enable or disable channel estimation.

void set_estimate_channel(bool in_estimate_channel)

{ estimate_channel = in_estimate_channel; };

//! Returns channel estimation enabled status.

bool get_estimate_channel() { return estimate_channel; };

//! Enable channel estimator logging and set channel estimator log file name.

void set_channel_estimator_status_filename(char *in_status_filename);

//! Set the length of the channel estimator filter.

void set_channel_estimator_filter_length(int filter_length);

//! Returns the length of the channel estimator filter.

int get_channel_estimator_filter_length();

//! Give the receiver the list of UMTS channels that are present in the received signal.

void set_ch_settings(int in_num_ch, Downlink_Ch_Setting in_ch_settings[]);

//! Perform receive operation.

void operator()(const cvec &received_chips, bvec received_data_bits[],

const double transmitter_power = 0.0, const cmat &channel_realization = "0");

private:

bool save_status;

char *status_filename, variable_name[256];

it_file status_file;

long frame_counter;

bool verbose, pulse_shape, search_cell, search_paths, estimate_channel;

int oversample_factor, pulse_shape_filter_length, num_rake_fingers,

num_allocated_rake_fingers, num_ch, pcpich,

channel_estimator_filter_length;

Downlink_Ch_Setting *ch_settings;

smat ch_codes;

ivec del_vec;

cvec oversampled_chips, downsampled_chips, conj_scrmbl_code,

descrambled_chips, symbols, channel_estimates, mrc_symbols;

bvec received_bits;

My_Root_Raised_Cosine<double_complex> pulse_shape_filter;

Cell_Searcher cell_searcher;

Path_Searcher_TOP *path_searcher;

Channel_Estimator *channel_estimators;

WCDMA_Spread_2d dpch_despreader;

WCDMA_QPSK_Modulator qpsk_demodulator;

WCDMA_QAM16_Modulator qam16_demodulator;

};

#endif // __downlink_receiver_h
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C.3 downlink receiver cpp

#include "downlink_receiver.h"

#include "downlink_scrambling_code_generator.h"

#include "my_vec_func.h"

#include "wcdma_constants.h"

Downlink_Receiver::Downlink_Receiver(void)

{

save_status = false;

status_filename = NULL;

reset_frame_counter();

verbose = false;

pulse_shape = true; search_cell = true; search_paths = true; estimate_channel = true;

channel_estimators = NULL;

oversample_factor = 4;

set_pulse_shape_filter_length(10);

set_num_rake_fingers(4);

set_channel_estimator_filter_length(16);

path_searcher = NULL;

if (search_paths) {

switch( ’PDP’ )

{

case ’JOR’: path_searcher = new Path_Searcher; break;

case ’PDP’: path_searcher = new PDP_path_searcher; break;

//case ’MLE’: path_searcher = new MLE_path_searcher; break;

//case ’SUB’: path_searcher = new SUB_path_searcher; break;

}

}

}

Downlink_Receiver::~Downlink_Receiver(void)

{

if (channel_estimators != NULL) {

delete [] channel_estimators;

}

if (path_searcher != NULL) {

delete path_searcher;

}

}

void Downlink_Receiver::set_status_filename(char *in_status_filename)

{

if (in_status_filename == NULL) {

save_status = false;

} else {

status_filename = in_status_filename;

save_status = true;

}

}

void Downlink_Receiver::set_verbose(bool in_verbose)

{

verbose = in_verbose;

set_cell_search_verbose(verbose);

set_path_search_verbose(verbose);

}

void Downlink_Receiver::set_oversample_factor(int in_oversample_factor)

{
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oversample_factor = in_oversample_factor;

pulse_shape_filter.set_pulse_shape(PULSE_SHAPE_FILTER_ROLLOFF,

pulse_shape_filter_length, oversample_factor);

path_searcher -> set_oversample_factor(oversample_factor);

}

void Downlink_Receiver::set_pulse_shape_filter_length(int in_pulse_shape_filter_length)

{

pulse_shape_filter_length = in_pulse_shape_filter_length;

pulse_shape_filter.set_pulse_shape(PULSE_SHAPE_FILTER_ROLLOFF,

pulse_shape_filter_length, oversample_factor);

}

void Downlink_Receiver::set_num_rake_fingers(int in_num_rake_fingers)

