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Summary 

Nowadays, complex control systems, e.g. for industrial automation, are evolving from 
centralized architectures to distributed architectures. To design a distributed control 
system, a critical issue is to lay out a hard real-time communication infrastructure. To 
this end, two kinds of solutions can be categorized from contemporary approaches: 
the hardware-based solution and the software-based solution. Compared with the 
hardware-based solution, the software-based solution is generally more cost-effective, 
adaptable and extendable. Therefore it is more widely applied, especially in 
laboratory.  

FireWire is a high performance serial bus for connecting heterogeneous devices. 
Though firstly targeted for consumer-electronic applications, many of FireWire’s 
features make it well fit in industrial and laboratorial context. In this MSc assignment, 
following the general principles of the software-based solution, the Real-Time 
FireWire Subsystem (RT-FireWire) in Linux/RTAI has been designed and 
implemented. RT-FireWire provides a customizable and extensible framework for 
hard real-time communication over FireWire. Via performance benchmarking, it has 
been shown that the transaction latency on RT-FireWire is limited to a certain range 
that is usable for distributed control applications, whether the system is under heavy 
load or not. 

Ethernet Emulation over FireWire (Eth1394) has been implemented on RT-FireWire 
as a highlevel module in the application layer. Via Eth1394, RT-FireWire can be 
connected to another real-time software framework RTnet, which implements 
real-time networking on the IP layer. Therefore, FireWire has been introduced as a 
new medium alternative to Ethernet for real-time IP networking. The benchmarking 
on Eth1394 and Ethernet shows that the real-time performance of both is comparable. 

The real-time networking support provided by RT-FireWire has been integrated to a 
toolchain for controller design and verification. The toolchain is developed at Control 
Engineering Group of University of Twente. By using this toolchain with the newly 
added networking support, a controller that has been designed and verified in 
simulation can now be easily deployed into multiple nodes. For demonstration, a 
simple but real-life distributed control system has been built by using this toolchain 
and FireWire. The measurement results on that system proofs that, FireWire, with 
RT-FireWire steering on it, can be used as a fieldbus for a distributed control 
application.  

The development on RT-FireWire can be continued in several directions: a new 
interface can be developed to directly operate on RT-FireWire layer; new middleware 
application protocols (e.g. CANopen) can be investigated to see if they can be stacked 
on the basic real-time services provided by RT-FireWire; real-time vision control over 
FireWire is another interesting topic that has not been fully opened.  
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 1

1 Introduction 

1.1 Background 

1.1.1 Real-Time Computer System  

A real-time computer system is a computer system in which the correctness of the system 
behavior depends not only on the logical results of the computations, but also on the physical 
instant at which these results are produced.[Kopetz, 1997 ] A real-time computer system often 
co-exists with the other two subsystems, as shown in Figure 1-1.  

 
Figure 1-1 Real-Time Computer System and its Workaround 

A real-time computer system must react to the stimuli from the controlled object (or the 
operator) within a time interval. The instant at which a result must be produced is called a 
deadline. If a catastrophe could result if a deadline is missed, the deadline is called hard. 
Otherwise it is soft. A real-time computer system that must meet at least one hard deadline is 
called a hard real-time computer system, or a safety-critical real-time computer system. If no 
hard deadline exists, then the system is called a soft real-time computer system.  

The design of a hard real-time computer system is fundamentally different from the design of 
a soft real-time computer system. While a hard real-time computer system must sustain a 
guaranteed temporal behavior even under peak system load and any possible fault conditions, 
it is permissible for a soft real-time computer system to miss a deadline occasionally.  

1.1.2 Centralized Architecture vs. Distributed Architecture  
The architecture of real-time computer system can be centralized or distributed. A distributed 
real-time computer system consists of a set of nodes and a communication network that 
interconnects these nodes. Compared with the centralized architecture, the distributed 
architecture appears as a more preferable alternative for the implementation of hard real-time 
system. Several arguments are: 

 In many engineering disciplines, large systems are built by integrating a set of 
well-specified and tested subsystems. It is important that properties that have been 
established on the subsystem level are maintained during the system integration. In the 
distributed architecture, such a constructive approach is much better supported, 
compared with centralized architecture. 

 Almost all large systems evolve over an extended period of time, e.g. some years or 
decades. Therefore a scalable and extensible system is strongly desired. To deploy a 
scalable and extensible system, a distributed architecture is essential to provide the 
necessary framework since: 
I. Nodes can be added within the given capacity of the communication channel. This 
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introduces additional processing power to the system. 
II. If the processing power of a node has reached its limit, a node can be transformed 

into a gateway node to open a way to a new cluster. The interface between the 
original cluster and the gateway node can remain unchanged (Figure 1-2). 

 Most of the critical real-time systems demand fault-containment or fault-tolerance, which 
means the system should continue functioning despite the occurrence of faults. To this 
end, only the distributed architecture gives the possibility to implement 
fault-containment or fault-tolerance via distributing the system functions to different 
nodes or replicating the function of a certain node to another. 

 
Figure 1-2 Transparent expansion of a node into a new cluster 

1.1.3 Hard Real-Time Networking in the Distributed Architecture 

To deploy a real-time computer system with a distributed architecture, one important issue is 
to lay out a hard real-time communication infrastructure, so-called fieldbus. To this end, two 
kinds of solutions can be categorized from contemporary design approaches. 

 To use specifically adapted or designed hardware components to deploy a hard real-time 
network. These components may be real-time switches, network adapters with high 
innate intelligence or even fundamentally revised network controllers. By using these 
hardware components, a hard real-time system can be built. However, since this solution 
is fully implemented in hardware, a lot of effort and investments is needed. Moreover, 
the adapted or newly designed hardware can not be easily changed or extended.  

 Instead of using hardware-based solution, the more flexible software-based solution can 
be chosen. In this solution, the standard, relatively cheap hardware components can be 
chosen, e.g. Ethernet, USB, and FireWire. Above these hardware components, a real-time, 
deterministic software stack (e.g. real-time operating system, real-time implementation 
of the network protocol stack, etc) should be built, which can steer the hardware to meet 
the real-time behavior requirements. The strength of this software-based solution is that, 
it does not need too much effort and investment for design and implementation, and one 
solution can be easily adapted for another problem or moved to another platform.  

1.2 Research Context 

At Control Engineering group of the University of Twente, one of the research directions is 
embedded control system. Along this direction, several topics are mainly focused on: design 
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methodology for embedded control software; CSP-based concurrent programming; 
fieldbus-connected embedded control systems and hardware-in-the-loop simulation for 
embedded control system, etc.  

Narrowed down to the research on distributed control systems, the main work is leaded by 
two PhD projects: 

 CSP-channels for field-bus interconnected embedded control systems. It deals with hard 
real-time control using several co–operating processors in networked environments. The 
network itself is embodied by an industrial field bus, which are investigated with respect 
to real-time performance. During the work by previous students, CAN [Ferdinando, 
2004], USB, Ethernet [Buit, 2004], FireWire [Zhang, 2004] and Profibus [Huang, 2005] 
has been investigated with respect to their suitability for use in real-time context.  

 Boderc(Beyond the Ordinary: Design of Embedded Real-time Control): Multi-agents and 
CSP in Embedded Systems. In this project, a hardware-in-the-loop setup has been built 
by [Groothuis, 2004] to test distributed controllers with simulation model of various 
plants. In this setup, the communication channel between controllers is deployed on 
CAN.  

1.3 Assignment 

Following the second approach in 1.1.3, the objective of this MSc assignment is to adopt a 
standard, relatively cheap networking hardware component for deploying the hard real-time 
network in distributed control systems. Around the main goal, challenges exist on several 
aspects: 

 The existing software on that hardware should be adjusted or even re-designed, so the 
hardware can be steered to behave in a deterministic way. 

 The adjusted or re-designed software should be easily adaptable and extensible. 

 Resource-constraint situation should be taken into account, like system with in-adequate 
memory.  

 The adjusted or re-designed software should provide a friendly interface, which eases the 
development of applications (e.g. controllers) on it. 

1.4 Initial Decisions 

1.4.1 FireWire 

FireWire, also known as IEEE 1394, is a high performance serial bus for connecting 
heterogeneous devices. Though firstly targeted for consumer-electronic applications, such as 
high-speed video transmission, many of FireWire’s features make it well fit industrial and 
laboratorial context. In this assignment, FireWire is chosen to be the implementation target of 
hard real-time networking. The direct significance after achieving this is adoption of FireWire 
as a new generation fieldbus, which comes with much higher performance than other existing 
alternatives (e.g CAN, Profibus). 
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1.4.2 Linux 

Linux, an Open Source operating system kernel, is well known for its open structure, modular 
design and easy adaptability. In this assignment, Linux is chosen to be the Operating System 
kernel. Thereby, the FireWire Subsystem in Linux is taken as the starting point for 
investigation and implementation.  

1.5 Report Outline 

Chapter 2 firstly gives a detailed description about FireWire, including its characteristic on 
various aspects, e.g. bus topology, data transfer modes, etc. Secondly, the FireWire subsystem 
in Linux is described and the measurement results concerning its suitability for use in 
real-time is presented. 

Chapter 3 presents the implementation of the Real-Time FireWire Subsystem (RT-FireWire), 
including the architecture, core components and protocol adaptation. Secondly, the 
measurement results concerning RT-FireWire’s suitability for use in real-time is given, and 
compared with the results on the Linux FireWire Subsystem. 

Chapter 4 presents the implementation of deploying real-time IP network over RT-FireWire. 
Secondly, the results of performance measurement on IP over FireWire is given, and 
compared with the performance of IP over Ethernet.  

Chapter 5 presents the integration of RT-FireWire’s networking support into a complete 
toolchain for design and verification of controllers. Based on the integration, a demonstration 
of using this toolchain for deploying a simple but real-life distributed control system is shown. 
The result of the demonstration is also presented. 

In Chapter 6 the conclusions and recommendations for this project is given. 
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2 Introduction to FireWire and Its Subsystem in Linux 

2.1 Introduction 
This chapter first starts with a detailed description of FireWire, including the overview of bus 
topology, data transfer modes, the layered protocol structure, and a literature research 
concerning the protocol overhead and the transmission timing on FireWire. Then, the pointer 
goes to FireWire subsystem in Linux: the software architecture is introduced and the test 
bench to measure the suitability of using this subsystem in real-time is presented. Based on 
the measurement, the conclusion about whether FireWire subsystem in Linux is suitable for 
use in real-time is reached.  

2.2 Overview of FireWire 

2.2.1 Bus Topology 

The IEEE 1394 specification defines the serial bus architecture known as FireWire. 
Originated by Apple Computer [Apple], FireWire is based on the internationally adopted 
ISO/IEC 13213 specification [IEEE, 1994]. This specification, formally named "Information 
technology - Microprocessor systems - Control and Status Registers (CSR) Architecture for 
microcomputer buses," defines a common set of core features that can be implemented by a 
variety of buses. IEEE 1394 defines serial bus specific extensions to the CSR Architecture. 

The bus topology of FireWire is tree-like, i.e. non-cyclic network with branch and leaf nodes, 
for typical topology see Figure 2-1 

 

Figure 2-1 Example FireWire Network 

Configuration of the bus occurs automatically whenever a new node is plugged in. It proceeds 
from leaf nodes (those with only one other node attached to them) up through the branch 
nodes. A bus that has three or more nodes attached will typically, but not always, have a 
branch node become the root node (e.g. Digital VCR in Figure 2-1).  

Unlike most other serial buses designed to support peripheral nodes (e.g. Universal Serial 
Bus), FireWire is a peer-to-peer network with point-to-point signaling environment, so that 
any two nodes can exchange data without intervention from a third node. This important 
advantage allows FireWire to be used as fieldbus in distributed control, since direct data 
transfer between any two computing nodes is a definitely desired property in distributed 
control networks. 
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2.2.2 Data Transfer Modes 

For data transfer on FireWire, two different types of packets are used: asynchronous packets 
for reliable, receipt-confirmed data, and isochronous packets for time-critical, unconfirmed 
data. A mix of isochronous and asynchronous transactions is performed across the serial bus 
by sharing the overall bus bandwidth. Notice that the bus bandwidth allocation is based on 
125µs intervals, so called the FireWire transaction cycle, as shown in Figure 2-2.  

 
Figure 2-2 FireWire Transaction Cycle 

The isochronous transfer mode is particularly suitable for the transmission of time-critical 
data in real time, e.g. for video or audio. It guarantees a firm bandwidth and sends packets in 
a fixed clock pulse (every 125µs). The packets are not addressed to individual nodes but are 
separately marked by a channel number. Because late data are unusable for time-critical 
applications, no acknowledgment of receipt is sent and incorrect packets are not resent. 
Asynchronous packets are sent peer-to-peer from one node to one or all other nodes. In the 
packet header the address of the destination node or nodes is indicated, as is the memory 
address, to which the data in the packet refer. With receipt of an asynchronous packet, an 
acknowledgment of the receiver node is sent as proof that the packet arrived. The speed of 
data transmission and associated maximum packet size of asynchronous and isochronous 
packets are listed in Table 2-1.  

Cable Speed Maximum Size (Byte) of 
Asynchronous Packet 

Maximum Size (Byte) of 
Isochronous Packet 

100Mb/s 512 1024 

200Mb/s 1024 2048 

400Mb/s 2048 4096 

Table 2-1 Transmission Speed and Packet Size on FireWire 

In asynchronous transfer mode, the FireWire bus appears as a large distributed memory space 
with each node hosting a 48-bit mapped address space (256 Terabytes). In addition, each bus 
is identified by 10-bit mapped id; hence a maximum of 1024 FireWire buses can be connected 
in single network. Every node on the bus is identified by 6-bit mapped id - hence a maximum 
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of 64 nodes per bus. This gives a 64-bit mapped address, to support 16-Exabytes in total. The 
illustration is given in Figure 2-3. See [Anderson, 1999] for more a detailed description.  

 

Figure 2-3 Address Space on FireWire 

2.3 FireWire Protocol Layers 

Four protocol layers are defined in FireWire, in order to separate its complexity in the several 
levels of abstraction and hence simplify the implementation of hardware and software. Each 
layer has associated set of services defined to fulfill its role, e.g. to support certain part of data 
transfer transactions and bus management, as shown in Figure 2-4. 

2.3.1 Physical Layer 

The Physical Layer is the hardware used to bridge between a local FireWire node and the 
whole network. This Layer has the following tasks: 

 defines connectors and transmission medium 

 performs bus initialization (configuration) after each Bus Reset 

 manage the possession of the bus (bus arbitration) 

 performs data synchronization 

 performs coding and decoding of data messages 

 determine signal level 

On the Physical Layer, three different situations can result: 

 The Physical Layer of a node receives a packet that is targeted to another node. In this 
case, the packet is passed further over all ports, except the one from which it was 
received. 

