
University of Twente

EEMCS / Electrical Engineering
Control Engineering

Real-Time Network for Distributed
Control

Yuchen Zhang

M.Sc. Thesis

Supervisors
prof.dr.ir. J. van Amerongen

dr.ir. J.F. Broenink
dipl.ing. B. Orlic

Ir. P.M. Visser

August 2005

Report nr. 031CE2005
Control Engineering

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Real-Time Network for Distributed Control Zhang Yuchen 2005

Summary

Nowadays, complex control systems, e.g. for industrial automation, are evolving from
centralized architectures to distributed architectures. To design a distributed control
system, a critical issue is to lay out a hard real-time communication infrastructure. To
this end, two kinds of solutions can be categorized from contemporary approaches:
the hardware-based solution and the software-based solution. Compared with the
hardware-based solution, the software-based solution is generally more cost-effective,
adaptable and extendable. Therefore it is more widely applied, especially in
laboratory.

FireWire is a high performance serial bus for connecting heterogeneous devices.
Though firstly targeted for consumer-electronic applications, many of FireWire’s
features make it well fit in industrial and laboratorial context. In this MSc assignment,
following the general principles of the software-based solution, the Real-Time
FireWire Subsystem (RT-FireWire) in Linux/RTAI has been designed and
implemented. RT-FireWire provides a customizable and extensible framework for
hard real-time communication over FireWire. Via performance benchmarking, it has
been shown that the transaction latency on RT-FireWire is limited to a certain range
that is usable for distributed control applications, whether the system is under heavy
load or not.

Ethernet Emulation over FireWire (Eth1394) has been implemented on RT-FireWire
as a highlevel module in the application layer. Via Eth1394, RT-FireWire can be
connected to another real-time software framework RTnet, which implements
real-time networking on the IP layer. Therefore, FireWire has been introduced as a
new medium alternative to Ethernet for real-time IP networking. The benchmarking
on Eth1394 and Ethernet shows that the real-time performance of both is comparable.

The real-time networking support provided by RT-FireWire has been integrated to a
toolchain for controller design and verification. The toolchain is developed at Control
Engineering Group of University of Twente. By using this toolchain with the newly
added networking support, a controller that has been designed and verified in
simulation can now be easily deployed into multiple nodes. For demonstration, a
simple but real-life distributed control system has been built by using this toolchain
and FireWire. The measurement results on that system proofs that, FireWire, with
RT-FireWire steering on it, can be used as a fieldbus for a distributed control
application.

The development on RT-FireWire can be continued in several directions: a new
interface can be developed to directly operate on RT-FireWire layer; new middleware
application protocols (e.g. CANopen) can be investigated to see if they can be stacked
on the basic real-time services provided by RT-FireWire; real-time vision control over
FireWire is another interesting topic that has not been fully opened.

Preface

With this report, I finished my MSc study at University of Twente. I would like to give my
thanks to all the people who helped me during these two years, especially during my thesis
work in last 11 months.

I would like to thank Jan Broenink, Bojan Orlic and Peter Visser for their supervising on my
work. Also, I would like to thank Marcel Groothuis for his help and suggestions to my work.

I have my special thanks to the Open Source community, especially to Jan Kiszka, the project
leader of RTnet. Thanks for all his explanations about RTnet, and the wonderful discussions
that I had with him via Email.

I would like to thank my parents also. Without their support, it would not be possible for me
to study abroad.

Last but not least, I would like to thank all my friends in the Bible Study group. Thanks for
their prayers.

Zhang Yuchen

Enschede August 29, 2005

Real-Time Network for Distributed Control Zhang Yuchen 2005

Table of Contents

1 INTRODUCTION ...1

1.1 BACKGROUND ...1
1.1.1 Real-Time Computer System..1
1.1.2 Centralized Architecture vs. Distributed Architecture ..1
1.1.3 Hard Real-Time Networking in the Distributed Architecture...2

1.2 RESEARCH CONTEXT ...2
1.3 ASSIGNMENT ...3
1.4 INITIAL DECISIONS...3

1.4.1 FireWire..3
1.4.2 Linux ..4

1.5 REPORT OUTLINE...4

2 INTRODUCTION TO FIREWIRE AND ITS SUBSYSTEM IN LINUX5

2.1 INTRODUCTION ..5
2.2 OVERVIEW OF FIREWIRE ...5

2.2.1 Bus Topology..5
2.2.2 Data Transfer Modes ..6

2.3 FIREWIRE PROTOCOL LAYERS ...7
2.3.1 Physical Layer ..7
2.3.2 Link Layer ..8
2.3.3 Transaction Layer ...8
2.3.4 Bus Management Layer..9

2.4 PROTOCOL OVERHEAD AND TRANSMISSION TIMING..10
2.4.1 Asynchronous Transaction..10
2.4.2 Isochronous Transaction ...12

2.5 LINUX FIREWIRE SUBSYSTEM ...14
2.5.1 Introduction ..14
2.5.2 System Overview..14
2.5.3 Performance Benchmarking on Linux FireWire Subsystem...16

3 REAL-TIME FIREWIRE SUBSYSTEM..23

3.1 INTRODUCTION ..23
3.2 FUNDAMENTAL OF RT-FIREWIRE...23
3.3 SETTLING RT-FIREWIRE IN RTAI ..24

3.3.1 System Overview..24
3.3.2 Architecture and Task Composition..25
3.3.3 Hardware Operation Layer ...26
3.3.4 Protocol Processing Layer ..27
3.3.5 Application Layer ...28

3.4 REAL-TIME MEMORY MANAGEMENT ..29
3.4.1 Common Packet Buffer Structure...29
3.4.2 Packet Buffer Queue...30

Real-Time Network for Distributed Control Zhang Yuchen 2005

3.4.3 Packet Buffer Pool..30
3.5 OTHER DESIGN ISSUES IN RT-FIREWIRE..31

3.5.1 Real-Time Procedure Call ..31
3.5.2 Real-Time Packet Capturing...32

3.6 PERFORMANCE BENCHMARKING ON RT-FIREWIRE ...33
3.6.1 Measurement Results..34
3.6.2 Discussion and Conclusion...38

4 REAL-TIME IP NETWORK OVER RT-FIREWIRE...39

4.1 INTRODUCTION ..39
4.2 ETHERNET EMULATION OVER RT-FIREWIRE..39

4.2.1 “IPover1394” Spec ...39
4.2.2 Minimum Requirements to be IP-capable ..39
4.2.3 Addressing Mechanism ..39
4.2.4 Address Resolution Protocol ..41
4.2.5 Implementation of Eth1394 ..43

4.3 STACKING RTNET OVER RT-FIREWIRE ..43
4.3.1 Introduction about RTnet..43
4.3.2 Application Programming Interface based on RTnet..43
4.3.3 Media Access Control...44

4.4 TEST BENCH ..44
4.4.1 Bench Settling and Measurement Results ..44
4.4.2 Discussion...46

5 INTEGRATION TO DESIGN TOOLCHAIN AND DEMONSTRATION47

5.1 INTRODUCTION ..47
5.2 INTEGRATION TO THE DESIGN TOOLCHAIN ..47

5.2.1 MSC Toolchain...47
5.2.2 Adding Networking Support to MSC Toolchain ..47

5.3 DEMONSTRATION...49
5.3.1 Plant and Controller..49
5.3.2 Performance Comparison ...51

5.4 DISCUSSIONS ...52

6 CONCLUSIONS AND RECOMMENDATIONS ...55

6.1 CONCLUSIONS..55
6.2 RECOMMENDATIONS..55
SHORT-TERM...55

Raw Interface on RT-FireWire layer..55
Media Access Control in RT-FireWire...56

LONG-TERM ..56
Stacking one or more middleware frameworks onto RT-FireWire ..56
Porting New Hardware Drivers to RT-FireWire ..56
Real-Time Vision Control over RT-FireWire...56

APPENDIX1 MODIFICATION TO THE MSC TOOLCHAIN ..57

Real-Time Network for Distributed Control Zhang Yuchen 2005

PORTING TO FUSION..57
Changes of the Code Generation Template..57
Change to Stack Daemon...58
Connection Objects..58

ADDING THE DISTRIBUTED CONTROLLER DEPLOYMENT ..59

APPENDIX 2 NON REAL-TIME FACTORS IN LINUX FIREWIRE SUBSYSTEM61

LAYERED ARCHITECTURE AND TASK HANDOVER LATENCY ...61
MEASURING OF TASK HANDOVER LATENCY IN LINUX FIREWIRE SUBSYSTEM...................................62

Conclusion ...63

APPENDIX 3 PRACTICAL INFORMATION ABOUT RT-FIREWIRE65

APPENDIX 4 PUBLICATION TO 10TH IEEE INTERNATIONAL CONFERENCE ON
EMERGING TECHNOLOGIES AND FACTORY AUTOMATION ..67

REFERENCES ...77

Real-Time Network for Distributed Control Zhang Yuchen 2005

 1

1 Introduction

1.1 Background

1.1.1 Real-Time Computer System

A real-time computer system is a computer system in which the correctness of the system
behavior depends not only on the logical results of the computations, but also on the physical
instant at which these results are produced.[Kopetz, 1997] A real-time computer system often
co-exists with the other two subsystems, as shown in Figure 1-1.

Figure 1-1 Real-Time Computer System and its Workaround

A real-time computer system must react to the stimuli from the controlled object (or the
operator) within a time interval. The instant at which a result must be produced is called a
deadline. If a catastrophe could result if a deadline is missed, the deadline is called hard.
Otherwise it is soft. A real-time computer system that must meet at least one hard deadline is
called a hard real-time computer system, or a safety-critical real-time computer system. If no
hard deadline exists, then the system is called a soft real-time computer system.

The design of a hard real-time computer system is fundamentally different from the design of
a soft real-time computer system. While a hard real-time computer system must sustain a
guaranteed temporal behavior even under peak system load and any possible fault conditions,
it is permissible for a soft real-time computer system to miss a deadline occasionally.

1.1.2 Centralized Architecture vs. Distributed Architecture
The architecture of real-time computer system can be centralized or distributed. A distributed
real-time computer system consists of a set of nodes and a communication network that
interconnects these nodes. Compared with the centralized architecture, the distributed
architecture appears as a more preferable alternative for the implementation of hard real-time
system. Several arguments are:

 In many engineering disciplines, large systems are built by integrating a set of
well-specified and tested subsystems. It is important that properties that have been
established on the subsystem level are maintained during the system integration. In the
distributed architecture, such a constructive approach is much better supported,
compared with centralized architecture.

 Almost all large systems evolve over an extended period of time, e.g. some years or
decades. Therefore a scalable and extensible system is strongly desired. To deploy a
scalable and extensible system, a distributed architecture is essential to provide the
necessary framework since:
I. Nodes can be added within the given capacity of the communication channel. This

Real-Time Network for Distributed Control Zhang Yuchen 2005

 2

introduces additional processing power to the system.
II. If the processing power of a node has reached its limit, a node can be transformed

into a gateway node to open a way to a new cluster. The interface between the
original cluster and the gateway node can remain unchanged (Figure 1-2).

 Most of the critical real-time systems demand fault-containment or fault-tolerance, which
means the system should continue functioning despite the occurrence of faults. To this
end, only the distributed architecture gives the possibility to implement
fault-containment or fault-tolerance via distributing the system functions to different
nodes or replicating the function of a certain node to another.

Figure 1-2 Transparent expansion of a node into a new cluster

1.1.3 Hard Real-Time Networking in the Distributed Architecture

To deploy a real-time computer system with a distributed architecture, one important issue is
to lay out a hard real-time communication infrastructure, so-called fieldbus. To this end, two
kinds of solutions can be categorized from contemporary design approaches.

 To use specifically adapted or designed hardware components to deploy a hard real-time
network. These components may be real-time switches, network adapters with high
innate intelligence or even fundamentally revised network controllers. By using these
hardware components, a hard real-time system can be built. However, since this solution
is fully implemented in hardware, a lot of effort and investments is needed. Moreover,
the adapted or newly designed hardware can not be easily changed or extended.

 Instead of using hardware-based solution, the more flexible software-based solution can
be chosen. In this solution, the standard, relatively cheap hardware components can be
chosen, e.g. Ethernet, USB, and FireWire. Above these hardware components, a real-time,
deterministic software stack (e.g. real-time operating system, real-time implementation
of the network protocol stack, etc) should be built, which can steer the hardware to meet
the real-time behavior requirements. The strength of this software-based solution is that,
it does not need too much effort and investment for design and implementation, and one
solution can be easily adapted for another problem or moved to another platform.

1.2 Research Context

At Control Engineering group of the University of Twente, one of the research directions is
embedded control system. Along this direction, several topics are mainly focused on: design

Real-Time Network for Distributed Control Zhang Yuchen 2005

 3

methodology for embedded control software; CSP-based concurrent programming;
fieldbus-connected embedded control systems and hardware-in-the-loop simulation for
embedded control system, etc.

Narrowed down to the research on distributed control systems, the main work is leaded by
two PhD projects:

 CSP-channels for field-bus interconnected embedded control systems. It deals with hard
real-time control using several co–operating processors in networked environments. The
network itself is embodied by an industrial field bus, which are investigated with respect
to real-time performance. During the work by previous students, CAN [Ferdinando,
2004], USB, Ethernet [Buit, 2004], FireWire [Zhang, 2004] and Profibus [Huang, 2005]
has been investigated with respect to their suitability for use in real-time context.

 Boderc(Beyond the Ordinary: Design of Embedded Real-time Control): Multi-agents and
CSP in Embedded Systems. In this project, a hardware-in-the-loop setup has been built
by [Groothuis, 2004] to test distributed controllers with simulation model of various
plants. In this setup, the communication channel between controllers is deployed on
CAN.

1.3 Assignment

Following the second approach in 1.1.3, the objective of this MSc assignment is to adopt a
standard, relatively cheap networking hardware component for deploying the hard real-time
network in distributed control systems. Around the main goal, challenges exist on several
aspects:

 The existing software on that hardware should be adjusted or even re-designed, so the
hardware can be steered to behave in a deterministic way.

 The adjusted or re-designed software should be easily adaptable and extensible.

 Resource-constraint situation should be taken into account, like system with in-adequate
memory.

 The adjusted or re-designed software should provide a friendly interface, which eases the
development of applications (e.g. controllers) on it.

1.4 Initial Decisions

1.4.1 FireWire

FireWire, also known as IEEE 1394, is a high performance serial bus for connecting
heterogeneous devices. Though firstly targeted for consumer-electronic applications, such as
high-speed video transmission, many of FireWire’s features make it well fit industrial and
laboratorial context. In this assignment, FireWire is chosen to be the implementation target of
hard real-time networking. The direct significance after achieving this is adoption of FireWire
as a new generation fieldbus, which comes with much higher performance than other existing
alternatives (e.g CAN, Profibus).

Real-Time Network for Distributed Control Zhang Yuchen 2005

 4

1.4.2 Linux

Linux, an Open Source operating system kernel, is well known for its open structure, modular
design and easy adaptability. In this assignment, Linux is chosen to be the Operating System
kernel. Thereby, the FireWire Subsystem in Linux is taken as the starting point for
investigation and implementation.

1.5 Report Outline

Chapter 2 firstly gives a detailed description about FireWire, including its characteristic on
various aspects, e.g. bus topology, data transfer modes, etc. Secondly, the FireWire subsystem
in Linux is described and the measurement results concerning its suitability for use in
real-time is presented.

Chapter 3 presents the implementation of the Real-Time FireWire Subsystem (RT-FireWire),
including the architecture, core components and protocol adaptation. Secondly, the
measurement results concerning RT-FireWire’s suitability for use in real-time is given, and
compared with the results on the Linux FireWire Subsystem.

Chapter 4 presents the implementation of deploying real-time IP network over RT-FireWire.
Secondly, the results of performance measurement on IP over FireWire is given, and
compared with the performance of IP over Ethernet.

Chapter 5 presents the integration of RT-FireWire’s networking support into a complete
toolchain for design and verification of controllers. Based on the integration, a demonstration
of using this toolchain for deploying a simple but real-life distributed control system is shown.
The result of the demonstration is also presented.

In Chapter 6 the conclusions and recommendations for this project is given.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 5

2 Introduction to FireWire and Its Subsystem in Linux

2.1 Introduction
This chapter first starts with a detailed description of FireWire, including the overview of bus
topology, data transfer modes, the layered protocol structure, and a literature research
concerning the protocol overhead and the transmission timing on FireWire. Then, the pointer
goes to FireWire subsystem in Linux: the software architecture is introduced and the test
bench to measure the suitability of using this subsystem in real-time is presented. Based on
the measurement, the conclusion about whether FireWire subsystem in Linux is suitable for
use in real-time is reached.