{

if (channel_estimators != NULL) {

delete [] channel_estimators;

num_rake_fingers = 0;

num_allocated_rake_fingers = 0;

channel_estimators = NULL;

}

channel_estimators = new Channel_Estimator[in_num_rake_fingers];

if (channel_estimators != NULL) {

num_rake_fingers = in_num_rake_fingers;

num_allocated_rake_fingers = 0;

for (int i = 0; i < num_rake_fingers; i++) {

channel_estimators[i].set_finger_number(i);

}

}

}

void Downlink_Receiver::set_channel_estimator_status_filename(char *in_status_filename)

{

for (int i = 0; i < num_rake_fingers; i++) {

channel_estimators[i].set_status_filename(in_status_filename);

}

}

void Downlink_Receiver::set_channel_estimator_filter_length(int filter_length)

{

channel_estimator_filter_length = filter_length;

for (int i = 0; i < num_rake_fingers; i++) {

channel_estimators[i].set_ma_filter_length(filter_length);

}

}

int Downlink_Receiver::get_channel_estimator_filter_length()

{

if (num_rake_fingers > 0) {

return channel_estimators[0].get_ma_filter_length();

} else {

return 0;

}

}

void Downlink_Receiver::set_ch_settings(int in_num_ch, Downlink_Ch_Setting in_ch_settings[])

{

num_ch = in_num_ch; ch_settings = in_ch_settings;

pcpich = -1;

for (int ch = 0; ch < num_ch; ch++) {

if (ch_settings[ch].ch_type == P_CPICH) {
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pcpich = ch;

}

}

};

void Downlink_Receiver::operator()(const cvec &received_chips, bvec received_data_bits[],

const double transmitter_power, const cmat &channel_realization)

{

int slot_format, sf, bits_per_slot, ch, finger, slot, data_bits_per_slot, received_bits_index;

//cvec scaled_symbols;

double p_cpich_power, channel_power;

oversampled_chips.set_length(received_chips.length());

downsampled_chips.set_length(received_chips.length() / oversample_factor);

downsampled_chips.zeros();

conj_scrmbl_code.set_length(CHIPS_PER_FRAME + channel_estimator_filter_length / 2 * P_CPICH_SF);

descrambled_chips.set_length(CHIPS_PER_FRAME + channel_estimator_filter_length / 2 * P_CPICH_SF);

if (pulse_shape) {

pulse_shape_filter.shape_samples(received_chips, oversampled_chips);

} else {

oversampled_chips = received_chips;

}

if (search_cell) {

//skip(oversampled_chips, oversample_factor, downsampled_chips);

downsample_average(oversampled_chips, oversample_factor, downsampled_chips);

}

if (save_status) {

status_file.open(status_filename, false);

sprintf(variable_name, "frame%li_downsampled_chips", frame_counter);

status_file << Name(variable_name) << downsampled_chips;

status_file.close();

}

if (search_cell) {

cell_searcher(downsampled_chips);

}

if (cell_searcher.cell_found) {

if (cell_searcher.cell_changed) {

path_searcher -> set_conj_scrmbl_code(cell_searcher.conj_p_scrmbl_code);

conj_scrmbl_code = concat(cell_searcher.conj_p_scrmbl_code,

cell_searcher.conj_p_scrmbl_code.mid(0, channel_estimator_filter_length /

2 * P_CPICH_SF));

cell_searcher.cell_changed = false;

}

if (search_paths) {

path_searcher -> operator()(oversampled_chips);

num_allocated_rake_fingers = min(path_searcher -> get_num_paths(), num_rake_fingers);

} else {

num_allocated_rake_fingers = min(del_vec.length(), num_rake_fingers);

}

for (ch = 0; ch < num_ch; ch++) {

slot_format = ch_settings[ch].slot_format;

if (ch_settings[ch].ch_type == DPCH) {

sf = DPCH_Formats[slot_format].sf;

bits_per_slot = DPCH_Formats[slot_format].bits_per_slot;

} else if (ch_settings[ch].ch_type == HS_PDSCH) {

sf = HS_PDSCH_Formats[slot_format].sf;

bits_per_slot = HS_PDSCH_Formats[slot_format].bits_per_slot;