 The Physical Layer of a node receives a packet that is targeted to this node itself. This 
packet is passed to the Link Layer. The Link Layer then passes it on to the Transaction 
Layer (in the case of an asynchronous transmission) or directly to the Application (in the 
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case of an isochronous transmission).  

 The sending packet is issued from the Link Layer of local node. In this case the packet is 
passed on over all ports. 

 

Figure 2-4 Structure of the 4-layer Model 

2.3.2 Link Layer 

The Link Layer is located between the Physical Layer and the Transaction Layer. It performs 
tasks related to sending and receiving asynchronous and isochronous packets. 

For a received packet, the Link Layer is responsible for checking received CRCs to detect any 
transmission failure; for packet to be sent, it is responsible for calculating and appending the 
CRC to the packet. The Link Layer examines the header information of the incoming packet 
and determines the type of transaction that is in progress. For asynchronous transaction, the 
data packet is then passed up to the transaction layer. For isochronous transaction, the 
transaction layer is not used and therefore the Link Layer is directly responsible for 
communicating isochronous data to application. 

2.3.3 Transaction Layer 

The Transaction Layer is only responsible for the asynchronous operations Read, Write, and 
Lock. By means of these operations the access of the memory area (Figure 2-3) is possible. 

If two nodes communicate with each other, then receipts of the transferred packets are 
confirmed on the level of their Transaction Layers. The transmission of incorrect packets is 
repeated or discarded. Depending upon the extent of the message, the Transaction Layer 
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divides the transmission actions into individual sub-actions and handles these independently. 

For these tasks as well as for the bus access management (bus arbitration) and the data 
synchronization, the Transaction Layer uses the following services of the Link Layer: 

 Request Service (request to start a transfer) 

 Indication Service (acknowledgment to the request) 

 Response Service (response to the request) 

 Confirmation Service (acknowledgment to the response) 

2.3.4 Bus Management Layer 

Each node has a Bus Management Layer which controls the bus functions in the different 
layers. Beyond that, the Management Layer makes a multitude of functions available 
concerned with the management of the power supply and the bus configuration. The actual 
functionality depends on the abilities of the nodes involved. However, the functions for 
automatic configuration must be present for all nodes. 

The Bus Management is responsible for a set of tasks: 

 assigning channel numbers and bandwidth allocation for isochronous transfers 

 guaranteeing that, the nodes that get their power supply via the bus cable have sufficient 
power available 

 adaptation of certain timing settings depending on the bus topology to increase the data 
flow-rate over the network 

 supporting services, that allow other nodes to request information about topology and 
speed conditions 

It is not necessary that all specified tasks are assigned to only one node. Rather these tasks are 
summarized in three global roles and during the configuration phase, efficiently divided 
among the attached nodes. Depending on the supported level of bus management 
functionality, three states based on presence/absence of the three corresponding roles are 
differentiated: 

 "Non Managed" 

A non-managed bus possesses only one "Cycle-Master" and fulfills the minimum 
management requirements of an IEEE 1394-Bus. In each FireWire transaction cycle, the 
"Cycle Master" initiates the start of the bus cycle by sending cycle start message. 

 "Limited Managed Bus with Isochronous Resources Manager" 

Such a bus contains an "Isochronous Resources Manager" (IRM) in addition to the 
"Cycle Master". The bandwidth allocation on the bus can get managed by the IRM. 

 "Fully Managed Bus" 

The "Fully Managed Bus" represents a fully functional bus that, in addition to “Cycle 
Master” and IRM, contains the "Bus Manager". It is able to optimize the bus and 
possesses unrestricted "Power Management". The "Bus Manager" is able to collect 



Real-Time Network for Distributed Control  Zhang Yuchen 2005 

 10 

information about the bus topology ("Topological Map") and the transmission rates 
between any two nodes ("Speed Map"). In this way the maximum data transmission rate 
can be determined for each cable distance and the bus can be optimized. 

2.4 Protocol Overhead and Transmission Timing 

This section, one step deeper is taken to analyze the protocol overhead introduced by 
FireWire’s packet structure and to determine the transmission timing on FireWire.  

2.4.1 Asynchronous Transaction 

Three different asynchronous transactions are used: 

 Read 

 Write 

 Lock 

With the Read operation, data will be read from the memory area of a node. With the Write 
operation, data can be written into the memory area of a node. The Lock operation is a 
mechanism, which allows/disallows a "protected" operation[Anderson, 1999].  

An asynchronous packet consists of header and data, see Figure 2-5 for write request packet 
format and Figure 2-6 for the response. See Table 2-2 for description of each component.  

As can be seen from above, the protocol overhead in FireWire asynchronous write request is 
24bytes, i.e. 24 extra bytes needs to be transferred along with the application data. Besides, 
the asynchronous write response is 16byte. Both request and response are followed by an 
acknowledgement, which is short packet of 4 bytes. Therefore, a simple formula for the 
protocol efficiency is: 

( )
100%

( ) 24 16 8
DataSize byte

E =asyn DataSize byte
×

+ + +
 

Figure 2-7 present an example of asynchronous write transaction between two nodes. If node 
A wants to write data into a certain memory area of node B, it sends a write request to node B. 
Node B acknowledges the receipt of this request. The acknowledgement indicates only the 
receipt of the request, not yet the execution. 

After node B has written the data into that memory area, it sends a response to node A. In this 
response, node A gets the message that the data has been submitted into the memory area of 
node B. This is the acknowledgement of execution. Node A acknowledges the receipt of this 
response, whereby the asynchronous transaction is finished. 
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Figure 2-5 Asynchronous Write Request 
Packet 

 
Figure 2-6 Asynchronous Write Response 
Packet 

 

Name Description 
Destination_ID The concatenation of the Bus and Node address of the intended 

node. All ones indicate a broadcast transmission. 

TL Transaction Label specified by the requesting node. Only if the 
response packet contains a correct transaction label, it is possible 

to find the corresponding request packet.  

RT Retry Code that defines whether this is a retry transaction. 

TCODE Transaction Code defines the type of transaction (Read request, 
Read response, Acknowledgement, etc) 

PRI Priority used only in backplane environments 

Source_ID Specifies Bus and Node that generated this packet 

Destination_offset The address location within the destination node that is being 
accessed 

Packet type Specific 
Data 

Can indicate data length for block reads and writes, or contain 
actual data for a quadlet write request or quadlet read response.

Header_CRC CRC value for the header part 

Optional Data Quadlet aligned data specific to the type of the packet 

Optional Data CRC CRC for the Optional Data 

Rcode Response Code, specifying the result of this transaction.  

Table 2-2 Components in an Asynchronous Packet 
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Figure 2-7 Asynchronous Transaction between Two Nodes 

The timing of asynchronous transmission is shown in Figure 2-7.  
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So the latency during one write transaction is the sum of the time for transferring the request, 
executing the request and transferring the response. Due to the relatively small value of the 
time of transferring the response, it can be omitted. Assuming we write data of 4, 56, 2048 
bytes payload, the latency will be: 

0.884
1.9256

41.762048
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µ

µ
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2.4.2 Isochronous Transaction 

Compared with asynchronous transaction, the packet of isochronous transaction is relatively 
simpler, which is illustrated in Figure 2-8 and explained in Table 2-3.  
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Figure 2-8 Isochronous Packet 

Figure 2-9 gives an example of isochronous transaction between two nodes. Here node A is 
sending data on isochronous channel N to node B. No acknowledgment or response is 
generated from Node B. But the maximum sending rate is limited to 125µs, due to the cycled 
bandwidth allocation on FireWire.  
 

Name Description 
Data Length Data length, can be any value between zero and FFFFh 

Tag Isochronous Data format tag 

Channel Isochronous Channel Number 

Tcode The transaction code for isochronous data block is Ah 

Sy Synchronous Code, application specific 

Table 2-3 Isochronous Packet Components 

As can be seen from above, the protocol overhead in FireWire isochronous packet is 12bytes, 
i.e. 12 extra bytes needs to be transferred along with the data load. To calculate the protocol 
efficiency on isochronous transaction, a formula can be deducted: 

( )
100%

( ) 12
DataSize bytes

Eiso DataSize bytes
= ×

+
 

The latency for one way isochronous transmission is (assuming the bus speed is 400Mb/s): 
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So for data payload of 4, 56, and 2048 bytes, the latency will be: 
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Figure 2-9 Example Isochronous Transaction 

 
 
 

2.5 Linux FireWire Subsystem 

2.5.1 Introduction 
In this section, the overview of FireWire subsystem in Linux is presented, and the limitation 
to use it in real-time context is revealed through basic testing experiments.  

2.5.2 System Overview 
The overview of FireWire subsystem in Linux is given in Figure 2-10. It consists of FireWire 
subsystem kernel, adapter drivers and highlevel modules. Note that, the whole subsystem 
works in deep cooperation with the Linux kernel core, but it is beyond the scope of this report 
to explain relative dependencies and implementation details. Please refer to [Linux1394] for 
more detailed information.  
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Figure 2-10 Linux FireWire Subsystem Overview 

FireWire Subsystem Kernel 
More internals of subsystem kernel is revealed in Figure, with explanation following.  

 

Figure 2-11  FireWire Subsystem Kernel 

 The Driver Interface block takes care of the management of FireWire adapters (there can 
be more than one adapter registered to the kernel). Meanwhile it also abstracts out the 
specifics of various adapter hardware drivers, providing other modules with a common 
set of services.  

 The Transaction Layer Protocol block implements the transaction layer protocol of 
FireWire.  

 The Asynchronous Operation block is responsible for both taking packet send request 
from applications and dispatching received packets to applications.  

 The Isochronous Operation block is responsible for both taking request from applications 
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to (de)allocate isochronous channel and send packet, as well as for dispatching received 
packets to applications.  

 The Bus Management module is responsible for monitoring the bus status and 
performing bus management functions as described in 2.3.4. 

 The Application Interface module has several functionalities: taking care of the 
application management, like registering of new application, implementing 
communication/synchronization between application and kernel and so on. It provides 
applications with common API that abstracts away from lower level transactions. 

FireWire Adapter 
The FireWire adapters available in the market are based on one of the following chips: 

 aic5800 Adaptec AIC-5800 PCI-IEEE1394  
 pcilynx Texas Instruments PCILynx   
 Open Host Controller Interface (OHCI1394) 

In this project, only adapter of the third type is used, therefore only the corresponding 
ohci1394 driver is used. See [1394OHCI, 2000] for the specification of OHCI1394. 

Highlevel Modules 

Highlevel modules in FireWire subsystem are separate functional modules with standardized 
interfaces connecting to subsystem kernel. Through these interfaces, a certain highlevel 
module can register itself as being responsible for handling certain events on the bus, e.g. 
read/write/lock transactions to a certain area of local address space. In another word, the 
highlevel module can allocate for itself a certain piece of address space on the network.  

Here, two highlevel modules are named: eth1394 and raw1394. 

Eth1394 
Eth1394 stands for Ethernet Emulation over FireWire, all called IPover1394. By using 
Eth1394, all the applications built on Ethernet network can be directly applied on FireWire, 
therefore making FireWire a medium alternative for those applications that has been 
completely developed on Ethernet. See [Johansson, 1999] for IPover1394 protocol 
specification.  

Raw1394 
Raw1394 stands for Raw Access over 1394, which is to provide Linux user-space program an 
interface to directly send and receive packet on FireWire.  

2.5.3 Performance Benchmarking on Linux FireWire Subsystem 
In [Zhang, 2004], series of experiments were carried out on FireWire, employing Linux 
user-space programs to measure the latency of transactions on FireWire. But in this project, 
the Linux kernel in use has been updated to 2.6, which could have new influence on real-time 
performance. Therefore, new experiments are carried out on Linux FireWire Subsystem 
system with a 2.6 kernel to study its suitability for use in real-time context.  

Test Bench Setup 
2 PC104 stacks are employed in this experiment. Detailed information of stack components 
follows: 
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 PC104: 
VIA Eden 600 MHz, 256 Mb Memory, 32 Mb flash disk. 

 FireWire Adapter: 
PC/104+ board with VIA VT6370L Link & Physical layer chip, supporting 400 Mb/s 
transferring speed at maximum. (See [Zhang, 2004] for more related information) 

 Software in use: Linux kernel 2.6.12.  

Experiment Cases 
The performance is evaluated in 4 cases: asynchronous transaction without system load, 
asynchronous transaction with heavy system load, isochronous transaction without system 
load and isochronous transaction with heavy system load. The experiments on both 
asynchronous transaction and isochronous transaction are illustrated in Figure 2-18 and 
Figure. For each case, two nodes are involved in the experiment: one is requesting node that 
is actively sending the data; another is target node that is passively receiving the data, 
processing it, and (in asynchronous transaction) send the response back. The data sending rate 
on client node is 1 KHz. For each case, 100,000 data samples are collected for analyzing. 
During the experiment, the data load is always 56bytes. 

Figure 2-12 Asynchronous Transaction 
Latency  

Figure 2-13 Drift of Data Receiving Rate on 
Isochronous Transaction  

Imposing System Load 
The put the experiment in an extremely loaded system, extra processing load needs to be 
imposed explicitly. Three ways of imposing system load are used together in this experiment.  

 Creating a flood of interrupts from external world via network by using a third node to 
send a lot of random data to the nodes in experiment. 
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 Creating a flood of interrupts from hardware disk I/O by reading the whole hard disk.  
 Creating a flood of system calls via Linux command line. This will make a lot of 

kernel-user space switch.  

Measurement Results 

The result is presented by using cumulative percentage curves. At any point on the cumulative 
percentage curve, the cumulative percentage value (y-value) is the percentage of 
measurements that had a latency less than or equal to the latency value (x-value). The latency 
at which the cumulative percentage curve reaches 100 percent represents the worst-case 
latency measured. For real-time transaction latency, the ideal cumulative percentage curve is 
one that is steep with a minimal decrease in slope as the curve approaches 100 percent.  

Therefore, the cumulative percentage at a certain latency value can be interpreted as the 
probability of the transaction being able to meet real-time constraints when its deadline is 
assumed to be equal to that latency value. Since the network in concern will be used in 
distributed real-time control application, the latency can more or less determines the operating 
frequency of the system. For example, if the cumulative percentage at latency 100µs is 97%, 
that mean if the system on the network runs at 10 KHz, only 97% of the distributed data 
(sensor input, actuator output, etc) can be sent or received on time. The cumulative percentage 
over ascending latency values are shown in Figure 2-14 and Figure 2-15. The former is for the 
situation when system is not loaded, while the latter is for the situation when system is 
heavily loaded. Figure 2-16 and Figure 2-17 present the cumulative percentage over 
ascending drift values of data receiving rate on isochronous transaction, respectively for the 
situation of system not being loaded and the situation of system being heavily loaded.  