2.2 Overview of FireWire

2.2.1 Bus Topology

The IEEE 1394 specification defines the serial bus architecture known as FireWire.
Originated by Apple Computer [Apple], FireWire is based on the internationally adopted
ISO/IEC 13213 specification [IEEE, 1994]. This specification, formally named "Information
technology - Microprocessor systems - Control and Status Registers (CSR) Architecture for
microcomputer buses," defines a common set of core features that can be implemented by a
variety of buses. IEEE 1394 defines serial bus specific extensions to the CSR Architecture.

The bus topology of FireWire is tree-like, i.e. non-cyclic network with branch and leaf nodes,
for typical topology see Figure 2-1

Figure 2-1 Example FireWire Network

Configuration of the bus occurs automatically whenever a new node is plugged in. It proceeds
from leaf nodes (those with only one other node attached to them) up through the branch
nodes. A bus that has three or more nodes attached will typically, but not always, have a
branch node become the root node (e.g. Digital VCR in Figure 2-1).

Unlike most other serial buses designed to support peripheral nodes (e.g. Universal Serial
Bus), FireWire is a peer-to-peer network with point-to-point signaling environment, so that
any two nodes can exchange data without intervention from a third node. This important
advantage allows FireWire to be used as fieldbus in distributed control, since direct data
transfer between any two computing nodes is a definitely desired property in distributed
control networks.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 6

2.2.2 Data Transfer Modes

For data transfer on FireWire, two different types of packets are used: asynchronous packets
for reliable, receipt-confirmed data, and isochronous packets for time-critical, unconfirmed
data. A mix of isochronous and asynchronous transactions is performed across the serial bus
by sharing the overall bus bandwidth. Notice that the bus bandwidth allocation is based on
125µs intervals, so called the FireWire transaction cycle, as shown in Figure 2-2.

Figure 2-2 FireWire Transaction Cycle

The isochronous transfer mode is particularly suitable for the transmission of time-critical
data in real time, e.g. for video or audio. It guarantees a firm bandwidth and sends packets in
a fixed clock pulse (every 125µs). The packets are not addressed to individual nodes but are
separately marked by a channel number. Because late data are unusable for time-critical
applications, no acknowledgment of receipt is sent and incorrect packets are not resent.
Asynchronous packets are sent peer-to-peer from one node to one or all other nodes. In the
packet header the address of the destination node or nodes is indicated, as is the memory
address, to which the data in the packet refer. With receipt of an asynchronous packet, an
acknowledgment of the receiver node is sent as proof that the packet arrived. The speed of
data transmission and associated maximum packet size of asynchronous and isochronous
packets are listed in Table 2-1.

Cable Speed Maximum Size (Byte) of
Asynchronous Packet

Maximum Size (Byte) of
Isochronous Packet

100Mb/s 512 1024

200Mb/s 1024 2048

400Mb/s 2048 4096

Table 2-1 Transmission Speed and Packet Size on FireWire

In asynchronous transfer mode, the FireWire bus appears as a large distributed memory space
with each node hosting a 48-bit mapped address space (256 Terabytes). In addition, each bus
is identified by 10-bit mapped id; hence a maximum of 1024 FireWire buses can be connected
in single network. Every node on the bus is identified by 6-bit mapped id - hence a maximum

Real-Time Network for Distributed Control Zhang Yuchen 2005

 7

of 64 nodes per bus. This gives a 64-bit mapped address, to support 16-Exabytes in total. The
illustration is given in Figure 2-3. See [Anderson, 1999] for more a detailed description.

Figure 2-3 Address Space on FireWire

2.3 FireWire Protocol Layers

Four protocol layers are defined in FireWire, in order to separate its complexity in the several
levels of abstraction and hence simplify the implementation of hardware and software. Each
layer has associated set of services defined to fulfill its role, e.g. to support certain part of data
transfer transactions and bus management, as shown in Figure 2-4.

2.3.1 Physical Layer

The Physical Layer is the hardware used to bridge between a local FireWire node and the
whole network. This Layer has the following tasks:

 defines connectors and transmission medium

 performs bus initialization (configuration) after each Bus Reset

 manage the possession of the bus (bus arbitration)

 performs data synchronization

 performs coding and decoding of data messages

 determine signal level

On the Physical Layer, three different situations can result:

 The Physical Layer of a node receives a packet that is targeted to another node. In this
case, the packet is passed further over all ports, except the one from which it was
received.

 The Physical Layer of a node receives a packet that is targeted to this node itself. This
packet is passed to the Link Layer. The Link Layer then passes it on to the Transaction
Layer (in the case of an asynchronous transmission) or directly to the Application (in the

Real-Time Network for Distributed Control Zhang Yuchen 2005

 8

case of an isochronous transmission).

 The sending packet is issued from the Link Layer of local node. In this case the packet is
passed on over all ports.

Figure 2-4 Structure of the 4-layer Model

2.3.2 Link Layer

The Link Layer is located between the Physical Layer and the Transaction Layer. It performs
tasks related to sending and receiving asynchronous and isochronous packets.

For a received packet, the Link Layer is responsible for checking received CRCs to detect any
transmission failure; for packet to be sent, it is responsible for calculating and appending the
CRC to the packet. The Link Layer examines the header information of the incoming packet
and determines the type of transaction that is in progress. For asynchronous transaction, the
data packet is then passed up to the transaction layer. For isochronous transaction, the
transaction layer is not used and therefore the Link Layer is directly responsible for
communicating isochronous data to application.

2.3.3 Transaction Layer

The Transaction Layer is only responsible for the asynchronous operations Read, Write, and
Lock. By means of these operations the access of the memory area (Figure 2-3) is possible.

If two nodes communicate with each other, then receipts of the transferred packets are
confirmed on the level of their Transaction Layers. The transmission of incorrect packets is
repeated or discarded. Depending upon the extent of the message, the Transaction Layer

Real-Time Network for Distributed Control Zhang Yuchen 2005

 9

divides the transmission actions into individual sub-actions and handles these independently.

For these tasks as well as for the bus access management (bus arbitration) and the data
synchronization, the Transaction Layer uses the following services of the Link Layer:

 Request Service (request to start a transfer)

 Indication Service (acknowledgment to the request)

 Response Service (response to the request)

 Confirmation Service (acknowledgment to the response)

2.3.4 Bus Management Layer

Each node has a Bus Management Layer which controls the bus functions in the different
layers. Beyond that, the Management Layer makes a multitude of functions available
concerned with the management of the power supply and the bus configuration. The actual
functionality depends on the abilities of the nodes involved. However, the functions for
automatic configuration must be present for all nodes.

The Bus Management is responsible for a set of tasks:

 assigning channel numbers and bandwidth allocation for isochronous transfers

 guaranteeing that, the nodes that get their power supply via the bus cable have sufficient
power available

 adaptation of certain timing settings depending on the bus topology to increase the data
flow-rate over the network

 supporting services, that allow other nodes to request information about topology and
speed conditions

It is not necessary that all specified tasks are assigned to only one node. Rather these tasks are
summarized in three global roles and during the configuration phase, efficiently divided
among the attached nodes. Depending on the supported level of bus management
functionality, three states based on presence/absence of the three corresponding roles are
differentiated:

 "Non Managed"

A non-managed bus possesses only one "Cycle-Master" and fulfills the minimum
management requirements of an IEEE 1394-Bus. In each FireWire transaction cycle, the
"Cycle Master" initiates the start of the bus cycle by sending cycle start message.

 "Limited Managed Bus with Isochronous Resources Manager"

Such a bus contains an "Isochronous Resources Manager" (IRM) in addition to the
"Cycle Master". The bandwidth allocation on the bus can get managed by the IRM.

 "Fully Managed Bus"

The "Fully Managed Bus" represents a fully functional bus that, in addition to “Cycle
Master” and IRM, contains the "Bus Manager". It is able to optimize the bus and
possesses unrestricted "Power Management". The "Bus Manager" is able to collect

Real-Time Network for Distributed Control Zhang Yuchen 2005

 10

information about the bus topology ("Topological Map") and the transmission rates
between any two nodes ("Speed Map"). In this way the maximum data transmission rate
can be determined for each cable distance and the bus can be optimized.

2.4 Protocol Overhead and Transmission Timing

This section, one step deeper is taken to analyze the protocol overhead introduced by
FireWire’s packet structure and to determine the transmission timing on FireWire.

2.4.1 Asynchronous Transaction

Three different asynchronous transactions are used:

 Read

 Write

 Lock

With the Read operation, data will be read from the memory area of a node. With the Write
operation, data can be written into the memory area of a node. The Lock operation is a
mechanism, which allows/disallows a "protected" operation[Anderson, 1999].

An asynchronous packet consists of header and data, see Figure 2-5 for write request packet
format and Figure 2-6 for the response. See Table 2-2 for description of each component.

As can be seen from above, the protocol overhead in FireWire asynchronous write request is
24bytes, i.e. 24 extra bytes needs to be transferred along with the application data. Besides,
the asynchronous write response is 16byte. Both request and response are followed by an
acknowledgement, which is short packet of 4 bytes. Therefore, a simple formula for the
protocol efficiency is:

()
100%

() 24 16 8
DataSize byte

E =asyn DataSize byte
×

+ + +

Figure 2-7 present an example of asynchronous write transaction between two nodes. If node
A wants to write data into a certain memory area of node B, it sends a write request to node B.
Node B acknowledges the receipt of this request. The acknowledgement indicates only the
receipt of the request, not yet the execution.

After node B has written the data into that memory area, it sends a response to node A. In this
response, node A gets the message that the data has been submitted into the memory area of
node B. This is the acknowledgement of execution. Node A acknowledges the receipt of this
response, whereby the asynchronous transaction is finished.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 11

Figure 2-5 Asynchronous Write Request
Packet

Figure 2-6 Asynchronous Write Response
Packet

Name Description
Destination_ID The concatenation of the Bus and Node address of the intended

node. All ones indicate a broadcast transmission.

TL Transaction Label specified by the requesting node. Only if the
response packet contains a correct transaction label, it is possible

to find the corresponding request packet.

RT Retry Code that defines whether this is a retry transaction.

TCODE Transaction Code defines the type of transaction (Read request,
Read response, Acknowledgement, etc)

PRI Priority used only in backplane environments

Source_ID Specifies Bus and Node that generated this packet

Destination_offset The address location within the destination node that is being
accessed

Packet type Specific
Data

Can indicate data length for block reads and writes, or contain
actual data for a quadlet write request or quadlet read response.

Header_CRC CRC value for the header part

Optional Data Quadlet aligned data specific to the type of the packet

Optional Data CRC CRC for the Optional Data

Rcode Response Code, specifying the result of this transaction.

Table 2-2 Components in an Asynchronous Packet

Real-Time Network for Distributed Control Zhang Yuchen 2005

 12

Figure 2-7 Asynchronous Transaction between Two Nodes

The timing of asynchronous transmission is shown in Figure 2-7.

(24) 8 /
400 /

DataSize bits byte
Treq Mb s

+ ×
=

16 8 /
0.32

400 /
bytes bits byte

T sresp Mb s
µ

×
= =

4 8 /
0.08

400 /
bytes bits byte

T sack Mb s
µ

×
= =

4 8 /
0.08

400 /
bytes bits byte

T sack Mb s
µ

×
= =

So the latency during one write transaction is the sum of the time for transferring the request,
executing the request and transferring the response. Due to the relatively small value of the
time of transferring the response, it can be omitted. Assuming we write data of 4, 56, 2048
bytes payload, the latency will be:

0.884
1.9256

41.762048

T s Texec
T s Texec
T us Texec

µ

µ

µ

= +

= +

= +

2.4.2 Isochronous Transaction

Compared with asynchronous transaction, the packet of isochronous transaction is relatively
simpler, which is illustrated in Figure 2-8 and explained in Table 2-3.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 13

Figure 2-8 Isochronous Packet

Figure 2-9 gives an example of isochronous transaction between two nodes. Here node A is
sending data on isochronous channel N to node B. No acknowledgment or response is
generated from Node B. But the maximum sending rate is limited to 125µs, due to the cycled
bandwidth allocation on FireWire.

Name Description
Data Length Data length, can be any value between zero and FFFFh

Tag Isochronous Data format tag

Channel Isochronous Channel Number

Tcode The transaction code for isochronous data block is Ah

Sy Synchronous Code, application specific

Table 2-3 Isochronous Packet Components

As can be seen from above, the protocol overhead in FireWire isochronous packet is 12bytes,
i.e. 12 extra bytes needs to be transferred along with the data load. To calculate the protocol
efficiency on isochronous transaction, a formula can be deducted:

()
100%

() 12
DataSize bytes

Eiso DataSize bytes
= ×

+

The latency for one way isochronous transmission is (assuming the bus speed is 400Mb/s):

(12) 8 /
400 /

DataSize bits byte
Tiso Mb s

+ ×
=

So for data payload of 4, 56, and 2048 bytes, the latency will be:

4

56

2048

0.32
1.36

41.2

T s
T s
T s

µ

µ

µ

=

=

=

Real-Time Network for Distributed Control Zhang Yuchen 2005

 14

Figure 2-9 Example Isochronous Transaction

2.5 Linux FireWire Subsystem

2.5.1 Introduction
In this section, the overview of FireWire subsystem in Linux is presented, and the limitation
to use it in real-time context is revealed through basic testing experiments.

2.5.2 System Overview
The overview of FireWire subsystem in Linux is given in Figure 2-10. It consists of FireWire
subsystem kernel, adapter drivers and highlevel modules. Note that, the whole subsystem
works in deep cooperation with the Linux kernel core, but it is beyond the scope of this report
to explain relative dependencies and implementation details. Please refer to [Linux1394] for
more detailed information.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 15

Figure 2-10 Linux FireWire Subsystem Overview

FireWire Subsystem Kernel
More internals of subsystem kernel is revealed in Figure, with explanation following.

Figure 2-11 FireWire Subsystem Kernel

 The Driver Interface block takes care of the management of FireWire adapters (there can
be more than one adapter registered to the kernel). Meanwhile it also abstracts out the
specifics of various adapter hardware drivers, providing other modules with a common
set of services.

 The Transaction Layer Protocol block implements the transaction layer protocol of
FireWire.

 The Asynchronous Operation block is responsible for both taking packet send request
from applications and dispatching received packets to applications.

 The Isochronous Operation block is responsible for both taking request from applications

Real-Time Network for Distributed Control Zhang Yuchen 2005

 16

to (de)allocate isochronous channel and send packet, as well as for dispatching received
packets to applications.

 The Bus Management module is responsible for monitoring the bus status and
performing bus management functions as described in 2.3.4.

 The Application Interface module has several functionalities: taking care of the
application management, like registering of new application, implementing
communication/synchronization between application and kernel and so on. It provides
applications with common API that abstracts away from lower level transactions.

FireWire Adapter
The FireWire adapters available in the market are based on one of the following chips:

 aic5800 Adaptec AIC-5800 PCI-IEEE1394
 pcilynx Texas Instruments PCILynx
 Open Host Controller Interface (OHCI1394)

In this project, only adapter of the third type is used, therefore only the corresponding
ohci1394 driver is used. See [1394OHCI, 2000] for the specification of OHCI1394.

Highlevel Modules

Highlevel modules in FireWire subsystem are separate functional modules with standardized
interfaces connecting to subsystem kernel. Through these interfaces, a certain highlevel
module can register itself as being responsible for handling certain events on the bus, e.g.
read/write/lock transactions to a certain area of local address space. In another word, the
highlevel module can allocate for itself a certain piece of address space on the network.

Here, two highlevel modules are named: eth1394 and raw1394.

Eth1394
Eth1394 stands for Ethernet Emulation over FireWire, all called IPover1394. By using
Eth1394, all the applications built on Ethernet network can be directly applied on FireWire,
therefore making FireWire a medium alternative for those applications that has been
completely developed on Ethernet. See [Johansson, 1999] for IPover1394 protocol
specification.

Raw1394
Raw1394 stands for Raw Access over 1394, which is to provide Linux user-space program an
interface to directly send and receive packet on FireWire.

2.5.3 Performance Benchmarking on Linux FireWire Subsystem
In [Zhang, 2004], series of experiments were carried out on FireWire, employing Linux
user-space programs to measure the latency of transactions on FireWire. But in this project,
the Linux kernel in use has been updated to 2.6, which could have new influence on real-time
performance. Therefore, new experiments are carried out on Linux FireWire Subsystem
system with a 2.6 kernel to study its suitability for use in real-time context.

Test Bench Setup
2 PC104 stacks are employed in this experiment. Detailed information of stack components
follows:

Real-Time Network for Distributed Control Zhang Yuchen 2005

 17

 PC104:
VIA Eden 600 MHz, 256 Mb Memory, 32 Mb flash disk.

 FireWire Adapter:
PC/104+ board with VIA VT6370L Link & Physical layer chip, supporting 400 Mb/s
transferring speed at maximum. (See [Zhang, 2004] for more related information)

 Software in use: Linux kernel 2.6.12.

