
A Reconfigurable Architecture of
Software-Defined-Radio for
Wireless Local Area Networks

M.Sc. Thesis

Ajay Kapoor

University of Twente
Department of Electrical Engineering,
Mathematics & Computer Science (EEMCS)
Signals & Systems Group (SAS)
P.O. Box 217
7500 AE Enschede
The Netherlands

Report Number: SAS04-048
Report Date: March 1, 2005
Period of Work: 1/5/2004 – 7/3/2005
Thesis Committee: Prof. Dr. ir. C.H. Slump

Dr. ir. S.H. Gerez
ir. F.W. Hoeksema
Dr. ir. R. Schiphorst

Abstract

The Software-Defined-Radio (SDR) project at the University of Twente aims at
combining two different WLAN standards, Bluetooth and HiperLAN2, on one com-
mon flexible hardware platform. A functional architecture SDR baseband receiver
has already been derived which is capable of receiving both OFDM and phase-
modulated signals [39]. The scope of this MSc. project is to design and implement
an ASIC-like reconfigurable hardware for a part of this architecture.

This project involves the estimation of computational complexities of various
subblocks of the two receivers. These results are used for the identification of sub-
blocks with similar computational complexities in the two receivers. The FIR and
FFT blocks, for Bluetooth and HiperLAN2 respectively, are identified as the most
computationally intensive parts and have been further analyzed for computational
requirements and hardware implementation in the two receivers. A coarse-grained,
dynamically reconfigurable, tile-based hardware architecture is proposed to imple-
ment the algorithms. There are nine autonomous tiles (data processing elements)
in the system. The autonomous nature of a tile allows easy scalability and testa-
bility of the system. The architecture implementation and algorithms mapping is
done using SystemC via Synopsys CoCentric System Studio. The design is done
using 16-bit fixed-point data format and is compared with the floating point software
implementation. Synthesis results show that design consumes 0.59 mm2 area and
can run at 188 MHz maximum frequency in 0.18µ UMC CMOS process.

The proposed implementation is compared with the implementation on the Mon-
tium tile processor [26], designed under the Chameleon project [1], in terms of speed
and area. This comparison shows an area reduction of about 15 times in our de-
sign compared to the Montium TP based implementation. This reduction comes at
the expense of limited flexibility. The FFT implementation in this thesis is also
compared with various other FFT implementations. This comparison shows a per-
formance/flexibility trade-off between these implementations.

An area reduction of about 25-30 percent can be made in the combined imple-

mentation compared to the individual implementations of the two receivers. The

datapath of the Bluetooth receiver can be used for the OFDM system without much

overhead. The memory and the memory-bandwidth of the OFDM system can be

used in the Bluetooth receiver without any overhead. These results can be used to

estimate the overhead required to accommodate the Bluetooth receiver in the Hiper-

LAN2 system.

i

Acknowledgements

The work leading to this thesis was done during my stay at the Signals
and Systems (SAS) research group at the University of Twente (UT). The
effort that has gone into this thesis has been thoroughly enjoyable due to
the healthy interactions I had with my supervisors and other colleagues.

To each of my supervisors, Ir. Fokke Hoeksema, Dr. ir. Roel Schiphorst
and Dr. Ir. Sabih Gerez, I owe a great debt of gratitude for their patience
and inspiration. So, first of all I want to thank them for their support and
encouragement during the work. At the same time, I want to thank the
head of the SAS group Prof. Dr. ir. C.H. Slump for allowing me to join his
research group in the first place and let me work flexibly.

I would also like to give special thanks to Dr. ir. Paul Heysters of
Computer Architecture Design and Test for Embedded Systems (CADTES)
group for providing me lot of information about the reconfigurable hard-
ware design concept and ir. Gerard Rauwerda for the discussions about the
mapping of algorithms on the Montium TP.

I also want to take the opportunity to thank the staff members of SAS
group for the pleasant research atmosphere. Of these especially, to ir. Johan
Wesselink for practical tips about tools and methodologies that I followed,
ing. Geert Jan Laanstra for system support and Anneke van Essen-Rekers
for support on administrative issues.

Finally, I would like to thank my friends Sisir and Praveen for their
support during my study time and to Amol and Raajaa for reminding me
about the coffee breaks.

This was great fun to do. Thank you everyone.

iii

Contents

Abstract i

Acknowledgements iii

Table of Contents viii

List of Figures x

List of tables xi

1 Introduction 1

1.1 Background . 1

1.2 Assignment . 3

1.3 Organization . 4

2 WLAN standards- HiperLAN2 and Bluetooth 7

2.1 HiperLAN2 . 8

2.1.1 Transmitter . 8

2.1.2 Receiver . 9

2.2 Bluetooth . 10

2.2.1 Transmitter . 11

2.2.2 Receiver . 11

2.3 Summary . 12

3 Baseband Demodulation 13

3.1 HiperLAN2 . 14

3.1.1 OFDM . 14

3.1.2 Channel equalization 15

3.1.3 Phase offset correction 15

3.1.4 QAM Demapping . 15

3.2 Bluetooth . 16

3.2.1 Mixing . 17

v

vi Contents

3.2.2 Sample rate reduction 17

3.2.3 Low pass filtering . 17

3.2.4 Frequency offset correction 18

3.2.5 MAP receiver . 19

3.3 Summary . 19

4 Algorithms analysis 21

4.1 Dataflow for Channel-selection/FFT 21

4.2 Signal flow graph for FIR/FFT 22

4.2.1 Halfband filter . 22

4.2.2 FIR (Matched filter) 24

4.2.3 FFT . 25

4.3 Summary . 27

5 Reconfigurable Architectures - A survey 29

5.1 A quick glance so far . 29

5.2 Design spectrum . 29

5.3 Reconfigurable Architectures 31

5.3.1 Domain-Specificity . 32

5.3.2 Reconfigurability . 32

5.3.3 Granularity . 33

5.3.4 Scalability . 33

5.4 Reconfigurable Architecture Examples 34

5.4.1 Pleiades Architecture 34

5.4.2 Montium:Coarse-Grained Reconfigurable processor . . 35

5.4.3 PACT’s extreme processor platform (XPP) 37

5.4.4 Adaptive System-on-a-Chip (aSoC) 38

5.4.5 Quicksilver’s adaptive computing machine (ACM) . . 39

5.4.6 Reconfigurable Communications Processor (RCP) . . 40

5.4.7 Universal Communications Coprocessor (UCC) 41

5.4.8 Dynamically Reconfigurable Architecture (DReAM) . 42

5.4.9 RAW Processor . 43

5.4.10 A Medium-grain Reconfigurable Cell Array 44

5.5 Architectural considerations for DSP design 45

5.6 Comparison of different approaches 46

5.7 Conclusion . 47

6 Architecture Design 49

6.1 Design approach . 49

6.2 Granularity . 51

6.3 Scalability . 51

6.4 Reconfigurability . 52

6.5 Datapath . 53

6.5.1 The communication interface 53

CONTENTS vii

6.5.2 The processing part 54

6.5.3 The storage part . 55

6.5.4 The configuration part 55

6.6 Control section . 55

6.7 Configuration unit . 55

6.8 Communication network . 56

6.9 Conclusion and Summary . 57

7 Algorithm Mapping 59

7.1 Mapping of a half-band filter 59

7.2 Mapping of matched FIR filter 61

7.3 Complete dataflow mapping for Bluetooth 63

7.4 Mapping of FFT . 63

7.5 Complete dataflow mapping for HiperLAN2 66

7.6 Discussion . 66

8 Synthesis and Evaluation 69

8.1 Performance requirements . 69

8.1.1 Speed requirements for the OFDM datapath 69

8.1.2 Speed requirements for the Bluetooth datapath 70

8.1.3 Overall speed requirements 70

8.2 Synthesis results . 70

8.2.1 Synthesis results for the SDR receiver 71

8.2.2 Synthesis results for the Bluetooth receiver 71

8.2.3 Synthesis results for the HiperLAN2 receiver 72

8.3 Performance of Montium TP 72

8.3.1 Montium mapping : OFDM 73

8.3.2 Montium mapping : Bluetooth 73

8.4 Comparison of proposed design with Montium TP 74

8.5 FFT Implementation on other architectures 74

8.5.1 FASRA . 74

8.5.2 Avispa . 76

8.5.3 ARM920T . 76

8.5.4 Comparison of different implementations 76

9 Summary and Conclusions 79

9.1 Design flow . 79

9.2 Architecture design . 80

9.3 Conclusions . 81

9.4 Future work . 83

A Appendix A - Architecture View 85

viii Contents

B Appendix B - Floating point Vs Fixed point system 89
B.1 OFDM . 89
B.2 FIR . 90

C Appendix C - An Introduction to SystemC 93
C.1 SystemC . 93

C.1.1 Modules . 94
C.1.2 Processes . 95
C.1.3 Channels . 95
C.1.4 Ports . 95
C.1.5 Signals . 96
C.1.6 SystemC Data Types 96
C.1.7 Clocks . 96

C.2 Synopsys CoCentric System Studio 97
C.2.1 Architectural Design support 97
C.2.2 Algorithmic Design support 97
C.2.3 System-Level Simulation support 98

C.3 SystemC to synthesizable description 98

Bibliography 102

List of Figures

1.1 SDR architecture . 1

2.1 Transmitter block diagram for HiperLAN2 9

2.2 Receiver block diagram for HiperLAN2 10

2.3 Block diagram for Bluetooth Transmitter 11

2.4 Block diagram for Bluetooth Receiver 11

3.1 Functional architecture of the Bluetooth enabled HiperLAN2
receiver . 14

3.2 Inverse OFDM in HiperLAN2 receiver 15

3.3 Channel equalization in HiperLAN2 receiver 15

3.4 Phase offset correction in HiperLAN2 receiver 15

3.5 MAP receiver . 17

3.6 Mixing . 17

3.7 Sample rate reduction . 18

3.8 Low pass filtering to select the desired channel in Bluetooth . 18

3.9 Frequency offset correction in Bluetooth 18

3.10 Viterbi decoding in Bluetooth 19

4.1 FFT of HiperLAN2 . 21

4.2 Channel-selector section of Bluetooth. 22

4.3 Direct form FIR filter . 23

4.4 Transposed form FIR filter 23

4.5 Filter structure simplification 24

4.6 Filter calculation unit . 24

4.7 Transposed Form LPF for Matched Filtering 25

4.8 Flow graph of DIF decomposition of 8-point, radix-2 FFT . . 27

4.9 Radix-2 butterfly structure 27

4.10 Radix-2 butterfly computation 27

5.1 Design Domain . 30

5.2 Tiled Architecture . 33

ix

x List of Figures

5.3 The Pleiades architecture template 34
5.4 The Chameleon architecture template 35
5.5 The Montium Processing Tile: A Tile Processor and a Com-

munication and configuration Unit 36
5.6 Montium Arithmetic and Logic unit 36
5.7 The XPP containing two identical processing array clusters . 37
5.8 Adaptive System on-a-Chip (aSOC) 38
5.9 ACM architecture . 39
5.10 RCP architecture . 41
5.11 Reconfigurable processing fabric and tile architecture 41
5.12 A SoC design incorporating the UCC 42
5.13 Hardware Structure of the DReAM Architecture 43
5.14 Raw microprocessor die photo and tile diagram 43
5.15 Portion of reconfigurable cell array 45

6.1 Architecture . 52
6.2 Tiled architecture . 52
6.3 A Data processing unit (DPU) 53
6.4 Arithmetic unit (AU) of DPU 54
6.5 Control Scheme . 56
6.6 Communication Pipeline . 57

7.1 DPU allocation scheme for Real and Imaginary Data 59
7.2 First clock cycle in half-band mapping 60
7.3 Second clock cycle in half-band mapping 61
7.4 First clock cycle in FIR mapping 62
7.5 Second clock cycle in FIR mapping 63
7.6 Dataflow mapping for Bluetooth 64
7.7 One butterfly Mapping . 65
7.8 Dataflow mapping for FFT 66

8.1 FASRA datapath architecture 75

A.1 Architecture view of the system 86
A.2 Architecture view of the datapath 87

B.1 SNR degradation in Real part of the OFDM block 89
B.2 SNR degradation in Imaginary part of the OFDM block . . . 90
B.3 SNR degradation in Real part of the channel-selector block . 90
B.4 SNR degradation in Imaginary part of the channel-selector

block . 90

C.1 Traditional Design Methodology 94
C.2 SystemC Design Methodology 95

List of Tables

2.1 Physical Layer Overview . 7

3.1 Computational requirements for HiperLAN2 receiver 16
3.2 Computational requirements for Bluetooth receiver 19

8.1 Synthesis results for SDR receiver 71
8.2 Synthesis results for Bluetooth receiver 71
8.3 Synthesis results for HiperLAN2 receiver 72
8.4 Comparison of different architectures for butterfly computa-

tion . 76

9.1 Area requirements of SDR receiver 82

xi

1

Introduction

The wireless communication industry is facing new challenges due to con-
stant evolution of new standards (2.5G, 3G, and 4G), existence of incompati-
ble wireless network technologies in different countries inhibiting deployment
of global roaming facilities and problems in rolling-out new services/features
due to wide-spread presence of legacy subscriber handsets. Software-defined-
radio(SDR) technology promises to solve these problems by implementing
the radio functionality on a generic hardware platform. Further, multiple
modules, implementing different standards can be present in the radio sys-
tem and the system can take up different personalities depending on the
module being used [33].

Figure 1.1: SDR architecture

1.1 Background

A software radio transceiver, in its widest meaning, defines a general Trans-
mitter/Receiver architecture that can be completely reconfigured to support
multiple services and communication protocols, directly operating on a radio
frequency (RF) digitized information stream. Because of the analog nature
of the air interface, a radio receiver will always have an analog front end.
In an ideal software radio design, a single reconfigurable front end takes
care of all the analog interface requirements. Analog processing is limited

1

2 Introduction 1

at the RF front-end, where a pass-band image-rejection filter selects a large
spectrum portion containing the desired services. After Low-noise-amplifier
(LNA), an Analog-to-digital converter (ADC) converts the signal with the
precision required by the system specifications. The digital RF stream is
then fed to a RF baseband(BB) physical layer DSP subsystem (see Figure
1.1 [19]). In that case, the analog-to-digital and digital-to-analog (AD/DA)
converters can be positioned directly after the antenna and all the signal
processing can be done in digital domain. So, an ideal SDR front end would
receive different RF signals through a single reconfigurable antenna and
then directly convert them to baseband. But, such an implementation is
not feasible due to the power that such device would consume and other
physical limitations. It is therefore, a challenge to design a system that
preserves most properties of the ideal software radio while being realizable
with current-day technology [16].

In analog design, new ways are sought to place the AD/DA blocks closer
to RF antenna. This is motivated by the advent of new IC processes which
permit the integration of more functionality in the digital domain. The
above idea results in implementing more and more functionality digitally
in baseband processing, and increases the algorithm complexity in digital
domain. The main functions of BB processing are:

- Centers the received signal spectrum to the band of services of interest.

- Lowers the sampling frequency of the digital stream down to the min-
imum rate required by the standard specifications.

- Operates the necessary filtering in order to reject the unwanted adja-
cent signals.

- Demodulates channel- and source-decodes the symbol flow and sup-
plies the information bit-stream, for subsequent processing, to higher
layers hardware and software.

To realize the complex digital domain supporting multiple demodula-
tion algorithms, an obvious choice can be software implementation to allow
easy configurability (using a general purpose processor, GPP). But, a GPP
unit will not only require more hardware than needed but also consume
much more power than a dedicated hardware unit. The second option is
to design a baseband demodulator for each SDR algorithm separately and
connect it to single analog front end. This is motivated by the advancement
in technology, which allows integration of billion of transistors on a single
chip. This implementation, though, saves energy but will increase hardware
enormously. Lot of hardware will be unused at any given time.

The third option is to design a reconfigurable system which reuses some
or most of the hardware to support different services. This is an exciting

1.2 Assignment 3

opportunity for computer architects and designers to come up with sys-
tem designs that efficiently use the huge transistor budget and meet the
requirements of future SDR applications. The development of personal mo-
bile devices will give an extra dimension, because these devices have a very
small energy budget, are small in size but require a performance that ex-
ceeds the levels of current desktop computers. The functionality of these
mobile computers will be limited by the required energy consumption for
communication and computation. This will require choosing the demodula-
tion algorithms with similar computations and then design a reconfigurable
hardware to implement those algorithms. This requires and allows imple-
mentation of SDRs in terms of dedicated, but reconfigurable hardware.

In September 2000, the Signals and Systems group started one such
software-defined radio (SDR) project. In order to keep the complexity of the
project realistic, it was decided to concentrate on a platform that would be
able to support two standards: HiperLAN2 and Bluetooth. In the first part
of this SDR project, a functional architecture SDR baseband receiver has
been derived which is capable of receiving both OFDM and phase-modulated
signals [39]. The basis for these designs were the performance requirements
and the compatibility between the two demodulators. To verify the function-
ality and performance of these designs, an implementation on a notebook
PC(GPP) was done. Successful communication was proven in a demonstra-
tor that included two PCs, some dedicated digital hardware and a suitable
analog front end that was also designed as part of the project. In this setup,
most of the signal processing is done on the Pentium-IV processor [47]. This
implementation of the algorithms was based on floating-point arithmetic.

1.2 Assignment

In this second part of the SDR project, an efficient hardware implementa-
tion of the demodulation algorithms is sought for. This graduation project
investigates the design and implementation of flexible hardware architecture
for a part of the developed SDR receiver.

In the SDR receiver, the most computationally intensive parts are Fast-
fourier-transform(FFT) for HiperLAN2 and channel selection and matched
filtering for Bluetooth. The main focus of this thesis is to design and imple-
ment an efficient, reconfigurable architecture for these parts.

This thesis mainly deals with the following issues:

- Understanding the SDR architecture and identification of parts with
similar computations and computational load .

- Architecture design to satisfy the contradictory requirements of recon-
figurability, hardware, efficiency and real time performance. This is
the central issue of the project.

4 Introduction 1

- Implementation of chosen algorithms and performance evaluation after
mapping of algorithms.

- Performance evaluation with respect to floating point implementation.

- Hardware overhead estimation in HiperLAN2 due to Bluetooth func-
tionality.

The above investigations have lead to a prototype implementation. The
main tools that are used for this project are: Synopsys CoCentric System
Studio, for algorithmic design (e.g. for the modeling of the environment
outside the hardware such as the analog front-end, the channel, etc.) and
architectural design in SystemC; Synopsys Design Compiler for the syn-
thesis from SystemC/VHDL/Verilog to gates from a standard-cell library;
SystemC to verilog converter from open design cores [3]. The technology
used for synthesis is 0.18µ UMC CMOS process.

1.3 Organization

This thesis is organized into the following sections:

1. Chapter 2 starts with the basic introduction to Bluetooth and Hiper-
LAN2 physical layer. It also provides the basic receiver architecture
for both standards [39].

2. Chapter 3 discusses the sections of baseband demodulation algorithms
of our SDR, along with their computational complexity. The channel-
selection algorithm for the Bluetooth receiver and the OFDM algo-
rithm for HiperLAN2 are identified as most computationally demand-
ing algorithms in the two receivers. These algorithms are implemented
in this thesis.

3. Chapter 4 analysis the computational schemes for algorithms of in-
terest. This helps us in identifying the datapath computations and
control schemes for our hardware.