}

if ((ch_settings[ch].ch_type == DPCH) || (ch_settings[ch].ch_type == HS_PDSCH)) {
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dpch_despreader.set_code(to_vec(wcdma_spreading_codes(sf).get_row(

ch_settings[ch].ch_code)),

to_vec(wcdma_spreading_codes(sf).get_row(ch_settings[ch].ch_code)));

symbols.set_length(CHIPS_PER_FRAME / sf);

channel_estimates.set_length(CHIPS_PER_FRAME / sf);

//scaled_symbols.set_length(CHIPS_PER_FRAME / sf);

mrc_symbols.set_length(CHIPS_PER_FRAME / sf);

mrc_symbols.zeros();

p_cpich_power = 0.0;

channel_power = 0.0;

received_bits.set_length(SLOTS_PER_FRAME * bits_per_slot);

for (finger = 0; finger < num_allocated_rake_fingers; finger++) {

if (search_paths) {

downsample_average_mid(oversampled_chips, path_searcher ->

get_del_vec()[finger], -1, oversample_factor, downsampled_chips);

} else {

if (pulse_shape) {

downsample_average_mid(oversampled_chips,

del_vec(finger) + pulse_shape_filter_length * oversample_factor, -1,

oversample_factor, downsampled_chips);

} else {

downsample_average_mid(oversampled_chips,

del_vec(finger) + pulse_shape_filter_length * oversample_factor, -1,

oversample_factor, downsampled_chips);

}

}

mid_elem_mult(downsampled_chips, 0,

CHIPS_PER_FRAME + channel_estimator_filter_length / 2 * P_CPICH_SF,

conj_scrmbl_code, descrambled_chips);

if (estimate_channel) {

channel_estimators[finger].set_target_sf(sf);

channel_estimators[finger](descrambled_chips);

}

dpch_despreader.despread_mid(descrambled_chips, 0, CHIPS_PER_FRAME, symbols, 0);

if (save_status) {

status_file.open(status_filename, false);

sprintf(variable_name, "frame%li_ch_%i_finger_%i_ds_chips",

frame_counter, ch, finger);

status_file << Name(variable_name) << downsampled_chips;

sprintf(variable_name, "frame%li_ch_%i_finger_%i_chips",

frame_counter, ch, finger);

status_file << Name(variable_name) << descrambled_chips;

sprintf(variable_name, "frame%li_ch_%i_finger_%i_symbols",

frame_counter, ch, finger);

status_file << Name(variable_name) << symbols;

status_file.close();

}

if (estimate_channel) {

elem_mult_add(symbols, channel_estimators[finger].channel_estimates,

mrc_symbols);

p_cpich_power +=

mean(sqr(abs(channel_estimators[finger].channel_estimates)));

} else {

downsample_average_mid(channel_realization.get_row(finger), 0,

symbols.length() * oversample_factor * sf, oversample_factor * sf,

channel_estimates);

// TODO: Check if this works correctly.

elem_mult_add(symbols, conj(channel_estimates), mrc_symbols);



94 A Power Delay Profile-based path searcher in C++ C

channel_power += mean(sqr(abs(channel_estimates)));

}

if (save_status) {

status_file.open(status_filename, false);

sprintf(variable_name, "frame%li_ch_%i_finger_%i_channel_estimates",

frame_counter, ch, finger);

status_file << Name(variable_name) << channel_estimates;

//sprintf(variable_name, "frame%li_ch_%i_finger_%i_scaled_symbols",

frame_counter, ch, finger);

//status_file << Name(variable_name) << scaled_symbols;

status_file.close();

}

}

if (estimate_channel) {

mrc_symbols /= inv_dB(ch_settings[ch].level_setting -

ch_settings[pcpich].level_setting) *

((double)sf) / ((double)P_CPICH_SF) * p_cpich_power;

} else {

// /= 2 * (double)sf because spreading and despreading multiplies with the SF

mrc_symbols /= inv_dB(ch_settings[ch].level_setting) *

transmitter_power * 2.0 * (double)sf * channel_power;

}

if (save_status) {

status_file.open(status_filename, false);

sprintf(variable_name, "frame%li_ch_%i_mrc_symbols", frame_counter, ch);

status_file << Name(variable_name) << mrc_symbols;

status_file.close();