Experiment Cases
The performance is evaluated in 4 cases: asynchronous transaction without system load,
asynchronous transaction with heavy system load, isochronous transaction without system
load and isochronous transaction with heavy system load. The experiments on both
asynchronous transaction and isochronous transaction are illustrated in Figure 2-18 and
Figure. For each case, two nodes are involved in the experiment: one is requesting node that
is actively sending the data; another is target node that is passively receiving the data,
processing it, and (in asynchronous transaction) send the response back. The data sending rate
on client node is 1 KHz. For each case, 100,000 data samples are collected for analyzing.
During the experiment, the data load is always 56bytes.

Figure 2-12 Asynchronous Transaction
Latency

Figure 2-13 Drift of Data Receiving Rate on
Isochronous Transaction

Imposing System Load
The put the experiment in an extremely loaded system, extra processing load needs to be
imposed explicitly. Three ways of imposing system load are used together in this experiment.

 Creating a flood of interrupts from external world via network by using a third node to
send a lot of random data to the nodes in experiment.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 18

 Creating a flood of interrupts from hardware disk I/O by reading the whole hard disk.
 Creating a flood of system calls via Linux command line. This will make a lot of

kernel-user space switch.

Measurement Results

The result is presented by using cumulative percentage curves. At any point on the cumulative
percentage curve, the cumulative percentage value (y-value) is the percentage of
measurements that had a latency less than or equal to the latency value (x-value). The latency
at which the cumulative percentage curve reaches 100 percent represents the worst-case
latency measured. For real-time transaction latency, the ideal cumulative percentage curve is
one that is steep with a minimal decrease in slope as the curve approaches 100 percent.

Therefore, the cumulative percentage at a certain latency value can be interpreted as the
probability of the transaction being able to meet real-time constraints when its deadline is
assumed to be equal to that latency value. Since the network in concern will be used in
distributed real-time control application, the latency can more or less determines the operating
frequency of the system. For example, if the cumulative percentage at latency 100µs is 97%,
that mean if the system on the network runs at 10 KHz, only 97% of the distributed data
(sensor input, actuator output, etc) can be sent or received on time. The cumulative percentage
over ascending latency values are shown in Figure 2-14 and Figure 2-15. The former is for the
situation when system is not loaded, while the latter is for the situation when system is
heavily loaded. Figure 2-16 and Figure 2-17 present the cumulative percentage over
ascending drift values of data receiving rate on isochronous transaction, respectively for the
situation of system not being loaded and the situation of system being heavily loaded.

Asynchronous Transaction Latency on Linux FireWire Subsystem

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

4
0

8
0

1
2
0

1
6
0

2
0
0

2
4
0

2
8
0

3
2
0

3
6
0

4
0
0

4
4
0

4
8
0

5
2
0

5
6
0

6
0
0

6
4
0

Latency(us)

Cu
mu
la
ti
ve
Po
ss
ib
il
it
y

linux unloaded

Figure 2-14 Asynchronous Transaction Latency on Linux FireWire Subsystem when system is
not loaded

Real-Time Network for Distributed Control Zhang Yuchen 2005

 19

Asynchronous Transaction Latency on Linux FireWire Subsystem

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0
4
0

8
0

1
2
0

1
6
0

2
0
0

2
4
0

2
8
0

3
2
0

3
6
0

4
0
0

4
4
0

4
8
0

5
2
0

5
6
0

6
0
0

6
4
0

6
8
0

7
2
0

7
6
0

8
0
0

8
4
0

8
8
0

9
2
0

9
6
0

1
0
0
0

1
0
4
0

1
0
8
0

1
1
2
0

1
1
6
0

1
2
0
0

1
2
4
0

1
2
8
0

1
3
2
0

1
3
6
0

1
4
0
0

1
4
4
0

1
4
8
0

1
5
2
0

1
5
6
0

Latency(us)

C
u
m
u
l
a
t
i
v
e
P
o
s
s
i
b
i
l
i
t
y

linux loaded

Figure 2-15 Asynchronous Transaction Latency on Linux FireWire Subsystem when system is
loaded

Drift of Data Receiving Rate on Isochronous Transaction using Linux
FireWire Subsystem

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

Drift(us)

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t
a
g
e

linux unloaded

Figure 2-16 Drift of Data Receiving Rate on Isochronous Transaction using Linux FireWire
Subsystem when system is not loaded

Real-Time Network for Distributed Control Zhang Yuchen 2005

 20

Drift of Data Receiving Rate on Isochronous Transaction using Linux
FireWire Subsystem

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

Drift(us)

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t
a
g
e

linux loaded

Figure 2-17 Drift of Data Receiving Rate on Isochronous Transaction using Linux FireWire
Subsystem when system is loaded

Thereby for hard real-time application, low range of cumulative percentage values does not
make any sense (deadline can not be missed that often), so only top of the curve, i.e. at least
above 97%, is worth having a closer look, as shown in Figure 2-18 and Figure 2-19.

Figure 2-18 Asynchronous Transaction Latency on Linux FireWire Subsystem (top 3% of the
cumulative curve)

Real-Time Network for Distributed Control Zhang Yuchen 2005

 21

Drift of Data Dumping Ratio on Isochronous Transaction using RT-
FireWire vs Linux FireWire Subsystem

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

Drift(us)

Cu
mu
l
at
i
ve

Pe
rc
e
nt
a
ge

linux unloaded linux loaded

Figure 2-19 Drift of Data Receiving Rate on Isochronous Transaction using Linux FireWire
Subsystem

Due to the wide spanning range, the chosen step on the latency value (x-value) is a bit big to
make the curve fit in one figure. In Table 2-4 more precise values are presented on three
thresholds, i.e. 97%, 99.999% and 100%

Cases 97% threshold 99.999%
threshold

100% (Worst
Case)

Asynchronous unloaded 70µs 565µs 580µs

Asynchronous loaded 80µs 1055µs 1475µs

Isochronous unloaded 10µs 175µs 250µs

Isochronous loaded 615µs 1085µs 1090µs

Table 2-4 Threshold Representatives of Real-Time Performance on Linux FireWire
Subsystem

Discussion and Conclusion
When the system is not loaded, the experiment results on both asynchronous and isochronous
transactions have already shown a relatively big difference in latency values or receiving rate
drift in the critical range of cumulative percentage (e.g. between 97% and the worst case
(100%) performance). With added load, performance is clearly worsened. Moreover when the
system is heavily loaded, the curve is much less steep then in the case system is not heavily
loaded. As already discussed, this indicates increased non-determinism and results in poorer
real-time properties.

For real-time application, it is the worst case (or almost worst case, like 99.999% threshold)
that drives the choice for underlying system. And for normal real-time control application, e.g.
motion control, the measured worst case performance can not satisfy the requirements.

Therefore, the conclusion can be reached: Linux FireWire Subsystem can not be used as
underlying networking platform for real-time control application. Hence, there is a need to
develop a special FireWire Subsystem for use in real-time control application.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 22

Real-Time Network for Distributed Control Zhang Yuchen 2005

 23

3 Real-Time FireWire Subsystem

3.1 Introduction
In this chapter, the implementation of the RT-FireWire (Real-Time FireWire Subsystem) is
presented, including the architecture, core components and protocol adaptation.

3.2 Fundamental of RT-FireWire
This section describes the fundamentals of RT-FireWire. In short, the newly designed
FireWire subsystem is real-time because the whole software stack is moved to the real-time
domain, i.e. RTAI [RTAI 2005]. To unveil more details, the story starts from the explanation
about RTAI and its co-existence with Linux. After that, the settling of RT-FireWire in RTAI is
described.

RTAI is based on Adeos, which is a resource virtualization layer available as a Linux kernel
patch, a simple, yet efficient real-time system enabler, providing a mean to run a regular
GNU/Linux environment and a RTOS (e.g. RTAI), side by side on the same hardware. Adeos
enables multiple entities called domains to exist simultaneously on the same hardware. These
domains do not necessarily see each other, but all of them see Adeos. All domains are likely
to compete for processing external events (e.g. interrupts) or internal ones (e.g. traps,
exceptions), according to the system-wide priority they have been given [FusionTeam, 2004].
See Figure 3-1 for the illustrated concept. Every domain can register to be notified about
certain events. And events are handled in the pipeline way with higher priority domains
getting to handle events before lower priority domains.

Figure 3-1 Conceptual Diagram of Domain Pipeline in Adeos

Because RTAI domain is ahead in the pipeline, it is the first to be notified of any incoming
interrupts of interest, and because of its heading position, RTAI is totally in control of the
interrupt propagation to other low-priority domains, mainly Linux. In other words, RTAI will
not let any interrupts go to Linux, if it is busy dealing with some real-time task, e.g. handling
a FireWire packet. That way, theoretically RTAI grasps the full control of CPU’s processing
power, which is the most critical basis for any real-time subsystem built in it, e.g.
RT-FireWire.

As important as the real-time interrupt handling is the task scheduler in the RTAI domain. The
scheduler implements priority-based scheduling for tasks in the RTAI domain. The original
Linux kernel is wrapped into a lowest priority task in this scheduler when RTAI is loaded,

Real-Time Network for Distributed Control Zhang Yuchen 2005

 24

therefore all the real-time tasks will have a higher priority than Linux, so all of them can
preempt Linux tasks. RT-FireWire employs more than one real-time task in RTAI for its
internal processing.

3.3 Settling RT-FireWire in RTAI

This section describes the implementation of settling RT-FireWire in RTAI domain. First the
system overview of RT-FireWire is given, based on which the design of task composition for
RT-FireWire is presented. Based on the composition, the skeleton of RT-FireWire is built up.
Second, the implementation of real-time memory management in RT-FireWire is presented. In
the third part of this section, two other relatively minor features in RT-FireWire are introduced:
real-time procedure call and packet capturing.

3.3.1 System Overview
Here we present the overview of RT-FireWire in Figure 3-2. Compared with Figure 2-10, the
visible changes go to the driver for adapter, kernel implementation and interface to underlying
OS, i.e. RTAI.

Figure 3-2 RT-FireWire Overview

Figure 3-3 shows the kernel diagram of RT-FireWire. Compared with figure2-11, two more
function blocks are added: Real-Time Memory Management and RTcap. RTcap stands for
Real-Time (Packet) Capturing, which is used to capture all incoming or outgoing packet.
Captured packets are used later on for network behavior analysis.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 25

Figure 3-3 RT-FireWire Kernel

3.3.2 Architecture and Task Composition

The architecture of RT-FireWire is strictly divided into several layers, each of which
corresponds to one layer in the network protocol specification on FireWire. A top-view of the
layered architecture is given in Figure 3-4.

Figure 3-4 Layers in RT-FireWire, corresponding to the layers in FireWire protocol

RT-FireWire is composed of several tasks, each of which is a schedulable task object in the
RTAI scheduler. All the tasks in RT-FireWire can be seen as servers that handle asynchronous
events from outside. The top-view of task composition within RT-FireWire’s layered
architecture is shown in Figure 3-5. In next sections, task(s) on each layer will be described.

Figure 3-5 Task Composition in RT-FireWire

Real-Time Network for Distributed Control Zhang Yuchen 2005

 26

3.3.3 Hardware Operation Layer

Interrupt Handling

In the hardware operation layer, one task called “Interrupt Broker” is installed to handle the
various bus events from external FireWire network. From Object-Oriented point of view, each
event is represented by a class inherited from the super-class “ISR Event”, as illustrated in
Figure 3-6.

Each event contains the pointer to the routine for handling the event (interrupt from hardware)
in concern, and the argument to pass to that routine. So when a certain event is hooked to the
broker, the routine addressed by the pointer is executed by the broker.

Short explanation about each event:
 Asynchronous event for request receiving occurs upon arrival of asynchronous request

packet.
 Asynchronous event for response receiving occurs upon arrival of asynchronous

response packet.
 Asynchronous event for request transmitting occurs after adapter has successfully

transmitted a request packet and the acknowledgment has been received from targeting
node.

 Asynchronous event for response transmitting occurs after adapter has successfully
transmitted a response packet and the acknowledgment has been received from targeting
node.

 Besides, there can be 64 events for each isochronous channel if adapter is tuned to listen
to that channel.

Figure 3-6 Events in Hardware Operation Layer

Time Stamping in Driver
In the hardware operation layer of RT-FireWire, receiving time of all incoming packets is
stamped in the management header (which is not sent or received via the network) of the
packet object in the driver’s receiving routine before they are passed on. For outgoing packets,
the driver stamps the sending time (right before stuffing the packet into hardware) into the
data part of packets upon the request of highlevel protocols. This is implemented via allowing
highlevel protocols to assign a pointer to the data part. Stamping for both routine is shown in
Figure 3-7.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 27

Figure 3-7 Time Stamping for Incoming and Outgoing Packets

3.3.4 Protocol Processing Layer

Prioritized Request
One limitation while using original FireWire transaction protocol in real-time context is the
lack of priority in packets. Because the asynchronous transaction on FireWire consists of
request sub-transaction and response sub-transaction, it will make the protocol fit more in
real-time context if the request packet comes with a priority that determines how fast the
request should be handled on the responding node. Moreover, it would fit more in real-time if
the packet that arrived later but with a higher priority can preempt the ongoing processing of
previous packet which has a lower priority. This preemptability of transactions, although only
limited to the software stack (for now, it is not possible to have preemptive transaction on the
Link-Layer of FireWire network), can improve the suitability of using whole FireWire
subsystem in real-time context.

Figure 3-8 Prioritized Request

As shown in Figure 3-8, the last 4 bits in the first quadlet of asynchronous packet are used to
represent the priority. These 4 bits are reserved for backplane environment in 1394
specification [Anderson, 1999], but since RT-FireWire only aims to be used in cable
environment, it is free to use these 4 bits for other purpose here, i.e. carrying the priority of
transaction issued by the application on requesting node. Therefore, we have 16 priorities,

Real-Time Network for Distributed Control Zhang Yuchen 2005

 28

with 0 being defined as the highest. The highest priority is reserved for bus internal server,
while the lowest one is reserved for non real-time applications. The rest 14 priorities are for
real-time applications.

Prioritized Waiting Queue on Requesting Node
Before sending, the outgoing requests are queued according to the ascending order of their
priorities. That way, the real-time requests, even if they are issued later, can still jump over the
requests, which are queued before them but with a lower priority. In short, by using this
mechanism, the real-time transaction is allowed to preempt the non real-time transaction on
the requesting node. This preemption on requesting node is illustrated in Figure 3-9. The
number in bracket is the priority.

Figure 3-9 Transaction Preemption on Requesting Node

Brokers for Prioritized Requests on Responding Node

On the responding node, based on the packet priorities, three transaction servers (Request
Broker for Bus Internal Service, Request Broker for Real-Time Application and Request
Broker for Non Real-Time Application) are employed to handle the requests accordingly, as
illustrated in Figure 3-10.

Figure 3-10 Request Brokers in Protocol Processing Layer

Broker for bus internal service has the highest priority among the three. The broker for non
real-time application goes to the Linux domain, since it deserves the lowest priority.

3.3.5 Application Layer

In the application layer of RT-FireWire, two tasks are installed for dispatching asynchronous
response packets or isochronous packet to applications: asynchronous response broker and
isochronous packet broker.

Both tasks use “callback” to communicate with application, i.e. execute the callback routine
provided by application. For asynchronous transaction, the pointer to the “callback” stays

Real-Time Network for Distributed Control Zhang Yuchen 2005

 29

with the request packet; for isochronous transaction, the pointer to the “callback” stays in the
settings for that certain channel. The “callback” allows the application to customize the way
of synchronization between it and RT-FireWire. In case an immediate synchronization is
needed, a semaphore can be used, as illustrated in Figure 3-11.

Figure 3-11 Brokers in Application Layer

3.4 Real-Time Memory Management

Another critical issue in general real-time system is resource allocation. The resource can be
memory, hardware I/O, external storage, etc. But in most of the scenarios, memory is the
main concern, therefore having a real-time memory allocation is as important as the
architecture design. This section addresses the design and implementation of real-time
memory management in RT-FireWire.

3.4.1 Common Packet Buffer Structure

To grant the system full extensibility, the static memory allocation in RT-FireWire uses the
most generic memory object, so called real-time packet buffer (rtpkb). Rtpkb consists of a
buffer management structure and a fixed-sized data buffer. It is used to store network packets
on their way from the API routines through the stack to the hardware interface or vice versa.
Rtpkb is allocated as one chunk of memory that contains both the management structure
(rtpkb header) and the buffer memory itself, as shown in Figure 3-12.

Figure 3-12 Real-Time Packet Buffer

All the generic operations from memory management module are carried out only with the
generic elements of rtpkb header, while the protocol-specific operations, e.g. FireWire
transaction protocol, are carried out only with the protocol-specific elements. Therefore all
protocol-specific stuff is transparent to the memory management module, which is necessary

Real-Time Network for Distributed Control Zhang Yuchen 2005

 30

to allow RT-FireWire to freely exchange packet buffer with the applications on it and vice
versa.