4. Chapter 5 provides an introduction to the concept of reconfigurable
architecture and main features of various contemporary reconfigurable
architectures. This study helps us identifying the main considerations
for reconfigurable DSP hardware design. A comparison of various
design approaches is also part of discussion in this chapter.

5. Chapter 6 explains the proposed architecture that is developed and
implemented in this thesis. Its main features are highlighted.

1.3 Organization 5

6. Chapter 7 explains the mapping of SDR algorithms on the proposed
design. The discussion here helps us in understanding the complete
dataflow and real-time performance requirements in our design.

7. Chapter 8 evaluates the synthesis results of our design and compares
it with the performance of state-of-art Montium tile processor (TP)
recently designed at the University of Twente (UT) [26]. A quick
comparison with some other FFT implementations is also provided
there.

8. Chapter 9 summarizes our design flow and architecture design ap-
proach, It concludes this thesis with final conclusions and future re-
search possibilities of the system.

9. Appendix-A provides the schematic overview of our system.

10. Appendix-B provides the SNR degradation in fixed point finite preci-
sion implementation compared to floating point implementation.

11. Appendix-C gives a brief introduction to SystemC design methodology
and Synopsys CoCentric System Studio for algorithmic and architec-
tural design.

2

WLAN standards-
HiperLAN2 and Bluetooth

SDR project at Signals and Systems (SAS) group, aims to combine two
different types of standards -Bluetooth and HiperLAN2, on one common
hardware platform. HiperLAN2 is a high speed Wireless LAN (WLAN)
standard [21, 22], whereas Bluetooth is a low-cost and low-speed Personal
Area Network (PAN) standard [41]. Table 2.1 provides the physical layer
overview of both standards. As can be seen from the table, these standards
differ with each other in several aspects and pose an interesting challenge
for an SDR platform.

System Bluetooth HiperLAN2

Frequency Band 2.4-2.4835 GHz 5.150-5.300 GHz, 5.470-5.725 GHz
Access Method CDMA TDMA
Duplex Method TDD TDD

Modulation GFSK OFDM
Max. Data Rate 1 Mbps 54 Mbps
Channel Spacing 1 MHz 20 MHz
Max Power Peak 100 mW 200 mW -1 W

Table 2.1: Physical Layer Overview

This chapter gives a brief introduction to Physical layer of HiperLAN2
and Bluetooth and also suggests the generic transmitter, receiver model.
The model will provide an insight in the demodulation functions that are
necessary in HiperLAN2 and is used for determining channel selection and
computational requirements for the SDR project.

7

8 WLAN standards- HiperLAN2 and Bluetooth 2

2.1 HiperLAN2

HiperLAN2 is a high-speed WLAN standard [21] using Orthogonal Fre-
quency Division Multiplexing (OFDM) modulation in the 5 GHz frequency
band. It has been developed by the European Telecommunications Standard
Institute (ETSI). The physical layer is very similar to the American Institute
of Electrical and Electronics Engineers (IEEE) 802.11a standard. The trans-
mission format on the physical layer is a burst, which consists of a preamble
and a data part. The frequency spectrum available to HiperLAN2 is di-
vided into 19 so called channels, which are referred as radio channels. Each
of those radio channels has a bandwidth of 20 MHz. Orthogonal frequency
division multiplexing (OFDM) has been chosen as modulation technique in
HiperLAN2. OFDM is a special kind of multicarrier modulation. This mod-
ulation technique divides the high data rate information in several parallel
bit streams and each of those bit streams modulates a separate subcarrier.
The physical layer transmits 52 subcarriers in parallel per radio channel.
Four of the 52 subcarriers are used to transmit pilot tones. Those pilots
assist the demodulation in the receiver. A HiperLAN2 MAC frame consists
of 5 parts and has a maximal duration of 2 ms.

2.1.1 Transmitter

The HiperLAN2 transmitter [39] starts with mapping raw bits on QAM
symbols (BPSK, QPSK, 16 QAM or 64-QAM symbols). In the next step,
the QAM symbols are mapped on data carriers and an OFDM symbol is
constructed by adding pilot carriers, applying an inverse FFT (for OFDM)
and adding an prefix, which results in a 20 MSPS signal. MAC bursts
are then created by adding special symbols, preambles, to the start of the
MAC burst. The PHY layer provides transportation mechanisms of bits
between the DLC layer in transmitter and receiver. The standard defines
seven functions in the transmitter, namely,

- Scrambling of the binary input stream.

- Forward Error Correction (FEC) coding.

- Interleaving.

- QAM Mapping.

- Modulation using OFDM.

- Physical burst generation.

- Transmitting of the burst.

Figure 2.1 shows the block diagram of HiperLAN2 transmitter.

2.1 HiperLAN2 9

Scrambling FEC coding Interleaving

Mapping OFDM Physical burst

Radio

transmission

Input

bits

B. C.

E.

D.

F. G.

H.

A.

Binary numbers

Vector of complex numbers

Complex samples

Figure 2.1: Transmitter block diagram for HiperLAN2

2.1.2 Receiver

The receiver not only has to convert the received signal to data bits by
performing the inverse of the transmitter, but also has to try to compensate
for the distortions caused by the radio channel. The HiperLAN2 receiver [39]
can roughly be divided into two parts, a time domain part and a frequency
domain part. In the first stage of the receiver, signal functions will be time
domain functions. In the second stage of the receiver, signal functions will
be frequency domain functions. Most of the operations can be performed
in time domain and in frequency domain. The location of the functions
in the receiver architecture is based upon a trade-off between the necessary
resolution that must be reached for a certain correction and the solution with
the minimum number of operations. One also tried to keep the corrections
independent of each other by deciding the execution order of the functions.
The HiperLAN2 receiver starts by searching for the start of a MAC burst. If
found, it estimates the frequency offset and channel parameters. After these
steps the data OFDM symbols can be demodulated by first correcting the
frequency offset, performing an FFT, correcting the channel and detecting
and correcting the phase offset by using the pilot tones. The outputs are
QAM symbols, which have to be de-mapped into raw bits. A HiperLAN2
receiver should at least perform the following functions at physical layer:

- Synchronization and parameter estimation function.

- Frequency offset corrector.

- Phase offset corrector.

- Channel equalizer.

10 WLAN standards- HiperLAN2 and Bluetooth 2

- Inverse OFDM.

- De-mapping.

- De-interleaving.

- Viterbi-decoder.

- De-scrambling.

Figure 2.2 shows the block diagram of HiperLAN2 receiver.

� � � � � � � � � � 	
 � � � � � 	 � 	 �
 � �
estimation

de-scramblingFEC decodingde-interleaving
output bits

channel equalization
common phase offset
detection & correction

channel selection
� � � � � � � � � offset
correction

� � � 	 � � numbers Complex samples

Analog signal Control

K.

L.

M. N.

O. P. Q.

R. S. T.

inverse
OFDM

de-mapping

U.

Figure 2.2: Receiver block diagram for HiperLAN2

2.2 Bluetooth

The frequency spectrum available to Bluetooth [41] is positioned in an un-
licensed radio band that is globally available. This band, the Industrial,
Scientific, Medical (ISM) band, is centered on 2.45 GHz. In most countries,
free spectrum is available from 2400 MHz to 2483.5 MHz. The frequency
spectrum is divided into 79 so called channels, which are referred as radio
channels. Each of those radio channels occupies a bandwidth of 1 MHz. For
robustness, a binary modulation scheme was chosen. With the mentioned
bandwidth restriction, the data rates are limited to about 1 Mbps. Blue-
tooth uses Gaussian shaped frequency shift keying (GFSK) modulation with
a nominal modulation index of h = 0.32. Logical ones are sent as positive
frequency deviations, logical zeros as negative frequency deviations. The
channel is a hopping channel with a nominal hop dwell time of 625 µs. The
Bluetooth system uses packet-based transmission: the information stream
is fragmented into packets. In each slot, only a single packet can be sent.
All packets have the same format, starting with an access code, followed by
a packet header, and ending with the user payload.

2.2 Bluetooth 11

2.2.1 Transmitter

In the PHY layer of the Bluetooth transmitter, the first step [39] is to embed
the raw bits into MAC bursts, which are then BPSK modulated at 1 Mbit/s.
The BPSK symbols are filtered by a Gaussian low pass filter and the filtered
output is connected to a VCO that translates the amplitude variation into
frequency variations. Its functional architecture is shown in Figure 2.3.
The architecture contains a physical burst, which creates packets from a bit
stream. These packets contain besides the payload, a packet header and
a device-specific access code. After packet generation, the packet will be
modulated using GFSK modulation. The output of the GFSK modulation
function is a complex baseband signal (with carrier frequency of 0 Hz).
The final step in the transmitter is to convert the baseband signal to RF
frequencies.

� � � � � � � � � � � � � � � � ! � " � � � ! � � # � � ! � $ � � $ � � !

% &
 ' � � � (� ! � � � �) * + , -� � . � ! �) � � � � � . � �) � � � � � � � � � � �
/ 0 1 2 3 4 / 3 5

6 & 7 & 8 &

Figure 2.3: Block diagram for Bluetooth Transmitter

2.2.2 Receiver

9:;<=>?;@ABC@?;DEB>BFGCG>
G9C@FBC@?;

HIJKIJLMJN

<=B;;GO
9GOG<C@?;

P>GQRG;<:?PP9GC
<?>>G<C@?;

S@;B>:;RFTG>9U?FEOGV9BFEOG9
W;BO?X9@X;BO

U?;C>?O

YZ [Z

\]

]̂ _]]̀

abcY
dGF?dROBC@?;

dGeFBEE@;X

fGBO9BFEOG9

Figure 2.4: Block diagram for Bluetooth Receiver

Figure 2.4 shows the functional architecture of the Bluetooth receiver
[39]. In order to test the SDR receiver functionality, the transmitter is
implemented from point E to H, the whole PHY layer.

12 WLAN standards- HiperLAN2 and Bluetooth 2

At the receiver side [39], the first step is to select the wanted Bluetooth
channel and suppressing all others, which is performed both digitally and
by the analog front-end. This is achieved by mixing the wanted channel
to zero IF and applying a low-pass filter. The next step is to demodulate
the FM signal using MAP receiver. This receiver requires an orthogonal
vector space, which is given by the Laurent decomposition [32]. This Lau-
rent decomposition describes the GFSK signal by a sum of linear, orthog-
onal, Pulse Amplitude-Modulated (PAM) waveforms. Demodulation using
MAP receiver requires first passing the signal through low pass filter [38].
This filter also acts as matched filter for input signal. Then the signal is
frequency corrected and decoded using Viterbi decoding. The synchroniza-
tion/parameter estimation entity uses this signal to detect the start of a
MAC burst (time/symbol synchronization) and estimates the frequency off-
set. A frequency offset introduces a Direct Current (DC) value in the AM
signal and therefore it has to be corrected before bit decision.

2.3 Summary

This chapter very briefly discusses Bluetooth and HiperLAN2 standards. A
comprehensive summary has been given in [39]. In the next chapter, we will
discuss the computational complexity of baseband demodulation algorithms
for our SDR.

3

Baseband Demodulation

In the SDR project at UT, the basic thinking was that the HiperLAN2 hard-
ware is that complex compared to the Bluetooth hardware that Bluetooth
capability may be added to the HiperLAN2 platform at limited cost [47].
So, it was not the demand for flexibility (one front-end for all signals), but
the idea of providing added functionality nearly ”for free” was the main
motivating factor. From a software-radio perspective the issues were to de-
termine which functions can be identical for both standards, which functions
were different (and should be switch able at the time instant a particular
standard is selected) and which functions can be parameterizable (identical
functions with parameters depending on the selected standard).

In the current implementation, algorithms for demodulation are imple-
mented on GPP hardware [39] and the analog front-end of SDR is already
made to be flexible and reconfigurable [46].

This thesis focuses on the hardware implementation of digital baseband
(BB) part of the receiver (PHY layer only). This chapter discusses how vari-
ous building blocks of baseband demodulation has been designed in software
to combine the two receivers. Later, we will also estimate the computational
complexity of these blocks to realize them in hardware. For all parts, we
assume that 16-bit fixed point calculations are sufficient [27].

Input data is coming in the BB receiver after the analog front end (in-
cluding ADC) at the rate of 80 MSPS. The digital baseband part consists of
a a sample rate reduction block followed by digital demodulator block. The
sample rate reduction block performs sample-rate reduction from 80 MSPS
to 20 MSPS and selects the channel corresponding to one HipereLAN2 chan-
nel. This channel is of 10 MHz bandwidth. The output from sample rate
reduction block is fed to the digital demodulator part which demodulates
the data stream digitally.

As described in chapter 2, in HiperLAN2, QAM mapped symbols are
modulated by OFDM, while in Bluetooth, BPSK symbols are modulated
using GFSK. For realizing both kinds of demodulators on one common

13

14 Baseband Demodulation 3

hardware, similar algorithms have been developed to demodulate the sig-
nals. The functional architecture of the Bluetooth receiver and the Hiper-
LAN2 receiver for SDR receiver has been described in [39] in detail. Figure
3.1 shows the functional architecture of the Bluetooth enabled HiperLAN2
receiver.

synchronization/parameter estimation

QAM
demodulation

MAP receiver

channel
equalization

freq. offset
correction

64-point
FFT

low pass
filter

freq. offset
correction

mixing

raw
bits

sample rate
reduction

Bluetooth mode

HiperLAN/2 mode

r[k]

phase
offset
correction

Figure 3.1: Functional architecture of the Bluetooth enabled HiperLAN2
receiver

3.1 HiperLAN2

Input data rate for BB demodulator is 20MSPS. This data signal consists
of OFDM symbols. One OFDM symbol has a duration of 4 µs (80 complex
samples) with 48 data and 4 pilot carriers. A MAC frame consists of 5
parts. For estimating computational requirements [37], all parts having
equal duration and demodulation requirement of 2 parts (one common and
one user part) are assumed . These part have a duration of (2000/5) ∗ 2 =
800µs (i.e., 200 OFDM symbols). Thus, number of transmitted OFDM
symbols per second are (1/2e − 3) ∗ 200 = 100000 symbols. In the text
below, we will estimate the computational complexity of various building
blocks of HiperLAN2 baseband demodulator.

3.1.1 OFDM

After frequency offset correction, the first step is inverse OFDM in Hiper-
LAN2 demodulator as shown in Figure 3.1. The inverse OFDM is same as
Fast-Fourier-transform (FFT) operation. An OFDM symbol has duration
of 80 complex samples. Only 64 samples of them are needed for the FFT.
The remaining 16 samples are used as cyclic prefix to reduce inter symbol
interference (ISI) and synchronization. So, the first step in the receiver is to
pass the data through 64-point FFT block. After examining various FFT
algorithms [2,34,45,48], we chose to use radix-2 FFT in our implementation.
The reason for choosing this algorithm will become clear in the chapter 4.

Radix-2 FFT is performed using radix-2 butterflies and requires 64 ∗ log2(64)
complex multiplications. So, the requirements are 384 16-bit complex mul-

3.1 HiperLAN2 15

tiplications for each OFDM symbol. Data will be coming out from FFT at
(64/80) ∗ 20 = 16 MSPS (see Figure 3.2).

20MSPS 16MSPS 16MSPS
64-point FFT4/5

Figure 3.2: Inverse OFDM in HiperLAN2 receiver

3.1.2 Channel equalization

After FFT, the channel equalizer block has to compensate the channel for
the carriers. The estimation of the channel is done by comparing the known
preamble and the received subcarrier values. This equalization should be
done for 52 subcarriers. So, it will require 52 complex multiplications per
OFDM symbol. Channel equalization block works at (52/64) ∗ 16 = 13
MSPS (see Figure 3.3).

16MSPS 13MSPS Channel Equalization
(52-carriers)

13/16
13MSPS

Figure 3.3: Channel equalization in HiperLAN2 receiver

3.1.3 Phase offset correction

At the front-end of the receiver, frequency-offset correction is implemented
by calculating only the values of the frequency offset for the first symbol
and these values are subsequently reused for other symbols. This saves
(computational-intensive) instructions (cos and sin) but also introduces a
phase offset. This phase offset can be corrected by using the pilot carriers in
the OFDM symbol. This requires 48 complex multiplications. Thus, phase
offset block works at (48/52) ∗ 13 = 12 MSPS (see Figure 3.4).

13MSPS 12MSPS Phase offset
correction

(48-carriers)
12/13

12MSPS

Figure 3.4: Phase offset correction in HiperLAN2 receiver

3.1.4 QAM Demapping

Final step in demodulation of HiperLAN2 receiver is demapping. In Hiper-
LAN2 there are four constellations available: BPSK, QPSK, 16-QAM and
64-QAM. Each of these constellation has a different number of bits per com-
plex symbol. Demapping can be done using look up table. In the lookup

16 Baseband Demodulation 3

Function DataRate Number of Number of
multiplications additions

64 point FFT 16 153.6e6 76.8e6
Channel equalization 13 20.8e6 10.4e6

Phase offset correction 12 19.2e6 10.4e6
64-QAM demapping 12 9.6e6 9.6e6

Table 3.1: Computational requirements for HiperLAN2 receiver

table, all possible subcarrier values for a certain mapping scheme are defined.
For BPSK, 2 subcarrier values are stored in the lookup table; for QPSK,
16-QAM and 64-QAM there are 4, 16 and 64 subcarrier values stored, re-
spectively. The largest constellation used is 64-QAM. A 64-QAM symbol
has 23 = 8 possible values for both the real and imaginary part. Demap-
ping can be implemented by generating an index for a table. So demapping
requires 2 comparisons (border checking), 1 addition, 1 multiplication and
1 table lookup.

The computational complexity of the building blocks of HiperLAN2 base-
band demodulator is summarized in Table 3.1 [37].

3.2 Bluetooth

The Bluetooth symbol duration is 1 µs. The symbols are modulated using
GFSK modulation scheme. Data is transmitted in time slots with duration
of 625 µs [41]. As in HiperLAN2 input data in the BB receiver is coming at
20 MSPS. This data is of 10 MHz bandwidth. But, each channel of Bluetooth
has bandwidth of 1 MHz. So, input data consists of lot of redundant and
undesired information.

The first step in Bluetooth receiver is to select the information corre-
sponding to desired channel and reduce the incoming data rate to remove
redundant computations in subsequent blocks. This corresponds to mixing
and low pass filtering steps shown in Figure 3.1.

To demodulate the GFSK signal, the SDR receiver uses Maximum A Pos-
teriori Probability (MAP) receiver algorithm [38] in the Bluetooth system.
For this purpose, GFSK signal is described by a sum of linear, orthogonal,
pulse amplitude modulated (PAM) waveforms using the Laurent decompo-
sition [32]. It has enabled us to represent GFSK signal by orthogonal vector
space which is a requirement for MAP receiver [38]. In the (MAP) receiver,
there are two steps performed. The first step is to perform matched filtering
and second step is to perform Viterbi decoding (see Figure 3.5).

From the implementation point of view, the matched filtering is similar
to low pass filtering step. So, these two steps are combined together and
performed after mixing step in the actual implementation. This will become

3.2 Bluetooth 17

Matched
Filter

Viterbi
Decoder

Figure 3.5: MAP receiver

clear in chapters 4 and 7. In this way, low pass filtering is combined with
matched filtering and only Viterbi decoding is done in MAP receiver stage
of our receiver.

For estimating computational requirements, we assume maximal transfer
rate. In this mode, Bluetooth uses a packet, which spans 5 time slots, and
1 time slot is used for uplink communication.

