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Abstract

In the past 2 years, a multidisciplinary team of students of the Universityehie has been designing
and building the SolUTra, a solar powered racing car. The SolUTra et in the 2005 World Solar
Challenge, a 3000 km race, solely for cars powered by solar entbrgugh the outback of Australia.

Such a project not only provides the obvious mechanical and electiierchas to a Solar Team, it
also involves finding a way to efficiently use all available energy, while trignige the first at the finish
line.

This report treats the design of a strategy development program (P8),Lwhich is to be used to
determine an optimal racing strategy for the SolUTra solar car during tke Tée report also provides
an overview of the proceedings of the race in Australia and the use dfi&8Iduring the race.

PALLAS proved to be of great value, as it discovered erroneousucéngs in time, was able to
develop optimal racing strategies and to determine the consequencesagfistiacisions.

However, PALLAS suffers from model inaccuracies due to lack of tesdimgjinaccurate measure-
ment equipment, which decreases the reliability of the developed strategiemalccuracy of the mea-
surement equipment also decreases the ability to monitor and check theystinatdg maintained.

For the next solar race, it is recommended to emphasize on car parametdiciaion as well as
obtaining good measurement equipment.
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In the last 2 years, the whole of my studies was directed at a single goaledytr& design for the
SolUTra solar car. 13 other determined students were also working iarellahaving just one thing in
mind: Participating in the World Solar Challenge with our own solar car.

After the initial phase of setting up a team, we found our big supportersUnhersity of Twente
bought our motor, Raedthuys bought the solar cells and THALES was &abelp us at everything we
needed help for. And a lot of other companies supported us as well.eBdwnkthe sponsors, the UT
and several tutors, we were able to design and build the SolUTra! Ardesiydwe found ourselves in
Australia...
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measurements. His input was right on time.
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Eric Trottemant and dr. Peter Pudney, who, although it is a cliché, botieshme the way | had to tread,
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Furthermore, | like to thank my loving family, who were always ready to suppe, whenever |
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Definitions

Air mass index The air mass index is a measure for the thickness of the layer of air theysuinanze to
pass through, before reaching the earth’s surface.

Altitude angle The angle of the sun above the horizon;

Angle of Attack In literature concerning aerodynamics, Angle of Attack is defined as the gitgle of
the air flow relative to the object. In this project, angle of attack is definedeagativ angle of the
car relative to the air flow.

(Battery) equilibrium curve When in equilibrium (after a rest period of at least 2 hours) a battery goe
in to equilibrium state, in which the output voltage is directly related to the batte y. Sbe
equilibrium curve is measured by discharging or charging the battery ctatypla a minimal
time of 20 hours (0.05 CmA), such that the battery does not leave the equriibtate.

Battery SOC Battery State-of-Charge or Accu State-of-Charge. The battery SO iarttount of
charge left in the battery. The battery SOC can be measured both in kWh aqercentage;

BIPM Bureau International des Poids et Mesures. Part of the CIPM;
BVP Boundary Value Problem;

(Solar) Car model The car model calculates the input and output power of the car, the belianye,
the distance traveled as a function of car speed. It takes accounhbsiugs, media stops, speed
limits etc.;led as a function of car speed. It takes account of night stopsa stegs, speed limits
etc.;

CIPM Comité International des Poids et Mesures;

Constant average car speed strategyr similar. A strategy in whichi(t) = vy. An extension to this
strategy is using a number of stages, each having its own optimal avere spg.v(t) = v;
for thei-th stage. A racing strategy developed by PALLAS generally has the dbarvector of
constant car speeds;

CmA or simply 'C": a battery charge or discharge current rate. A curratet of precisely 1.0 CmA will
cause a fully charged battery to discharge completely in precisely 1 hour;

Cost Criterion The objective of optimization is to minimize the cost criterion. Synonyms: Objective
function, optimization criterion;

Diffuse light Insolation Sunlight received indirectly as a result of scattering due to clouds hiazg,
dust, or other obstructions in the atmosphere. Opposite of Direct Beahatios;
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Direct Beam Insolation Direct solar irradiance; unreflected solar energy;
Drag Air friction;

EWMA chart The 'Exponentially Weighted Moving Average’ is a weighted moving averémevhich
events in the past are exponentially weighted. Basically a 1st order Isg/fittar, used in Stochas-
tic Process Control;

GUIDE ’Graphical User Interface Development Environment’. A Matlab tooldesigning and build-
ing user interfaces;

Insolation The amount of solar radiance on a surface;

Irradiance Similar to 'insolation’;

Media stop A 30 min stop, during which the press is allowed to interview the solar teams;
MPPT 'Maximum Power Point Tracker’, used to keep the solar array functgaptimally;

Night stop every day, the Solar Team is compelled to stop at 5 p.m. and make camp at tlé thide
road. The Solar Team may continue driving at 8 a.m. next morning. Wheraciog, the solar
array is always pointed to the sun, in order to charge the batteries;

ODE Ordinary Differential Equation;
OP Optimization problem:;

Optimization (input) parameter An optimization method varies this parameter to find the minimum
of the cost criterion;

PALLAS 'PALLAS' is the name of the Strategy Development Program. 'Pallas’ origs&om the
goddess Pallas Athena, who is the classical Greek personification tégyt& Tactics and the
patroness of generals and strategists;

Projection With projecting or forecasting, the prediction of future events is meant. Inptniscular
case, it means the use of regression to foretell the results of 'stayinguosec;

Regenerative braking Braking by using the motor as an electric generator, such that part oirtéck
energy of the car is transformed in electric energy that can be stored liatiegies;

Road model The model of the racing track, consisting of slope, road conditions, weagpectations,
GPS positions, speed limits, etc.;

SDP 'SDP’is the abbreviation of 'Strategy Development Program’;
SolUTra The name of the Solar Car;
STUNT Solar Team Universal Network Technology: the software associatibe t8TUT;

STUT Raedthuys Solar Team (University of Twente);



Symbols

\Illocal
¢local
P;
Pout
Py
Q(t)
Qo
Qdes

Slope angle

Effective area of Solar array (panel)
Effective drag area (top surface of SolUTra)
Cloud Brightness

Roll friction coefficient

Static Roll friction coefficient

Dynamic Roll friction coefficient

Drag coefficient

Angle between car vector and air speed vector
Effectiveness of charging the batteries before 8 a.m. and after 5 p.m.
Effectiveness regenerative braking

MPPT efficiency

Motor efficiency

Solar array (panel) efficiency

'Equation of Time’

Perpendicular angle of sun; the angle between the horizon and the sun
Gravitational constany(= 9.81)

Battery safety limit function

Cost Criterion

latitude

longitude

Air mass index

Mass of Solar Car

Number of wheels

Car Direction

Local reference frame

Local meridian

Input power

Output power (Power consumption)
Constant Output power factor

Battery State-of-Charge (SOC)

Battery State-of-Charge Initial value
Desired final battery SOC value
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Qt Upper battery safety limit

Q- Lower battery safety limit

P Air density

SC Sun Coverage

0 Wind Direction

te End of simulation time

Ueff Air speed vector

Ueqr OFr U Car speed vector

Uwind Wind speed vector

W Vector of weights

x(t) Traveled distance; distance from start
0 Traveled distance, initial value

Tid Limited distance: 'finish’ distance for short term strategy optimizations
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Chapter 1

Introduction & Problem Definition

1.1 Introduction

1.1.1 Solar Team University of Twente & the World Solar Chalenge

The Team The Dutch Solar Team University of Twente (officially 'Raedthuys Sokarh’) is formed
in May 2003 with a single goal: participating in the 2005 World Solar Challen@®08 km race from
Darwin to Adelaide through the Australian outback (Fig. 1.1) for cars splelyered by solar energy.

=L LT T =

Darwin .

Katharine

Tennant Creek

Alice Springs p

Coober Pedy %

4 Port Augusta

9% Adelaide

Figure 1.1: World Solar Challenge race track (Stuart Highway).

After one year of organizational issues, active team composition arasiiigy study, a core team
of 14 completely inexperienced students of the University of Twente,®stggb by local business and
numerous other enthusiastic people, designed and built a solar car iranélymost impressive piece
of work, as the actual construction of the solar car itself could only starap 2005 (4 months before
departing to Australia), as it was only then that a main sponsor could be fwilimg to support the
team.
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The WSC The World Solar Challenge is a bi-annual event, that is held for the eighth tir@0s.
Originally, it was a race for solar powered cars only (divided in 'piighin’ class for 2 or more persons
and larger solar arrays, and an 'open’ class, in which a car is allowedrty only 1 person, but has
more restrictions in battery and solar array size). Nowadays, also afl&eteclass (using renewable
energy in general) and a Solar bicycle class (bicycling aided by solaepanre part of the World Solar
Challenge.

The Solar Team will participate in the 'open’ class race, which will take the tdmough the Aus-
tralian Outback following the Stuart Highway.

The goal of the WSC is mainly to promote the use of renewable energy. Minmeniation can be
found on the WSC websiteww. wsc. or g. au.

1.1.2 The SolUTra

A solar car is fundamentally built for efficiency and speed. Driver camémod looks and affordability
are secondary goals.

Most solar cars are of sleek design to minimize drag, with a large solar anrégp to collect as
much solar power as possible. The SolUTra is not different. She haswireels, as this results in less
roll friction, with 2 wheels in front and one in the rear, which is also theidgwheel. The electro motor
used is an 'in-wheel’ motor, which means that it is directly attached to the wimethlis way, there is no
need for transmission anymore, increasing the efficiency of driving.

The design of the solar car consists of 3 main fields of interest: Mech&gdronics and Telemetry.
Mechanically, the car is designed for minimal drag and roll friction, while tebeically, the car is
optimized for energy efficiency. Telemetry deals with measuring relevamttiies and transporting and
storing the measurement data.

Electronics The SolUTra contains a Worly Li-Polymer battery pack, that is charged giA$iGe-solar
array. 5 DriveTek Maximum Power Point Trackers ensure that the aofay delivers maximum power.
The battery supplies energy to an NGM brushless DC electro motor (compirvditgm NGM AC motor
and Tritium Gold DC/AC motorcontroller).

The battery also supplies power to the telemetry system, consisting of vagiosers and a WLAN
system for communications with the chase car. See Fig. 1.2 for an overitee loasic solar car parts.

Mechanics Mechanical challenges in the SolUTra project consisted of designingssishof which
the drag is to be minimized, wheel spats that turn with the wheel, the suspehgi@wveheels that had
to fit in the chassis and a steering system for a car in which a steering sitmg®y does not fit.

Telemetry Measurement data from the SolUTra is transported via a WLAN to the chas€he chase
car contains some sensors as well, like a GPS and a weather station. Alremeestidata is stored in a
database for analysis or other uses

1.2 Problem definition

The main challenge of the STUT is to find a way to be the first team to arriveedirtish line, with
limited battery capacity and being compelled to using solar energy only.
To do this, the solar team has to:

1. strive to design and build a very fast and economic solar car;
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Figure 1.2: Basic parts of the SolUTra Solar Car

2. drive as fast as possible with the available energy.

This report describes the tackling of the problem of finding a racing giydteat, when followed,
would bring the SolUTra to Adelaide as fast as possible.

1.2.1 Project Goal

The goal of this graduation project is to develop an optimal racing strategyé SolUTra solar car,
which minimizes the time needed for the SolUTra to reach the finish line. AlthougbdhéTra is able
to reach a car speed of over 10, she may not have enough energy available to keep top speed for the
total distance of the race.

Now, the problem can be regarded as a time-optimal control problem. An dmtamapeed has to
be found, that controls the balance between input and output powertbat racing time is minimized.

The batteries act as an energy buffer. As long as the batteries do cenéagy, the car speed can be
chosen freely. Otherwise, the car speed is constrained by the inpet.povs therefore imperative, that
the batteries are never completely emptied (except at the finish line).

1.2.2 Balancing battery State-of-Charge

The car speed controls the balance between input power and outpet pod therefore the available
energy in the batteries, which, in turn, constrains the car speed. Tlusattspeed has to be chosen
such, that the SolUTra reaches the finish line as soon as possible, vitsfgiisg the battery condition
of always having energy available in the battery.

The effect of a certain car speed on the battery State-of-Charge)(&D®nly be estimated, when
it can be predicted how much energy will be used for driving and how reaelngy will be collected.

It is therefore important to keep track of everything that will have infleemic the amount of energy
used and collected. e.g. Cloud coverage results in less energy collastetsolation decreases; the
presence of headwind will increase the power needed to maintain a centapeed; speed limits restrict
the car speed, even if the battery SOC allows for high speeds.
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There are a lot of factors that will influence the battery SOC. All thesifadhave to be measured
in some way in order to use them for power consumption predictions. Measmt and prediction
calculations can be automated in order to be able to provide information to thesesmon as possible,
as this information is to be used for planning. In this way, automation proviadesydo calculate the
best way to use the available energy.

In other words, automation provides a way to design an optimal racing strategch brings the
solar car to the finish line as soon as possible.

1.2.3 Strategy Development Program

To automate the determination of an optimal racing strategy, a Strategy Developnogram (SDP)
is to be designed. The task of the SDP is to develop a racing strategy, whiekictally a car speed
setpoint to the car driver. The SDP can use all available data to perforasktswhile being able to react
at changing situations.

The SDP has to calculate an optimal car speed guideline. The SDP must alste be calculate a
new strategy, if the one adopted becomes useless. This happens artexarhple, the car falls behind
schedule. As the chances of being thrown off-schedule by traffic Jifjatstyres and such, are so big
that it is virtually certain that this will happen, the SDP must be sufficiently sbbwu deal with such
stress situations. And it has to do this quickly, as it is advisable to follow the dpsima&egy as much
as possible. This introduces a design requirement of being able to calihdaiptimal strategy in mere
minutes.

On the other hand, a very accurate car model is desired for accuratiatsimwand optimization
and the SDP has to be provided with sufficient data and reliable predictiang the racing track in
order to be able to develop a feasible strategy. However, the originabplasing adaptive modeling for
improving the car model during tests had to be abandoned due to lack of tirmestatic model has to
be used.

1.3 STUNT

The Telemetry system is managed by the STUNT network, the 'Solar Teawerdal Network Tech-
nology’ network, which has been built by Vincent Groenhuis, the SaanT Telemetrist. This network
collects all sensor readings and performs a fast scan of the datarimiredesituations.

The network contains a MySQL database (the STUNT Database), whigs stistually everything
regarding the SolUTra project. Apart from the car sensor measuregnieantSTUNT Database holds an
electronic logbook, a list of static data (such as GPS positions, altitude, iti@finatc) regarding various
racing tracks, weather forecasts etc. The SDP is only allowed to maké teeSTUNT Database. The
communication interface between the SDP and the STUNT Database is deaighedilt by Vincent
Groenhuis.

1.4 PALLAS

The name of the Strategy Development Program that is to be used by theT8atarUniversity of
Twente is 'PALLAS’, a name that refers to the goddess of wisdom (Pallasi®) of the ancient Greeks.
She is often accompanied by a pet owl, which represents wisdom. Her &;ibowever, often include
a lance, helmet and a shield, representing the intellectual aspect ofevati@mtegy and tactics. She was
the goddess of the great leaders of ancient Greece and the patbttessity of Athens.
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1.5 Report outline

The report starts with the design and the various aspects of the solar dat. rihapter 3 explains the
optimization of the racing strategy, while chapter 4 shows how PALLAS chediether the solar car is
on schedule or not.

Chapter 5 treats the realization of PALLAS and chapter 6 shows how PALisAused during the
World Solar Challenge race.

One word of advice

A lot of the information on the SolUTra in this report has been retrieved lbgopal contact with the
experts and team members involved. A lot of this information has not yetgddished and some will
never be. However, most information is crucial when considering ataspnvolved in developing a
racing strategy. So, information from these sources is used in this rdpepite the lack of references.
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Chapter 2

Solar Car Model

2.1 Introduction

2.1.1 Model requirements

In order to calculate the impact of choosing a car speed on the batteryss@@jel has to be designed
of the solar car. This model has to approximate input powgy)@nd output powerk,,,;), while driving
an approximation of the racing track. The model must

* be able to estimate the amount of solar irradiance during the day, in ordalctdate the input
power;

be able to calculate the power delivered to the motor and the power dissipatietr electronic
systems;

be able to handle various WSC regulations (media stops etc.);
» be simple enough, such that optimization does not take more than a few minutes;
* include a cost criterion that calculates the 'fithess’ of a strategy.

The relevant model outputs are the distance traveled and the battery S@€tamns of time, which
basically describe a racing strategy, together with the optimal car sfiggd).

2.1.2 Model layout

The general layout of the car model is shown in/fig. 2.1.
The submodels of the model are:

Sun_Model This submodel calculates the perpendicular irradiance of the sun andgleedad the sun
above horizon as a function of time and location;

Road_Model The road submodel supplies the external circumstances, such aslap®],GPS position
etc. These circumstances depend on the location of the SolUTra in Australia;

Speed_SetpointThe speed setpoint submodel supplies the car speed setpgifit) to the Solar car
submodel. It takes account of media stops, overnight stops etc.;

Solarcar_Model The solar car submodel uses the data from the Road and solar model® &pktd
setpoint system to calculate the balance between input and output paiviearattery SOC;
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Road_Mbdel

(Sun Coverage, GPS position, Wind, slope etc.)
’ — it

u Road Model

Sun_Model

Isol
¥
X

A sun road
Vcar X X
Speed SP *vear SolarCar Model I Criterion
- SCC ™| soC
Speed_SetPoint

Y

SdarCar_Model Criterion

Figure 2.1: The 20-Sim model that is used for optimization.

Criterion The Criterion submodel calculates the optimization critetion

The Solar Car submodel is more extensively shown in/Fig. 2.2. It candsetkat a distinction is
made between input power calculations and output power calculations.

SC SC
CcB cB
Y - Y -
Isol Vwind Isol Vwind
Vcar
etc. etc.
sun road sun road
Insolation + Power
equations Pin - Pout Consumption
Battery
dQ(t
A = Pin - Pout
dt

Figure 2.2: The design of the Solar Car submodel. The calculations made $oldweCar submodel
are devided in equations calculating the insolation pofgrand the power consumptioR,,;. The
difference between input and output power is buffered in the batteries.

2.1.3 Chapter outline

This chapter is dedicated to the implementation of the Sun submodel and the @atabmodel: The
chapter starts with explaining the aspects of the solar car model regardipgwer consumption and
subsequently, the equations which calculate the insolationare treateditionsz4, the battery, which
buffers the difference between input and output power, and its cteaistics are treated.

The criterion submodel implementation is treated in chapter 3. The road modehiemtition is
treated in chapter|5.
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The chapter on solar car model design finishes with an overview andatberation of the solar car
model and its parameters.

2.2 Power Consumption

The mechanical IPM and the bond graph of the solar car is shown in F{@)2.3

Fmotor

/ Vear
Fdrag /
Frol /

| cr

motor_curent—>MSe —ITF MSe
- Motor Whe?l1 = Gavity
/ /\ Slope
R MR-
Roll Drag Wind
(a) Mechanical IPM (b) Mechanical bond graph

Figure 2.3: The IPM and the corresponding bond graph of the mechasjpect of the solar car.

The net force acting on the solar car is:

Z F = Fmotor - Fdrag - F’roll - Fslope (21)

When considering the fact that the car speed is assumed to vary little overDynamical effects
regardingy.., are therefore relatively small, when compared to the large distance oidr ik race will
be simulated. So, simulation and optimization time can be greatly reduced by assbatingF = 0
ineq/2.1.

This assumption neglects the energy lost to acceleration of the car. Thwtar however, may be
used as a generator when decelerating. In that way, some of the eisedjjor accelerating the car can
be regained (‘regenerative braking’). Energy lost to inefficienaggenerative braking is neglected.

An important result of this assumption is, that the car speed can be direoigicjsuch that the solar
car inertia element in the bond graph of Fig. 2.3(b) becomes non-causal.l€tves only 'SolUTra’s
position (distance from Darwin) and battery SOC as car states. The qudametr can then be directly
calculated as a function of the car speed.

Outline

This Output Power section explains the implementation of the friction forcethandfluence of slopes
on the SolUTra. It also briefly treats the electro motor used to drive the $alUT

2.2.1 Drag

Drag is the friction due to air flowing along the surface of the car. Draguép on air density,
the aerodynamic profile of the cafp and the square of the speed of the air flow relative to the car
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(Ucar - ﬁwind)-
The Drag Forcéd,.4 acting on the car, caused by air flow and car speed, is defined by:

1
Furag = c(0) - 7 = 5PCp(0)Ad- 7 (2.2)

in which Cyy (§) = Cp(6)Aq varies with the angle of attackof the air flow and the top surfacé, of
the car (figl 2.5(a)).

Effective air flow

The effective air velocity,; is determined by car speed vectpy, and inbound wind vectar,,;,q. The
relation between these velocities is shown in fig. 2.4(a). This figure shexdiréction (and magnitude)
of the car velocity and wind velocity in the local reference framig {,;), which defines normal compass
directions. In order to calculate the effective air velocity:

north

north Vecar

20\~ .
------------------ - - wind -
- direcion U1 sl g wind
- direction

Veffx= Mv,x

east
east

Vw & f -] Viwy

Vet 7 Veffy = Vw,y- \kar Vet v Fdrag

(a) Drag coefficienCy (b) Approximation

Figure 2.4: Influence of wind and car speed on drag

verr = V(v +03) (2.3)
Veffo = Uwsin(f—¢)
Veffy = UVear + Vycos(d — @)
= vgff = 02, + 2eqrvy cos(f — @) + 12, (2.4)

And thus, for the drag force, the following applies:
1
Fdrag = §PCW(5) ’ (Uzar + 2Vcarvy COS(G - ¢) + U?U) (25)

in which Cyy (6) depends on the angle of attack of the wind.



POWER CONSUMPTION 11

Drag parameter Cy,

Fig. 2.5(a) shows the dependency@j of 5, measured using a scale model of the solar car in a wind
tunnel (Putten, 20051y is approximated by eq. 2.6l = 9 nr).

Cw (0, 1) Drag coefficient C,|

-10 75; O 5 10
[
(a) Air speed components (b) Drag force

Figure 2.5:C', as function of angle of attack)

Cw(6) =9(—1.6-107°6% +8.9-1073) (2.6)
For small values (less than app. 5°)01Cyy can be considered constant:
Cw (8) = 0.08 (2.7)

The wind tunnel test with the scale model is not followed by a test with the Sall@&rself. As the
scale model is ideal (drag surface is very smooth), while the SolUTra itaslfahot of drag surface
irregularities, the measuredy value is considered to be only a rough and optimistic estimation of
SolUTra’s drag coefficient. The dependency(f ond does apply to the scale model only.

Therefore, it is decided to use a constant value of the drag coefficient.

Air density p

The most widely used method of determining air density is the application of thé-8IF?91 formula
recommended by the 'Bureau International des Poids et MesureBWhich is a rather complicated
equation. In an article without author (BIPM, n.d.) the CIPM-81/91 formutgvien (eq. 2.8):

p= T fi-m- 30 (2.8)

with p the air pressurel’ the temperatures,, the mole fraction of water vapouk/, the molar mass of
dry air, M, the molar mass of wate# the compressibility factor and R the molar gas constant.

It is, however, simpler to start with the relation of eq. 2.9 and to use an gippation rather then use
the complex relation of eq. 2.8.

P
N 2.9
P=m T (2.9)

in which R is the gas constant for dry air, which is 287,05 J&kg
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Pressure, Temperature and Humidity To correct for air humidity, (Shelquist, 2004) uses

P
= 2.10
P=R.T, (2.10)

in which T, is a virtual temperature, which depends on air humidityis approximated by:

T
T, = —— (2.11)
].—C]_E
c1Te
E = ¢ 10277 (2.12)

in which FE is the saturation vapor pressure, which may be multiplied with the air humidityqtegesto
retrieve the actual vapor pressure. The virtual temperature will rise wateasing humidity £), which
causes the air density to drop.

Humidity has only a slight influence on air density compared to air temperatdraigpressure. It
will, however, increase with high temperatures and low air pressure.dBtié purpose of simplicity,
the influence of humidity is neglected. This still leaves the air density dependirigmperature and
pressure. Using 2nd-order Taylor series to linearize eq. 2.9:

Do 1 Do
aylor — /A 7A — 7AT 213
Praylor = p T e BP RT? (2.13)

with pg = 1 - 10° Pa andly = 298 K.

Furthermore, most weather types combine high temperatures with increees=sdine, while low
pressure is often accompanied by bad weather and low temperaturesnédns that the air density is
expected to vary only a little aroung = 1.17kg/m?>.

Height According to (Tokay, 2005) (in which (Moran & Morgan, 1995) is cit¢lag air pressure dt
is:

p(h) = p(0) - e_f% {mBar} (2.14)

with ¢ the gravitational constant, the height in metersg the gas constant aridthe absolute tempera-
ture. As ed. 2.9 applies, the relation between air densityd the height is:

p(h) = p(0) - e HT  {kg/m?} (2.15)

However, (CSGnetwork, n.d.) uses eq. 2.16 for calculating the heigista function of air pressuye
and sea level air pressupg:

h = 44308(1 — (]03)0190284) (2.16)
0

This function can be linearized fare [800, 1050] mBar to:

h
h:9(p0*p)=>p=p0*§ (2.17)
which, suggests a decrease of 90 mBar for each 1000 m. of altitugesf¢800, 1050]. This can be used
as a rule of thumb.
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2.2.2 Roll Friction

Roll friction is the friction of the tyres on the road and the bearing of the.akeis quantity depends on
the quality of the tyres, the quality of the road and the weight of the car. Althoaigfriction is defined
in various ways, Tamai uses ((Tamai, 1999), p5-6):

Froll =Cppr W = (Cv'l + Ccro - 'Ucm") *Mear = g (218)

With m.., - g the normal force, which is assumed to be equal to gravity.