3.4.2 Packet Buffer Queue

Based on the rtpkb, another component is designed for memory management module, i.e.
Packet Buffer Queue. A queue can contain an unlimited number of rtpkbs in an ordered way.
An rtpkb can either be added to the head or the tail of a queue. When a rtpkb is removed from
a queue, it is always taken from the head.

3.4.3 Packet Buffer Pool

During the initialization of whole system or a certain application, an estimated number of
packet buffers must be pre-allocated and kept ready in so-called buffer pools. Most packet
producers (e.g. interrupt broker in hardware operation layer, etc) have their own pools in order
to be independent of the load situation of other parts of the system. Pools can be extended or
shrinked during runtime. Before shutting down the whole system, every pool has to be
released.

Pools are organized as normal rtpkb queues. When a rtpkb is allocated, it is actually dequeued
from the pool's queue. When freeing an rtpkb, the rtpkb is enqueued to its owning pool. rtpkbs
can be exchanged between pools. In this case, the passed rtpkb switches over from its owning
pool to a given pool, but only if that pool can pass an empty rtpkb (as for compensation) from
its own queue back. This is necessary to keep the memory allocation in each pool clearly
independent. This way, the chance for non real-time processing to starve real-time processing
for memory is clearly prevented, because each application or processing, either real-time or
not, can only hold memory on its own expense, i.e. from its own pool. The buffer exchanging
between pools is illustrated in Figure 3-13.

Figure 3-13 Buffer Exchanging between Pools

The deployment of memory pools in RT-FireWire reflects its internal layered structure. See
Figure 3-14.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 31

Figure 3-14 Layered Deployment of Memory Pools in RT-FireWire

3.5 Other Design Issues in RT-FireWire

3.5.1 Real-Time Procedure Call
In RT-FireWire, there is a need to trigger the real-time transaction from non real-time context,
i.e. Linux domain. To this end, the Real-Time Procedure Call (RTPC) is designed and
implemented. RTPC is an approach to let non real-time task, e.g. task in Linux, run a certain
piece of code in real-time context. The rationale behind is illustrated in Figure 3-15.

Figure 3-15 Conceptual Diagram of Real-Time Procedure Call

During system initialization, the “Real-Time Procedure Call Broker” is created in the
real-time domain as a real-time task. The request to that broker is sent by tasks in the non
real-time domain, possibly user-space task in Linux. The request contains the pointer to the
routine that should be run in real-time, the execution arguments and the buffer for storing
execution results. The broker handles requests in FIFS (First In First Served) fashion. After
finishing a request, it wakes up the corresponding non-real-time task to take back the results.

The current usage of Real-Time Procedure Call in RT-FireWire is for processing request
generated from user-interface console. For example, user can request a latency calibration
between local node and one remote node. The calibration task should then be switched to
real-time context in order to accordingly measure an accurate latency.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 32

3.5.2 Real-Time Packet Capturing

Another feature in RT-FireWire is Packet Capturing service. The whole service consists of
two parts: packet capturing module in the kernel side and analysis tool in the user side.

The kernel-side module captures both incoming and outgoing packets and put them to a so
called “Captured Packet Queue”. The captured packets are passed to analysis tool, which
could stay in user space. See Figure 3-16 for the illustration.

Figure 3-16 Working of Packet Capturing

Note that the procedure of capturing packet includes no copying, instead, the efficient
“pointer assigning” is used. The head of “Captured Packet Queue” is just a pointer to
“Real-Time Packet buffer”, and in each “Real-Time Packet Buffer” object there is also a
pointer to another buffer object. That way, it is possible to just link all captured buffer object
to the “Captured Packet Queue”. Due to the zero-copy linking, a new concern pops out, which
is about memory leakage. Each captured packet in the queue is also waiting for being
processed by the “traffic analyzing tool”, so their memory can not be freed immediately after
the operation on that packet is finished. But if the memory is not freed in time, it will cause
kind of memory leakage to the memory pool where these packets come from, i.e. the memory
pool that belongs to the specific application. To prevent this, a memory pool is also
pre-allocated for the packet capturing module. In case a packet is captured, a compensating
packet buffer is allocated from the pool of packet capturing module and linked to the captured
packet. When the application attempts to free that packet, the “packet-free” function (from
memory management module) will be called and it will check if the packet has another
compensating packet linked. If yes, the compensating packet will be freed instead. That way,
the packet capturing stays transparent to applications. See Figure 3-17 for illustration of the
whole procedure.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 33

Figure 3-17 Packet Capturing Procedure

3.6 Performance Benchmarking on RT-FireWire

Like what has been done on Linux FireWire Subsystem, a performance benchmarking is also
carried out on RT-FireWire to see its suitability for use in real-time.

Test Bench Setup
To make the results directly comparable, the hardware employed in this experiment is exactly
the same as in the experiment on Linux FireWire Subsystem.
2 PC104 stacks are employed in this experiment. Detailed information follows:

 PC104:
VIA Eden 600 MHz, 256 Mb Memory, 32 Mb flash disk.

 FireWire Adapter:
PC/104+ board with VIA VT6370L Link & Physical layer chip, supporting 400 Mb/s
transferring speed at maximum. (See [Zhang, 2004] for more related information)

The software (Operating System) is a bit different, since now it has been a real-time
Operating System.

 Software in use: Linux kernel 2.6.12 plus RTAI/fusion 0.9.

Experiment Cases
The performance in 4 cases are evaluated: asynchronous transaction without system load,
asynchronous transaction with heavy system load, isochronous transaction without system
load and isochronous transaction with heavy system load. The experiments on both
asynchronous transaction and isochronous transaction are illustrated in Figure 3-18 and
Figure 3-19. For each case, two nodes are involved in the experiment: one is so-called
requesting node that is actively sending the request; another is so-called target node that is
receiving the requests, processing them, and (in asynchronous transaction) send responses
back. The data sending rate on client node is 1 KHz. And the amount of collected samples for
each case is 100,000. For each experiment, the data load is set to 56bytes.

Imposing System Load
To put the experiment in an extremely loaded system, extra processing load needs to be
imposed explicitly. Three ways of imposing system load are used together in this experiment.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 34

 Creating a flood of interrupts from external world via network by using a third node to
send a lot of random data to the nodes in experiment.

 Creating a flood of interrupts from hardware disk I/O by reading the whole hard disk.
 Creating a flood of system calls via Linux command line. This will make a lot of

kernel-user space switch.

Figure 3-18 Asynchronous Transaction
Latency

Figure 3-19 Drift of Data Receiving Rate on
Isochronous Transaction

3.6.1 Measurement Results

The methodology to present the results of measurements on Linux FireWire Subsystem is
reused here. The result is presented by using cumulative percentage curves. At any point on
the cumulative percentage curve, the cumulative percentage value (y-value) is the percentage
of measurements that had a latency less than or equal to the latency value (x-value). The
latency at which the cumulative percentage curve reaches 100 percent represents the
worst-case latency measured. For real-time transaction latency, the ideal cumulative
percentage curve is one that is steep with a minimal decrease in slope as the curve approaches
100 percent.

Therefore, the cumulative percentage at a certain latency value can be translated to be the
probability of the transaction being able to meet real-time constraints when deadline is
assumed to be equal to that latency value, as shown in Figure 3-20 and Figure 3-21.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 35

Asynchronous Transaction Latency on Real-Time FireWire

0

0.2

0.4

0.6

0.8

1

1.2

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

Latency(us)

C
um

ul
a
ti

ve
 P

e
rc

en
t
ag

e

56bytes without system load 56bytes with sysem load

Figure 3-20 Asynchronous Transaction Latency using RT-FireWire

Drift of Data Receving Rate on Isochronous Transaction using RT-
FireWire

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

Drift(us)

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t
a
g
e

linux unloaded linux loaded

Figure 3-21 Drift of Data Receiving Rate on Isochronous Transaction using RT-FireWire

In Table 3-1, more precise values are presented on three thresholds, i.e. 97%, 99.999% and
100%.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 36

Cases 97% threshold 99.999%
threshold

100% (Worst
Case)

Asynchronous unloaded 75µs 90µs 105µs

Asynchronous loaded 90µs 115µs 120µs

Isochronous unloaded 10µs 45µs 50µs

Isochronous loaded 45µs 90µs 95µs

Table 3-1 Threshold Representatives of Real-Time Performance on Linux FireWire
Subsystem

The plot on Linux FireWire Subsystem (chapter2) is put together with the one on RT-FireWire
in Figure 3-22 and Figure 3-23, which gives more insight about how the performance is
improved by RT-FireWire. (Only top of the curves are presented here)

Asynchronous Transaction Latency using RT-FireWire vs Linux FireWire Subsystem

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

0

4
0

8
0

1
2
0

1
6
0

2
0
0

2
4
0

2
8
0

3
2
0

3
6
0

4
0
0

4
4
0

4
8
0

5
2
0

5
6
0

Latency(us)

Cu
mu

la
ti

ve
Po

ss
ib

il
it

y

linux unloaded linux loaded RT unloaded RT loaded
Figure 3-22 Comparison between RT-FireWire and Linux FireWire Subsystem
(Asynchronous Transaction)

Real-Time Network for Distributed Control Zhang Yuchen 2005

 37

Drift of Data Receving Rate on Isochronous Transaction using RT-
FireWire

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

Drift(us)

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t
a
g
e

linux unloaded linux loaded RT unloaded RT loaded

Figure 3-23 Comparison between RT-FireWire and Linux FireWire Subsystem (Isochronous
Transaction

The data load is another issue that may influence the real-time behavior of RT-FireWire.
Figure 3-24 and Figure 3-25 presents the latency or drift over different data load.

Asynchronous Transaction Latency on Real-Time FireWire

0

0.2

0.4

0.6

0.8

1

1.2

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

Latency(us)

C
u
m
u
la

t
i
v
e

P
e
r
c
en

t
a
g
e

56bytes without system load 56bytes with sysem load

400bytes without system load 400bytes with system load

Figure 3-24 Asynchronous Transaction Latency on RT-FireWire with different data load

Real-Time Network for Distributed Control Zhang Yuchen 2005

 38

Drift of Data Receving Rate on Isochronous Transaction using RT-
FireWire

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Drift(us)

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t
a
g
e

56bytes unloaded 56bytes loaded 400bytes unloaded 400bytes loaded

Figure 3-25 Drift of Data Receiving Rate on Isochronous Transaction using RT-FireWire with
different data load

3.6.2 Discussion and Conclusion

Compared with Linux FireWire Subsystem, both asynchronous latency and isochronous drift
on RT-FireWire give quite steep curves, as shown in the figures above. That means
RT-FireWire gives much more deterministic behavior, which is especially crucial when time
critical communication is needed.

But there still exists an un-ignorable gap between the average performance on RT-FireWire
and the worst case performance. In case of asynchronous transaction it is the gap between
worst case latency and 97% threshold latency value; in case of isochronous transaction it is
the worst case data receiving rate drift and 97% threshold drift value. These gaps can not be
filled by RT-FireWire due to the limitation of current solution, i.e. RT-FireWire is only
software-based solution trying to achieve hard real-time communication. From RT-FireWire
point of view, the hardware underlying, even the internal implementation of the Operating
System underlying can be kind of “black box”. No attempts are made in this project to open
these “black box”.

Based on the work presented in this chapter, RT-FireWire has been converted to a Open
Source project, register in www.berlios.de. It can be directly visited via rtfirewire.berlios.de.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 39

4 Real-Time IP Network over RT-FireWire

4.1 Introduction
This chapter presents the implementation of stacking real-time IP network in the application
layer of RT-FireWire. First, the emulation of Ethernet over FireWire is explained. Second,
another Open Source project, RTnet is introduced. RTnet implements a real-time networking
framework on Ethernet. Based on the Ethernet emulation, RTnet can be stacked on
RT-FireWire. In last part of this chapter, the results of performance measurement on IP over
FireWire is given, and compared with the performance of IP over Ethernet.

4.2 Ethernet Emulation over RT-FireWire

4.2.1 “IPover1394” Spec

Before this project, a spec called “IP over 1394” [Johansson, 1999] has been released over
Internet, which standardizes the protocol of transferring IP packets on FireWire’s primary
transactions, i.e. asynchronous and isochronous, so to make FireWire appear almost the same
as Ethernet from the application point of view. In Linux FireWire Subsystem, a highlevel
module, Eth1394 (Ethernet Emulation over FireWire), has been developed according to this
specification. In this section, the basic rationale behind “IPover1394” is explained at first.
After that, the modifications to “IPover1394” are presented and explained which is
implemented in the re-implementation of Eth1394 in RT-FireWire.

4.2.2 Minimum Requirements to be IP-capable
Not all serial bus devices/nodes are capable of reception and transmission of IP packets. Several
minimum requirements should be fulfilled for a node to be IP-capable:

 Nodes have unique hardware address (unique in the network scope). This is important
because transaction on the IP level is peer-to-peer. A peer-to-peer relation needs to be
established between the IP address and the hardware address of a certain medium.

 Nodes support multicasting. This is especially important because the multicasting ARP
protocol needs to be carried out for mapping between IP address and the underlying hardware
address.

Besides the above two essential requirements, another desired one is that the underlying
medium should support transmitting packets of relatively large data size. This is because IP
header introduces some overhead (20 bytes of data). Therefore the medium should at least be
able to transmit packets that contain more data than the IP header. Moreover, it is better to
have large size packet under IP, since that relatively decreases the protocol overhead.

4.2.3 Addressing Mechanism

This section explains the mechanisms to establish the peer-to-peer relation between IP address
and FireWire node address. Two different mechanisms are introduced. The first one is from
original “IPover1394” specialization; the second is customized in this project. Through the
comparison, it can be seen that the newly customized addressing mechanism fits better in
real-time application context.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 40

The original IPover1394 spec employs the 64-bit GUID (Global Unique ID) of each FireWire
adapter chip as the hardware address. The GUID is the ID from manufacturer of each single
FireWire adapter, similar to the MAC address of Ethernet adapter. The GUID can be read
from the internal register of a certain adapter by using normal asynchronous transaction
access on FireWire. That way, the GUID of any FireWire node (adapter) can be known to the
whole network, and the peer-to-peer relation between GUID and Node ID can be established.

The strength of using GUID as the hardware address in IP over FireWire is that, the
“hardware address” can be guaranteed to be unique even in the world scale, just like the MAC
address of Ethernet. But in Ethernet, MAC address is directly used as link layer address for
transaction, but in FireWire GUID is not used in transaction. Therefore, any packet that is
stamped using GUID must go through an address resolution procedure before it can be put on
the fly. Including the address resolution in IP protocol itself, i.e. the resolution between IP
address and hardware address (in this case, it is GUID), the whole address resolution
procedure includes two sub-resolution, which is not considered being efficient. The
conceptual diagram of the address resolution process based on 64-bit GUID is given in Figure
4-1.

Figure 4-1 Addressing Mechanism in “IPover1394” Spec

As stated above, the addressing mechanism in “IPover1394” spec is not considered to be
optimal and efficient, especially for real-time context, therefore some modification is needed.

The new addressing mechanism for IP over FireWire is demonstrated in Figure 4-2. As shown,
the FireWire node ID is directly employed as hardware address of each IP-capable FireWire
node. That way, the resolution procedure from IP address to hardware address (FireWire node
ID) only includes the resolution in IP protocol itself. In this project, 1394 address space is
allocated statically to IP module, i.e. on each node, the 48 bits address offset for Eth1394
module are exactly the same. Therefore, the 16 bits Node ID is enough to represent the
hardware address.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 41

Figure 4-2 Modified Addressing Mechanism in RT-FireWire

To give exactly the same look as normal Ethernet devices, the “MAC” address of Eth1394 is
extended to 6-bytes by filling 0 after the 2 bytes FireWire node id, as shown in Figure 4-3.
This way all the highlevel stuff that is already working on Ethernet can be directly moved to
FireWire, due to the same interface between Ethernet and Eth1394. Figure 4-4 gives the
console view of Eth1394 interface on Linux/RTAI.

Figure 4-3 MAC address of Eth1394

Figure 4-4 Console view of Eth1394 interface

4.2.4 Address Resolution Protocol

The address resolution protocol (ARP) is a protocol used by the IP, specifically IPv4, to map
IP address to the hardware addresses used by a data link protocol. The protocol operates
below the network layer as a part of the interface between the OSI network and OSI link
layer.

On Ethernet, the address resolution protocol is only used to map IP address to hardware
address. E.g. the ARP packet only carries the IP address of certain Ethernet nodes. On
FireWire, the transmission speed and packet size need to be specified before the packet is
delivered to driver, which depends on the collected information about target node: the
maximum speed and maximum packet size it can accept. Therefore, on Eth1394, it is required
that ARP packet also carries the information about maximum speed and maximum packet size
of the sending node. The 1394-specific ARP is called 1394ARP. Since the addressing
mechanism has been adjusted, the original 1394ARP in IPover1934 can not be directly
applied either. In this section, the complete ARP used for new addressing mechanism is

Real-Time Network for Distributed Control Zhang Yuchen 2005

 42

presented, without referring back to the original one.