}

}

if (ch_settings[ch].ch_type == DPCH) {

qpsk_demodulator.demodulate_bits(mrc_symbols, received_bits);

data_bits_per_slot = DPCH_Formats[slot_format].n_data1 +

DPCH_Formats[slot_format].n_data2;

for (slot = 0; slot < SLOTS_PER_FRAME; slot++) {

received_bits_index = slot * DPCH_Formats[slot_format].bits_per_slot;

replace_mid_mid(received_bits, received_bits_index,

DPCH_Formats[slot_format].n_data1,

received_data_bits[ch], slot * data_bits_per_slot);

received_bits_index +=

DPCH_Formats[slot_format].n_data1 + DPCH_Formats[slot_format].n_tpc +

DPCH_Formats[slot_format].n_tfci;

replace_mid_mid(received_bits, received_bits_index,

DPCH_Formats[slot_format].n_data2,

received_data_bits[ch], slot * data_bits_per_slot +

DPCH_Formats[slot_format].n_data1);

}

} else if (ch_settings[ch].ch_type == HS_PDSCH) {

if (slot_format == HS_PDSCH_SLOT_FORMAT_0) {

qpsk_demodulator.demodulate_bits(mrc_symbols, received_data_bits[ch]);

} else if (slot_format == HS_PDSCH_SLOT_FORMAT_1) {

qam16_demodulator.demodulate_bits(mrc_symbols, received_data_bits[ch]);

}

}

}

}

}
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C.4 pdp path searcher h

#ifndef __pdp_path_searcher_h

#define __pdp_path_searcher_h

#include "itcomm.h"

#include "path_searcher_TOP.h"

// Path searcher class

class PDP_path_searcher : public Path_Searcher_TOP {

public:

PDP_path_searcher(void);

//! Enable or disable messages.

void set_verbose(bool in_verbose) { verbose = in_verbose; };

//! Returns message status.

bool get_verbose() { return verbose; };

//! Enable logging and set log file name.

void set_status_filename(char *in_status_filename);

//! Returns logging status.

bool get_save_status() { return save_status; };

//! Reset the frame counter that is used by logging.

void reset_frame_counter() { frame_counter = 1; };

//! Set the oversample factor.

void set_oversample_factor(int in_oversample_factor)

{oversample_factor = in_oversample_factor; };

//! Returns the oversample factor.

int get_oversample_factor() { return oversample_factor; };

//! Set the number of frames that the path searcher averages

//! to estimate a multipath profile.

void set_no_averaged_frames(int in_auto_corr_hist_length);

//! Returns the number of frames that the path searcher averages

//! to estimate a multipath profile.

int get_no_averaged_frames() { return averaging_length; };

//! Set the length of the autocorrelation that is used.

void set_auto_corr_length(int in_auto_corr_length);

//! Returns the length of the autocorrelation that is used.

int get_auto_corr_length() { return autocorr_length; };

//! Set the length of the autocorrelation window.

void set_auto_corr_window(int in_auto_corr_window)

{ autocorr_window_size = in_auto_corr_window; };

//! Returns the length of the autocorrelation window.

int get_auto_corr_window() { return autocorr_window_size; };

//! Give the path searcher the conjugate of the primary scramble code

//! that is used to scramble the received signal.

void set_conj_scrmbl_code(cvec &in_conj_scrmbl_code);

//! Returns the found delay profile.

ivec &get_del_vec() { return path_delay; };

//! Returns the found power profile.

vec &get_pow_vec() { return path_gain; };

//! Returns the found number of paths.

int get_num_paths() { return NOF_paths; };

//! Perform path search operation.

void operator()(const cvec &in_chips);

private:

int autocorr_length, autocorr_window_size, averaging_length, autocorr_new, autocorr_old;

int NOF_paths, frame_counter;

cvec received_signal, conjugate_signal;
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vec pdp;

cmat autocorr_signal;

ivec path_delay;

vec path_gain;

ivec peak_delay;

vec peak_gain;

int oversample_factor;

bool verbose, save_status;

char *status_filename, variable_name[256];

it_file status_file;

};

#endif
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C.5 pdp path searcher cpp

#include "pdp_path_searcher.h"

/******************************************************************/

/*** ***/

/*** Initialize path searcher ***/

/*** ***/

/******************************************************************/

PDP_path_searcher::PDP_path_searcher(void)