One may argue that driving on a sloped surface implies a decrease afrthalriorce, which results
in less roll friction. This effect, however, may be neglected; even in tse cdan unlikely 10% slope
(10% = 5.7 deg), the decrease of the normal force is less then 0.5%.

¢-1 depends on the type of the tire, road quality, the number of tyres etc. (sthfiiction), while
cro Characterizes the speed dependent factor (dynamic roll friction).eMenvtraditionally, the speed
dependent factorefs) is not included in the definition of roll friction, because the constant radtibn
is relatively big compared to the dynamic roll friction. In the case of this ptpjbe static roll friction
factorc,; is, however, small compared to the the dynamic roll friction. Therefonearyc roll friction
is included as well.

Characteristics are normally marginally provided by tire manufacturers. iTghasnai, 1999), p6)
however, provides parameter values of the best tire at that time (MichdliimRabeless, 1999):

cr1 = 0.0023
o = n-4,1-107° (m/s)™? (2.19)

with n the number of wheels. These parameter values are provided for smegpitar dry, open asphalt
roads.

This leaves questions about the magnitude of the roll friction for otheasaitl/pes, such as gravel,
sand, sand on asphalt etc. To correct for these uncertainties, ensyfstell friction classes is created:
the roll friction coefficients are multiplied with a factor that depends on thdniotlon class of the road.

2.2.3 Gravity

The gravity force due to sloped terrain (fig. 2.3(a)) depends on theveight. When the car ascends a
hill, gravity pulls the car backwards. The magnitude of this force is:

Fgrav = Mecar g - Sin(a) (2.20)

in which « is the angle of the slope.

2.2.4 Direct-Drive Electric motor & Motor Controller

The Solar Team University of Twente uses the Biel Solar Motor 2005 @NWezzini & Jeanneret,
2005) of DriveTek. The motor is especially designed for the WSC 200 BM-5 motor is a direct-
drive brushless DC motor that can be attached to the car wheel, suclo thabsmission occurs between
the motor and the wheel.

The typical optimal input power range for direct-Drive solar motors is kXY\2 as the output of the
solar panels that are used in the World Solar Challenge mostly is in that rangsla

The motor is supplied in combination with the Tritium Gold motor controller (Tritium Pty 26D3),
which can also be used in reverse mode, such that kinetic energy cambimtmed into electric energy
when braking (regenerative braking).
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The Biel solar motor user manual (Vezzini & Jeanneret, 2005) prevebene measurement data
about the efficiency of the motor as a function of input power. This datadss in fig. 2.6. A simple
numerical approximation has been made and given in eq, 2.21.

196.
M = 96.7 arctan(0.25(P;, + 100)) (2.21)

™

This function is also plotted in fig. 2.6.

984 | Motor efficiency as a function of input power

982 1
98 1

978 |
Efficiency{%
y{%} 976

974 ]
972 |

97 1

968

0 500 1000 1500 2000 2500 3000 3500 4000
Input Power {W}

Figure 2.6: Approximation of the efficiency of the Biel Solar Motor 2005 {BlV/as a function of input
power according to expectations

Although the motor efficiency varies with the motor input power, it is fairly ¢ans@motor =
98.2%) for values of> 1000 W.

2.3 Insolation

In this section, the input power implementation is treated. Input power is thergrabpower collected
by the solar panels. This quantity depends on the efficiency of the sdigigg, the efficiency of the
Maximum Powerpoint TrackeEsnmppt, the effective panel surfacel}, the maximum insolationi(,;)
and the angle of the sun above the horizgh (

This section starts with explaining the general input power (insolation)tiequiavhich is imple-
mented in the 'Insolation equations’ submodel in Fig. 2.2. Subsequentlyaisttiee calculation of the
maximum insolatior/,,; and the angley, which is basically the implementation of the Sun submodel
in Fig. 2.1. After this, the MPPT's are briefly explained. This section firdshith a test run of the
calculation of the insolation for each moment in time during 1 day.

!Maximum Powerpoint Trackers (MPPT’s) are used to maximize solaglgautput by tracking the 'Maximum Powerpoint’
in the panel’s VI-characteristic, which may vary depending on insolagianel temperature etc.
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2.3.1 General Insolation

Insolation consists of 3 types of insolation of which 'Direct Beam’ and 'I8#’ insolation are the most
important.

Direct Beam Direct Beam Insolation is sunlight that arrives at the solar panels in iglstime from
the sun.

Diffuse Diffuse Insolation is indirect insolation due to the scattering of sunlightexhby dust, clouds,
haze, fog etc. Diffuse sunlight is unfocused light, which comes fromyexeere.

Reflections Sunlight reflected by earth and surroundings (buildings etc.). As thisdfpesolation
is unlikely to be very large compared to Direct Beam and Diffuse Insolatlom golar array is
directed to the sky, so surrounding reflections are unlikely to reach th)ait will be neglected.

The input power equation is (Trottemant, 2004):

Py, = Mp = NMmppt * A- (IDirect + IDiff) (2.22)

Although direct beam insolation is relatively easy to calculate, diffuse lighdlation is not. The
following approximation forP;, is used by (Trottemant, 2004) (eq. 2.23):

Pin, = np * Nmppt - A (SC -sin(y) + (1 - 8C) - CB) s (7) (2.23)

In which SC'is the 'Sun Coverage’ percentage, which is the amount of irradiancesthat blocked by
clouds etc.C' B is the 'Cloud Brightness’ percentage, which represents the 'hazinassthe level of
cloud refraction.~ is the angle of the sun above the horizon, whig () is the maximum insolation
due to atmospheric scattering and absorption, which depends on theestssposition, the time of the
day and the time of the year.

The sun coverage and cloud brightness parameters will have to betpcebefore optimization.
They can be measured for analysis afterward.

2.3.2 Maximum Insolation (Sun submodel)

The maximum Insolatiot,,; () depends on the angle of the sun above the horizon (altitude andfe
~ is small, solar rays will have to travel a larger distance through the eatthéssphere, while attenuated
by scattering and absorption.

The effect of atmospheric attenuation can be calculated using the definitidir dass Index’,
which is a measure of the amount of air the sun rays have to travel thrflighZ2001)). The maximum
insolation is approximated by (Liu, 2001 (Liu, 2001)):

Loy (m) = 1353-0.687™"""  {W/m?} (2.24)
in which )
m=— (2.25)
sin(7)

The altitude angley depends on location (longitude & latitude), the earth’s declination, the timeaof ye
etc. In the same paper, a calculation of the angkeprovided:

sin(y) = [sin(lat) sin(decl) + cos(lat) cos(decl) cos(H)] (2.26)
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Solar Irradiance
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Figure 2.7: Solar Irradiancd {,(v) - sin(~y)) at mid-summer (December 21), mid-winter (July 21) and
at the 25th of September (start of the race)

with H the hour anglelat the latitude andlecl the declination of the earth.

H = %[N—th—ho] {deg) (2.27)
EOT ¢local - lOTLg
N = 12 h 2.28
284 4+ d
decl = 23.45-3in<27r 836; ) {deg} (2.29)

with NV the local noon time FOT an 'Equation of Tim@ , long the longitude ... the local
meridian,t;, — hg the time difference from solar noon time and, finadlfhe day of the year (32 = 1st of
February).

The result {5,;(7) sin(v)) as a function of time is shown in fig. 2.7. Insolation is plotted for three
different days of year (at Alice Springs, AUS, adB0° long.,—20° lat.). The difference between winter
time and summer time is distinct.

2.3.3 MPPT’s

The Solar car is equipped with New Generation maximum powerpoint tra@WeRBT’s). These devices
track the so-called maximum power point, which is the point at which the poaesferred to the load
(fig. 2.8(b)) is maximum. The MPPT device changes the input/output cuagaty varying the output
voltage until the maximum power poifiV;,.,,,, Impp } has been found (fig. 2.8(a)).

The MPPT that is used by the solar team is the MPPT New Generation of thiersity of Applied
Sciences of the Biel School of Engineering (Biel School, 2003), visia 200/800W DC/DC Maximum
Power Point Tracker with boost converter meaning that the output vakadways higher then the input
voltage. 5 MPPT’s are used simultaneously in the solar car.

The MPPT functions optimally with an input power of between 200 and 800Wnaperatures be-
tween 0 and 70 degrees Celsius. The optimal efficiency of the MPPT is %&. 8% output voltage of

ZAn approximation of thé?OT is: EOT = 10.2sin(4r%8%) —7.74sin(2m =2 ) 2 0.34(d—268)+8.2 d € [268,277]
(Satel-Light, n.d.)
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(a) Photo-voltaic cell characteristic _(b) Single Solar cell with load

Figure 2.8: Single solar cell curve and connection circuit

130V, an input voltage of 110 V and an input power of 300 W. The MPifigiency for a single MPPT
as a function input power is shown in fig. 2.9.

MPPT

100 100 - 16
NV D 14

80 12
0 = gpproximation (%) 10
60 60 = MPPT eff. (%) 8

= enor (%)

50 50 6
40 40 4
30 30 2
20 20 0
10 10 2
0 0 4

0O 100 200 300 400 500 600 700 800
MPPT Input Power

Figure 2.9: MPPT efficiency as a function of input power and the appration

The MPPT efficiency curve can be approximated by:
Nmppt = 100 arctan(0.225F;,) — 0.003P;;, + 0.8

However, the MPPT efficiency can be considered constant over arade (input> 100 W). It is
only when input becomes lower then 100 W, that MPPT efficiency significdecreases.

2.3.4 Input power testing

Fig. 2.10 shows the results of the implementation of eq. 2.23. The input poeacidated for the 25th
of September at the location of Darwin, NT, with a Sun Coversigeof 100%, a panel efficiency, of
23%, an MPPT efficiency,,,,,,: of 98% and a solar array arefof 7 m? (values provided by Electrical
Engineering Division of the Solar Team).
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Input power
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Figure 2.10: Input power simulation. This figure shows the Maximum Insaldtig(t) , the resulting
input powerP;, (t) and the total collected energy during one day of charging. The locationrigia
NT, and the Sun Coverage is 100%.

The figure shows that a maximum input power of slightly more than 1400 W aoileamount of
collected energy of ca. 11 kWh can be achieved on a cloudless dafiglinealso shows discontinuities
at 8 a.m. and 5 p.m. These result from the regulation that cars are only dltovagive between these
moments. Before 8 a.m. and after 5 p.m., the team is allowed to point the soladmeet}y at the sun
(orsiny =1).

However, clouds at the horizon, imperfect aiming of the array at the sadndacreasing MPPT
efficiency may cause lower input power. So the input power calculation is fiedtiwith parametef..
which models the effectiveness of these charging sessions befoedtanchcing time.

2.4 Batteries

The solar car model is built up of a simple battery, which stores the energhusuor makes up for an
energy deficit.P;, is the power gained from the solar panels, which is already already défieg. 2.23.
P,.: is the power used for driving the car, which is the sum of all power losti¢tidn, resistors (e.g.
motor efficiency) and other power consumefs)( like the radio and the sensors.

Q(t) = Q(to) + / (Pin, — Pout)dt (2.30)

to

with Q(t) the battery State-of-Charge.
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2.4.1 Worley’s lithium polymer cells

The solar car batteries are Worley Lithium Polymer cells, produced by KKdKPhese batteries have a

very high energy density (0.18® kg which makes them very attractive for usage in solar cars, where

mass is considered to be a critical parameter.

The Worley battery is a 3350 mAh battery cell. The battery pack of the salaooaists of enough
cells to hold at least 5 kwWh of energy, with a maximum weight of 30 kg. in alzwre with the regula-
tions.

Also, the efficiency of this type of battery contributes to the attractivendghiom polymer batter-
ies. When used properly, 99% of the energy stored in the battery catteered.

2.4.2 Battery SOC measurement

One of the hardest quantities to measure of the solar car is the battery SGharge, which will have
to be measured indirectly, by keeping track of the battery current. Therpatge-of-charge is the
time-integral of the battery current.

Using a current measurement to keep track of the battery SOC, howeNdre inaccurate as each
offset on the current measurement is accumulated, causing drift in t@en8@surement.

The output voltage of the battery is not a good measurement of the batt€heti@r, as is shown
by the discharge current curves of the Worley lithium polymer cell (Wor804) in fig., 2.11. This
figure shows the battery output voltage at various constant dischargentrates. As the solar car
typically does not use constant battery currents, these output voltagesatannot be used for battery
SOC measurements.

CHARGE - 0.5CmA, CC/CV, 4.2V, 1/20CmA cut-off, at 23+3°C
DISCHARGE : Each C—Rate, CC, 3.0V cut—off, at 23+3°C

42 -

VOLTAGE(V)

L 1 N 1 A 1 A 1 L 1 N 1 N
] 500 1000 1500 2000 2500 3000 3500

CAPACITY(mAh)

Figure 2.11: Single cell battery discharge curves at various disclhargents for the Worley 3350 mAh
lithium polymer cell. It can be seen that the energy recovery rate of therpaktereases at higher
currents.
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A solution to this problem is to use a highly accurate current sensor forypatterent measurements
in combination with a periodic calibration of the battery SOC measurement. Theureggnt can be
calibrated by using an 'equilibrium curve’.

Battery states

According to (Valer Pop, 2005) a battery or accu can be in one of thedrstates:
Charge Battery SOC increases, caused by an input current;

Discharge Battery SOC decreases, caused by an output current;

Transit Battery current has decreased below 0.05 CmA, either charging ordigeb;

Equilibrium The battery enters equilibrium state after being in Transit state for at |dastr?, de-
pending on the type of battery.

When in equilibrium state, the battery SOC can be estimated with fair accurameaguring the
output voltage and correcting for battery temperature (the accu padkrusestralia contains tempera-
ture sensors). In that case, the plot of fig. 2.11 is again used, with thieadige current curve a£0.05
CmA, which can be gained by extrapolating or, better, measurement. Inabata& discharge curve of
at most 0.05 CmA should be used (taking 20 hours to fully discharge).

Example

Suppose a electric device that requires a constant supply curreatwEniently, 0.5 CmA. The battery
output voltage will behave like the 0.5 CmA curve in fig. 2.11. After 4 hoursasftinuous discharge
(2000 mAh), the battery output voltage will be approximately 3.63 V.

If the device is shut down, the battery will enter transit state. if the devicetipowered up in the
next 2 or 3 hours, the battery will slowly enter equilibrium state: the battetgudwoltage will rise
slowly until the equilibrium curve is reached, where it will settle.

Extrapolating from the curves, that have already been measured, ulibragm curve will be ap-
proximately 3.9 V.

Australia

When using these batteries during the solar challenge race, the batteryar®@@Stimated by using
voltage and current measurements. Calibrating the SOC measurementitarel@ach day after having
had a whole night to enter the equilibrium state and before the racing st8ris eliock in the morning.

When calibrated, the initial battery State-of-Charge is known and a neteggraan be developed.
However, temperature does have its effect on the equilibrium curve gsitlal state-of-charge mea-
sured may not be very accurate ((Worley, 2004), sheet 9).

2.4.3 The SolUTra battery

Measurement

The battery pack of the SolUTra consists of 25 battery packs connectsties and it is fitted with
aLEM LAS 50-TP/SP1 current transducer, which boasts an inaccuracg®than 1% (not including
electric and magnetic offsets, and linearity error). Each battery pachstsmf 18 previously described
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Figure 2.12: Equilibrium curve of the SolUTra racing battery pack, usiclggage current of 3 A2 0.04
CmA. Only half of the measurements were performed. The extrapolation istadem.

Worley lithium-polymer battery cells in parallel. In the days before the 25th pfeseber 2005, the
battery cells were properly balanced and the battery equilibrium curveneasured, using a charge
current of exactly 3A, which is slightly less than 0.05 CmA. Due to circums&ribe charging time
was limited to approximately 10 hours, so only half of the equilibrium curve wassored (Fig. 2.12).

When leaving Darwin during the World Solar Challenge, the battery was follyged to 6.2 kWh.

Extrapolation

Extrapolating the equilibrium curve far 2.5 kWh is prone to inaccuracy, as the sensitid4/v is
large, due to the fact that the equilibrium curve 100.5 kWh is relatively flat. In absence of a reliable
equilibrium curve for SOC> 2.5 kWh, the extrapolation of fig. 2.12 is used.

2.5 Testing the Solar Car Model

2.5.1 Model
Summarizing, the solar car model equations are

t
Q(t) = QO +/ (Pm - Pout)dt

to

z(t) = x0+/tvcar(t)dt

to

with Q(t) the battery State-of-Charge am@) the traveled distancey,,(t) is the model input.
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Quantity abbr. value unit source

Car parameters.

Aerodynamic profile (est.) Cy(9) 0.08 - Estim. by Aero. div.
Vel.-indep. roll fric. coef. | ¢1 0.0023 - (Tamai, 1999)
Vel.-dep. roll fric. coef. | cqo 4.1-107% | (m/sy! | (Tamai, 1999)

Car mass Me 280 kg Estim. by Mech. div.
Solar Panel eff. Mp 23 % Estim. by Elect. div.
MPPT eff. Nmppt 98 % section 2.3.3

Solar Panel Surface A 7.092 m? | Estim. by Elect. div.
Default Motor eff. Nim 98 % section 2.2.4

Other parameters.

Regen. brake eff. Mrb 60 % Estim. by Elect. div.
Charge effectiveness Nee 70 % section 2.3.4
Default Air density p 1.17 kdm3 | section 2.2.1
Number of wheels n 3 - Observation

Const. Power factor Py ~23 W Estim. by Elect. div.
Local meridian WViocal 127.5 ° +9.5 Time zone

Table 2.1: (constant) Car parameters (of which some are estimations bysvdiidsions of the Solar
Team). The primary car parameters are the most important characterisioBdfra.

The equations for input and output power are
Pin = Ny Nhmppt - A - (SC -sin(y) + (1 - 5C) - CB) L5 (7)

1 /1 )
Pyt = P+ — (5PCW(5) : Ugff + Meg - (32n<a) +n- CT2) *Vear + Meg - Crl) * VUcar
m
In this case, the motor efficiency is assumed to be constant. However, the effatiency varies
with the motor speed and torque.

2.5.2 Parameters & Characteristics

The car parameters are summarized and quantified in table 2.1.Some of thefeanalues in this table
have been obtained from contact with team members of the Solar Teanrsityied Twente and are
therefore indications of the real parameter values.

With these values the following output power characteristic can be deffige@.13).

From this figure, it can be derived that with this parameters, the roll frictiaeeds air friction
when the car speed is lower than 50 km/h. Above 50 km/h, air friction is the dorfinetion factor.
A characteristical value is the output power at ¥@6, which is~ 1500 W for the SolUTra in this
configuration. This is a relatively low value, when compared to the 1650 iWMeoRNUNA lll, this year’s
champion (van Velzen, 2005), so the car is either very good, or thexcamgters may be very optimistic.

The output power is plotted in fig. 2.14 for various slopes. It can be te¢mutput power doubles
between 80 and 100 in case of a 1° slope, suggesting the importance of measuring the slope of the
road beforehand.
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Figure 2.13: Output power and components as a function of car speeflaimoad with no wind
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Figure 2.14: The total output power (including drag and roll friction)aiaus slopes. Between 80 and
100kmh, a slope ofl° doubles the output power needed to maintain speed.
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Chapter 3

Strategy Optimization

A man who does not plan long ahead will find trouble right at his door.
— Confucius

3.1 Introduction & Optimization Problem

In this chapter, the optimization problem (OP) and the ways to solve this pradrertreated. The
chapter starts with a description of the optimization goals. These goals askateainto a Cost Criterion
function. Then, some methods for optimization are treated. In the last sexpossible implementation
of optimization in PALLAS is suggested.

The emphasis of developing a strategy is on finding an optimal solution to theafRshand reliable
way.

For simplicity, car speed is now representedviby) instead ofv.,, ().

3.1.1 Optimization goals
Speed

The OP that is to be solved by the SDP is basically a time-optimal control probildra eninimization
(eq./ 3.1) of the time. needed to travel a certain distangg;,;, which is the total distance from start to
finish.

te
min J —/ dt = te (3.1)
0

The solution to this OP is the highest average car speed achievable. Ehegingce, input and output
power are to be carefully balanced, as the only power available fandris’ gained from the solar panels
and no other power source may be used.

Efficiency

The car’s efficiency is measured by the energy used to move the caa fixed distant:;,,; in a fixed
amount of timet.. This can be translated to displacing the car with a limited amount of energy in a
certain amount of time. Maximizing efficient use of available energy meansftrerminimizing eq.

3.2. .
min J = / —v(z, t)dt = —xy, (3.2)
0
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Solution to the Optimization problem

The Solar Car model, which is designed in chapter 2, is used for calculaéngghlts of various strate-
gies. The input of this model is SolUTra’s car spe¢t). The eventual solution to the OP will therefore
be an optimal car speed functioi(t).

3.1.2 Criterion & optimization constraints

The criterion is to be designed while keeping a close eye on the requirenfiéhdsroethod that is used
to optimize the racing strategy.

Constraints

The solar car has a strict constraint on battery usage: the battery S@Cakawed to be less then 0
kWh, nor is it allowed to exceed the maximum charge of approximately 6.2 kadii¢s 2.4.3). It is
recommended to stay away from these limitations, as empty batteries result irfakierable situation
that the driver is restricted to a low maximum car speed (depending directhypanpower) and fully
charged batteries result in a situation in which the energy surplus caastdted.

Uncertainty in weather expectations, road measurements, or parameteties8meay cause situa-
tions as described above. These situations can be avoided by usety isgfions’: the normal 'opera-
tional range’ of the battery is set to be between ca. 10% and ca. 90%lodifiery charge. In the event of
getting more or less solar energy then expected, these safety zondghgiaccurrence of unfavorable
situations. Using the safety zones should be punished when calculatipgiwaloracing strategy

These safety zones do not apply in the vicinity of either start and finishthé\starting line, the
batteries are allowed to be completely charged. At the finish line, howeffigiciet use of energy
demands the batteries to be almost exhausted, as energy left-oversaailotlen used for more speed.

Apart from battery SOC constraints, there are some other aspects thabnstgain optimization:

Speed limits Speed limits apply to parts of the road between Darwin and Adelaide. Theed Bmits
vary from 50, 60 or 88mh in towns and cities, while a maximum speed of ¥4 applies to the
whole of the state of Southern Australia. Serious cases of speeding nday léizqualification;

Battery discharge current The battery SOC depends on the discharge current: larger dischargpts
wear the battery. So, large discharge currents should be avoided;

Motor efficiency Each motor has a region in which efficiency is optimal. Using that region as asich
possible is an energy efficient way of driving. Especially when usingexddrive motor, as no
transmission is used to keep the motor functioning optimally efficient;

Choosing camping sitesChoosing a camping site at which the car can still collect solar energy at the
end of the day will result in better initial conditions for the day after. This mainiplemented by
imposing penalties on certain valuesagf. ), but this will also generate local minima, complicat-
ing global optimization.

Optimization Parameters: Stages & time steps

As already stated, the result of the optimization should be an optimal car &peetbn v*(x,t). To
calculatev*(x, t), Pontryagin’s Minimum Principle may be used (see appendix A): analyticallyrg
the OP by writing the dynamic equation as a first order differential equatitmamumber of initial and
end values. The OP is rewritten to a Hamiltonian (Zwart & Polderman, 200&yjvekter, this method
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is complex, and cannot be solved by symbolical computer programdvikeLE (Schutyser, 2005).
Instead, Schutyser (Schutyser, 2005) suggests solving the OP naltyerieudney (Pudney, 2000),
however, has solved the OP analytically (which is briefly explained in ajip€?), but he had to rely on
shot methods to find the optimal starting conditions and concluded that higieakdplution to the OP
was an improvement of mere minutes of the strategy of maintaining a constaut fepehe complete
distance of the race.

Trottemant (Trottemant, 2004) suggests the use of stages for numetticaizagion: the complete
distance is divided in a certain number of stages. For each stage, antorstianal average speed
v*(z) is calculated. In this way, a set of optimization parameters is created, whisiistoof as many
parameters as there are stages. The benefits of using stages are:

» Improved calculation speed:

— v(x,t) is simplified to a vector of constants)(

— Optimization over a smaller distance or time interval takes less time, as the set of aitmiz
parameters is smaller.

» The number of stages, and the distribution of stages over the racingmieacke changed accord-
ing to the most recent situation (changing weather etc.);

» Whenz(t.) is fixed (end value problem), the number of optimization parameters is cortsiast,
avoiding situations in which parameter values do not have effect on thertesionat all, result-
ing in an infinite set of local minima.

