
University of Twente

EEMCS / Electrical Engineering

Control Engineering

CTC++ enhancements towards fault

tolerance and RTAI

Thiemo van Engelen

M.Sc. Thesis

Supervisors

prof.dr.ir. J. van Amerongen

dr.ir. J.F. Broenink

M.Sc. D. Jovanovic

August 2004

Report nr. 022CE2004

Control Engineering

EE-Math-CS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

 i

Abstract
This report describes two enhancements to the CT library that has been developed at the Control
Engineering department of the University of Twente.

As control systems are inherently concurrent, the Control Engineering department does research on the
design trajectory of concurrent controllers. In the past, transputers were used together with the CSP
based programming language Occam. CSP is a process algebra for describing and analyzing
concurrent systems. By nature, it encourages partitioning and allows one to reason about and to verify
a design at an early stage of the design process. This provides a large advantage in the design
trajectory of concurrent controllers.

As transputers became obsolete, research shifted to a new CSP based design methodology. The CT
library, GML models and the gCSP program allow users to design and implement a CSP based design
in an easy way. GML models are a graphical representation of a CSP design. These can be drawn
using the gCSP tool, which can generate code from the models that uses the CT library.

For any embedded system, safety is an important issue. Safety can be provided by fault-tolerance. This
means that the occurrence of a fault does not have to lead to a failure of the complete system. Fault-
tolerance can be provided both in hardware and in software.

The main tool for fault-tolerance in software is an exception handling mechanism. This provides the
possibility to have a piece of code guarded by an exception handler. If an exception is raised, the
exception handler is executed. Because no language for which the CT library has been written
provides an adequate exception handling mechanism for concurrent programs, the CT library has been
extended with an exception handling mechanism. The mechanism closely resembles the
try/throw/catch mechanism of C++ and Java.

The added exception handling mechanism and its usage is explained in a number of examples. Some
of the examples use the JIWY setup. For these examples, extra hardware was needed to have interrupt-
driven, digital inputs.

The implemented behavior of the parallel construct could lead to deadlock. This can be solved by
using channel rejection, which is also explained in a number of examples. Because of the hazard of
deadlock in the current parallel implementation, it is recommended that a different behavior is
researched.

The programs compiled with the CT library need an operating system be able to run on a PC platform.
Until now, the usable operating systems were DOS (Windows) and Linux. The second enhancement to
the CT library that this report describes is the possibility run programs compiled with the CT library
under RTAI, a real time Linux variant. The changes needed to the library are described. The
implementation of these changes was straightforward.

Issues that have to be taken care of when writing programs that use the CTC++ library under RTAI are
the inability to use dynamic libraries and the inability to include Linux kernel header files. These
could be solved by making it possible for CTC++ programs to run under LXRT, which is
recommended for further research. Furthermore, one has to take care that the CT processes at one time
all stop or block on a channel, because otherwise, the Linux kernel will not run and Linux will no
longer be responsive.

As an example, a CTC++ program that controls the JIWY setup running under DOS has been ported
to a version that runs under RTAI.

 ii

Samenvatting
Dit verslag beschrijft twee toevoegingen aan de CT bibliotheek, welke ontwikkeld is bij de Control
Engineering vakgroep van de Universiteit Twente.

Omdat regelsystemen van nature parallel zijn, doet the Control Engineering vakgroep onderzoek naar
een ontwerp traject voor parallelle regelaars. In het verleden werden transputers gebruikt, samen met
de op CSP gebaseerde programmeer taal Occam. CSP is een proces algebra waarmee parallelle
systemen beschreven en geanalyseerd kunnen worden. Van nature moedigt het partitioneren aan en het
maakt het mogelijk in een vroeg stadium over een ontwerp te redeneren en het te controleren. Dit
levert een groot voordeel op in het ontwerp traject van parallelle regelaars.

Omdat transputers niet meer verkocht werden, verschoof het onderzoek naar nieuwe CSP gebaseerde
ontwerp methodieken. The CT bibliotheek, GML modellen en de gCSP tool bieden gebruikers de
mogelijkheid om een CSP gebaseerd ontwerp te maken en te implementeren. GML modellen zijn een
grafische notatie van een CSP ontwerp. Deze kunnen getekend worden met de gCSP tool. De gCSP
tool kan code genereren die gebruikt maakt van de CT bibliotheek.

Voor elk embedded systeem is veiligheid erg belangrijk. Veiligheid kan bereikt worden door
fouttolerantie. Dit houdt in dat het optreden van een fout niet leidt tot fout gedrag door het hele
systeem. Fouttolerantie kan zowel door zowel hardware als software bereikt worden.

Het belangrijkste gereedschap voor fouttolerantie in software is een exception handling mechanisme.
Dit biedt de mogelijkheid om een gedeelte van de code beschermd te hebben door een exception
handler. Als een exceptie optreedt in de beschermde code wordt de exception handler uitgevoerd.
Omdat de talen waarvoor de CT bibliotheek geschreven zelf onvoldoende mogelijkheid bieden voor
exceptie afhandeling is er een exception handling mechanisme toegevoegd aan de CT bibliotheek. Dit
mechanisme lijkt sterk op het try/throw/catch mechanisme van C++ en Java.

Het exception handling mechanisme dat is toegevoegd en het gebruik ervan wordt uitgelegd met
behulp van een aantal voorbeelden. In een aantal van deze voorbeelden wordt de JIWY setup gebruikt.
Voor deze voorbeelden was extra hardware nodig zodat er digitale ingangen met interrupt
mogelijkheid beschikbaar waren.

Het exception handling mechanisme dat geïmplementeerd is kan in een parallel resulteren in deadlock.
Dit kan voorkomen worden door het gebruik van channel rejection. Het gebruik hiervan wordt
uitgelegd in een aantal voorbeelden. Omdat het gedrag van de Parallel construct kan leiden tot
deadlock, is een aanbeveling om ander mogelijk gedrag van de Parallel construct te onderzoeken.

Programma’s die gebruik maken van de CT bibliotheek hebben een besturingssysteem nodig om te
kunnen draaien op een PC. Tot nu toe waren alleen DOS (Windows) en Linux te gebruiken als
besturingssysteem. De tweede toevoeging aan de CT bibliotheek die beschreven wordt in dit verslag is
de mogelijkheid om programma’s die gebruik maken van de CT bibliotheek te kunnen draaien onder
RTAI, een real time Linux variant. De aanpassingen die nodig waren aan de bibliotheek worden
beschreven. Het implementeren van deze aanpassing ging rechttoe rechtaan.

De problemen waar men mee te maken krijgt als men een programma gaat schrijven die RTAI gaat
draaien zijn het niet kunnen gebruiken van dynamische bibliotheken en het niet kunnen includen van
kernel header files. Dit zou geen probleem meer zijn als CTC++ programma’s onder LXRT kunnen
draaien. Ook moet men uitkijken dat de CT porcessen op een gegeven ogenblik allemaal geblokkeerd
zijn of beëindigd zijn, omdat anders de Linux kernel geen tijd krijgt en Linux dus niet meer reactief is.

Om als voorbeeld te dienen is een CTC++ programma voor DOS dat de JIWY setup bestuurd omgezet
naar een versie die onder RTAI draait.

 iii

Preface
Now that my report is finished, I would like to thank everybody who helped in this assignment. Some
people deserve special mentioning:

First, I would like to thank Gerald Hilderink for the numerous discussions about CT. From this, the
idea of this assignment has risen. More thanks for the guidance during the start of this assignment.

Then I would like to thank Dusko Jovanovic. He invested a lot of time towards the end of the project,
which made it possible for me to finish this assignment before September. Furthermore, his input to
this project greatly increases the completeness of my work.

Next I would like to thank Jurrie Kraai for his feedback on my report.

It goes without saying that I want to thank my parents for their support during all my years of
studying.

Finally a great deal of thanks goes to my girlfriend Marianne Kraai, not the least for being there for me
these years.