{

// Initialize

set_oversample_factor(4);

save_status = false;

status_filename = NULL;

frame_counter = 1;

autocorr_window_size = 2560;

autocorr_length = 340;

// Initialize PDP calculator

averaging_length = 8;

pdp.set_length(autocorr_length);

pdp.zeros();

// Initialize correlator

autocorr_new = 0;

autocorr_old = 1;

autocorr_signal.set_size(averaging_length + 1, autocorr_length);

autocorr_signal.zeros();

// Initialize peak selector

peak_gain.set_length(autocorr_length);

peak_delay.set_length(autocorr_length);

// Initialize path selector

path_gain.set_length(autocorr_length);

path_delay.set_length(autocorr_length);

NOF_paths = 0;

}

void PDP_path_searcher::set_conj_scrmbl_code(cvec &in_conj_scrmbl_code)

{

conjugate_signal = repeat(in_conj_scrmbl_code.left(

autocorr_window_size / oversample_factor), oversample_factor);

}

void PDP_path_searcher::set_status_filename(char *in_status_filename)

{

if (in_status_filename == NULL) {

save_status = false;

}

else {

status_filename = in_status_filename;

save_status = true;

}

}

void PDP_path_searcher::set_no_averaged_frames(int in_auto_corr_hist_length)

{/*

averaging_length = in_auto_corr_hist_length;

autocorr_signal.set_size(averaging_length + 1, autocorr_length);
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autocorr_signal.zeros();

*/}

void PDP_path_searcher::set_auto_corr_length(int in_auto_corr_length)

{/*

autocorr_length = in_auto_corr_length;

autocorr_signal.set_size(averaging_length + 1, autocorr_length);

autocorr_signal.zeros();

pdp.set_size(autocorr_length);

pdp.zeros();

peak_delay.set_length(autocorr_length);

peak_gain.set_length(autocorr_length);

*/}

void PDP_path_searcher::operator()(const cvec &received_signal)

{

/******************************************************************/

/*** ***/

/*** Correlate the received signal ***/

/*** ***/

/******************************************************************/

int i, j, k, l, m, NOF_peaks;

cvec zero_padded_signal, autocorr_signal_temp;

double threshold;

zero_padded_signal.set_length(autocorr_window_size + autocorr_length);

zero_padded_signal.zeros();

autocorr_signal_temp.set_length(autocorr_window_size);

autocorr_signal_temp.zeros();

peak_gain.zeros();

peak_delay.zeros();

path_gain.zeros();

path_delay.zeros();

for (k = 0; k < autocorr_window_size; k++) {

zero_padded_signal(k) = received_signal(k);

}

for (j = 0; j < autocorr_length; j++) {

for (i = 0; i < autocorr_window_size; i++) {

autocorr_signal_temp(i) = zero_padded_signal(i+j) * conjugate_signal(i);

}

autocorr_signal(autocorr_new, j) = 1.0 / autocorr_window_size * sum(autocorr_signal_temp);

}

/******************************************************************/

/*** ***/

/*** Calculate the PDP ***/

/*** ***/

/******************************************************************/

for (m = 0; m < autocorr_length; m++) {

pdp(m) -= (abs(autocorr_signal(autocorr_old,m))) *

(abs(autocorr_signal(autocorr_old,m))) / averaging_length;

pdp(m) += (abs(autocorr_signal(autocorr_new,m))) *

(abs(autocorr_signal(autocorr_new,m))) / averaging_length;

}
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autocorr_new = ((autocorr_new + 1) % (averaging_length + 1));

autocorr_old = ((autocorr_old + 1) % (averaging_length + 1));

/******************************************************************/

/*** ***/

/*** Set a threshold for the PDP ***/

/*** ***/

/******************************************************************/

threshold = 1.0 / autocorr_length * sum(pdp) * (2.0 + 4.0 / sqrt(averaging_length));

/******************************************************************/

/*** ***/

/*** Search the local peaks in the PDP ***/

/*** ***/

/******************************************************************/

l = 0;

if (pdp(0) > pdp(1)) {

peak_gain(0) = pdp(0);

peak_delay(0) = 0;

l = 1;

}

for (k = 1; k < autocorr_length - 1; k++) {

if (pdp(k) > pdp(k-1)) {

if (pdp(k) > pdp(k+1)) {

peak_gain(l) = pdp(k);

peak_delay(l) = k;

l++;