Schutyser (Schutyser, 2005) suggests the use of time stgpst) is discretized tov(k) with a
certain time stepy. For each time step, an optimal valuewgf) is calculated. The set of optimization
parameters consists of as many elements as there are time steps. The arsfitstome steps are:

» The size of the time steps can be chosen beforehand. The size cdreexamable during the race
(like variable sized stages);

» Using time steps resembles discretization of a continuous input signal, tla¢imensing stages;

* Whent, is fixed, the number of optimization parameters is constant, thus avoiding sitation
which parameter values do not have effect on the cost critatiafi, resulting in an infinite set of
local minima.

However, media-stops (30-minute stops at certain locations) during the tyigomaplicate the use of
time steps as optimization parameters.

Time and distance are related vi&t) = [ v(t)dt. However, when speed is considered to be constant
during one stage or time-step, the interdependence can be simplified to:

T = Uktk; (33)

in which v;, designates thé-th car speed element in the optimization parameter setaiglthe k-th
time step.x;. is the distance traveled during theth time step or stage.

When considering time steps and stages, stages are fitted for use wheniogtiraizspeed for a
fixed distance (being as fast as possible), while time steps can be usedavispeed is to be optimized
over limited timet. (being as fast as possible, as well as being as efficient as possilite}.ah, an
unlimited amount of solutions may exist if a variabl&. ) resp.t. is used. An example of this is when
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a certain optimization parameter(theith timestep) does not influence the cost criterion, or (Witthe
set of feasible car velocities).
dJ

dv(7)

This is the case, when thih timestep starts after= ¢..

=0Vv eV

Optimization Criterion

The cost criterion is the function that is evaluated by the optimization method toedetith set of
optimization parameters is optimal. The optimization method may require the evaluaticiofuto
meet certain specifications. Most gradient methods [(see |B.2.2) requievahetion function to be
twice differentiable.

The fundamental optimization criteria have already been given in equatibas18 3.2. These crite-
ria are extended with a functigi{Q(t¢)), which represents the battery safety limits, which are described
in section 3.1.2.

Also a factorw.(Q(t.) — Q2 is included in the criteria. This factor can be used when a certain
battery SOC end value is desired for setting intermediate goals. e.g. Infoagtnaizing for one day
only. It may be desired to have, for example, the batteries charged%66the end of the day.

Using stages, the goal is basically to travel a certain distance in as little timesaslpoSoz(t.) is
fixed andt, is minimized. The optimization criterion is then (using vector of weighs

te
Tvar) = w01(Qt) = Ques(t?) + [ (wn 13- 9(QUO)) (3.4)
If a fixed ¢, is consideredz(t.) is to be optimized, sd; includes an integral of the car speed
te
J(v) = wa(Q(te) — Ques(te)?) + /0 (w2 v+ ws - g(Q(¢)))dt (3.5)
In both equationsy(Q(t)) is defined as:
Q) -Q7) Qi) <Q~
9(Q) = ¢ Q) -Q")?* Q) >QF (3.6)
0 otherwise

whereQ~ andQ™ represent the lower resp. upper battery safety limits. The function peaaliceeding
the battery safety limit quadratically, because this function is twice differdatidinis function is illus-
trated in figl 3.1 and explained in appendix B.2.4. Using eq. 3.6, constrainth &%) < x(¢) < z(t.)
andv; > 0) can be changed into penalty functions as well.

3.2 Optimization methods

3.2.1 Cost Criterion: Example

To get a notion of the optimization problem, the criterion is visualized usIA§LE For simplicity, the
battery safety limits are temporarily left out, so that the optimization criterion casinglified to eq.

3.7.
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o

2 3
SOC {kWh}

Figure 3.1: The safety regions of the battery. Including this function wéVent using those regions.

2
J=w Zzﬂ:l %Z + wy - <Z?:1 %[Rn(l’“ t) - Pout(xiu Uz)] - Qdes> (37)
Pip > 0; Pour > 0524, v; > O?Z?:lxi =C

in which cost criterion/; depends solely on the end values of the car states (battery safety region is
not included).

A graphical representation of the cost criterion may be produced bygafiian experiment, consist-
ing of a 100 km race. During this race, the input power is assumed to Istariyias well as disturbances,
like wind, which is assumed to be constant during a single stage.

The race consists of 2 stages of 50 km. each. A constant car speexsendior each stage. In fig.
3.2(a) the cost criterion far0 < vy, v, < 100 m/s is plotted, showing a single minimum. Obviously, the

cost criterion is not defined far, < 0\/ vy < 0, as these cases prevent the car from reaching the finish
line.

Optimization Criterion 2nd order Derivative test

(a) Cost Criterion (b) 2nd Derivative test

Figure 3.2: The end values of cost criterigrior 2 stages resp. 2 timesteps optimization with MAPLE.

However, the plot also shows that near the axgs (— 0), the plot tends to decrease. This effect
is shown in fig. 3.2(b), which shows the value of the determinant of thei&tes§.J. This is the '2nd
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derivative test’ (Weisstein, 1989

9%2J 9%J
ov? Ov10va
Ou20vy ov3

This test shows the region in which gradient-based optimization methods witgm(@© > 0), and in
which they will diverge D < 0). The D = 0 curve is also plotted in fig. 3.2(b). This curve moves and
scales with variations in racing conditions (slopes, wind etc).

When optimizing, especially when using a gradient optimization method, regionsiam® < 0
must be avoided, as gradient methods will diverge from the optimal solutithege regions.

To avoid diverging gradient methods, the battery safety region of eds 8€ed to keep the battery
state of charge within acceptable and safe limits like a penalty function. Thiidaris continuous and
twice differentiable, which is required in order to calculate the Hessian.

Including the battery safety regions generates the cost criterion sipface of fig.| 3.3(a). In this
figure, J; (eq. 3.4) is plotted for the same racing experiment of/fig. 3.2(a). Eveseekag the battery

40;:- -

V2 (m/s)

.- 10
10 15 20 25 30 35 40 10 15 20 25 30 35 40

v1 (m/s) v1 (m/s)

(a) Stages (b) Time steps

Figure 3.3: 2 stages optimization with MATLAB, including battery safety regions

safety limits for just a little time causes the cost criterion to skyrocket. The aredich the optimal
parameter values are located is clearly visible as a long narrow tinted aitgbe té derivative of the
function large outside of this area, it tends to decrease fast whenaabymg the optimal solution.

Although all circumstances are equal during both stages, the MATLABtseshow that the "optimal
area’ around the optimal solution is not symmetrik{v,, v2) # J(v2,v1). This is caused by the fact
that the input power is not zero, which causes battery overflow in dadving too slow. Therefore, it
does matter whether one drives slow at first or at last.

Also shown is a plot off; (eq. 3.5) in whicht, = 2 h. This two-hour race is divided in twa(= 2)
time steps of 1 h. each. Also in this case, car velocities may not be less theth8,@r model can only
be applied for car velocities above zero. The fact that this cost funigioon-convex is clearly visible.
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3.2.2 Optimization

Schutyser| (Schutyser, 2005) has treated a similar problem which cahefséegreat number of opti-
mization variables and a non-linear cost function. Schutyser (SchuB@@5) distinguishes 4 types of
optimization problems:

Linear programming problem The cost criterion is linear (or affine);
Quadratic programming problem The cost criterion is quadratic and the constraints are linear or affine;
Non-linear optimization problem The cost criterion is non-linear, non-convex;

Convex optimization problem The cost criterion is a convex function (see section B.1 for the concept
of Convexity).

The cost criteria (both eqg. 3.4 and 3.5) are non-linear and convexityotaasily be proved for
a large or infinite number of optimization parameters (Convexityrfor- co). Therefore, the OP is
considered to be non-linear non-convex and the calculational adesntdghe other types cannot be
used in this case.

To find the optimum of the OP in fig.3.2.1, a numerical optimization method is nedtEds able
to cope with a non linear model and a cost function that is not convex, aidhwannot be guaranteed
to have only one minimum.

3.2.3 Global Optimization

Some methods for global optimization are given in sectionB.3.

Figures 3.3(a) and 3.3(b) show that, for 2 optimization parameters, thergesia (/; and.J;) each
have only one minimum. In that case, the local minimum that is found is also thel ghobianum.
However, for more then 2 optimization parameters, global optimality cannatd@gteed.

Thus, global optimization should be given special attention. As one of gigrdgoals is calculation
speed, methods such as genetic algorithms are generally ruled out. Promésivagls are:

Multiple start Optimizing multiple times with varying initial parameter values;
Parameter sweepEvaluate various initial positions and use the best one for optimization (sshtgr

Both methods benefit from using less function evaluations. Both methodsykg merely increase the
chances of finding the global optimum; they cannot guarantee global optimality

3.3 Optimization in PALLAS

When designing an optimization algorithm for PALLAS, the design specificatibsection 1.2 must be
observed: optimization should be fast and reliable and flexible.

3.3.1 Design choice: Splitting strategies

Numerical optimization methods need a certain amount of simulation runs (iteddticrsler to calcu-
late the optimum. Reducing simulation time will reduce the total amount of optimization tinexreTh
fore, using a simple car model is advisable, as well as reducing the agaimodeling the disturbances
(wind, slopes, clouds). Reducing the optimization input set decreaseptih@zation time as well, gen-
erally.
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To increase the strategy development speed, 3 different strategieseaeDeveloping a strategy for
the total remaining distance to Adelaide generally takes a lot of time, comparesdhpgding a strategy
that lasts to the end of the day. Primary and secondary goals can be geintagy being the total race
time from Darwin to Adelaide and the latter being at a certain location at the ethe ofy.

To put it simply: instead of continuously optimizing for the total distance of tioe ra strategy is
developed for only a part of the race.

Start to Finish: Fixed distance (Long Term Strategy)

Considering the complete distance from start to finish, this distance hasdodred as soon as possible.
The total racing time, has to be minimized, while the battery SO@(()) is constrained (Battery SOC
may not exceed battery limits and should have a certain valtie-&t).

For Start-to-Finish optimizatior)(¢.) should be0, as all energy that is left in the batteries when
finishing could have been used for more speed. Howé&ygr,) is physically limited and cannot be less
then empty.

The following applies

te
min [w4-(Q(te) — Ques)* + / [wy + w - g(Q(t))]dt] - (3.9)

v to

te
i[04+ (Q(t) = Qe + w1~ (1 —t0) + [ [us-9(Q(0))a]
in which X is a weighing factor anél. is the point in time the finish line is reached.

During the race, Start-to-finish planning can still be performed. Howévercurrent position of the
solar car can be used as a starting point for the optimization, instead of thefstee race. Therefore,
'long term strategy planning’ may be a better definition of Start-to-Finish |tgnn

Simulating and optimizing could take a long time, when simulating for distances ofghdsf
kilometers spanning multiple days.

Day-to-day racing (Mid Term Strategy)

Day-to-day racing means the situation of maximizing or chosing a certain degtance and battery
SOC over a constant time interjal ¢.], while being constrained by battery SOC and speed limits. This
is exactly the case when optimizing for one day, when it is desired to reamtticdnccamp site at the end
of the day with as much energy in the battery as possible.

min [wy - (Qte) ~ Ques)? + /O s vear + 103+ 9(Q())] = (3.10)

min [ (@) — Quee)? — wa- (o) — alto)) + [ lws - 9(Q0))et]

to
In this case, the end-of-day value of the battery SQC)) is the preferred initial battery SO@)(.)
for the next day of racing, which depends on the long term strategyjstitstsigned using long term
planning.
This day-to-day racing would be the 'normal’ strategy development rowhiming racing, as it is
assumed to take less time to develop a strategy.
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Short term planning (Short Term Strategy)

Short term planning basically is reacting to unplanned events. When sométgpens that endangers
the strategy planning, the SDP must be able to respond quickly. In thatazasptimization is to be
executed over limited distanag;, during which the battery SOC is to be closely guarded.

min 104+ (QUt0) = Quee)® + [ fun+ w3 - Q)] = (3.11)

te
min [w4 (Q(te) — Ques)® +wi - (te — to) +/ [ws - g(Q(t))]dt}
v to
The car should reach distaneg as fast as possible, constrained by the battery SOC, which should have
a certain value when,, is reached.
This optimization should be performed as quickly as possible, as the resuits la@ used immedi-
ately after optimizing.

Combining strategies

The 3 strategies that have been described in the previous sections magdsimultaneously. Start-
to-Finish planning may provide a planning outline for the complete track. Optimfpintpe complete

racing distance may, however, take a lot of time, compared to day-to-degraspecially for the first
days of racing.

Day-to-day planning takes the strategy outline given by long term strategyipg as a starting
point for optimization.

Optimizing over a short distance (Short term planning) takes less time thamdongptimization
and day-to-day optimization. Therefore, itis a good option to use in casgeapected events that cause
the car to diverge from the racing strategy. In that case, a new stiigtaggded on short notice.

After developing and adopting a strategy for a short distance in short #rmeyple of seconds), a
more accurate, although time-consuming (a couple of minutes), optimizationefdotél race can be
performed.
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Chapter 4

Monitoring

However beautiful the strategy, you should occasionally look at thétsesu
— Sir Winston Churchill

4.1 Introduction

To guard the validity of the optimal strategy or planning, the real car statestbde compared to the
strategy. When 'monitoring’, the real car states and the strategy are pateflinction of time in such a
way that the differences can easily be identified. An example of this is erdwivo fails to keep optimal
speed and who drives constantly too slow. In that case, the solar céalieéhind schedule.

To counter the drift between reality and planning, one may shake up trex dpon identification of
the flaw between planned and real car speed, develop a new stratiegyatira cruise control, the last
option being a structural, but presently, impossible solution.

In short, the course of events is as follows:

1. Check differences between strategy and reality for errors;
2. ldentify the cause of the error;

3. Remove the cause of the error (e.g. a slacking driver), corrextit fnodel errors) or compensate
for it;

4. Develop a new strategy in case the differences between planningalitg have grown to big.

This chapter starts with an overview of possible causes of future ditfessbetween strategy and
reality and the important variables that should be monitored. Then, someoivananitoring the results
of the strategy are presented.

This chapter also treats some views at forecasting the future. Whera$tirer the future, drift
between the strategy and reality can be detected, before it actually otmigsncreasing the response
time.

4.2 Model Accuracy

Differences between strategy and reality can be the result of eitherahtmanses or external causes.
Internal causes consist of car model flaws. Fig. 4.1(a) shows that #he actually 2 models involved:
the Road model, which models aspects as wind speed and heading, clopds,eic., while the Car
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model consists of the equations mentioned in chapter 2. Both models are sirtiphficaf the real
world and, thus, are subject to errors.

Road model Car model Road model Car model

True Road Solar Car True Road Solar Car

(a) Strategy monitoring (b) Simulating for model adaptation

Figure 4.1: 2 models showing the difference between monitoring for strated)gimulating for model
adaptation.

External causes consist of flaws in the road model: weather predictioneutito be incorrect, flat
tyres may happen, other road users may force the solar car to driverslzen planned.

Car model flaws may be decreased by measuring the inputs and outputshuddieé (model vali-
dation as shown in fig. 4.1(b)) and in a similar way, the road model may be tedithy measuring and
deriving all relevant parameters.

4.2.1 Car model

The Car model of fig 4.1 consists of calculating the input power, the outpueipand the charge of the
batteries. It also contains solar calculations (maximum irradiance and eteeatite). Although these
equations have already been treated in section 2, the possible inacsar@cseimmed up here:

Drag Although tests have been carried out in a wind tunnel, these test weredcant using a down-
scaled model of the solar car and no tests will be carried out with the realcss, reasons being
of a financial nature. If there happen to be any construction or scatimgsethey will not be
accounted for;

Roll Friction The parameters mentioned in section 2.2.2 are for the Michelin tyre, while theTeala
uses another type of tyre (Vredestein), of which the roll friction pararedtave not yet been
determined. Until then, the parameters will have to be estimated using dataifrolar syres
Tamai (1999);

Electrical devices For the sake of simplicity, the motor efficiency, battery efficiency and the MPP
efficiency are assumed to be constant. This is, of course, only trueckentain range (e.g. Biel
School (2003));

Acceleration & Deceleration Acceleration and deceleration are not modeled in order to decrease sim-
ulation time. Thus, the extra efforts and costs of accelerating are notitgtkesccount.

Furthermore, the model assumes that the car speed is constant ancbticatkcuate the energy
used to accelerate, nor the energy gained from regenerative br&dpgriments have been carried out,
which incorporated accelerating and decelerating, but the increaskinatens caused the simulation
time to increase 200%, which is considered to be unacceptable. As onedefdiga goals is to decrease
the time needed to develop an optimal strategy, accelerating and decelerdihgus of the model.
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4.2.2 Road model

The road model is subject to much bigger inaccuracies, compared to theodat. As all car model
parameters may be determined by measurements, the road model consistsf pagtther predictions.

The road model basically consists of a number of car model inputs, thahdem the position of
the car:

Slope The angle of all slopes are measured using GPS, satellite images and tlseNKE@4B motion
tracker Xsens Technologies B.V. (2005). The Xsens sensor is entgpilagiele the car that is used
for scouting the race track before the race, such that the knowledgye e slopes and elevation
in the race track can be used for strategy development;

Road roughnessThe roughness of the road is not easily determined. Roads are dividedas<es
of roughness, ranging from very smooth to very rough. Each classtele a roll friction scaling
factor;

Car heading Compass directions of the heading of the car on the road. This is useetéondning the
effective wind direction relative to the car heading. GPS and a normal assrqre used

Longitude & Latitude Longitude and latitude are measured using GPS and used for calculating the
elevation angle of the Sun;

Wind speed The wind speed on the race track ahead is no more then a guess, a pnediotal and
national radio broadcasts, local and national meteorological orgamigadind historical data are
to be used to determine the possible wind speed;

Wind direction Like wind speed, the wind direction during the remainder of the race is acpiced
based on long term averages and short term forecasts by Australiaorobedgc organisations;

Sun Coverage Sun coverage is the amount of direct irradiance likely to be collected oeertain
distance. A sun coverage of 75% means, that the sun is covered by étw5% of the distance,
leaving only diffuse irradiance to be collected;

Cloud Brightness Cloud Brightness is a measure for the amount of diffuse irradiance, thieesun is
covered by clouds;

Air density Air Density, as an important factor, when determining the drag, depefsfily on air
temperature and air pressure, secondarily, it depends on humidity (s2@id).

4.2.3 Model Accuracy
Models

Most of the car and road model parameters can be measured, some amgtloer. e.g. Slopes and
altitudes can measured by scouting the race track before the race stantdyreamic profile may be
measured using a wind tunnel etc. The roughness of the road and @saeffeoll friction is relatively

hard to determine, although efforts have been made to develop a roduhemsgndex (Karamihas, n.d.).
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Weather

The parameters that cannot be determined with a high degree of aceumeathye weather parameters:
wind speed & direction, sun coverage and cloud brightness, air peeaad temperature. These values
are to be predicted in advance of developing a strategy and they can beratw#or analysis afterward
(see fig. 4.1(b)) for model validation. The solar team has got a La €rbsshnology weather station
model WS-3600 at its disposal, which is able to measure both wind speedrectibd, air pressure and
temperature, rainfall etc. La Crosse Technology (n.d.), with fair acgura

Reliable sources of weather predictions are, for example, weather stapienialized at distributing
precise weather analyses and predictions, such as weather staticesd lacairports. A lot of infor-
mation can also be found on certain internet sites, such as the 'Weatle¢istien(The Weather Co.,
n.d.).

Weather prediction accuracy tends to decrease with the range of tltagtraccuracy is relatively
high in the short run, but it will decrease when predicting the weathantdtiple days.

4.3 Monitoring Measurements

Monitoring means continually checking whether the solar car is still on séhedun optimal strategy

consists of a planning that tells us the position and the battery SOC of the aolat each moment
in time during the race. In that case, only the system states (distance frdarargtebattery SOC) are
interesting variables to keep track of. Better yet, the eregrandesoc between reality and strategy
may be monitored:

€x = /[Umeas - Ustrat]dt

eSOC = / [epout - ePin}dt

Causes of drift between strategy and reality can more easily be identitieg iffandep, are kept
track of as well (using current and voltage measurements). Assumirityelamall errors in the car
model and car speed, an eregs,,, may indicate a wrong prediction of the wind parameters, while an
error in the input power may indicate wrong prediction of the sun covesag®ud brightness.

However, in practice, monitoring is not that easy. This will be illustrated witlexample of the
input powerp;,, during a day of driving.

4.3.1 Example:P;,

Recapulating eq. 2.22, we observe that the total input power consistdifca insolation component
and a diffuse insolation component. The diffuse component can be direetigured when the sun is
temporarily covered by clouds. The direct insolation component canreedéndirectly by measuring
the input power when the sun is not covered by clouds. This is shown iA.fig

75% sun coverage means that for 75% of the time, the input power will be tkientna available
(direct insolation and diffuse insolation) and the other 25% of the time, inpwepwill be minimal
(diffuse insolation only). The predicted input power (according to themteg or strategy), however, is
the time-average input power. This is also shown in fig. 2.10.

Assuming that the strategy is 100% correct, the moving time-average inpet paivbe the same
as the planned input power curve. Now, the sun coverage and thelrighthess can be estimated from
the figure, using eq. 2.23.
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s, P measured
= P planned
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Figure 4.2: A sketch of the difference between planned input poweaectu@l input power. The dashed
line is the diffuse component of the insolation. The direct insolation comparfidimé input power is the
difference between total input power and the diffuse insolation

From this example, it can be concluded, that no rash measures are tddrtalen, as soon as the
reality differs from strategy. Especially in this case, where the differdretween strategy and reality
is always large (large fluctuations in measureg), but where also the time-average of the error is
relatively small (Fig. 4.2).

The same thing may happen when monitoring output power: other roadmagrsave some influ-
ence on the car speed or there are gusts of wind that result in noisyt potper behaviour.

4.3.2 Relevant variables
Relevant variables for monitoring

As is mentioned earlier, the real interesting variables to monitor are the posittbe oar, relative to
the start of the race and the battery state-of-charge, which determinesutien which must be taken
during the drive.

In order to be able to determine the causes of drift in the car position andyb&tC, the input
power and output power have to be monitored as well.

To determine the cause of error in the output power, the car speed is afsred, as well as the
wind speed and direction, because these three values and their uriiesrgdtermine the output power.

To determine the air density, air pressure and air temperature are monisonedl.aHowever, these
values are not that important, because rapid variations are not expeciszlr, while they can very well
be predicted, based on past measurements.

Relevant variables: Tolerances

Battery SOC Battery SOC is measured by measuring the incoming and outgoing power oveusime,
ing a LEM LAS 50-TP/SP1 Hall current transducer and the voltage sefioitium Gold motor
controller Tritium Pty Ltd (2003).

Suppose that the accuracy of the power measurement (combination afevahd current mea-
surements) is 1% for both input power (power from MPPT’s) and outpwep (power drawn by
the motor). This means that the accuracy of the power surﬁﬁ%{l) is = 1.41%. Assuming an
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input and an output power of both 1500 W, this means a maximum ergs2ifW.

For a whole day (9 hours) of driving, this means that the maximum errot W 2ccumulates to
approximately 0.190 kW 4% of the maximum battery capacity. When not able to calibrate the
battery SOC measurement, this error may accumulate to, for exaga@eq after 2 days anét

16% after 4 days of driving (This is shown in Fig. 4.3 for 2 periods of daxgpThe data set used

is a demonstrative sinusoidal data set). The SOC measurement is ndeelpdme noisy, because
of the integral action.

In this case, it is assumed, that the sensor operates under normal ¢aoess When used in
Australia, the high temperatures may have considerable effect on teaesors in general and
sensors, based on the Hall-effect, in particular.

Distance Calculating distance on the other hand, is pretty straightforward: using t&&Solar team is
able to pinpoint its position to within a couple of meters. GPS may be used to cakaattard
distance sensors, such are used in automobile industry or be used ad-alstee distance cal-
culator. When drift occurs, it may be presumed that it is caused by @ifters between planned
and actual car speed. The distance measurement is not expected tg heisg, because of the
integral action and the accuracy of common GPS.

Output Power Gusts of wind, variations in the slope, patches of inferior road and sual,add to
the measured output power. Especially because of the chaotic natumofan wind, the output
power is expected to vary significantly, either when using motor voltagealqetuise control)
or motor current control (common gas pedal). As can be seen in sectsomal,changes in both
slopes and wind may result in relatively big differences in output povepedally at high speed.
The output power is measured using the current and voltage sensitis Bfitium Gold motor
controller: measuring the input voltage and the RMS input current of therngotaroller and
multiplying them will provide the output current.

Input Power Originally, input power was intended to be measured by the MPPT’s. Hewivo defect
CAN bus systems (the original and the spare) prevented direct reaufaties MPPT'’s. Instead,
input power was determined by using the difference between the batttrgator currents. These
measurements were not synchronized.

Car Speed The car speed may vary as a result of gusts of wind, humps and bumpailtiicugh the
driver is supposed to keep a constant car speed, he or she origeeaontrol have a response time
to small variations in drag, slope, etc.

The car speed is measured by using GPS and using the car speed$émsdritium Gold motor
controller.

Wind Wind measurements were carried out using the WS-3600 Weather Statiamwssedechnology
(n.d.). Each minute, a measurement was generated, which is an avenagmerous samples.
Although wind speed is pretty accurately measured, wind direction is measithdow resolution
(22.5°).