Thiemo van Engelen

Zwolle, August 2004

 v

Contents
1 Introduction ..1

1.1 Introduction...1

1.2 Objectives ...2

1.2.1 RTAI CT extension..2

1.2.2 Exception handling CT extension ..2

1.3 The CT library and GML models ...2

1.3.1 Processes ..2

1.3.2 Constructs ..2

1.3.3 Parenthesizing in GML ..4

1.3.4 Channels...5

1.4 Outline report..5

2 CTC++ under RTAI ...7

2.1 Outline ..7

2.2 Linux...7

2.3 RTAI...7

2.4 Kernel modules and C(++) ...9

2.5 Changes to CTC++ ...9

2.5.1 Wrapper for RTAI CTC++ programs ..9

2.5.2 Suspend & Resume ..10

2.5.3 Real time safe functions...13

2.5.4 Interrupt mechanism ..14

2.5.5 Timer (updating Linux time)..16

2.5.6 Implementation of the changes ..16

2.6 Porting example ..16

2.7 Summary...17

3 Exception handling in CT...19

3.1 Outline ..19

3.2 Exceptions and exception handling ..19

3.2.1 Exceptions, raising and handling exceptions ...19

3.2.2 Demands on an exception handling mechanism ..20

3.2.3 Examples of exception handling mechanisms ...21

3.3 Conceptual design of exception handling in CT...22

3.3.1 Main concept..22

3.3.2 Raising exceptions and exception types...23

3.3.3 The EXCeption construct...23

3.3.4 The Sequential construct ..24

3.3.5 The (Pri)Alternative construct ...24

 vi

3.3.6 The (Pri)Parallel construct ...25

3.4 Implementation in CT...26

3.4.1 C++ try/throw/catch ...26

3.4.2 CTC++ TRY/THROW/CATCH/ENDTRY macros ..27

3.4.3 CTC TRY/THROW/CATCH/ENDTRY macros...27

3.4.4 CTC++ / RTAI exception handling mechanism ..29

3.4.5 Exception..30

3.4.6 ExceptionSet ..33

3.4.7 ExceptionConstruct ..34

3.4.8 ExceptionHandler...34

3.4.9 (Pri)Parallel construct...35

3.4.10 (Pri)Alternative construct...36

3.5 Evaluation ...38

3.6 Conclusions...39

4 Exception handling demonstrators ...41

4.1 Introduction and Outline ...41

4.2 Demonstrator setup ...41

4.2.1 Hardware ..41

4.2.2 Software ...42

4.3 Digital Inputs ..43

4.3.1 Hardware demands...43

4.3.2 Debouncing ..44

4.3.3 Print buildup...45

4.3.4 Software changes ...46

4.4 Examples...47

4.4.1 Raising exceptions in a process..47

4.4.2 Raising exceptions in an external channel ...48

4.4.3 Raising exceptions in an internal channel (to two sides of a channel)51

4.4.4 Raising exception in parallel compositions..54

5 Conclusions and recommendations ..65

5.1 Conclusions...65

5.2 Recommendations...65

Appendix A Compiling a program with CTC++ for RTAI..67

Appendix B Code for the four options of type determination..69

Appendix B.1 Option 1...69

Appendix B.2 Option 2...70

Appendix B.3 Option 3...72

Appendix B.4 Option 4...73

Appendix C Digital input print for JIWY ..75

 vii

Appendix C.1 Schematic..75

Appendix C.2 AHDL code of Altera chip..76

Appendix C.3 Usage...78

References ...81

 1

1 Introduction

1.1 Introduction
The focus of the Control Engineering department of the University of Twente lies in the field of
robotic/mechatronic applications. The focus is both on controller design and on design methodology.

Real-time
A property of the studied control systems is that they all are hard real time systems. This means that
actions have to be performed before a certain deadline, otherwise failure will occur. If a controller is
required to be hard real time, it requires that all the services it uses are hard real time. This means that
for a controlling hard real time program, not only the program needs to be programmed for this
demand, but also the operating system (OS) it runs in and its communication with the outside world
needs to be hard real time.

Concurrency
Because it was recognized that a control task is inherently concurrent, the focus has long been on
concurrent controller design.

The CSP (Communicating Sequential Processes) language is a process algebra for describing and
analyzing concurrent systems (Hoare, 1985). A CSP based design methodology encourages
partitioning of the design and allows for good reasoning about the design at every level.

A CSP based design trajectory is described in (Hilderink, Gerald H. et al., 2003). It uses the CT library
that has been developed at the Control Engineering department (Hilderink, G.H. et al., 1997). Using
this library, CSP based designs can be implemented easily, because the CSP concepts can be directly
translated into the programming language. Section 1.3 will give a short description of the CSP library.

Safety
Safety is an important issue in embedded systems. Think about large industrial applications or
embedded systems in transportation usage. When they fail, they can cause a lot of damage or human
injury. To ensure fail-safe operation in hardware, redundancy is an often-used method.

In software, an important tool to ensure a fail-safe device is to use proper design techniques. If the
design can also be checked before it is implemented, a large number of errors can be removed on
forehand. A CSP based design offers these advantages, because it can be checked by a model checker,
for example FDR (FormalSystems, 2004).

When using C++, the code itself cannot be checked, unless perhaps only a safe subset of C++ is used
and in accordance to strict rules. If however the program is based on CSP concepts, it can be proven
that the design is correct. Because by nature the CSP design is already partitioned, only the
implementations of the separate parts have to be checked for their correct behavior.

Fault tolerance
When a system is designed, a certain behavior of its environment and of the system itself is assumed.
The actual behavior can however differ with the possible result that a part of the system fails. But for a
system to be safe, not all parts of the system have to be error free. If the behavior of a system
continues to be correct, even when a part of the systems fails, the system is said to be fault tolerant. It
can tolerate failure of a certain part of the system, because it is known how to handle and cope with
the failure. This way, the safety of the device can be increased. An example of fault tolerance is
redundancy in hardware: failure of one piece of hardware is tolerated, because another piece takes
over.

An important tool to make software fault tolerant is an exception handling mechanism. An exception
handling mechanism offers the possibility to have parts of a program guarded by an exception handler.
The exception handler can handle errors that occur in the guarded part of code, hereby providing fault
tolerance to these errors.

 2

1.2 Objectives

1.2.1 RTAI CT extension
On a PC architecture, programs compiled with the CT library still run under a certain OS. Until now,
this OS is either DOS or Linux. While Linux does provide a very useful development environment,
real time behavior is not guaranteed. Under DOS, programs can execute in a real time environment,
but there is no support for multithreading, severely limiting its use as a development environment.

One objective of this assignment is to make it possible to run CT programs under RTAI, a real time
Linux variant (RTAI, 2004). This way, a CT program can be run in a multithreaded, real time
environment. Because it is multithreaded, the user can run the CT program and do other things beside
it, for example monitor the system.

1.2.2 Exception handling CT extension
The second objective for this research is to add an exception handling mechanism to the CT library.
Although an exception handling mechanism is often provided by the programming language, for CT
based designs, the programming language mechanisms are not enough for proper exception handling.
The reason being that they lack proper semantics when used in a concurrent environment.

By including an exception handling mechanism into the library, exception handling becomes an
integral part of the software development process and can be properly incorporated into the design.

1.3 The CT library and GML models
To provide a graphical view on a CSP based design, a modeling language was developed called GML
(Hilderink, Gerald H., 2002). A program called gCSP has been written to make the models on a
computer and have code generated from the model (Jovanovic, Dusko S. et al., 2004). In this section,
elements of the CT library will be explained, together with their GML models.

1.3.1 Processes
A process is an independent entity, whose purpose it is to perform a certain task within its private
workspace. During its progress, it may interact with its environment by means of channel
communication. Processes do not know each other’s name and cannot directly alter each other’s state.
A process itself can be a collection of multiple other processes.

1.3.2 Constructs
Constructs are processes that regulate the execution of processes they contain. Because constructs are
also processes, they can also be used in other constructs. Within the CT library, the following
constructs are available:

• (Pri)Parallel
• (Pri)Alternative
• Sequential

The behavior of these constructs will now be discussed.