Asynchronous Transaction Latency on Linux FireWire Subsystem
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Figure 2-14 Asynchronous Transaction Latency on Linux FireWire Subsystem when system is 
not loaded 



Real-Time Network for Distributed Control  Zhang Yuchen 2005 

 19

Asynchronous Transaction Latency on Linux FireWire Subsystem
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Figure 2-15 Asynchronous Transaction Latency on Linux FireWire Subsystem when system is 
loaded 

Drift of Data Receiving Rate on Isochronous Transaction using Linux
FireWire Subsystem
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Figure 2-16 Drift of Data Receiving Rate on Isochronous Transaction using Linux FireWire 
Subsystem when system is not loaded 
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Drift of Data Receiving Rate on Isochronous Transaction using Linux
FireWire Subsystem
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Figure 2-17 Drift of Data Receiving Rate on Isochronous Transaction using Linux FireWire 
Subsystem when system is loaded 

Thereby for hard real-time application, low range of cumulative percentage values does not 
make any sense (deadline can not be missed that often), so only top of the curve, i.e. at least 
above 97%, is worth having a closer look, as shown in Figure 2-18 and Figure 2-19.  

 
Figure 2-18 Asynchronous Transaction Latency on Linux FireWire Subsystem (top 3% of the 
cumulative curve) 
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Drift of Data Dumping Ratio on Isochronous Transaction using RT-
FireWire vs Linux FireWire Subsystem
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Figure 2-19 Drift of Data Receiving Rate on Isochronous Transaction using Linux FireWire 
Subsystem 

Due to the wide spanning range, the chosen step on the latency value (x-value) is a bit big to 
make the curve fit in one figure. In Table 2-4 more precise values are presented on three 
thresholds, i.e. 97%, 99.999% and 100% 

Cases 97% threshold 99.999% 
threshold 

100% (Worst 
Case) 

Asynchronous unloaded 70µs 565µs 580µs 

Asynchronous loaded 80µs 1055µs 1475µs 

Isochronous unloaded 10µs 175µs 250µs 

Isochronous loaded 615µs 1085µs 1090µs 

Table 2-4 Threshold Representatives of Real-Time Performance on Linux FireWire 
Subsystem 

Discussion and Conclusion 
When the system is not loaded, the experiment results on both asynchronous and isochronous 
transactions have already shown a relatively big difference in latency values or receiving rate 
drift in the critical range of cumulative percentage (e.g. between 97% and the worst case 
(100%) performance). With added load, performance is clearly worsened. Moreover when the 
system is heavily loaded, the curve is much less steep then in the case system is not heavily 
loaded. As already discussed, this indicates increased non-determinism and results in poorer 
real-time properties. 

For real-time application, it is the worst case (or almost worst case, like 99.999% threshold) 
that drives the choice for underlying system. And for normal real-time control application, e.g. 
motion control, the measured worst case performance can not satisfy the requirements. 

Therefore, the conclusion can be reached: Linux FireWire Subsystem can not be used as 
underlying networking platform for real-time control application. Hence, there is a need to 
develop a special FireWire Subsystem for use in real-time control application.   
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3 Real-Time FireWire Subsystem 

3.1  Introduction 
In this chapter, the implementation of the RT-FireWire (Real-Time FireWire Subsystem) is 
presented, including the architecture, core components and protocol adaptation.  

3.2 Fundamental of RT-FireWire 
This section describes the fundamentals of RT-FireWire. In short, the newly designed 
FireWire subsystem is real-time because the whole software stack is moved to the real-time 
domain, i.e. RTAI [RTAI 2005]. To unveil more details, the story starts from the explanation 
about RTAI and its co-existence with Linux. After that, the settling of RT-FireWire in RTAI is 
described.  

RTAI is based on Adeos, which is a resource virtualization layer available as a Linux kernel 
patch, a simple, yet efficient real-time system enabler, providing a mean to run a regular 
GNU/Linux environment and a RTOS (e.g. RTAI), side by side on the same hardware. Adeos 
enables multiple entities called domains to exist simultaneously on the same hardware. These 
domains do not necessarily see each other, but all of them see Adeos. All domains are likely 
to compete for processing external events (e.g. interrupts) or internal ones (e.g. traps, 
exceptions), according to the system-wide priority they have been given [FusionTeam, 2004]. 
See Figure 3-1 for the illustrated concept. Every domain can register to be notified about 
certain events. And events are handled in the pipeline way with higher priority domains 
getting to handle events before lower priority domains. 

 

Figure 3-1 Conceptual Diagram of Domain Pipeline in Adeos 

Because RTAI domain is ahead in the pipeline, it is the first to be notified of any incoming 
interrupts of interest, and because of its heading position, RTAI is totally in control of the 
interrupt propagation to other low-priority domains, mainly Linux. In other words, RTAI will 
not let any interrupts go to Linux, if it is busy dealing with some real-time task, e.g. handling 
a FireWire packet. That way, theoretically RTAI grasps the full control of CPU’s processing 
power, which is the most critical basis for any real-time subsystem built in it, e.g. 
RT-FireWire.  

As important as the real-time interrupt handling is the task scheduler in the RTAI domain. The 
scheduler implements priority-based scheduling for tasks in the RTAI domain. The original 
Linux kernel is wrapped into a lowest priority task in this scheduler when RTAI is loaded, 
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therefore all the real-time tasks will have a higher priority than Linux, so all of them can 
preempt Linux tasks. RT-FireWire employs more than one real-time task in RTAI for its 
internal processing. 

3.3 Settling RT-FireWire in RTAI 

This section describes the implementation of settling RT-FireWire in RTAI domain. First the 
system overview of RT-FireWire is given, based on which the design of task composition for 
RT-FireWire is presented. Based on the composition, the skeleton of RT-FireWire is built up. 
Second, the implementation of real-time memory management in RT-FireWire is presented. In 
the third part of this section, two other relatively minor features in RT-FireWire are introduced: 
real-time procedure call and packet capturing.  

3.3.1 System Overview 
Here we present the overview of RT-FireWire in Figure 3-2. Compared with Figure 2-10, the 
visible changes go to the driver for adapter, kernel implementation and interface to underlying 
OS, i.e. RTAI.  

 

Figure 3-2  RT-FireWire Overview 

 
Figure 3-3 shows the kernel diagram of RT-FireWire. Compared with figure2-11, two more 
function blocks are added: Real-Time Memory Management and RTcap. RTcap stands for 
Real-Time (Packet) Capturing, which is used to capture all incoming or outgoing packet. 
Captured packets are used later on for network behavior analysis.  
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Figure 3-3 RT-FireWire Kernel 

3.3.2 Architecture and Task Composition 

The architecture of RT-FireWire is strictly divided into several layers, each of which 
corresponds to one layer in the network protocol specification on FireWire. A top-view of the 
layered architecture is given in Figure 3-4.  

 
Figure 3-4 Layers in RT-FireWire, corresponding to the layers in FireWire protocol 

RT-FireWire is composed of several tasks, each of which is a schedulable task object in the 
RTAI scheduler. All the tasks in RT-FireWire can be seen as servers that handle asynchronous 
events from outside. The top-view of task composition within RT-FireWire’s layered 
architecture is shown in Figure 3-5. In next sections, task(s) on each layer will be described. 

 
Figure 3-5 Task Composition in RT-FireWire 
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3.3.3 Hardware Operation Layer 

Interrupt Handling 

In the hardware operation layer, one task called “Interrupt Broker” is installed to handle the 
various bus events from external FireWire network. From Object-Oriented point of view, each 
event is represented by a class inherited from the super-class “ISR Event”, as illustrated in 
Figure 3-6.  

Each event contains the pointer to the routine for handling the event (interrupt from hardware) 
in concern, and the argument to pass to that routine. So when a certain event is hooked to the 
broker, the routine addressed by the pointer is executed by the broker.  

Short explanation about each event: 
 Asynchronous event for request receiving occurs upon arrival of asynchronous request 

packet.  
 Asynchronous event for response receiving occurs upon arrival of asynchronous 

response packet.  
 Asynchronous event for request transmitting occurs after adapter has successfully 

transmitted a request packet and the acknowledgment has been received from targeting 
node.  

 Asynchronous event for response transmitting occurs after adapter has successfully 
transmitted a response packet and the acknowledgment has been received from targeting 
node.  

 Besides, there can be 64 events for each isochronous channel if adapter is tuned to listen 
to that channel.  

 

Figure 3-6 Events in Hardware Operation Layer 

Time Stamping in Driver 
In the hardware operation layer of RT-FireWire, receiving time of all incoming packets is 
stamped in the management header (which is not sent or received via the network) of the 
packet object in the driver’s receiving routine before they are passed on. For outgoing packets, 
the driver stamps the sending time (right before stuffing the packet into hardware) into the 
data part of packets upon the request of highlevel protocols. This is implemented via allowing 
highlevel protocols to assign a pointer to the data part. Stamping for both routine is shown in 
Figure 3-7.  
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Figure 3-7 Time Stamping for Incoming and Outgoing Packets 

3.3.4 Protocol Processing Layer  

Prioritized Request 
One limitation while using original FireWire transaction protocol in real-time context is the 
lack of priority in packets. Because the asynchronous transaction on FireWire consists of 
request sub-transaction and response sub-transaction, it will make the protocol fit more in 
real-time context if the request packet comes with a priority that determines how fast the 
request should be handled on the responding node. Moreover, it would fit more in real-time if 
the packet that arrived later but with a higher priority can preempt the ongoing processing of 
previous packet which has a lower priority. This preemptability of transactions, although only 
limited to the software stack (for now, it is not possible to have preemptive transaction on the 
Link-Layer of FireWire network), can improve the suitability of using whole FireWire 
subsystem in real-time context.  

 

Figure 3-8 Prioritized Request 

As shown in Figure 3-8, the last 4 bits in the first quadlet of asynchronous packet are used to 
represent the priority. These 4 bits are reserved for backplane environment in 1394 
specification [Anderson, 1999], but since RT-FireWire only aims to be used in cable 
environment, it is free to use these 4 bits for other purpose here, i.e. carrying the priority of 
transaction issued by the application on requesting node. Therefore, we have 16 priorities, 
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with 0 being defined as the highest. The highest priority is reserved for bus internal server, 
while the lowest one is reserved for non real-time applications. The rest 14 priorities are for 
real-time applications.  

Prioritized Waiting Queue on Requesting Node 
Before sending, the outgoing requests are queued according to the ascending order of their 
priorities. That way, the real-time requests, even if they are issued later, can still jump over the 
requests, which are queued before them but with a lower priority. In short, by using this 
mechanism, the real-time transaction is allowed to preempt the non real-time transaction on 
the requesting node. This preemption on requesting node is illustrated in Figure 3-9. The 
number in bracket is the priority.  

 

Figure 3-9 Transaction Preemption on Requesting Node 

Brokers for Prioritized Requests on Responding Node 

On the responding node, based on the packet priorities, three transaction servers (Request 
Broker for Bus Internal Service, Request Broker for Real-Time Application and Request 
Broker for Non Real-Time Application) are employed to handle the requests accordingly, as 
illustrated in Figure 3-10.  

 

Figure 3-10 Request Brokers in Protocol Processing Layer 

Broker for bus internal service has the highest priority among the three. The broker for non 
real-time application goes to the Linux domain, since it deserves the lowest priority.  

3.3.5 Application Layer 

In the application layer of RT-FireWire, two tasks are installed for dispatching asynchronous 
response packets or isochronous packet to applications: asynchronous response broker and 
isochronous packet broker.  

Both tasks use “callback” to communicate with application, i.e. execute the callback routine 
provided by application. For asynchronous transaction, the pointer to the “callback” stays 
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with the request packet; for isochronous transaction, the pointer to the “callback” stays in the 
settings for that certain channel. The “callback” allows the application to customize the way 
of synchronization between it and RT-FireWire. In case an immediate synchronization is 
needed, a semaphore can be used, as illustrated in Figure 3-11.  

 
Figure 3-11 Brokers in Application Layer 

3.4 Real-Time Memory Management 

Another critical issue in general real-time system is resource allocation. The resource can be 
memory, hardware I/O, external storage, etc. But in most of the scenarios, memory is the 
main concern, therefore having a real-time memory allocation is as important as the 
architecture design. This section addresses the design and implementation of real-time 
memory management in RT-FireWire. 

3.4.1 Common Packet Buffer Structure 

To grant the system full extensibility, the static memory allocation in RT-FireWire uses the 
most generic memory object, so called real-time packet buffer (rtpkb). Rtpkb consists of a 
buffer management structure and a fixed-sized data buffer. It is used to store network packets 
on their way from the API routines through the stack to the hardware interface or vice versa. 
Rtpkb is allocated as one chunk of memory that contains both the management structure 
(rtpkb header) and the buffer memory itself, as shown in Figure 3-12.  

 
Figure 3-12 Real-Time Packet Buffer 

All the generic operations from memory management module are carried out only with the 
generic elements of rtpkb header, while the protocol-specific operations, e.g. FireWire 
transaction protocol, are carried out only with the protocol-specific elements. Therefore all 
protocol-specific stuff is transparent to the memory management module, which is necessary 
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to allow RT-FireWire to freely exchange packet buffer with the applications on it and vice 
versa.  

3.4.2 Packet Buffer Queue 

Based on the rtpkb, another component is designed for memory management module, i.e. 
Packet Buffer Queue. A queue can contain an unlimited number of rtpkbs in an ordered way. 
An rtpkb can either be added to the head or the tail of a queue. When a rtpkb is removed from 
a queue, it is always taken from the head.  

3.4.3 Packet Buffer Pool 

During the initialization of whole system or a certain application, an estimated number of 
packet buffers must be pre-allocated and kept ready in so-called buffer pools. Most packet 
producers (e.g. interrupt broker in hardware operation layer, etc) have their own pools in order 
to be independent of the load situation of other parts of the system. Pools can be extended or 
shrinked during runtime. Before shutting down the whole system, every pool has to be 
released.  

Pools are organized as normal rtpkb queues. When a rtpkb is allocated, it is actually dequeued 
from the pool's queue. When freeing an rtpkb, the rtpkb is enqueued to its owning pool. rtpkbs 
can be exchanged between pools. In this case, the passed rtpkb switches over from its owning 
pool to a given pool, but only if that pool can pass an empty rtpkb (as for compensation) from 
its own queue back. This is necessary to keep the memory allocation in each pool clearly 
independent. This way, the chance for non real-time processing to starve real-time processing 
for memory is clearly prevented, because each application or processing, either real-time or 
not, can only hold memory on its own expense, i.e. from its own pool. The buffer exchanging 
between pools is illustrated in Figure 3-13.  