The ARP format on Eth1394 and Ethernet are given in Figure 4-5 and Figure 4-6 respectively.

Explanation about some fields:

 Hardware type indicates the underlying medium. E.g. 1 for Ethernet, 24 for FireWire.

 Protocol type indicates the protocol. In case of ARP, it is 0x0080.

 Hw_addr_len is the length of hardware address in bytes. In case of Eth1394, it is 6.

 Lg_addr_len is the length of logical address in bytes. In case of IP, it is 4.

 Operation code indicates the operation type of current packet, 1 for request 2 for
response.

 Max_rec indicates the maximum packet size that can be accepted by the sender node.

 Sspd indicates the maximum speed that can be accepted by the sender node.

Figure 4-5 ARP packet format on Eth1394

Figure 4-6 ARP packet format on Ethernet

Because Eth1394 is required to give the exactly same look as normal Ethernet, the 1394ARP
packet is converted to a standard ARP packet before it can be delivered to the IP layer,
meanwhile, the FireWire layer records down the information that is needed by itself, i.e.
max_rec and sspd, see Figure 4-7.

Figure 4-7 Handling ARP packet in Eth1394

Real-Time Network for Distributed Control Zhang Yuchen 2005

 43

4.2.5 Implementation of Eth1394

This sub-section gives a summary of the implementation of Eth1394. It covers the unicast and
broadcast transaction of Eth1394.

Unicast Transaction
The implementation of unicast transaction is based on FireWire’s asynchronous transaction.
During the initialization of the interface, a certain piece of address area on the FireWire is
allocated. Then a handler (Eth1394_write) is installed to handle all write transactions into that
address area (For transactions between Eth1394 modules, only write transaction is used.).

Broadcast Transaction
The implementation of broadcast transaction is based on FireWire’s isochronous transaction.
During the initialization of the interface, a certain isochronous channel is allocated. Then a
handler (Eth1394_iso) is installed to handle all packets transmitted through that channel.

4.3 Stacking RTnet over RT-FireWire

4.3.1 Introduction about RTnet
RTnet provides a customizable and extensible framework for hard real-time communication
over Ethernet. Conceptually similar to RT-FireWire, RTnet also employs static memory
management, real-time interrupt handling, non real-time/real-time transaction differentiation
to implement a basic real-time stack. The stack overview of RTnet is shown in Figure 4-8. In
next section, the application programming interface based on RTnet is presented. For other
features of RTnet, one can refer to [RTnet, 2005] and [Kiszka, Zhang et al, 2005]. The latter is
attached to this report as appendix.

Figure 4-8 RTnet Stack Overview[Kiszka, Zhang et al 2005]

4.3.2 Application Programming Interface based on RTnet

One important reason to port Eth1394 to RTnet is that, the application programming interface
on RTnet can thereby directly be used on FireWire.

RTnet provides its real-time services via real-time variants of POSIX-conforming socket and

Real-Time Network for Distributed Control Zhang Yuchen 2005

 44

I/O interfaces. This socket interface offers UDP and packet sockets for exchanging user data
deterministically. Just as RTAI, RTnet permits both the classic kernel mode and more
convenient user mode usage (Linux processes) of the interfaces. In this project, applications
on RT-FireWire are deployed mainly by using the real-time socket interface via Eth1394
module.

4.3.3 Media Access Control

As important as a real-time-capable stack implementation is a deterministic communication
media. But compared to specifically designed field-bus, e.g. CAN, FireWire’s native media
access control does not support prioritized transactions. In other words, packets from
real-time and non real-time applications can not be differentiated on the Link-Layer level.
Therefore, there exists the possibility that transactions from node running non real-time
operations can block the transactions from node running real-time operations. To solve this
problem, there is a need to add extra media access control layer above that native one.

RTnet addresses this demand with its RTmac (Real-Time media access control) layer. RTmac
is designed to be a socket, where all customizable media access disciplines can be plugged in.
Here the already-developed TDMA discipline is introduced, based on which the problem
stated above can be solved.

RTnet’s TDMA is a master-slave protocol. It synchronizes the clocks of all nodes in network.
By assigning time slot to different node, which is actually determined by the offset relative to
the synchronization messages the master nodes issues periodically, the transmission time of
packets from each node can be explicitly separated. See Figure 4-9 for the illustration.

Figure 4-9 TDMA cycle in RTnet

By applying TDMA principle to RT-FireWire nodes through Eth1394, the transaction issued
by non real-time nodes can be bounded to certain slots in the TDMA cycle, which means they
can not influence the transaction issued by real-time nodes.

4.4 Test Bench

4.4.1 Bench Settling and Measurement Results

Based on the RTnet interface, a test bench is built up between two FireWire nodes, to measure
the roundtrip between them. The whole procedure is shown in Figure 4-10, where the “server”
node receives the data that is sent by “client” and sends it back. The roundtrip latency is
thereby measured on the “client” side, i.e. the time between sending the data and receiving it.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 45

Figure 4-10 Test bench on Eth1394

Since both Eth1394 and Ethernet appear as the same medium under RTnet interface, the same
experiment is repeated on Ethernet also.

The same hardware mentioned in Chapter2 is reused in this test bench. All FireWire
transactions run at 400Mb/s, while Ethernet transactions run at 100Mb/s.

First situation in experiment is when both sides are not loaded. The roundtrip latency (97%
threshold and 100% worst case) over ascending data loads on both Eth1394 and Ethernet are
plotted together in Figure 4-11. Second situation in experiment is when both sides are fully
loaded. The roundtrip latency (97% threshold and 100% worst case) over ascending data
loads for both are plotted together in Figure 4-12.

Roundtrip Latency on Eth1394 and Ethernet(unloaded)

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450

Data load(bytes)

l
a
t
e
n
c
y
(
u
s
)

97% on Eth1394 100% on Eth1394

97% on Ethernet 100% on Ethernet

Figure 4-11 Roundtrip Latency on Eth1394 and Ethernet (when system is not loaded)

Real-Time Network for Distributed Control Zhang Yuchen 2005

 46

Roundtrip Latency on Eth1394 and Ethernet(loaded)

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450

Data load(bytes)

l
a
t
e
n
c
y
(
u
s
)

97% on Eth1394 100%on Eth1394

97% on Ethernet 100%on Ethernet

Figure 4-12 Roundtrip Latency on Eth1394 and Ethernet (when system is loaded)

4.4.2 Discussion

 The latency variation (jitter), i.e. the difference between 97% threshold latency and worst
case latency on Eth1394 is larger than on Ethernet. This is due to the complex software
stack under Eth1394. The whole RT-FireWire, which is under Eth1394, includes more
task handover, context switches, etc, due to the layered structure. Instead, in Ethernet,
only a driver layer is under the device interface.

 Also due to the complex layered software under Eth1394, the latency is more worsened
by system load noise, compared with the influence on Ethernet.

 The latency on Eth1394 gives a less leaning slope, compared with Ethernet’s slope. This
is due to the high data transfer rate on FireWire. I.e. the FireWire in experiment can
transfer data at 400Mb/s, while the Ethernet in experiment can only transfer at 100Mb/s.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 47

5 Integration to Design Toolchain and Demonstration

5.1 Introduction
This chapter presents the integration of the real-time networking support provided by
RT-FireWire into a complete working around, which is used for designing and verification of
controllers. The toolchain covers the whole procedure from the design and simulation of a
certain control system to the distributed deployment of that system to multiple computing
boxes. To demonstrate the utility, a practical case is used, which is also introduced in this
chapter. Also the performance measured from that practical case is presented, based on which
the comparison between distributed control and centralized control is done.

5.2 Integration to the Design Toolchain

5.2.1 MSC Toolchain

MSC (Mechatronic Stack Connection) toolchain is a set of tools developed by [Buit, 2005] to
facilitate the procedure of realizing controllers in software code, and deploying the controllers
to computing boxes. An abstracted working sequence of this toolchain can be seen in Figure
5-1.

Figure 5-1 Working Sequence of MSC toolchain [Buit, 2005]

The strength of MSC toolchain is it takes care of the hardware I/O (Physical Input and Output)
connection automatically. But in the project of [Buit, 2005], deployment of controller is only
limited to centralized realization. Because of that, a solution needs to be found to enable the
toolchain to deploy controllers into multiple boxes, i.e. distributed control.

5.2.2 Adding Networking Support to MSC Toolchain

To add networking support to MSC toolchain, only one phase in Figure 5-1 needs to be
modified. That is the Code Generation. As shown in Figure 5-2, the configuration decision
has to be made after the control model is ready from simulation tool, but before the code is
generated. The designer has full freedom to choose the configuration. In case one has a 2-box
network, 3 configurations are available.

In Figure 5-3, the 2-way configuration is shown where the controller and I/O are totally
separated on two boxes. By using 2-way configuration, one introduces round trip network
latency to the controller realization.

Figure 5-4 gives the 1-way configuration, where the controller stays with either Encoder input
or PWM output. By using 1-way configuration, one introduces only single trip network
latency to the controller realization.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 48

Figure 5-2 Working Sequence of Modified Toolchain

Figure 5-3 2-way Configuration

To realize a distributed controller, a network interface needs to be implemented. In this
project, this is implemented by using socket programming. The reasons are:

 Interface to IP network has been implemented on RT-FireWire

 Socket interface has been fully adopted in RTAI/fusion, so the interface can be fully
compatible with real-time application.

 By using socket interface, Ethernet can replace FireWire without any change in the
application program, which gives a lot of space for introducing other real-time features,
e.g. fault tolerance upon communication channel failure.

Figure 5-4 1-way Configuration

Real-Time Network for Distributed Control Zhang Yuchen 2005

 49

5.3 Demonstration
This section describes the demonstration setup that is used in this project to test the utility of
RT-FireWire in a practical case. A real motor plant and a proved PID controller are used,
which are described in next two sections respectively. The experiments are carried out using
different sampling frequencies, i.e. 1 KHz and 5 KHz. In both cases, centralized control is
also tested, as a comparison with distributed control. For distributed control, only 2-way
configuration is tried out.

5.3.1 Plant and Controller

A demo setup built in Control Engineering Group is used, which is called LINIX, as shown in
Figure 5-5.

Figure 5-5 LINIX plant

Reason to choose LINIX:

 It is fully ready to be used.
 It is relatively simple, and straightforward.
 Many previous students also used the plant in their projects, which proves it is quite

useful for demonstration.
The 20Sim model of LINIX is shown in Figure 5-6.

input

output

qME

P
MotorPosition

Figure 5-6 20Sim model of LINIX Plant

The models of the system and of the controller are given in Figure 5-7 and Figure
respectively.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 50

Figure 5-7 Demo System Model

EUI_input

PWM_outputK
P

K
LevelCond SignalLimiter1

K D

-1z
∫

DiscreteIntegral1

-1z
∫

DiscreteIntegral2

K I

MotionProfile1

SignalGenerator1

Figure 5-8 20Sim model of Controller

Figure 5-9 shows the simulation results while a motion profile is applied. Both PWM output
and Encoder input signals are measured. The simulation frequency is 1 KHz.

Figure 5-9 Simulation Results from 20Sim (1 KHz)

Real-Time Network for Distributed Control Zhang Yuchen 2005

 51

5.3.2 Performance Comparison
First, the controller is running at 1 KHz. In both centralized control and distributed control,
the PWM output and Encoder Input are recorded, which is given in Figure 5-10.

Figure 5-10 Comparison between Centralized Control and Distributed Control (1Khz)

Second, the controller is running at 5 KHz. The PWM output and Encoder input signal are
recorded and shown in Figure 5-11. As can be seen, because of the relative high sampling
frequency, the distributed controller is losing data due to the network latency. That can be
seen from the difference of PWM output of both configurations. To make the different more
obvious, Figure 5-12 plots them together.

Figure 5-11 Comparison between Centralized Control and Distributed Control (5 KHz)

Real-Time Network for Distributed Control Zhang Yuchen 2005

 52

model

0 1 2 3 4 5
time {s}

0

0.5

1

1.5

2

2.5

3
Motion Profile
PWM_distributed
EUI _distributed
PWM_centralized
EUI_centralized

Figure 5-12 Comparison between Centralized Control and Distributed Control (5 KHz)

5.4 Discussions

Although some data is lost in the distributed configuration due to the latency on FireWire, the
motion of the LINIX motor for both configurations is almost the same. This is due to the fact
that LINIX motor (its dynamics) is a relatively slow. According to the simulation results, as
shown in Figure 5-13 and Figure 5-14 , the LINIX motor gives the same step response when
running at 1 KHz sampling frequency and when running at 5 KHz sampling frequency.

So to control a relatively slow plant like LINIX, 1 KHz sampling frequency is already enough.
Increasing the sampling frequency to 5 KHz does not have any new influence, since the slow
dynamics of LINIX plant is a dominating factor for the system reaction. Because of this, it
can be concluded that FireWire is fully usable to control slow plant like LINIX, since it does
not miss any deadline (in control intervals) when the sampling frequency is around 1 KHz.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 53

model

0

0.5

1

1.5

2
output

0

0.5

1

1.5 position {m}

0 1 2 3 4 5
time {s}

-0.5

0

0.5

1

PWM_output

Figure 5-13 Step Response of LINIX in simulation (1 KHz)

model

0

0.5

1

1.5

2
output

0

0.5

1

1.5 position {m}

0 1 2 3 4 5
time {s}

-0.5

0

0.5

1

PWM_output

Figure 5-14 Step Response of LINIX in simulation (5 KHz)

Real-Time Network for Distributed Control Zhang Yuchen 2005

 54

Real-Time Network for Distributed Control Zhang Yuchen 2005

 55

6 Conclusions and Recommendations

6.1 Conclusions

Adoption of FireWire into Distributed Control

As to adopt FireWire as a new generation fieldbus for distributed control application, a
software-based solution has been followed. The real-time software subsystem on FireWire
(RT-FireWire), which currently works in Linux/RTAI (the real-time Operating System) has
been fully designed and implemented in this project. The results from the performance
benchmarking on RT-FireWire shows that, by applying RT-FireWire on FireWire hardware,
the transaction latency on FireWire can be limited to a certain range that is fully usable for
distributed control application, whether the system is under heavy load or not.

Real-Time IP over FireWire
Ethernet Emulation over FireWire (Eth1394) has been fully implemented on RT-FireWire as
one highlevel module in the application layer. Via Eth1394, RT-FireWire can be connected to
another real-time software framework, RTnet, which implements real-time networking on the
IP layer. Therefore, besides Ethernet FireWire has been introduced as a new medium
alternative for real-time IP networking. The performance benchmarking on Eth1394 and
Ethernet shows that the performance from both is comparable.

Integration to Design Toolchain
Via Real-Time IP over FireWire, the real-time networking support provided by FireWire has
been integrated to the design toolchain which covers the whole procedure from the design and
simulation of a certain control system to the distributed deployment of that system to multiple
computing boxes. As a result of this integration, the controller designed in current toolchain
can be directly deployed to multiple nodes, as a simple but straightforward realization of
distributed controller.

6.2 Recommendations

Short-term

Raw Interface on RT-FireWire layer
This is to develop a raw interface on RT-FireWire. So via this interface, operation can be
directly applied on FireWire layer, e.g. issuing transaction, allocating bus address space or
isochronous channels. The current “raw1394” module in Linux already implements the
similar functions, but of course in a non real-time manner. Like the developing path of the
whole RT-FireWire stack, “raw1394” in Linux can be the starting point. The developed
interface, whether based on “raw1394” or not, should be conforming to the Real-Time Driver
Model (RTDM) in RTAI/fusion. RTDM was originally developed by RTnet team, but now it
has been fully integrated to RTAI/fusion as a new skin on the fusion nucleus. It extends the
RTAI interface in a regular and well-defined way for providing device access. More
information can be found in the RTAI mailing list. At the time of writing, all the IP-based
protocols in RTnet have been ported to RTDM, so called protocol devices. Moreover, at the

Real-Time Network for Distributed Control Zhang Yuchen 2005

 56

time of writing, another RTDM-conforming driver on InterBus adapter has been developed
and announced in the RTAI community.

Media Access Control in RT-FireWire
During this project, media access control on FireWire is based on the implementation in
RTnet. That is because on current stack, only the socket interface (via RTnet) has been fully
ready. But in case the raw interface is ready, a media access control layer is desired to be built
in RT-FireWire internal. The whole concept (even part of the implementation) of media access
control module in RTnet can be moved to RT-FireWire. When this module is ready, the
TDMA protocol can be applied directly on FireWire first. Besides, some other new protocols
are also desired, probably with the implantation of a more complex algorithm.

Long-term

Stacking one or more middleware frameworks onto RT-FireWire

Nowadays, quite a few middleware frameworks for real-time control application have been
developed or are under development. One example is CANopen, which has been developed
by CAN in Automation organization as an application protocol and device model for the
automation domain. If CANopen, or other middleware frameworks, can be stacked on
RT-FireWire, it would enable automation applications to run straightly over RT-FireWire.
Investigation on one or more specific middleware frameworks and a clear specification about
the implementation should be done before starting the real work.