3.2.1 Mixing

After Analog front end (including ADC), input data is coming in baseband
demodulator is coming at 20 MSPS. This data is first converted into base-
band by mixing. This requires one complex multiplication (i. e. 4 multipli-
cation and 2 additions per input sample). This will require (20 ∗ 4) = 80
16-bit multiplications per second and (2 ∗ 20) = 40 16-bit additions per
second. This step is shown in Figure 3.6.

20MSPS
Mixing

20MSPS

Figure 3.6: Mixing

3.2.2 Sample rate reduction

The incoming data rate for this block is 20 MSPS. So, the first step is reduce
this data rate. This is performed using two halfband filters each decimating
the input stream by a factor two. Each halfband filter is of 7th order and
have linear phase. So, A decimation factor of 4 is applied to reduce the
data rate to 5 MSPS. A one-to-one implementation of this step will require
(2 ∗ 7 ∗ 20 + 2 ∗ 7 ∗ 10) = 420 16-bit multiplications per second and
(2 ∗ 6 ∗ 20 + 2 ∗ 6 ∗ 10) = 360 16-bit additions per second. These
computations are an upper estimate and can be reduced by exploiting linear
phase and halfband property of the filters. This step is shown in Figure 3.7.

3.2.3 Low pass filtering

As explained before, this low pass filter block selects the desired channel and
perform the matched filtering for MAP receiver block. Input and output

18 Baseband Demodulation 3

20MSPS Halfband filtering
and

Decimation by 4

5MSPS

Figure 3.7: Sample rate reduction

data rate for this block is 5 MSPS. Low pass filter used here is of 17th order
linear phase filter. This will require (2 ∗ 17 ∗ 5) = 170 16-bit multiplications
per second and (2 ∗ 16 ∗ 5) = 160 16-bit additions per second. Again,
linear phase property can be used to reduce the number of multiplications
by two. Figure 3.8 shows the data flow for this block.

5MSPS Low Pass filter
(Matched filter)

5MSPS

Figure 3.8: Low pass filtering to select the desired channel in Bluetooth

3.2.4 Frequency offset correction

The MAP receiver has a very good performance but it requires a very pre-
cise knowledge of signal properties such as phase offset, frequency offset and
modulation index. This precise knowledge is required because these effects
influence the position of the states in the trellis diagram. Moreover, the
receiver uses the history of all received signals, and therefore small estima-
tion errors will already result in bit errors. So, the next step in receiver is
frequency offset correction of input signal.

The frequency offset is estimated by the synchronization/parameter es-
timation part and corrected in the frequency-offset correction part of the
receiver. It requires one complex multiplication per sample. Moreover the
influence of the frequency offset on each symbol/sample has to be calculated,
which requires 2 multiplications and 2 table lookups. The input sample rate
for this block is: (5/6) ∗ 5 = 4.15 MSPS. A factor of 5/6 is used because 1
out of 6 time slot is used for uplink. Synchronization and parameter estima-
tion block ensures correct timing information and output data rate for this
block is reduced to 0.83 MSPS. Input and output data rate for this block
are shown in Figure 3.9.

5MSPS 4.15MSPS Freq. offset
correction

5*5/6
0.83MSPS

Figure 3.9: Frequency offset correction in Bluetooth

3.3 Summary 19

Function DataRate Number of Number of
multiplications additions

Mixing 20/20 80e6 40e6
Decimation/Halfband 20/5 420e6 360e6

Matched filter 5/5 170e6 160e6
Freq. offset correction 4.15/0.83 20e6 8.5e6

Viterbi 0.83 29.9e6 21.6e6

Table 3.2: Computational requirements for Bluetooth receiver

3.2.5 MAP receiver

The matched filtering corresponding to MAP receiver is already done in low
pass filtering block. So, the MAP receiver consists of a 2-state Viterbi algo-
rithm. This algorithm has to calculate 2 branches for each state and select
the best branch. The state with the highest values determines the detected
bit. Each branch requires 2 or 3 complex multiplications. In total, the
Viterbi algorithm requires 9 complex multiplications, 4 complex additions
and 3 comparisons (36 multiplications, 26 additions and 3 comparisons) for
each sample. The Viterbi algorithm block operates at 0.83 MSPS (See Fig-
ure 3.10). So, total number of multiplications per second and additions for
this stage are 29.9e6 and 21.6e6 respectively.

0.83MSPS 0.83MSPSViterbi
Decoder

Figure 3.10: Viterbi decoding in Bluetooth

The computational complexity of various building blocks of Bluetooth
baseband demodulator is shown in Table 3.2.

3.3 Summary

In this chapter, the architecture, various algorithm steps for demodulation
and the functionality of various building blocks of SDR receiver has been
explained. This has helped us in estimation of the computational complexity
of various blocks of SDR receiver.

It is clear from this analysis that the OFDM block in HiperLAN2 and
the matched filter along with halfband filtering blocks in Bluetooth are the
most computationally intensive blocks in the two demodulators. Therefore,
the main aim of this thesis is to design a reconfigurable hardware for these
two blocks. The algorithms corresponding to these two steps will be further
analyzed in chapter 4.

20 Baseband Demodulation 3

Implementation of our design is done using SystemC in Synopsys Co-
Centric System Studio. A brief introduction to SystemC and Synopsys Co-
Centric System Studio for algorithmic and architectural design is provided
in appendix-C.

4

Algorithms analysis

The algorithm domain of the SDR project includes baseband demodulation
algorithms for HiperLAN2 and Bluetooth. Detailed description of these
algorithms can be found in [39]. A brief description along with the assess-
ment of the computational complexity of these algorithms is provided in the
chapter 3. In this thesis, we are dealing with the hardware implementa-
tion of the channel-selection block of Bluetooth receiver and OFDM block
of HiperLAN2 receiver. (The halfband filter block and matched filter block
are combined together into one channel-selection block in the Bluetooth re-
ceiver). For this purpose, our first step is to perform the dataflow analysis
in various computations of these algorithms.

This chapter begins with the analyzing the algorithms in channel-
selection (for Bluetooth) and FFT (for HiperLAN2) sections of the base-
band demodulator. Next, it discusses the corresponding signal flow graph
and the dominant kernels for each algorithm. This helps us in designing the
datapath and control sections of our hardware realization.

4.1 Dataflow for Channel-selection/FFT

1. The first block in baseband demodulation of HiperLAN2 receiver is 64
point FFT block. This block is used for OFDM demodulation. The
data from the sample rate reduction block is coming at 20 MSPS. This
data is arranged in blocks of 80 samples each. Due to OFDM scheme,
last 16 samples are same as first the 16 samples in each block. So, we
need to take 64 samples out of these 80 samples. A simple schematic
for FFT section of HiperLAN2 is shown in Figure 4.1.

FFT20MSPS 16MSPS 16MSPS

(64-point)

Figure 4.1: FFT of HiperLAN2

21

22 Algorithms analysis 4

2. The first block in the baseband demodulation of Bluetooth receiver is
channel-selector/Low pass filter (LPF). This is required to select the
desired 1 MHz bandwidth(BW) channel. As explained in the previ-
ous chapter, the complexity and data computation unit of FFT block
is similar to LPF section of Bluetooth. So, in our implementation,
we propose to combine FFT with LPF. But, direct implementation of
LPF is computationally intensive. This is against the original thinking
of SDR project (HiperLAN2 is complex and Bluetooth can be imple-
mented without much additional costs). So, a one-to-one mapping for
LPF is not useful. Actually, LPF is similar to matched-filter in MAP
receiver part (of Bluetooth). Matched filter also needs to select the
data in 1 MHz BW. So, matched-filtering operation is moved from
MAP receiver part to channel selection part. Also, input data stream
into demodulator block is of 20 MSPS. Doing Bluetooth demodula-
tion on 20 MSPS will involve lot of redundant computations and will
require a very high order matched filter. So, input data is first passed
through two linear phase half band filters. Each half band filters dec-
imates data by factor 2. These half band filters help in reducing the
order of matched filter. Also, matched filter can be designed to be
linear phase. In this way, number of computations can be reduced
further. A simple schematic for channel-selector section of Bluetooth
is shown in Figure 4.2.

Figure 4.2: Channel-selector section of Bluetooth.

4.2 Signal flow graph for FIR/FFT

The signal flow graphs and basic building blocks corresponding to half band
filter, matched filter and FFT (Butterfly) are described below.

4.2.1 Halfband filter

Input data stream in Bluetooth is filtered through halfband filters before
doing low pass filtering. There are two halfband filters. Each halfband filter
is of 7th order. To simplify the computations, main points to remember
about this building block are: linear phase, halfband and decimation. By
using linear phase property, we can reduce the number of multiplications by a
factor 2. Halfband property means number of multiplications (corresponding

4.2 Signal flow graph for FIR/FFT 23

to amount of zeros in filter coefficient) can be reduced further. Also, using
a polyphase representation, decimation can be used to reduce the speed of
computation. A basic 7th order FIR filter can be represented as in equation:

H(z) = a0 + a1z
−1 + a2z

−2 + a3z
−3 + a4z

−4 + a5z
−5 + a6z

−6 (4.1)

Its critical path contains one multiplier and six adders. A direct form im-
plementation of such filter is shown in Figure 4.3.

FIR Filter structure (Direct Form) with Decimation

2
y[n’]

x[n]

a0 a1 a2 a3 a4 a5 a6

Figure 4.3: Direct form FIR filter

The transposed form of above filter is shown in Figure 4.4. Its critical
path contains one multiplier and one adder only.

a0 a1 a2

x[n]

a3 a4 a5 a6

2

y[n’]

FIR Filter structure (Transposed Form) with Decimation

Figure 4.4: Transposed form FIR filter

The halfband property of the filter implies that a1 and a5 have zero
value and can be omitted to reduce the number of multiplications required.
Also, the linear phase property implies that a2 = a4 and a0 = a6. So, the
multiplications in first half of the filter are identical to the multiplications
in other half. Thus, equation 4.1 can be rewritten as:

H(z) = a0 + a2z
−2 + a3z

−3 + a2z
−4 + a0z

−6 (4.2)

By using polyphase representation, decimation by 2 can be used to re-
duce the speed of computations (if needed). Thus, equation 4.2 can be
written in polyphase form as:

H(z) = (a0 + a2z
−2 + a2z

−4 + a0z
−6) + z−1(a3z

−2) (4.3)

The simplified structure, which is computationally most efficient in terms
of speed of operation and in terms of amount of datapath computations, is
shown in Figure 4.5.

In this way, number of multiplications can be reduced by a factor of 3/7
from direct form halfband filter. Also, each computation unit can work at
half of the incoming data rate.

24 Algorithms analysis 4

Polyphase decomposition with half band property and decimation (n'=n/2)

2

2

a0 a2

a3

x[n]

x[n-1]

x[2n]

x[2n-1]

y[n']

Figure 4.5: Filter structure simplification

Moreover, it is important to notice that the filter structure above has
a basic computation unit (shown in Figure 4.6). The repetitive use of this
unit realizes the filter. The basic operation can be described as multiply
and add.

coeff

Data

One calculation unit

Figure 4.6: Filter calculation unit

4.2.2 FIR (Matched filter)

After halfband filtering, the input data (decimated by 4) is fed to matched
filter block. The output of this block is the data corresponding to desired
channel. The matched filter used in SDR project is of 17th order. The
transposed form representation is shown in Figure 4.7. The basic compu-
tation unit is the same the one for half band filters (shown in Figure 4.6).
Polyphase decomposition for efficient decimation and half band properties
are not applicable for this stage. So, filter structure is corresponding to
transposed form structure with linear phase. This means that number of
multiplications can be reduced by 2.

4.2 Signal flow graph for FIR/FFT 25

a0 a1

x[n]

a15 a16

y[n]

FIR Filter structure (Transposed Form) for Matched Filtering

Figure 4.7: Transposed Form LPF for Matched Filtering

4.2.3 FFT

In HiperLAN2, data from ADC block is demodulated by using OFDM de-
modulator. AN OFDM demodulator consists of a FFT block.

An FFT represents set of algorithms to compute discrete Fourier trans-
form (DFT) of a signal efficiently. An N-point DFT corresponds to the
computation of N samples of the Fourier transform at N equally spaced fre-
quencies, ωk = 2πk/N , i.e., at N-points on the unit circle in the z-plane.
The DFT of a finite-length sequence of length N is

X[k] =
N−1∑

n=0

x[n]W kn
N · · · ∀k ∈ {0, 1, ...N − 1} (4.4)

where, W kn
N = e−j2π/N .The idea behind almost all FFT algorithms is based

upon divide and conquer strategy and establishes the solution of a problem
by working with a group of subproblems of the same type and smaller size.
In general, each algorithm can be represented either as decimation in time
(DIT) or decimation-in-frequency (DIF). These two can be thought of as
transposed form of each other. An elaborate description of various FFT
algorithms can be found in [2, 34,45,48].

An objective choice for the best DFT algorithm can not be made without
knowing the constraints imposed by the environment in which it has to oper-
ate. The main criteria for choosing the most suitable algorithm are amount
of required arithmetic operations (costs), and regularity of structure. Sev-
eral other criteria (e.g. latency, throughput, scalability, control) also play
major role in choosing a particular FFT algorithm. We have chosen radix-2
DIF FFT implementation for our system because it has advantages in terms
of regularity of hardware, ease of computation and number of processing el-
ements. Also, the basic butterfly corresponding to radix-2 can be combined
easily with filter processing element (of our implementation). This facili-
tates the similar datapath computations in two receivers and simple control
structure for HiperLAN2 receiver.

26 Algorithms analysis 4

Radix-2 FFT

As mentioned above, OFDM is implemented using radix-2 FFT in our im-
plementation. We have chosen to implement DIF version of radix-2 FFT.
This gives us the option of omitting the bit reversal step in the receiver
and transmitter of HiperLAN2. The computations in DIF radix-2 FFT are
shown in following equations.

X[k] =
N−1∑

n=0

x[n]W kn
N , k = 0, 1, ...N − 1 (4.5)

which can be expressed as

X[2r] =

N/2−1∑

n=0

(x[n] + x[n + N/2])W rn
N/2

· · · ∀r ∈ {0..N/2 − 1} (4.6)

and,

X[2r + 1] =

N/2−1∑

n=0

(x[n] − x[n + N/2])W rn
N/2

Wn
N · · · ∀r ∈ {0..N/2 − 1} (4.7)

Thus, on the basis of above equations, with g[n] = x[n] + x[n + N/2] and
h[n] = x[n] − x[n + N/2], the DFT can be computed by first forming the
sequences g[n] and h[n], then computing h[n]Wn

N , and finally computing the
N/2-point DFTs of these two sequences to obtain the even-numbered output
points and the odd-numbered output points respectively. Proceeding in the
manner similar to above, we note that N/2 point DFTs can be computed by
computing the even and odd numbered output poins separately and so on.
This procedures is illustrated for the case of an 8-point DFT in Figure 4.8.

If N is a power of 2, then eventually we are left with the computations
of 2 point DFTs. These 2 point DFT are the elementary computation unit
of radix-2 DIF FFT computation. A single 2 point DFT (also known as
radix-2 butterfly) can be calculated by the following equations.

Are = are + bre (4.8)

Aimag = aim + bim (4.9)

Bre = (are − bre)Wre − (aim − bim)Wim (4.10)

Bimag = (aim − bim)Wre + (are − bre)Wim (4.11)

where, subscripts ”re” and ”im” represents real and imaginary part of data
respectively, and W = e−j2πk/N . The corresponding signal flow graph is
shown in Figure 4.9 and is decomposed further in Figure 4.10. So, a single
butterfly computation requires 4 multipliers and six adder/subtrator blocks.
Different inputs and outputs of this butterfly structure can also be seen from
the Figure. In an N-point FFT, there are log2N stages and N/2 butterflies.

4.3 Summary 27

W0

W0

W0

W0

W0

W2

W0

W2

W0

W1

W2

W3

*

*

*

*

*

*

*

*-

-

-

-

*

*

*

*

*

*

*

*-

-

-

-

*

*

*

*

*

*

*

*-

-

-

-

1

1

1

1

1

1

1

1

1

1

1

1

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

Figure 4.8: Flow graph of DIF decomposition of 8-point, radix-2 FFT

W=exp(jwt)

a

b

A

B

W

Figure 4.9: Radix-2 butterfly structure

Aim

bimaimbimaimbre breare

Are

are

Wre Wim Wre Wim

Bre Bim

Figure 4.10: Radix-2 butterfly computation

4.3 Summary

In this chapter, we have discussed the various algorithms that need to be
implemented in hardware. The hardware should be reconfigurable so as to

28 Algorithms analysis 4

choose between Bluetooth and HiperLAN2. In the next chapter we will
analyze this concept of reconfigurable hardware design. Following points
can be summarized based on the discussion so far.

• The channel-selection block in the Bluetooth receiver requires more
computations in the datapath than the OFDM section in the Hiper-
LAN2 receiver. However, a single computation unit of the channel-
selection/FIR block (a MAC unit) is simpler than the single compu-
tation unit of the the FFT (radix-2 butterfly).

• The control structure of OFDM is more complex than the one of FIR
filter. This is due to the address calculation and butterfly-structure
combining needed in each stage of the FFT.

• The FFT computation requires more memory-datapath bandwidth
than the FIR section due to larger number of operands in a single
butterfly.

• The datapath computations in both receivers require multiply-and-
accumulate (MAC) unit in hardware.

• The FFT requires extra memory resources compared to the FIR filter
to store twiddle data.

• The FIR filter operates on a single input sample while the FFT oper-
ates on a block of N samples. So, Bluetooth demodulation is stream-
based while HiperLAN2 is block-based.

5

Reconfigurable Architectures
- A survey

5.1 A quick glance so far

The SDR project at the UT aims to combine Bluetooth and HiperLAN2 on
one common platform. In the previous chapters we have already discussed
the basic building blocks, for baseband demodulation, of the two receivers.
The data flow for each receiver was also part of that discussion. Our discus-
sion, so far, was limited to the analysis of the algorithms. These algorithms
help us in determining the complexity of major building blocks in the SDR
receiver. The motivation for this MSc. project was to explore a reconfig-
urable architecture for a subset of SDR algorithms. Now, we are moving
our attention towards hardware mapping of these chosen algorithms.

This chapter begins with the basics of reconfigurable hardware architec-
tures for DSP algorithms. Section 5.4 elaborates on some of the contempo-
rary design projects. Section 5.5 provides the architectural considerations
for DSP design. Section 5.6 compares the various architecture-design ap-
proaches. Section 5.7 concludes this chapter.

5.2 Design spectrum

The conventional design spectrum of data processing elements ranges from
usage of general purpose processors (GPPs) to application specific integrated
circuits (ASICs). Fully programmable architectures, like GPPs, can be used
to compute virtually any algorithm. In classical system design, GPPs are
used for computational purposes. The performance of a GPP was defined in
terms of its clock frequency. These GPPs occupy a substantial amount of die
area and are far less energy efficient than custom application-specific devices.
The cause of this inefficiency is the manner in which flexibility is achieved
in conventional processors. Computations are performed on general-purpose

29

30 Reconfigurable Architectures - A survey 5

functional units that are designed to implement a wide variety of arithmetic
and logic functions. As a result, these functional units are large and complex,
and their granularity is not always well-matched with the data types and
the computations required by target algorithms. Data operands are stored
in general-purpose memory units that are large, centralized structures. The
tasks performed by these hardware resources during every execution cycle
are specified by a stream of instructions that must be fetched from the
instruction memory and then decoded and dispatched by the instruction
controller. The net result is that a great deal of energy and timing over-
head is attached to every basic computational step. This kind of solution
involves fixed resources and dynamic algorithms. The other extreme is ASIC
based implementation to achieve low area and high energy efficiency. High
performance can be achieved because an ASIC architecture is designed to
exploit the parallelism along with optimization for power, speed and area.
But, this implementation comes at the cost of increased effort/time for de-
sign and less flexibility. This limits the use of ASICs where requirements
are dynamic changing environment or low volume or small life time of the
product. These two extremes of implementation differ with respect to ease
of implementation, reusability, power efficiency and flexibility. In between
these two extremes there lie different possibilities of implementations (see
Figure 5.1). In each of these, we exchange flexibility, design costs, area,
energy, upgradability at the cost of one another.