Insolation Insolation was not measured. Therefore, Sun coverage and Clgyidrigss had to be esti-
mated, based on observations of at least 2 people.
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SOC data example

battery SOC

. . . .
0 20 40 60 80 100
sample

Figure 4.3: A sketch of the accuracy of the SOC measurement when talipfat 50th sample) and not
calibrating.

4.4 Statistical Process Control

Modern industrial processes are are often monitored using Statistica@d2r@€ontrol (SPC). SPC is a
way of dealing with variation in product quality, deciding when action shoeldidertaken in order to
keep the process in control.

When using SPC, a production target is set and the production is monifoprdcess is 'in control’
when production is kept within certain limits, which depend on design speaiisaand the statistical
characteristics of the process. As soon as the process exceedsrtigssan 'out-of-control’ event is
thrown, which should be followed by an 'out-of-control’ action to get thegess back in control.

4.4.1 SPC charts
Three basic SPC monitoring charts have been mentioned in Wetherill & Bro9@ij:

The X-bar Chart The X-bar chart (Fig. 4.4(a)) shows the test results as an errotidarrelative to the
production target. the UCL and LCL curves are upper and lower colivimigs: when in control,
only one out of 100 samples may exceed the control limits. In this case, thegsris not in
control as 8 out of 36 samples exceed the control limits. However, asékdisation limits (USL
and LSL) are not exceeded, this may not be of much concern in pragtigeX-bar samples are
averages of process sample subsets of more then one test sampléor€herdar plots are well
suited for batch processes and less for one-at-the-time data.

The CuSum Chart The CuSum chart (Fig. 4.4(b) is well suited for one-at-the-time data gamele:
motor current as a function of time or wind speed as a function of time). TB&I@wchart plots the
cumulative sum of the error between all samples and the production tanggfset (deviation
from production target) will show up in the CuSum chart as a trend ussardownwards. The
snub-nosed V-mask shows the control limits in the CuSum chart: when tet bfcomes to big,
the control limits will be exceeded.

The EWMA Chart The Exponentially Weighted Moving Average chart (Fig. 4.4(c)) assuthaghe
mean of the error between sample and production target may be varying inTtheecfore, the



42 4. MONITORING

samples are filtered using a 1st order low-pass filter with certain time congtgnt 4. In that
way, only slow trends show up in the plot.

In case of all charts, an 'out-of-control flag’ goes up, when a saexaeeds the control or specification
limits. However, the X-bar chart does also some extra out-of-contralitons, for which the data has
to be tested.

Xbar Chart CuSum Chart
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(c) EWMA chart

Figure 4.4: Statistical process control of an exemplary data set. In suddiga) and (c) out-of-control
samples are shown in red crosses

The main difference between X-bar chart on one side and EWMA andi@u®arts on the other,
is that the X-bar decides whether the process is out of control basedeosample only (the last one),
while the other charts use information of all samples.

An important note to the SPC charts is the fact that the control limits of the chrartsaaed on the
standard deviations of the samples. These types of SPC charts arerherell suited for processes or
signals in which the standard deviation of the samples is large compared to themma When faced
with signals with high SNR, the mentioned charts are less suitable. Howevennide be used with
some modifications.
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In section 4.3.1, it was concluded, that in many cases the error betwaséeggtand reality may
exceed all control limits, but that the time-average may be well within control liffilterefore, EWMA
and CuSum charts are candidates for usage in PALLAS, as the formelflisuited for one-at-the-time
data and it clearly shows offsets between reality and strategy (procdsarget). The latter is as well
suited for spotting offsets, especially in noise-ridden signals.

Regarding the X-bar chart, it can be said that the extra out-of-contraditons make an X-bar
chart somewhat harder to implement. The X-bar chart also demands stratlihéhdata is normally
distributed, because if the sample data contains cycles or trends or it iDaatated, then the X-bar
chart will recognize this as 'out-of-control’. As it is expected that the sneament data of the solar
car will be auto-correlated to a high degree, the X-bar chart is ruledah option for monitoring the
relevant variables of the solar car.

4.4.2 Relevant Variables for SPC charts

Car Speed When plotting the car speed as a function of time, the result will resemble aar Xit.
It may, however, happen, that the solar car is slowed down or spedngotarily, while such an
event does not mean that the process is 'out-of-control’. It may ashaelben, that the driver
does not track the optimal car speed very well, while it is not necessarkeatdion each time
the driver slacks. Therefore, it is advisable to use an EWMA plot inraxélter out these false
'out-of-control’ events;

P, Gusts of wind and small humps and bumps are some causes of noise in thiepowpu As it is
not necessary to react on out-of-control events caused by sychdictable effects, an EWMA
chart will help determining true out-of-control events;

P;, the input power and its monitoring problems has already been describettions&3.1. To be able
to spot the time-average input power, an EWMA chart with large time constaoid be used;

Battery SOC The battery state-of-charge is the cumulative sum of the power surBlys— P,ut).
When plotting the difference between planned SOC and measured SOGtdgaa the result
is analogous to a CuSum plot: errors in output power and input poweseddue plot to drift
away from the target. However, in this case, a V-mask is not advisabilee @absolute error is an
criterion for the validity of the current planning;

Distance Similar to battery SOC, the distance traveled is the cumulative sum of the cat. spéen
plotting the difference between planned distance and measured distaitst éighe, the result is
as well analogous to a CuSum plot;

Wind speed Wind speed is measured by a weather station, which already measures tlawéeirage of
the wind speed, resulting in a sample time of approximately 1 minute. It will not bessary to
use an EWMA, nor a CuSum chart to monitor the wind speed. In this casépan chart would
indeed suffice;

Air temperature Like wind speed, air temperature is measured with an interval of approximhtely
minute. The air temperature is not expected to be noisy, thus, an X-banatad suffice: air
temperature is predicted with some tolerance. When exceeded, weatfietipnarevisions should
be made.

Air pressure Like air temperature, an X-bar chart would suffice when monitoring asqane, because
of slow variation and the relatively low noise.
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4.5 Projection

4.5.1 Why projection?

Using historic measurements, something may be said about the future. FRagplexistoric measure-
ments are frequently used for weather forecasts. Based on the earisum@ements, the amount of rain
is predicted for a certain month. Also a nice example is the well-known El Nifiawis famous for its
oscillatory behaviour.

Similarly, the behaviour of the car may be predicted based on earlier maante As is mentioned
earlier in this report, the variables that determine the status of the car in thearadhe distance traveled
and the potential energy left in the batteries.

As was said before, detecting drift between planning and reality bef@a&tutlly occurs may in-
crease response time and, as such, improve strategy developmentorghdhese car states are inter-
esting variables enough to forecast for the (near) future.

These variables, however, are accumulations (integrals) of otheblesrigpower collected and used,
car speed), which may contain information about the causes of the behatibe states.

A ’'projection method’ is to be chosen, that can be used to predict the gewelt of the states and
other variables for the near future, long enough to do a new optimization.

4.5.2 Linear Time-dependent Regression

As future variable developments are only to be predicted for enough timeftompea new optimization,
it is assumed that car states will behave linearly. e.g. Distance traveled wébse with constant rate,
as it is assumed that the car speed will not vary significantly over a few rsirtute. The same goes
for the battery SOC, as input and output power is assumed to be fairlfacdoser a few minutes’ time.
Considering the expected linear nature of the variables involved, lineadi@pendent regression is
an obvious candidate for PALLAS projection method.
The general form of a time dependent regression model is (Abrahaed&lter, 1983):

Zntj = Zﬁz‘fi(j) tenii=F()B+ens; @.1)
=1

where3 = (31,52, - ,Bm) is again the vector of parameters af(@) = [f1(4), -, fm(j)] is @
vector of specified fitting or forecast functions.

The implementation of the Oth order (constant mean) model and the 1st tinger frend) model
are given, as well as how to use these models when forecasting.

Constant mean model

Zntj = Bo + Entj (4.2)
In this model, there is only a single constant fitting functign(j) = 1 andL = f(0) = 1.

Linear trend model

Zn+j = Po+ B1j + et (4.3)
In the linear trend model, there are 2 fitting functiorfis(j) = 1 and f>(j) = j.
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Forecast

The time regression model of €g. 4.1 can be used for forecasting the hittimen + I:
z(l) =D Bifi(l) = £ (1)B (4.4)
=1

When theAparameterB are not known, they can be derived by using least squares estimatesr T
2, = t'(1)3,, is used for forecasting.

4.6 Application & Implementation

4.6.1 SPC Charts & Projection

In section 4.4, it was decided to use EWMA charts for monitoring output paweut power and car
speed. Battery SOC and distance traveled will automatically take up the faan€oSum chart and as
such, the state data does not have to be filtered.

EWMA charts already are some type of simple exponential smoothing. Rtseafathe three vari-
ables monitored using EWMA charts are therefore constant mean modelscimtive estimated moving
average is the forecast for the near future.

Drift between strategy and reality manifests itself also by a clear and piiaptigear trend in the
absolute values of the car state measurements (battery SOC and distata®ethnot correspond with
the strategy. The trend, however, is directly related to the moving avefage oar rates (input and
output power, car speed). So, projections (Fig 4.5) can be made,alsdagly available data.

25 ! ! ! ! . . : Regression model Strategy
= | Measurements Forecast .
-

. Te-__ soc

5 . . . . . . . i
0 10 20 \30 40/ 50 60 \ 70 80 . ! !

t

Measurements Model Projection Confidence interval tmon,start mon,end

(a) Definition of regression and forecasting (b) Regression implementation for SOC measure-
ment

Figure 4.5: An example of the use of a regression method for modeling ajettion. In the figure on
the right, the implementation of regression in battery SOC measurements is dlaarhy; showing that
battery SOC is increasing more rapidly then strategically expected and it is tiatlyt will keep on
increasing in the near future.

Because of the simplicity of the linear regression model, this option is chosenitadbemented in
PALLAS. Projection is not needed when using SPC charts, thus, ségnds only used when monitoring
the absolute measurement values, instead of the error between strataggplay.



46

4. MONITORING




Chapter 5

Software Realization

5.1 Introduction

This chapter describes the design and implementation of PALLAS.

5.1.1 Some likely scenarios...
Start of the day

Suppose a arbitrary camp site of the Solar Team along the Stuart Highwag Auttralian Outback.
Before sunrise, the battery voltage is checked and the initial battery S@@nsaéed. Now, the strategist
has to start up his laptop and determine the strategy that is to be followed fimuathon. Before a
strategy is determined and followed by the Solar Team, the following actiorie beeundertaken:

» The car parameters have to be set: drag and roll friction coefficiemNg;adaccuracies etc are to
be entered correctly;

» The simulation has to be configured correctly (starting time, integration methitid] values
etc.);

» The optimization has to be configured correctly (criterion weights, optimizatiethod etc.);
» Weather forecasts are to be made and entered,

» An optimization is to be carried out, which has to finish before 8 a.m., as the &oh#E to start
racing again at that time;

» The strategy has to be checked for errors.

Only then is the Solar Team able to adopt a certain optimal strategy.

Stress situations

However, suppose that the team just experienced a flat tyre or a retlveveeport forecasts bad weather
ahead or a traffic light effectively denies the SolUTra to drive for gpt®of minutes or the SolUTra is
thrown off schedule by some other reason.

In situations like these, the current strategy becomes obsolete and a il girategy is to be
determined. And it is to be determined very quickly, because the SolUTra istssifieed or it starts
driving again, but no one knows whether it is the optimal speed that isohos
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In that case, the previously mentioned actions to determine a n optimal strageigybee undertaken
in a stress situation, which will make the process of developing an optimalgtrsgesitive to errors.

5.1.2 PALLAS Requirements

It is obvious that the amount of settings involved in developing an optimal gyr&ads to an increased
chance of introducing errors in the strategy development processiakp during stress situations. To
counter this, PALLAS should be able to automate and simplify configuring ttieg® such as needed
for modeling SolUTra, running the simulation and performing the optimization.

Also, the optimization should not take more than a few minutes to finish, becafiseall, the
SolUTra should drive according to the schedule of the optimal strategy s asymossible, while each
minute without a correct optimal strategy may be important to the total racing times.nidy involve
optimizing for only part of the racing track (section 3.3), when optimizing fofid Term Strategy or
Short Term Strategy.

Finally, PALLAS should provide an environment in which easy strategy mongocan be per-
formed.

PALLAS is allowed to use the STUNT Database to get data such as weatkeadts and road
characteristics, and to store optimal strategies after development. Morméaifon about the database
can be found in appendix E.

5.1.3 PALLAS program

A way to meet the specifications of previous section is using a graphicalnisgace (GUI) to guide
the strategist during the development of an optimal strategy and the monitbtimg optimal strategy.

Matlab can be used to design and build a GUI, as it offers GUIDE, a Gi#lldement environment,
which enables the programmer to build a windows compatible user interfaaésolprovides a range
of toolboxes that specialize in a lot of areas of expertise. e.g The Matlath&se Toolbox can be used
to build an interface between PALLAS and the STUNT Database, the MatléitB&Toolbox can be
used to build regression models, the Matlab Staistical Process ControbXarah be used to draw SPC
charts and the Matlab Optimization Toolbox provides a large number of optimiZatictions that can
be used for developing an optimal strategy.

However, when testing with similar models both in Matlab and in 20-Sim, simulating gtimdiaing
for a full 3000 km race, optimization in 20-Sim took less than 10 min, while Matkdb ot finished
calculating after 25 min, raising suspicions that 20-Sim is faster than Matladm aptimizing.

As both tools offer promising tools for PALLAS implementation on differentesp of programming
PALLAS, itis decided to use both programs: 20-Sim for modeling, simulatidroptimization, Matlab
for user interfacing, database communication and monitoring.

5.2 Optimization

5.2.1 Design

Generally, there are 3 tasks to be accomplished by the strategist whéopiieye strategy:

1. The car parameters and the simulation and optimization settings have to kecthdwther they
are correctly configured;

2. A 20-Sim optimization has to be carried out, using the model of chapter i2.td$k should be
finished within a couple of minutes;
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3. Afterwards, the strategy is to be checked for errors. If the deeélgfrategy is not correct, a new
strategy should be developed;

If the strategy is correct, the strategy can be adopted. The former sgt(afabe same type - short term,
mid term or long term) will become obsolete and no longer available. It shoukgein the database
for analysis after the race.

Apart from these tasks and unseen by the strategist, PALLAS has toectnie latest weather fore-
casts before simulating and optimizing with 20-Sim. And, when adopting an optiratdgy, PALLAS
has to send the strategy data to the STUNT Database.

Tasks of the GUI
The Matlab GUI should provide an environment in which

 Car parameters (table 2.1) can be entered;

» Simulation settings (stages, timesteps, mediastops, initial states etc.) can bareohfi

» Optimization settings (criterion weights, desired final state values etc.) ceonfigured;

» The developed strategy can be checked.

These tasks have to be carried out correctly. One or more GUI scageris be designed such, that
choosing and configuring parameters and settings is simplified.
Tasks of 20-Sim
Most of the configuration should be performed in the Matlab GUI. Theeg20-Sim should
* read car parameter, simulation settings and optimization settings from Matlade Isghulation;
* carry out the optimization as quickly as possible;

« provide the Matlab GUI with the latest simulation results (the one using optimabesd).

so that 20-Sim requires the strategist to do as little as possible.

The interface between Matlab and 20-Sim

It has been mentioned (section 5.1) that configuring parameters and sétithgse in the GUI pro-
grammed in Matlab and that calculations needed for simulation and optimizatioaraiedwmut in 20-
Sim. Matlab and 20-Sim therefore have to communicate with each other: darairegsettings and
parameters is to be passed to 20-Sim and a strategy, in the form of a simuleti@ptimal car speed is
to be returned to the Matlab GUI.

5.2.2 Implementation

Interfacing Matlab and 20-Sim

The fundamental relationships and the suggested interface between tiab IB&I and 20-Sim are
shown in figl 5.1.
In PALLAS, Matlab and 20-Sim communicate via:
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Figure 5.1: Diagram showing the functional relationships in PALLAS, optitionan particular.

text files The road model text files are generated by Matlab from normal arrayvasiebles, using the
dl mw i t e command. Also, the solution (the "optimal strategy’) of the OP is returned Eyi20
to Matlab as a logged simulation in a tert)file.

'fromMatlab’ 20-Sim offers some commands that can be used for data handling in Mat@R0¥Sim

fromvat | ab command is used to get model parameter data from Matlab. Similar 20-Sim com-

mands ar¢ oMat | ab, for sending data to Matlab ambMat | ab, for issuing Matlab commands.
As 20-Sim opens its own Matlab console, parameters and settings codfigutee matlab GUI
first have to be stored in.matfile. With thedoMat | ab command, thismatfile can be loaded
in the new Matlab console, after which parameters and settings can beyr2@e3im.

A 20-Sim model is ‘created’ by inserting the model parameter values viartibeVat | ab com-
mand. The 20-Sim model uses the Matlab generated text files as look-up. tA&AH20-Sim does not
offer an API, some extra actions in 20-Sim must be carried out to startrtheagion and optimization
operations. After the final simulation (the one with the optimal car spé&éd ¢)) the simulation data is
saved in a text file withn extension, which can be read by Matlab.

The figure also shows the relationship of PALLAS with the STUNT networkictv contains the
STUNT Database from which all data is drawn for 'creating’ the road ried files (road character-
istics and weather forecasts). The strategies that are developed tyABAdre in turn stored in the
database, which is monitored by the Telemetrist.

Optimization in 20-Sim

The 20-Sim simulator contains a 'multiple run’ tool, which provides automatic opttinizaThe opti-
mization parameters are to be entered, as well as the optimization criterionlaflafcof the gradient
and the Hessian can be influenced by altering the 'Tolerance’ parambieh determines the amount
of numeric variation.

The 20-Sim optimization tool provides a number of optimization methods, amond wiedBFGS
and the DFP methods (see appendix B). A small experiment involving a 2Gblamcar race and a vast
optimization parameter set,, (>20 optimization input parameters) shows no significant differences
between BFGS and DFP methods so the standard BFGS method is used.
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The 20-Sim optimization tool provides some global optimization by offering thielwpf performing
a parameter sweep (fig. 5.2) before optimization, in order to find the best infiig parameter set.

SolUTra - Optimization
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Figure 5.2: An example of a 20-Sim parameter sweep before actual optimizditeo200 km are traveled
at various average velocities; optimization criteribolearly shows a minimum, which can be used as a
starting point for numerical optimization.

Procedure for 20-Sim optimization In order to perform an optimization in 20-Sim, the following
procedure is to be followed, provided that the correct 20-Sim modelda@dyrloaded:

1. Start Simulator tool;

2. Set optimization tolerance and input variables (if needed) in 20-Sim 'MelRpin’ tool,
3. Set simulation start and end time (if needed) in the run properties window;

4. Do multiple run;

5. When finished, choose optimal input set and click 'Set Variables’ butto

6. Perform a single run to ensure the strategy data that is logged iirfilleds correct.

20-Sim output The optimization output is the optimal car spegd.(z,t) = @f and, optionally, the
last complete simulation with optimal car speed (the 'optimal strategy’) in a texwfilesh can be used
for further processing. Simulated variables can be selected and loggéeeinfile as a function of time.
The obvious variables that can be used for further processing amathspeed,,. (¢) , the covered

distancer*(t), the input power”;, (t), the output poweF;,,(t) and the battery SOQ*(t).
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GUI Optimization screen

The strategist has to carry out certain actions in a relatively strict orienwdeveloping an optimal
strategy. To ensure a correct execution of the procedures for optiomizthe optimization is designed
as a checklist (Fig. 5.3). The checklist consists of pushbuttons fesado other PALLAS GUI screens
and checkboxes for checking off accomplished tasks. Checking@iteomplished task makes the next
task available (by making the corresponding pushbutton active).

-} Optimize Strategy !.H

— Set up strategy developer

Check model parameters, simulator settings Set Parameters

Parameters Set

— 20-Sitn

Wheh al parameters are set, 20-Sitm can be started.
1. Start Simulstor

2. zet optimization tolerance and input variables Start 20-3im
when needed,

3. Set Simulation start and end time (optional);
4. Do Multiple run 20-Zim must be closed
5. Choose optimal input set, and Click "set variahlss" manualy

E. Perforin single run and check off checkbox below

Optimization Complete

— Strategy Validstior

check for insane actions or choose optimal values Examine Strategy
for further strategy development.

|:| Stratedy considered valid

Cancel

U

Figure 5.3: The Optimization Checklist screen.

Set Parameters This button provides access to a parameter and settings configuratien,sgtech is
the starting point for configuring all settings and parameters involved inghel@pment of an optimal
strategy.

Start 20-Sim  Starting 20-Sim, choosing the correct model and the correct simulation filepdified
by using the Matlab commantbs(’ Exanpl e. m Exanpl e. si mi ), which effectively executes an
MS-DOS command.

Examine Strategy Pushing this button starts up the 'Examine Strategy’ GUI screeng(Bign which
the result of the 20-Sim optimization can be examined. If the strategist is tisfiesd, it is possible to
restart the procedure.

OK - Adopt Strategy When all tasks have been checked , the confirmation button becomes lavailab
If this button is pressed, the newly developed strategy will be stored in thbaize. It will become active
if it is selected in the control panel.
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Figure 5.4: The Strategy Examination screen. In this particular case tiamzgiion for the last 900 km
of the race is shown. This screen can also be used to set new finalstdigans for the next optimiza-
tion.

5.2.3 Testing the Optimization

Testing the optimization is not hard, as it is possible to gradually increase thglexty of the tests.
20-Sim optimization can be tested without the need for a Matlab GUI, using&irdnodel that is
modified to be used in 20-Sim only, after which modifications can be addedrease the complexity,
such as adding:

e thef rommat | ab anddonmat | ab methods;

the use of am-file;

the use otxt-files;
* retrieving and using road model data from an example database;
* retrieving and using road model data from the real STUNT database;

Some full scale optimization tests (using the STUNT Database) show that ttimézagion generally
takes between 2 and 5 minutes, depending on the variation of weather casditie tolerance of the
optimization method and the starting position in the race. It can be concludagdguatments are met.

5.3 Monitoring

5.3.1 Design

Fundamentally, monitoring consists of retrieving all data (measurements atefygdrfrom the database
and putting it on screen. Difficulties mainly consist of handling vast quantfieseasurement data.
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Measurements are screened by the Watchdog first and then stored istdbask. The watchdog
basically monitors all solar car sensors and it guards the data link betwesal#n car and the chase car

Interface

WLAN network

(Fig!5.5).
STUNT !
1
Database | Matlab - PALLAS
I 'Uses'
Interface GUI - Pallas %
| -
M i - Monitoring
easuremen‘ ) | + Absolute Strategist
- Road characteristics + Relative
- Strategies | - SPC
1 - Projection
1
Telemetrist |
'stores data' I
|
Watchdog I
I
|
1

Solar Car
- Telemetry

- GPS

Figure 5.5: Diagram showing the functional relationships STUNT, monitoriragtiaular

When the process is out of control (the strategy does not apply anyraavarning signal or an error
signal is to given to alert the user. The user should check the causewéthing or error signal and has
to decide which action should be undertaken.

5.3.2 Implementation

The monitoring methods of PALLAS are implemented using basic Matlab functiahtha SPC toolbox.
For the layout of a single PALLAS monitor, the general 'oscilloscope’e@pance is chosen (Fig. 5.6).
It can show one of the car measurement quantities that are relevantatagy monitoring for some
adjustable time span. Originally, it should as well be possible to monitor all quardia function of
distance traveled, but that has never been implemented, due to lack of time.

The use of projection is optional and can be switched on and off. It ismdssible to choose
between showing the data and strategy absolutely (as is shown in the figdrelatively, in which case
an EWMA chart is drawn, showing the difference between the stratetgyatha the measurement data.
Showing an EWMA chart requires 2 extra parameters (time constgnt, and control limits).

Finally, each monitor screen is equipped with a warning light, which throwsraimgiin case the
control limits are exceeded. An error is thrown in case this happens whkerathstates (distance and
SOC) are monitored (examples are given in appendix D.4.2). The warnimgdigiot used when the
'Show Absolute’ mode is activated, as no control limits are used during thigmod

To monitor more than one variable at the time, more monitors can be used atAncan be seen in
the figure, 'monitor 2’ is shown. This is one of the eventual 7 monitors (pperaix D), one of which
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Figure 5.6: A monitor screen of PALLAS. Momentarily, it shows the input pomeasurements of the
last 2 minutes, the linear regression model and the expectations for th2 meémtites. Also, the input
power according to the strategy is shown. The difference is approxinte8lyW and decreasing.

is the 'main screen’, being larger to provide a better view of the data. Ttierb®n Screen »’ that is
provided with the monitor of Fig. 5.6 is used to pass the settings of this monitor oa tm#in screen’.

5.3.3 Testing the Monitoring

Testing the PALLAS monitors is performed using random data, generatadsbygple Matlab random
number generatorgndom(). Projection can be tested using the randomly generated data. Testing the
monitoring of the strategy data requires the use of an example databaseacimamhexample strategy
has been stored.

Although plans existed to build a'SolUTra simulator’, which was to simulate mdat sar behaviour,
just for testing the APLLAS monitors, lack of time prevented this. The first fedtiwas done on a racing
track, using the SolUTra.