Porting New Hardware Drivers to RT-FireWire

During this project, only driver for OHCI-compliant adapter has been ported to RT-FireWire.
It is desired that the driver for other non OHCI-compliant adapters can also be used under
RT-FireWire. One step further, it would be very nice if the 1394b adapter (supporting 3.2 Gb/s)
can be used under RT-FireWire.

Real-Time Vision Control over RT-FireWire

Real-Time vision control is control system using video signal input, e.g. via camera. During
this project, some inquiries were received from the community about whether RT-FireWire
supports real-time video transmission, e.g. from a FireWire camera. Due to the limitation of
time and hardware, this topic was not opened. To develop real-time vision control over
RT-FireWire, the current implementation of relative video data protocols (dv1394, video1394
module) in Linux can be studied and ported to RT-FireWire. Also the implementation should
conform to RTDM.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 57

Appendix1 Modification to the MSC toolchain

This appendix presents the modification made to the MSC toolchain [Buit, 2005]. First
section describes the changes made to MSC toolchain for porting it to RTAI/fusion; second
section describes the implementation of adding distributed controller deployment.

Porting to Fusion

In [Buit, 2005], LXRT on classical RTAI is used. But in this project, RTAI/fusion is chosen
due to its better structured design and more extensibility. Compared with classical RTAI,
Fusion uses a totally different mechanism for deploying real-time tasks in user space.
Therefore, the relative function calls in MSC toolchain have been changed according to the
Fusion standard. For a practical guide about how to use fusion API calls in user space, please
refer to [RTAI, 2005].

Changes of the Code Generation Template

The code generation template is used when a certain simulation block in 20Sim is converted
to C code. In MSC toolchain, the template is also used to deploy any generated 20Sim code to
RTAI/Linux user space as a real-time task. Listing A0-1 gives an overview of initialization
and execution of 20Sim task in the template.

Listing A0-1 Real-Time 20Sim Task in Fusion

Real-Time Network for Distributed Control Zhang Yuchen 2005

 58

 RT_TASK is the structure for the real-time task, which is the same in both kernel space
and user space.

 Because a lot of API services involving timeouts, delays are used in the template, the
rt_timer_start () must be called first. The same as in classical RTAI, two modes can be
chosen to start the timer: oneshot or periodic. In one shot mode, the underlying timer will
be reprogrammed after each clock tick so that higher accuracy of timing can be gained,
while in periodic mode, the timer will only be reprogrammed after each period, which
can be specified as argument to rt_timer_start(). Therefore, the timer cost less time for
reprogramming, but at the expense of lower accuracy.

 Here, rt_task_sleep_until() is used to wait for starting of next cycle. Another function,
rt_task_wait_period() can be used for the same purpose, but the period of task must be
set first by using rt_task_set_period().

Change to Stack Daemon
Because the stack daemon uses a lot of fusion API calls, most of which are not allowed in the
Linux domain. Therefore, the whole stack daemon is moved to the real-time domain, as a low
priority real-time task. See Listing A0-2.

Listing A0-2 Stack Daemon Task in Fusion

Connection Objects
In MSC toolchain, a lot of connection objects are used between the 20Sim task to the stack
daemon, see Figure A1-1, which shows all the shared memory and semaphores used in MSC
toolchain on fusion. Mutex is new primitive in fusion, used to synchronize concurrent access

Real-Time Network for Distributed Control Zhang Yuchen 2005

 59

to shared resource, e.g. shared memory here. Its antecedent is Resource Semaphore in
classical RTAI. All the connection objects are created by 20Sim task using rt_xxx_create()
functions. Later on, the stack daemon should call the rt_xxx_bind() functions to find all these
objects from the global registry.

Figure A0-1 Connection Objects in MSC Toolchain on Fusion

Adding the Distributed Controller Deployment
Main change for this purpose goes to the code generation template, see Listing A0-3.

Listing A0-3 Distributed Controller Support in Template

The implementation of network interface is based on real-time variant of socket programming,

Real-Time Network for Distributed Control Zhang Yuchen 2005

 60

which is in the API of fusion.

Since only the “2-way” configuration is used in this project, two “define”s, i.e. DISTRI_IO
for IO node and DISTRI_CONTROLLER for controller node, are enough to tell the compiler
for which node the code is being complied for. Accordingly, there is one CCE config file for
each node.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 61

Appendix 2 Non Real-Time Factors in Linux FireWire

Subsystem

This appendix unveils part of the non real-time factors in Linux FireWire Subsystem

Layered Architecture and Task Handover Latency

The Linux FireWire Subsystem is organized hierarchically into different layers, with each
layer containing one or more components to implement the corresponding network protocol
or other specific functionalities on that layer. Roughly, it consists of 3 layers, which is
presented in Figure A2-0-1.

Figure A2-0-1 Layers in Linux FireWire Subsystem

For each incoming packet, the processing task starts from Hardware Operation Layer (i.e.
fetching the packet from DMA –mapped memory), and ends in the Application Layer (i.e. the
application does some specific job on/according to the packet). Here, no attempts are made to
explore the details in each layer, but attentions are paid to the Task Handover mechanisms
between the layers. Task Handover is the way that processing routine in one layer wakes up
the processing routine in another layer, and later ends itself, so that the packet processing task
continues in another layer.

In Linux, there are quite a few variant implementations for the Task Handover:
 Software IRQ
 Tasklet
 Obsolete Bottom Half struct (only in 2.4 kernel and before)
 Kernel Timer
 Semaphore
 Waiting Queue
 …..

Since these are really deep Linux kernel internals, it is beyond the scope of this appendix to
give explanations of them. Please refer to chapter 6 of [Rubini, 2001] for more knowledge
about their definitions and usages. Here, the focus is only on the deployment of the Task
Handover in FireWire Subsystem and the latency introduced by it.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 62

First, the deployment of task handover in Linux FireWire Subsystem is presented in Figure
A2-0-2. In Hardware Operation Layer, the routine is broken into 2 parts: Top Half and Bottom
Half. The Top Half runs to acknowledge the interrupt, identify the hardware device raising the
Interrupt, check for data or status on the I/O device and return as quickly as possible to avoid
missing any new interrupts. Then, the Bottom Half is scheduled at some later time by using
Tasklet, to complete the service of the Interrupt or to do the actual work required to service
the hardware device.

Figure A2-0-2 Deployment of Task Handover in Linux FireWire Subsystem

In next section, the measurement results about the Task Handover latency in Linux FireWire
Subsystem are given.

Measuring of Task Handover Latency in Linux FireWire Subsystem
A specific series of experiment is carried out to measure the task handover latencies between
layers. Because the Task Handover between Hardware Operation Layer and Protocol Layer
uses the same mechanism as the one between Protocol Layer and Application Layer, so only
the latter is measured. As can be seen from Figure A2-0-3 and Figure A2-0-4, when the
system is not loaded, the task handover latency in both cases have already shown a relatively
big difference in latency values in the critical range of cumulative percentage (e.g. between
97% and the worst case (100%) performance). With adding load, performance is clearly
worsened. What’s more when the system is heavily loaded, the curve is much less steep then
in the case system is not heavily loaded. As already discussed, this indicates increased
non-determinism and results in poorer real-time properties.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 63

Figure A2-0-3 Task Handover Latency in Hardware Operation Layer of Linux FireWire

Subsystem

Figure A2-0-4 Task Handover Latency between Protocol Layer and Application Layer of
Linux FireWire Subsystem

Conclusion

In short, these experiment results give a clear proof that the Linux FireWire Subsystem can
not be used in real-time because of its internal software architecture and Task Handover
mechanisms.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 64

Real-Time Network for Distributed Control Zhang Yuchen 2005

 65

Appendix 3 Practical Information about RT-FireWire

Project Location
The Open Source project RT-FireWire is located at Berlios (www.berlios.de). The exact
address of RT-FireWire is http://developer.berlios.de/projects/rtfirewire/ . At the time of
writing, homepage for RT-FireWire is maintained in author’s own web space, but it can be
accessed via (rtfirewire.berlios.de).

Requirements
 Linux kernel 2.6.x
 RTAI/fusion 0.9 or newer (at the time of writing, it is still the cutting-edge CVS version)
 X86 platform
 FireWire card(s). (at the time of writing, only the driver for OHCI compliant FireWire

card has been ported to RT-FireWire)
 Download latest RT-FireWire package from the project homepage.

Installation
1. Install and test suitable version of RTAI/fusion
2. cd to preferable directory (e.g. /usr/src)
3. tar xvjf <PATH-TO-RT-FireWire-ARCHIVE>/rt-firewire.tar.bz2
4. cd rt-firewire
5. Run ./configure --with-rtai=<PATH-TO-RTAI> <options> [--prefix=<PREFIX>]

<PATH-TO-RTAI> is installation directory of RTAI/fusion.
6. <PREFIX> is the installation path prefix (see below). Default <PREFIX> is

/usr/local/rt-firewire. The complete list of parameters is shown when calling ./configure
--help. RT-FireWire can also be build out-of-tree, just run configure from a newly created
directory.

7. make
8 make install

This will create the directories <PREFIX>/sbin with all configuration tools,
<PREFIX>/modules containing all core modules, <PREFIX>/include with the required
API header files.

9. In case the char device /dev/rt-firewire is not created automatically, you can create it
manually, by mknod /dev/rt-firewire c 10 241.

Initialization
1. Shutdown your FireWire card and unload the Linux driver
2. Load the RTAI/fusion modules: rtai_hal.ko rtai_nucleus.ko rtai_rtdm.ko
3. Load the RT-FireWire modules: rtpkbuff.ko (real-time buffer module),
 rt_serv.ko (real-time server module)

rtpc.ko (real-time procedure call module)
rt_ieee1394.ko (RT-FireWire kernel module)
rt_ohci1394.ko (OHCI driver)
bis1394.ko (bus internal service module)

Real-Time Network for Distributed Control Zhang Yuchen 2005

 66

First play-around
After insmod all the modules, you can run hostconfig now to see all your FireWire adapters,
For example:
===========
hostconfig -a
===========
This gives a view of all local hosts.

If you have 2 machines, you can run rtping to test the latency between request and response.
For example:
=======================
rtping -h fwhost0 -d 0 -s 50.
=======================
This does a test between local host "fwhost0" and remote node that has a node id 0. If the id
of local host is used, then it is a loop back test. The value after “-s” specifies the size of data
load for this test.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 67

Appendix 4 Publication to 10th IEEE International Conference

on Emerging Technologies and Factory Automation

In this appendix, the paper <<RTnet - A Flexible Hard Real-Time Networking Framework>>
is attached. Jan Kiszka, the RTnet leader in University of Hannover, Germany, is the main
author of this paper. FireWire and its integration to RTnet are introduced in this paper. At the
time of writing, the conference has not been held. It will be held at 19-22 September 2005, in
Facolta' di Ingegneria, Catania, Italy. This paper will be presented by Jan Kiszka during the
conference, and will be published in the proceedings.

This paper is one product of the cooperation between RTnet development team in University
of Hannover and the Control Engineering Group in University of Twente. The initial contact
was established via the RTAI and RTnet community.

Real-Time Network for Distributed Control Zhang Yuchen 2005

 68

RTnet – A Flexible Hard Real-Time Networking Framework

Jan Kiszka, Bernardo Wagner
Institute for Systems Engineering

Real-Time Systems Group
University of Hannover, Germany

{kiszka, wagner}@rts.uni-hannover.de

Yuchen Zhang, Jan Broenink
Control Engineering Group

Department of Electrical Engineering
University of Twente, the Netherlands

y.zhang-4@student.utwente.nl,
j.f.broenink@utwente.nl

Abstract

In this paper, the Open Source project RTnet is pre-
sented. RTnet provides a customisable and extensi-
ble framework for hard real-time communication over
Ethernet and other transport media. The paper describes
architecture, core components, and protocols of RTnet.
FireWire is introduced as a powerful alternative to Ether-
net, and its integration into RTnet is presented. Moreover,
an overview of available and future application protocols
for this networking framework is given.

1 Introduction

Real-time Ethernet has grown to one of the core top-
ics in current industrial automation research and appli-
cation. A significant number of vendor-driven solutions
have shown up on the market during the last years, claim-
ing to replace traditional fieldbuses. The overview of
available solutions on [18] currently lists 16 soft and
hard real-time Ethernet variants. Most of them either re-
quire special hardware extensions to nodes or infrastruc-
ture components, or they provide only soft real-time guar-
antees. Academia approaches are typically designed to
demonstrate specific concepts and lack common OS or
hardware support. A broad overview of soft and hard real-
time protocol research is given in [7]. Some recent ap-
proaches are for example FTT-Ethernet [16], RT-EP [12],
or the combination of switches and traffic shapers [11].

All these approaches come with various transport and
application protocols as well as programming interfaces,
which are generally not compatible with each other. Ad-
ditionally, there are other transport media beyond Eth-
ernet 100Base-T approaching the real-time domain: Gi-
gabit Ethernet, wireless media as IEEE 802.11 or Blue-
tooth, and also promising trends like using FireWire for
time-critical control and measuring tasks. While this di-
versity of solutions can stimulate competition, it also in-
terferes with the portability and extensibility of applica-
tions both in research and industrial scenarios. Further-
more, the question arises which solutions can guarantee
long-term availability, especially when taking their spe-

cific hardware dependencies into account.
With the goal to provide a widely hardware-

independent and flexible real-time communication plat-
form, the RTnet project has been re-founded in 2001 at the
University of Hannover, based on ideas and source code
of a previous effort to provide deterministic networking
[10]. RTnet is a purely software-based framework for ex-
changing arbitrary data under hard real-time constraints.
The available implementation is founded on Linux with
the hard real-time extension RTAI [17].

The design of the RTnet stack as depicted in Figure 1
was inspired by the modulised structure of the Linux net-
work subsystem. It aims at scalability and extensibility in
order to comply with the different requirements of appli-
cation as well as research scenarios. RTnet’s software ap-
proach addresses both the independence of specific hard-
ware for supporting hard real-time communication and the
possibility to use such hardware nevertheless when it is
available. Furthermore, it enables the integration of vari-
ous other communication media beyond Ethernet.

VNIC VNIC

NIC NIC

TDMA NoMAC, ... RTmac

RTnet Core

API

Packet
Protocol

UDP/IP,
ICMP, ARP

RTcfg

RTcap

LoopbackRT DriverRT Driver

Non-RT
Network

Stack
(e.g. Linux)

RT Appl.RT Appl. Management Analysis

Figure 1. RTnet Stack

This paper presents the architecture of RTnet and the
realisation of its central components. Section 2 describes
the RTnet base services consisting of the stack core, the
driver interface, available transport protocols like the real-
time UDP/IP implementation, the programming interfaces
provided to management tools and real-time applications,
and the packet capturing extension RTcap. The determin-
istic media access control framework RTmac, including

its tunnelling network devices for time-uncritical traffic
(VNIC), is introduced in Section 3. That section will
furthermore present RTnet’s default access control disci-
pline for Ethernet, TDMA, in details. Finally, Section 4
closes the stack overview by addressing the real-time con-
figuration service RTcfg. So far, the implementation of
RTnet has been focused on Ethernet. Section 5 presents
the concepts and recent advances to add real-time IEEE
1394 (FireWire) support to the framework. The section
also points out the advantages of that media type and the
possible applications in the automation domain. Further-
more, available and future application protocols and full-
featured middlewares working over RTnet are described
in Section 6.

2 Base Services

RTnet contains a set of central services which are re-
quired for most scenario. In the following, these service
will be introduced.

2.1 Packet Management
One of the crucial parts of RTnet deal with the manage-

ment of packets which contain the incoming and outgo-
ing data. Packets that ought to be transmitted are passed
through the stack in the context of the sending task, i.e.
a real-time application or an internal RTnet service. In
contrast, incoming packets are first passed from the net-
work controller driver to a so called stack manager. This
real-time task demultiplexes the packet according to their
protocol types by passing them to the respective handlers.
The priority of the stack manager has to be above all ap-
plications using RTnet services in order to avoid priority
inversions. This concept is similar to bottom-half interrupt
handling as it can be found in most operating systems.

The stack and the drivers use a unified data structure
called rtskb (derived from the Linux sk buff struc-
ture) to handle packet buffers. While classic network
stacks allocate such buffers and management structures
dynamically, RTnet has to use a different scheme due to
the real-time requirements. First, all rtskbs are preal-
located during set-up. As currently RTnet does not sup-
port buffer sharing between multiple users, the manage-
ment structure and the payload buffer are forming a single
memory fragment. And second, every rtskb has a fixed
size and can always carry the largest physical packet. This
limitation is necessary to avoid shortages due to mem-
ory fragmentation and to allow exchanging of arbitrary
rtskbs between users.