 

Figure 3-13 Buffer Exchanging between Pools 

The deployment of memory pools in RT-FireWire reflects its internal layered structure. See 
Figure 3-14.  
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Figure 3-14 Layered Deployment of Memory Pools in RT-FireWire 

3.5 Other Design Issues in RT-FireWire 

3.5.1 Real-Time Procedure Call 
In RT-FireWire, there is a need to trigger the real-time transaction from non real-time context, 
i.e. Linux domain. To this end, the Real-Time Procedure Call (RTPC) is designed and 
implemented. RTPC is an approach to let non real-time task, e.g. task in Linux, run a certain 
piece of code in real-time context. The rationale behind is illustrated in Figure 3-15.  

 

Figure 3-15 Conceptual Diagram of Real-Time Procedure Call 

During system initialization, the “Real-Time Procedure Call Broker” is created in the 
real-time domain as a real-time task. The request to that broker is sent by tasks in the non 
real-time domain, possibly user-space task in Linux. The request contains the pointer to the 
routine that should be run in real-time, the execution arguments and the buffer for storing 
execution results. The broker handles requests in FIFS (First In First Served) fashion. After 
finishing a request, it wakes up the corresponding non-real-time task to take back the results.  

The current usage of Real-Time Procedure Call in RT-FireWire is for processing request 
generated from user-interface console. For example, user can request a latency calibration 
between local node and one remote node. The calibration task should then be switched to 
real-time context in order to accordingly measure an accurate latency. 
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3.5.2 Real-Time Packet Capturing 

Another feature in RT-FireWire is Packet Capturing service. The whole service consists of 
two parts: packet capturing module in the kernel side and analysis tool in the user side. 

The kernel-side module captures both incoming and outgoing packets and put them to a so 
called “Captured Packet Queue”. The captured packets are passed to analysis tool, which 
could stay in user space. See Figure 3-16 for the illustration.  

 

Figure 3-16 Working of Packet Capturing 

Note that the procedure of capturing packet includes no copying, instead, the efficient 
“pointer assigning” is used. The head of “Captured Packet Queue” is just a pointer to 
“Real-Time Packet buffer”, and in each “Real-Time Packet Buffer” object there is also a 
pointer to another buffer object. That way, it is possible to just link all captured buffer object 
to the “Captured Packet Queue”. Due to the zero-copy linking, a new concern pops out, which 
is about memory leakage. Each captured packet in the queue is also waiting for being 
processed by the “traffic analyzing tool”, so their memory can not be freed immediately after 
the operation on that packet is finished. But if the memory is not freed in time, it will cause 
kind of memory leakage to the memory pool where these packets come from, i.e. the memory 
pool that belongs to the specific application. To prevent this, a memory pool is also 
pre-allocated for the packet capturing module. In case a packet is captured, a compensating 
packet buffer is allocated from the pool of packet capturing module and linked to the captured 
packet. When the application attempts to free that packet, the “packet-free” function (from 
memory management module) will be called and it will check if the packet has another 
compensating packet linked. If yes, the compensating packet will be freed instead. That way, 
the packet capturing stays transparent to applications. See Figure 3-17 for illustration of the 
whole procedure.  
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Figure 3-17 Packet Capturing Procedure  

3.6 Performance Benchmarking on RT-FireWire 

Like what has been done on Linux FireWire Subsystem, a performance benchmarking is also 
carried out on RT-FireWire to see its suitability for use in real-time.  

Test Bench Setup 
To make the results directly comparable, the hardware employed in this experiment is exactly 
the same as in the experiment on Linux FireWire Subsystem.  
2 PC104 stacks are employed in this experiment. Detailed information follows: 

 PC104: 
VIA Eden 600 MHz, 256 Mb Memory, 32 Mb flash disk. 

 FireWire Adapter: 
PC/104+ board with VIA VT6370L Link & Physical layer chip, supporting 400 Mb/s 
transferring speed at maximum. (See [Zhang, 2004] for more related information) 

The software (Operating System) is a bit different, since now it has been a real-time 
Operating System.  

 Software in use: Linux kernel 2.6.12 plus RTAI/fusion 0.9.  

Experiment Cases 
The performance in 4 cases are evaluated: asynchronous transaction without system load, 
asynchronous transaction with heavy system load, isochronous transaction without system 
load and isochronous transaction with heavy system load. The experiments on both 
asynchronous transaction and isochronous transaction are illustrated in Figure 3-18 and 
Figure 3-19. For each case, two nodes are involved in the experiment: one is so-called 
requesting node that is actively sending the request; another is so-called target node that is 
receiving the requests, processing them, and (in asynchronous transaction) send responses 
back. The data sending rate on client node is 1 KHz. And the amount of collected samples for 
each case is 100,000. For each experiment, the data load is set to 56bytes. 

Imposing System Load 
To put the experiment in an extremely loaded system, extra processing load needs to be 
imposed explicitly. Three ways of imposing system load are used together in this experiment.  
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 Creating a flood of interrupts from external world via network by using a third node to 
send a lot of random data to the nodes in experiment. 

 Creating a flood of interrupts from hardware disk I/O by reading the whole hard disk.  
 Creating a flood of system calls via Linux command line. This will make a lot of 

kernel-user space switch.  

Figure 3-18 Asynchronous Transaction 
Latency  

Figure 3-19 Drift of Data Receiving Rate on 
Isochronous Transaction  

3.6.1 Measurement Results 

The methodology to present the results of measurements on Linux FireWire Subsystem is 
reused here. The result is presented by using cumulative percentage curves. At any point on 
the cumulative percentage curve, the cumulative percentage value (y-value) is the percentage 
of measurements that had a latency less than or equal to the latency value (x-value). The 
latency at which the cumulative percentage curve reaches 100 percent represents the 
worst-case latency measured. For real-time transaction latency, the ideal cumulative 
percentage curve is one that is steep with a minimal decrease in slope as the curve approaches 
100 percent.  

Therefore, the cumulative percentage at a certain latency value can be translated to be the 
probability of the transaction being able to meet real-time constraints when deadline is 
assumed to be equal to that latency value, as shown in Figure 3-20 and Figure 3-21.  
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Asynchronous Transaction Latency on Real-Time FireWire
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Figure 3-20  Asynchronous Transaction Latency using RT-FireWire 

Drift of Data Receving Rate on Isochronous Transaction using RT-
FireWire
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Figure 3-21 Drift of Data Receiving Rate on Isochronous Transaction using RT-FireWire 

In Table 3-1, more precise values are presented on three thresholds, i.e. 97%, 99.999% and 
100%.  
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Cases 97% threshold 99.999% 
threshold 

100% (Worst 
Case) 

Asynchronous unloaded 75µs 90µs 105µs 

Asynchronous loaded 90µs 115µs 120µs 

Isochronous unloaded 10µs 45µs 50µs 

Isochronous loaded 45µs 90µs 95µs 

Table 3-1 Threshold Representatives of Real-Time Performance on Linux FireWire 
Subsystem 

The plot on Linux FireWire Subsystem (chapter2) is put together with the one on RT-FireWire 
in Figure 3-22 and Figure 3-23, which gives more insight about how the performance is 
improved by RT-FireWire. (Only top of the curves are presented here) 

Asynchronous Transaction Latency using RT-FireWire vs Linux FireWire Subsystem
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Figure 3-22 Comparison between RT-FireWire and Linux FireWire Subsystem 
(Asynchronous Transaction) 
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Drift of Data Receving Rate on Isochronous Transaction using RT-
FireWire
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Figure 3-23 Comparison between RT-FireWire and Linux FireWire Subsystem (Isochronous 
Transaction 

The data load is another issue that may influence the real-time behavior of RT-FireWire. 
Figure 3-24 and Figure 3-25 presents the latency or drift over different data load.  

Asynchronous Transaction Latency on Real-Time FireWire
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Figure 3-24 Asynchronous Transaction Latency on RT-FireWire with different data load 



Real-Time Network for Distributed Control  Zhang Yuchen 2005 

 38 

Drift of Data Receving Rate on Isochronous Transaction using RT-
FireWire

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Drift(us)

C
u
m
u
l
a
t
i
v
e
 
P
e
r
c
e
n
t
a
g
e

56bytes unloaded 56bytes loaded 400bytes unloaded 400bytes loaded  

Figure 3-25 Drift of Data Receiving Rate on Isochronous Transaction using RT-FireWire with 
different data load 

3.6.2 Discussion and Conclusion 

Compared with Linux FireWire Subsystem, both asynchronous latency and isochronous drift 
on RT-FireWire give quite steep curves, as shown in the figures above. That means 
RT-FireWire gives much more deterministic behavior, which is especially crucial when time 
critical communication is needed.  

But there still exists an un-ignorable gap between the average performance on RT-FireWire 
and the worst case performance. In case of asynchronous transaction it is the gap between 
worst case latency and 97% threshold latency value; in case of isochronous transaction it is 
the worst case data receiving rate drift and 97% threshold drift value. These gaps can not be 
filled by RT-FireWire due to the limitation of current solution, i.e. RT-FireWire is only 
software-based solution trying to achieve hard real-time communication. From RT-FireWire 
point of view, the hardware underlying, even the internal implementation of the Operating 
System underlying can be kind of “black box”. No attempts are made in this project to open 
these “black box”.  

Based on the work presented in this chapter, RT-FireWire has been converted to a Open 
Source project, register in www.berlios.de. It can be directly visited via rtfirewire.berlios.de.  
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4 Real-Time IP Network over RT-FireWire 

4.1  Introduction 
This chapter presents the implementation of stacking real-time IP network in the application 
layer of RT-FireWire. First, the emulation of Ethernet over FireWire is explained. Second, 
another Open Source project, RTnet is introduced. RTnet implements a real-time networking 
framework on Ethernet. Based on the Ethernet emulation, RTnet can be stacked on 
RT-FireWire. In last part of this chapter, the results of performance measurement on IP over 
FireWire is given, and compared with the performance of IP over Ethernet.  

4.2 Ethernet Emulation over RT-FireWire 

4.2.1 “IPover1394” Spec  

Before this project, a spec called “IP over 1394” [Johansson, 1999] has been released over 
Internet, which standardizes the protocol of transferring IP packets on FireWire’s primary 
transactions, i.e. asynchronous and isochronous, so to make FireWire appear almost the same 
as Ethernet from the application point of view. In Linux FireWire Subsystem, a highlevel 
module, Eth1394 (Ethernet Emulation over FireWire), has been developed according to this 
specification. In this section, the basic rationale behind “IPover1394” is explained at first. 
After that, the modifications to “IPover1394” are presented and explained which is 
implemented in the re-implementation of Eth1394 in RT-FireWire.  

4.2.2 Minimum Requirements to be IP-capable 
Not all serial bus devices/nodes are capable of reception and transmission of IP packets. Several 
minimum requirements should be fulfilled for a node to be IP-capable: 

 Nodes have unique hardware address (unique in the network scope). This is important 
because transaction on the IP level is peer-to-peer. A peer-to-peer relation needs to be 
established between the IP address and the hardware address of a certain medium. 

 Nodes support multicasting. This is especially important because the multicasting ARP 
protocol needs to be carried out for mapping between IP address and the underlying hardware 
address.  

Besides the above two essential requirements, another desired one is that the underlying 
medium should support transmitting packets of relatively large data size. This is because IP 
header introduces some overhead (20 bytes of data). Therefore the medium should at least be 
able to transmit packets that contain more data than the IP header. Moreover, it is better to 
have large size packet under IP, since that relatively decreases the protocol overhead.  

4.2.3 Addressing Mechanism 

This section explains the mechanisms to establish the peer-to-peer relation between IP address 
and FireWire node address. Two different mechanisms are introduced. The first one is from 
original “IPover1394” specialization; the second is customized in this project. Through the 
comparison, it can be seen that the newly customized addressing mechanism fits better in 
real-time application context.  
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The original IPover1394 spec employs the 64-bit GUID (Global Unique ID) of each FireWire 
adapter chip as the hardware address. The GUID is the ID from manufacturer of each single 
FireWire adapter, similar to the MAC address of Ethernet adapter. The GUID can be read 
from the internal register of a certain adapter by using normal asynchronous transaction 
access on FireWire. That way, the GUID of any FireWire node (adapter) can be known to the 
whole network, and the peer-to-peer relation between GUID and Node ID can be established.  

The strength of using GUID as the hardware address in IP over FireWire is that, the 
“hardware address” can be guaranteed to be unique even in the world scale, just like the MAC 
address of Ethernet. But in Ethernet, MAC address is directly used as link layer address for 
transaction, but in FireWire GUID is not used in transaction. Therefore, any packet that is 
stamped using GUID must go through an address resolution procedure before it can be put on 
the fly. Including the address resolution in IP protocol itself, i.e. the resolution between IP 
address and hardware address (in this case, it is GUID), the whole address resolution 
procedure includes two sub-resolution, which is not considered being efficient. The 
conceptual diagram of the address resolution process based on 64-bit GUID is given in Figure 
4-1.  

 

Figure 4-1 Addressing Mechanism in “IPover1394” Spec 

As stated above, the addressing mechanism in “IPover1394” spec is not considered to be 
optimal and efficient, especially for real-time context, therefore some modification is needed.  

The new addressing mechanism for IP over FireWire is demonstrated in Figure 4-2. As shown, 
the FireWire node ID is directly employed as hardware address of each IP-capable FireWire 
node. That way, the resolution procedure from IP address to hardware address (FireWire node 
ID) only includes the resolution in IP protocol itself. In this project, 1394 address space is 
allocated statically to IP module, i.e. on each node, the 48 bits address offset for Eth1394 
module are exactly the same. Therefore, the 16 bits Node ID is enough to represent the 
hardware address. 
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Figure 4-2 Modified Addressing Mechanism in RT-FireWire 

To give exactly the same look as normal Ethernet devices, the “MAC” address of Eth1394 is 
extended to 6-bytes by filling 0 after the 2 bytes FireWire node id, as shown in Figure 4-3. 
This way all the highlevel stuff that is already working on Ethernet can be directly moved to 
FireWire, due to the same interface between Ethernet and Eth1394. Figure 4-4 gives the 
console view of Eth1394 interface on Linux/RTAI.  

 

Figure 4-3 MAC address of Eth1394 

 
Figure 4-4 Console view of Eth1394 interface 

4.2.4 Address Resolution Protocol 

The address resolution protocol (ARP) is a protocol used by the IP, specifically IPv4, to map 
IP address to the hardware addresses used by a data link protocol. The protocol operates 
below the network layer as a part of the interface between the OSI network and OSI link 
layer. 