5.4 Using PALLAS

A more detailed explanation of how PALLAS is built up, is given in appendixTbis appendix also
provides explanatory examples of how to use PALLAS, what has to be, dmiore PALLAS can be
used, how connections to the database are made.
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Chapter 6

Testing & Application

6.1 Introduction

This chapter has 3 sections. The first treats tests of the model and the dadiotifiof the SolUTra

car parameters. The second section treats the application of PALLASydbhsrrace: it describes the
general weather expectations and road conditions that are expedésh@emented in the modeling
of the race track in order to develop an exemplary racing strategy forahéT8. The final section

is a report of the proceedings of the Raedthuys Solar Team and theiTi@adluring the 8th edition of

the World Solar Challenge. It shows the measurements and developedistrataring the race and it
describes the strategic decisions that were made, based on PALLA§tatelopment. It also reports
the weather measurements in order to calculate the optimal strategy afterwards

6.2 ldentifying & Testing the SolUTra Model

The car specifications of table 2.1 are ideal parameters. During the time isp&uastralia, various tests
have been performed, some of which were especially set up for megshueiactual car parameters.

However, due to organizatorial difficulties the solar team experienceda reatraint on preparation
time. Instead of two and a half weeks of preparation time, the team had to@repae week less, which
obviously resulted in less time for testing.

This section treats the developments in testing the car and identifying the eemqiars. Early
model identification was performed during road tests on the Arnhem Higranaypssroad of the Stuart
Highway. These tests revealed that car parameters specified duringsiba ghase were too optimistic.

These tests, however, had been carried out with hardly known circonoesta Therefore, further
model identification has been carried out during on the Stuart Highwagglthre race. Model iden-
tification has been carried out twice during the race, as halfway, tyregetifnthe car were changed,
having a very large effect on roll friction.

After the race, some model errors have been discovered. Thess aredreated in the last part of
this section.

6.2.1 Testing on the Arnhem Highway (road tests before the ice)

In the three days before the start of the race, the solar team was allogretaioto the Arnhem Highway
in order to get road driving experience, after one week of testing anetrack.
Another goal of the road test was to estimate the car parameters of table 6.1.
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-- --E -------- - ~ Wheel case

(a) Toein (b) Camber

Figure 6.1: 'Toe in’ and 'Camber’ explained. These settings are impoftarihe stability of the car.
Altering the Toe in and Camber settings also has a large effect on the rtbiic

Mechanical car settings

During these road tests, the team experimented with various 'toe in’ and &saseltings (fig. 6.2.1) and
motor settings (the air gap can be used to alter the optimal transmission), the hatteecause of the
fact that DriveTek was not able to deliver their motor in time. Instead, the Balblad to be equipped
with a hired NGM motor, of which the specifications were not known, other #meestimated efficiency
of 95 %.

What was not being tested and optimized, was the 'Angle of Attack’. Thisa@gwncerns the angle
between the wing-like profile of the car and the car vector. This translatée tangle between the air
attacking the car and the wing-like profile of the car. If the profile is anghdauds to much, it generates
lift. Angling to much downwards generates down force. In both situatiotisa drag is generated. The
ideal situation is the angle at which drag is minimal and no lift or down forcerieigged (Putten, 2005).

Identification of car parameters

Identifying a good model of the car was, within the time-frame given, too conplelo. The Arn-
hem Highway is a highway, with many slopes and virtually no flat stretchee. rdddside vegetation
varies very much, complicating wind measurements and forecasts. Ragthess varies much as well,
complicating roll friction estimations.

The attempt to find a stretch of highway with relatively constant circumstancasler to make a
reliable identification was canceled, due to a flat tyre at the end of the thayremaining daylight was
used to load the SolUTra on the trailer and to head back to the workshop.

Therefore, no reliable model was identified during these tests. Insteadrtihem Highway test
data was used to make a manually fitted 'best guess’ at the car paramstatdeast a 'best guess’
model is required to develop a strategy (table 6.1).

PALLAS in use

Because of less time available for testing, it was not until the tests on the Wrktighway, that the
optimal setting for the toe in could be determined. PALLAS and its model of the sataproved
invaluable during this test-phase, as PALLAS was able to determine thé effelbanging the tow-in
angleg to at least some degree.

For example, when the team used a maximum toe in ahgke3°, the power used to drive at a speed
of app. 70mh was 3 times as high as was expected, based on the characteristics of¥igARBd, one
tyre gave up and went flat within 10 km of having been changed.
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Quantity | Specified value day 1 value day 2 & 3 value
Mm, 98 % 93 % 90 %
Npanel 24 % 22 % 23 %
Me 280 kg 290 kg 290 kg
Cp(9) 0.08 0.10 0.12
cr1 0.0023 0.008 0.010
Cro 4.1-107° (m/sy™t | 1-107* (m/sy ! | 1-10~* (m/s)~!

Table 6.1: Estimated car parameters on day 1 (Arnhem Highway tests) arad&la (Stuart Highway
tests). These are the parameters that are most important in 'defining'rtbleacacteristics.

Eventually, the team chose to use virtually no toe in, because of the wedneméed for energy
efficient driving. Also the 'camber’ angle was set to 0°.

6.2.2 Testing on the Stuart Highway (road tests during the rae)

As the solar car was allowed to drive on the Stuart Highway only duringatbes, further tests could only
be carried out during the race. Obviously, the first day of racinglghmiused to identify the car model
parameters, because the tests on the Arnhem Highway did not have abigle df reliability.

Setbacks and solutions

However, on day 1, no connection could be established with the car’s tiejecoenputer, even a com-
plete replacement of the car's computer (the standard course of actioshras event) did not solve
this problem, causing a complete lack of telemetry data during day 1. Thispeevany model identi-
fication and strategy monitoring at all. Therefore, a strategy was dewklopag the day 1 car model
parameters, and an intermediate goal (camp site) was set. As there was nainmnito

On day 2, however, it turned out that, twice as much energy from the ieati®as used, resulting
in batteries that were: 30% charged, instead ef 65%, which was planned, according to the strategy.
Although the team drove somewhat faster than planned in the morning, dtieetoti@ffic, this could
not have caused the big difference between planning and reality.

Some time in the morning of day 2 was spent trying to get a better car model (&8 \&alues).
The manually fitted car model parameters can be found in column 3 of tabledtheanharacteristic is
shown in fig| 6.2(a).

It is obvious that new models fitting is based on very small car speed rasmése models are not
very reliable. Only thorough testing of the car while all circumstantial inflesrfslope, wind) are known
with relatively high accuracy, may result in reliable car parameter estimations.

Tyre change

The rapidly decreasing stock of Vredestein tyres (17 flat tyres in 3 @ag<sL500 km) forced the solar
team to take some drastic measures. In the evening of day 3, just to the $&ltbeoSprings, at
some 1500 km from Darwin and halfway through the race, the team dettidd@nge the front tyres for
Michelin tyres (the back wheel tyre was a Bridgestone Ecopia tyre, whithat go flat at all, being
changed only once during a night stop). This tyre change took a lotfat & preparing the wheel
rims, the wheel cases etc. It was expected that the amount of flat tytdd decrease as well as the roll
friction.
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Day 2 - Output power vs. Car speed Day 5 - Output power vs. Car speed
T T T T T T

3500

3500

3000 3000 ; +

2500 2500

N
o
<]
=]

N

=1

=]
=]

Output Power (W)
.
@
S
S

.
o
1S3
=]

Output Power (W)
[ =
o [4
o o
o o

500

20 40 60 80 100 120 0 20 40 60 80 100 120
Car Speed (km/h) Car Speed (km/h)

(a) Day 2 output power measurements (b) Day 5 (final) output power measurements

Figure 6.2: Fitting the day 2 and final model output power curves. It id tadistinguish useless data
(due to acceleration, wind, slopes) from useful data without accuradésunement equipment. Also,
function fitting is to be performed as fast as possible, because the fuhetioto used during the race,
immediately after fitting.

Quantity |  Original value Actual value dueto...
A 7.092 nf 6.76 nt failing solar cells
Npanel 24 % 23% effect of dust accumulation
Nm 98 % 95 % NGM motor used
Me 280 kg 290 kg Design spec. too optimistic
Cp(9) 0.08 0.105 surface irregularities
cr 0.0023 0.005 tubes used
Cro 4.1-107° (m/sy! | 8-107% (m/s)! different tyres used

Table 6.2: Actual estimated car parameters compared to original design.

Fate: Michelin tyres

The tyre change of day 3 implied the need for a new model identification. yHower the second time
during the race, the data link to the car computer failed and was not rephiried the morning of day
4. Using the old day 2 car parameters during these link-less hours impliestegstof driving relatively
slow. It was not until the computer was replaced, that a new car modkl betidentified (table 6.2).
The ideal and the actual model characteristics corresponding to tablee@Ba shown in Fig. 6.3.

Bad luck stroke again, when the improvement by changing the tyres resuliegiignificant increase
in average car speed, according to the new developed strategied. deseperience on the days before
and not expecting the improvement, the solar team had configured the motondgimmum speed of
approximately 83mh, slower than he optimal car speed. Reconfiguring the motor during dinongs
was not an option as that would have taken too much time.

The rest of the day, SolUTra drove at maximum but less than optimal sgesedtjng in a end-of-day
battery SOC that was too high.



IDENTIFYING & TESTING THE SOLUTRA MODEL 61

Output power on various days of racing

30 | [=pag g

S0 | Day 283 model s
B ] Day 1model e S
2000 [ 7777 Final Design (Days 4.5.6) /T
1500

Initial Design

60
Car Speed km/h}

Figure 6.3: Diagram

6.2.3 Model Errors

Some errors in modeling the SolUTra have been discovered after theTtaedynamic roll friction and
the constant power factdf, were not correctly implemented.

Roll friction

After the race, an implementation error was discovered in the 20-Sim modet GolUTra solar car:
because of the definition @f. (see eq. 2.19), which incorporated the number of wheels as well, this
factor was not included in the model. This resulted in the dynamic roll frictiomgo® times too small.

Although substantial, there are some reasons, because of which thisvasmot a threat to the
functioning of PALLAS:

» The fit of the output power curve parameters of the solar car mod&ljacgnceled out the effect
of the error;

» The dynamic roll friction is small compared to the static roll friction;

» The inaccuracy of the dynamic roll friction was small compared to the géimeaccuracy of all
measurements.

Constant power factor P,

Error description  Well after the race and back in The Netherlands, it was discovered thebttstant
power factorP,, which models the power consumption of the telemetry systems, is not modeled to be
zero in the case of the car being turned off for the night. This resulted indelntbat assumed the
telemetry systems to be always switched on, instead of being switched oéfoigt.

It is thought that this error is not discovered due to the fact that thdt reawslow discharge of the
batteries during stops - is not obvious. Also, there were other problemstfe tyre problem; section
6.2), that had priority.
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An additional cause of not discovering this error is the way in which stiegegere examined.
Mostly, the the strategies were examined distance-labeled, which mearal) tlzties are shown as a
function of distance. In that way, the slow decay of battery chargeatdrenseen at all.

Error influence The car is generally switched off during the night (appr. 12 hoursjchwis not
modeled. That means that the model calculates an unnecessary batteaygéisof 20 W each day (5
nights). This adds up to a total of 1.2 kWh.

In the same time (5,5 days), 50 kWh could have been collected (provideidsbédtion is optimal).
The loss of 1.2 kWh results in an error in the calculation of the total availaldeygrof approximately
3% (initial battery charge not included).

Another way of assessing the influence of the error is by calculating theaused by the error in
the battery SOC during 1 day. 1.2kWh in 5 nights, means 0.25kWh per dat i§B% of the full
battery SOC range (using a 5 kWh range, however, the battery SO€ usegd apparently was 6 kWh).
This error is relatively small, compared to the measurement error of theyo&tE during one day of
driving and the suspected estimation errors made in the identification of thd.mode

An example is the fact that, on day 5, the measured end-of-day batteryws®©.4 kWh, while
being estimated at 1.6 kWh, which means a measurement error of 1.2 kW (mki@ns a full scale
error of 20% of a 5 kWh battery) during 1 day of driving!

6.3 PALLAS Strategy Development for The Race

This section shows the development of a racing strategy for SolUTraebife race. First, the average
weather forecasts during the race are treated. Then, the static roadtehatics are introduced.

Subsequently, along term strategy is developed and explained. Thisxdadsbes with an overview
of the experiences with PALLAS Strategy Development during the race.

6.3.1 Weather predictions

Likely weather conditions According to (Australian Bureau of Meteorology, 2005), the likely weathe
forecasts (wind speed & direction and Sun Coverage, Cloud brightsesst given) for the end of
September in the regions Darwin to Adelaide are shown in Fig. 6.4(a) (wirFay. 6.4(b) (Sun cov-
erage).

The general wind direction will vary from Northerly (in Darwin) to Soutlggin Adelaide), while
it will blow hard from the East in the region of Alice Springs. Alice Springslsgoahe sunniest region,
while the good weather expectations will deteriorate when getting closer taidde

Forecasts These are the long term weather forecasts, which will be used as wéatheasts in case
no other forecasts are made. However, to get to know the most recattiendorecast, it is possible
to listen to radio bulletins containing weather forecasts. It is also possiblgtesethe latest weather
forecasts at each media stop and, last but not least, the team sent a \Wwesdiher station’ 50 to 150 km
ahead of the solar car to report weather conditions.

Exceptional Charging During the mornings and the evenings, it is possible to charge the batteries
before or after the race. Before 8am and after 5pm, it is still possibletéth same sunlight to charge
the batteries.
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Figure 6.4: The first figure is a sketch of the average wind in Australisnguhe racing season. The
arrows give an impression of the wind speed and direction during the Taeesecond figure is a sketch
of the average Australian Sun Coverage between Darwin and Adelaitesketch shows the long term
weather forecast, which will be used during the race, in case no reeather forecast is available.

It is, however, in those particular situations that even a very little cloud inaa slgy can effectively
deny the solar team any extra battery charge, as can be seen in Figldsifs 6n the horizon block the
sun light, although it may be very nice weather with a high Sun Coverageodtarence of relatively
little clouds on the horizon is hard to forecast. Therefore, the eveningicigesessions are mostly left
out of the daily battery SOC target, while the results of the morning chargsgjoses can easily be
estimated, when a new strategy is developed each morning.

Low Sun

10% CIoud%

—

Solar Car

Figure 6.5: The result of clouds and a low sun (after sunrise anddgfimset): even a high Sun Coverage
may result in a very low insolation. This effect complicates the estimation of temggrihat will be
collected during the charge sessions before and after a day of racing.

6.3.2 Road characteristics
Road condition

The roll friction is influenced by the condition of the surface, the tyresaioliTherefore, the team origi-
nally planned to categorize the road condition of the racing track to Adel@lteactual implementation
(multiplying the roll friction by a factor, which depends on the road conditiwa$ not used, as the road
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conditions along the road proved to be relatively uniform (no long stretohieadly maintained asphalt),
while the roll friction of the tyres was not accurately modeled.

Altitude & Slopes

The highest point along the road from Darwin to Adelaide is somewhere imidiéle of Australia (ca.
1450 km from Darwin) and it measures around 700 m. The altitude proftleeaface track is shown in
Fig./6.6. This profile is based on GPS data, collected during a pre-raaérsg trip from Adelaide to
Darwin.

The graph shows some errors: according to the GPS data, Darwin liebenelfth sea level, while
Adelaide is well above sea level. However, the GPS data shows a qualpatiuee of the altitude
profile.

Altitude (m)
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Figure 6.6: The track altitude is measured using GPS. Apparently, the datirsosignificant errors,
as, according to the altitude data, Darwin is far below sea level, while Adetafdeabove sea level.

Slope More important than altitude, however, is the slope of the road (Section 2Th8)Telemetrist
has drawn an approximate slope profile of the road, based on the GPSeafiinfile alone and the
assumption that the altitude does not vary too fast. Formerly it was intendese tilnet MT9-B XSens
rotational sensor (Xsens Technologies B.V., 2005), but the sens@dout to be insufficiently accurate
for this purpose.

During the race, it turned out that slope predictions were quite accuwateming the location and
duration of the slope, but less accurate in steepness, and section 2\@s3r&iw important it is to know
the steepness of the slope in order to predict the power consumption dcrtihen climbing. Also,
due to the demand for calculation speed, it is not advisable to use a lot gpaiata regarding slope
information in the model. A maximum of 500 data points over a total distance ofl38(Q data point
per 6 km) was considered to not have too big an impact on the simulation time.

However, using so few data points did not increase the accuracy ob#ftemodel. The idea to
distribute the slope data points according to the amount of variance in thedatgémore variance in
inclination, more data points to describe this variance) was not carriedwitpdack of resources and
time.

In general, it is fortunate that an inclination of ca. 700 m over a distanapmf 1500 km can hardly
be noticed. The few steep hillsides were more of a challenge to the powgpales than to the strategy
development.



PALLAS STRATEGY DEVELOPMENT FOR THE RACE 65

6.3.3 One Long Term Strategy

A road model has been programmed with the circumstances of the prevatiosigaltitude/slope, wind,
sun coverage). The road model and the previously mentioned (SectjddéaPsolar car model are now
used to develop an optimal strategy (with a final SOC value of 0.5 kWh fquikgeo the safe side).

It turns out, that it is pretty hard to find an optimal strategy in these circumssahaving headwind
and significantly less sun in the first part of the race. In order to enabl@@FSim optimization tool
to find a reasonable solution, a reasonable initial strategy (an optimizationsef)was provided. The
result is shown in Fig. 6!7.

SalUTra (time) SdUTra (distance)

CarSpeed kmvhj

%5
100 R0

v w{m's}

= slope {deg}

4 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+H006
time {day} x{m

Figure 6.7: The two graphs show a common long term strategy, based ofotbmentioned circum-
stances. The constant speed strategy has been drawn in the samagied]d It can be seen, that a
constant speed strategy is not correct, here, as the battery limits asgledcéNote the fact that time is
shown in days from January 1st.

The racing strategy has to take the tail wind in the Darwin region (0 km) intoumtcthe fact that
Sun coverage is highest in the the Alice Springs Region (1500 km) anduhatdserage and headwind
significantly affect the battery SOC in the last part of the race (Adelaigieme 3000 km).

The strategy proposes fast driving from the start during the firsttdgyrevent battery overflow. The
rest of the race, the car speed is chosen such, that the battery SQiE risl&gvely constant.

However, using another initial optimization input set, the optimal solution of F&jis&found, prov-
ing that if a solution to the OP is found, it is not guaranteed, that the optimum gddbhal. In this case,
a more conservative and safe strategy is proposed, in which the batageds app. 50% (2.5kWh)
when the 2000 km milestone is crossed.
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Figure 6.8: Here, a similar strategy has been developed. The finishing tinrtually the same, the
SOC curve, however, is more conservative. This example shows thstltiten of the OP of Fig. 6.7 is
not unique.

6.3.4 Experiencing PALLAS during the race

During the World Solar Challenge race through Australia, a lot of expeeiem using PALLAS was
gained. Experience that would have been of great value, if it had d&elable to the team before the
race started.

About some of the experiences with PALLAS the following remarks can beemad

* Initializing an optimization took more time than expected. This was mainly due to théhfsic
quite a lot of parameters and settings had to be configured and chedked ae optimization
could be carried out (both in PALLAS and in 20-Sim);

* In order to speed up the configuration of aforesaid parameters #gimpseit was decided to use
only 6 stages or time-steps in the optimizations. In this way, reconfiguring theipation settings
in 20-Sim was not needed,

» Due to the relatively high accuracy of developing a mid term strategy antihtledt takes to set
up an optimization, it was decided to leave the short term strategy optimizatiom optised;

» Due to the complexity of predicting the success of the morning and evenamging sessions and
the inaccuracy of the battery SOC measurements, only strategy informatiomairrent day was
regarded as relatively reliable;

» The 20-Sim optimization method tended to have a harder time finding the solutian@{twhen
weather forecasts were more varied as a function of distance;

» The cruise control of SolUTra is pretty primitive, as it is able to increment#nespeed with steps
of only 2 - 3kmh. In that way, the team is not able to drive with the precise optimal speed;

» During the race, a good cooperation between Strategist and Telemedsseistial, as the Telemetrist
generally enters the weather forecasts into the STUNT database andamd@hagneasurement
data, that the Strategist uses for optimization and monitoring respectively.
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 Using projections, or linear predictions for the near future, it turndguoaity soon, that projections
for quickly varying quantities, such as output power and car speew, med reliable, although it
helped interpreting the data. Projections for the car states (SOC and distaveled), however,
were useful, as they could be used for fast predictions of resultsertaic car speed. Projections
of the input power were as well useful, as it gave an impression of thealuess of the Sun
Coverage and the Cloud Brightness;

» Due to lack of time, the monitors were only able to plot the relevant variabla$wasction of time
and the option of plotting the variables as a function of distance was not HoilPALLAS. As a
strategy can also be interpreted as being a optimal SOC curve as a furfaiigtaace traveled,
and output power predictions were based on location rather than timed &omeeonitoring based
on distance rather than time was felt at times;

* As little data was used to model slopes and wind etc, output power predigtengsmore often
than not incorrect, although the averages evened out in the end. Dhbemngce, it was felt that
a distinction between ’optimization road models’ and 'monitoring road models’ftheused
for optimization, the latter - much more accurate, taking more time to simulate - to monitor the
progress) would make a strategy more accurate;

» The Car and weather measurements were stored in the database aedezmed), a back-up was
made. The next morning, a new file was used to store the measurement datthiless, the
accumulation of measurement data and the increasing size of the datalmsauabd PALLAS to
become sluggish when monitoring, even to the point that the monitor reftedha@ame more than
10 seconds (with 3 seconds normal). This problem was solved by lpgikgithe measurement
data halfway one day and throwing away 90% of the measurement data iatéiede table;

* When strong side winds were experienced in the Alice Springs regidpyipower appeared to
be structurally lower than expected. It was thought this was due to the ‘Gailithe wind’ effect,
which can be explained at best as 'reduced drag coefficient at &iswThis effect is explained
in (Putten, 2005);

6.4 The Race

6.4.1 Logbook

In the following section, a description of the course of actions during teisagiven. This information
has been drawn from the Team Logbook (Mocking, 2005) and frormisgsurements that were stored
in the STUNT database.

Day 1: Start, Telemetry lost

The data link with the SolUTra was immediately lost after the start of the race. ugthan effort was
made to repair the connection to the SolUTra, this problem could not be shividy the race, so it was
decided, that the problem was to be dealt with after the first day of raklogitoring was therefore not
possible during the first day of driving.

Although the data link with the SolUTra was lost, a strategy was developedgBid.). According
to this strategy, the team will drive with a car speed okihand stop for the night at a location 590 km
from Darwin, with a battery State-of-Charge of ca. 3.25kWh plus allggntrat can be collected after
stopping. Eventually, the team should arrive at the finish line on the sixth day
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Figure 6.9: Day 1 Mid and Long term strategies. Based on the long termgstrateamping location
at 590 km from Darwin was chosen and a mid term strategy was devel8gedrding to the mid term
strategy, the battery SOC at the end of the day should be 3.25 kWh plugajlehat could be collected
in the charging session before sunset. Time is shown in days of yeathe first of January is day 0).

During the first day of driving, the team was not able to hold the strategipedhscribed car speed,
due to the occasional overtaking of other teams (the SolUTra managed to emtsrpwsition from 15th
place to 9th place on the first day) and other traffic. Although there is neunement data of the first
day of driving, the logbook shows that the team structurally drove Bmh%o00 fast to make up for lost
time due to traffic, 6 flat tyres and a bad design of the cruise controller.

At the end of the day, the Solar team shared a campsite with the Belgian Satai®36 km from
Darwin.

Day 2: Tyre problems

Day 2 started with a deception: according to strategy, the battery SOC tivaates! to be between 4 and
4.5 kwWh before the morning charging session. This, however, turnigloleo?l2 kWh instead, according
to the battery equilibrium curve (the battery output voltage was 96.0V, se@ Ei).

Based on the fact that significantly more energy was used on the firstndaywas planned for, it
was decided, that on day 2, the strategically optimal speed should be heddrigidly. Also, the car
model was updated. A new long term strategy was developed (Fig. 6,2fegh called for an increase
of battery charge during the day in order to build up reserves for thpdaistf the track so a strategically
optimal car speed of ca. 7h was used in the morning resulting in app. 470 km traveled on day 2.

However, The Public Relations division of the Solar Team insisted on a minimiG@0d&km traveled
in one day. The mid term strategy of Fig. 6.10(b) was developed with thisfisp¢ion and adopted, so
a car speed of continuously #8h was used. The charging session at the end of the day after the car has
stopped should result in a battery SOC that is equal to the initial value of 202 kW
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Figure 6.10: The Day 2 Long term strategy that was developed in the manththe mid term strategy
that was developed at noon.

At the end of the day, the Solar team chose a campsite on the side of theatdhd,spot of the
last flat tyre (at exactly 16h59), 1047 km from Darwin. On Day 2, 521had been traveled and the
measurements of that day are shown in Fig. 6.11. It is not possible to certiygameasured SOC curve
with just one strategy, as the strategy has been updated several timeg theriday. It can however
be seen, that the final value of the battery State of Charge is higher tpacted, probably due to
better-than-expected weather conditions.