General
Purpose
Processor

Reconfigurable
Hardware

Programmable
DSP

ASIC

Efficiency

Flexibility

Figure 5.1: Design Domain

5.3 Reconfigurable Architectures 31

5.3 Reconfigurable Architectures

In recent times, the system which just computes the algorithms is of limited
use. A usable system must compute the algorithms in an efficient way. The
efficiency of system can be defined in terms of cost metrics. Cost metrics
encompass all costs in design and production. These includes amount of
hardware, design time, time to market, power consumption, and speed. This
means that design should be optimum in terms of above-mentioned costs.
This, for example, means a high speed system offers limited incentive, if it
uses large number of hardware resources and/or uses excessive power and/or
needs lot of design time.

The basic difference among modern DSP architectures lies in the amount
of flexibility they offer for a given algorithm domain. Some architectures re-
quire more hardware resources and simply map the algorithm on a powerful
GPP. This implementation, although verifies the validity of design algo-
rithm, is hardly conceivable for a cheap mass-produced hardware. Next
to this approach lies a domain-specific-processor based design. In this im-
plementation, algorithms are mapped on a processor which is designed for
the particular algorithmic domain. A digital signal processor (DSP) based
implementation is an example of such an implementation. This allows recon-
figurability but still consumes lot of power and wastes hardware resources.
Additionally, it has an overhead in fetching, executing the instruction and
storing the result. The parallelism of algorithm cannot be exploited fully.
Another approach is to put hardware resources in parallel to meet the speed
requirements of an algorithm. A superscalar architecture is based on this
approach. Although, this increases the speed of computation and also al-
lows flexibility to map different algorithms, this also suffers from hardware
and energy wastage. Then there is the approach concerning mapping the
algorithm on FPGAs. The biggest advantage with this approach is that
functionality is defined after the fabrication, by the end user. But, the
configuration is done for each bit. This means it is a very fine grained
architecture and requires long time before a configuration is achieved. To
overcome this, one can use vector architectures, in which reconfigurability
is defined on a vector instead of a bit. In this approach, an architecture
is defined which is reconfigurable (on vector operation) for full algorithmic
domain. A field programmable function array (FPFA) is an example of such
an implementation. In all these approaches, reconfiguration can be viewed
as an extra layer between programming and hardware. But the major dis-
advantage with all these approaches is that reconfigurability is defined in a
very general manner. None of these approaches can compete with state of
the art dedicated ASICs in claiming hardware resources or energy require-
ments (see Figure 5.1). But, ASICs are non-reconfigurable and require a lot
of design effort.

This thinking has led the way for reconfigurable computing in present

32 Reconfigurable Architectures - A survey 5

day integrated circuits (ICs). The idea behind reconfigurable computing is
to design systems that can be flexible for their application domains only. The
performance of these systems are optimized to suit the various requirements
within the application-domain. This means that a reconfigurable system of-
fers a compromise between the performance advantages of fixed-functionality
hardware and the flexibility of GPPs. Like ASICs, these systems are distin-
guished by their ability to implement the specialized computation directly
in hardware. Additionally, like a GPP based design, reconfigurable systems
contain functional resources that may be easily reconfigured in response to
changing parameters and data sets.

5.3.1 Domain-Specificity

An application domain determines the set of algorithms that are of of in-
terest to the designer of a system and have similar data processing oper-
ations. One example of application domain can be DSP algorithms. It is
generally observed that DSP algorithms exhibit lot of spatial and temporal
concurrency. Spatial concurrency implies that multiple identical computa-
tions occur in parallel while temporal concurrency indicates the repetition of
identical computations in time [26]. A regular and repetitive computation
operation in an algorithm is called a computation kernel. When a com-
putation kernel requires extensive computation and claims lot of resources
during execution, it is called a dominant kernel. Algorithms belonging to
the same algorithm domain have similar kernels. For example, the kernel
of filter based algorithm domain can be a multiply-and-accumulate (MAC)
operation. By optimizing the circuit corresponding to the dominant kernels
of a domain specific architecture, high performance can be obtained. This
makes domain-specific architectures both efficient and flexible within their
algorithm domain.

5.3.2 Reconfigurability

Reconfigurability of a system indicates the extent of programmability incor-
porated into the reconfigurable system which, in turn, determines its flexi-
bility. It can be classified in terms of static and dynamic reconfigurability.
Coarsely speaking, a non-frequent reconfiguration is called static reconfigu-
ration, while, frequent reconfiguration is known as dynamic reconfiguration.
The term ”frequent” in the above definition varies depending on the system
requirements. An ideal dynamically reconfigurable system must be able to
reconfigure without any delay. But in real-time applications, systems which
consume insignificant time for reconfiguration compare to the timing bud-
get allocated for various operations in reconfiguration, is also considered as
dynamically reconfigurable system.

Reconfiguration of a system is also characterized by the overhead and

5.3 Reconfigurable Architectures 33

the granularity level of reconfigurable parts. For dynamic reconfiguration, it
is important that the amount of configuration data required to reconfigure
a chip is small. Dynamic reconfiguration allows time-sharing of hardware
resources by pipelining the algorithms.

5.3.3 Granularity

Granularity of a system is determined by the width of the components in
its datapath. For example, an FPGA based reconfiguration system is fine-
grained system because functionality and reconfigurability is available at
bit-level. Consequently, FPGA based reconfigurable systems have lot of re-
configuration overhead and are generally slow to be reconfigured. This is
in contrast to a coarse-grained system, where reconfiguration is done on a
collection of bits (word-level). Coarse-grained systems require less configu-
ration data and are easy to reconfigure. But, they are not suited for complex
bit-level operations.

5.3.4 Scalability

Scalability of a system is defined in terms of effort required to extend the data
processing capabilities of the system. A nice approach to adopt scalability
is to have tile based systems (see Figure 5.2). A tile can be thought of

Figure 5.2: Tiled Architecture

as a basic data processor which acts as basic building block to realize the
complex functionality in the system. In a tile based system, these basic data
processing entities are replicated and arranged in highly regular fashion. The
connection between various entities in such systems forms a network-on-chip
(NOC). These tiles can be of the same kind or of different kinds. To extend
the capabilities of system one can add more tiles. Another advantage of these
tile based systems is the regularity of design. The regularity or parallelism
in an algorithm can easily be exploited in these tile based systems. Also,

34 Reconfigurable Architectures - A survey 5

test time of the system is simplified because one needs to test the same
kind of tile only once. It will be clear in the following section that latest
reconfigurable DSP architectures have a highly regular organization of basic
data processor(s).

5.4 Reconfigurable Architecture Examples

There are many reconfigurable architectures proposed in recent times. In
this section we will discuss their approaches briefly.

5.4.1 Pleiades Architecture

The Pleiades architecture [9,10,13] relies on a heterogeneous network of pro-
cessing elements, optimized for a given domain of algorithms, that can be
reconfigured at runtime to execute the dominant kernels of the given domain.
The Pleiades architectural template, developed at University of California at
Berkeley, is a reusable architecture template for ultra low power high perfor-
mance multimedia computing. It is shown in Figure 5.3). This template is

Figure 5.3: The Pleiades architecture template

reusable and can be used to create an instance of a domain-specific processor,
which can then be programmed to implement a variety of algorithms within
the given domain of interest. All instances of this architecture template
share a fixed set of control and communication primitives. The type and
number of processing elements in a given domain-specific instance, however,
can vary and depend on the properties of the particular domain of interest.
The architecture template consists of a control processor, a general-purpose
microprocessor core, surrounded by a heterogeneous array of autonomous,
special-purpose satellite processors. All processors in the system commu-
nicate over a reconfigurable communication network that can be config-
ured to create the required communication patterns. All computation and

5.4 Reconfigurable Architecture Examples 35

communication activities are coordinated via a distributed data-driven con-
trol mechanism. The dominant, energy-intensive computational kernels of
a given DSP algorithm are implemented on the satellite processors as a set
of independent, concurrent threads of computation. Most satellite proces-
sors are dedicated to performing specific tasks but some satellite processors
might support a higher degree of flexibility to allow the implementation of
a wider range of kernels. The parts of the algorithms, which are not compu-
tation intensive and tend to be control-oriented, are executed on the control
processor. The computational load on the control processor is thus rela-
tively light, as the bulk of the computational work is done by the satellite
processors. In addition to executing the non-compute-intensive and control-
oriented sections of a given algorithm, the control processor is responsible
for spawning the dominant kernels as independent threads of computation,
running on the satellite processors.

5.4.2 Montium:Coarse-Grained Reconfigurable processor

In the Chameleon project [1,23], the Chameleon system on chip (SoC) tem-
plate is proposed as a solution for the contradicting requirements of mobile
handheld devices. In a Chameleon SoC template, heterogenous processing
tiles are connected by a network-on-chip. In the template four processing
tile types are distinguished.

• general purpose (i.e., GPPs and DSPs).

• fine-grained reconfigurable (i.e., FPGAs).

• Coarse-grained reconfigurable (i.e., DSRAs).

• Application specific (i.e., ASICs).

Figure 5.4: The Chameleon architecture template

An example of chameleon SoC that contains 16 processing tiles is given
in Figure 5.4. At the University of Twente, a domain specific reconfigurable
accelerator is designed which can be incorporated in Chameleon SoC as a

36 Reconfigurable Architectures - A survey 5

DSRA tile . This DSRA is called Montium Tile processor (TP) [24, 26, 36]
and its algorithm domain consists of 16 bit DSP algorithms that contain
MAC operations.

Figure 5.5: The Montium Processing Tile: A Tile Processor and a Commu-
nication and configuration Unit

In Figure 5.5, a Montium processing tile is depicted. The upper part
of the Figure shows the processor part: the Montium TP. The lower part
shows the NoC interface : the communication and configuration unit (CCU).
The TP acts as DSRA and CCU acts as interface with the world outside
the processing tile. The Montium TP is controlled by a sequencer. The
sequencer selects instructions from configurable decoders. The part of the
Montium TP that is responsible for the datapath processing is called the
processing part array (PPA). The PPA has a regular VLIW like architecture.

Figure 5.6: Montium Arithmetic and Logic unit

5.4 Reconfigurable Architecture Examples 37

The five ALUs (ALU1-ALU5) in a PPA (Figure 5.5) can exploit spatial
concurrency to enhance performance. A vertical segment that contains one
ALU together with its associated input register files, a part of interconnect
and two local memories is called a processing part (PP). The ALU in each
PP is tailored to DSP algorithms. A simplified schematic of a Montium
ALU is depicted in Figure 5.6. Each input of an ALU has its own local
storage in the form of a register file. In addition, each PP also has two
local storage memories. The upper level (level 1) in the ALU contains four
function units for general arithmetic and logic operations. The lower level
(level 2) contains the MAC units.

5.4.3 PACT’s extreme processor platform (XPP)

An XPP processor [18, 40, 44], developed by PACT XPP Technologies, is
built from a coarse-grained homogenous array of reconfigurable ALU pro-
cessing elements, RAMs and communication channels. It uses only a hand-
ful of different functional blocks: ALU processing-array-elements (PAEs)
perform the basic calculations, RAM together with an ALU for address cal-
culation, and I/O objects that provide access to external streaming channels
and external RAMs. All these elements are integrated with the communi-
cation channels of the array, providing point-to-point connections with data
handshaking. Figure 5.7 shows an XPP with two identical processing array
clusters.

Figure 5.7: The XPP containing two identical processing array clusters

The array elements can be configured to execute their operations when
triggered by an event signal indicating that new data is available at the
input ports. A new output can be produced every clock cycle and the result
constitutes a data output and an event signal indicating that data is ready
on the output port. The ALU-PAE comprises a data path, with two inputs
and two outputs, and two vertical routing resources. The vertical routing

38 Reconfigurable Architectures - A survey 5

resources can also perform some arithmetic and control operations. One
of the two is used for forward routing and the other for backward routing.
The forward routing resource (FREG) is, besides for routing, also used for
control operations such as merging or swapping two data streams. The
backward routing resource (BREG) can be used both for routing and for
some simple arithmetic operation between the two inputs. There are also
additional routing resources for event signals which can be used to control
PAE execution. The RAM-PAE is exactly the same as the ALU-PAE except
that the datapath is replaced by a static RAM. The RAM-PAE can be
configured to act either as a dual-ported memory or as a FIFO.

The configuration manager (CM), a small microcontroller block, config-
ures the function of the ALUs and the connections between them. Various
CMs are organized in a hierarchical tree, enabling the concurrent configura-
tion of processing array clusters.

5.4.4 Adaptive System-on-a-Chip (aSoC)

Adaptive System-On-a-Chip (aSOC) [12, 28, 29], is a modular communi-
cations architecture developed at University of Massachusetts (UMASS).
aSOC is primarily an interconnect architecture, based on static scheduling
of virtual interconnects onto a highly characterized and regular physical
interconnect fabric. The basis for this architecture is that on chip coordina-
tion of communication between cores in data intensive applications can be
predicted on per application basis and can be statistically scheduled. This
approach emphasized hardware minimization and interconnect performance
at the cost of some flexibility.

Figure 5.8: Adaptive System on-a-Chip (aSOC)

As shown in Figure 5.8, an aSOC device contains a two-dimensional
mesh of computational tiles. Each tile consists of a core and an associated
communication interface. The interface design can be customized based
on core datawidths and operating frequencies to allow for efficient use of

5.4 Reconfigurable Architecture Examples 39

resources. The core interface manages communications through each tile
and synchronizes global communications. Communication between nodes
takes place via pipelined, point-to-point connections. By limiting inter-
core communication to short wires with predictable performance, high-speed
communication can be achieved.

5.4.5 Quicksilver’s adaptive computing machine (ACM)

Quicksilvers’s ACM technology [25, 35] is based on the development of het-
erogenous systems on chip. The ACM is essentially a collection of adaptive
heterogeneous algorithmic engines, called nodes, which are connected via an
adaptable network. The structure of the ACM is completely scalable. An
embedded controller configures a network of nodes in such a way that they
represent a data flow graph instantiated in hardware. This configuration
can be changed every clock cycle, if need be, at minimal cost. Figure 5.9
illustrates the two basic components of the Adapt2400 ACM architecture.

Figure 5.9: ACM architecture

There are two basic components in the ACM architecture.

1. Nodes: Nodes are the computing resources in the ACM architecture
that perform the actual work. Nodes are heterogeneous by design,
each being optimized for a given class of problems. Each node is
self-contained with its own controller, memory, and computational re-
sources. As such, a node is capable of independently executing al-
gorithms that are downloaded in the form of binary files, known as
Silverware

2. Matrix Interconnect Network (MIN): Tying the heterogeneous nodes
together, the MIN is a homogeneous network that carries data, Sil-
verware, and control information between ACM nodes, as well as be-
tween nodes and the outside world. This network is hierarchical in
structure, providing high bandwidth between adjacent nodes for close

40 Reconfigurable Architectures - A survey 5

coupling of related algorithms, while facilitating easy scaling of the
ACM at low silicon overhead. Each connection between blocks within
the MIN structure simultaneously supports 32 bits of data payload in
each direction. Data within the MIN is transported in single 32-bit
word packets, with addressing carried separately. Each 32-bit transfer
within the MIN can be routed to any other node or external interface,
with the MIN bandwidth fully shared between all the nodes in the
system.

ACM nodes are configured/programmed using a binary file called Silver-
Ware, which is much smaller than that of a typical FPGA configuration
file, and is comparable to the program size of a DSP or RISC processor.
The smaller binary file size, combined with hardware specifically designed
to adapt on the fly, allows the function of a node to change in as little as
a few clock cycles. Nodes are constructed of three basic components: The
node Wrapper, nodal memory, and the algorithmic engine. The node Wrap-
per has two major functions: 1) To provide a common interface to the MIN
for the heterogeneous Algorithmic Engines; 2) To make available a common
set of services associated with inter-node communication and task manage-
ment. Each node is nominally equipped with 16 kilobytes of nodal memory
organized as four 1k x 32 bit blocks. Each heterogeneous node type is dis-
tinguished by its algorithmic engine. The computational resources of each
node type is closely matched and optimized to satisfy a finite range of algo-
rithms at a specific performance/price/power consumption level demanded
by image processing and communications systems.

The MIN also differs from the interconnects of conventional reconfig-
urable IC designs in that the concept of dedicated wires does not exist.
Each word of data to be transferred between nodes is routed individually,
on a clock-cycle-by-clock-cycle basis.

5.4.6 Reconfigurable Communications Processor (RCP)

Chameleon System’s RCP [26] was intended for wireless base stations. It
addresses not only the computational demands but also programmability
and run time adaptability. It is a SOC that includes a 32-bit arithmetic
reconfigurable fabric (RPF), a 32-bit GPP and programmable I/O. The
main Architectural blocks of RCP are shown in Figure5.10.

The interface between the main blocks of the system is the 128 bit ’Road
Runner’ bus. For off-chip communication, it incorporates a PCI bus, a 64-
bit memory bus and 160 pins for programmable I/O. The RPF consists of
data processing units, local storage and interconnect structure. It has a two-
dimensional array of identical processing tile as shown in Figure 5.11. A slice
is the basic unit of reconfiguration and can be reconfigured independently
of other slices. The RCP configuration system consists of a configuration

5.4 Reconfigurable Architecture Examples 41

Figure 5.10: RCP architecture

Figure 5.11: Reconfigurable processing fabric and tile architecture

controller and two configuration planes. The active configuration controls
the RPF and the background plane can hold another configuration. The
RPF can be configured in one clock cycle by switching the background and
the active plane.

5.4.7 Universal Communications Coprocessor (UCC)

The Universal Communications Coprocessor (UCC) [14] has been devel-
oped specifically for use in SoC designs where SDR functions are required.
It contains configurable signal processing blocks which perform functions
that are common to the majority of radio standards, such as frequency cor-
rection, sample rate conversion, filtering and error correction. It uses a
programmable SIMD processor with an instruction set tailored to complex
vector processing for demodulation and modulation and behaves as an in-
telligent peripheral, communicating with the host processor using interrupts
and mailboxes. This approach allows the host processor to interact with the

42 Reconfigurable Architectures - A survey 5

UCC in a flexible manner, without imposing a heavy load on the host.

Figure 5.12: A SoC design incorporating the UCC

The UCC can handle real-time operations with very low response la-
tency, and can communicate with the host processor in a relaxed fashion by
exchanging messages on a schedule defined by the host.An example of a SoC
design that uses the UCC is shown in Figure 5.12. The UCC contains three
processing blocks, each with processing capabilities appropriate to a set of
SDR tasks. The Signal Conditioning processor (SCP) performs quadrature
mixing, digital resampling, interference rejection filtering and decimation.
The Modulation and Coding processor (MCP) is a programmable processor
with an instruction set optimized to the processing of vectors of complex
data. The Error Correction processor (ECP) is to support the channel cod-
ing schemes used in many standards.