On Ethernet, the address resolution protocol is only used to map IP address to hardware 
address.  E.g. the ARP packet only carries the IP address of certain Ethernet nodes. On 
FireWire, the transmission speed and packet size need to be specified before the packet is 
delivered to driver, which depends on the collected information about target node: the 
maximum speed and maximum packet size it can accept. Therefore, on Eth1394, it is required 
that ARP packet also carries the information about maximum speed and maximum packet size 
of the sending node.  The 1394-specific ARP is called 1394ARP. Since the addressing 
mechanism has been adjusted, the original 1394ARP in IPover1934 can not be directly 
applied either. In this section, the complete ARP used for new addressing mechanism is 
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presented, without referring back to the original one. 

The ARP format on Eth1394 and Ethernet are given in Figure 4-5 and Figure 4-6 respectively.  

Explanation about some fields: 

 Hardware type indicates the underlying medium. E.g. 1 for Ethernet, 24 for FireWire.  

 Protocol type indicates the protocol. In case of ARP, it is 0x0080. 

 Hw_addr_len is the length of hardware address in bytes. In case of Eth1394, it is 6. 

 Lg_addr_len is the length of logical address in bytes. In case of IP, it is 4.  

 Operation code indicates the operation type of current packet, 1 for request 2 for 
response.  

 Max_rec indicates the maximum packet size that can be accepted by the sender node. 

 Sspd indicates the maximum speed that can be accepted by the sender node. 

Figure 4-5 ARP packet format on Eth1394 

Figure 4-6 ARP packet format on Ethernet 

Because Eth1394 is required to give the exactly same look as normal Ethernet, the 1394ARP 
packet is converted to a standard ARP packet before it can be delivered to the IP layer, 
meanwhile, the FireWire layer records down the information that is needed by itself, i.e. 
max_rec and sspd, see Figure 4-7.  

 

Figure 4-7 Handling ARP packet in Eth1394 
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4.2.5 Implementation of Eth1394 

This sub-section gives a summary of the implementation of Eth1394. It covers the unicast and 
broadcast transaction of Eth1394. 

Unicast Transaction 
The implementation of unicast transaction is based on FireWire’s asynchronous transaction. 
During the initialization of the interface, a certain piece of address area on the FireWire is 
allocated. Then a handler (Eth1394_write) is installed to handle all write transactions into that 
address area (For transactions between Eth1394 modules, only write transaction is used.).  

Broadcast Transaction 
The implementation of broadcast transaction is based on FireWire’s isochronous transaction. 
During the initialization of the interface, a certain isochronous channel is allocated. Then a 
handler (Eth1394_iso) is installed to handle all packets transmitted through that channel.  

4.3 Stacking RTnet over RT-FireWire 

4.3.1 Introduction about RTnet 
RTnet provides a customizable and extensible framework for hard real-time communication 
over Ethernet. Conceptually similar to RT-FireWire, RTnet also employs static memory 
management, real-time interrupt handling, non real-time/real-time transaction differentiation 
to implement a basic real-time stack. The stack overview of RTnet is shown in Figure 4-8. In 
next section, the application programming interface based on RTnet is presented. For other 
features of RTnet, one can refer to [RTnet, 2005] and [Kiszka, Zhang et al, 2005]. The latter is 
attached to this report as appendix.  

 

Figure 4-8 RTnet Stack Overview[Kiszka, Zhang et al 2005] 

4.3.2 Application Programming Interface based on RTnet 

One important reason to port Eth1394 to RTnet is that, the application programming interface 
on RTnet can thereby directly be used on FireWire.  

RTnet provides its real-time services via real-time variants of POSIX-conforming socket and 
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I/O interfaces. This socket interface offers UDP and packet sockets for exchanging user data 
deterministically. Just as RTAI, RTnet permits both the classic kernel mode and more 
convenient user mode usage (Linux processes) of the interfaces. In this project, applications 
on RT-FireWire are deployed mainly by using the real-time socket interface via Eth1394 
module.  

4.3.3 Media Access Control 

As important as a real-time-capable stack implementation is a deterministic communication 
media. But compared to specifically designed field-bus, e.g. CAN, FireWire’s native media 
access control does not support prioritized transactions. In other words, packets from 
real-time and non real-time applications can not be differentiated on the Link-Layer level. 
Therefore, there exists the possibility that transactions from node running non real-time 
operations can block the transactions from node running real-time operations. To solve this 
problem, there is a need to add extra media access control layer above that native one. 

RTnet addresses this demand with its RTmac (Real-Time media access control) layer. RTmac 
is designed to be a socket, where all customizable media access disciplines can be plugged in. 
Here the already-developed TDMA discipline is introduced, based on which the problem 
stated above can be solved. 

RTnet’s TDMA is a master-slave protocol. It synchronizes the clocks of all nodes in network. 
By assigning time slot to different node, which is actually determined by the offset relative to 
the synchronization messages the master nodes issues periodically, the transmission time of 
packets from each node can be explicitly separated. See Figure 4-9 for the illustration.  

 
Figure 4-9 TDMA cycle in RTnet 

By applying TDMA principle to RT-FireWire nodes through Eth1394, the transaction issued 
by non real-time nodes can be bounded to certain slots in the TDMA cycle, which means they 
can not influence the transaction issued by real-time nodes. 

4.4 Test Bench 

4.4.1 Bench Settling and Measurement Results  

Based on the RTnet interface, a test bench is built up between two FireWire nodes, to measure 
the roundtrip between them. The whole procedure is shown in Figure 4-10, where the “server” 
node receives the data that is sent by “client” and sends it back. The roundtrip latency is 
thereby measured on the “client” side, i.e. the time between sending the data and receiving it.  
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Figure 4-10 Test bench on Eth1394  

Since both Eth1394 and Ethernet appear as the same medium under RTnet interface, the same 
experiment is repeated on Ethernet also.  

The same hardware mentioned in Chapter2 is reused in this test bench. All FireWire 
transactions run at 400Mb/s, while Ethernet transactions run at 100Mb/s.  

First situation in experiment is when both sides are not loaded. The roundtrip latency (97% 
threshold and 100% worst case) over ascending data loads on both Eth1394 and Ethernet are 
plotted together in Figure 4-11. Second situation in experiment is when both sides are fully 
loaded. The roundtrip latency (97% threshold and 100% worst case) over ascending data 
loads for both are plotted together in Figure 4-12.  
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Figure 4-11 Roundtrip Latency on Eth1394 and Ethernet (when system is not loaded) 
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Roundtrip Latency on Eth1394 and Ethernet(loaded)
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Figure 4-12 Roundtrip Latency on Eth1394 and Ethernet (when system is loaded) 

4.4.2 Discussion 

 The latency variation (jitter), i.e. the difference between 97% threshold latency and worst 
case latency on Eth1394 is larger than on Ethernet. This is due to the complex software 
stack under Eth1394. The whole RT-FireWire, which is under Eth1394, includes more 
task handover, context switches, etc, due to the layered structure. Instead, in Ethernet, 
only a driver layer is under the device interface.  

 Also due to the complex layered software under Eth1394, the latency is more worsened 
by system load noise, compared with the influence on Ethernet.  

 The latency on Eth1394 gives a less leaning slope, compared with Ethernet’s slope. This 
is due to the high data transfer rate on FireWire. I.e. the FireWire in experiment can 
transfer data at 400Mb/s, while the Ethernet in experiment can only transfer at 100Mb/s.  

 

 

 

 

 

 

 

 

 

 



Real-Time Network for Distributed Control  Zhang Yuchen 2005 

 47

5 Integration to Design Toolchain and Demonstration  

5.1 Introduction 
This chapter presents the integration of the real-time networking support provided by 
RT-FireWire into a complete working around, which is used for designing and verification of 
controllers. The toolchain covers the whole procedure from the design and simulation of a 
certain control system to the distributed deployment of that system to multiple computing 
boxes. To demonstrate the utility, a practical case is used, which is also introduced in this 
chapter. Also the performance measured from that practical case is presented, based on which 
the comparison between distributed control and centralized control is done. 

5.2 Integration to the Design Toolchain 

5.2.1 MSC Toolchain 

MSC (Mechatronic Stack Connection) toolchain is a set of tools developed by [Buit, 2005] to 
facilitate the procedure of realizing controllers in software code, and deploying the controllers 
to computing boxes. An abstracted working sequence of this toolchain can be seen in Figure 
5-1.  

 

Figure 5-1 Working Sequence of MSC toolchain [Buit, 2005] 

The strength of MSC toolchain is it takes care of the hardware I/O (Physical Input and Output) 
connection automatically. But in the project of [Buit, 2005], deployment of controller is only 
limited to centralized realization. Because of that, a solution needs to be found to enable the 
toolchain to deploy controllers into multiple boxes, i.e. distributed control.  

5.2.2 Adding Networking Support to MSC Toolchain 

To add networking support to MSC toolchain, only one phase in Figure 5-1 needs to be 
modified. That is the Code Generation. As shown in Figure 5-2, the configuration decision 
has to be made after the control model is ready from simulation tool, but before the code is 
generated. The designer has full freedom to choose the configuration. In case one has a 2-box 
network, 3 configurations are available.  

In Figure 5-3, the 2-way configuration is shown where the controller and I/O are totally 
separated on two boxes. By using 2-way configuration, one introduces round trip network 
latency to the controller realization.  

Figure 5-4 gives the 1-way configuration, where the controller stays with either Encoder input 
or PWM output. By using 1-way configuration, one introduces only single trip network 
latency to the controller realization.  
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Figure 5-2 Working Sequence of Modified Toolchain 

 

Figure 5-3 2-way Configuration 

To realize a distributed controller, a network interface needs to be implemented. In this 
project, this is implemented by using socket programming. The reasons are: 

 Interface to IP network has been implemented on RT-FireWire 

 Socket interface has been fully adopted in RTAI/fusion, so the interface can be fully 
compatible with real-time application.  

 By using socket interface, Ethernet can replace FireWire without any change in the 
application program, which gives a lot of space for introducing other real-time features, 
e.g. fault tolerance upon communication channel failure.  

 

Figure 5-4 1-way Configuration 
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5.3 Demonstration 
This section describes the demonstration setup that is used in this project to test the utility of 
RT-FireWire in a practical case. A real motor plant and a proved PID controller are used, 
which are described in next two sections respectively. The experiments are carried out using 
different sampling frequencies, i.e. 1 KHz and 5 KHz. In both cases, centralized control is 
also tested, as a comparison with distributed control. For distributed control, only 2-way 
configuration is tried out.  

5.3.1 Plant and Controller 

A demo setup built in Control Engineering Group is used, which is called LINIX, as shown in 
Figure 5-5.  

 

Figure 5-5 LINIX plant 

 
Reason to choose LINIX: 

 It is fully ready to be used. 
 It is relatively simple, and straightforward. 
 Many previous students also used the plant in their projects, which proves it is quite 

useful for demonstration.  
The 20Sim model of LINIX is shown in Figure 5-6. 

input

output

qME

P
MotorPosition  

Figure 5-6 20Sim model of LINIX Plant 

The models of the system and of the controller are given in Figure 5-7 and Figure 
respectively.  
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Figure 5-7 Demo System Model  
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Figure 5-8 20Sim model of Controller 

Figure 5-9 shows the simulation results while a motion profile is applied. Both PWM output 
and Encoder input signals are measured. The simulation frequency is 1 KHz.  

 

Figure 5-9 Simulation Results from 20Sim (1 KHz) 
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5.3.2 Performance Comparison 
First, the controller is running at 1 KHz. In both centralized control and distributed control, 
the PWM output and Encoder Input are recorded, which is given in Figure 5-10.  

 

Figure 5-10 Comparison between Centralized Control and Distributed Control (1Khz) 

Second, the controller is running at 5 KHz. The PWM output and Encoder input signal are 
recorded and shown in Figure 5-11. As can be seen, because of the relative high sampling 
frequency, the distributed controller is losing data due to the network latency. That can be 
seen from the difference of PWM output of both configurations. To make the different more 
obvious, Figure 5-12 plots them together.  

 

Figure 5-11 Comparison between Centralized Control and Distributed Control (5 KHz) 
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Figure 5-12 Comparison between Centralized Control and Distributed Control (5 KHz) 

5.4 Discussions 

Although some data is lost in the distributed configuration due to the latency on FireWire, the 
motion of the LINIX motor for both configurations is almost the same. This is due to the fact 
that LINIX motor (its dynamics) is a relatively slow. According to the simulation results, as 
shown in Figure 5-13 and Figure 5-14 , the LINIX motor gives the same step response when 
running at 1 KHz sampling frequency and when running at 5 KHz sampling frequency.  

So to control a relatively slow plant like LINIX, 1 KHz sampling frequency is already enough. 
Increasing the sampling frequency to 5 KHz does not have any new influence, since the slow 
dynamics of LINIX plant is a dominating factor for the system reaction. Because of this, it 
can be concluded that FireWire is fully usable to control slow plant like LINIX, since it does 
not miss any deadline (in control intervals) when the sampling frequency is around 1 KHz.  
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Figure 5-13 Step Response of LINIX in simulation (1 KHz) 
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Figure 5-14 Step Response of LINIX in simulation (5 KHz) 
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6 Conclusions and Recommendations 

6.1 Conclusions 

Adoption of FireWire into Distributed Control 

As to adopt FireWire as a new generation fieldbus for distributed control application, a 
software-based solution has been followed. The real-time software subsystem on FireWire 
(RT-FireWire), which currently works in Linux/RTAI (the real-time Operating System) has 
been fully designed and implemented in this project. The results from the performance 
benchmarking on RT-FireWire shows that, by applying RT-FireWire on FireWire hardware, 
the transaction latency on FireWire can be limited to a certain range that is fully usable for 
distributed control application, whether the system is under heavy load or not.  

Real-Time IP over FireWire 
Ethernet Emulation over FireWire (Eth1394) has been fully implemented on RT-FireWire as 
one highlevel module in the application layer. Via Eth1394, RT-FireWire can be connected to 
another real-time software framework, RTnet, which implements real-time networking on the 
IP layer. Therefore, besides Ethernet FireWire has been introduced as a new medium 
alternative for real-time IP networking. The performance benchmarking on Eth1394 and 
Ethernet shows that the performance from both is comparable. 

Integration to Design Toolchain 
Via Real-Time IP over FireWire, the real-time networking support provided by FireWire has 
been integrated to the design toolchain which covers the whole procedure from the design and 
simulation of a certain control system to the distributed deployment of that system to multiple 
computing boxes. As a result of this integration, the controller designed in current toolchain 
can be directly deployed to multiple nodes, as a simple but straightforward realization of 
distributed controller.   