(Pri)Parallel
The (Pri)Parallel construct causes the processes it contains to run in parallel. The Parallel construct
has no preference over which process is allowed to run. The PriParallel gives a priority to its
processes. The (Pri)Parallel construct terminates when all the processes it contains have terminated.

Figure 1 shows on the left-hand side a Parallel construct containing two processes, with both being
considered of equal priority. On the right-hand side, it shows a PriParallel construct containing two
processes. In this figure, a higher priority is given to PROCESS1.

 3

Figure 1. Two processes in a Parallel construct (left) and two processes in a PriParallel construct,
giving priority to PROCESS1 (right)

(Pri)Alternative
The (Pri)Alternative construct does not contain processes, but contains Guards. A Guard however has
a process associated with it.

The Alternative construct make a choice about which process to run, based on information provided by
its Guards. They guard a channel they are associated with, and if a communication attempt has been
observed on that channel, the Guard signals this to the Alternative construct. This can then decide to
run the process associated to the Guard, which would perform communication over the channel. The
(Pri)Alternative terminates when a Guard has been chosen and the associated process has been
executed.

The Alternative construct gives no priority to the guards. The PriAlternative prioritises the guards.
When making a decision on which process to run, the one with the highest priority is chosen if
multiple Guards signalled a communication attempt.

Figure 2 shows on the left-hand side guards in an Alternative construct. Both guards are input guards,
so they signal the Alternative construct when another process tries to write to the channel. The right-
hand side of Figure 2 shows two guards in a PriAlternative construct. If a write is attempted in both
channels, the PriAlternative construct will execute PROCESS1.

Figure 2. Two processes in an Alternative construct (left) and two processes in a PriAlternative
construct (right), favoring PROCESS1 over PROCESS2

Sequential
The processes that are contained by a Sequential construct are executed in order. Figure 3 shows a
Sequential construct containing two processes. The sequential relation prescribes that PROCESS1
should be run first. The Sequential construct terminates when all the process that it contains have
terminated.

Figure 3. Two processes in a Sequential construct, executing PROCESS1 before PROCESS2

By connecting a µ-process to a Sequential construct, repetition of a process can be graphically shown
in the model. Figure 4 shows an example. In this example, PROCESS1 is executed first. When

 4

PROCESS1 terminates, the guard of the µ-process is evaluated. As long as the guard is true,
PROCESS1 will be repeated.

Figure 4. A Sequential construct with a µ-process

1.3.3 Parenthesizing in GML
A GML model allows processes to be grouped. This is shown by means of an open dot with an index.
This parenthesis symbol shows the boundary of a group. When a number of processes are grouped into
one process, the index of the parenthesis symbol on a construct that does not belong to the group is
increased by one. Processes that are connected via a construct without parenthesis symbols belong to
one group.

Figure 5 shows a GML model with parenthesizing. Which processes can be grouped according to the
indices is shown according to the thick box and the dashed box. One can see that the number of times
a construct is crossed equals the index of the parenthesis symbol on that side of the construct.

Figure 5. GML model with parenthesizing

Between process 1 and 4 and process 2 and 5 are no parenthesis symbols, so 1 and 4 can be grouped
and 2 and 5 can be grouped. This is shown using the thick rounded box. When these are grouped, the
indices at process 1 and process 2 are decreased by one (See Figure 6).

Figure 6. GML model with the processes 1 and 4 and 2 and 5 grouped

Now there are no parenthesis symbols between 1_4, 3 and 2_5, so these can be grouped. This is shown
using the dashed box. The index on process 2_5 is decreased by one (See Figure 7). Now there are no
parenthesis symbols left in the model.

Figure 7. GML model with the processes 1, 4, 3, 2 and 5 grouped

 5

1.3.4 Channels
A channel is an object that performs communication between processes or between a process and the
environment. Channels provide synchronization, scheduling and the actual data transfer. Each channel
supports one-way point-to-point synchronous communication. The notion of a channel itself abstracts
away from the actual physical implementation of the communication link.

Channels that are used for communication within the program are called internal channels, while
channels that are used to communicate with the environment are called external channels. The part
within an external channel that provides the actual communication with the environment is called the
linkdriver. The left-hand side of Figure 8 shows a GML model of two processes communicating over
an internal channel and the right-hand side shows a GML model of process that has an external
channel as input.

Internal channels in CT by default provide rendezvous communication, meaning that both a reader and
a writer need to participate in the communication. When the first one wants to communicate, it is
suspended until the other one also wants to communicate. At this moment, data transfer takes place
and they both can resume execution.

Rendezvous channel communication can only take place between processes that run in parallel. The
reason is that when they do not run in parallel, they can never participate in the communication at the
same time. Therefore, if communication has to take place between sequential or alternative processes,
a non-rendezvous channel has to be used.

Processes can communicate through channels by calling their read and write method. For
communication, this is the only interface to the process. In (Hilderink, Gerald H. and Broenink, 2003)
and (Brown and Welch, 2003), a way to change the state of the channel has been proposed. In this
state, the channel throws an exception when an action is performed on the channel. In this report,
placing the channel in this state is called channel rejecting, because after the change, the channel
rejects all actions.

Figure 8. Two processes communicating over a channel (left) and a process that communicates
through an external channel (right)

1.4 Outline report
As said, this research has two objectives, both aimed at extending the functionality of the CT library.
The first goal is to make it possible for CT programs to run under RTAI. Results of this goal will be
discussed in chapter 2. The second objective of this research is to add an exception handling
mechanism to the CT library. The results of this can be found in chapter 3. In chapter 4 examples of
how the exception handling mechanism in CT can be used are given. In chapter 5, conclusions that are
drawn from this research and recommendations for future research are given.

 7

2 CTC++ under RTAI

2.1 Outline
This chapter discusses the changes needed to CTC++ to make it run under RTAI.

First, section 2.2 will give a small introduction into Linux and mentions what kernel modules are.
Section 2.3 gives an introduction into what RTAI is and how it fits into Linux. It explains which
kernel modules of RTAI are important for CTC++ under RTAI. Problems that are encountered when
writing kernel modules in C++ will be discussed in section 2.4.

In section 2.5 the changes to CTC++ that were needed to run it under RTAI are mentioned. It also
gives points to consider when writing programs that use CTC++ for RTAI.

As a demonstrator a CTC++ for DOS program that controlled a mechatronic setup called JIWY was
converted to a CTC++ for RTAI program. Section 2.5.5 mentions the changes to the program as an
example of how to convert a program written for the DOS version of CTC++ to a version for RTAI.

2.2 Linux
Linux is an OS, based on UNIX, originally designed by Linus Torvalds (LinuxOnline, 1994). It has a
modular structure in which a basic kernel is loaded at boot time and modules for certain hardware or
software support is later on loaded into the kernel on demand. These modules are called kernel
modules. When the processor is running code inside the kernel, the code can execute any command
and directly call other functions that are inside the kernel.

Because of its good network support and its stability, it is used for servers around the world. This
means that there is a large user base of Linux users and, consequently, a lot of expertise is available.
This expertise is shared is on the Internet. There are many forums on which questions can be asked
and problems be posted.

The Linux kernel and many Linux applications are distributed under the GNU/GPL license
(Foundation, 1989). This means they can be copied freely. This makes it interesting for the industry
because there are not any license costs involved.

Another advantage of the GNU/GPL license system is that the source should be freely available to the
user. This means that when a bug is suspected in the kernel or in a program, the users can search for
the error them selves and fix it.

The main disadvantage of Linux is the lack of proper documentation. Many things are at first written
for personal use only, and documentation is then the last point of focus.

2.3 RTAI
The standard Linux kernel is does not allow hard real time behavior. This can be solved by a set of
kernel modules and a patch of the Linux kernel. One of these solutions is called RTAI, which has been
developed at the Department of Aerospace Engineering at the university of Milan (RTAI, 2004).