5.4.8 Dynamically Reconfigurable Architecture (DReAM)

DReAM [11], developed at Darmstadt University of Technology, consists of
an array of concurrently operating coarse-grained Reconfigurable Processing
Units (RPUs). Each RPU is designed for executing all required arithmetic
data manipulations for the data-flow oriented mobile application parts, as
well as to support necessary control-flow oriented operations. The complete
DReAM array architecture is shown in Figure 5.13. It connects all RPUs
with reconfigurable local and global communication structures. In addition,
the architecture provides efficient and fast dynamic reconfiguration possi-
bilities for the RPUs as well as for the interconnection structures, e.g. only
partly and during run-time while other parts of the reconfigurable architec-
ture are active. This architecture consists of a scalable array of RPUs that
have 16-bit fast direct local connections between neighboring RPUs, whereas
each subarray of four RPUs shares one common Configuration Memory Unit
(CMU). The CMU holds configuration data for performing fast dynamic re-
configuration for each of these four RPUs and is controlled by one responsible
Communication Switching Unit (CSU). Each RPU consists of two dynami-

5.4 Reconfigurable Architecture Examples 43

Figure 5.13: Hardware Structure of the DReAM Architecture

cally reconfigurable 8-bit data paths, (Reconfigurable Arithmetic Processing
Units, RAPs), one Spreading Data Path (SDP), one RPU-controller, two
dual port RAMs, and one Communication Protocol Controller.

5.4.9 RAW Processor

Figure 5.14: Raw microprocessor die photo and tile diagram

44 Reconfigurable Architectures - A survey 5

RAW Processor architecture [20,31], developed at MIT, is in principle a
chip multiprocessor, constituting an array of 16 full scale MIPS-like RISC
processors called tiles (see Figure 5.14). Large portions of a RAW tile con-
stitute instruction fetch and decode units, a floating point unit and units for
packet oriented interconnection routing. The tiles are connected by four 32-
bit point-to-point, on-chip, pipelined, mesh interconnection networks: two
static and two dynamic. To reduce power consumption in the Raw proces-
sor, a toggle-suppression strategy is followed. This ensures that wires in the
system do not toggle unless they are actually computing something useful.
Characteristic for RAW is the high I/O bandwidth distributed around the
chip edges and the dynamic and static networks that tightly interconnect
the processors, directly accessible through read and write operations in the
register file of the processors. The Raw I/O port is a high-speed, simple (a
three-way multiplexed I/O port has 32 data and five control pins for each
direction), and flexible word-oriented abstraction that lets system design-
ers proportion the quantities of I/O devices according to the application
domains needs. Memory intensive domains can have up to 14 dedicated
interfaces to DRAM. Other applications may not have external memory :
a single ROM hooked up to any I/O port is sufficient to boot Raw so that
it can execute out of the on-chip memory. In addition to transferring data
directly to the tiles, off-chip devices connected to Raw I/O ports can route
through the on-chip networks to other devices to perform direct memory
accesses (DMAs).

5.4.10 A Medium-grain Reconfigurable Cell Array

This architecture [30] tries to bridge the gap between fine-grain and coarse-
grain reconfigurable devices. In this approach, the device contains an a 44
matrix of reconfigurable elements (see Figure 5.15), each of which handles
a small portion of the overall operation. Users can tailor the device to the
processing task at hand by controlling the word length, number of parallel
functional units, and functional unit connectivity. More generally, exposing
these hardware resources to software management allows for more efficient
parallelism via the tradeoff of temporal and spatial utilization of the device.
Sixteen 4-bit busses connect each cell to its eight neighbors.

Each cell contains four main components : The processing core performs
the 4-bit operations necessary for DSP computations; The switch routes
data between the cell and its neighbors; The interface contains buffers and
pipeline latches to improve performance; Finally, the control circuitry buffers
the global clock signal and manages the reconfiguration process.

5.5 Architectural considerations for DSP design 45

Figure 5.15: Portion of reconfigurable cell array

5.5 Architectural considerations for DSP design

From the discussion in the beginning of this chapter, it is clear that the
ongoing trend of enriching more and more functionality in the hardware
requires novel architectures in the present day SOC designs. Lot of work
is currently being done to meet the conflicting demands of flexibility and
efficiency in real time DSP applications. Too much flexibility leads to a larger
chip area, whereas, too little flexibility limits the algorithm domain. For
proper design choices one need to consider area, performance, power figures,
design efforts and various other factors like scalability, design automation
etc.

In the architectures mentioned above, more flexible solutions than ASICs
and more efficient solutions than GPPs are sought for. The common design
approach is to identify domains of applications and design an architecture
that supports this entire domain rather than going for the acceleration of
one specific calculation. This enables building domain specific architectures
rather than application specific architectures. Further, by the use of recon-
figurable hardware it is possible to accelerate larger parts of the algorithms
than with a fixed computer architecture.

There are lot of projects going on or has been done recently in the in-
dustry and academics to explore the various possibilities for reconfigurable
DSP hardware. A single reconfigurable processing element, called tile, is
the minimal processing entity in these projects. These designs incorpo-
rate parallel, reconfigurable array structures consisting of homogeneous or

46 Reconfigurable Architectures - A survey 5

heterogenous tiles connected in an optimal way to obtain flexibility and per-
formance. Various points that can be learnt from above mentioned projects
are enlisted below. These points are starting point of our architecture design
(next chapter).

• Architectures that target a smaller set of applications can be more
efficient than general-purpose devices and must be pursued. In the
above architectures, flexibility is recommended to the extent that is
needed in these designs, unlike GPPs.

• Most of the above approaches recommend coarse-grained datapath
design and discard the fine grained design approach (as in FPGAs),
because of excessive programming overhead.

• All of the above mentioned systems are tile-based systems. This allows
easy scalability and upgradability, datapath optimization and testing.

• The interconnection network that links the memories and the process-
ing elements must support high data rates and must be flexible enough
to support the required communication patterns that are commonly
seen in DSP kernels.

• Communication between various units should be optimized and must
be reconfigurable.

• The control structure that is used to coordinate computational activi-
ties within multiple parallel processors and memories must be efficient
and scalable.

• Some algorithms can be mapped on hardware in one-to-one manner.
Some other algorithms can be optimized further for easy implemen-
tation. This may involve retiming, pipelining and other optimization
tricks for optimal use of hardware resources.

• Unwanted glitches wastes lot of energy. So, register the inputs, if
possible.

5.6 Comparison of different approaches

The Data processing elements in the architectures mentioned above span a
quite wide spectrum from pipelined full scale processors [20, 35] to simple
ALUs [40]. Accordingly, these coarse-grained architectures paradigms range
from one end with chip multiprocessor with dedicated control and program
sequencing circuitry (the RAW processor developed at MIT) to the other
end with an ALU array (the XPP processor from PACT XPP Technologies)
with resources only for pure dataflow processing.

5.7 Conclusion 47

An implementation study with respect to processing efficiency in FFT
computation has been done in the [17] on these two extreme ends of coarse-
grained paradigms. The implementation study shows that a considerable
part of the resources are used for implementing the control structures in
the FFT implementation. Computations shows that using about 15 percent
of the peak performance, for computations in an application, would still
mean that the ALU array is competitive compared to the more traditional
chip multiprocessor architecture. Theoretically, this means that up to 85
percent of the ALU resources, can be used to implement control functions
for complex algorithms, still the ALU array could be more effective than
a chip multiprocessor, when comparing performance-area. It can easily be
concluded that the peak performance of XPP is much higher than RAW,
but it is difficult to program XPP and most of the time full processing
power cannot be completely realized in the implementation. The results of
implementation study show that although, the ALU-array is more efficient
than chip multiprocessor, still the control operations occupies about 75-
percent of total processing power. So, only 25-percent of processing power
is used for actual computations.

5.7 Conclusion

In this chapter, we have elaborated the need for domain specific processors
for DSP applications. These processors improve the performance of SOC
designs compare to GPP based systems. But, as discussed in the previous
section, these architectures have their own limitations because these designs
are always a trade-off between performance and flexibility. For real-time high
computation applications, there is still a big question on the performance
of domain specific processors. In fact, when we consider the performance
requirements of our SDR system and the performance of recently designed
Montiun TP based system, we can easily conclude that one Montium TP
based system will not be able to meet the data processing demands. This
point will become more clear later on in chapter 8. So, we need multiple
TPs in the system. This not only requires extra resources but also wastes
lot of energy due to extra peripheral communication between two any two
processors.

This thesis proposes an ASIC-like reconfigurable design for the chosen
set of SDR algorithms. This design is explained in the next chapter.

6

Architecture Design

The study done in the previous chapter has motivated us to have an ALU-
array like architecture instead of a simple multiprocessor architecture for our
implementation. The reason being the ALU- array makes more efficient use
of the silicon area than a multi processor [17]. Still, this means that lot of
computational resources will be wasted in the control elements, if we try to
implement control on the tiles from XPP like architectures as is done in the
afore-mentioned implementation study. The main reason for this wastage
lies in the fact that control operations are generally quite different from
data processing operations. So, a normal ALU-like element designed for
data processing cannot perform the computations corresponding to control
operations very efficiently. To overcome this bottleneck, we propose to keep
the data processing ALU array-like architecture for data processing parts
of algorithms and design separate hardware for control operations. In this
way, control operations are implemented on the hardware that is optimally
designed for it. This should improve the computational efficiency of the sys-
tem. In a way, our approach is to separate the data processing operations
and control operations of algorithm domain first and then design the hard-
ware separately. This is due to the fact that most of the DSP algorithms
can be characterized by highly parallel dataflow and repeated calculations.
Thus, it should be possible to allocate most of the hardware resources to the
parallel datapath and only minor parts to the control of the computations.
Since the control steps of our algorithm can easily be described in a state-
machine, so the hardware corresponding to them can easily be designed in
a state machine following the predetermined schedule of operations.

6.1 Design approach

In this thesis, we propose a solution which is optimized for our specific algo-
rithmic domain. Our algorithm domain is limited to the DSP algorithms for
each stage of SDR receiver. In the proposed architecture, the basic approach

49

50 Architecture Design 6

is to limit the flexibility of design to the algorithms of interest (OFDM and
channel-selection). This limited flexibility requirement will result in only
moderate-degradation of the ASIC performance. This is in contrast to var-
ious designs discussed in previous chapter, where the approach is to incor-
porate the sufficient flexibility to support the application domain. So, our
approach is to design a flexible ASIC-like system for specific algorithms only.
Our design approach has four main steps.

1. In the first step, we are identifying the dominant kernels of our al-
gorithm domain. This step is similar to any domain-specific design
mentioned previously and requires careful reviewing of the tailored
application’s area requirements.

2. In the second step, we have designed the optimal control hardware for
our algorithm domain. This is in contrary to various hardware- de-
sign approaches mentioned in the previous chapter because all those
approaches put their attention towards the dominant data processing
operations only. But as indicated above, lot of resources are wasted,
if we used the normal data processing elements for control operations.
One can argue to use a GPP for control operations, but this would
again mean one will use hardware not tailored to perform the desired
operation and also waste extra resources, due to the GPP structure.
This will also mean energy wastage and other disadvantages corre-
sponding to instruction-fetch, decode and execute in the control part
of the system. Our algorithm domain was limited to HiperLAN2 and
Bluetooth only. So, a simple state-machine description of control has
been implemented. The scalability of this control is limited because of
non-programmability. But, the control scheme of the overall system
is scalable in the sense that one can always add extra state machines
or control hardware in the hardware template for schedules that are
not implemented or addressed in the current schemes. Additionally,
one can add limited programmability, if the flexibility of control is
the major concern. This approach is valid, if algorithms are more or
less identified. But, if we want to keep changing the algorithms, the
additional control hardware for each algorithm will make the above
scheme quiet inefficient. Then one should implement the control using
separate control processor(s) as is done in [9, 26]. This is especially
important if design is in the feasibility-analysis phase.

3. In the third step, we have identified the communication patterns in
our algorithm domain as recommended in the [29]. This has helped
us in designing the optimal communication network in the system.
Only those parts of communication are programmable which are re-
ally needed. As far as possible, global busses are minimized to reduce

6.2 Granularity 51

capacitance and cross-talk effects. So, point-to-point and local com-
munication is preferred in our the proposed architecture.

4. In the fourth step, we have identified the memory requirements for our
systems. In this step, we have identified things like how much RAM,
ROM memory are needed, what are the memory bandwidth require-
ments, is it better to reuse the memory by using in-place computations
etc.

It must be emphasized that all the above steps are interlinked and final
outcome is achieved by iteratively following these four steps. In these iter-
ations, various steps may or may not be executed in the same order. The
main components of the proposed design are detailed in this chapter. In
later chapters we will evaluate the performance of our system.

The proposed architecture is a coarse-grained architecture. Basically,
we have identified the parts with similar complexity (in both receivers) and
designed an architecture for them. Also, we have configured the dataflow
among these parts to match the receiver functionality. The proposed archi-
tecture comprises of nine homogenous data-processing tiles , two 128x16 bit
memory (RAM) tiles, one 64x16 bit ROM, a configuration unit to configure
the data and communication network, and a control section in the form of a
state machine to execute algorithm steps sequentially. The control section
also controls the data transfer from datapath elements to memories through
the communication network. It also generates the control signals for the
configuration unit. The architecture view1,2 of the system is shown in Fig-
ure 6.1. Detailed architecture is shown in Figure A.1. Main components of
the proposed architecture are discussed further in this chapter.

6.2 Granularity

The proposed architecture is a coarse-grained architecture. The datapath
is 16-bit wide. This bit-width is calculated based on the SNR required in
our algorithms [27]. Data is taken in (16,10) fixed-point format. Simula-
tion results shows that overflow and quantization errors are within tolerable
limits.(see appendix-B).

6.3 Scalability

The proposed design is based on tiled-architecture approach. A tiled ar-
chitecture in which various tiles are connected by an on-chip network has
a very modular design. The design of a single processing tiles is relatively

1Actual datapath contains nine processing elements, only 8 are shown in Figure 6.1
2CU denotes configuration unit

52 Architecture Design 6

ROM

C
U

MEMORY

D
a
t
a
P
a
t
h

Buffer

C
o
n
t
r
o
l

Figure 6.1: Architecture

simple and allows extra effort for power optimizations at physical level. To
increase or decrease the processing power of our system, we can easily add
or remove tiles. A simplified view of our tiled network is shown in Figure
6.2.

OUT

DPU1 DPU2 DPU3 DPU4

DPU5 DPU6 DPU7 DPU8 DPU9

IN IN IN IN

IN ININININ

OUT OUT

OUT

Figure 6.2: Tiled architecture

6.4 Reconfigurability

The proposed design is reconfigurable within one clock cycle and supports
the chosen subset of the SDR algorithms [39]. So, the algorithm domain
of our design includes FIR filter, half-band filters and radix2-FFT. These
algorithms are also the most common algorithms used to benchmark a DSP

6.5 Datapath 53

system [10, 15]. The dynamic reconfigurability allows time-sharing of hard-
ware resources by pipelining the algorithms. This minimizes the total hard-
ware resources required to implement the complete system. Also, almost all
of the WLAN systems use either phase-modulation or OFDM based mod-
ulation. So, the suitability of our system for phase-modulated and OFDM
based receivers implies that our design can be used in number of WLAN
systems.

6.5 Datapath

In the proposed design, datapath consists of 9 homogenous 16-bit data pro-
cessing tiles called data processing units (DPUs). The detailed view of our
datapath is shown in Figure A.2. A single DPU is depicted in Figure 6.3.
The design of a DPU can be divided into four parts: The processing part,
the storage part, the configuration part and the communication interface.
These parts are shown as arithmetic unit, registers, configuration part and
various input/output ports, respectively, in Figure 6.3. .

R
E
G
I
S
T
E
R
S

A
r
i
t
h
m
e
t
i
c

U
n
i
t

bus2

RHS

LHS

FFTbus

Globalbus

side
out

out

Data Processing Unit

Config Configuration
Part

Input1

Input2

Input3

Figure 6.3: A Data processing unit (DPU)

6.5.1 The communication interface

The communication interface of each DPU supports the use of heterogenous
processing occupying one or more tiles. This interface manages the com-
munication through each tile and synchronizes the global communication.
Each DPU has 3 sets of 16-bit inputs.

• Input1-set is used to read data either from left or from right neighbor
into the registers. The ports corresponding to these inputs are named
as ’LHS’ and ’RHS’.

54 Architecture Design 6

• Input2-set (bus2) is used to read data from globalbus of the system.
There are two global busses in our system. Each global bus is providing
the input to one row of DPUs.

• Input3-set is connected to two point-to-point buses of the system. The
ports corresponding to these inputs are named as ’FFTbus’ and ’Glob-
albus’.

Each DPU has two 16 bit outputs.

• First output (’sideout’) is used to communicate with the adjacent left
and right side neighbors.

• Second output (’out’) is used to communicate data over the system
communication buses. To avoid bus arbitration output ’out’ is a tris-
tate output.

6.5.2 The processing part

Arithmetic
Unit (AU)

out Sideout

Registers

Mux Mult

Mux

Add/
Subt

MuxMux

Figure 6.4: Arithmetic unit (AU) of DPU

The data processing capabilities of DPU are attributed to a 16-bit arith-
metic unit (AU). A functional representation of the AU is shown in Figure
6.4. An AU is purely combinational and is capable of doing the basic 16-
bit arithmetic operations namely add, subtract, multiply, multiply and add,
and multiply and subtract. The input to AU is from internal registers and
outputs are provided on the output ports.

6.6 Control section 55

6.5.3 The storage part

Each DPU comprise of a set of 11 local data registers of 16 bit each. These
registers can be used to store intermediate data variables as required in
FIR data structure. This way of having local registers is far more efficient
than one centralized set of registers [15]. These registers are used to read
data from input ports and to provide data to ALU. In this way, inputs are
always registered, thus minimizing the excessive glitches. Another reason
for having registered inputs is to allow pipelining between various datapath
units. This not only allows the reduction of critical path delay, but also
allows a straightforward implementation of transposed form FIRs.

6.5.4 The configuration part

Each DPU has a local configuration section called ”configuration part”,
which provides the configuration signals to various entities within the DPU.
This configuration section is part of the control hierarchy of the system to
reduce the control overhead significantly [26]. The input to this section
comes from the main configuration unit of the architecture.

6.6 Control section

In the proposed architecture, the control section is implemented as a state
machine corresponding to each algorithm. This is motivated by the fact
that data flow is determined at the design time itself. In the normal oper-
ation, the control system loops through the set of algorithms steps called
a schedule. To compute an algorithm, first the control section is activated
with the corresponding wake-up call. The control section responds by gen-
erating the series of control signals to memory and to the configuration part,
thus controlling the data-operations in the system. In this way, we avoid
the common bottleneck (corresponding to fetch and decode an instruction
before execution) find in normal processor like architecture. This scheme
has obvious disadvantage that each new algorithm needs to be implemented
separately. So, if algorithm is subject to change, one should incorporate the
programming facility in the control.