Packet producers and consumers within RTnet have to
create pools of rtskbs in order to take part in the com-
munication. During runtime, new rtskbs are allocated
from these pools. A reference in the rtskb to its original
pool allows to return it to its owner upon release. When a
packet producer hands over a rtskb to the destined con-
sumer, the ownership changes only if the consumer is able
to provide a free compensation rtskb from its own pool.

Otherwise the packet is dropped, and the related buffer
can immediately be reused.

Typical producers and consumers are the adapter
drivers on one side and the sockets on the other. But also
VNICs or management protocols like RTcfg and ICMP
provide their own pools. Pools are created or resized in
non-real-time context using the indeterministic memory
allocation service of the underlying operating system. In
order to allow socket creation and pool extension also in
real-time context, the required rtskbs are transferred in
that case from a special global pool of preallocated buffers
that has been created during the stack initialisation.

2.2 UDP/IP Implementation
Compared to a standard UDP/IP stack, several modi-

fications were required to create the deterministic variant
contained in RTnet. First, the dynamic Address Resolu-
tion Protocol (ARP) was converted into a static mecha-
nism which is executed during the set-up. If a destina-
tion address is later unknown, no resolution requests are
issued but a transmission error is returned to the caller.
Otherwise, the worst case transmission latency of a packet
would include the delay of a potential address resolution.

Second, the routing process was simplified. The output
routing tables were optimised for the limited amount of
entries used with RTnet. To accelerate the packet set-up,
the tables also include the ARP results, i.e. the destination
hardware addresses.

The defragmentation of IP packets needs special atten-
tion. In classic network stacks, this task is performed by
the IP layer before any higher layers like UDP are in-
volved. Thus, as the actual receiver is yet unknown, a
global rtskb pool is required for buffering all fragments
before the last one has arrived. The addition of new frag-
ments to an existing chain demands a lookup in the global
list of all currently pending IP packets chains. Further-
more, incomplete chains have to be cleaned up after a
timeout to avoid buffer shortages and to keep the global
IP fragment list small.

The UDP/IP stack of RTnet contains several mecha-
nisms to confine the effects of the defragmentation as far
as possible to the receiving socket. For this purpose, the
first fragment is used to immediately resolve the destina-
tion socket using an extended interface to layer 4. This
information is then stored together with the fragment in a
collector data structure. Further fragments are identified
as usual by their IP addresses and IDs. To allow an effi-
cient implementation of the collector, incoming fragments
have to arrive in a strictly ascending order, otherwise the
whole chain is dropped. Incomplete chains are cleaned
up when the related socket is closed. The total number of
collectors is limited in order to be able to specify an upper
bound for the lookup latency.

2.3 Driver Layer
Network interface cards (NIC) are attached to the stack

core using a Linux-like driver interface. This allows

straightforward porting of standard Linux drivers to RT-
net, which has already been performed for about ten
widely-used NICs. The NIC initialisation, configuration,
and shutdown is still performed in non-real-time context
under RTnet; porting standard drivers only requires to use
the appropriate synchronisation mechanisms of the under-
lying RTOS here. However, special care has to be paid on
the time-critical reception and transmission paths. They
have to be audited in order to detect and avoid potential
long delays while accessing the hardware.

A few extensions compared to the standard driver
model are required to provide accurate timestamp ser-
vices. RTnet does not depend on built-in timestamp clocks
of the NIC, which are still not commonly available. In-
stead, the driver has to provide the packet reception and
transmission time as precise as feasible. This means that
the reception timestamp has to be taken for every packet
right at beginning of the interrupt handler called upon the
arrival. Furthermore, the driver has to provide the func-
tionality to store the current time in an outgoing packet
and trigger its transmission atomically. These measures
widely reduce packet timestamp jittery to the single inter-
rupt jitter which characterises platform and RTOS.

The driver layer furthermore provides two per-device
hooks for redirecting transmission requests and MTU
(maximum transmission unit) queries. Both hooks are
transparent to the drivers. The transmission hook is used
by the media access control layer RTmac and the captur-
ing extension RTcap for managing, respectively, analysing
outgoing packets. While standard network stacks typi-
cally provide only static device MTUs, RTnet offers log-
ical channels of variable size up to the physical MTU to
higher layers. The RTmac discipline TDMA utilises these
channels to enforce specific slot sizes (see Section 3.2).

2.4 Application Programming Interface

Application programs can attach to the RTnet real-time
services via a widely POSIX-conforming socket and I/O
interface. The socket interface offers UDP and packet
sockets for exchanging user data deterministically. The
I/O interfaces provides access to additional features that
services like TDMA (see Section 3.2) exports to users, for
example clock synchronisation. Just as RTAI, RTnet per-
mits both the classic kernel mode and more convenient
user mode usage (Linux processes) of the API.

The related socket and I/O API functions are part of a
separate interface concept called Real-Time Driver Model
(RTDM). This interface addresses the specific require-
ments when accessing hardware on a mixed real-time sys-
tem like Linux/RTAI, for instance differentiation between
real-time and non-real-time service invocation. Currently,
an implementation of RTDM comes with RTnet, but plans
exist to merge the functionality into the RTAI project. This
would also enable to utilise RTDM for other real-time de-
vices drivers beyond RTnet.

2.5 Capturing Extension
A powerful extension of the RTnet core is the RTcap

plug-in. It acts as a standard traffic capturing service
for both incoming and outgoing packets over real-time
NICs. Arriving packets are recorded together with a re-
liable high precision timestamp, solely depending on the
interrupt jitter of the capturing system. RTcap adds only
a small bounded overhead to the time-critical data paths
when being installed on an active RTnet node. It further-
more cannot starve out any other packet user with respect
to rtskbs because it maintains separate buffer pools for
captured packets.

Figure 2. Using Ethereal with RTnet

Normal analysis network tools can be used with RT-
cap because a pseudo, read-only network device is created
for every real-time NIC to forward the captured packets.
Especially Ethereal [5], shown in Figure 2, is well-suited
to dissect real-time communication as it fully understands
the RTnet protocols. But the usage of RTcap in combi-
nation with traffic analyser is, of course, not limited to
RTnet-managed networks or Ethernet. In principle, any
transport media with RTnet-enabled drivers can be stud-
ied with RTcap’s high timestamp accuracy.

3 Real-Time Media Access Control

As important as a real-time-capable stack implemen-
tation is a deterministic communication media. For in-
stance, standard Ethernet, so far RTnet’s primary media,
does not provide adequate Quality of Service (QoS) fea-
tures for hard real-time applications. Unpredictable colli-
sions in hub-based Ethernet segments prevent short deter-
ministic transmission times. Switches can overcome this
issue but suffer from the risk of congestions which lead
to packet delays or drops. QoS-enabled switches accord-
ing to IEEE 802.1q are partly improving this situation, but
they still require a centralised cabling which is often too
costly for industrial applications.

Also other shared communication media may demand
additional control over outgoing traffic in order to trans-
late QoS parameters to a media-specific scheme or to ex-

tend existing QoS features where necessary. RTnet ad-
dresses the demand for deterministic and flexible media
access control (MAC) mechanisms with its RTmac layer
as described in the following. Moreover, as an example
of a MAC discipline which is pluggable into the RTmac
interface, a TDMA-based protocol is presented.

3.1 Pluggable MAC Layer
The RTmac is an optional extension to the RTnet stack.

Although the stack is already functional without RTmac,
it becomes mandatory if an underlying communication
media lacks a deterministic access protocol. The RTmac
layer was designed to provide these four elementary ser-
vices to arbitrary software-based MAC implementations,
here called disciplines:

• Interception of the crucial packet output path and
redirection to discipline-specific handlers. For trans-
mitting packets, this is performed right before the
packet is passed to the NIC driver. Furthermore, a
handler to override the device MTU on a per-packet
basis can be installed.

• Exchanging discipline-defined control or data mes-
sages in a RTmac frame aside any user protocols.

• Discipline management on a per-device basis. To
every real-time NIC, an individual MAC discipline
can be assigned when it was registered with the RT-
mac layer.

• Packet tunnelling service for time-uncritical data as
generated or received by the non-real-time network
stack. This service creates a virtual network de-
vice for every RTmac-managed real-time NIC. Tun-
nelled packets are encapsulated by the RTmac proto-
col frame to distinguish between otherwise identical
real-time and non-real-time protocols like UDP.

3.2 TDMA Discipline
Primarily for the use with standard Ethernet, RTnet

provides a timeslot-based MAC discipline called TDMA
(Time Division Multiple Access). TDMA in its current
revision 2 is a master-slave protocol. It synchronises the
clocks of RTnet nodes within a network segment. Fur-
thermore, it defines the transmission time of any payload
packet relative to sychronisation messages the master is-
sues periodically.

A TDMA slave node can join a running network seg-
ment at any time provided it knows at least one parameter
set of its slots. This set can either be configured stati-
cally or distributed via the RTcfg protocol (see Section 4).
Given these parameters, the slave starts to join by sending
a calibration request to the master. The master, in turn,
replies with a message that contains the request arrival and
reply departure times, both as precise as the system allows
(see also Section 2.3). By taking its local departure and ar-
rival times into account, the slave is able to calculate the

packet round-trip delay. This procedure is repeated over
a certain interval in order to estimate the medium time
ttravel between starting to transmit a packet on the master
and gaining its reception time on the slave.

ttravel =
1
2n

n∑
i=1

T slave
recv,i − T slave

xmit,i −

(Tmaster
xmit,i − Tmaster

recv,i) (1)

The master’s synchronisation message contains the
scheduled transmission time Tsched together with the
timestamp taken right before packet release. This permits
the slave to compensate potential scheduling jitters on the
master node when calculating toffset, the offset between
local and global system clock. The slave can furthermore
improve the precision of its own slot starting times Tslot.

toffset = Tmaster
xmit + ttravel − T slave

recv (2)
Tslot = Tsched + tslot − toffset (3)

Time slots can be freely arranged within an elemen-
tary TDMA cycle as depicted in Figure 3. Besides node
assignment and offset, also the slot size can be defined
within physical limits of the transport media. TDMA al-
lows that a node uses multiple time slots per cycle. Fur-
thermore, it is possible to set custom periodicity and phas-
ing of a slot to limit the network load or to share slots be-
tween different nodes. A management tool is available un-
der Linux to create and maintain individual configurations
based on scripts. Even a runtime reconfiguration within
certain constraints is feasible.

Node 3

TDMA Cycle

Bck.
Sync

Sync SyncNode 2 Node 4Node 1 Node 5

Node 3

TDMA Cycle

Bck.
Sync

Sync Sync

Node 2 Node 4

Node 1

Node 3

TDMA Cycle

Bck.
Sync

Sync SyncNode 2 Node 4Node 1

TDMA Cycle

Bck.
Sync

Sync SyncNode 2 Node 4

Node 3

Node 5

Node
1

Node 4Node
3

Figure 3. Flexible TDMA Slot Setup

In case multiple packets have been queued on a slot,
the transmission order is defined by their priorities which
can be set by real-time applications or RTnet services for

each message. 31 real-time levels are available, the 32nd
and lowest one is reserved for time-uncritical data, i.e.
VNIC traffic. With multiple slots per node, the need for a
scheduling scheme arises. For efficiency reasons, TDMA
provides explicit scheduling only. Slots are numbered on
each node with ID 0 predefined for default real-time and
ID 1 for non-real-time traffic. In case only a single slot is
available, ID 1 is mapped on slot 0. Any additional slots
are reserved for explicit assignment to arbitrary real-time
applications via the socket API.

As the master is a single point of failure, its services
can be backed up by one or more secondary masters.
An additional time slot has to be assigned to every such
backup master, marked as “Bck. Slot” in Figure 3. In
case the primary master fails to transmit a synchronisa-
tion message, the next backup master on the time axis
will start issuing its own messages. The offset between
primary and secondary master is automatically compen-
sated with a now larger difference between scheduled and
actual transmission time contained in every synchronisa-
tion frame. When the primary master has been fixed and
starts taking over again, it first synchronises its own clock
on the active backup master in order to avoid significant
clock skews. Afterwards it issues its own synchronisation
messages again, and the backup master switches to stand-
by.

The TDMA discipline creates a RTDM I/O device for
every controlled network device. These I/O devices can
be used to retrieve the clock offset introduced above and
to synchronise a real-time task on the TDMA cycle.

4 Real-Time Configuration Service

During the revision of the first TDMA protocol it be-
came apparent that a clear separation between RTmac dis-
ciplines on the one side and generic configuration as well
as monitoring services on the other is essential for RTnet’s
extensibility. For this reason, the Real-Time Configura-
tion Service RTcfg has been designed in a discipline- and
media-agnostic manner. It does not depend on a specific
communication media given that broadcast transmissions
are supported. The IPv4 protocol is supported but not
mandatory. Other network protocols like IPv6 can be in-
tegrated, and physical addresses may be used even purely.
The concrete tasks of RTcfg are:

• Distribution of essential discipline configuration data
to newly joining nodes. This information is issued
unsolicited, thus enabling nodes to join real-time net-
works on-the-fly as far as physical media and RTmac
discipline allow.

• Monitoring of active nodes and exchange of their
physical and logical addresses. This service can be
used, for example, to set up and maintain the static
ARP tables mentioned in Section 2.2. It is further-
more possible to build real-time network monitoring
tools on top of RTcfg’s interfaces.

• Synchronisation of the real-time network start-up
procedure. Specific RTmac disciplines or certain ap-
plication scenarios may require common rendezvous
points in order switch network mode or start applica-
tions synchronously.

• Distribution of arbitrary configuration data, even in
the absence of TCP/IP with its typically used file
transfer protocols like TFTP/FTP etc.

RTcfg is based on a client-server protocol. A central
configuration server stores parameter sets of every man-
aged client in a network segment. This information is used
by the server to continuously invite any known but yet
inactive client to join. The client’s start-up procedure as
shown in Figure 4 consists of three stages. The first stage
is completed after the client has received its single packet
of initial parameters that is identifiable either through the
physical or logical destination address. These parameters
typically contain the minimum information required to set
up a possible RTmac discipline, for example at least one
TDMA slot configuration.

In the second stage after completing the discipline ini-
tialisation, the client announces its presence to any other
network nodes which can then update their address infor-
mation like static ARP tables. Already active clients reply
on this announcement by sending the new node their own
identification. The server replies in contrast by transmit-
ting an optional second set of configuration data which
can be scattered over multiple packets. After the server
has received the final stage 2 acknowledge message from
the last missing client node, the network is ready for a po-
tential common operating mode switch in case such syn-
chronisation is required.

As stage 3, an optional second rendezvous point is pro-
vided to both server and clients. It can be utilised to wait
for all nodes to complete processing the configuration data
they received during stage 2.

RTcfg
Server

New
Client

Existing
Client

Stage 1 Config (if broadcasted)

Process Config
(e.g. TDMA Setup)

Announce

Update
IP Routes

Update
IP Routes Update

IP Routes

Stage 2 Config

Acknowledge

Process Config

Stage 3 Ready

(broadcasted)

(broadcasted)

Announce

(broadcasted)

(broadcasted)

Stage 3 Ready

Assemble
Config

Rendezvous
Point 1

Rendezvous
Point 2

Figure 4. RTcfg Client Start-up in 3 Stages

After the setup completion the clients can be instructed
to transmit low-frequent heartbeat frame to the server in

order to track potential node failures. If the server detects
lacking heartbeat frames, it declares the client dead by
broadcasting a related message to the remaining nodes. As
a result, all nodes will remove any address of the broken
client from their local tables. This enables a restart pro-
cedure of the repaired or replaced node. A failing RTcfg
server can also be restarted, even on a different system,
without the need to go through the full start-up procedure
of every running node once again.

5 Integration of FireWire

FireWire, also known as IEEE 1394 [8], is a high-
performance serial bus for connecting heterogeneous de-
vices. Though firstly targeted for consumer-electronic ap-
plications, such as high-speed video transmission, many
of FireWire’s features make it well fit industrial and labo-
ratorial context. In the following subsections, an overview
of FireWire is given and the current status of its integra-
tion to RTnet is described.

5.1 FireWire Overview
The bus topology of FireWire is tree-like, i.e. non-

cyclic network with branch and leaf nodes. The physi-
cal medium supports data transmission up to 400 Mbps
in 1394a specification. In 1394b specification, the speed
even rises to 3.2 Gbps. Two types of data transaction are
supported on FireWire: asynchronous and isochronous.
As illustrated in Figure 5, a mix of isochronous and asyn-
chronous transaction is performed by sharing the overall
bus bandwidth, of which the allocation is based on 125 µs
intervals, so called FireWire cycles.