The core of RTAI consists of three parts:

• A patch to the Linux kernel
• A real time interrupt handling module
• A scheduler module.

Figure 9 depicts the situation when the Linux kernel is patched and the RTAI interrupt handler module
and the RTAI scheduler module are loaded. It also shows where the CTC++ programs will be placed.

Patch

The patch is a text document containing changes that have to be applied to the source code of the
Linux kernel. When the changes are made, the Linux kernel has to be recompiled and reinstalled.

 8

Interrupt handling module

Using the patch alone doesn’t change the functioning of Linux. The changes to the kernel take effect
when the main RTAI module (rtai.o) is loaded. From this point on, all interrupts are first handled by
RTAI interrupt-handling code in this module and are then forwarded to the Linux kernel. Other kernel
modules can install a real time interrupt handler by registering them to the RTAI interrupt-handling
module. If the associated interrupt occurs, the registered interrupt handler is called by the RTAI code.
If a real time interrupt handler has been registered, then the associated interrupt will no longer be
automatically forwarded to Linux. This will only be done if the installed interrupt handler tells RTAI
to do so. More on interrupts can be found in section 2.5.4.

Scheduler

Next to the RTAI interrupt handling module, RTAI also consists of a scheduler module. This module
implements a priority-based scheduler. When this module is loaded, it continues to run the Linux
kernel as the lowest priority task (from now on called the Linux task). If there are no tasks running
besides the Linux task, the Linux task gets all the CPU time. When a kernel module starts a new RTAI

Figure 9. Structure of Linux and RTAI

Hardware

Interrupts

Kernel space

Real time
interrupt
handlers

RTAI scheduler

Real time tasks

System-calls

CTC++ program

User space

Linux drivers

RTAI interrupt handling

IO & Memory access

 9

task, the Linux task is scheduled out by the RTAI scheduler and the new task starts to execute. The
Linux task does not get any CPU time, until the new task is either blocked or terminated. This means
that when a RTAI task never ends and never blocks, the Linux task gets no more CPU time, which
means the system is does no longer respond to input from the user which is handled by the Linux
kernel (and thus the Linux task).

2.4 Kernel modules and C(++)
There are certain differences between writing kernel modules and normal programs, especially when
using C++. These differences will be discussed in this section.

When writing kernel modules, not all normal C functions like printf or malloc are available.
There are two reasons for this. The first is that these functions are in a shared library that is
dynamically loaded when a program is run. The loading of the library is done before calling the main
function by a piece of code that is automatically linked to the program by the linker. When a kernel
module is compiled, this part of code is not linked to the kernel module. Therefore, the library is not
loaded when a module is loaded.

The second reason is that these functions assume that they are executed in user space. Most of them
use a system-call to call functions inside the kernel. Because it is not allowed do make system-calls
inside the kernel, this code should not be used by a kernel module.

Because of the two reasons that are mentioned, many normal C functions cannot be used in kernel
modules. For some of them there are usable replacements, which will be mentioned in section 2.5.3.

The problem with dynamic libraries applies to C and to C++ programs. For C++ programs the
problem is more extensive because commands like new, delete, try, catch and throw
use functions in dynamic libraries and are thus normally not available in the kernel. For the C++
functions new and delete replacements are available in a RTAI kernel module called rtai_cpp.o.
This module must be loaded before a C++ written kernel module can be loaded. Until now support for
try, catch and throw is not provided by this module. The main reason for this is that the
implementation and thus which functions are needed are for try, catch and throw are different
between compiler versions.

For kernel modules written in C++ another problem exists. The Linux kernel is mostly written in C,
some assembly code, but no C++ code. The effect of this is that not all header files in the Linux kernel
directory are compatible with C++ and cannot be included in C++ code. A problem can for example
be that a variable is called new, which is a reserved keyword in C++. This means that when a kernel
module written in C++ wants to use variables or call functions in the kernel, a prototype is not
available. This gives problems when compiling the C++ code. This problem can only be solved by
copying the prototypes from the Linux kernel header files to the C++ code or a new header file that
can be used in a C++ program.

2.5 Changes to CTC++

2.5.1 Wrapper for RTAI CTC++ programs
A normal program has a main function where execution will start. Linux kernel modules do not have
a main function where execution is started. Kernel modules have an init_module function that is
executed when the module is loaded, and a cleanup_module that is executed just before the
module is unloaded. To make it easier to write CTC++ programs for RTAI, a wrapper was written,
that contains these functions. When a program is compiled with the CTC++ for RTAI library this
wrapper is automatically linked to the program. The following steps are performed when a program is
loaded and, after running, unloaded from the kernel:

1. init_modules is called when a module is loaded into the kernel
2. The C++ support of RTAI is initialized
3. The constructors of all static object are invoked
4. The RTAI scheduler is told to start a new real time task
5. The RTAI scheduler starts the execution of the task at the function main_c
6. The C++ main function is called and the execution of the program starts

 10

7. cleanup _module is called when a module is unloaded from the kernel
8. The RTAI C++ support is told to destruct the static variables
9. The destructors of all static objects are called

A RTAI CTC++ kernel module should not be removed from the kernel when the RTAI CTC++ task
has not been terminated. This will result in memory leakage and possibly a kernel crash.

2.5.2 Suspend & Resume
CTC++ contains an Idletask, which is normal process. An Idletask is always created by the scheduler.
The Idletask runs when all other processes are either blocked or terminated. If all other processes are
terminated, the Idletask also terminates and thus the CTC++ program terminates. If all processes are
blocked, the DOS/Linux implementation of the Idletask goes into a busy loop. In this loop, it checks if
it should terminate or schedule to a process that is no longer blocked.

If the DOS/Linux implementation of the Idletask would be used in the RTAI CTC++ implementation,
the RTAI task where CTC++ runs in keeps running when the Idletask is active. This means that the
RTAI scheduler would not schedule to the Linux task. This in turns means that the Linux kernel is no

Figure 10. Sequence of the loading and unloading of a CTC++ for RTAI kernel module

CTC++ program

static objects

init_module

constructors

RTAI

RTAI C++
support

RTAI scheduler

(C) main_c

(C++) main

destuctors

cleanup_module

1

7

2

3

4

5

6

8

9

 11

longer responsive to input from the user. This is solved by letting the Idletask call a function, which is
included in the RTAI CTC++ wrapper, which suspends the RTAI task CTC++ runs in.

If the RTAI task of the CTC++ program is suspended, it means all CTC++ processes are blocked on a
channel. When a process becomes unblocked, the RTAI task of CTC++ should be resumed. The only
processes that can become unblocked are processes that are blocked on an external channel or on a
timed channel. For a timed channel, the unblocking is done inside the Timer interrupt handler. For
external channels, the unblocking can be done inside an interrupt routine or inside a function that is
called by the Linux kernel. The moment of resumption of the RTAI task is different between resuming
in an interrupt handler and resuming in a function called from the Linux kernel.

If the unblocking is not done in an interrupt, like in a FifoChannel (see section 2.6), the RTAI
task of CTC++ is immediately resumed. Because the task was suspended in the Idletask, it will also
resume in the Idletask. Here the CTC++ scheduler schedules to the unblocked task.

Figure 11 shows a sequence diagram when the unblocking is done outside an interrupt routine. In this
case, the following steps are performed:

1. IdleTask signals the wrapper to suspend the RTAI task it runs in
2. The wrapper signals RTAI to suspend the RTAI task of CTC++
3. A (callback) function in the CTC++ program is called by a Linux user space process
4. The callback function calls the unlock method in linkdriver, which signals the wrapper that it

should resume the CTC++ RTAI task immediately
5. The wrapper signals to RTAI that the CTC++ RTAI task can be resumed.
6. Execution continues in the IdleTask, which then immediately yields, scheduling to the highest

priority thread
7. The CTC++ program runs until all processes are blocked again. The IdleTask signals the

wrapper to suspend the RTAI task it runs in
8. The wrapper signals RTAI to suspend the RTAI task of CTC++ and execution of the Linux

kernel continues
If the unblocking is done in an interrupt routine, the RTAI task of CTC++ should not be resumed until
all interrupt routines for the interrupt are executed. This is because RTAI resumes a task immediately
when the resume function is called. It does not wait for the interrupt routine to finish. This means
that when the RTAI CTC++ task would be resumed on the first unblock action, the RTAI CTC++ is
immediately scheduled in without finishing the interrupt routine. If the interrupt routine would also

Figure 11. Sequence diagram for unblocking outside an interrupt routine

CTC++
program

Linux
callback

Wrapper

RTAI
Scheduler

1

2

3

4

5
6

7

8

 12

unblock a higher priority task, this task would remain blocked until the interrupt routine is finished,
which happens when the Linux task is scheduled in again.