6.7 Configuration unit

In the proposed architecture reconfigurability is achieved by reconfiguration
of the datapath and reconfiguration of the communication network. These
configuration signals are generated in the Configuration unit (CU). The in-
put of the CU comes from control section in the form of control signals. The
CU decodes these control signals and provide input to local configuration

56 Architecture Design 6

sections of various DPUs. The configuration of the datapath and communi-
cation network is achieved within one clock cycle. This allows dynamic and
static reconfigurations in the proposed architecture. To compute an algo-
rithm, first step is to activate the centralized control section. This control
section then activates the CU on a per clock cycle basis. The CU provides
the input to local configuration of each DPU. Each local configuration part
responds by configuring the corresponding subsection of datapath. This
way distributed control is achieved in the proposed architecture. This is
shown in Figure 6.5. This facilitates high operating speeds and time shar-

Local
configuration

CU

Load/
Store
Data

Execute
(using DPUs)

Control

Start Ready

Figure 6.5: Control Scheme

ing of data and communication network. The low-overhead and dynamic
reconfiguration allows time multiplexing of the processing part.

6.8 Communication network

The communication network consists of two parts: communication within
each DPU and communication between all the entities (DPUs, memory, CU,
control). The communication within each DPU and the communication of
each DPU (via input and output ports) with all other entities in the sys-
tem is controlled by the local configuration section of DPU. The collective
communication interface of all DPUs makes the data transfer part of com-
munication network. This communication network is designed based on the
communication pattern of the algorithms of interest. Dynamic determina-
tion of data-source and data-destinations at run-time is not supported. In

6.9 Conclusion and Summary 57

the proposed architecture, the system connects various tiles , via data and
control busses, based on the predictable communication pattern of algo-
rithm. The number of data-busses are optimized to reduce the capacitive
load. Various registers at each input allow data between neighboring DPUs
to move in a communication pipeline as shown in Figure 6.6. This facil-
itates high operating speeds and time sharing of data and communication
network [29]. The Communication network showing communication between
all the entities of the system can be seen in Figure A.1 and Figure A.2.

R
e
g

Reg

R
e
g

Reg

R
e
g

Reg

Figure 6.6: Communication Pipeline

6.9 Conclusion and Summary

In this chapter, we have elaborated the design of our reconfigurable archi-
tecture. In the next chapter, we will show how the proposed architecture
can be used to implement the chosen subset of SDR algorithms. The main
features of our implementation are given below. Some of these points will
become more clear after reading chapter 7.

• The proposed architecture is a regular tile-based system for easy scal-
ability and testability.

• Our architecture is statically and dynamically reconfigurable. Recon-
figuration is achieved within one clock cycle. So, the datapath does
not remain idle at any moment of time during computations.

• Basic DSP algorithms such as FFT and FIR, which are part of our
SDR project, can easily be mapped onto it. These algorithms are the
two most important algorithms for benchmarking DSP systems.

• Local communication between tiles is limited to left and right neigh-
bors.

• I/O Bandwidth is optimized to meet the demands of the chosen SDR
algorithms.

• Datapath width is fixed to 16 bits.

58 Architecture Design 6

• All data inputs are registered to avoid glitches.

• All DPUs are autonomous. The structure of DPU incorporates func-
tionality and performance for SDR algorithms. To save energy, it is
possible to switch-off tiles that are not used.

• Vertical programming in the the configuration path reduces the control
signals from control to datapath.

• Control is designed as separate hardware in the form of state-machine.

• Time-multiplexing can be used easily to reduce hardware and improve
performance.

• On-chip communication resources are allocated just to suit our appli-
cations (as recommended in [29]).

7

Algorithm Mapping

The proposed architecture (see chapter 6) is designed to implement a chosen
subset of SDR algorithms (see chapter 3).

In this chapter, the mapping of these algorithms on the proposed archi-
tecture is discussed. This includes the elaboration of the data connectivity,
allocation and the scheduling of our design. The performance of these com-
putations will be evaluated in the next chapter. For explanation purposes,
the DPUs are numbered from 1 to 9.

7.1 Mapping of a half-band filter

Incoming data for this block is coming in two separate streams. One stream
is corresponding to the real part of the data and the other stream is cor-
responding to the imaginary part of the data. The filter coefficients and
the computations on real and imaginary data are the same. We allocate
DPU1-DPU4 for the real data and DPU6-DPU9 for the imaginary data.
DPU5 is put to sleep mode. This is shown in Figure 7.1. Each half-band

Real
Data

DPU1-4 DPU5 DPU6-9

Imag
Data

22

Figure 7.1: DPU allocation scheme for Real and Imaginary Data

filter is of 7th order. So, we need 7 basic computations equivalent to a MAC
operation (shown in Figure 4.6). But, we have allocated only four DPUs for

59

60 Algorithm Mapping 7

each filter. This means that we will need two clock cycles to filter one data
sample. The following steps are performed on DPU1-DPU4 during these
two clock cycles to perform the computation for one sample of the real data
stream (Imaginary data is calculated in similar way on DPU6-DPU9).

- Load the real data sample from memory into the globalbus connecting
DPU1-DPU4.

- Each AU is configured for muliply-and-add.

- Read data from global bus input into a data register.

- Read intermediate data value from LHS input into a data register.

- Configure multiplier inputs of the AU: input1 is from stored data cor-
responding to global bus input and input2 is from ’coeff0’ value stored
in another register within the DPU.

- Configure adder inputs of the AU: input1 is from multiplier output and
input2 is from intermediate value corresponding to LHS input stored
in a data register.

- Put adder output into side-out output.

- Tri-state the main output.

The resultant structure is shown in Figure 7.2.

L
H
S

Globalbus

reg1

r
e
g
2

coef0

L
H
S

Globalbus

reg1

r
e
g
2

coef0

L
H
S

Globalbus

reg1

r
e
g
2

coef0

L
H
S

Globalbus

reg1

r
e
g
2

coef0

DPU2DPU1 DPU3 DPU4

Figure 7.2: First clock cycle in half-band mapping

In the second clock cycle, all steps, except the following, are the same as
above.

- Read intermediate data value from RHS input into a data register. In
all operations in the first clock cycles, LHS is replaced by RHS.

7.2 Mapping of matched FIR filter 61

- In DPU1, Put adder output on to the main output. This is filtered
output from half-band filter. Store this output into memory for next
stage.

The resultant structure is shown in Figure 7.3. It is important to note

R
H
S

Globalbus

reg1

r
e
g
3

coef0

R
H
S

Globalbus

reg1

r
e
g
3

coef0

R
H
S

Globalbus

reg1

r
e
g
3

coef0

R
H
S

Globalbus

reg1

r
e
g
3

coef0

DPU4 DPU3 DPU2 DPU1

out

Figure 7.3: Second clock cycle in half-band mapping

that, we are not preforming any multiplication in the second clock cycle.
So, we are reducing the multiplications by 2, because of the linear phase
property. The polyphase representation, discussed in chapter 4, is not used
here because we cannot gain much by reducing the speed of operations in
AU. This speed of operations in AU is determined by other steps. Moreover,
a polyphase implementation will also make the control more complex.

7.2 Mapping of matched FIR filter

The input data after half-band filtering and decimation is processed into 17th

order matched FIR filter. This means that we need 17 basic computations
equivalent to a MAC operation (shown in Figure 4.6). For each sample,
our implementation can range from using one DPU, i.e., 17 clock cycles
for one computation to seventeen DPUs ,i.e., one clock cycle computation.
We propose to use an intermediate solution which uses 2 clock cycles for
one computation of real or imaginary data. Data processing of real and
imaginary parts are done in alternate cycles. This means that there will
be 4 clock cycles of computation for each data input. For this solution we
need 9 DPUs. This decision is the main determining factor for choosing 9
DPUs in the proposed architecture. Scheduling corresponding to real part
is discussed in next few lines. Imaginary part will be calculated in the same
way.

- Load data sample from memory into the global bus connecting DPU1-
DPU4 and into globalbus connecting DPU5-DPU9.

62 Algorithm Mapping 7

- Each AU is configured for muliply-and-add.

- Read data from global bus input into a data register.

- Read intermediate data value from LHS input into a data register.

- Configure multiplier inputs of the AU: input1 is from stored data input
corresponding to global bus input and input2 is from ’coeff1’ value
stored in another register within the DPU.

- Configure adder inputs of the AU: input1 is from multiplier output and
input2 is from intermediate value corresponding to LHS input stored
in a data register.

- Put adder output into ’sideout’ output (Data is flowing from left to
right).

- Tri-state the main output of each DPU.

Dataflow in this clock period is shown in Figure 7.4. Similar, to the

L
H
S

Globalbus

reg1

r
e
g
4

coef1

L
H
S

Globalbus

reg1

r
e
g
4

coef1

DPU-(i+1)DPU-(i)

i=1 to 8

Figure 7.4: First clock cycle in FIR mapping

half-band filtering step, in the second clock cycle, only the following steps
are different.

- Read intermediate data value from RHS input into a data register. In
all operations in the first clock cycle, LHS is replaced by RHS.

- In DPU1, Put adder output on to the main output. This is the filtered
output from FIR filter. Store this output into memory for the next
stage.

Dataflow in this clock period is shown in Figure 7.5. This implementation
allows us to use linear phase property and hence, number of multipliers in
hardware are reduced by half. Also, the speed of multiplication and addition
in the AU is corresponding to the critical path delay of the system.

7.3 Complete dataflow mapping for Bluetooth 63

R
H
S

Globalbus

reg1

r
e
g
5

coef1

R
H
S

Globalbus

reg1

r
e
g
5

coef1

DPU-(i)DPU-(i+1)

i=1 to 8

Figure 7.5: Second clock cycle in FIR mapping

7.3 Complete dataflow mapping for Bluetooth

It is clear from the above that individual steps from the Bluetooth algorithms
can be mapped on to the proposed architecture. For the complete dataflow,
we have two options: 1) Take three instances of the proposed architecture
and do static scheduling, or, 2) Do time multiplexing and use the same
datapath for all three steps of the demodulation. It turns out that for FFT
we need only one instance of the proposed architecture. So, for Bluetooth
also, we should use only one instance of the proposed architecture. This
means that we need to do time-multiplexing of our datapath and perform
the dynamic scheduling. As already indicated, our reconfigurable hardware
need only one clock cycle for reconfiguration. So, we can easily perform this
reconfiguration in real-time. To achieve this, our first step step is to convert
the incoming Bluetooth data stream into data blocks. For this purpose,
we divide the input data into blocks of 32 samples each and perform the
computations. This is shown in Figure 7.6. The size of sample blocks (=32
samples) is a compromise between latency(real-time) requirements of the
system and energy spent in the frequent reconfiguration of the system. Very
small data size will have good latency performance, but it will require extra
energy due to frequent reconfigurations of the system. Very large data size
will perform poorly with respect to latency of the system.

7.4 Mapping of FFT

The HiperLAN2 receiver uses a 64-point FFT for OFDM. The heart of
the FFT is the butterfly computation. As already discussed, we use radix-
2 butterfly for regularity and ease of computation. This means that we
will have 32 butterflies and six stages of computation. The basic butterfly
was shown in Figure 4.10. From the Figure, it is clear that the real and
the imaginary part of a butterfly have a similar structure. For hardware

64 Algorithm Mapping 7

20MSPS

Input
Buffer

Real=32
Imag=32

Samples

Half
Band0

32x2
clocks

DPUs

RAM
Memory

64
clocks

Decimation

Half
Band1

DPUs

RAM
Memory

Decimation

16x2
clocks

FIR DPUs

RAM
Memory

8x2+8x2
clocks

10MSPS

5MSPS

OUT

Figure 7.6: Dataflow mapping for Bluetooth

mapping, we need two ROMs for storing real and imaginary parts of twiddle
factors (= e−j2πk/N). There are 2 memory (RAM) units required for storing
real and imaginary part of data of one stage. In the next few lines, we will
discuss the mapping corresponding to real part of butterfly. This mapping
needs four DPUs each for real and imaginary part of butterfly. So, we will
need use DPU1-DPU8. This means that throughput of our design will be
one butterfly per clock cycle. Therefore, we will need 32 clocks to compute
one stage of FFT. In total we will need 32 ∗ 6 = 192 clocks of computations.
Configuration of each DPU is described below and is also shown in Figure
7.7.

- Configure DPU1 for addition; Read data from FFTbus input and bus2
input; Put the AU output into the Are memory.

7.4 Mapping of FFT 65

FFTbus

b_re

Bus2

a_re

FFTbus

b_re

Bus2

a_re

FFTbus

w_re

Bus2

w_im

Bus2FFTbus

FFTbus

b_im

Bus2

a_im

FFTbus

b_im

Bus2

a_im

FFTbus

w_re

Bus2

w_im

Bus2FFTbus

A_re

A_im

B_re
B_im

R
e
g

R
e
g

Figure 7.7: One butterfly Mapping

- Configure DPU2 for subtraction; Read data from FFTbus input and
bus2 input; Put the AU output onto the FFTbus input of DPU5 and
DPU7.

- Configure DPU3 for addition, Read data from FFTbus input and bus2
input. Put the AU output into the Aim memory.

- Configure DPU4 for subtraction; Read data from FFTbus input and
bus2 input; Put the AU output onto the FFTbus input of DPU6 and
DPU8.

- Configure DPU5 for multiplication; Read data from FFTbus input
and bus2 input; Put the AU output onto the sideout.

- Configure DPU6 for multiply and subtract; Read data from FFTbus
input and bus2 input into multiplier; Put the multiplier output and
LHS input into the subtractor. Put the AU output into the Bre mem-
ory.

- Configure DPU7 for multiplication; Read data from FFTbus input
and bus2 input; Put the AU output onto the sideout.

- Configure DPU8 for multiply and add; Read data from FFTbus input
and bus2 input into multiplier; Put the multiplier output and LHS
input into the adder. Put the AU output into the Bim memory.

- Configure DPU9 for Sleep mode.

This implementation is slightly different from basic butterfly computation.
This is because, we are registering the data output of DPU2. This will cause
one clock latency with respect to Figure 4.10.

66 Algorithm Mapping 7

7.5 Complete dataflow mapping for HiperLAN2

20MSPS

Input
Buffer

Real=64
Imag=64

Samples

FFT:
First
stage

32
clocks

DPUs

RAM
Memory

128
clocks

FFT DPUs32x5
clocks

OUT

16MSPS

Real=64
Imag=64

Samples

Figure 7.8: Dataflow mapping for FFT

The input data is stored in the input buffer and then used for the com-
putation of the first stage of FFT. After the first stage, RAM memory is
used to store the data. So, all the stages (except the first stage) are doing
the in-place computations. Complete dataflow mapping for HiperLAN2 is
shown in Figure 7.8.

7.6 Discussion

In this chapter we have demonstrated the mapping of SDR algorithms onto
the proposed architecture. But, the separation of buffer and memory has
not yet been discussed. Basically, the buffer is used to read the data from
the AD block. This data is coming on a sample-by-sample basis. But, our
operations are performed on blocks of data (block of 80 samples for FFT
and block of 32 samples for Bluetooth). So, we need to buffer the input data
first and convert it into a block of appropriate size. While the input buffer
is filled by AD block, our data processing path should not remain idle. This
is because of real-time application requirements, which needs as low latency
as possible. Hence, we introduce pipelining into our archutecture. We fed
the data block from the input buffer for the first stage of SDR algorithms
and store the intermediate results into RAM memory unit. Subsequent
computations will access data from RAM. This means that AD block can
feed the input buffer with further data and when the computations on one

7.6 Discussion 67

block of data is finished, datapath can immediately start processing new
block of data. In this way, datapath will not remain idle at any time during
algorithm execution.

The realization of above concepts are done using a SystemC RTL de-
scription. Datapath and control are synthesized in 0.18µ technology. The
synthesization results and performance evaluation of our system is done in
the next chapter.

8

Synthesis and Evaluation

The proposed architecture and the mapping of chosen algorithms on the
proposed architecture has been described in previous chapters. This chapter
elaborates on the synthesis results and evaluates the design after hardware
realization. Section 8.1 discusses the minimum speed requirements that the
design must fulfill to meet the SDR receiver requirements. In section 8.2,
the synthesis results for the proposed design are presented. The synthesis
results for each receiver (Bluetooth and HiperLAN2) individually, are also
discussed there. Section 8.3 summarizes the performance of Montium TP,
when the chosen SDR algorithms are mapped onto it. Section 8.4, compares
the performance of the proposed system with the performance of Montium
TP for the chosen SDR algorithms. Section 8.5 compares the proposed
design and implementation, with respect to the FFT computation, with
some other designs .

8.1 Performance requirements

In this section, the estimation of the minimum speed requirements of the
proposed system is given.

8.1.1 Speed requirements for the OFDM datapath

As shown in Figure 7.8, input data is coming at 20 MSPS. One OFDM
symbol contains 80 complex input samples. The first 16 samples of each
OFDM symbol are the same as the last 16 samples (OFDM cyclic shift
property). So, a useful data-input to the OFDM demodulator is 16 MSPS.
In the proposed implementation, we can perform one butterfly computation
in each clock cycle. For a 64-point FFT, using radix-2 computation, we
need1 64/2 ∗ 6 = 192 clock cycles. This would mean that at least 192 clock
cycles are needed in 4 µs duration. So, minimum clock frequency required is

1N/2*log2N

69

70 Synthesis and Evaluation 8

48 MHz. This means that the system computes one OFDM symbol every 4
µs, when running at 48 MHz. But, for real-time operation, we need to reduce
this latency. Hence, in the actual system we need to compute the FFT at
higher frequency than 48 MHz. The actual speed will be determined by the
overall complexity and the latency requirements of the complete receiver.

8.1.2 Speed requirements for the Bluetooth datapath

As shown in Figure 7.6, a block of 32 complex samples will require 64 + 32 + 32
= 128 clock cycles for channel selection. Again, the input data rate is 20
MSPS. Thus, the time for each sample will be 50 ns. This means that 32
samples should be processed within 32 ∗ 50 = 1600 ns. This means that
the minimum clock frequency required will be 80 MHz. Assuming, input
buffering requires 64 clock cycles to buffer 32 complex samples, this means
that the latency will be 128 + 64 = 192 clock cycles. At 80 MHz clock
frequency, this is 2.4 µs. If input buffering requires 32 clock cycles, then the
latency will be 2 µs.

8.1.3 Overall speed requirements

The control section, configuration section and memory should be able to
run at the frequency corresponding to the maximum of minimum datapath
frequency required of the two receivers. This means that if minimum data-
path frequency is 80 MHz, then control, configuration and memory blocks
should also be able to run at least at 80 MHz. In that case, the overall speed
requirement of the system will be 80 MHz. This should not be a problem
as the control part performs relatively simple computations.

It is clear from the discussions in this section that the speed of datap-
ath operations will be determined by the minimum frequency of operations
needed to meet the latency/real-time requirements of the overall system.

8.2 Synthesis results

The design has been synthesized using the 0.18µ UMCL18U250 CMOS tech-
nology. This process has a density of 82 kgates/mm2. For ASIC synthe-
sis, worst case conditions (Vcc= 1.65V and Temperature = 1250C) are as-
sumed. The area estimated by the synthesis tool does not include area due
to wiring/routing. Additional area needed for wiring is assumed to be 10
percent of the total area (a realistic figure according to Philips Research
experts [26]). This area is also included in the total area estimation of the
system.

8.2 Synthesis results 71

8.2.1 Synthesis results for the SDR receiver

The results of synthesis are shown in Table 8.1. These results indicate
that the proposed system approximately requires 0.6 mm2 of silicon area
and has a critical path length of 5.3 ns. Thus, the maximum operating
frequency of the system is 188 MHz, which is well above the minimum
operating frequency estimated in the previous section. This gives us enough
room to play with the latency requirements of the overall system. The

Component Area[µm2] Critical Path[ns]

DPU(x9) 510000 5.3
Control 26000 3.8

CU 1300 -
Wiring 62700 -

Resultant 600000 5.3

Table 8.1: Synthesis results for SDR receiver

results of synthesis are used as an indicator to evaluate the performance
of our system. It is important to note that we have not included the area
required due to various memories (RAM, ROM, Buffer) in the system. In
the proposed design, we need two RAMs of 128x16 size each and one ROM
of 64x16 size. From the above results, it is clear that majority of area is
consumed by the datapath of the system. The control part consumes less
than 5 percent of the total area.