6.2 Recommendations 

Short-term 

Raw Interface on RT-FireWire layer  
This is to develop a raw interface on RT-FireWire. So via this interface, operation can be 
directly applied on FireWire layer, e.g. issuing transaction, allocating bus address space or 
isochronous channels. The current “raw1394” module in Linux already implements the 
similar functions, but of course in a non real-time manner. Like the developing path of the 
whole RT-FireWire stack, “raw1394” in Linux can be the starting point. The developed 
interface, whether based on “raw1394” or not, should be conforming to the Real-Time Driver 
Model (RTDM) in RTAI/fusion. RTDM was originally developed by RTnet team, but now it 
has been fully integrated to RTAI/fusion as a new skin on the fusion nucleus. It extends the 
RTAI interface in a regular and well-defined way for providing device access. More 
information can be found in the RTAI mailing list. At the time of writing, all the IP-based 
protocols in RTnet have been ported to RTDM, so called protocol devices. Moreover, at the 
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time of writing, another RTDM-conforming driver on InterBus adapter has been developed 
and announced in the RTAI community. 

Media Access Control in RT-FireWire 
During this project, media access control on FireWire is based on the implementation in 
RTnet. That is because on current stack, only the socket interface (via RTnet) has been fully 
ready. But in case the raw interface is ready, a media access control layer is desired to be built 
in RT-FireWire internal. The whole concept (even part of the implementation) of media access 
control module in RTnet can be moved to RT-FireWire. When this module is ready, the 
TDMA protocol can be applied directly on FireWire first. Besides, some other new protocols 
are also desired, probably with the implantation of a more complex algorithm.   

Long-term 

Stacking one or more middleware frameworks onto RT-FireWire 

Nowadays, quite a few middleware frameworks for real-time control application have been 
developed or are under development. One example is CANopen, which has been developed 
by CAN in Automation organization as an application protocol and device model for the 
automation domain. If CANopen, or other middleware frameworks, can be stacked on 
RT-FireWire, it would enable automation applications to run straightly over RT-FireWire. 
Investigation on one or more specific middleware frameworks and a clear specification about 
the implementation should be done before starting the real work.  

Porting New Hardware Drivers to RT-FireWire 

During this project, only driver for OHCI-compliant adapter has been ported to RT-FireWire. 
It is desired that the driver for other non OHCI-compliant adapters can also be used under 
RT-FireWire. One step further, it would be very nice if the 1394b adapter (supporting 3.2 Gb/s) 
can be used under RT-FireWire. 

Real-Time Vision Control over RT-FireWire 

Real-Time vision control is control system using video signal input, e.g. via camera. During 
this project, some inquiries were received from the community about whether RT-FireWire 
supports real-time video transmission, e.g. from a FireWire camera. Due to the limitation of 
time and hardware, this topic was not opened. To develop real-time vision control over 
RT-FireWire, the current implementation of relative video data protocols (dv1394, video1394 
module) in Linux can be studied and ported to RT-FireWire. Also the implementation should 
conform to RTDM.  
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Appendix1 Modification to the MSC toolchain 

This appendix presents the modification made to the MSC toolchain [Buit, 2005]. First 
section describes the changes made to MSC toolchain for porting it to RTAI/fusion; second 
section describes the implementation of adding distributed controller deployment.  

Porting to Fusion 

In [Buit, 2005], LXRT on classical RTAI is used. But in this project, RTAI/fusion is chosen 
due to its better structured design and more extensibility. Compared with classical RTAI, 
Fusion uses a totally different mechanism for deploying real-time tasks in user space. 
Therefore, the relative function calls in MSC toolchain have been changed according to the 
Fusion standard. For a practical guide about how to use fusion API calls in user space, please 
refer to [RTAI, 2005].  

Changes of the Code Generation Template 

The code generation template is used when a certain simulation block in 20Sim is converted 
to C code. In MSC toolchain, the template is also used to deploy any generated 20Sim code to 
RTAI/Linux user space as a real-time task. Listing A0-1 gives an overview of initialization 
and execution of 20Sim task in the template.  

 

Listing A0-1 Real-Time 20Sim Task in Fusion 
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 RT_TASK is the structure for the real-time task, which is the same in both kernel space 
and user space.  

 Because a lot of API services involving timeouts, delays are used in the template, the 
rt_timer_start () must be called first. The same as in classical RTAI, two modes can be 
chosen to start the timer: oneshot or periodic. In one shot mode, the underlying timer will 
be reprogrammed after each clock tick so that higher accuracy of timing can be gained, 
while in periodic mode, the timer will only be reprogrammed after each period, which 
can be specified as argument to rt_timer_start(). Therefore, the timer cost less time for 
reprogramming, but at the expense of lower accuracy.  

 Here, rt_task_sleep_until() is used to wait for starting of next cycle. Another function, 
rt_task_wait_period() can be used for the same purpose, but the period of task must be 
set first by using rt_task_set_period(). 

Change to Stack Daemon 
Because the stack daemon uses a lot of fusion API calls, most of which are not allowed in the 
Linux domain. Therefore, the whole stack daemon is moved to the real-time domain, as a low 
priority real-time task. See Listing A0-2.  

 

Listing A0-2 Stack Daemon Task in Fusion 

 

Connection Objects 
In MSC toolchain, a lot of connection objects are used between the 20Sim task to the stack 
daemon, see Figure A1-1, which shows all the shared memory and semaphores used in MSC 
toolchain on fusion. Mutex is new primitive in fusion, used to synchronize concurrent access 
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to shared resource, e.g. shared memory here. Its antecedent is Resource Semaphore in 
classical RTAI. All the connection objects are created by 20Sim task using rt_xxx_create() 
functions. Later on, the stack daemon should call the rt_xxx_bind() functions to find all these 
objects from the global registry.  

 

Figure A0-1 Connection Objects in MSC Toolchain on Fusion 

Adding the Distributed Controller Deployment 
Main change for this purpose goes to the code generation template, see Listing A0-3.   

Listing A0-3 Distributed Controller Support in Template 

The implementation of network interface is based on real-time variant of socket programming, 
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which is in the API of fusion.  

Since only the “2-way” configuration is used in this project, two “define”s, i.e. DISTRI_IO 
for IO node and DISTRI_CONTROLLER for controller node, are enough to tell the compiler 
for which node the code is being complied for. Accordingly, there is one CCE config file for 
each node.  
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Appendix 2 Non Real-Time Factors in Linux FireWire 

Subsystem 

This appendix unveils part of the non real-time factors in Linux FireWire Subsystem 

Layered Architecture and Task Handover Latency 

The Linux FireWire Subsystem is organized hierarchically into different layers, with each 
layer containing one or more components to implement the corresponding network protocol 
or other specific functionalities on that layer. Roughly, it consists of 3 layers, which is 
presented in Figure A2-0-1. 

 

Figure A2-0-1 Layers in Linux FireWire Subsystem 

For each incoming packet, the processing task starts from Hardware Operation Layer (i.e. 
fetching the packet from DMA –mapped memory), and ends in the Application Layer (i.e. the 
application does some specific job on/according to the packet). Here, no attempts are made to 
explore the details in each layer, but attentions are paid to the Task Handover mechanisms 
between the layers. Task Handover is the way that processing routine in one layer wakes up 
the processing routine in another layer, and later ends itself, so that the packet processing task 
continues in another layer.  

In Linux, there are quite a few variant implementations for the Task Handover: 
 Software IRQ 
 Tasklet 
 Obsolete Bottom Half struct (only in 2.4 kernel and before) 
 Kernel Timer 
 Semaphore 
 Waiting Queue 
 ….. 

Since these are really deep Linux kernel internals, it is beyond the scope of this appendix to 
give explanations of them. Please refer to chapter 6 of [Rubini, 2001] for more knowledge 
about their definitions and usages. Here, the focus is only on the deployment of the Task 
Handover in FireWire Subsystem and the latency introduced by it.  
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First, the deployment of task handover in Linux FireWire Subsystem is presented in Figure 
A2-0-2. In Hardware Operation Layer, the routine is broken into 2 parts: Top Half and Bottom 
Half. The Top Half runs to acknowledge the interrupt, identify the hardware device raising the 
Interrupt, check for data or status on the I/O device and return as quickly as possible to avoid 
missing any new interrupts. Then, the Bottom Half is scheduled at some later time by using 
Tasklet, to complete the service of the Interrupt or to do the actual work required to service 
the hardware device.  

 
Figure A2-0-2 Deployment of Task Handover in Linux FireWire Subsystem 

In next section, the measurement results about the Task Handover latency in Linux FireWire 
Subsystem are given.  

Measuring of Task Handover Latency in Linux FireWire Subsystem 
A specific series of experiment is carried out to measure the task handover latencies between 
layers. Because the Task Handover between Hardware Operation Layer and Protocol Layer 
uses the same mechanism as the one between Protocol Layer and Application Layer, so only 
the latter is measured. As can be seen from Figure A2-0-3 and Figure A2-0-4, when the 
system is not loaded, the task handover latency in both cases have already shown a relatively 
big difference in latency values in the critical range of cumulative percentage (e.g. between 
97% and the worst case (100%) performance). With adding load, performance is clearly 
worsened. What’s more when the system is heavily loaded, the curve is much less steep then 
in the case system is not heavily loaded. As already discussed, this indicates increased 
non-determinism and results in poorer real-time properties. 
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Figure A2-0-3 Task Handover Latency in Hardware Operation Layer of Linux FireWire 

Subsystem 

 

Figure A2-0-4 Task Handover Latency between Protocol Layer and Application Layer of 
Linux FireWire Subsystem 

Conclusion 

In short, these experiment results give a clear proof that the Linux FireWire Subsystem can 
not be used in real-time because of its internal software architecture and Task Handover 
mechanisms.  
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Appendix 3 Practical Information about RT-FireWire  

Project Location 
The Open Source project RT-FireWire is located at Berlios (www.berlios.de). The exact 
address of RT-FireWire is http://developer.berlios.de/projects/rtfirewire/ . At the time of 
writing, homepage for RT-FireWire is maintained in author’s own web space, but it can be 
accessed via (rtfirewire.berlios.de).  

Requirements 
 Linux kernel 2.6.x 
 RTAI/fusion 0.9 or newer (at the time of writing, it is still the cutting-edge CVS version) 
 X86 platform 
 FireWire card(s). (at the time of writing, only the driver for OHCI compliant FireWire 

card has been ported to RT-FireWire) 
 Download latest RT-FireWire package from the project homepage.  

Installation 
1. Install and test suitable version of RTAI/fusion 
2. cd to preferable directory (e.g. /usr/src) 
3. tar xvjf <PATH-TO-RT-FireWire-ARCHIVE>/rt-firewire.tar.bz2  
4. cd rt-firewire 
5. Run ./configure --with-rtai=<PATH-TO-RTAI> <options> [--prefix=<PREFIX>] 

<PATH-TO-RTAI> is installation directory of RTAI/fusion. 
6. <PREFIX> is the installation path prefix (see below). Default <PREFIX> is 

/usr/local/rt-firewire. The complete list of parameters is shown when calling ./configure 
--help. RT-FireWire can also be build out-of-tree, just run configure from a newly created 
directory. 

7. make 
8 make install 

This will create the directories <PREFIX>/sbin with all configuration tools, 
<PREFIX>/modules containing all core modules, <PREFIX>/include with the required 
API header files.  

9. In case the char device /dev/rt-firewire is not created automatically, you can create it 
manually, by mknod /dev/rt-firewire c 10 241. 

Initialization 
1. Shutdown your FireWire card and unload the Linux driver 
2. Load the RTAI/fusion modules: rtai_hal.ko rtai_nucleus.ko rtai_rtdm.ko 
3. Load the RT-FireWire modules: rtpkbuff.ko (real-time buffer module),  
          rt_serv.ko (real-time server module) 

rtpc.ko (real-time procedure call module) 
rt_ieee1394.ko (RT-FireWire kernel module) 
rt_ohci1394.ko (OHCI driver) 
bis1394.ko (bus internal service module) 
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First play-around 
After insmod all the modules, you can run hostconfig now to see all your FireWire adapters,  
For example: 
=========== 
hostconfig -a  
=========== 
This gives a view of all local hosts.  
 
If you have 2 machines, you can run rtping to test the latency between request and response.  
For example:  
======================= 
rtping -h fwhost0 -d 0 -s 50.  
======================= 
This does a test between local host "fwhost0" and remote node that has a node id 0. If the id 
of local host is used, then it is a loop back test. The value after “-s” specifies the size of data 
load for this test.  
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Appendix 4 Publication to 10th IEEE International Conference 

on Emerging Technologies and Factory Automation  

In this appendix, the paper <<RTnet - A Flexible Hard Real-Time Networking Framework>> 
is attached. Jan Kiszka, the RTnet leader in University of Hannover, Germany, is the main 
author of this paper. FireWire and its integration to RTnet are introduced in this paper. At the 
time of writing, the conference has not been held. It will be held at 19-22 September 2005, in 
Facolta' di Ingegneria, Catania, Italy. This paper will be presented by Jan Kiszka during the 
conference, and will be published in the proceedings.  

This paper is one product of the cooperation between RTnet development team in University 
of Hannover and the Control Engineering Group in University of Twente. The initial contact 
was established via the RTAI and RTnet community.  
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Abstract

In this paper, the Open Source project RTnet is pre-
sented. RTnet provides a customisable and extensi-
ble framework for hard real-time communication over
Ethernet and other transport media. The paper describes
architecture, core components, and protocols of RTnet.
FireWire is introduced as a powerful alternative to Ether-
net, and its integration into RTnet is presented. Moreover,
an overview of available and future application protocols
for this networking framework is given.

1 Introduction

Real-time Ethernet has grown to one of the core top-
ics in current industrial automation research and appli-
cation. A significant number of vendor-driven solutions
have shown up on the market during the last years, claim-
ing to replace traditional fieldbuses. The overview of
available solutions on [18] currently lists 16 soft and
hard real-time Ethernet variants. Most of them either re-
quire special hardware extensions to nodes or infrastruc-
ture components, or they provide only soft real-time guar-
antees. Academia approaches are typically designed to
demonstrate specific concepts and lack common OS or
hardware support. A broad overview of soft and hard real-
time protocol research is given in [7]. Some recent ap-
proaches are for example FTT-Ethernet [16], RT-EP [12],
or the combination of switches and traffic shapers [11].

All these approaches come with various transport and
application protocols as well as programming interfaces,
which are generally not compatible with each other. Ad-
ditionally, there are other transport media beyond Eth-
ernet 100Base-T approaching the real-time domain: Gi-
gabit Ethernet, wireless media as IEEE 802.11 or Blue-
tooth, and also promising trends like using FireWire for
time-critical control and measuring tasks. While this di-
versity of solutions can stimulate competition, it also in-
terferes with the portability and extensibility of applica-
tions both in research and industrial scenarios. Further-
more, the question arises which solutions can guarantee
long-term availability, especially when taking their spe-

cific hardware dependencies into account.
With the goal to provide a widely hardware-

independent and flexible real-time communication plat-
form, the RTnet project has been re-founded in 2001 at the
University of Hannover, based on ideas and source code
of a previous effort to provide deterministic networking
[10]. RTnet is a purely software-based framework for ex-
changing arbitrary data under hard real-time constraints.
The available implementation is founded on Linux with
the hard real-time extension RTAI [17].