The erroneous behavior described above is pictured in the top part of

Figure 12. The numbers correspond with the following actions:

1. IdleTask signals the wrapper to suspend the RTAI task it runs in
2. The wrapper signals RTAI to suspend the RTAI task of CTC++
3. An interrupt occurs and the interrupt manager is started
4. The interrupt manager calls 1st interrupt handler
5. Interrupt Handler1 calls unlock in linkdriver which signals the wrapper that it should

resume the CTC++ RTAI
6. The wrapper signals to RTAI that the CTC++ RTAI task can be resumed.
7. Execution continues in the IdleTask, which then immediately yields, scheduling to the highest

priority thread.
8. The CTC++ program runs until all processes are blocked again. The IdleTask signals the

wrapper to suspend the RTAI task it runs in
9. The wrapper signals RTAI to suspend the RTAI task of CTC++
10. Execution continues in the interrupt manager that now calls Interrupt Handler2

One can see in the figure that the time between Interrupt Handler1 and Interrupt Handler 2 is as large
as the time it takes for the CTC++ program to be blocked again. This problem is solved by checking in
the unblock routine if it is called from an interrupt routine. If this is the case, it only sets a bit. After all
interrupt handlers are executed, this bit is checked and if it is set, the RTAI CTC++ task is resumed.
This then continues its execution inside the Idletask. Here the CTC++ scheduler schedules to the
highest priority task that was unblocked. This (correct) behavior is shown in the bottom part of

Figure 12 where the following actions are performed:

1. IdleTask signals the wrapper to suspend the RTAI task it runs in
2. The wrapper signals RTAI to suspend the RTAI task of CTC++
3. An interrupt occurs and the interrupt manager is started
4. The interrupt manager calls the 1st interrupt handler
5. Interrupt Handler 1 calls unlock in linkdriver, which signals the wrapper that it should

resume the CTC++ RTAI task once all interrupt handlers are done
6. The interrupt manager calls the 2nd interrupt handler
7. The interrupt manager signals to the wrapper that all interrupt handlers are done and that now

the CTC++ RTAI task can be resumed
8. The wrapper signals to RTAI that the CTC++ RTAI task can be resumed.
9. Execution continues in the IdleTask, which then immediately yields, scheduling to the highest

priority thread

 13

Figure 12. Sequence diagram for incorrect (top) and correct (bottom) behavior for unblocking from an
interrupt routine

2.5.3 Real time safe functions
As mentioned in section 2.4, many functions are not available in Linux kernel space. There are
functions inside the kernel that can be used as replacement in non real time kernel modules. Examples
of this are printk, which is a replacement for printf and kmalloc, which is a replacement for
malloc. However, these should not be used in real time programs, because they are not written for
real time behavior. For some of these functions, there are real time replacements provided by RTAI.
These will be discussed in this section.

Two replacements have to do with memory management. The first is rt_malloc. This function is a
real time variant of the function kmalloc, which is a kernel replacement for malloc. Normally
kmalloc has to do some memory management, which can slow down the request considerably. The
RTAI memory management solves this by allocating a chunk of memory when the Linux kernel is
running and dividing this up when rt_malloc calls are made. This way the memory allocation is
really fast. When the total amount of allocated memory is above a certain threshold, the RTAI memory
management module allocates a new chunk of memory. It does this in Linux kernel time, so it doesn’t
interfere with the real time tasks. This means that if the Linux task gets no processor time, the RTAI
memory management module can run out of memory. The size of the chunk that is allocated can be
changed inside the RTAI source code. The second memory related replacement is rt_free, which is

CTC++
program

Interrupt
Manager

Interrupt
Handler1

Interrupt
Handler 2

Wrapper

RTAI
Scheduler

1

2

3

4

5

6
7

8

9

10

1

2

3

4

5

6

7

8
9

 14

the real time equivalent of the C function free. It must be used to free memory that was allocated
using rt_malloc.

As said in section 2.4, the rtai_cpp.o module provides new and delete functions for C++
kernel modules. In these functions the rt_malloc and rt_free functions are used, so new and
delete are also real time.

Another real-time safe replacement provided by RTAI is rt_printk. It replaces printk, which is
a kernel replacement for printf. A lot of functionality of printf is included rt_printk, with
the exclusion of floating point printing. The text that is printed using rt_printk is first placed in a
buffer and when the Linux kernel is scheduled in, it starts to print to the screen. The first consequence
of this is that when the Linux kernel does not get any processor time, nothing will be printed to the
screen. Secondly, the amount of text that can be printed while the CTC++ program is running is
limited, because of the buffer that is used to store the text until the Linux kernel gets processor time.
The size of this buffer can be adjusted in the RTAI source code.

2.5.4 Interrupt mechanism
Although CTC++ can be seen as an OS, because it has its own scheduler, for some architectures it still
depends on an OS that is already running. One the functionality that is used from the OS is the
interrupt mechanism.

If an interrupt handler is installed in a CTC++ DOS program, there is the possibility to chain the new
interrupt handler. This means that an interrupt handler that is already installed by another program (or
driver) will also be executed together with the CTC++ interrupt handler. The interrupt handling
routine for CTC++ for RTAI also has a possibility to chain interrupts, but the meaning is different. In
CTC++ for RTAI, it determines whether the received interrupt should also be forwarded to the Linux
kernel. When an interrupt is forwarded, the Linux kernel executes its interrupt handler for that
interrupt, when the Linux task is scheduled in.

Figure 13, Figure 14 and Figure 15 depict a timeline what the processor is executing when an interrupt
occurs.

Figure 13 shows a timeline when an interrupt is only handled by Linux. When the interrupt occurs, the
RTAI kernel disables the interrupt and resumes execution of real time tasks. When the real time tasks
are suspended, the Linux task is scheduled in. This then starts to handle the interrupt after which the
interrupt is re-enabled by the RTAI kernel. One can see that the minimum time between two interrupts
is at least the time it takes for the RTAI task, which is here the CTC++ program, to get suspended or
terminated. This should be no problem, because the interrupts are not used in the real time program.

Figure 14 shows the situation when an interrupt is only handled by CTC++ program. When an
interrupt occurs, the RTAI kernel again disables the interrupt and immediately starts the execution of
the real time interrupt handler. When the handler is finished, the interrupt is re-enabled by the RTAI
kernel. The minimum time between two interrupts is the smallest in this case, because the interrupt is
immediately enabled after the CTC++ interrupt handler.

Figure 15 shows the situation when an interrupt is shared between a CTC++ handled IO card and a
Linux handled IO card. In this case, the CTC++ program should chain the interrupt. If an interrupt
occurs, the RTAI kernel disables the interrupt and starts to execute the real time interrupt handler.
When this is finished, the running real time tasks are resumed. When these are all finished or
suspended, the Linux kernel is scheduled in, which starts to handle the interrupt. When the Linux
interrupt handlers are finished, the RTAI kernel re-enables the interrupt.

There is a downside to chaining interrupts in CTC++ for RTAI. The interrupt is disabled until the
Linux kernel has handled the interrupt. However the Linux kernel can only handle the interrupt when
it is scheduled in, which happens when all RTAI tasks are ended or suspended. This means that a
chained interrupt can only occur once between the running of the Linux task. Therefore it is strongly
advised to avoid interrupt sharing between a CTC++ handled IO card and a Linux handled IO card.