In the sub-sections below, an estimation of the area requirements of each
receiver, when designed individually on the separate hardware, is given.

8.2.2 Synthesis results for the Bluetooth receiver

If only Bluetooth receiver needs to be designed, then we will need all nine
DPUs. But, the area corresponding to multiplexing due to various modes
of DPU will be reduced. In this case all of the DPUs will need to have
modes corresponding to different modes for Bluetooth operations only. We

Component Area[µm2] Critical Path[ns]

DPU(x9) 480000 5.3
Control 18000 2.4

CU 1300 -
Wiring 50700 -

Resultant 550000 5.3

Table 8.2: Synthesis results for Bluetooth receiver

72 Synthesis and Evaluation 8

estimate that there will be less than 5 percent of area gain in each DPU.
This will mean that one DPU will need an area of approximately 53300
µm2. Further, the CU will also require smaller area. But, this reduction
will also be insignificant compared to the total area of the system. The
control section (i.e., FSM), in this case, will need 18000 µm2 area. So, total
area required will be 550000 µm2. These results are shown in Table 8.2.
Also, there will not be any ROM required in the system and RAM memory
requirement will also be reduced to one RAM of 64x16 size and another
RAM of 32x16 size. Additionally, the memory bandwidth requirement will
be reduced. This will result in further reduction of wiring area. The critical
path for DPUs will be the same as in the current implementation, but the
critical datapath length for the control section will be reduced to 2.4 ns. So,
the maximum operating frequency of the system will remain at 188 MHz.

8.2.3 Synthesis results for the HiperLAN2 receiver

In the HiperLAN2 mode, we need only 4 multipliers and 6 adder/subtractor
blocks for each butterfly computation (see Figure 4.10). Also, the DPU
modes corresponding to various filter stages are not required. This means
that there will be a reduction of at least 55 percent in the datapath area.
Secondly, the control section, in this case, will require 12000 µm2 area. The

Component Area[µm2] Critical Path[ns]

DPU(x9) 230000 5.3
Control 12000 2.3

CU 1300 -
Wiring 47700 -

Resultant 290000 5.3

Table 8.3: Synthesis results for HiperLAN2 receiver

CU part will remain more or less the same. So, total area required will be
290000 µm2. These results are shown in Table 8.3. Also, the memory and
memory bandwidth requirements will remain same. The critical path length
in control section will be reduced to 2.3 ns, but the critical path length in
datapath will remain the same. So, maximum operating frequency of the
system will remain at 188 MHz.

8.3 Performance of Montium TP

As mentioned in chapter 5, Monitum TP has been designed recently. A
Montium TP requires approximately 2 mm2 silicon area in 0.12µ Philips
CMOS technology. The results in this section are directly taken or derived
from [26].

8.3 Performance of Montium TP 73

8.3.1 Montium mapping : OFDM

An OFDM symbol can be decoded using a single TP. The maximum fre-
quency of operation in this mode is 100 MHz and it will take 204 clock cycles
to perform the FFT. The configuration time is 473 clock cycles, which will
be required in the initialization phase. Streaming in the input data will
require 64 clock cycles more and to read 52 samples at output will need 52
extra clock cycles. So, in a sequential scenario, where the input is loaded,
the algorithm is executed and data is retrieved, a total of 320 clock cycles are
needed. Consequently, the tile processor has to run at 80 MHz to perform
the FFT within a 4 µs time window. If the FFT algorithm is implemented
in a streaming fashion, then the communication time can be neglected and a
clock frequency of 51 MHz would suffice but at the moment communication
and configuration unit (CCU) are the limiting factors for this.

8.3.2 Montium mapping : Bluetooth

Montium TP can run at 140 MHz maximum clock frequency in FIR con-
figuration. In a single clock, a Montium TP can compute five taps of a
filter. This means that a single half-band filter of 7th order will require two
clock cycles to compute one sample (either real or imaginary input stream).
Similarly, a matched filter of 17th order will require four clock cycles. Also,
in a sequential scenario, input data must be stored in the local memories
before computation can start. This will take one clock cycle each to store
the one sample of input data and one clock each to retrieve one sample of
output data. Configuration time for FIR filter varies from 50 to 200 clock
cycles and will be required in the initialization phase.

The input data stream (complex) is providing samples at 20 MSPS. So,
each sample must be processed in 50 ns time duration. The first halfband
filter will require 2 clock cycles for real data and 2 clock cycles for imaginary
data. The second half-band filter stage will also need 2 clock cycles for
real and 2 clock cycles for imaginary data samples. But, data samples are
decimated by 2 after first half-band filter. So, each complex input data
sample will require (2 + 2) + (2 + 2)÷ 2 = 6 clock cycles in this stage. Then
the next stage corresponding to the FIR filter will require 4 clock cycles for
real data and 4 clock cycles for imaginary data. Since the input to the FIR
is decimated by 4 from original input stream, so the FIR, on an average,
will require (4+4)÷ 4 = 2 clock cycles for each complex input data sample.
Therefore, total of 8 clock cycles are required by one bluetooth sample on
Montium TP. This will mean that Montium TP need to run at 8÷50e-9
= 160 MHz. This is more than the maximum clock frequency of the TP.
Therefore, mapping of Bluetooth will require at least 2 Montium TPs. The
communication between these two processors will go through peripherals
and will consume additional energy. Also, the CCU needs to be improved

74 Synthesis and Evaluation 8

to allow the above mentioned real-time data operations.

8.4 Comparison of proposed design with Montium
TP

It is clear from the previous section that it will be very difficult for a single
Montium TP to satisfy the real time requirement of the parts of HiperLAN2
receiver we chose to implement. In the case of Bluetooth receiver, even if
we use the Montium TP with maximum operating frequency, still we will
need 2 TPs to realize the various filter stages. It is very difficult to exploit
the linear phase property of the filters because FIR matched filter requires
4 clock cycles. Also, the more general bus network in Montium TP implies
more energy wastage in charging and discharging of redundant capacitances.
The configuration time of a Montium TP varies depending on the algorithm
e.g. a 64-point FFT needs 473 clock cycles and an FIR filter of 20th order
needs 270 clock cycles.

The Montium TP occupies 2 mm2 area in CMOS12 process from Philips
[4]. The maximum clock frequency for Montium TP, is according to the
synthesis tool, about 40 MHz. It is estimated that the Montium TP ASIC
realization can implement an FIR filter at about 140 MHz and an FFT at
about 100 MHz. The CMOS12 process has a gate density of 200 kgate/mm2.
So, if we normalize our synthesis results to this process, our implementation
will need 0.24 mm2 area (approximately 8 times smaller than one Montium
TP). But, it is important to notice that in the Montium TP, approximately
0.5 mm2 area is occupied by RAM memory. In our system, we need a RAM
of 256x16 size and a ROM of 64x16 size, which will occupy an additional
area of approximately 30000 µm2 in our system.

On the other hand, the Montium TP has much more flexibility and
is suitable to implement a number of DSP algorithms [26]. In the design
space, our system is closer to the ASIC implementation than the Montium
TP (which is a domain-specific reconfigurable accelerator for the chameleon
SoC).

8.5 FFT Implementation on other architectures

In this section we will discuss briefly some other designs with respect to area
and speed for FFT computation. The results are taken directly from [26].

8.5.1 FASRA

An FFT algorithm-specific reference architecture (FASRA) was developed
in order to compare the Montium TP with both an ASIC and an FPGA. The
FASRA is a dedicated FFT processor capable of computing upto 1024-point

8.5 FFT Implementation on other architectures 75

FFTs. It can be thought of as an algorithm specific instruction processor
(ASIP). The datapath of FASRA is shown in Figure 8.1. It can compute
one radix-2 butterfly per clock cycle. A FASRA ASIC with 16-bit datapath

Figure 8.1: FASRA datapath architecture

was designed in VHDL and synthesized in CMOS12 process from Philips.
The area (excluding wires) of the resulting ASIC is 0.63 mm2. The area of
the datapath is 0.62 mm2. There are ten data memories of 512x16 size each
in the datapath. These memories will consume an area of about 0.46 mm2.

76 Synthesis and Evaluation 8

So, the effective area used by computational part in the datapath is 0.16
mm2. The area of the controller is 0.01 mm2. The maximal clock frequency
for the FASRA ASIC is 120 MHz.

On a Xilinx Virtex-II Pro FPGA (CMOS12 process), with smallest de-
vice (XC2VP2) for syntheis, the maximum clock frequency of FASRA is 63
MHz.

8.5.2 Avispa

The Avispa block accelerator from Silicon Hive [5] has been developed for
efficient and reconfigurable acceleration of DSP algorithms such as OFDM.
The Avispa has in total 75 function units, which include four 16x16 mul-
tipliers. In CMOS12 process, it occupies 6.5 mm2 area and the maximum
clock frequency is 150 MHz. It can compute one butterfly per clock cycle.

8.5.3 ARM920T

The ARM920T is a 32-bit GPP. In 0.13µ technology, it has an area of 4.7
mm2 area and a maximal clock frequency of 250 MHz. A single butterfly
computation on it takes 21 clock cycles. so, the FFT butterfly frequency of
an ARM running at 250 MHz is 12 MHz only.

8.5.4 Comparison of different implementations

Table 8.4 depicts a quick comparison (for butterfly computation) of different
designs mentioned above. We have chosen to compare FFT (butterfly), be-
cause we know that in FFT we have about 50 percent of redundant hardware
in our implementation (see section 8.2.3).

Architecture Architecture Area Speed
type name [mm2] [MHz]

ASIP FASRA (ASIC) 0.63 120
DSRA Avispa 6.5 150
DSRA Montium TP 2 100
GPP ARM920T 4.7 12

Reconfigurable ASIC Our design 0.24 188
(excl. RAM and ROM)

Table 8.4: Comparison of different architectures for butterfly computation

It is important to note that all these designs, except ours, have lot of
data memories to store data operands and intermediate and final results. For
example, in the FASRA-ASIC, approximately 0.5 mm2 area is occupied by
the RAM memory. For our system, we need an additional area corresponding

8.5 FFT Implementation on other architectures 77

to RAM (256x16) and ROM (64x16). This area will approximately be equal
to 0.03 mm2 in CMOS12 Philips process.

9

Summary and Conclusions

This chapter summarizes the work done in this project regarding realization
of the chosen SDR algorithms on reconfigurable hardware. The design flow
is explained first. In the section 9.2, our architecture design approach is ex-
plained. In section 9.3, the performance results of our system are discussed.
The chapter ends with the conclusions and suggestions for future work.

9.1 Design flow

This project started with acquiring the basic understanding of the SDR
receiver architecture and estimation of the computational complexity of the
SDR algorithms. The channel-selection block in the Bluetooth receiver and
the OFDM block in the HiperLAN2 receiver are the most computationally
demanding parts in our SDR receiver. So, these blocks were chosen to be
implemented in reconfigurable hardware in the project. The algorithms to
be implemented in hardware were further analyzed later on.

The algorithm-analysis step was followed by learning about available
tools and design language for our design. We have used a SystemC RTL
description in Synopsys CoCentric System Studio in this project. The main
reason for using SystemC is that the algorithms were already proven in a
software environment. So, it is logical to use the hardware environment
which resembles that software environment. The RTL description, which
typically leads to a more optimal realization of hardware than a behavioral
description, is used to describe our code. The design methodology of Sys-
temC is described in appendix-C). The SystemC description is independent
of the target technology. This means that a synthesizable SystemC code can
be mapped to virtually any FPGA or ASIC technology. The main drawback
is that efficiency of synthesized code is largely dependent on tooling. So, the
synthesis results are not optimal, but still a good indicator of the actual
design.

In the next step, we have studied and evaluated the various contemporary

79

80 Summary and Conclusions 9

design approaches to implement a reconfigurable system. Based on these
approaches, we have proposed a reconfigurable architecture for our system
and analyzed the mapping of chosen SDR algorithms on it. Various design
decisions with respect to implementation issues had also been taken in this
step.

Following this, we have implemented the architecture and mapped the
chosen algorithms on it. For design description, ’divide-and-conquer’ ap-
proach is followed. Using this approach, we have divided our system into
basic building blocks and the basic building blocks are defined in terms
of separate sub-modules. The correctness of these sub-modules and basic
building blocks has been tested individually. Finally, the complete system
is tested using a testbench environment for each algorithm. In this test-
ing, the tester generates a set of input sequences that initialize the hard-
ware and start the computation on a predefined input data sequence. The
computed results are evaluated against the software computations (floating-
point) from [39]. Finally, the error due to finite precision of hardware is
calculated to ensure that error is within the acceptable limits.

In the next step of this project, we have synthesized our design using
the 0.18µ UMC CMOS technology. The results of synthesis are used to
estimate the performance of our system with respect to the SDR receiver
requirements.

Finally, our synthesis results are compared with the implementation on
a DSRA (Montium TP-recently designed at the UT). The performance of
our architecture with respect to various other architectures is also analyzed.

9.2 Architecture design

It was shown in [17] that a multiprocessor system (RAW) can be pro-
grammed easily in a fashion that uses its peak performance, while an ALU-
array like architecture (XPP) has difficulty in achieving peak performance.
But, the peak performance of XPP is much higher than RAW. In fact, using
about 15 percent of the peak performance for computations in an applica-
tion would still mean that the ALU-array is competitive when compared
with the more traditional multiprocessor architecture.

In our architecture design, we have used the conclusion above to imple-
ment our datapath as an ALU-array. But, as indicated above, the ALU-
array architecture has difficulties in achieving peak performance. The main
bottleneck for this is the inefficient implementation of control operations.
So, to overcome this performance bottleneck, we have separated the datap-
ath operations from control operations and designed the dedicated hardware
for each separately. In this way, we have combined the ALU-array and mul-
tiprocessor approaches to realize and achieve the peak performance in our
system. As indicated in the mapping section, the datapath resources (vari-

9.3 Conclusions 81

ous DPUs) can be used completely for datapath computations in our system,
if required. This shows that it is relatively easy to achieve the peak per-
formance in our system. This can be attributed to the limited hardware
resources required by the control part of our system. This is in contrast to
various approaches mentioned in the chapter 5, where peak performance is
difficult to achieve due to resources claimed by operations corresponding to
the control parts of the algorithms.

Also, in our architecture, we have used the fact that all of the communi-
cation in our system is predetermined. The chosen SDR algorithms do not
require dynamic determination of communication patterns. So, exploiting
the fact that the communication patterns in our system are predictable, we
have optimized the interconnect network of our system. This approach of
interconnect optimization is the basis of [29]. Our architecture has been de-
veloped with the belief that most, if not all, communication in data-intensive
applications can be determined at design-time. This approach emphasized
hardware minimization and interconnect performance at the cost of some
flexibility. It is shown in [28] that this approach gives significant gains in
performance compare to a hierarchical bus-based system-on-chip approach.

Further, to optimize the performance of the system we have incorporated
various design techniques like using:

• smaller busses for capacitance minimization,

• local registers instead of central register schemes (locality of reference),

• registered inputs for datapath to reduce unwanted glitching,

• distributed control instead of a central control,

• preference of short distance communication over long distance com-
munication,

• pipelining in butterfly computation,

• parallel processing, and,

• facility of sleep mode in DPUs.

9.3 Conclusions

This section concludes the work and summarizes the achievements and
lessons learnt through this project.

- In our SDR receiver, the Bluetooth channel selection algorithm re-
quires more datapath resources than the HiperLAN2 OFDM demod-
ulation. On the other hand, HiperLAN2 demodulation needs more
memory and memory bandwidth.

82 Summary and Conclusions 9

- By incorporating limited flexibility in our system, we are able to reduce
the total hardware required to implement the SDR receiver compared
to the implementation in which each receiver is implemented individ-
ually. This is shown in Table 9.1. It can be concluded that an area
reduction of about 25-30 percent can be made in the combined im-
plementation compared to the individual implementations of the two
receivers.

- Dynamic reconfiguration in our system allows time-sharing of hard-
ware resources by pipelining algorithms, thus, increasing the perfor-
mance of overall system at the cost of some latency.

- For state-of-the-art designs, an ASIC implementation with minimal
flexibility can easily outperform the flexible implementation. The re-
sults of our ASIC-like implementation were shown to be superior to
the implementation on more flexible systems. A GPP (ARM920T)
based implementation requires 20 times more area and computes 15
time slower than our ASIC-like implementation. A domain specific
processor like Montium TP requires 15 times more area than our im-
plementation to meet the SDR computational requirements. On the
other hand, flexible solutions like the Montium TP and GPP are su-
perior to our design in terms of suitability for different algorithms
and ease of implementation. So, a design decision based on the per-
formance requirements and implementation costs needs to be taken
before deciding on the platform and methods for the final implemen-
tation of a DSP system. It can be concluded that the performance of
ASIC > ASIP; ASIP >DSRA; DSRA > GPP, while the flexibility of
ASIC < ASIP; ASIP < DSRA; DSRA < GPP.

- By introducing pipelining in the datapath, we are able to perform
computations at higher speed than a non-pipelined datapath (Table
8.4).

- The 16-bit datapath performs satisfactorily for the chosen SDR algo-
rithms.

Component Sum of Separate Combined
Implementations Implementation

Computation area[µm2] 840000 600000
RAM 352x16 256x16
ROM 64x16 64x16

Table 9.1: Area requirements of SDR receiver

9.4 Future work 83

- A high-level description language, like SystemC, can be used to design
VLSI systems. The benefits are in timely and easily realization of a
design. The main drawback is that efficiency of synthesized code is
largely dependent on the tools.

- Almost all of the WLAN systems use either phase-modulation or
OFDM-modulation. So, the suitability of our system for phase-
modulated (Bluetooth) and OFDM (HiperLAN2) receivers implies
that our design can be used in a number of WLAN systems.

9.4 Future work

The last step of this MSc. project was the hardware synthesis. Due to short-
age of time, we were not able to validate the synthesis results. This will be
the next step for the remaining work for the hardware implementation of
the SDR project. Also, in our FFT implementation, we have not performed
the bit-reversing operation on the output. This should be taken into consid-
eration in the next stage of the receiver implementation while reading the
data from the memory. Also, the datapath may be changed to heterogenous
DPUs to reduce the area. The control section can be optimized further.
The butterfly computations in the last stage of FFT can be simplified to
simple addition-subtraction operations. The overflow and underflow condi-
tions need to be incorporated in the complex multiplication and addition
functions. Also, extensive power consumption analysis in the system still
needs to be done.

From the results, it is clear that Bluetooth looks more complex than
HiperLAN2, which is contrary to the initial assumption of the SDR project.
The computational complexity of Bluetooth receiver can be simplified by
reducing the order of filters, or increasing the decimation. Currently, the
decimation factor is 4, which gives data rate of 5 MSPS for 1 MHz Bluetooth
channel. If we change the decimation factor to 6, the data rate will be 3.33
MSPS for 1 MHz channel (a theoretically sufficient number). Also, the
sample rate reduction block after ADC block may also be modified.

In the broader context, the design was made as a subsystem of SDR
transceiver system. Also, the other blocks of the SDR receiver need to be
implemented in hardware. The SDR transmitter needs to be designed and
implemented as well.