Input power measurements & media stops The measurements nicely show the result of pointing the
solar array at the sun during a media stop (betwegh4 and £2.425): the input power is significantly
less noisy, which may probably be accredited to the fact that at that pdiimén the output power is
approximately 0 W (only the telemetry systems are still working) and the lackehsgny between the
battery current measurement and motor controller measurement doesttast ftdis, however, remains
to be investigated more thoroughly. On the other hand, input Power shaviéddeen directly measured
by the MPPT’s.

Technical failures Although a lot of efforts had been made, it was not possible to get MP&Jotgs.
The MPPT’s did function, but they categorically refused to give seresmtings. Thus, the input power
had to be measured indirectly by using the battery current sensor (ambtbecurrent sensor. The two
sensors were not synchronized, so spikes are expected, due aritd#esrnature of the motor current).

Due to lack of time, this very temperature-sensitive Hall-sensor was naiugbly tested and cali-
brated beforehand. Therefore, it was expected, that the SOC regestrwould be subject to a lot more
drift than was estimated before. However, the team had to wait until thedagxtefore the SOC could
be more reliably measured and the sensor calibrated.
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Figure 6.11: The fast increase of the battery SOC at the start of the daeslt of side-effects in the
application of moving average. The SOC is given as a function of time in @a§3+ 8h00 on day 2). It

can also be seen that the link with the SolUTra is lost during mediasteg®.4 and: = 2.65), because
the chase car had to be switched off during refueling.

Day 3: Tyre problems worsen

The morning battery SOC measurement revealed a SOC of 2.4 kWh (96.8v¢ bee morning charging
session. The long term strategy (Fig. 6.12(a)) showed an optimal azd spea. 6Gmh. Around 10h00,
the mobile weather station reported massive clouds 100 km ahead. Retiatcofdhe strategy resulted
in an optimal car speed of 58h.

Cloud influence When the clouds eventually appeared all around the car, the input mbderot
really decrease (Fig. 6.13, 2nd graph:3.45 days). The input power, however, became very irregular
and noisy. It is thought that this is due to the reflected sunlight from thaelsl®urrounding’ the sun,
which caused one of the team members to say:

"The best thing we can have is a bright cloud cover with a tiny hole throdgbhathe sun
can reach our solar car"

At 11h00, a new weather report was send from the mobile weather statieeh) showed a decrease
of the cloud cover and an increase of the estimated cloud brightnessamtithe apparently high input
power despite the clouds caused the newly calculated strategy to showraal@peed of 78mh.

Although the PR division called for a faster pace okib, which was briefly adopted, new weather
reports mentioned an increasing chance of clouds and even rain. @teggtwas immediately recalcu-
lated (Fig: 6.12(b)) and the Solar Team was again driving &m60for the remainder of the day, as all



THE RACE 71

Speed and distance over time Speed and distance over time

4000
-13500

&0 L L - ] — o
50 43000 50 |
40 : : 2500 42000
30 2000
20 ]
10 41500

o f | i | | | 1000 o i i i i i i o
269 2605 270 2705 271 2715 272 2725 273 269.5 270 270.5 271 2715 272 2725 273

4000

Battery SOC over time (kWh) Battery SOC over time (kWh)
T T T T T T T

ety B

0 0 I I I I I I
269 269.5 270 2705 271 2715 272 2725 273 269.5 270 2705 271 2715 272 2725 273

Battery SOC over distance (kWh) Battery SOC over distance (kWh)
T T T T T T T T T

0 I I I 0 I I I I I I I I !
1000 1500 2000 2500 3000 3500 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

(a) Day 3 morning strategy (b) Day 3 afternoon strategy

Figure 6.12: Day 3 strategies: strategies show a desired battery SO@.of kyh when the SolUTra
starts for the last 1000 km of the race.

developed strategies called for an increase of Battery SOC for the lasif plae race.

Decisive moment On day 3, the Solar Team experienced no less than 7 flat tyres. With thigréat
rate, the team would run out of spare tyres before Adelaide was mtashét was decided to change
the original tyres with the Michelin Radial tyres (with tubes that could be bbimgAlice Springs), to
realign the wheels and to replace the motor. Some team members spent agaddgenight working
on this.

It was expected, that these tyres would decrease the roll friction soatdwtt the main intention of
using the Michelin Radial was to decrease the amount of flat tyres.

Day 4: Problems solved

The relatively conservative use of energy of the previous day setonag successful, as the morning
SOC measurements revealed a battery voltage of 99.1V, which equals & B&¥@rof 3.5 - 4.0 kWh.
Weather Forecasts are, however, not optimistic, so the long term strategals that the Solar Team will
not reach Adelaide on the sixth day anymore, but will arrive on the sy instead.

Very soon after the depart on day 4, the telemetry system stopped fungtioasulting in the awk-
ward situation that the car has been refitted with a new motor, new tyres andlignment, without
the ability to see what the results are. Minding the experience of day 1, itle@ded that the old car
parameters were to be used, so the long term strategy of Fig. 6.14(apdepted However, the car
driver was able to read and report the battery voltage, which showeddysncrease, so it was decided
to increase the car speed as well fronk@b to ca. 67mh in order to reach Cadney Homestead (ca.
2000 km from Darwin).

The data link is repaired around 12h00. The measurements immediately shoer&lg; than was
expected. New car parameters were estimated (betweef5 days and =4.55 days in Fig. 6.15)
and implemented. Although it is not possible to reliably measure the battery S®&Csath a long
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Figure 6.13: Day 3 measurements of car speed, input power and baB&ryThe measurements show
that the SolUTra drove structurally faster than strategy dictated. HowneBolUTra stopped for the
night with app. 3 kWh and an evening charging session left, as strategyetic
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Figure 6.14: Day 4 strategies: Weather forecasts cause the strategguerbmore conservative. When
new parameter values were found, the strategy changed: Car speéal lveaincreased.
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Figure 6.15: Day 4 Measurements: The strange SOC phenomenonsdcerdoalibrations and estima-
tion efforts of the strategist. The telemetry blackout can be seen during tmérmmarf day 4. In the time
after the restoration of the data link to the SolUTra, car parameters were &stinfden, the SolUTra
drove at maximum speed during the rest of the day.

time without battery current measurements, the SOC is estimated to be the samenasning value,
guessing that as much energy has been used as has been gained.s#atesyy has been developed,
showing much higher optimal speed (8, Fig. 6.14(b)).

It was tried once - just for setting a personal speed record - to dviee faster than 8@1h, but this
was not possible, due to the fact that the not overly optimistic Solar Teanotabjust the airgap of the
motor to a higher maximum speed. There were, however, no flat tyres today

The Solar Team stopped at Poutnoura rest area (2103 km from DaiWhen stopped, the battery
voltage was 101.0V, meaning a pretty full battery and a good starting situatioiext day.

Day 5: "The Dutch are flying!"

The sky is clear at the start of the day, although bad weather was $breca at 7h50, the charging of
the battery is halted, as the battery voltage has reached 105V, meaning letebnfpll battery. The
newly developed strategy for the remainder of the race is shown in Fig. GHéoptimal car speed is
88kmh, which is eagerly adopted by the Solar Team. The strategy furthermorilesaa final value of
2 kWh for the end of the day.

After a couple of hours, the output power appeared to be more tharctexpg@robably due to an
inaccuracy in wind estimations, and car speed was reducedkuh8%lowever, as it turned out, input
power was as well structurally too high (sun coverage estimations beingtseivative) and cloud
formations continued to dissolve as SolUTra made progress. All strategitesdhe developed showed
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Figure 6.16: Day 5 Strategy: For the remainder of the race, a completelydiidry is to be emptied
completely by driving with a constant speed of<9.

an optimal car speed of 3@, so this speed was adopted (Fig. 6.17).

At around 14h00 on this day, the SolUTra solar car set its maximum spebg obice at approxi-
mately 125mh. This was done on a steep downhill track with maximum regenerative braking

The team stopped for the night at 2783 km from Darwin; it was anoth@k20to Adelaide. Battery
SOC measurements showed a 1.6 kWh charge. However, the last acgevokasurements (90.8 V at
ca. 0.25 CmA discharge, see Fig. 2.12) raised some suspicions aboottinacy of the SOC value.

Day 6: Finish

The suspicions of the day before proved to be right as a battery volf@fvbwas measured, meaning
a battery SOC of only 0.4 kWh after the morning charging session. They#dtaperature was 8° C,
due to the cold, which was suspected to have a bad influence on the battdityrizm curve as well.
The temperature sensitivity of the batteries was never studied.

The batteries were put in the sun to warm up at least a bit, as less enerdpe chawn from the
batteries when they are cold.

Luckily, the morning charging session was very successful, due to réegher, and, apparently,
1.3kWh was collected during this charging session. The optimal speealdaug to PALLAS, was
94kmh during the last part of the race.

However, due to the fact that the SolUTra was emptying its batteries, theybatleage began to
drop significantly (Fig. 2.12 for voltages below 93 V). As the maximum spdedeomotor is directly
related to the input voltage of the motor controller, the car speed beganpgadadily, as can be seen
in Fig. 6.18.

Eventually, the SolUTra reached the time finish line (2998 km) at 10h36(44 days) on the sixth
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Figure 6.17: Day 5 measurements: Today, the strategy is closely followed.

day with a battery voltage of 78.5V, which can be considered 'empty’, asdtiery may suffer serious
damage when being used below 75V (the 'zero charge’ limit). The remadidee race (the 'official’
finish at Victoria Square, Adelaide) was traveled with a maximurkmb@ace (sop it is not shown in the
figure), causing the battery SOC to increase again.

Officially, the SolUTra covered the distance between Darwin and Adelaiithean average speed of
67.99%mh. However, on day 5 and day 6, 900 km with 2 media stops were coverellhioudrs and 36
minutes. That means that the SolUTra had an average speedngf 86 this part of the race track.

Ranking

Fig. 6.19 shows the ranking of the SolUTra. It also shows the relativéheeaonditions of the last 2
days for SolUTra and a number of rivals. According to reports froneiotbams, weather was not very
nice, and the SolUTra seemed to have been driving in a 'bright spot’.

6.4.2 Weather measurements

The approximate weather circumstances are shown in Fig. 6.20. Surmgevecreased as the SolUTra
travelled southwards. After the initial northerly winds in the Darwin regidrgregy winds were experi-
enced, both from east and west, causing the wind vane on the chdasertalte a 45° angle with the car
vector at a car speed of 8@h!
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Figure 6.18: Day 6 measurements: Although battery SOC turned out to be tloare expected, the
morning and evening charging sessions turned out to be better tharexkmEcSolUTra was able to keep
on driving app. 98mh. Due to decreasing battery voltage, maximum achievable car speedsistesa
well at the end of the race.
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Figure 6.19: The ranking of the teams. From personal contacts with gM&lams, the cloud cover could
be constructed. This cloud cover consituted the actual weather circurestton the last 2 days for the
SolUTra and her rivals: Both the Dutch teams (Nuna3 and SolUTra) iexped nice weather, while
others were driving under a thick cloud cover.

The weather turned out to be very nice, especially since bad weathdpsaast constantly after
leaving Alice Springs. However, as is mentioned before, the SolUTra seenteve been driving in a
lucky ’bright spot’ between the rainclouds.
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Figure 6.20: Wind speed and direction estimations and weather types in lfudtrang the race. Wind
speed is given as impressions (and single recordings) rather thahraemgurements: the wind tended
to be very variable both in strength and in direction, while the wind directiosasemas very inaccurate.

6.4.3 "Whatif..."

In the last section of this chapter, another long term strategy is develdpeatis case, however, the
now known circumstances of the race are used, as well as the car peraofalay 4 (when the original
tyres were switched for Michelin tyres) and the fact that the batteriesadrehleast 6 kWh instead of
5kWh. Of course, the normal battery safety limits are used. The uppenbsé#fety limit is increased
from 4.5 kWh to 5.5 kWh. Fig. 6.21 shows the "What if* optimal strategy.

According to the strategy, the SolUTra could well have arrived in Adelbafere noon on the fifth
day, competing with the FORMOSUN 3 for 5th place (appendix G)! The piiedistill is not accurate,
as guesses still have to be made concerning the morning and eveninghghsegsions and the bad
weather that haunted the rival teams in the last few days, while the SollRdniving in the sun.

However, the optimal strategy shows a behaviour (battery SOC as a furdtidistance) that is
similar to the previously developed optimal strategy of day 1 |(Fig.6.9(a)hdrging to app. 30% SOC
in the first 1000 kilometers, charging up to app. 70% in the 1000 to 2000 lettistrand emptying the
batteries in the last 1000 km. In order to do that, the car speed graduakases from app. &8k
in Darwin to 93mh in Adelaide (due to low Sun Coverage in the vicinity of Darwin), resulting in an
optimistic average speed of 87h (mediastops not included).

Also, the constant average speed strategy is plotted in Fig. 6.21 (dasited\). The fact that the
final value of the battery SOC is higher in case of the constant averagegstishows that this strategy
is more efficient. However, when using this strategy, the battery SOC gegedausly (battery safety
limits are exceeded) low on day 2.
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Figure 6.21: The long term strategy with all circumstances known and daraheters. Also, the

constant car speed strategy is shown (dashed).



Chapter 7

Conclusions & Recommendations

7.1 Conclusions

7.1.1 PALLAS as part of the SolUTra Project

PALLAS, with lateral use of 20-Sim, has been a valuable tool in managinggbeeofienergy by the
SolUTra during the World Solar Challenge 2005. It was able to:

« spot flaws in the mechanical tuning of the car;

» predict the long term average power consumption of the car and usepretictions to develop a
racing strategy within minutes;

» show whether the team was able to maintain the schedule set by the optimaglystrate

Without the combination of the telemetry system and PALLAS, the team wouldavetlieen able to
drive efficiently and to make an effort to find the fastest racing strafElgig is clearly illustrated by the
proceedings on day 1 and day 4, when the telemetry system did fail for ttmeeresulting in serious
divergence between model and reality.

7.1.2 Modeling & Strategy Development with PALLAS

» PALLAS makes use of a simplified model of the SolUTra for calculating thec&ffof choosing a
certain car speed. The model parameters are determined by testing thessaiMdrious constant
speeds. Due to lack of proper tests and accurate measurement equipeertdéi could only be
identified with relatively low accuracy.

* PALLAS develops constant average car speed strategies (the $otlifes at a constant speed
for a certain time or distance) which are not optimal (Pudney, 2000), iyt a few minutes
slower than the perfect strategy. 20-Sim is used to calculate the optim#hnbagerage car speed
strategy.

* In order to counter inaccuracies in the strategies, the car and roadsaodehe weather forecasts,
a monitoring system is added to PALLAS. This monitoring system is used to thastrategy that
is followed by the Solar Team, and it proved to be invaluable in maintaining the dgirategy.
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7.1.3 Final Conclusions

The Solar Team was not able to run a perfect race. This was mainly duettiems with:

* tuning the tyre settings of the SolUTra, which caused the SolUTra to conswre power than
expected,;

» failures of the Telemetry system, preventing the team from discovering ¢lceurately estimated
model parameters quickly;

* the general inaccuracy of the sensors used, adding to the inag¢hiea8olUTra model, the inac-
curacy of the developed strategies and the ability to monitor the process.

As long as the accuracy of the measurements needed for model identificadasuring road charac-
teristics and strategy monitoring is not increased, the potential of the Sotadmret be fully exploited.
Had the Solar Team been able to

* increase the general accuracy of its measurement systems;
» perform more and more specialized tests to identify the model parametere bwed race;
» perform more tests to get the tyre settings right from start,

it may have been possible that, instead of crossing the finish line rankindg@#h the team would have
crossed the finish line a full day earlier, ranking 6th place, maybe 5th.

7.2 Recommendations

7.2.1 Regarding Strategy Development using a model of the Bblra

» The mostimportant shortcoming of PALLAS Strategy Development is thevelktiv accuracy of
the measurements, causing an inaccurate model, inaccurate strategiesefdity to accurately
monitor the strategy followed. The first improvement should therefore leastg the accuracy
of the measurements and the reliability and robustness of the Telemetry systpecidlly the
battery SOC measurement (appendix F.2.2) and the weather measureméntseaimproved.

» A car model is as accurate as its defining parameters. Determining thetaoodel parameters
is vital for the development of accurate racing strategies. More resg(fticne for tests, mea-
surement equipment) have to be used to accurately determine the car pesaanet¢he road
characteristics of the race track (appendis F.2.1).

 To further improve the accuracy of the strategy development, improvinghtdeling of the car
(appendix F.1) and increasing the detail of the road data is an option.

* As long as the accuracy of the developed strategies is not improvee iy gain in using opti-
mization methods that calculate even better strategies, such as Pudney’d (agihendix C). As
long as the strategies developed cannot be relied on in the long term, a fetesnimprovement
over a distance of 3000 km is insignificant.
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7.2.2 Monitoring the strategy

The simple nature of the solar car model implies that reality and strategy will dfffien significantly,
making it harder to decide whether a new strategy has to be developed. Mvérpe accuracy of the
monitored strategy2 models can be used:

1. A simple model of the solar car and a less detailed road model which atécugeickly calculate
an optimal strategy;

2. An extended and more accurate model of the solar car and a detaitechooke! for calculating
an accurate simulation using the optimal speed of the earlier developed opitimbed s

The simulation which is made using the extended model can be used for monitoring

7.2.3 Regarding the Design & Implementation of PALLAS

» The combination of using 20-Sim for optimization and a Matlab programmed &dhanterface
turned out to be successful. The transfer of data between a Matlabr@20aSim and vice versa,
however, is laborious. Especially as some procedures are still to be éallow20-Sim to run an
optimization. The time to develop an optimal strategy can be decreased if thguratifin of
settings in 20-Sim is bypassed (appendix F.3).

7.2.4 Other suggestions for improvements

Other aspects that can be improved are:
Tyres Next time, the Solar Team should start using Michelin tyres, or similar qualitg tyight away;

Wheel alignment The problems with the tuning of the tyres nearly ruined the race for the SalUfr
would be a good idea to find a way to do this task quickly and reliably;

Cruise Control Although the team used a cruise control, it was rather a primitive one, whrashmat
able to make car speed increments of less than Zwok,3vhile a cruise control is needed, which
is able to make increments oftth or less;

Telemetry Telemetry failures that cause such problems as the Solar Team expdrietitie episode of
the WSC may simply not occur. A robust telemetry system is needed, with louceld failure.
A back-up system must ensure storage of measurement data for laterutsain the event that a
failure does occur;

Weather forecasts The team may want to find an experienced weather forecaster, frgfartamous
weather man, who may be able to attract some extra positive publicity and aaftchbisexperience
and services to the team resources.
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Appendix A

Symbolic Optimization

In this appendix, the optimal racing strategy is calculated symbolically, usingyRgin’s Minimum
Principle.

A.1 Minimum Principle (Pontryagin)
The next theorem for ame-optimal control problens taken from (Boom & Schutter, 2004, page 62).
A system with initial and final conditions is considered:
z(t) = f(z(t),u(t)), x(to) = 0 andz;(te) = ;i =1, ...,7 (A.1)
with cost criterion

te
Jto(x(]vua te) = g(x(te;to,xo,U)) + fg(x(t,to,xg,U),U(t))dt (AZ)
to

With HamiltonianH (because of brevity, function arguments are not shown):
H(&vxauv)‘) :fo(.’L',U)-i-)\fo(.T,U) (A3)

Theorem A.1 (Pontryagin’s Minimum Principle for time-optimal contro | problems) Letu*(-) be the
optimal control and? the optimal final time for the cost criteriof,, with system equation A.1. Let(-)
be an optimal state trajectory. Then there exists a functign and a constani, € 0, 1, such that

() = flz*(t),u" (1),

z(to) = o

a:i(t:) = i‘i, 1= 1, A (A.4)
: 0

E0F = =S, 0,0t 1), ),

§) = [Fee)], =t

and for almost alkt € [to, t.],

H(E(t), x™(t),u*(t), No) = %iurjl H(E(t),x*(t),v, \o) (A.5)
For the final time,
H(E (te), z" (L), u™(te), o) = 0 (A.6)

Using this theorem, the optimal state trajectary(¢) and the optimal system input‘(¢) can be
calculated.



84 A. SYMBOLIC OPTIMIZATION

A.2 Model equations

In short, the model equations of the SolUTra model are:

( 28 ) - ( Py (1(t),t) }gut(wl(t%u(t)) )

x(to) =Xy andxi(te) = .f:‘i,i = 1, T (A.7)

With z; the traveled distance;, the battery SOC and(t) the car speed. Input power depends on time
and position (clouds etc.), while output power depends on position (Wiogdes etc.) and car speed.
The cost criterion (without end criterion, agt.) is already defined):

te
J = te+/ U)Qh(l‘g)dt

to
zi(to) = Okm, x] (te) = 3000 km
zi(te) = 5kWh,  3(t.) = 0kWh

with h(z2) > 0 the battery safety function, which is zero when physical battery limits aresebed.

A.3 Solving the optimal Strategy Problem using Pontryagin

Solving the optimal strategy problem means calculating the optimal state trajestbitysaoptimal input,
using equation A.4 to Al6.

A.3.1 Deriving the ODE’s
The system of eq. A.7 is considered. The Hamiltonian|(eg. A.3):

HEO20000) =€ (g B ey ) TR b)) A

H is minimal, where the derivative df with respect ta.(¢) is 0. So, loosing the argume(t):

OH T 1 B
%(iax,u, Ao) =¢& ( 0ot (3, ) ) =0 (A.9)
The co-state:
o OH [ (B (m,u) - G (1))
’S (t) - 81' (é?xvua)‘()) - ( —AOUJQ%<1’2) (AlO)

For the final time, eq. A.6 applies:

HE .2 1D = € (g o) - B )+
+ o(1 + wah(x3(£2))) (A11)
Now, 2 systems of 2 differential equations (eq. A.7 and A.10) have begwed, which can be
solved, using the initial and final state of eq. Ad(#) = zo andz(t.) = ( ngzd >), while
satisfying eq. A.5)\( can be chosen such, that eq. A.5 is satisfied.
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A.3.2 Complexity of the solution

Now that a system of 4 ODE’s and 4 initial and final states is derived, tisiesyis to be solved. This
task is, however, complicated:

1. The ODE system has the characteristics of a boundary value proB¥éR).(BVP’s can be cal-
culated with MATLAB using thebvp4cfunction. However, this function is not able to solve a
time-optimal control problepsuch as the one presented in previous section.

2. Using normal MATLAB ODE solvers (such asle45 is complicated by the fact that these solvers
are designed to solve initial value problems, while the system of eq. A.7 a®dshalmixed initial
and end value problem. Schutyser (Schutyser, 2005) also ran into thkepr and suggested
rewriting the problem from analytic to numerical.

3. Piu(z(t),t) and P, (z(t),u(t)) represent calculations based on partially guessed information
derived from a database tablé’%(m,t)) in eq. | A.10 will then, in the best case, be hard to
calculate and it will be undefined in the worst case.

The complications mentioned above suggest to choose another option tthedivee-optimal prob-
lem of eq. A.7. As is mentioned before, Schutyser (Schutyser, 2005pte the problem to a discrete
optimal control problem. In that way, he calculated an optimal inggk) over a time span olV time
steps.
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Appendix B

Numerical Optimization methods

This appendix mainly treats the concept of convexity and the theory oSi{ewton optimization
methods used to solve common optimization problem types numerically.
An Optimization Problem is defined as a search for the minimum of the objectigg) fanctiony:

f(z*) = minf(z)

in which min, f(z) may be subject td(z) = 0 andg(xz) < 0 when considering constrained optimiza-
tion.

B.1 Convexity

Many optimization methods require the cost function to be convex in orderacagtee the optimal
solution to be globally optimal. This section contains some definitions regardinvgxasets and (quasi-
) convex functions.

B.1.1 Convex sets

Definition B.1 (Convex set) A setC in R™ is convex if for each pait, y € C and for all A € [0, 1] the
next property holds:

1-Nz+yeC

This definition implies that a set is convex if the line segment joining any two poitheiget lies entirely
within the set ((Boom & Schutter, 2004)).

B.1.2 Convex functions
Definition B.2 (Quasiconvex function) A functionf is quasiconvex if
1. The domainlom(f) is a convex set

2. Ifforall z,y € dom(f)andX € [0, 1]

F(A =Nz +Ay) < max(f(z), f(y))

applies.
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This definition implies that the function curve between two points lies entirely ruthge maximum
function value of these two points in case of a quasi-convex function.

Definition B.3 (Convex function) A functionf is convex if
1. The domainlom(f) is a convex set

2. Ifforall z,y € dom(f) and\ € [0, 1]

FA=Nz+Ay) < (1=Nf(z)+Af(y)
applies.

This definition of convexity implies that that a function is convex if the line sedrj@éning any two
points of the function lies entirely above the function curve. A function thawoisconvex, is quasi-
convex if the contour lines of the function are convex.

B.1.3 Convex optimization

Optimizing a convex cost function implies that this cost function has only one mmingo, the local
minimum that is found is guaranteed to be the global minimum.

Convex optimization is regarded to be quite simple and relatively easy to compugzigally. More
information on this topic can be found in (Boom & Schutter, 2004), (Bazataal., 1979) and (Ne-
mirovsky & Yudin, 1983).