When an interrupt is not shared between IO cards or only used by IO cards that are handled by a
CTC++ for RTAI program, the interrupt doesn’t have to be chained, but can be claimed. This ensures

 15

the maximum possible interrupt rate because interrupts are enabled as soon as all interrupt services are
called.

RTAI "kernel"
disable
interrupt

enable
interrupt

CTC++ interrupt handler

CTC++ Processes

Linux interrupt handler

Linux user space tasks

Figure 13. Timeline when an interrupt is only handled by Linux

RTAI "kernel"

disable
interrupt

enable
interrupt

CTC++ interrupt handler

CTC++ Processes

Linux interrupt handler

Linux user space tasks

Figure 14. Timeline when an interrupt is only handled by CTC++

RTAI "kernel"

disable
interrupt

enable
interrupt

CTC++ interrupt handler

CTC++ Processes

Linux interrupt handler

Linux user space tasks

Figure 15. Timeline when an interrupt is handled by both CTC++ and Linux

Interrupt

Interrupt

Interrupt

Next interrupt
possible

Next interrupt
possible

Next interrupt
possible

 16

2.5.5 Timer (updating Linux time)
As said in section 2.5.4 CTC++ runs on top of another OS for some architectures. Therefore, it needs
to take care not to interfere with the OS that is already running. Because of this, an addition had to be
made to the Timer64 object in the CTC++ for RTAI library.

When Linux boots it sets up the PC’s timer to generate timer interrupts at a rate of 100 Hz. Linux uses
this, among other things, to allow round robin scheduling between tasks and to keep track of the
system time. When the interrupt would no longer be received by Linux, the dynamic behavior of
Linux changes drastically, because it can only schedule to another user space task in certain kernel
functions, for example semaphore functions. Therefore, the RTAI for CTC++ library needs to forward
the timer interrupts to the Linux kernel. The frequency of the forwarding should be close to 100 Hz.

To achieve this, the CTC++ for RTAI library creates a task when a new Timer64 object is created.
This task runs at a rate of 100 Hz the only thing it does is forward one timer interrupt to the Linux
kernel every time it runs. When the Timer64 object is destructed, it restores the Linux interrupt
handler and the 100 Hz timing, so that everything is back to normal.

2.5.6 Implementation of the changes
The changes to the CTC++ library that are mentioned in the previous sections have been implemented.
During implementation, no problems were encountered. The changes can mostly be found by
searching for #ifdef RTAI or #ifndef RTAI commands in the source code of the library.

2.6 Porting example
As a CT demonstrator setup for the Control Engineering department the JIWY is often used. More on
JIWY will be discussed in chapter 4. This chapter will discuss the porting of the existing CTC++ for
DOS program to a CTC++ for RTAI program.

The largest change had to be made to the drivers for the NI6024E interface card that is being used. The
problem was the (PCI) initialization part of the driver. The card responds to memory access at certain
addresses. These addresses can not be directly accessed under DOS nor Linux. To solve this, the DOS
driver remaps the card in such a way that the card responds to an address range that the DOS driver
can access. It does so in a very low level way, by directly accessing registers on the card.

This method is not allowed under Linux, as Linux maintains all the PCI addresses. To be able to
access the card the Linux kernel provides functions to reserve a piece of memory that, when accessed,
actually points to the address the interface card listens to. The include files that contain the prototypes
for these functions are however Linux kernel include files and thus cannot be used in the C++ driver
for the IO card. This was solved by putting the PCI initialization in a separate C file, which can
include the Linux kernel include files.

As already mentioned in section 2.4, there are functions that are not available in the kernel or for
which no prototype is available. Some of these functions are also used in the JIWY program. This was
solved by making custom header files, which redefine the functions that are not available to empty
statements or to equivalents that can be used.

Another thing changed to the program was the addition of the possibility to use a FifoChannel
instead of an AnalogJoystick channel. The AnalogJoystick channel returns the position of
an analog joystick connected to the controlling computer. This position is used as the reference for the
controllers of JIWY (See Figure 16).

A FifoChannel is a channel that uses RTAI fifo’s to make communication possible between
Linux user space and a RTAI CTC++ program that runs in the kernel. By using a FifoChannel, the
JIWY setup can be controlled by a program running in Linux user space. This program can for
example take data from a network connection and send it to the JIWY RTAI CTC++ software running
in the kernel. This would allow JIWY to be controlled over the network (Ros, 2004) (See Figure 17).

 17

Figure 16. Diagram of JIWY controlled by a joystick

Figure 17. Diagram of JIWY controlled over a network connection

2.7 Summary
In this chapter, CTC++ for RTAI has been discussed. A small introduction into RTAI and kernel
modules is given where the problems with writing kernel modules using C++ are discussed. These
problems were also encountered when porting the JIWY program to CTC++ for RTAI.

There are two large problems when using CTC++ for RTAI programs:
• Not being able to use all standard functions, because they are in dynamic libraries.
• Not being able to include kernel header files in C++ files.

The necessary changes to the CTC++ library that were needed to make it work correctly under RTAI
are discussed. Changes to the Idletask, to the unblocking of external channels, to the interrupt
mechanism and to the Timer64 object were needed to make CTC++ cooperate in the right way with
RTAI and Linux. The implementation of the changes was straightforward.

PC

Linux kernel

CTC++ program

PC

Linux kernel

Linux user space

Cient program

CTC++ program

Server program

 18

As a porting example, an existing CTC++ program for DOS was ported to a RTAI version. As an
extra option, the possibility was added to allow JIWY to communicate with Linux user space,
allowing it to be controlled over a network connection.

 19

3 Exception handling in CT

3.1 Outline
This chapter will discuss the exception handling mechanism that has been added to the CTC++ library.
Section 3.2 will give a short discussion on what exceptions are, what the demands on an exception
handling mechanism are and how exceptions are handled in programming languages. Section 3.3 will
give a description of the conceptual design of the exception handling mechanism. This will not only be
on the CTC++ library, but more on CT in general. How this concept was implemented in the CTC++
library is discussed in section 3.4. In section 3.5, an evaluation will give be given of the
implementation and in conclusions will be presented in section 3.6.

Examples of using the implemented exception handling mechanism are the subject of chapter 4.

3.2 Exceptions and exception handling

3.2.1 Exceptions, raising and handling exceptions
An exception is an indication (signal) of the inability to perform a certain operation form the
operational domain of a system (Cristian, 1995).

The notion of an exception is often coupled to occurrence of an error in the system design or its
environment. Common examples in computing practice are:

• “Division by zero” (inability to perform a mathematical operation)
• “Memory page fault” (inability to perform a memory operation)
• “File does not exist” (inability to perform a file operation)

Exceptions can be signaled by hardware (“Memory page fault”) and by software (“File does not
exist”). Division by zero can be signaled by both hardware and software. A program can check if the
denominator is zero and if this is the case raise an exception or it can attempt the division in the
hardware without checking the denominator’s value. In that case, the hardware may raise an exception
when this value is zero. In section 4.4.2 disabling a cable on a robotic set-up represents an exception to
normal environmental conditions.

Another way to look at exceptions builds upon the concept of operational state space of a system,
what will be here referred to as operating range (of the values of the system’s variables). Every
system (process, program, etc.) has a certain valid operating range within which it operates correctly.
For a processor a certain range in ambient temperature is a component of its operating range. For
(mathematical) division of real numbers, the valid operating range for denominator values spans all
real numbers except zero. The operating range consists of both the input to the process and the internal
state of the process. In the case study of chapter 4, the position of a motor axes (internal state of the
motor) outside an allowed position range may cause overflow of underflow of the position encoder
supplying the controller with feedback information (input to the computational process).

An exception can be seen as an indication of a violation of the valid operating range of a process. By
observing the occurrence of an exception caused with exceeding the operation range in some of its
subsystems (processes, components, etc.) a system effectively extends the operation range of its
functionality, provided that the subsystem is able to encounter and signal the exception. For example,
if a processor cannot sense the ambient temperature, it cannot raise an exception when it is out of
bounds. This can lead to an error within the system and, in this case, damage to the processor because
of a high temperature. This indicates two necessities for using exceptions: an exception occurrence
should be observable and there must be a possibility to signal the exception. Beside these two
necessities, there must be a possibility to react to the signaled exception.