A

Appendix A - Architecture
View

The architecture view of the complete system along with the test-pattern
generator is shown in Figure A.1. It is shown here to indicate the connections
between various entities of the system.

The architecture view of the complete datapath is shown in Figure A.2.
It is shown here to indicate the connections between various datapath (9
DPUs) entities of the system.

85

g h i j k l i m n o p k m q r k n j s h h s t u v w m k j w j x s y s z h x { | y } j l ~ o ~

� � �

� � �

� � �
� � �

� � � � � �

� � �

� � �
� � �

� �

� � � s j w � � � t j w y s z �

F
igu

re
A

.1:
A

rch
itectu

re
v
iew

of
th

e
sy

stem

g h i j k l i m n o � | � � u v w m k j w j x s y s z h x { | y } j l ~ o ~

� � �

� � �
� � � � � �

� � �

� � �� � �
� � � � � �� � � � � �

� � �� � �� � �

� � � � � �

� � �� � �

� � � � � � � � �

� � � � � � ¡

� � � ¢ � £ ¤ ¥

� � � ¦ § ¥ � � � �

� � � ¢ � £ ¤ §

� � � � � � ¡

�̈ © � ¡

� � � ¢ � £ ¤ ¦ � � � ¢ � £ ¤ �� � � ¢ � £ ¤ �

ª ©̈

�̈ ©

� � � ¢ � £ ¤ «

� � � � �

�̈ © � ¡¬ � � � � � ®

¤ ̄ ¬ � � � � � °

� � � ¢ � £ ¤ � � � � ¢ � £ ¤ ±� � � ¢ � £ ¤ ²

� � ��̈ ©

� � � s j w � � � t j w y s z �

F
igu

re
A

.2:
A

rch
itectu

re
v
iew

of
th

e
d
atap

ath

B

Appendix B - Floating point
Vs Fixed point system

In this section, the errors due to finite precision, fixed-point datapath in our
hardware implementation are evaluated. For this purpose, we are testing
our hardware implementation against the floating-point software implemen-
tation. The test-vectors used for this comparison are the same test-vectors
which were used to validate the software implementation of the SDR re-
ceiver.

B.1 OFDM

Figure B.1 shows the SNR degradation in the real part of the fixed-point
hardware implementation compared to the floating point software imple-
mentation for the OFDM block of the HiperLAN2 receiver.

Figure B.1: SNR degradation in Real part of the OFDM block

Figure B.2 shows the SNR degradation in the imaginary part of the
fixed-point hardware implementation compared to the floating point soft-
ware implementation for the OFDM block of the HiperLAN2 receiver.

89

90 Appendix B - Floating point Vs Fixed point system B

Figure B.2: SNR degradation in Imaginary part of the OFDM block

The maximum SNR degradtion can be seen to -33 dB, which is well
below the critical SNR (-26 dB).

B.2 FIR

Figure B.3: SNR degradation in Real part of the channel-selector block

Figure B.4: SNR degradation in Imaginary part of the channel-selector block

Figure B.3 shows the SNR degradation in the real part of the fixed-point
hardware implementation compared to the floating point software implemen-

B.2 FIR 91

tation for the OFDM block of the HiperLAN2 receiver. Figure B.4 shows
the SNR degradation in the imaginary part of the fixed-point hardware im-
plementation compared to the floating point software implementation for
the OFDM block of the HiperLAN2 receiver.

The maximum SNR degradtion can be seen to -28 dB, which is well
below the critical SNR (-21 dB).

The above results show that 16-bit fixed point datapath provides suffi-
cient accuracy for the SDR receiver.

C

Appendix C - An
Introduction to SystemC

The standard C and C++ languages lack the constructs necessary for mod-
elling system architecture such as hardware timing, concurrency, and reac-
tive behavior. SystemC [6,42,43] is a C++ class library that can be used to
create a cycle-accurate model of software algorithms, a hardware architec-
ture, for interfacing of SoC (System-on-Chip) and for system-level designs.
In this way, SystemC and standard C++ development tools can be used to
create a system-level model, quickly simulate to validate and optimize the
design, explore various algorithms, and provide the hardware and software
development team with an executable specification of the system. The test-
bench used to test the executable specification can be refined or used as to
test the implementation of the specification. This can provide tremendous
benefits to implementers and drastically reduce the time for implementation
verification.

In the next section, the main features of the SystemC Class Library
are explained. Later on a brief introduction to Synopsys CoCentric System
Studio for algorithmic and architectural design is provided.

C.1 SystemC

SystemC [42, 43] supports the description of hardware, software, and in-
terfaces in a C++ environment. It can be understood as the design and
verification language that spans the full development path from concept en-
gineering to implementation in hardware and software. The SystemC design
approach offers many advantages over the traditional approach for system
level design. The traditional system design methodology starts with a sys-
tem engineer writing a C or C++ model of the system to verify the concepts
and algorithms at the system level. After the concepts and algorithms are
validated, the parts of the C/C++ model to be implemented in hardware are

93

94 Appendix C - An Introduction to SystemC C

manually converted to a VHDL or Verilog description for actual hardware
implementation. This is shown in Figure C.1. This process is very tedious
and error prone due to manual conversion and multiple system tests.

{}

C/C++
System Model

Analysis

Results

Manual
Conversion

Simulation

VHDL/Verilog

Refinement

Synthesis

Rest of Process

Software
Implementation

Hardware
Implementation

Figure C.1: Traditional Design Methodology

With the SystemC approach, the design is not converted from a C-level
description to an HDL in one large effort. The design is slowly refined
in small sections to add the necessary hardware and timing constructs to
produce a good design. Using this refinement methodology, the designer can
more easily implement design changes and detect bugs during refinement.
The SystemC design methodology for hardware is shown in the Figure C.2.

In this way, it can used to support hardware-software co-design and
the description of the architecture of complex systems consisting of both
hardware and software components. The following features of SystemC allow
it to be used as a co-design language:

C.1.1 Modules

SystemC has a notion of a container class called a module. Modules are
the basic building blocks within SystemC for partitioning a design. They
allow complex systems to be broken into smaller, more manageable pieces.
Modules are hierarchical and can have other modules or processes contained
in it.

C.1 SystemC 95

Simulation

SystemC

Refinement

Synthesis

Rest of Process

Software/Hardware
Implementation

Figure C.2: SystemC Design Methodology

C.1.2 Processes

Processes are functions that are identified to the SystemC simulator to de-
scribe the functionality of the system. Processes are contained inside mod-
ules and are called whenever the signals that these processes are sensitive
to change their value. Some processes behave just like functions; these pro-
cesses are started when called and return execution to the calling mechanism
when it has completed. Other processes are called only once at the beginning
of a simulation and are either actively executing or suspended waiting for a
condition to be true. This condition can be a clock edge, a signal expres-
sion, or a combination of the two. Processes are not hierarchical, so they
cannot directly call other processes. Processes can however call methods
and functions that are not processes.

C.1.3 Channels

A channel implements one or more interfaces, and serves as a container for
communication functionality. A channel may be connected to more than
two modules. Different interfaces can also be created by refining predefined
interface types.

C.1.4 Ports

A port is an object through which a module, and hence its processes, can
access a channels interface. The ports of a module are the external interface

96 Appendix C - An Introduction to SystemC C

that are used to pass information to and from a module, and trigger actions
within the module. SystemC supports unidirectional and bidirectional ports.

C.1.5 Signals

A signal is a primitive channel that connects a port of one module to a
port of another module. SystemC supports resolved and unresolved signals.
Resolved signals can have more than one driver (a bus) while unresolved
signals can have only one driver. To support modeling at different levels of
abstraction, from the functional to the RTL, SystemC supports a rich set of
port and signal types. This is different than languages like Verilog that only
support bits and bit-vectors as port and signal types. SystemC supports
both two-valued and four-valued signal types.

C.1.6 SystemC Data Types

SystemC has a rich set of data types that includes all standard C++ data
types as well as unique SystemC data types to model systems. The fixed
precision data types allow for fast simulation, the arbitrary precision types
can be used for computations with large numbers, and the fixed-point data
types can be used for DSP applications. It supports both two-valued (’0’ or
’1’) and four-valued data types(’0’ or ’1’ or ’X’ or ’Z’).

C.1.7 Clocks

SystemC has the notion of clocks (as special signals). Clocks are the time-
keepers of the system during simulation. Multiple clocks, with arbitrary
phase relationship, are also supported.

It is clear from the above that SystemC provides the necessary constructs
for system-level modeling. Some of the advantages of using SystemC for
system-leve modelling are given below.

• Hardware models can be compiled and simulated in any C++ envi-
ronment without needing any other simulator.

• Most of the programmers already know C/C++ language. So, they
do not need to use any new language.

• Lot of algorithms are already available in the form of C/C++ pro-
grams. So, these programs can be used easily in system design.

• Higher abstraction level implies faster implementation, thereby reduc-
ing the time-to-market.

It is for this reason we assume that SystemC modeling capabilities can
be used for our SDR implementation.

C.2 Synopsys CoCentric System Studio 97

C.2 Synopsys CoCentric System Studio

The System Studio product [7, 8] is a SystemC simulator and specification
environment for the joint verification and analysis of algorithmic, architec-
tural, hardware, and software models at multiple levels of abstraction. It
consists of tools, methodologies, and libraries that facilitates the design and
simulation of systems-on-a-chip. The modeling paradigms supported can be
hierarchically mixed at all levels. Cosimulation of SystemC and HDL blocks
with the System Studio simulator and HDL simulators through import or
export mechanisms is also allowed.

System Studio models are divided into two distinct domains, algorith-
mic and architectural. Architectural and algorithmic designs can be mixed
together in one architectural design and can be simulated the mixed design
using System Studios common simulation kernel.

C.2.1 Architectural Design support

Architectural design is design of timed and untimed SoC architectures at
multiple abstraction levels from transaction-level modeling (TLM) to regis-
ter transfer level (RTL) modeling. An SoC architecture contains processing
elements (CPUs, DSPs), interconnection elements (buses), storage elements
(memories, caches), and other peripherals (address generators, multiply-
accumulators, I/O). System Studio supports transaction-level modeling for
designing and verifying architectures. Using the transaction-level model-
ing capability, it is possible to achieve significant simulation performance
speedups compared to traditional RTL-based methods. Designers can create
and import pin-level models that can be simulated together with transaction-
level models, enabling the verification of synthesizable models in the system
context simulating at high-speed. The System Studio simulator supports
event-driven simulation for simulating SystemC designs.

C.2.2 Algorithmic Design support

Algorithmic design is design of untimed and implicitly timed algorithms and
behavioral models at various levels of accuracy from floating-point to fixed-
point representations. System Studio supports data flow and finite state
machine graphical semantics. The benefit of using this modeling style is
ease of modeling, graphical model views, and most important the specific
optimized simulation engine. The System Studio compiles control and data-
flow models into static or dynamic simulation executables. Its simulator
supports compiled, static, and dynamic data-flow simulation.

98 Appendix C - An Introduction to SystemC C

C.2.3 System-Level Simulation support

System Studio provides a compiled simulation kernel that optimizes parts
of system model. The compiled simulation can be statically scheduled and
linked with the dynamically scheduled parts of the system. It contains a full
stream-driven simulation engine for the accurate execution stream driven
simulator models. It also has a debug mode that produces an efficient,
yet fully debuggable simulation. Debug mode, allows pausing or single-
stepping the simulation, setting breakpoints, and examining the state of the
simulation. The DAVIS data visualization tool can be used to monitor any
stream of data.

C.3 SystemC to synthesizable description

As mentioned previously, SystemC is a powerful language that allows the
designer to develop a complete system description of his design. From this
system level design is necessary to get down to a RT synthesizable descrip-
tion that allows a physical implementation of the model. For this purpose
we have used SystemC to Verilog translator [3]. In this way, we can obtain
from a SystemC description (written following some rules a synthesizable),
a Verilog description supported by most of the synthesis tools available in
the market.

Bibliography

[1] http://chameleon.ctit.utwente.nl.

[2] http://www.fftw.org.

[3] http://www.opencores.org/cvsweb.shtml/sc2v.

[4] http://www.semiconductors.philips.com.

[5] http://www.silicon-hive.com.

[6] http://www.systemc.org.

[7] Getting started with system studio, 2003.

[8] System studio user guide, 2003.

[9] M. Wan G. Varghese V. Prabhu A. Abnous, H. Zhang and J. Rabaey.
The Application of Programmable DSPs in Mobile Communications,
chapter The Pleiades Architecture, pages 327–360. Ed., Wiley, 2002.

[10] Y. Ichikawa M. Wan J. Rabaey A. Abnous, K. Seno. Evaluation of
a low-power reconfigurable dsp architecture. Proceedings of Parallel
and Distributed Processing. SPDP ’98 Workshops, pages 55–60, March
1998.

[11] J. Becker; G. Manfred A. Ahmad and J. Starzyk. A dynamically re-
configurable soc architecture for future mobile digital signal processing.
European Signal Processing Conference, EUSIPCO, 2000.

[12] P. Jain N. Weng W. Burleson A. Laffely, J. Liang and R. Tessier. Adap-
tive system on a chip (asoc) for low-power signal processing. Asilomar
Conference on Signals, Systems, and Computers,, pages 1217–1222,
November 2001.

[13] A. Abnous. Low-Power Domain-Specific Processors for Digital Signal
Processing. PhD thesis, University of California, Berkeley, 2001.

99

100 Bibliography

[14] D. McBrien A.J. Anderson. An architecture for software defined radio
systems. GSPx Conference Proceedings, 2003.

[15] M.J.G. Bekooij. A constraint Driven Operation Assignment for retar-
getable VLIW Compilers. PhD thesis, Eindhoven University of Tech-
nology, 2004.

[16] E. Buracchini. The software radio concept. IEEE transactions on com-
munications, 38(9), September 2000.

[17] J. Bengtsson D. Johnsson and B. Svensson. Two-level reconfigurable
architecture for high-performance signal processing. The 2003 Interna-
tional Conference on VLSI (VLSI’03), June 23-26 2003.

[18] P. Mancini E. Schueler and G. Martinelli. Silicon implementation of a
reconfigurable processor array. December 2004
www.eedesign.com/article/showArticle.jhtml?articleId=17408264 .

[19] F. Frescura P. Antognoni E. Sereni, G. Baruffa. A software recon-
figurable architecture for 3g and wireless systems. Proceedings of 3G
Wireless 2002, February 2002.

[20] M.B. Taylor et al. The raw microprocessor:a computational fabric for
software circuits and general-purpose programs. IEEE Micro, March-
April 2002.

[21] Broadband radio access networks (bran) ETSI. Hiperlan type 2 : sys-
tem overview. Technical Report ETSI TR 101683 V1.1.1.1 (2000-02),
February 2000.

[22] Broadband radio access networks (bran) ETSI. Hiperlan type 2 : phys-
ical (phy) layer. Technical Specification ETSITS 101 475 V1.2.2 (2001-
02), February 2001.

[23] B. Molenkamp G.J.M. Smit, P.M. Heysters. The chameleon project
in retrospective. Proceedings of the 5th PROGRESS symposium on
embedded systems, pages 177–180, October 2004.

[24] P.J.M. Havinga G.J.M. Smit, P.M. Heysters. Exploring energy-efficient
reconfigurable architectures for dsp algorithms. Proceedings of the 1st
PROGRESS symposium on embedded systems, pages 37–46, October
2000.

[25] G. Heidari and K. Lane. Introducing a paradigm shift in the design
and implementation of wireless devices. White Paper, 2003
www.quicksilvertech.com.

[26] P.M. Heysters. Coarse Grained domain specific Processor. PhD thesis,
University of Twente, Enschede, 2004.

BIBLIOGRAPHY 101

[27] L.F.W. Hoesel. Design and implementation of hiperlan/2 physical layer
models for simulation purposes. Master’s thesis, University of Twente,
Enschede, August 2002.

[28] S. Srinivasan J. Liang, A. Laffely and R. Tessier. An architecture and
compiler for scalable on-chip communication. IEEE Transaction on
very large scale integration(VLSI) systems, 2004.

[29] S. Swaminathan J. Liang and R. Tessier. asoc: A scalable, single-chip
communication architecture. Proceedings of the IEEE International
Conference on Parallel Architectures and Compilation Techniques, Oc-
tober 2000.

[30] F.L. Anderson J.G. Delgado-Frias, M.J. Myjak and D.R. Blum. A
medium-grain reconfigurable cell array for dsp. International Confer-
ence on Circuits, Signal and Systems (CSS-2003), pages 231–236, May
2003.

[31] J. Miller J.S. Kim, M.B. Taylor and D. Wentzlaff. Energy character-
ization of a tiled architecture processor with on-chip networks. Inter-
national Symposium on Low Power Electronics and Design, ISLPED,
August 2003.

[32] P.A. Laurent. Exact and appropiate construction of digital phase mod-
ulateds by superposition of amplitude modulated pulses (amp). IEEE
transactions on communications, 34(2), February 1986.

[33] J. Mitola. The software radio architecture. IEEE transactions on com-
munications, 33(5), May 1995.

[34] A.V. Oppenheim and R.W. Schafer. Discrete-Time SignalProcessing.
Prentice Hall, Inc., 2002.

[35] B. Plunkett and J. Watson. Adapt2400 acm - architecture overview.
White Pape, 2004
www.quicksilvertech.com.

[36] J. Smit G.J.M. Smit P.J.M. Havinga P.M. Heysters, H. Bouma. Re-
configurable system design: The control part. Proceedings of the 2nd
PROGRESS workshop on Embedded Systems, pages 89–93, October
2001.

[37] F.W. Hoeksema R. Schiphorst and C.H. Slump. A flexible wlan receiver.
14th proRISC workshop on Circuits, Systems and Signal Processing,
November 2003.

[38] F.W. Hoeksema R. Schiphorst and C.H. Slump. A (simplified) blue-
tooth maximum aposteriori probability (map) receiver. Proceedings of
IEEE SPAWC2003, June 2003.

102 Bibliography

[39] R. Schiphorst. Software-Defined Radio for Wireless Local-Area Net-
works. PhD thesis, University of Twente, Enschede, 2004.

[40] E. Schueler. Smart media processing with xpp. White Paper, April
2003
www.pactcorp.com.

[41] Bluetooth SIG. Specification of the bluetooth system - core. Technical
Specification Version 1.1, February 2001.

[42] S.Swan. An introduction to system level modeling in systemc 2.0, May
2001.

[43] G. Martin S. Swan T. Grotker, S. Liao. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[44] The XPP team. The xpp: A technical perspective. White Paper, March
2002
www.pactcorp.com.

[45] R. Tolimieri and M. An. Lesser Known FFT Algorithms. Kluwer Aca-
demic Publishers, 2001.

[46] F.W. Hoeksema E.A.M. Klumperink B. Nauta V.J. Arkesteijn,
R. Schiphorst and C.H.Slump. A combined receiver front-end for blue-
tooth and hiperlan/2. 3rd PROGRESS workshop on Embedded systems
and Software, October 2003.

[47] F.W. Hoeksema E.A.M. Klumperink B. Nauta V.J. Arkesteijn,
R. Schiphorst and C.H. Slump. A software defined radio test-bed for
wlan front ends. 3rd PROGRESS workshop on Embedded systems and
Software, October 2002.

[48] P.T. Wolkotte. Realization of a demonstrator for smallband jammer
detector in a wideband radar signal. Master’s thesis, University of
Twente, Enschede, August 2003.