B.2 Numerical Optimization
Most optimization methods start with eq. B.1, in which the optimal solutibis calculated iteratively.
Tiv1 = x; —di - 8 (B.1)

In this equation is; the step length, which determines the displacement of soluti@iong the search
directiond;.
The next section treat the various ways to calculate an optifreaids;.

B.2.1 Direction determination and line search methods
Line search

Line search algorithms are 1-dimensional methods, which optimize alongc@hs#iegction (Boom &
Schutter, 2004). Examples of line search algorithms are Parabolic @ica@nd Cubic interpolation,
Golden section, Fibonacci etc. These methods find a minimum along the siraation, after which a
new search direction is determined.

The search directiod; of equation B.1 often has the form of:

d; = —-B.'Vf

where By, is a symmetric and non-singular matrix. When using the steepest descentnigtemply
is the identity matrix/. In case of Newton’s method3y, is the exact Hessian.
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Direction Determination

Direction determination can be roughly split into 2 groups:
» Perpendicular search methods
» Gradient methods and conjugate-gradient methods

The former is used when information abduy (x) is not known or not used. The latter use the gradient
information to determine the optimal search direction, as has been descritrestimus section.

Common perpendicular search methods are Powell’s perpendiculahn seeittod, line climbers etc.
Examples of gradient methods are the steepest descent method, the BR@$ ¢nd the DFP (B.2.2)
methods.

A method that makes use of the gradient, but not the Hessian is the FletebeesRlirection method
(Boom & Schutter, 2004). This method uses the present gradient atatagit with the last search
direction:

di = —Vf(z:i)+ pidi—
where
o @)V
VT (@i-1)V f(2iz1)
Step length

When calculating an optimal step length a trade-off is to be made between accuracy and calculation
time. There are some generally used conditions, such as the Wolfe conditidrtte Goldstein con-
ditions, which help decide the length of the stgp More information on this topic can be found in
(Nocedal & Wright, 1999).

B.2.2 Newton & Quasi-Newton optimization
Newton gradient-based method

The Newton Method basically is a refinement of the steepest descent m&aparda et al., 1979),
which may suffer from bouncing. The Newton method deflects the seamettidn using the second
derivative (Hessian) of the minimization function.

The method of Newton starts from the quadratic approximagiarn at pointz; ((Bazaraa et al.,
1979)):

1
q(z) = f(zx) + V) (z —zx) + Sl = ap) H(zg) (z — ) (B.2)
with H(z;,) the exact Hessian matrix gfatz;. For optimization, the necessary conditiorNoj(x) = 0

applies. SOV f(zy) + H(zy)(x — x) = 0.
According to Newton, a better approximation of the optimas then:

Try1 = xp — H(zp) 'V f(2) (B.3)

with H(zy) invertible atxy.
The method of Newton does not converge for all initial situations. Howenedifications to New-
ton’s method can be made to guarantee global convergenckdvenberg-Marquardinethod).
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Hessian Update: Broydon-Fletcher-Goldfarb-Shanno (BFGS)

One important drawback of Newton’s method is the fact that the exactafidssneeded to calculate the
search direction. Instead of calculating the exact hessian, the BFGSdrgthmximates it, such that

v = 2 — () V() (B.4)

with H (x1,) approximated by

. . ¢ HT H;_
H, = H_1+ qZqu - ;_} =l
q; Si s; Hi_15;

S = Tj— Ti—1

¢ = Vf(xi) = Vf(ziz1)

Hessian Update: Davidon-Fletcher-Powell (DFP)

The drawback of the BFGS method is that the approximated hessian still todsslgverted in order to
use it for the line search. The DFP method approximates directly the inverssthh via:

Tpi1 =z — D(2)V f (1) (B.5)
with D(x;,) approximated by

. . sis]T  Di_1q:q] DI
Di = Dia+ - ——%=
q; Si q; Di—1q;

Si = Ti— Ti-1

¢ = Vf(xi)—Vf(zi-1)

Approximating the Gradient

All methods mentioned in the previous sections require a gradigiit:) for calculating the next itera-
tion. However, it may be possible that an analytic gradient is not availadlevhen that is the case, the
gradient should be approximated as well.

The gradient can be approximated using finite differencing for exampleddial & Wright, 1999).
This is also the method that MATLAB uses for approximating the gradient iTdt@works Inc., 200d).

A general impression of the finite differencing method is given by:

ﬁ(x)%f(x‘i‘ﬁei)_f(x)

B.6
ox; € (8.6)

in whiche — 0 for large accuracy. However, a smalinay cause instability: round-off errors made by
floating-point arithmetic are ignored in the computation. According to (Ndcgd&right, 1999), the
following choice fore is fairly close to optimal:

e=+u (B.7)

in which u is the round-off error, which is typically abowi6 ' in double-precision arithmetic.

The mentioned differencing method of eq. B.6 is a forward-difference adetagain, (Nocedal &
Wright, 1999)), and mainly used to give a notion of the concept of finitewficing. The formula of eq.
B.6 can be refined to increase accuracy (central difference formutb3tability (backward differencing.
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B.2.3 Nelder-Mead

A method that does not make use ofleq. B.1 is the Nelder-Mead method (B&ehu&ter, 2004), which
makes use of the geometrical properties of a simplex and does not n¢ed fezond order derivative
information.

A simplex has: + 1 angles, in which is the dimension of the vector space (e.g. when considering
optimizing overR?, a simplex resembles a triangle). The objective function is calculated forafdloe
angles. The angle at which the objective function is highest is discaameldthe triangle is 'reflected’
or flipped around the line segment between the other angles. Then, ti®fuvalues for all angles are
evaluated again, after which the triangle is flipped again, until a minimum hasibeed.

this method can be expanded (e.g. simplex scaling) or combined with other methottrease
optimization speed and accuracy. However, when optimizing for a largef parameters, this method
becomes rather slow.

B.2.4 Constrained optimization
constraints

In constrained optimization, the object function is subject to a number otradmts, which force the
optimization method to look for an solution to the OP in a bounded set of inputblesiaA general
definition of a constrained optimization problem is given in (The Mathworks RD04):

min, f(z) subject to

c(r) <0

ceq(z) =0 (B.8)
A-z<b

Aeq - x = beq

Ib<z<ub

In whichz, b, beq, [b andub are vectorsA and Aeq are matrices andandceq are (non-linear) functions
that return vectors.

Constraint OP’s are generally rewritten to unconstraint OP’s by eliminatangdhstraints (Boom &
Schutter, 2004). Non-linear (inequality) constraints are usually tacklgddorporating the constraint
function into the objective function using barrier or penalty functions.

Barrier & Penalty functions

Penalty function Introducing a penalty function in an object function to eliminate a constrairftés o
carried out using a quadratic, which penalizes violation of the constraint;
Minimize f(x)
subjectto g(z) <0
becomes
Minimize f(z) 4+ pmax0, h(x)
subjectto = € E,
with p large.
However, a large: (ill-conditioning) can cause some computational problems, as alamggy cause

the Hessian to explode, which is explained in section 9.2.2 of (Bazaraa B9#9). Quasi-Newton and
conjugate-gradient, however, are unaffected.



92 B. NUMERICAL OPTIMIZATION METHODS

Barrier functions  Another way of eliminating constraints is introducing barrier functions. Gihe
problem
min f(z) subject toc;(z) > 0, i€z, (B.9)

thestrictly feasible regions defined by (Nocedal & Wright, 1999):
Fo ={x € R"|¢i(x) > OVi € T} (B.10)

Barrier functions are infinite everywhere exceptAfi, where the function is smooth. The barrier func-
tion, however, approaches infinity asapproaches the boundary 7. As such, the barrier function is
designed to keep the optimization method within the feasible region.

Like penalty functions, barrier functions may suffer from possible irilitils due to ill-conditioning
and the discrete nature of numerical algorithms used to solve the OP. Qaati+Nand conjugate-
gradient methods are, again, unaffected (Bazaraa et al., 1979).

B.3 Global Optimization

When the object function is not convex, only local minima are found, ananihot be guaranteed that
the minimum that is found is global. (Weisstein, 1898nd (Boom & Schutter, 2004) mention a number
of optimization methods that can be used in order to increase chancesinfjfihd global optimum. A
small number of examples is given here:

Shot methods A one-shot method starts at a certain initial solution and tries to find the glptiaiam
from there. Scatter shot methods, however, try to find the global optimumdrnumber of initial
solutions.

Genetic algorithms Mimicking biological evolution and the concept of "Survival of the fittest'isth
algorithm uses a population, of which all individuals are identified by a iceR&lA code. The
best individuals are selected and a new generation of individuals witimt@oed DNA is bred.
Some artificial noise (mutations) can be added in order to avoid inbreeding.

Simulated annealing is named after the process undergone by misplaced atoms during the cdoling o
metal. By also accepting solution sets which are not lowering the objectiv@idan(using a
certain threshold), the algorithm allows the solver to explore a wider sgauEssible solutions.



Appendix C

Controlling battery current instead of Car
speed

C.1 Introduction

Pudney (Pudney, 2000) uses the minimum principle to solve the OptimizatioteRrobdriving as fast
as possible from Darwin to Adelaide in a solar car.

Pudney has been the Strategist of the Australian Aurora solar team Sig8add has won the World
Solar Challenge in 1999 and became second for three times in a row in the2B031and 2005 episodes.

C.2 Car model - advanced

C.2.1 Aurora model

Pudney uses a slightly different model for model calculations, which doefgnore acceleration and
deceleration. He considers the OP as an optimal control problem, with tiomwbb(¢) the power from
the batteries. The equations of motion are (wittb, v) the drive force ,R(x, v) the resisting force and
G(x) the gradient):

dx

hated— A
o v (C.1)
D L pe,0) = R@,v) + G@) (C.2)
.  m ’ ’ '
The energy storage equation is
dq)
X7
o ()
and the battery is constrained by

The resisting force:

1
R(z,v) = mgcr1 + Nepav + §pCdA(’U — vw)2

and the drive force:
nplb+ s

F(b,v) = ”
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in which s is the power from the solar panel ang the efficiency from the drive system.
However,np is not constant, as the losses in the motor are

P, out
(%

2
L(Poutav) ~ ( ) and L(Poutyv) ~v®

Non-constant battery efficiency is also included. The battery voltage is

V. = ep—1IRp I1>0
V. = e —IR¢ I1<0

with Rp andR¢ internal resistances while discharging and charging. It can easilyelpetisat the larger
the battery current is, the larger the losses in the battery are.

C.2.2 Determining the parameters

Parameters values like the roll friction and the drag coefficients are neshbuyrtesting driving under
circumstances that are very well determined and measured. Test druemg@erformed by driving at
various speeds and fitting a least-squares quadratic to the data.

C.3 Pontryagin - again

C.3.1 States, boundaries & costs

The state is defined &$t) = [x(t), v(t), € E and control input is:(t) = bi(t) € U. Initial and
final value conditions are(0) = 0, v(0) = 0, Q(0) = Qo andz(ty) = z;. The boundary conditions
are ;(8) = 0 applies):

a(B) = =(0)
92(8) v(0)
g3(B8) = Q(0) — Qo
94(B) = w(ty) —ay

(C.3)
The cost function of the optimization problem is

go(B) =ty

C.3.2 Constraints

There are a number of constraints, for example the maximum power flows batteey and the motor
and the physical limits of the battery. Similar to the boundary conditions, thestramts are put in an
arrayo(t, &, u) for which ¢;(t, &, u) < 0 applies.
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C.3.3 Hamiltonian

Using multipliersiA, = andu, the HamiltonianH is defined as

H<t7§7u77r7:u’) =T f(tvé.uu) U (b(tvfuu) (C4)

and

G(B) =A-g(B) (C.5)

with f(t, &, u) the state equatior‘(&() = f(t, & u)).
Now, the following conditions must be met:

2. pi(t) - it & (t),u™(t)) = 0
3. The functiong™*, v*, # andu must satisfy the Euler-Lagrange equations

d¢  OH dr  OH dH

dt — om’dt  9¢ du

4. The inequality
H(t,&(t),u,m(t),0) < H(t, & (t),u", m(t),0)

holds for all feasiblét, £*(¢), u) (thus, maximizing the value of the Hamiltonian).

C.4 Results: points of interests

Using eq! C.4 and the corresponding conditions, Pudney derives somlke sules of thumb. Pudney
guantifies them as well, as the rules of thumb do depend on the magnitude afge i the drive train
and the batteries.

C.4.1 Driving modes

Summarizing, Pudney distinguishes 5 'driving modes’:

Maximum Power motor input power is maximal, accelerating the car as fast as possible to optimal
speedvx;

Discharging the battery at a lower critical spe&d This mode is especially used in the mornings and in
the evenings. In order to cut losses due to battery inefficiency, theyatteent is kept relatively
small;

Solar Power driving with P,,; = P;,, or in a state, in which the battery currdipt;; = 0);

Charging the battery at an upper critical spedd (W > V). This mode is used around noon. In order
to cut losses due to battery inefficiency, the battery current is keptwaiagmall;

Maximum Regenerative Braking to a complete standstill.
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C.4.2 Non-uniform circumstances

As the 5 drive modes apply to a road with uniform inclination, solar coverageckbud brightness, as
well as wind speed and direction, some extensions to the driving modes dee ma

* When the road gradient changes, so does the car speed: bef(lPesitase) inclination starts, the
car speed is to be increased somewhat. During the inclination, car sekly drops. After the
inclination, car speed is increased to the original constant speed.dmtasegative inclination,
the procedure is reversed.

* In case of locally decreased solar coverage (clouds etc.), the ead should be increased, in
order to get out of the locally clouded region quickly;

» Pudney did not treat the influence of wind on the optimal strategy. It isetier, obvious, that it
will have some influence similar to but larger than gradients?@g ~ v3.

C.5 Conclusions

One of the most important conclusions that Pudney draws, is the fact that:

"With average weather, all of these strategies will get you to the finish lineuale of
minutes earlier than if you had traveled at a constant speed.”

Furthermore, Pudney concludes, that the car will "inevitably stray froynpre-computed journey
profile", due to errors in the modeling of the car. For this, Pudney statrg #ne two ways to compen-
sate:

1. Driving the car to follow the predicted charge profile instead of theipied speed profile (How-
ever, in personal contact with mr. Pudney, he mentioned the fact thatthe. Wwhole (...) thing
goes to pieces", when the weather goes really bad);

2. Recomputing the profile when straying too far.

Last but not least, Pudney is allowed to conclude that also thanks to hegstealculations, Aurora
won the the 1999 episode of the World Solar Challenge.



Appendix D

Programming PALLAS in Matlab

D.1 Introduction

This appendix starts with explaining the Matlab GUIDE tool. Subsequentlypiags the structure of
the PALLAS program. Eventually, some recipes for using PALLAS aremjiv

D.2 Matlab GUIDE

Matlab provides a Graphical User Interface Design Environment (BE}Ifig. D.1) in which one can
design object oriented UI's in a relatively easy way.

GUIDE provides the user with a design sheet (a Matlab figure object) inhwehitumber of inter-
face objects, such as buttons and slide bars, can be placed. Thetipgopkeach interface object can
be changed and each interface object has a number of Action-fun€i@aikbacks’), such as 'Create-
Fcn’ and 'KeyPressFcn'. After designing the layout of the interfalee,only thing the user still has to
do, is to implement the Callbacks, so the actual programming can be considdredjuite functional
programming, as the object oriented approach is completely generated emdineal by GUIDE.
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File Edt Wiew Layout Tools Help
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k Select *
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[ Toggle Bution IW
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"8 Button Group Toggle Euttonl

X Activex Cantrol

O Radio Button

L
< ¥

Figure D.1: The interface of the Matlab GUIDE.

Matlab uses an algorithmical (functional) language for exclusively arogning functional pro-
grams. This language is not suited for object oriented programming, egloy the design of a Ul.
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Callback Function
ButtonDownFcn| Executes when a mouse click is performed within certain distance from Udtobje
Callback General callback function

CreateFcn Actions undertaken upon a 'Create’ event
DeleteFcn Performs cleanup operations, just before deletion of the object
ResizeFcn Actions on resizing the figure

KeyPressFcn Executes when object has focus and a keyboard key is pressed

Table D.1: The interface object callbacks and their applications (defreed (The Mathworks Inc.,
2004)).

To overcome this, Matlab uses a certain data structure to be able to stors ¢ggecsection D.2.1). This
caused, among others, the fact that normal object operations (ca)badk++ like (onPush’ being the
event that the pushbutton has been mouse-clicked on)

pushbut t onl. onPush(varargin);
are analogous to
function pushbuttonl Call back(hCbject, eventdata, handl es);

which is a private function of the class of the objé&bj ect (in this case the Matlab figure). The
input argumentevent dat a is currently not being used but already reserved for future use. The
| handl es] structure is a structure of all attributes of objé¢ibj ect . Normally, only the 'Create-
Fcn’ callback and the general callback 'Callback’ are implemented.

When saving the Ul, GUIDE saves the Ul in 2 files:

» A . fig file, which is basically a normal Matlab figure file. This file contains and hides th
construction of the Ul objects;

» Aregular. mfile, which contains the implementation of the callback functions.

Itis also possible to export the Ul, when saving, to a singidile. All hidden Matlab operations become
visible then.

D.2.1 Matlab GUI structure
Program Flow

As has already been stated, the functional nature of the Matlab prografamiggage complicates object
oriented programming. Instead, some tricks have been used to provide dms foe object oriented
programming, without bothering the Ul designer.

When executing a GUI program, basically, a Matlab function is invoked.dcéise stated in fig. D.2,
this is the function implemented in the fiexam.m(example).

Starting When invoked,Exam( var ar gi n) starts the GUI construction process by invoking the
gui _mai nFcn function (theExamfunction is merely a wrapper function for tlgui _mai nFcn).
This function constructs the various Ul objects (by invokiBgam Layout Fcn, which contains the
layout as it was designed in GUIDE) and invokes Exaam Openi ngFcn, which can be changed by
the Ul designer. It is possible to invoke tBgan( var ar gi n) function with arguments, e.g. when a
GUI dialog window is called from another Matlab program.
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Figure D.2: Matlab Ul flow diagram: the implementation of the dashed blocks ealtéred by the Ul
designer.

uiwait & uiresume  After the GUI has been initialized, the Matlab figure object goes in to a 'waiting’
state by invoking the speciali wai t function. In this state, the figure waits for Ul events, that start
callback actions. This waiting state is only used for GUI's in which a us@orese or action is expected.

Callback Inthe case of an Ul event (button being pushed, etc.), the Matlab GtiduyExam( var ar gi n)
is invoked as follows:

Exam(’ CALLBACK' , h(nhj ect, event Dat a, handl es, . ..)

with '"CALLBACK’ a string containing the name of a callback. In that case,so0me detour, the accom-
panying object callback function (a subfunction of #eamfunction) is invoked, which carries out the
callback method.

Terminating A program closing action consists of invoking r esume, which puts the Matlab fig-
ure object out of the waiting state, continuing the program flow. The fum&icam Qut put Fnc is
invoked, which carries out final actions, such as determining the funetitput ofExam.me.g. in case
of Exambeing invoked from another Matlab program, and destroying Matlab okljiwisrs etc.).

GUIDE Data structure

A Matlab GUI communicates internally (between subfunctions) by passing Matkb structure of
'handles’, conveniently calletiandl es. A ’handle’ is merely a Matlab definition of a pointer (in
C(++)) to a Matlab Ul object.
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This structure of handles is stored, using theghe dat a function, in the 'Application Data’ of the
Matlab figure object, being the 'attributes’ of the Matlab figure object. Afsarh the array of object
handles, the Ul designer can decide to add other properties and atttibtiiesand| esstructure. After
changing the structure, it has always to be stored in the figure’s 'afiphicdata’, by using the

gui dat a( hQbj ect, handl es)

command. Théiandl es structure is stored in the 'application data’ of the Ul obja€bj ect . If
that is not possible (in case of some of the Ul object), then the object’stpalogct is used to store the
handl| es structure.

The concept of 'application data’ is especially added to Matlab Ul objecth&opurpose of provid-
ing a way to use object oriented programming in Matlab, without bothering tlde&lgner too much. It
contains thdhandl es structure and some other information regarding e.g. the parent object.

D.2.2 GUIDE Objects

A short description of each Matlab Ul object is given below. Most of thekjects are also shown in
fig.D.1.

Figure The figure object contains all other Ul objects. It is the parent objetighaostly being used
to store thehandl es structure;

Pushbutton The pushbutton is a button that acts when pressed. Commonly used fomdeigments,
cancellations and the opening of other dialogs;

Radiobutton The radiobutton can be used as a switch, like the checkbox. When conitbizél panel,
a number of radiobuttons act as a selector: only one radiobutton is 'onegtime.

Axis The Axis object is a graph. It is generally used for data feedback toste u
Checkbox The checkbox is generally used as a switch. It determines a yes/no;choice
Ulpanel The Ul panel basically is a container, use to bring structure into the GUI;
Edittext A text area. The user has the option of directly changing the contents eéxhiarea;
Statictext Static text that cannot be altered directly by the user;

Toolbar A bar containing action buttons at the top of the GUI. A toolbar is often beieg ts hold
'save’ and 'load’ buttons in windows applications;

Pop-up Menu The pop-up menu provides the user with a number of tagged choices;
Listbox The listbox is a list, of which items can be selected;

Slider The slider, or 'scrollbar’, provides the user with the option of choosimgproximately analogue
value, unlike the binary checkbox and pushbutton objects.

Added functionality is the ability to program drop-down menu’s in a GUIDEgpam. Menu'’s as 'File’
and 'Edit’ can, in this way, also be added to Matlab GUI’s.

The latest versions of GUIDE offer also the ability to use ActiveX contevices. However, no help
to use these controls is given, so the Ul designer must be able to progeaenAbtiveX controls.
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D.3 PALLAS GUI

PALLAS is built using the Matlab GUIDE tool. Generally, this means that the acdiject oriented
approach is automatically programmed by Matlab, while the only thing to be designéALLAS,
were the methods belonging to each functionality of the program.

D.3.1 PALLAS GUI structure

The core of the PALLAS GUI (Fig. D.3) is the main window with no less then 7 monigoscreens,
which can used for monitoring the strategy and measurements. It contdotkdar regularly updating
the measurement data, which is directly drawn from the Database. From ihaaengen, the PALLAS
user may open other dialog windows, each handling a different matter.

Main Window 9 Config DB link + Database Link

- struct Simpar - int connectiontype o 1 - real CircuitDataMat

- struct SimSett 'Initializes'—_1_ real MeasurementDataMat H

- - Connect st

- struct SImTXT » - real StrategyDataMat

- struct Monsett SetDBconfig_PAL.m E - char LogMessages

- struct Data "Uses' =i
+ real Circuit . StUpdate :
+ real Measurements 1- SetStrategy '
+ real Forecast - GetMeasurements
+ real WeatherMeas % Parameter Sett. | =~ peeeeeeeesseeseeeees 1

- real ActiveStrategy
-timer Timer1: Clock
- timer Timer2: Sample

7 Monitor

- struct MonSett
- struct Data

- struct Simpar
- struct SimSett
- struct SImTXT
- struct Data
+ real Circuit
+ real Forecast

Uses SetlnputPar
SimulSet_PAL.m _ struct SimPar
- doClock1: clock 'May Use' -struct SimSett
- doClock2: monitor , , Setlnput_PAL.m
May Open . i
update OptimChecklist
- Examine Strategy
- Optimize carspeed - struct zfmls’ar
_ - struct SimSett 'Creates’ -
UpldateAxes - struct SimTXT 20-Sim Model
main_PALm - struct Data
+ real Circuit - car parameters
+ real Forecast - road characterist.
, , , , - struct Strategy - Simulate
May Open Updates + struct Data - Optimize
+int level
- ReadNFile
SEeedscreen - 20SimtoMatlab
- writeTXT
-timer timer N "
- real optstate OptimChecklist_PAL.m
OptimalSpeed_PAL.m 'May Use'
Retrieves .=>| Examination

State

- struct SimSett

- real curstate - struct ActiveStrategy

- real optstate

- SetNewSimSett

Examstrat_PAL.m

Figure D.3: PALLAS object model diagram. The objects witlic file names are actual GUI dialog
windows. The dashed Database Link is designed and built by Vincerin@uis.

Speed ScreenThe Speed screen, or Optimal speed screen, only has to show the optimahtaoy
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speed in such a way that it cannot be misread;

Config DB link The Config DB link dialog window is used to alter database link settings. Althdugh
saw some changes over time, it was eventually designed as a simple choieerb8tdatabases: a
test database, the actual database and a back-up database. Itgigagedbme feedback whether
establishing a link with the chosen database fails or succeeds;

Parameter Settings The parameter settings dialog window holds all car parameter settings and-simula
tion settings. It also gives the option to change the optimization parametersq&tdgne steps)
in a separate window;

OptimChecklist The Optimization Checklist dialog window checks every step in the list of steps to
taken for optimization. It builds the road characteristics text files and th®idOmodel. After
the optimization it reads the 20-Sim output of the optimal strategy. It also pe\itk option to
examine the strategy;

Examinations In this window, the active strategy can be viewed. New optimization goalseahdsen
and set in a relatively easy way;

SetlnputPar This dialog window is used to change the optimization parameters (stages & tirsg step

Monitor The main PALLAS window contains 7 monitor screens, each of which carséa to monitor
one particular quantity in different ways. It as well holds a 'warning lighthich may throw a
warning or an error in case of abnormal deviations between strateggality, depending on the
guantity monitored.