Cycle

Start

125 µs

Cycle N

Up to 64 channels

Isochronous Packet in different channels

Asynchronous Packet

Cycle N+1

Cycle

Start
Ch 0 Ch n...Ch 1

Cycle N-1

Figure 5. FireWire Cycle

Isochronous transaction targets one or more nodes by
being associated with a multicasting channel number.
There can be maximally 64 channels in total. Once bus
bandwidth has been allocated for an isochronous transac-
tion, the associated channel can receive a guaranteed time-
slice during each 125 µs cycle. Up to 80% (100 µs) of
each bus cycle can be allocated to isochronous channels.
Because this transaction type does not re-transmit broken
packets, but deliver data at constant, real-time rate, it is
well suited for the time-triggered state message transmis-
sion in distributed control systems.

In the asynchronous transaction phase, the whole net-
work on FireWire appears as a large 64-bits mapped

bus address space, with each node occupying a 48-bits
mapped space. The high-order 16 bits of address are used
to identify nodes1. An asynchronous transaction is split
into two sub-transactions: request to access a piece of
address on another node and response. Coordination be-
tween request and response is ascertained by the trans-
action layer protocol. Since guaranteed data delivery is
provided through acknowledgement, asynchronous trans-
action is targeted for non-error-tolerant applications, like
command and control message transmission in distributed
control system.

Bus management on FireWire includes different re-
sponsibilities that can be distributed among one or more
nodes: Cycle Master, Isochronous Resource Manager and
Bus Manager. The Cycle Master broadcasts a start mes-
sage at the beginning of each cycle. The Isochronous Re-
source Manager takes care of the allocation of bus band-
width and isochronous channels. The Bus Manager has
several functionalities including publishing the bus speed
map and the bus topology map. Since FireWire connects
devices that may not support the same top speed of data
transmission, the bus speed map is used by a certain node
to determine at what speed it can communicate with an-
other node. The topology map may be used by end-users
to optimise the bus topology for a highest throughput.

5.2 FireWire Stack and Connection to RTnet
The FireWire stack, as shown in Figure 6, is adapted

from the Linux variant[9]. Functions in the kernel are de-
coupled into several modules. Application on the stack
acquires either a portion of bus address or one or more
multicasting channels, by using the primitives from the
Application Interface and Management layer.

Application Layer

Application Interface and Management

FireWire Stack Kernel

Driver

FireWire NIC

Real-Time
Packet
Management

Asynchronous
Dispatcher

Isochronous
Dispatcher

Transaction
Layer

Bus
Manage
-ment

Figure 6. FireWire Stack

The RTnet mechanism for real-time packet manage-
ment is applied to the FireWire stack as well. Both NIC
driver and high-level applications are potential produc-
ers and consumers of packets. All packets are carried
by a generic packet buffer structure rtpkb. Like in RT-
net, pre-allocation of rtpkbs is done during set-up, with

1Here, we only talk about the peer-to-peer asynchronous transaction.
In 1394a supplement, the multicasting packet in asynchronous transac-
tion is also defined.

each rtpkb carrying a fixed size of payload that is large
enough to meet various scenarios.

The path of delivering incoming packets to application
layer is realised by a real-time task, the so-called tasklet
server. Upon arrival of a new packet, a suitable processing
routine, either for asynchronous or isochronous, is hooked
to the server as a tasklet. The server works under the rule
First In First Served (FIFS), which means the packets are
processed in the order of arrival time. When no tasklet is
being queued, the server stays in idleness until the next
packet arrives. A RTOS semaphore is used for the syn-
chronisation between server and tasklet queue. Like the
stack manager in RTnet, the server runs at a higher prior-
ity than application tasks.

The connection between FireWire stack and RTnet core
is implemented through Ethernet emulation. The emu-
lation is a module on application layer, using a portion
of bus address to employ a protocol converting FireWire
packets to Ethernet packets and vice versa. By using
Ethernet emulation, FireWire functions the same as other
real-time Ethernet devices in RTnet.

6 Application Protocols and Frameworks

The advantage that RTnet provides its real-time com-
munication services through a widely standardised API
instead of, for example, a specialised, solely fieldbus-
oriented interface becomes obvious when considering ap-
plication protocol layers. This section introduces some of
them and also presents an exemplary concept for mapping
an existing fieldbus middleware, CANopen, on RTnet’s
services.

6.1 netRPC – Remote Real-Time Procedure Calling
One of the first user of RTnet was its primary real-time

execution platform itself. RTAI (3.x series) [17] comes
with a plug-in called netRPC that enables a distributed us-
age of its RTOS services. This remote procedure calling
service (RPC) is built upon the UDP/IP protocol. It can ei-
ther be attached to the Linux non-real-time network stack,
typically for testing and demonstration purposes, or to the
RTnet API. In the latter case distributed hard real-time is
provided to the RTAI applications almost transparently.
Some of the RTAI developers make use of this feature
in their real-time multi-body dynamics analysis software
MBDyn [13].

6.2 RTPS Protocol
The Real-Time Publish-Subscribe Protocol (RTPS)

[14] has been developed in order to provide real-time com-
munication services over unreliable IP networks like Eth-
ernet. The protocol contains mechanisms to detect criti-
cal packet delays or losses and avoids indeterministic re-
transmissions, as for example TCP causes, by using UDP
as transport protocol. In order to keep real-time communi-
cation operational on Ethernet, only a low network load is

acceptable in RTPS segments. RTPS is available as a com-
mercial product (NDDS) and is included in various indus-
trial products, for instance in certain Schneider PLCs.

Moreover, an Open Source implementation of RTPS
called ORTE [2] is available. ORTE runs on a large num-
ber of platforms over conventional UDP/IP stacks and, ad-
ditionally, supports RTnet on top of RTAI. By utilising
RTnet’s hard real-time UDP/IP services, RTPS can now
be used even under high non-real-time network load, as
RTnet reliably separates this traffic from the time-critical
data.

6.3 Real-Time Control Frameworks
Both for research and industrial scenarios, increasingly

complex control tasks demand powerful frameworks to fa-
cilitate the development of distributed real-time systems.
One of such frameworks has been developed at the Real-
Time Systems Group in Hannover with the focus on ro-
botic research [20]. This framework transparently sup-
ports distributed applications both deterministically over
RTnet (UDP/IP) and without timing guarantees over stan-
dard TCP/IP. Its communication models include remote
procedure calling as well as producer-consumer schemes.

A similar framework, OROCOS, also makes use of RT-
net for closed-loop control [15]. Moreover, plans exist
for OROCOS and the related OCEAN project to run RT-
CORBA over RTnet. The latter project already evaluated
an earlier version of RTnet and concluded that integrating
it as pluggable protocol into the RT-CORBA implementa-
tion ACE/TAO is a promising approach [19].

6.4 CANopen
The CAN in Automation organisation has developed

CANopen as an application protocol and device model for
the automation domain [1]. Beyond its original use on top
of the CAN fieldbus, CANopen has recently been adopted
by two commercial real-time Ethernet solutions, ETHER-
NET Powerlink [3] and EtherCAT [4]. Both approaches
are, as well as RTnet, quite different compared to the CAN
bus with respect to node addressing, message priorities, or
communication models. Therefore, ETHERNET Power-
link and Ethercat only reuse the device profiles specified
by CANopen. In following, the feasibility and potential
of adopting CANopen to RTnet is briefly analysed. Such
an extension would enable classic automation applications
like soft-PLCs to run more straightly over RTnet.

As CAN itself is agnostic to message source and des-
tination addresses, CANopen maps the common three
addressing modes broadcast, unicast, and multicast on
CAN message identifiers. Broadcast messages are used
for network management, synchronisation, time stamp-
ing, and alarming purposes. CANopen exchanges so
called Service Data Objects (SDO) for time-uncritical di-
rect communication between two nodes as unicast mes-
sages. Process Data Object carrying the real-time data are
transmitted according to the multicast scheme with a sin-
gle producer and an arbitrary number of consumers.

RTnet supports broadcast as well as unicast both via
UDP and user-defined Ethernet protocols. As multicast
support is not yet part of RTnet, such messages can be
issued transitionally either via unicast in case only a sin-
gle consumer exists or as broadcasts using additional soft-
ware filters on the receiving nodes. Basically, an exten-
sion of the Communication Object ID (COB-ID) format is
required, which was originally defined with solely CAN
IDs in mind. While CAN prioritise messages implicitly
according to their ID, an explicit value is now required
which also encode the output channel on RTnet. An ex-
tended COB-ID would demand the following fields:

• ID type (UDP/IPv4, UDP/IPv6, Ethernet, CAN, etc.)

• Destination node address (IP, Ethernet MAC, etc.)

• Message ID (UDP destination port, Ethernet frame
type, CAN ID, etc.)

• Priority and channel (RTmac queuing priority,
TDMA slot, etc.)

The CAN-specific Remote Transmission Requests
(RTR) are utilised by consumers for soliciting a PDO from
the producer. This protocol can be emulated by sending an
empty PDO with identical COB-ID to the producer.

Based on the proposed addressing scheme, typical
CANopen stacks, for instance one of the various free im-
plementations [6], may already be reused on top of RT-
net. Certain CANopen services could be mapped directly
on RTnet equivalents. RTcfg provides heartbeat mech-
anism which can replace CANopen’s variant. TDMA
comes with an API to synchronise nodes and distribute
a common time base, services that be used in place of
the CANopen protocol. Additional optimisation potential
lies in larger transfer fragments when exchanging SDOs.
CANopen’s limitation to CAN-related 8 bytes can be eas-
ily overcome by defining new, COB-ID-specific SDO up-
load and download protocols that make use of different
maximum packet sizes (e.g. almost 64 KB via UDP/IP).

7 Summary and Outlook

This paper introduced RTnet as an adaptable and ex-
tensible framework for deterministic communication over
standard Ethernet, FireWire, or other suited media. Its
open, standard-oriented, and modulised structure allows
numerous application scenarios like distributed real-time
systems, fieldbus coupling devices, intelligent I/O inter-
faces, low-cost real-time network analysers, etc. Applica-
tion software may either interact directly with the RTnet
API, or middlewares like RTPS or CANopen can be build
over RTnet’s services.

Future work will focus on further integration of
FireWire, new media like Gigabit Ethernet, and interop-
eration with additional middlewares. To decouple organi-
sational dependencies, the RT-FireWire stack has recently
become a separate project. Based on the connection to

RTnet via Ethernet emulation, the adoption of FireWire’s
transaction modes and clock synchronisation for RTnet
services will now be addressed. Furthermore, the poten-
tial of layering CANopen over RTnet will be analysed and
can lead to the implementation of an extended CANopen
stack.

The current RTnet implementation has been build upon
free software, it tightly interacts with many Open Source
projects, and it is therefore available under Open Source
licenses, too. For downloads and further information, visit

www.rts.uni-hannover.de/rtnet

References

[1] CiA. CANopen, Application Layer and Communication
Profile. CAN in Automation, Feb. 2002.

[2] O. Dolejs, P. Smolik, and Z. Hanzalek. On the Ethernet use
for real-time publish-subscribe based applications. In 5th
IEEE International Workshop on Factory Communication
Systems, Vienna, Austria, Sep. 2004.

[3] ETHERNET Powerlink Standardization Group.
www.ethernet-powerlink.org.

[4] EtherCAT Technology Group. www.ethercat.org.
[5] Ethereal. www.ethereal.com.
[6] CANopen free software resource center. canopen.

sourceforge.net.
[7] F. T. Y. Hanssen and P. G. Jansen. Real-time communica-

tion protocols: an overview. Technical Report TR-CTIT-
03-49, Centre for Telematics and Information Technology,
Univ. of Twente, The Netherlands, Oct. 2003.

[8] IEEE. IEEE standard for a high performance serial bus,
Std 1394-1995 and amendments, 2002.

[9] IEEE 1394 for Linux. www.linux1394.org.
[10] LinuxDevices.com. Lineo announces GPL real-time net-

working for Linux: RTnet. www.linuxdevices.
com/news/NS4023517008.html, July 2000.

[11] J. Loeser and H. Haertig. Low-latency hard real-time com-
munication over switched Ethernet. In 16th Euromicro
Conference on Real-Time Systems, Catania, Italy, 2004.

[12] J. Martı́nez, M. Harbour, and G. J.J. A multipoint commu-
nication protocol based on Ethernet for analyzable distrib-
uted real-time applications. In 2nd International Workshop
on Real-Time LANs in the Internet Age, 2003.

[13] Multibody dynamics analysis software on real time dis-
tributed systems. www.aero.polimi.it/∼mbdyn/
mbdyn-rt.

[14] Real-Time Innovations, Inc. Real-Time Publish-Subscribe
Wire Protocol Specification, Protocol Version 1.0, Draft
Document Version 1.17, 2002.

[15] Open Robot Control Software. www.orocos.org.
[16] P. Pedreiras, L. Almeida, and P. Gai. The FTT-Ethernet

protocol: Merging flexibility, timeliness and efficiency. In
14th Euromicro Conference on Real-Time Systems, 2002.

[17] Real Time Application Interface. www.rtai.org.
[18] J. Schwager. Real-time Ethernet in industry automation.

www.realtime-ethernet.de.
[19] M. Wild et al. OCEAN deliverable D2.1: De-

sign of the DCRF lower layers including hardware re-
quirements. www.fidia.it/download/ricerca/
ocean/deliverable2 1.pdf, 2003.

[20] O. Wulf, J. Kiszka, and B. Wagner. A compact software
framework for distributed real-time computing. In 5th
Real-Time Linux Workshop, Valencia, Spain, Nov. 2003.

http://www.rts.uni-hannover.de/rtnet
http://www.ethernet-powerlink.org
www.ethercat.org
www.ethereal.com
canopen.sourceforge.net
canopen.sourceforge.net
www.linux1394.org
www.linuxdevices.com/news/NS4023517008.html
www.linuxdevices.com/news/NS4023517008.html
www.aero.polimi.it/~mbdyn/mbdyn-rt
www.aero.polimi.it/~mbdyn/mbdyn-rt
www.orocos.org
www.rtai.org
www.realtime-ethernet.de
www.fidia.it/download/ricerca/ocean/deliverable2_1.pdf
www.fidia.it/download/ricerca/ocean/deliverable2_1.pdf

Real-Time Network for Distributed Control Zhang Yuchen 2005

 77

References

1394OHCI (2000). 1394 Open Host Controller Interface Specification.
Anderson, D. (1999). FireWire System Architecture, Addison-Wesley.
Apple "FireWire Homepage in Apple."
ControllabProducts (2005). "20SIM Homepage."
FusionTeam (2004). "Life with Adeos."
IEEE (1994). Information technology -- Microprocessor systems -- Control and Status

Registers (CSR) Architecture for microcomputer buses.
IEEE (2002). "IEEE standard for a high performace seial bus, std 1394-1995 and

amendments."
Kiszka, J., Wagner,B., Zhang, Y. and J.F. Broenink (2005). RTnet -- A Flexible Hard

Real-Time Networking Framework. IEEE Emerging Technology of Factory
Automation. Italy.

Kopetz, H. (1997). Design Principles for Distributed Embedded Applications, kluwer
Academic Publishers.

Linux1394 "Linux1394 Homepage."
Mullender, S. (1993). Distributed Systems, Addison-Wesley.
Plummer, D. C. (1982). "RFC 826 - Ethernet Address Resolution Protocol."
Pranevich, J. (2003). "The Wonderful World of Linux 2.6."
RTAI (2005). "RTAI Homapage."
RTnet (2005). "RTnet Homepage."
Rubini, A. (2001). Linux Device Driver, O'REILLY.
Buit, E. (2005). PC104 Stack Mechatronic Control Platform, Control Laboratory, University

of Twente, the Netherlands
Buit, E. (2004). Real-time network performance characterization, Control Laboratory,

University of Twente, the Netherlands
Ferdinando, H. (2004). Testing CAN for Robotic Control, Control Laboratory, University of

Twente, the Netherlands
Groothuis, M. A. (2004). Distributed HIL simulation for BodeRC, Control Laboratory,

University of Twente, the Netherlands
Huang, Y. (2005). Time characteristics of PROFIBUS on Windows XP, Control Laboratory,

University of Twente, the Netherlands
Zhang, Y. (2004). Real-Time Control on FireWire Control Engineering Group, University of

Twente, the Netherlands

	Summary.pdf
	Summary

	Preface.pdf
	Preface

	031CE2005_Zhang.pdf
	Summary.pdf
	Summary

	RTnet-ETFA05.pdf
	1 Introduction
	2 Base Services
	2.1 Packet Management
	2.2 UDP/IP Implementation
	2.3 Driver Layer
	2.4 Application Programming Interface
	2.5 Capturing Extension

	3 Real-Time Media Access Control
	3.1 Pluggable MAC Layer
	3.2 TDMA Discipline

	4 Real-Time Configuration Service
	5 Integration of FireWire
	5.1 FireWire Overview
	5.2 FireWire Stack and Connection to RTnet

	6 Application Protocols and Frameworks
	6.1 netRPC -- Remote Real-Time Procedure Calling
	6.2 RTPS Protocol
	6.3 Real-Time Control Frameworks
	6.4 CANopen

	7 Summary and Outlook