Combining the two views, it can be said that an exception occurs when an operation cannot be
performed because the system state violates the operational range of the system. Note that the
operational range of the system can be time dependent, for example if an action has to be performed
before a certain deadline.

 20

Raising (or throwing) an exception by a process represent signaling of the inability to perform the
operation. Receiving (catching) an exception and a proper handling is, in principle, responsibility of
the same or another process, called exception handler. Catching an exception may not follow the
throwing immediately – the mechanism of propagating an exception may get activated.

When a process is accompanied (guarded) by a separate exception handler, the combination of the two
forms a new process. The valid operating range of this new process is larger then the valid operating
range of the original (unguarded) process. This does not say anything about the correct behavior of the
new process. Whether the behavior is correct or not is up to the system designer.

The functionality of original, unguarded process is called the error-free operation (Burns and
Wellings, 2001). The functionality of the exception handler is called exceptional operation.

3.2.2 Demands on an exception handling mechanism
An exception handling mechanism is the complete chain from raising an exception, propagating and
handling the exception. In the literature (Buhr and Mok, 2000; Burns and Wellings, 2001), several
general demands are imposed on exception handling mechanisms.

1. The mechanism should be simple to understand and use.
If this rule is violated, the exception handling mechanism will not be used or not be used to its
full potential.

2. A clear separation between the exceptional operation and the error-free operation code.
This is desirable because one can focus independently on the normal operation and the
exceptional operation. In a program, the code is more maintainable because it is clearer what a
certain piece of code does;

3. Information about occurrence of an exception must contain all the necessary data for a proper
handling.
There is little use in knowing that an exception was thrown, without knowledge on the context
of the exceptional occurrence.

4. The overhead of the exception handling mechanism should stay to a minimum for the error-
free operation. In other words, overhead should only occur when an exception is thrown.

5. The mechanism should allow uniform treatment of exceptions detection both by the
environment (processor) and by the program.

6. The mechanism should prevent an incomplete operation from continuing, because there is no
use in continuing if the correctness of its output cannot be guaranteed.

There are more specific demands for an exception handling mechanism in a concurrent environment:

7. Throwing an exception in one process should start handling in that process and all others that
communicate with that one.

8. Hierarchy of exceptions.
In a concurrent environment, it is possible that two or more exceptions, coming from different
sources, arrive at an exception handler at the same time. The exception handler should be able
to prioritize the exceptions and handle them accordingly.

Demands on an exception handling mechanism, more specific for CT are:

9. It should comply with the CSP based, process oriented design methodology.

10. It should be expressible in machine-readable CSP (CSPm).
Strength of a CSP design is that it is formally checkable by a model checker, for example
FDR. Therefore, new things that are added to the CT library should be formally described in
CSPm.

 21

3.2.3 Examples of exception handling mechanisms
Handling exceptions has to do with multiple hardware and software levels, like the processor, OS,
programming language and the structuring of programs. A form of exception handling in hardware is
hardware redundancy. When a piece of hardware is broken (the exception) another piece of hardware
takes over (the exception handling).

Some exception handling mechanisms that are used in software are discussed below.

Exception handling in C++/Java
In single threaded, sequential C++ and Java programs, exception handling is structured using
try/throw/catch statements. This also closely resembles the exception handling mechanism of
Ada.

The try statement embodies a guarded error-free operation. Raising an exception is implemented by
throwing an arbitrary object using the throw statement. Once an exception is raised, the exceptional
operation, which is embodied by the catch statement, receives and handles the exception.

Positive things about this kind of exception handling are:

• It gives a clear separation of error-free code and exceptional operation code
• The exception can contain any information that is encapsulated by the thrown object
• When an exception is raised, it propagates to the closest appropriate exception handler, along

the call chain

A serious downside is a lack in semantics when used in multithreaded applications. Namely, the
models for synchronizing concurrent exceptional operations are not provided by the languages
themselves.

Exception handling in C

In C programs, error conditions (exceptions) are handled using function return values with goto, non-
local jumps using setjmp and longjmp and OS supported constructs. C does not define any
exception-handling facilities within the language. Such an omission clearly limits the usefulness of the
language in the structured programming of reliable system (Burns and Wellings, 2001).

Return values & goto

Return values of functions is the most widespread form of error handling in C. They can be combined
with goto statements or if/else statements.

The largest drawback to this technique is that the return value has to be checked every time. If a
function returns an error value, the invoker should check for the error code and further signal the error
if it is not able to handle the error. In this chain of error return codes, every part must check the return
value. In order to make the error propagate to a place it can be handled every part of the code has to
check the return values. Certainly, the non-automatic propagation of the error is a large drawback.

Another large drawback to this form of error handling is that the error handling code intertwines with
the error-free operation code. This limits the readability and maintainability of the code. In addition,
requirement three is not fulfilled since error codes can contain only a limited amount of information
about the error causing the exception.

Non-local jumps

Non-local jumps use the functions setjmp and longjmp. With the setjmp function a point can be
defined to which the program can later jump back to using the longjmp function.

This mechanism looks a bit like the try/throw/catch mechanism of C++. As will be shown in
section 3.4.1, a “try/throw/catch”-like mechanism can be made using the functions setjmp
and longjmp. This means that it inherits some of the advantages of the try/throw/catch
mechanism like separation between normal code and exception handling code.

 22

The setjmp/longjmp technique itself does not provide a coherent way of using it as exception
handling mechanism, failing at least the first demands of section 3.2.2. This can only be provided by
programming structures that use this mechanism.

OS support for exception handling
Signals

Besides the use of the mechanisms above, provided by the programming language, signals can be used
in an environment that supports it. Signals can be seen as software interrupts. The functionality of
code that is allowed in a signal handler is in general very limited so most of the time the signal handler
can only set a variable. This variable is then checked in the error-free operation. This gives the same
problem as function return values; the variable should be checked at certain places. If somewhere such
a check is omitted, the exception handling stops functioning properly.

Exception handling in multithreaded environments

For multithreaded applications, the programming language constructs are used (so try/catch,
function return calls and so on) together with inter process communication like signals, semaphores
and message boxes and functions to suspend and resume tasks. Some of the requirements stated in
section 3.2.2 can be met using these constructs, but they are not enforced. It largely depends on how
the programmer uses the provided constructs.

3.3 Conceptual design of exception handling in CT

3.3.1 Main concept
As stated in section 3.2.3, the programming languages that implement CT libraries, C, C++ and Java,
do not provide adequate exception handling mechanisms (for concurrent environments) on their own.
Therefore, a concurrency-adequate exception handling mechanism on the level of the CTC++ library
is designed.

The main concept of the exception handling design in CT was to make it resemble the C++ and Java
try/throw/catch mechanism. This is a concept that many programmers are familiar with and it
complies with all of the general demands listed in section 3.2.2 except demand 5.

That the mechanism has to resemble the try/throw/catch mechanism does not mean that
try/throw/catch statements must be available in the language. Section 3.4.3 shows the feasibility
of implementing the mechanism in CTC and same concept could probably be introduced into new
derivatives of Occam (Welch and Wood, 1996).

The process termination model

Because the try/throw/catch mechanism of C++ was made for a sequential program, it only
works in one thread of control. The reason for this is the stack unwinding that takes place when an
exception is being raised. In a sequential program, the complete program runs on one stack and the
stack unwinding can never go beyond the top of that stack. If the top of the stack is reached, the
program unconditionally terminates.