The design of the RTnet stack as depicted in Figure 1
was inspired by the modulised structure of the Linux net-
work subsystem. It aims at scalability and extensibility in
order to comply with the different requirements of appli-
cation as well as research scenarios. RTnet’s software ap-
proach addresses both the independence of specific hard-
ware for supporting hard real-time communication and the
possibility to use such hardware nevertheless when it is
available. Furthermore, it enables the integration of vari-
ous other communication media beyond Ethernet.

VNIC VNIC

NIC NIC

TDMA NoMAC, ... RTmac

RTnet Core

API

Packet
Protocol

UDP/IP,
ICMP, ARP

RTcfg

RTcap

LoopbackRT DriverRT Driver
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(e.g. Linux)

RT Appl.RT Appl. Management Analysis

Figure 1. RTnet Stack

This paper presents the architecture of RTnet and the
realisation of its central components. Section 2 describes
the RTnet base services consisting of the stack core, the
driver interface, available transport protocols like the real-
time UDP/IP implementation, the programming interfaces
provided to management tools and real-time applications,
and the packet capturing extension RTcap. The determin-
istic media access control framework RTmac, including



its tunnelling network devices for time-uncritical traffic
(VNIC), is introduced in Section 3. That section will
furthermore present RTnet’s default access control disci-
pline for Ethernet, TDMA, in details. Finally, Section 4
closes the stack overview by addressing the real-time con-
figuration service RTcfg. So far, the implementation of
RTnet has been focused on Ethernet. Section 5 presents
the concepts and recent advances to add real-time IEEE
1394 (FireWire) support to the framework. The section
also points out the advantages of that media type and the
possible applications in the automation domain. Further-
more, available and future application protocols and full-
featured middlewares working over RTnet are described
in Section 6.

2 Base Services

RTnet contains a set of central services which are re-
quired for most scenario. In the following, these service
will be introduced.

2.1 Packet Management
One of the crucial parts of RTnet deal with the manage-

ment of packets which contain the incoming and outgo-
ing data. Packets that ought to be transmitted are passed
through the stack in the context of the sending task, i.e.
a real-time application or an internal RTnet service. In
contrast, incoming packets are first passed from the net-
work controller driver to a so called stack manager. This
real-time task demultiplexes the packet according to their
protocol types by passing them to the respective handlers.
The priority of the stack manager has to be above all ap-
plications using RTnet services in order to avoid priority
inversions. This concept is similar to bottom-half interrupt
handling as it can be found in most operating systems.

The stack and the drivers use a unified data structure
called rtskb (derived from the Linux sk buff struc-
ture) to handle packet buffers. While classic network
stacks allocate such buffers and management structures
dynamically, RTnet has to use a different scheme due to
the real-time requirements. First, all rtskbs are preal-
located during set-up. As currently RTnet does not sup-
port buffer sharing between multiple users, the manage-
ment structure and the payload buffer are forming a single
memory fragment. And second, every rtskb has a fixed
size and can always carry the largest physical packet. This
limitation is necessary to avoid shortages due to mem-
ory fragmentation and to allow exchanging of arbitrary
rtskbs between users.

Packet producers and consumers within RTnet have to
create pools of rtskbs in order to take part in the com-
munication. During runtime, new rtskbs are allocated
from these pools. A reference in the rtskb to its original
pool allows to return it to its owner upon release. When a
packet producer hands over a rtskb to the destined con-
sumer, the ownership changes only if the consumer is able
to provide a free compensation rtskb from its own pool.

Otherwise the packet is dropped, and the related buffer
can immediately be reused.

Typical producers and consumers are the adapter
drivers on one side and the sockets on the other. But also
VNICs or management protocols like RTcfg and ICMP
provide their own pools. Pools are created or resized in
non-real-time context using the indeterministic memory
allocation service of the underlying operating system. In
order to allow socket creation and pool extension also in
real-time context, the required rtskbs are transferred in
that case from a special global pool of preallocated buffers
that has been created during the stack initialisation.

2.2 UDP/IP Implementation
Compared to a standard UDP/IP stack, several modi-

fications were required to create the deterministic variant
contained in RTnet. First, the dynamic Address Resolu-
tion Protocol (ARP) was converted into a static mecha-
nism which is executed during the set-up. If a destina-
tion address is later unknown, no resolution requests are
issued but a transmission error is returned to the caller.
Otherwise, the worst case transmission latency of a packet
would include the delay of a potential address resolution.

Second, the routing process was simplified. The output
routing tables were optimised for the limited amount of
entries used with RTnet. To accelerate the packet set-up,
the tables also include the ARP results, i.e. the destination
hardware addresses.

The defragmentation of IP packets needs special atten-
tion. In classic network stacks, this task is performed by
the IP layer before any higher layers like UDP are in-
volved. Thus, as the actual receiver is yet unknown, a
global rtskb pool is required for buffering all fragments
before the last one has arrived. The addition of new frag-
ments to an existing chain demands a lookup in the global
list of all currently pending IP packets chains. Further-
more, incomplete chains have to be cleaned up after a
timeout to avoid buffer shortages and to keep the global
IP fragment list small.

The UDP/IP stack of RTnet contains several mecha-
nisms to confine the effects of the defragmentation as far
as possible to the receiving socket. For this purpose, the
first fragment is used to immediately resolve the destina-
tion socket using an extended interface to layer 4. This
information is then stored together with the fragment in a
collector data structure. Further fragments are identified
as usual by their IP addresses and IDs. To allow an effi-
cient implementation of the collector, incoming fragments
have to arrive in a strictly ascending order, otherwise the
whole chain is dropped. Incomplete chains are cleaned
up when the related socket is closed. The total number of
collectors is limited in order to be able to specify an upper
bound for the lookup latency.

2.3 Driver Layer
Network interface cards (NIC) are attached to the stack

core using a Linux-like driver interface. This allows



straightforward porting of standard Linux drivers to RT-
net, which has already been performed for about ten
widely-used NICs. The NIC initialisation, configuration,
and shutdown is still performed in non-real-time context
under RTnet; porting standard drivers only requires to use
the appropriate synchronisation mechanisms of the under-
lying RTOS here. However, special care has to be paid on
the time-critical reception and transmission paths. They
have to be audited in order to detect and avoid potential
long delays while accessing the hardware.

A few extensions compared to the standard driver
model are required to provide accurate timestamp ser-
vices. RTnet does not depend on built-in timestamp clocks
of the NIC, which are still not commonly available. In-
stead, the driver has to provide the packet reception and
transmission time as precise as feasible. This means that
the reception timestamp has to be taken for every packet
right at beginning of the interrupt handler called upon the
arrival. Furthermore, the driver has to provide the func-
tionality to store the current time in an outgoing packet
and trigger its transmission atomically. These measures
widely reduce packet timestamp jittery to the single inter-
rupt jitter which characterises platform and RTOS.

The driver layer furthermore provides two per-device
hooks for redirecting transmission requests and MTU
(maximum transmission unit) queries. Both hooks are
transparent to the drivers. The transmission hook is used
by the media access control layer RTmac and the captur-
ing extension RTcap for managing, respectively, analysing
outgoing packets. While standard network stacks typi-
cally provide only static device MTUs, RTnet offers log-
ical channels of variable size up to the physical MTU to
higher layers. The RTmac discipline TDMA utilises these
channels to enforce specific slot sizes (see Section 3.2).

2.4 Application Programming Interface

Application programs can attach to the RTnet real-time
services via a widely POSIX-conforming socket and I/O
interface. The socket interface offers UDP and packet
sockets for exchanging user data deterministically. The
I/O interfaces provides access to additional features that
services like TDMA (see Section 3.2) exports to users, for
example clock synchronisation. Just as RTAI, RTnet per-
mits both the classic kernel mode and more convenient
user mode usage (Linux processes) of the API.

The related socket and I/O API functions are part of a
separate interface concept called Real-Time Driver Model
(RTDM). This interface addresses the specific require-
ments when accessing hardware on a mixed real-time sys-
tem like Linux/RTAI, for instance differentiation between
real-time and non-real-time service invocation. Currently,
an implementation of RTDM comes with RTnet, but plans
exist to merge the functionality into the RTAI project. This
would also enable to utilise RTDM for other real-time de-
vices drivers beyond RTnet.

2.5 Capturing Extension
A powerful extension of the RTnet core is the RTcap

plug-in. It acts as a standard traffic capturing service
for both incoming and outgoing packets over real-time
NICs. Arriving packets are recorded together with a re-
liable high precision timestamp, solely depending on the
interrupt jitter of the capturing system. RTcap adds only
a small bounded overhead to the time-critical data paths
when being installed on an active RTnet node. It further-
more cannot starve out any other packet user with respect
to rtskbs because it maintains separate buffer pools for
captured packets.

Figure 2. Using Ethereal with RTnet

Normal analysis network tools can be used with RT-
cap because a pseudo, read-only network device is created
for every real-time NIC to forward the captured packets.
Especially Ethereal [5], shown in Figure 2, is well-suited
to dissect real-time communication as it fully understands
the RTnet protocols. But the usage of RTcap in combi-
nation with traffic analyser is, of course, not limited to
RTnet-managed networks or Ethernet. In principle, any
transport media with RTnet-enabled drivers can be stud-
ied with RTcap’s high timestamp accuracy.

3 Real-Time Media Access Control

As important as a real-time-capable stack implemen-
tation is a deterministic communication media. For in-
stance, standard Ethernet, so far RTnet’s primary media,
does not provide adequate Quality of Service (QoS) fea-
tures for hard real-time applications. Unpredictable colli-
sions in hub-based Ethernet segments prevent short deter-
ministic transmission times. Switches can overcome this
issue but suffer from the risk of congestions which lead
to packet delays or drops. QoS-enabled switches accord-
ing to IEEE 802.1q are partly improving this situation, but
they still require a centralised cabling which is often too
costly for industrial applications.

Also other shared communication media may demand
additional control over outgoing traffic in order to trans-
late QoS parameters to a media-specific scheme or to ex-



tend existing QoS features where necessary. RTnet ad-
dresses the demand for deterministic and flexible media
access control (MAC) mechanisms with its RTmac layer
as described in the following. Moreover, as an example
of a MAC discipline which is pluggable into the RTmac
interface, a TDMA-based protocol is presented.

3.1 Pluggable MAC Layer
The RTmac is an optional extension to the RTnet stack.

Although the stack is already functional without RTmac,
it becomes mandatory if an underlying communication
media lacks a deterministic access protocol. The RTmac
layer was designed to provide these four elementary ser-
vices to arbitrary software-based MAC implementations,
here called disciplines:

• Interception of the crucial packet output path and
redirection to discipline-specific handlers. For trans-
mitting packets, this is performed right before the
packet is passed to the NIC driver. Furthermore, a
handler to override the device MTU on a per-packet
basis can be installed.

• Exchanging discipline-defined control or data mes-
sages in a RTmac frame aside any user protocols.

• Discipline management on a per-device basis. To
every real-time NIC, an individual MAC discipline
can be assigned when it was registered with the RT-
mac layer.

• Packet tunnelling service for time-uncritical data as
generated or received by the non-real-time network
stack. This service creates a virtual network de-
vice for every RTmac-managed real-time NIC. Tun-
nelled packets are encapsulated by the RTmac proto-
col frame to distinguish between otherwise identical
real-time and non-real-time protocols like UDP.

3.2 TDMA Discipline
Primarily for the use with standard Ethernet, RTnet

provides a timeslot-based MAC discipline called TDMA
(Time Division Multiple Access). TDMA in its current
revision 2 is a master-slave protocol. It synchronises the
clocks of RTnet nodes within a network segment. Fur-
thermore, it defines the transmission time of any payload
packet relative to sychronisation messages the master is-
sues periodically.

A TDMA slave node can join a running network seg-
ment at any time provided it knows at least one parameter
set of its slots. This set can either be configured stati-
cally or distributed via the RTcfg protocol (see Section 4).
Given these parameters, the slave starts to join by sending
a calibration request to the master. The master, in turn,
replies with a message that contains the request arrival and
reply departure times, both as precise as the system allows
(see also Section 2.3). By taking its local departure and ar-
rival times into account, the slave is able to calculate the

packet round-trip delay. This procedure is repeated over
a certain interval in order to estimate the medium time
ttravel between starting to transmit a packet on the master
and gaining its reception time on the slave.

ttravel =
1
2n

n∑
i=1

T slave
recv,i − T slave

xmit,i −

(Tmaster
xmit,i − Tmaster

recv,i ) (1)

The master’s synchronisation message contains the
scheduled transmission time Tsched together with the
timestamp taken right before packet release. This permits
the slave to compensate potential scheduling jitters on the
master node when calculating toffset, the offset between
local and global system clock. The slave can furthermore
improve the precision of its own slot starting times Tslot.

toffset = Tmaster
xmit + ttravel − T slave

recv (2)
Tslot = Tsched + tslot − toffset (3)

Time slots can be freely arranged within an elemen-
tary TDMA cycle as depicted in Figure 3. Besides node
assignment and offset, also the slot size can be defined
within physical limits of the transport media. TDMA al-
lows that a node uses multiple time slots per cycle. Fur-
thermore, it is possible to set custom periodicity and phas-
ing of a slot to limit the network load or to share slots be-
tween different nodes. A management tool is available un-
der Linux to create and maintain individual configurations
based on scripts. Even a runtime reconfiguration within
certain constraints is feasible.
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Figure 3. Flexible TDMA Slot Setup

In case multiple packets have been queued on a slot,
the transmission order is defined by their priorities which
can be set by real-time applications or RTnet services for



each message. 31 real-time levels are available, the 32nd
and lowest one is reserved for time-uncritical data, i.e.
VNIC traffic. With multiple slots per node, the need for a
scheduling scheme arises. For efficiency reasons, TDMA
provides explicit scheduling only. Slots are numbered on
each node with ID 0 predefined for default real-time and
ID 1 for non-real-time traffic. In case only a single slot is
available, ID 1 is mapped on slot 0. Any additional slots
are reserved for explicit assignment to arbitrary real-time
applications via the socket API.

As the master is a single point of failure, its services
can be backed up by one or more secondary masters.
An additional time slot has to be assigned to every such
backup master, marked as “Bck. Slot” in Figure 3. In
case the primary master fails to transmit a synchronisa-
tion message, the next backup master on the time axis
will start issuing its own messages. The offset between
primary and secondary master is automatically compen-
sated with a now larger difference between scheduled and
actual transmission time contained in every synchronisa-
tion frame. When the primary master has been fixed and
starts taking over again, it first synchronises its own clock
on the active backup master in order to avoid significant
clock skews. Afterwards it issues its own synchronisation
messages again, and the backup master switches to stand-
by.