}

}

}

NOF_peaks = l;

/******************************************************************/

/*** ***/

/*** Select paths from the vector with the local peaks ***/

/*** ***/

/******************************************************************/

j = 0;

for (i = 0; i < NOF_peaks; i++) {

if (peak_gain(i) > threshold) {

path_gain(j) = peak_gain(i);

path_delay(j) = peak_delay(i);

j++;

}

}

NOF_paths = j;

/******************************************************************/

/*** ***/

/*** Store signal values from current frame in status file ***/

/*** ***/

/******************************************************************/

if (save_status) {
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status_file.open(status_filename, false);

//sprintf(variable_name, "frame%li_received_signal", frame_counter);

//status_file << Name(variable_name) << (received_signal);

//sprintf(variable_name, "frame%li_oversampled_scrmbl_code", frame_counter);

//status_file << Name(variable_name) << (conj(conjugate_signal));

sprintf(variable_name, "frame%li_avg_auto_corr", frame_counter);

status_file << Name(variable_name) << pdp;

sprintf(variable_name, "frame%li_peak_del_vec", frame_counter);

status_file << Name(variable_name) << peak_delay;

sprintf(variable_name, "frame%li_peak_pow_vec", frame_counter);

status_file << Name(variable_name) << (peak_gain);

sprintf(variable_name, "frame%li_num_peaks", frame_counter);

status_file << Name(variable_name) << NOF_peaks;

sprintf(variable_name, "frame%li_threshold", frame_counter);

status_file << Name(variable_name) << threshold;

sprintf(variable_name, "frame%li_detected_del_vec", frame_counter);

status_file << Name(variable_name) << path_delay;

sprintf(variable_name, "frame%li_detected_pow_vec", frame_counter);

status_file << Name(variable_name) << (path_gain);

sprintf(variable_name, "frame%li_num_paths", frame_counter);

status_file << Name(variable_name) << NOF_paths;

status_file.close();

}

frame_counter++;

}
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A MLE-EM path searcher in

C++

D.1 mle path searcher h

#ifndef __mle_path_searcher_h

#define __mle_path_searcher_h

#include "itcomm.h"

#include "path_searcher_TOP.h"

// Path searcher class

class MLE_path_searcher : public Path_Searcher_TOP {

public:

MLE_path_searcher(void);

//! Enable or disable messages.

void set_verbose(bool in_verbose) { verbose = in_verbose; };

//! Returns message status.

bool get_verbose() { return verbose; };

//! Enable logging and set log file name.

void set_status_filename(char *in_status_filename);

//! Returns logging status.

bool get_save_status() { return save_status; };

//! Reset the frame counter that is used by logging.

void reset_frame_counter() { frame_counter = 1; };

//! Set the oversample factor.

void set_oversample_factor(int in_oversample_factor) {oversample_factor = in_oversample_factor; };

//! Returns the oversample factor.

int get_oversample_factor() { return oversample_factor; };

//! Set the number of frames that the path searcher averages to estimate a multipath profile.

void set_no_averaged_frames(int in_auto_corr_hist_length);

//! Returns the number of frames that the path searcher averages to estimate a multipath profile.

int get_no_averaged_frames() { return 0; };

//! Set the length of the autocorrelation that is used.

void set_auto_corr_length(int in_auto_corr_length);

//! Returns the length of the autocorrelation that is used.

int get_auto_corr_length() { return corr_length; };

//! Set the length of the autocorrelation window.

void set_auto_corr_window(int in_auto_corr_window) { corr_window = in_auto_corr_window; };

//! Returns the length of the autocorrelation window.
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int get_auto_corr_window() { return corr_window; };

//! Give the path searcher the conjugate of the primary scramble code

//! that is used to scramble the received signal.

void set_conj_scrmbl_code(cvec &in_conj_scrmbl_code);

//! Returns the found delay profile.

ivec &get_del_vec() { return path_delays; };

//! Returns the found power profile.

vec &get_pow_vec() { return abs_path_gains; };

//! Returns the found number of paths.

int get_num_paths() { return NOF_paths; };

//! Perform path search operation.

void operator()(const cvec &in_chips);

private:

// Algorithm parameters

bool test, verbose, save_status;

char *status_filename, variable_name[256];

it_file status_file;

int frame_counter;

int corr_window;

int corr_length;

int NOF_paths; // L

vec EM_params; // beta

int mu_max; // mu_ML

// Variables

int oversample_factor;

int pilot_duration; // T

float pilot_power; // P

vec abs_path_gains; // abs_alpha

cvec path_gains; // alpha

ivec path_delays; // tau

// Signals

cvec conjugated_scrambling_code; // u*

cvec scrambling_code; // u

cmat shifted_scrambling_code; // s

cmat shifted_conj_scrmbl_code; //

cvec received_signal; // r

cvec noise_estimate; // n

cmat signal_estimate; // x

cmat correlated_signal; // z

};

#endif
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#include "mle_path_searcher.h"

/******************************************************************/

/*** ***/

/*** Initialize path searcher ***/

/*** ***/

/******************************************************************/

MLE_path_searcher::MLE_path_searcher(void)

{

// Algorithm parameters

save_status = false;

status_filename = NULL;

frame_counter = 1;

corr_window = 2560;

corr_length = 340;

NOF_paths = 1;

EM_params.set_length(NOF_paths);

EM_params.ones();

EM_params = EM_params/NOF_paths;

mu_max = 40;

// Variables

set_oversample_factor(4);

pilot_duration = 1;

pilot_power = 1;

abs_path_gains.set_length(NOF_paths);

abs_path_gains.zeros();

path_gains.set_length(NOF_paths);

path_gains.zeros();

path_delays.set_length(NOF_paths);

path_delays.zeros();

// Signals

scrambling_code.set_length(corr_window);

scrambling_code.zeros();

shifted_scrambling_code.set_size(NOF_paths,corr_window);

shifted_scrambling_code.zeros();

shifted_conj_scrmbl_code.set_size(NOF_paths,corr_window);

shifted_conj_scrmbl_code.zeros();

noise_estimate.set_size(corr_window);

noise_estimate.zeros();

signal_estimate.set_size(NOF_paths,corr_window);

signal_estimate.zeros();

correlated_signal.set_size(NOF_paths,corr_length);

correlated_signal.zeros();

}

void MLE_path_searcher::set_conj_scrmbl_code(cvec &in_conj_scrmbl_code)

{

conjugated_scrambling_code =

repeat(in_conj_scrmbl_code.left(corr_window / oversample_factor), oversample_factor);

scrambling_code = conj(conjugated_scrambling_code);

}

void MLE_path_searcher::set_status_filename(char *in_status_filename)

{
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if (in_status_filename == NULL) {

save_status = false;

} else {

status_filename = in_status_filename;

save_status = true;

}

}

void MLE_path_searcher::set_no_averaged_frames(int in_auto_corr_hist_length){}

void MLE_path_searcher::set_auto_corr_length(int in_auto_corr_length){}

void MLE_path_searcher::operator()(const cvec &received_signal)

{

int mu;

cvec new_path_gains;

new_path_gains.set_length(NOF_paths);

new_path_gains.zeros();

ivec new_path_delays;

new_path_delays.set_length(NOF_paths);

new_path_delays.zeros();

/******************************************************************/

/*** ***/

/*** Start iteration mu of EM algorithm ***/

/*** ***/

/******************************************************************/

for(mu = 0; mu < mu_max; mu++){

if(mu==0){

cout << "Initial path gains = " << abs(path_gains) << endl;

cout << "Initial path delays = " << path_delays << endl;

}

/******************************************************************/

/*** ***/

/*** Form shifted scrambling code matrix ***/

/*** ***/

/******************************************************************/

int j;

for (i = 0; i < NOF_paths; i++){

for (j = 0; j < corr_window; j++){

shifted_scrambling_code(i,j) =

path_gains(i) * scrambling_code(mod(j - path_delays(i),corr_window));

}

}

/******************************************************************/

/*** ***/

/*** Determine noise estimate ***/

/*** ***/

/******************************************************************/

cvec temp_sum;

temp_sum.set_length(corr_window);

temp_sum.zeros();

for (j = 0; j < corr_window; j++){

for (i = 0; i < NOF_paths; i++){

temp_sum(j) += shifted_scrambling_code(i,j);
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}

noise_estimate(j) = received_signal(j) - temp_sum(j);