D.3.2 PALLAS Data structure

The PALLAS data structure consists of the Matlab GUI 'handles’ structoetaining some extra data
structures. The PALLAS ’handles’ structure after initialization of the pragis shown in fig. D.4. It
shows the normal GUIDE objects, such as radiobuttons and programiteers) and the structure fields
that contain specific data for the PALLAS program:

SimPar A structure of SolUTra car model parameters, needed for the 20-Simimode

SimSett A structure of simulation and optimization settings, such as the criterion weigatsintiulation
start time, the finishing conditions etc.;

SImMTXT A structure of strings, containing the paths in which the txt-files, needeuhtienfacing be-
tween Matlab and 20-Sim, are located;

MonSett A structure that holds all monitoring settings, such as zoom level, monitoriagtigqy etc.;
DBSett This structure holds the database settings.;

Data This structure contains all data regarding weather forecasts, radectnacacteristics, weather
measurements and car measurements. To summarize, all telemetry data is heldtoydture;

NewStrategy This is a matrix containing the newly optimized strategy, before it's adoptedtaretisn
the database;
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Figure D.4: The handles structure as used in the PALLAS strategy dewefggprogram.

ActiveStrategy The strategy that is currently 'active’. The strategy that is currently gk by the
solar car;

LastMeas The seconds that have passed since the last measurement was taker@0Akconds, the
connection is considered to be lost.

D.3.3 Matlab Database

As is mentioned before, Matlab contains a 'Database Toolbox’, whichlen#te Matlab programmer
to relatively easy access data sources, such as MS Access datahsedependent MySQL databases.
This toolbox provides a number of functions that open connections, plasers, fetch and store infor-
mation etc.

Setting up a Data Source

But before that is possible, a ODBC data source to be set up. The Mati@h&xse Toolbox help file
explains all this and much more regarding the advantages and disadwaot#gye database toolbox, but
in short, setting up a SQL server data source, one
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1. Opens the Control panel and selects the ODBC Database Source Admtoni&dministrative
Tools > Data Sources (ODBC)

2. Selects, in the administrator, the User DSN tab;

3. Presses thadd... button to add a new data source;

4. Selects th&QL Serverdriver in theCreate New Data Sourcevindow;
5. Finally, one enters the correct server connection data.

When correctly done, a data source is set up and ready to be useddatabase toolbox.

The Database Link

PALLAS uses a database that has been designed and built by Vinaegnitais (Groenhuis, 2005), as
well as the Matlab files that contain the database access functions. @®@nbvides a number of
Matlab methods that can be used for fetching and storing.

The database contains a number of simulations and scenario’s. In thahealatabase is able to
hold more than one race, more than one circuit etc. The Matlab files thafisalgclink PALLAS to
the database automatically select the correct racing track (the road momrto Adelaide).

GetCircuitData (BeginDist, EndDist) returns all static road characteristics of the racieg,tsach as
longitude, latitude, altitude, slope, heading, condition of the road and tteel dipeit that belong
to a certain distance from start. To be used for the road model;

GetMeasurementData (StartTime, StartDist) returns relevant measurement values (time, distance, ¢
speed, output power, input power, battery state-of-charge);

GetWeatherData (StartTime, StartDist) returns weather measurements, which are stored wéh a f
guency of 1 measurement per minute. Returned quantities are: time, tempevand speed,
wind direction, pressure, estimated solar coverage and estimated clohthbss;

GetWeatherForecasts(StartTime, StartDist) returns the current weather forecasts, to be asd#ukf
road model. It returns the same quantities asder8NeatherDatanethod;

GetStrategy (level) returns the current active strategy of lelelel, indicating a short-term, mid-term
or long term strategy;

SetStrategy (FileName, level, OptimizationSettings, UsedForecasts) saves the devstmdedy in the
databaseFileNameis the.n-file that holds the optimal strateggvel indicates the strategy type.
Also, the optimization settings (weights etc.) and the current weather fiserasstored,;

Stinit initializes the connection to the previously set data source;

StClose closes the connection to the database;

StUpdate checks whether the database is still up-to-date and updates whenamgress

WriteLog (message) writes a message (string) to the database. This can be useldifiog a logbook;

ReadLog (n) reads the last messages from the database.
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D.4 PALLAS program

This section explains how a data source is set up, what to do to start uplth&\ 8 program and to
develop an optimal strategy.

D.4.1 Before starting Pallas: Setting up the Database link

Before starting PALLAS, a data source (a link to the database) is to bgséthis can be done in the
'Data Sources (ODBC)’ configuration screen in the 'Administrative Taukp of the Windows Control
Panel.

Once opened, the PALLAS use has to add a new data source and eéhoosanon SQL server
driver. The configuration of the data source depends on the databimspused (Fig. D.5.

5
User DSN WSystam DSH I File: DSN] Dnvers} Tlacing} Connection Pooling] About ]

Uszer Data Sources:

Name | Driver | -~ Add...
dBASE Files Microzoft dBase Driver [~ dbf]

dBASE -bestanden Microzoft dBaze Driver [~ dbf] Remave
dBase-bestanden - Word - Microzoft Yisual FoxPro Driver

Excel Files Microgoft E
Excelbestanden F=tEnidX Create a Mew Data Source to SOL Server
FoxPro-bestanden - Wword  Microzoft
M5 Access Database Microzoft A4 BB
1S Access-database Microsoft &,
Wisual FoxPro Database  Microsoft
Wisual FoxPro Tables Micrasaft
WisuAl FrsPn-ratahaze bicmsnft

T? AnODBC User data source
‘ the indicated data provider.

and can only be used on the

This wizard will help pou create an ODEC data source that you can use to
connect to SOL Server.

‘what name do you want to use to refer to the data source?

Il ame: ‘

How do you want to descriibe the data source?

Description ‘

Which SOL Server da you want to connect ta?

oK
Server ‘ j

| | Cancel | Help

Figure D.5: Setting up a data source.

D.4.2 Starting up PALLAS

When starting PALLAS, the Main GUI of PALLAS is shown (Fig. DI11). losts a number of monitors,
a control panel (Fig. D.6, a logbook and status lights. The layout of tha BB is chosen such, that
as many monitors as possible are shown on screen, with one large monittbderexamination. GUI
items for controlling the program have been grouped together to providk agcess to the items in case
of stress situations. Warning lights tell the strategist whether all data is deailabot.

A proper course of actions after starting PALLAS is:

1. (optional) Loading the correct car model parameters and simulation settsingFile > Load
or opening the parameter settings GUI to configure the car parameterseacar thettings. The
responding status lights turn green when configured,;

2. Connecting to the desired database viaAlgons > Set Database connection optiongsee
following 'Database Connections’ section on using the database link);
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— Cortrol Panel

Extra monitars Active Strategy. —
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Tirne to last measuremment (s): n.a25

Upclate freg. (30 7 Irterval = 7
Optitnization Set Parameters | |Monitor Rosd
Play wer Model Exatnine Strat,

Figure D.6: PALLAS Control panel: Pushing the buttons starts the caynelipg GUI screens. The type
of strategy can be activated by selecting the appropriate radiobuttorpdlageurequency can be altered
by the strategist and checkboxes provide the choice of switching of the mingitmf measurements,
strategy data or both. "Test monitoring’ provides white noise as measutealans.

3. If connecting to a database is successful, checkingvtberitor Measurements and Monitor
Strategy checkboxes will start the monitoring of corresponding items;

4. The monitors are initialized in 'off’-state. By selecting a monitoring quantitypaitor is switched
'on’. The type of graph can be chosen by selecting the desired rathoblBy pressing thé©n
Screerbutton, the contents and monitor settings of the small monitor are transferresl Kaih
Screen monitor;

5. The level of the strategy (long term, mid term or short term) can be chamgeelecting the
appropriate radiobutton in the control panel;

6. The development of a new strategy can be started by pressi@pthrizationbutton.

Database Connections

The database configuration screen is shown in[Fig. D.7. The strategishoase between 3 options.
Although many more options can be chosen when connecting the the datalaayeof these option are

not relevant to PALLAS. Therefore, it was decided to hide as much ofl#t@base connection options
as possible and use 3 separate databases for different situations:

Watchdog Wired Database This is the database that is most commonly used, as the database and PAL-
LAS are normally connected by a LAN;

Watchdog WLAN Database In case option 1 is having difficulties, it is also possible to connect to the
database via a Laptop-to-Laptop WLAN network. This connection, hewésnded tended to jam
the WLAN connection with the SolUTra;

PALLAS Database When testing the program without having the STUNT database available.
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Choose database EJ
Set Database config parameter:

O Walchdog YWLAN datsbase Miguwe database connectie geintialiseerd.

Connection
) Watcheng Wired database Database connectie nu is gesloten
(%) PALLAS database

Update from database complete

I {Rejconnect | [ SimulationlD ]

Figure D.7: The database connection configuration screen. It comlt@ii®soptions for connecting with
the database and reports are given on the proceedings in buildingectionn TheSimulationIDbutton
gives access to a program in which extra database settings can beipeohfighis is, however, not within
the scope of this project.

D.4.3 The Car parameters, Simulation settings & Optimizatio settings GUI

The car parameter configuration GUI is shown in Fig! 5.3. This screerdksfasentering car parameters,
as well as optimization and simulation parameters. Also, the GUI in which inpaters of the
optimization algorithm (stages and time steps) can be configured (Fig. D.9ecancessed via this
screen.

Originally, this screen should have given access to another GUI ('Piliymodel’), which should
provide the PALLAS user with the option of changing parameters in an enmieat, that would give
him or her immediate feedback about the results of changing one modeigtara Due to lack of time
and low priority, this GUI has never been implemented.

D.4.4 Strategy Optimization

To develop an optimal strategy, the following procedure is used:

1. Starting the Strategy Optimization checklist (Fig. D.10) (by either pressingadhtrol panel but-
ton, the PALLAS toolbar button, or selecting the appropriate menu item in thio#enenu);

2. The first checklist item is checking and, perhaps, changing optimizatsimulation settings;

3. Then, 20-Sim is started. In 20-Sim, the simulator is to be started and then26g8mization
settings (input parameters, tolerance etc.) are to be checked and d¢halnge necessary. By
starting a multiple run simulation, the optimization is performed. When finished t Seéeaptimal
input parameter set and re-run the simulation with the optimal input paramdtesygust to be
sure the correct simulation run is used as optimal strategy. Then, cldSier20-

4. Check the developed optimal strategy by pressing the appropriate uth@optimization check-
list;

5. When satisfied, the strategy can be 'adopted’ and uploaded to the Biikidbase as being the
most recent strategy, and therefore the 'active’ strategy of that pltitype (long, mid or short
term);

6. Activate the strategy selecting the corresponding radiobutton in theotpatrel.
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Figure D.8: The Car parameters & simulation settings screen. In this scagparameters can be set,
and simulation and optimization settings can be configured. It is also possitéettosan Optimization
Parameters window, in which the stages and timesteps can belagtwith Mode] originally giving
access to a window in which car model parameters could be tested, is not imfgdmen

D.4.5 The Structure of PALLAS GUI Screens

For a complete overview of the PALLAS program GUI screens struckige D.12 is drawn. The figure
shows how the main screen and its various auxiliary GUI screens aredredaie how and from where
various PALLAS interface screens can be accessed.
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Figure D.9: The Optimization Parameters GUI, used for setting the stages (icadds5, meaning 5
different constant car velocities are to be calculated) and timesteps (irag@s1600 seconds per step).

) Optimize Strategy Hlﬁ

— Set up stratecy developer

Check model parameters, simulator settings Set Parameters

Parameters Set

— 20-Sim
When all parameters are set, 20-Sim can be started.
1. Start Simulstor

2. set optirmization tolerance and input variables
when needed,

3. Set Simulstion start and end time (optional);

4. Da Multiple run 20-Sitm must be closed

Start 20-Sim

5. Choose optimal input set, and Click "set variabies" manually
6. Perform single run and check off checkbox helowy

Optimization Complete

— Strategy Valicstior

check for insane actions or choose optimsl values Examine Strateqy
for further strategy development.

|:| Stratedy considered valid

Cancel

Figure D.10: The Optimization Checklist screen.

It also shows a not yet implemented GUI screen, which should provideptihenoof choosing car
parameters in an environment that enabled the strategist to immediately sesult® o€ his choice
of parameters. Eventually, it may have been used in combination with realree@nts for model
parameter fitting. This, however, remains to be investigated.
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Figure D.11: PALLAS’s main GUI screen. In this particular case, the maihggtéen shows a warning

that car speed is too low (Main Screen)

while output power is too high (meri@nd 6). This is

normal, in case of climbing a steep slope. The SolUTra is, however, onlgehealistance traveled is
equal to the long term strategy value, although battery SOC is too high. Atrete@gy may be needed.
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Appendix E

STUNT Database

The STUNT abbreviative stands for 'Solar Team Universal Netwedhfiology’ as is generally regarded
to be the overall name of the complete Solar Team software system. 'The BDdtdbase’ is therefore
the central database of the STUNT network, in the following designatecagatabase’.

E.1 About the Database

The database is designed and administered by the Telemetrist, VincenhGiede chose to build a
MySQL database, programmed in Delphi. He also provided the necessdlighiin-files for connecting
to and requesting data from the database, which are used in the PALIog&pr.

Matlab uses the Database Toolbox’ (The Mathworks Inc., ap@at provides an easy way of con-
necting with MySQL databases, whether on other platforms or not, and whighlifies building the
strategy development program.

The database holds all relevant data that is measured by the telemetry syitabiscludes weather
measurements (1 measurement per minute), earlier GPS measurements oé tineckq car measure-
ments (1 measurement per second), weather forecasts etc.

More information about the database can be found in (Groenhuis, 2005 appendix D.3!3.

E.2 Design

The Database Link (appendix D.3.1)is designed such, that it acts agea betfween the database and
PALLAS. If the command is given, the Database Link checks whether tiveda¢a is available in the
database, and if so, it fetches only the new data, so that network traffiaiisized.

The drawback, however, is the fact that due to the rapidly increasingr@inod measurement data
during the race, the buffer size increases rapidly as well, which slowa dorting data significantly. In
cooperation with the Telemetrist it was decided to use a new data set eaohrdaing, as earlier data
is generally not relevant for monitoring.

During the race, however, it turned out, that even the data of one degciofg slowed down the
PALLAS program too much. It was decided, that the all data had to belygp&d halfway the racing
day, after which 90% (9 out of each 10 measurements) of the car messtrdata of the first half of
the day be thrown away. In that way, PALLAS performance (maximum monjidating speed, see
Fig. D.6) increased significantly.
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E.3 Telemetry system: the weather forecast

In this section, it is briefly shown how weather forecasts were enteree idatabase.

Solar Coverage, apparent Cloud Brightness, wind speed and diraatibtme location for which the
forecast is done, are entered, upon reception, in the database yparategrogram. This program then
interpolates linearly for locations between 2 forecasts (Fig. E.1).

SC
1 _ &

s | @& N

0.4

Darwin Katherine Alice Spings ~ Coober Pedy  Adelaide

Figure E.1: An example of entering weather forecasts (Darwin, Alice §pramd Adelaide) and inter-
polating for locations in between (Katherine, Coober Pedy).



Appendix F

Detailed recommendations

F.1 Improving the Car Model

It has been concluded that the modeling of the car and was not so ;auinly due to inaccurate
modeling of drag and roll friction. Also, the car model is severely simplifiecerelase simulation time:
the effects of acceleration and deceleration are left out (in other woadspeed is not a state anymore,
but an optimal control model input), motor efficiency and battery efficieareyassumed to be ideal and
constant and the drag coefficient is assumed to be constant, no mattesttireof¢he effective air speed.

An immediate improvement of the car model may be the restoration of the car apeecar state,
introducing the motor controller current (or "gas pedal”). This is the $ieg in a process of improving
the model, that uses the motor and battery currents to calculate the powemgtios by the electronic
devices, the charge of the batteries, the speed of the car and the distanated.

In the following, a number of model improvements are proposed, as wetirae sxperiments to
determine car parameters.

F.1.1 Friction
One possible method of determining the car friction and parameters is usingrgrbelt and
Fron = (Crl +cro - Ucar) *Mear - g

for measuring the static and dynamic roll friction (Fig. F.1) coefficients anihd tunnel for the correct
Cyw value of the real car instead of a small scale model. These are costly methdhs team will have
to use a considerable amount of its resources to be able to use this method.

Solar Car

- ©)

Conveyor belt

Figure F.1: Experimental set up for static and dynamic roll friction measureme
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Another method to experimentally determine the friction parameters is to make a mointdx runs
at various car speeds under closely guarded circumstances (wipd) alod then fitting a least squares
P,.t(vear) curve, corrected for the circumstances, to the data. This is a cheapardhtietmeasure the
car’s parameters, but it requires the solar to be completely finished @ndtiomal.

F.1.2 Battery

Currently, the battery efficiency is assumed to be constant. Howevemblattses are directly related
to the battery current, as is the battery output voltage. An improved modet dfatttery may not only
improve model accuracy, but it may improve battery SOC measurements as well.

The Solar Team looks for a battery model, which can be used to determinatteeytSOC as a
function of output power and battery current. A very simple model of thieebaoutput is

Vo=€¢—1R¢o

for the linear area of the battery discharge curve. In this equatienthe battery emf in equilibrium
state,V, is the battery output voltagé,the battery current an& is the effective internal resistance of
the batterye depends on battery charge and it is Pudney (Pudney, 2000) whestaglye use of a rather
complicated model based on chemical kinetics to calculate this variable.

The batteries that were used in the SolUTra were among the best availableatly justifying
the need for such a complex model. However, such a model may be verylhalgstimating the
battery SOC during driving, which was very problematic during the radeeBolUTra. It is therefore
suggested to make a cost-benefit analysis of designing and building sattegy management system
using a model of the battery to estimate the battery SOC.

F.1.3 Motor

Currently, motor efficiency is assumed to be constant. However, motoieefficdepends on air drag,
bearing friction, input current, electrical resistance, control eletsdnsses, mostly determined by the
car speed. Itis Pudney (Pudney, 2000) again, who suggests thmivtlee losses of the motor are

Pout>2

2 3
L(Pout7 Ucar) = ag + A1Vcqr + A2V, + A3V, + k<v
car

with P,,; the output power of the motor (mechanical domain) angd the speed of the car in meters per
second. The coefficients andk vary with each individual motor and the Solar Team should determine
them for each motor in possession in the team.

F.2 Sensors
F.2.1 Sensors for measuring road characteristics
The accuracy of the road model mainly depends on

* the accuracy of the measurement equipment used to measure aspks, ggosition and altitude
beforehand,

 the amount of data points to describe the road. Currently, slope informa#isrsimplified to 1
data point in each 6 km to decrease simulation time and increase optimization speed
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« the accuracy of the weather forecasts of wind and cloud coverage.

Also, wind and cloud forecasts depend on location only, while it is widelyknihat time plays a roll as
well. However, time-dependency of wind and cloud forecasts was hagstitmate and it would hardly
justify the increased complexity in developing an optimal strategy.

Slopes

It has been shown that a 1° slope doubles the output power in the r&mgp.0 70 - 100kmh. This
implies that, to be able to predict the output power with fair accuracy, the iticinaf the road is to be
measured with pretty high accuracy. e.g. if the maximum error of the outpegimie 5% as a result of
slope sensor accuracy on a flat road 0), that is app. 100 W at a speed of 20, then the maximum
errore,, of the sensor corresponds with

Pyt (100) + Ap,,, = M. - g -sineq, - Vear = Pout(100) + 100 W

Thene, = 0.07°, which may be the specification of the slope sensor. An additional symiifids
the fact that there are few slopes steeper than 5° or 6° on the racedodtie next team may look for a
slope sensor with 10° range and at least 0.1° accuracy.

Wind

The wind was measured by a device that did not have a good accuracyagurimg the direction of the
wind. On the other hand, wind tends to be variable rather then blowing witktamatnvelocity. And as
long as the drag coefficient is regarded to be constant no matter theedngeor, actual wind direction
is not very important. It may be advisable to use an air speed sensor, isfaible to measure with high
precision over a small range to measure the effective air speed vexciis # be fixed on the chase car.

The wind sensor is however sufficient for use in the mobile weather statiwind direction forecasts
do not have to be very accurate, compared to the wind direction measusemezte in a car driving app
80kmh,

Insolation & Input power

Current Sun coverage and Cloud brightness were always estimategthsirobservation of at least
two people during the race. This is, however, a rather primitive method. biétier to measure the
Insolation (,,; in eq. 2.22), in order to know how successful the weather forecaststig®en and to gain
experience in interpreting weather forecasts. It may also help in locatotggons with input power,
such as inefficiently functioning MPPT’s and failing solar cells.

In order to measure Insolation, the Solar Team may want to look for alkag@yranometer In
order to measure input power, the Solar team may want to repair the MPRTbG#\ or get a new one.

F.2.2 SOC measurement

It has already been pointed out, that knowledge of the value of the b&®€y is one of the most
important aspects of developing and maintaining a racing strategy. Andeéttaut to be a value that is
very hard to measure, because of drift, due to inaccuracy and laelilofation of the current sensor.
Improving the SOC measurement is twofold. The battery SOC depends oistiwey lof the battery
current, therefore, it is important to improve the accuracy of the semsbcalibrate it reliably. On the
other hand, a model of the battery may enable the Solar Team to determinédténg 8&C as a function
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of momentary battery output voltage and battery current, as has been neertigection F.1. However,
accurate battery current measurements in combination with an equilibriura stiould be able to do
the trick.

Therefore, the Solar Team is advised to improve the battery current reeasuts such, that SOC
measurement inaccuracy is mainly caused by the sensor inaccurattyermore, the determination of
the battery equilibrium curve should be finished and the temperature signsitithe battery equilibrium
curve should be studied more closely, as temperature varies significaritig dne day in the desert.

F.3 PALLAS programming

PALLAS in its current state is not perfect. A lot of aspects can be imprdee@xample, model inaccu-
racies make strategies relatively unreliable (section 7.1.2) and the amdnterédce items results in a
lot of time spent checking all options, while some interface options are hohpéemented. Also, PAL-
LAS does not 'incorporate’ the 20-Sim model and the functionality of #0;So PALLAS and 20-Sim
have to act laterally.

F3.1 Matlab

PALLAS has been programmed in Matlab using the GUIDE tool, implying a certgmes of object
oriented programming. However, Matlab is not suited for proper objéentad programming and gen-
erally takes a lot of time to handle assignments. Matlab GUIDE is mainly used)deagrovided an
easy way to quickly build programs, which do not get too big. Howeveyali€ provides the same and
more than that, too.

If the PALLAS is to be extended and improved, (Visual) C provides the maanessary and the
flexibility to build a proper strategy development program. However, sometifunalities may take
some research, e.g. accessing MySQL databases and such.

F.3.2 20-Sim

20-Sim proved to be a very helpful tool for PALLAS. However, 20-Siannot be accessed by other
programs (no 20-Sim API). Time can be saved, when it is possible tosa20eSim and its tools from
other programs.
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2005 Panasonic World Solar Challenge

Final Results

(See | (WSC Organisation, 2005))

Pos.| Car#| Car Name Class Arr. Time App. km*
1 3 | Nuna 3 Open 13:41 Wed 28th 2998.3
2 101 | Aurora Open 17:05 Wed 28th 2998.3
3 2 | Momentum Open 08:48 Thurs 29th 2998.3
4 81| TIGA Open 09:15 Thurs 29th 2998.3
5 66 | FORMOSUN 3 Open 11:31 Thurs 29th 2998.3
6 6 | Tesseract Open 15:30 Thurs 29th 2998.3
7 95 | Apollo 5 Open 15:45 Thurs 29th 2998.3
8 41 | HansGo Open 16:35 Thurs 29th 2998.3
9 8 | Solutra Open 10:36 Fri 30th 2998.3
10 65 | Soleon Production 13:45 Fri 30th 2998.3
11 7 | Umicore Open 14:34 Fri 30th 2998.3
12 62 | Kelly Production 15:43 Fri 30th 2998.3
13 5 | Aglaia Production 9:56 Sat 1st 2998.3
14 13 | Towards Tomorrow| Stock 13:24 Sat 1st 2998.3
15 168 | STUT Open 14:35 Sat 1st 2998.3
16 80 | Jules Verne Open 10:52 Sun 2nd 2726%***
17 96 | SunStang Open 15:23 Sun 2nd 1573****
18 20 | Leeming Sungropef Production 19:06 Sat 1st 59 *rx*

Frx 49 | Sunswift Open 17:10 Thurs 29th 2998.3
*x 99 | Southern Aurora | Open Alice Springs 16:13 - 27th Sept
*x 21 | Heliodet Production| Dunmarra 15:45 - 26th Sept

Table G.1: Final Rankings

* Approximate km from Darwin - based on the best available information 4380
** cars withdrawn

*** Sunswift were unable to qualify, but were given permission to run wtfith event

**+% Km traveled on solar power
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