The TDMA discipline creates a RTDM I/O device for
every controlled network device. These I/O devices can
be used to retrieve the clock offset introduced above and
to synchronise a real-time task on the TDMA cycle.

4 Real-Time Configuration Service

During the revision of the first TDMA protocol it be-
came apparent that a clear separation between RTmac dis-
ciplines on the one side and generic configuration as well
as monitoring services on the other is essential for RTnet’s
extensibility. For this reason, the Real-Time Configura-
tion Service RTcfg has been designed in a discipline- and
media-agnostic manner. It does not depend on a specific
communication media given that broadcast transmissions
are supported. The IPv4 protocol is supported but not
mandatory. Other network protocols like IPv6 can be in-
tegrated, and physical addresses may be used even purely.
The concrete tasks of RTcfg are:

• Distribution of essential discipline configuration data
to newly joining nodes. This information is issued
unsolicited, thus enabling nodes to join real-time net-
works on-the-fly as far as physical media and RTmac
discipline allow.

• Monitoring of active nodes and exchange of their
physical and logical addresses. This service can be
used, for example, to set up and maintain the static
ARP tables mentioned in Section 2.2. It is further-
more possible to build real-time network monitoring
tools on top of RTcfg’s interfaces.

• Synchronisation of the real-time network start-up
procedure. Specific RTmac disciplines or certain ap-
plication scenarios may require common rendezvous
points in order switch network mode or start applica-
tions synchronously.

• Distribution of arbitrary configuration data, even in
the absence of TCP/IP with its typically used file
transfer protocols like TFTP/FTP etc.

RTcfg is based on a client-server protocol. A central
configuration server stores parameter sets of every man-
aged client in a network segment. This information is used
by the server to continuously invite any known but yet
inactive client to join. The client’s start-up procedure as
shown in Figure 4 consists of three stages. The first stage
is completed after the client has received its single packet
of initial parameters that is identifiable either through the
physical or logical destination address. These parameters
typically contain the minimum information required to set
up a possible RTmac discipline, for example at least one
TDMA slot configuration.

In the second stage after completing the discipline ini-
tialisation, the client announces its presence to any other
network nodes which can then update their address infor-
mation like static ARP tables. Already active clients reply
on this announcement by sending the new node their own
identification. The server replies in contrast by transmit-
ting an optional second set of configuration data which
can be scattered over multiple packets. After the server
has received the final stage 2 acknowledge message from
the last missing client node, the network is ready for a po-
tential common operating mode switch in case such syn-
chronisation is required.

As stage 3, an optional second rendezvous point is pro-
vided to both server and clients. It can be utilised to wait
for all nodes to complete processing the configuration data
they received during stage 2.
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Figure 4. RTcfg Client Start-up in 3 Stages

After the setup completion the clients can be instructed
to transmit low-frequent heartbeat frame to the server in



order to track potential node failures. If the server detects
lacking heartbeat frames, it declares the client dead by
broadcasting a related message to the remaining nodes. As
a result, all nodes will remove any address of the broken
client from their local tables. This enables a restart pro-
cedure of the repaired or replaced node. A failing RTcfg
server can also be restarted, even on a different system,
without the need to go through the full start-up procedure
of every running node once again.

5 Integration of FireWire

FireWire, also known as IEEE 1394 [8], is a high-
performance serial bus for connecting heterogeneous de-
vices. Though firstly targeted for consumer-electronic ap-
plications, such as high-speed video transmission, many
of FireWire’s features make it well fit industrial and labo-
ratorial context. In the following subsections, an overview
of FireWire is given and the current status of its integra-
tion to RTnet is described.

5.1 FireWire Overview
The bus topology of FireWire is tree-like, i.e. non-

cyclic network with branch and leaf nodes. The physi-
cal medium supports data transmission up to 400 Mbps
in 1394a specification. In 1394b specification, the speed
even rises to 3.2 Gbps. Two types of data transaction are
supported on FireWire: asynchronous and isochronous.
As illustrated in Figure 5, a mix of isochronous and asyn-
chronous transaction is performed by sharing the overall
bus bandwidth, of which the allocation is based on 125 µs
intervals, so called FireWire cycles.
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Cycle N

Up to 64 channels

Isochronous Packet in different channels

Asynchronous Packet

Cycle N+1

Cycle

Start
Ch 0 Ch n...Ch 1
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Figure 5. FireWire Cycle

Isochronous transaction targets one or more nodes by
being associated with a multicasting channel number.
There can be maximally 64 channels in total. Once bus
bandwidth has been allocated for an isochronous transac-
tion, the associated channel can receive a guaranteed time-
slice during each 125 µs cycle. Up to 80% (100 µs) of
each bus cycle can be allocated to isochronous channels.
Because this transaction type does not re-transmit broken
packets, but deliver data at constant, real-time rate, it is
well suited for the time-triggered state message transmis-
sion in distributed control systems.

In the asynchronous transaction phase, the whole net-
work on FireWire appears as a large 64-bits mapped

bus address space, with each node occupying a 48-bits
mapped space. The high-order 16 bits of address are used
to identify nodes1. An asynchronous transaction is split
into two sub-transactions: request to access a piece of
address on another node and response. Coordination be-
tween request and response is ascertained by the trans-
action layer protocol. Since guaranteed data delivery is
provided through acknowledgement, asynchronous trans-
action is targeted for non-error-tolerant applications, like
command and control message transmission in distributed
control system.

Bus management on FireWire includes different re-
sponsibilities that can be distributed among one or more
nodes: Cycle Master, Isochronous Resource Manager and
Bus Manager. The Cycle Master broadcasts a start mes-
sage at the beginning of each cycle. The Isochronous Re-
source Manager takes care of the allocation of bus band-
width and isochronous channels. The Bus Manager has
several functionalities including publishing the bus speed
map and the bus topology map. Since FireWire connects
devices that may not support the same top speed of data
transmission, the bus speed map is used by a certain node
to determine at what speed it can communicate with an-
other node. The topology map may be used by end-users
to optimise the bus topology for a highest throughput.

5.2 FireWire Stack and Connection to RTnet
The FireWire stack, as shown in Figure 6, is adapted

from the Linux variant[9]. Functions in the kernel are de-
coupled into several modules. Application on the stack
acquires either a portion of bus address or one or more
multicasting channels, by using the primitives from the
Application Interface and Management layer.

Application Layer 

Application Interface and Management

FireWire Stack Kernel

Driver

FireWire NIC

Real-Time
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Transaction
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Figure 6. FireWire Stack

The RTnet mechanism for real-time packet manage-
ment is applied to the FireWire stack as well. Both NIC
driver and high-level applications are potential produc-
ers and consumers of packets. All packets are carried
by a generic packet buffer structure rtpkb. Like in RT-
net, pre-allocation of rtpkbs is done during set-up, with

1Here, we only talk about the peer-to-peer asynchronous transaction.
In 1394a supplement, the multicasting packet in asynchronous transac-
tion is also defined.



each rtpkb carrying a fixed size of payload that is large
enough to meet various scenarios.

The path of delivering incoming packets to application
layer is realised by a real-time task, the so-called tasklet
server. Upon arrival of a new packet, a suitable processing
routine, either for asynchronous or isochronous, is hooked
to the server as a tasklet. The server works under the rule
First In First Served (FIFS), which means the packets are
processed in the order of arrival time. When no tasklet is
being queued, the server stays in idleness until the next
packet arrives. A RTOS semaphore is used for the syn-
chronisation between server and tasklet queue. Like the
stack manager in RTnet, the server runs at a higher prior-
ity than application tasks.

The connection between FireWire stack and RTnet core
is implemented through Ethernet emulation. The emu-
lation is a module on application layer, using a portion
of bus address to employ a protocol converting FireWire
packets to Ethernet packets and vice versa. By using
Ethernet emulation, FireWire functions the same as other
real-time Ethernet devices in RTnet.

6 Application Protocols and Frameworks

The advantage that RTnet provides its real-time com-
munication services through a widely standardised API
instead of, for example, a specialised, solely fieldbus-
oriented interface becomes obvious when considering ap-
plication protocol layers. This section introduces some of
them and also presents an exemplary concept for mapping
an existing fieldbus middleware, CANopen, on RTnet’s
services.

6.1 netRPC – Remote Real-Time Procedure Calling
One of the first user of RTnet was its primary real-time

execution platform itself. RTAI (3.x series) [17] comes
with a plug-in called netRPC that enables a distributed us-
age of its RTOS services. This remote procedure calling
service (RPC) is built upon the UDP/IP protocol. It can ei-
ther be attached to the Linux non-real-time network stack,
typically for testing and demonstration purposes, or to the
RTnet API. In the latter case distributed hard real-time is
provided to the RTAI applications almost transparently.
Some of the RTAI developers make use of this feature
in their real-time multi-body dynamics analysis software
MBDyn [13].

6.2 RTPS Protocol
The Real-Time Publish-Subscribe Protocol (RTPS)

[14] has been developed in order to provide real-time com-
munication services over unreliable IP networks like Eth-
ernet. The protocol contains mechanisms to detect criti-
cal packet delays or losses and avoids indeterministic re-
transmissions, as for example TCP causes, by using UDP
as transport protocol. In order to keep real-time communi-
cation operational on Ethernet, only a low network load is

acceptable in RTPS segments. RTPS is available as a com-
mercial product (NDDS) and is included in various indus-
trial products, for instance in certain Schneider PLCs.

Moreover, an Open Source implementation of RTPS
called ORTE [2] is available. ORTE runs on a large num-
ber of platforms over conventional UDP/IP stacks and, ad-
ditionally, supports RTnet on top of RTAI. By utilising
RTnet’s hard real-time UDP/IP services, RTPS can now
be used even under high non-real-time network load, as
RTnet reliably separates this traffic from the time-critical
data.

6.3 Real-Time Control Frameworks
Both for research and industrial scenarios, increasingly

complex control tasks demand powerful frameworks to fa-
cilitate the development of distributed real-time systems.
One of such frameworks has been developed at the Real-
Time Systems Group in Hannover with the focus on ro-
botic research [20]. This framework transparently sup-
ports distributed applications both deterministically over
RTnet (UDP/IP) and without timing guarantees over stan-
dard TCP/IP. Its communication models include remote
procedure calling as well as producer-consumer schemes.

A similar framework, OROCOS, also makes use of RT-
net for closed-loop control [15]. Moreover, plans exist
for OROCOS and the related OCEAN project to run RT-
CORBA over RTnet. The latter project already evaluated
an earlier version of RTnet and concluded that integrating
it as pluggable protocol into the RT-CORBA implementa-
tion ACE/TAO is a promising approach [19].

6.4 CANopen
The CAN in Automation organisation has developed

CANopen as an application protocol and device model for
the automation domain [1]. Beyond its original use on top
of the CAN fieldbus, CANopen has recently been adopted
by two commercial real-time Ethernet solutions, ETHER-
NET Powerlink [3] and EtherCAT [4]. Both approaches
are, as well as RTnet, quite different compared to the CAN
bus with respect to node addressing, message priorities, or
communication models. Therefore, ETHERNET Power-
link and Ethercat only reuse the device profiles specified
by CANopen. In following, the feasibility and potential
of adopting CANopen to RTnet is briefly analysed. Such
an extension would enable classic automation applications
like soft-PLCs to run more straightly over RTnet.

As CAN itself is agnostic to message source and des-
tination addresses, CANopen maps the common three
addressing modes broadcast, unicast, and multicast on
CAN message identifiers. Broadcast messages are used
for network management, synchronisation, time stamp-
ing, and alarming purposes. CANopen exchanges so
called Service Data Objects (SDO) for time-uncritical di-
rect communication between two nodes as unicast mes-
sages. Process Data Object carrying the real-time data are
transmitted according to the multicast scheme with a sin-
gle producer and an arbitrary number of consumers.



RTnet supports broadcast as well as unicast both via
UDP and user-defined Ethernet protocols. As multicast
support is not yet part of RTnet, such messages can be
issued transitionally either via unicast in case only a sin-
gle consumer exists or as broadcasts using additional soft-
ware filters on the receiving nodes. Basically, an exten-
sion of the Communication Object ID (COB-ID) format is
required, which was originally defined with solely CAN
IDs in mind. While CAN prioritise messages implicitly
according to their ID, an explicit value is now required
which also encode the output channel on RTnet. An ex-
tended COB-ID would demand the following fields:

• ID type (UDP/IPv4, UDP/IPv6, Ethernet, CAN, etc.)

• Destination node address (IP, Ethernet MAC, etc.)

• Message ID (UDP destination port, Ethernet frame
type, CAN ID, etc.)

• Priority and channel (RTmac queuing priority,
TDMA slot, etc.)

The CAN-specific Remote Transmission Requests
(RTR) are utilised by consumers for soliciting a PDO from
the producer. This protocol can be emulated by sending an
empty PDO with identical COB-ID to the producer.

Based on the proposed addressing scheme, typical
CANopen stacks, for instance one of the various free im-
plementations [6], may already be reused on top of RT-
net. Certain CANopen services could be mapped directly
on RTnet equivalents. RTcfg provides heartbeat mech-
anism which can replace CANopen’s variant. TDMA
comes with an API to synchronise nodes and distribute
a common time base, services that be used in place of
the CANopen protocol. Additional optimisation potential
lies in larger transfer fragments when exchanging SDOs.
CANopen’s limitation to CAN-related 8 bytes can be eas-
ily overcome by defining new, COB-ID-specific SDO up-
load and download protocols that make use of different
maximum packet sizes (e.g. almost 64 KB via UDP/IP).

7 Summary and Outlook

This paper introduced RTnet as an adaptable and ex-
tensible framework for deterministic communication over
standard Ethernet, FireWire, or other suited media. Its
open, standard-oriented, and modulised structure allows
numerous application scenarios like distributed real-time
systems, fieldbus coupling devices, intelligent I/O inter-
faces, low-cost real-time network analysers, etc. Applica-
tion software may either interact directly with the RTnet
API, or middlewares like RTPS or CANopen can be build
over RTnet’s services.

Future work will focus on further integration of
FireWire, new media like Gigabit Ethernet, and interop-
eration with additional middlewares. To decouple organi-
sational dependencies, the RT-FireWire stack has recently
become a separate project. Based on the connection to

RTnet via Ethernet emulation, the adoption of FireWire’s
transaction modes and clock synchronisation for RTnet
services will now be addressed. Furthermore, the poten-
tial of layering CANopen over RTnet will be analysed and
can lead to the implementation of an extended CANopen
stack.

The current RTnet implementation has been build upon
free software, it tightly interacts with many Open Source
projects, and it is therefore available under Open Source
licenses, too. For downloads and further information, visit

www.rts.uni-hannover.de/rtnet
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