}

/******************************************************************/

/*** ***/

/*** Determine signal estimates ***/

/*** ***/

/******************************************************************/

for (i = 0; i < NOF_paths; i++){

for (j = 0; j < corr_window; j++){

signal_estimate(i,j) = shifted_scrambling_code(i,j) + EM_params(i) * noise_estimate(j);

}

}

/******************************************************************/

/*** ***/

/*** Correlate the signal estimates ***/

/*** ***/

/******************************************************************/

cvec temp_corr_signal;

temp_corr_signal.set_length(corr_window);

temp_corr_signal.zeros();

int k;

for (k = 0; k < NOF_paths; k++) {

for (i = 0; i < corr_length; i++) {

for (j = 0; j < corr_window; j++) {

temp_corr_signal(j) = signal_estimate(k,j) * conj(scrambling_code(mod(j-i,corr_window)));

}

correlated_signal(k,i) = 1.0 / corr_window * sum(temp_corr_signal);

}

}

/******************************************************************/

/*** ***/

/*** Calculate path parameters ***/

/*** ***/

/******************************************************************/

for (i = 0; i < corr_length; i++) {

for (k = 0; k < NOF_paths; k++) {

if (abs(correlated_signal(k,i)) > abs(new_path_gains(k))){

new_path_gains(k) = correlated_signal(k,i);

new_path_delays(k) = i;

for (int q=0; q<NOF_paths-1; q++){

correlated_signal(mod(k+q+1,NOF_paths),i) = 0;

}

}

}

}

new_path_gains = new_path_gains / (pilot_duration * pilot_power);

/******************************************************************/

/*** ***/

/*** Determine convergence rate ***/

/*** ***/

/******************************************************************/
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cvec diff_path_gains;

diff_path_gains.set_length(NOF_paths);

diff_path_gains.zeros();

ivec diff_path_delays;

diff_path_delays.set_length(NOF_paths);

diff_path_delays.zeros();

for (i = 0; i < NOF_paths; i++) {

diff_path_gains(i) = new_path_gains(i) - path_gains(i);

diff_path_delays(i) = new_path_delays(i) - path_delays(i);

}

/******************************************************************/

/*** ***/

/*** Start next iteration ***/

/*** ***/

/******************************************************************/

double metric;

metric = 0;

for (i = 0; i < NOF_paths; i++) {

metric += (abs(diff_path_gains(i))/abs(path_gains(i)));

}

if(metric < 0.001){

cout << "converged in " << mu+1 << " iteration(s)" << endl;

mu = mu_max;

}

else{

// Theta(mu) = Theta(mu + 1)

path_gains = new_path_gains;

path_delays = new_path_delays;

if(mu == mu_max-1) {cout << "maximum of " << mu_max << " iterations reached" << endl;}

}

}

cout << "Final channel parameter estimates: " << endl;

cout << "path_delays = " << path_delays << endl;

cout << "path_gains = " << abs(path_gains) << endl;

/******************************************************************/

/*** ***/

/*** Store signal values from current frame in status file ***/

/*** ***/

/******************************************************************/

if (save_status) {

status_file.open(status_filename, false);

sprintf(variable_name, "frame%li_received_signal", frame_counter);

status_file << Name(variable_name) << received_signal;

sprintf(variable_name, "frame%li_oversampled_scrmbl_code", frame_counter);

status_file << Name(variable_name) << scrambling_code;

sprintf(variable_name, "frame%li_shifted_scrambling_code", frame_counter);

status_file << Name(variable_name) << shifted_scrambling_code;
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sprintf(variable_name, "frame%li_noise_estimate", frame_counter);

status_file << Name(variable_name) << noise_estimate;

sprintf(variable_name, "frame%li_signal_estimate", frame_counter);

status_file << Name(variable_name) << signal_estimate;

sprintf(variable_name, "frame%li_correlated_signal", frame_counter);

status_file << Name(variable_name) << correlated_signal;

sprintf(variable_name, "frame%li_detected_del_vec", frame_counter);

status_file << Name(variable_name) << path_delays;

sprintf(variable_name, "frame%li_detected_pow_vec", frame_counter);

status_file << Name(variable_name) << (path_gains);

sprintf(variable_name, "frame%li_num_paths", frame_counter);

status_file << Name(variable_name) << NOF_paths;

status_file.close();

}

frame_counter++;

}
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