This means that when this mechanism is used in a multithreaded environment, that CT is, exceptions
must be caught somewhere in the same thread that raised the exception. Otherwise, if the exception
were not caught, the stack unwinding would go beyond the top of the stack, which would result in
unpredictable behavior, usually termination of the program.

try/throw/catch is an exception handling mechanism using the termination model. This means
that a task upon raising an exception is terminated and an exception handler is then executed. When
this is transformed to the CT concept, it could be seen as an abnormal process termination and a
transfer of control flow to the exception handler. A CT construct reacts to termination events of child
processes. When extending CT with the concept of abnormal terminations, the constructs react
differently to normal and abnormal termination events.

 23

The exception propagation model
From the moment an exception is raised, it propagates through processes and constructs until an
exception handler is found. How an exception propagates depends on the constructs it propagates
through. This behavior for the different constructs will be discussed further on in this chapter.

3.3.2 Raising exceptions and exception types
One of the demands mentioned in section 3.2.2 was that there should be enough information for the
handler to properly determine how to handle the exception that was raised. In C++ and Java, an
exception handler catches objects of specific classes like int, String or some user-defined class;
thus any type of class can be thrown and caught. Within the proposed exception handling mechanism
for CT only ExceptionSets are being caught and thrown. The ExceptionSet is a class that can
contain multiple Exception instances in a linked list. The reason that Exceptions themselves are
not caught, but ExceptionSets, is that the parallel construct collects exceptions thrown by child
processes and throws them higher up. The parallel construct will be further discussed in section 3.3.6
and section 4.4.4.

An exception is always of a type that is derived from the Exception class. This Exception class
contains methods to determine the exact type of the exception in the ExceptionSet. This way, the
exception handler can distinguish different exception occurrences. The handler can thus handle all the
exception types that it knows how to handle and if the ExceptionSet contains any more
unhandled exceptions, it can throw the remaining ExceptionSet. There will be an example of this
behavior in section 3.4.8

3.3.3 The EXCeption construct
In the proposed exception-handling concept, a new construct is needed. The new construct is named
the EXCeption construct. The GML symbol of that new construct is . This construct catches an
ExceptionSet that is thrown and directs it to the associated exception handler.

The EXCeption construct is associated with a process and an exception handler (See Figure 18). The
process encapsulates the error-free operation. This process is run first. When it terminates normally,
the EXCeption construct terminates normally as well. When the normal process terminates abnormally
by throwing an ExceptionSet, the EXCeption construct executes the exception handler. If this
exception handler terminates normally, the exception construct terminates normally. If however, the
exception handler terminates abnormally by throwing an ExceptionSet the exception construct
terminates abnormally.

Figure 18. GML model of a process that is guarded by an exception handler

 24

The EXCeption constructs can be cascaded so that exceptions that are not handled by the first
exception handler can be handled by other exception handlers:

A EXC B EXC C (A EXC B) EXC C A EXC (B EXC C)

=

=

(1)

(2)

(3)

All three of the above options capture the concept of partial exception handling. That means that
ExceptionHandler_B may handle some exceptions from the exception set and propagates the
remaining exceptions by throwing them higher up. These can then be handled by
ExceptionHandler_C.

However, due to the restriction that the EXCeption construct can only be associated with a process and
an exception handler, option two is the model of implementation for partial exception handling. The
parenthesizing on option two indicates the composition of Process_A and ExceptionHandler_B into an
EXCeption construct, which is again a process. Thus, it can be composed with ExceptionHandler_C in
a higher EXCeption construct.

Option one cannot be implemented because an EXCeption construct can only be associated with one
process and one Exception handler. Option three cannot be implemented because here the EXCeption
construct between ExceptionHandler_B and ExceptionHandler_C would be the exception handler for
the upper EXCeption construct, which is not allowed because an EXCeption construct is a process and
not an exception handler.

3.3.4 The Sequential construct
The Sequential construct arranges the execution of the child processes in sequence, as in the case of
C++ of Java code. The behavior when an exception occurs resembles the behavior of C++ or Java
code. The process that is being executed terminates abnormally by raising an exception and
consequently, the sequential construct terminates abnormally without running any more processes.
Since the genuine behavior of this construct in presence of exceptions complies with the desired
(exceptional) flow of control, supporting exception handling on the level of the CT libraries requires
no change to the sequential construct.

3.3.5 The (Pri)Alternative construct
The alternative construct makes a choice to run a certain process based on the guards that are guarding
channels. A guard observes if the process on the other side of the channel wants to communicate. If a
guard, for whatever reason, cannot make this observation, it can signal this to the alternative. Because
the alternative cannot make a competent choice, it terminates abnormally by throwing an
ExceptionSet that contains all the exceptions given by the guards.

If all guards are able to observe if the other side wants to communicate, but no one wants to, the
alternative waits for one guard to signal a communication possibility. During this waiting, the guards
can still signal a problem to the alternative, which then terminates abnormally.

 25

If one or more of the guards signal that the other side wants to communicate, the alternative chooses
one of the guards and executes its associated process. If this process terminates abnormally, the
alternative will also terminate abnormally.

Thus, the exception enabled alternative execution consists of three stages:

1. Initial checking of the guards. The guards can signal problems to the alternative. If a problem
was found, the alternative terminates abnormally.

2. Waiting for one or more guards to become ready or signal a problem. If a problem was found,
the alternative terminates abnormally.

3. Running the associated process. If the process terminates abnormally, the alternative will
terminate abnormally.

Figure 19. Two processes in an Aternative construct

If, for example, in Figure 19 Chan1 is an external communication channel, but a cable break is
detected, the guard can signal this to the alternative, which will then terminate abnormally. If the
guard is able to observe a communication attempt from the other side, Process_A will start. If in the
execution of Process_A an ExceptionSet is thrown, it will propagate through the alternative
construct.

3.3.6 The (Pri)Parallel construct
The behavior of the parallel in an error-free operation is that it terminates, when all its child processes
have terminated. This behavior stays the same under abnormal termination of any of its child
processes. The parallel collects ExceptionSets that are thrown by child processes and places their
exceptions in one ExceptionSet. If this ExceptionSet is empty when all child processes have
terminated, so there were no exceptions raised by the child processes, the parallel terminates normally.
If the ExceptionSet of the parallel is not empty when all child processes are terminated, the
parallel terminates abnormally by raising this ExceptionSet.

This behavior of the parallel can introduce a deadlock condition. Consider the following structure:

 26

If an exception is raised in A, A will terminate abnormally. If it was to communicate with B at some
point and B is waiting for this to happen, B will not terminate. It will be blocked, waiting for the
communication. Therefore, the parallel construct will not terminate and E will not execute. Therefore,
if two processes communicate with each other and they are running in parallel and they can terminate
abnormally, each one of them should have an exception handler, which would make sure the other
process also terminates.

This problem in the proposed exception handling mechanism is addressed by the channel rejection
technique. Now looking back at the example, when A en B could communicate with each other and
for example A would be able to terminate abnormally, the structure should be changed to:

In this situation, exception handler E not only handles the exception that occurred in A, but also rejects
the channel between A and B, annotated by the bold crosses. This way, the exception handler of A
makes sure that B also terminates (although abnormally). If B terminates because of the channel
rejection, exception handler F filters out the exception thrown because of the channel rejection.

When exception handler F also rejects the channel between A and B, it doesn’t matter any more which
of the two processes terminated because of an exception. Due to the channel rejection, the other
process will eventually also terminate.

More examples on this will be given in section 4.4.4.

3.4 Implementation in CT

3.4.1 C++ try/throw/catch
As mentioned in section 3.3.1, the concept of exception handling in CT looks a lot like
try/throw/catch from C++ or Java. In C++, a piece of code using exception handling is shown in
Listing 1

 27

try {
//Some guarded code
…
throw(SomeType());
…
} catch (SomeType localInstance) {
//Exception handler
…
 if (!completely_handled)
 throw;
…
}

3.4.2 CTC++ TRY/THROW/CATCH/ENDTRY macros
Instead of using try/throw/catch in CTC++ programs directly, macros should be used that contain
try/throw/catch. The macros are given below:

//inside ExceptionSet.h
#define TRY try
#define THROW(a) throw (a)
#define CATCH(a) catch (ExceptionSet *a)
#define ENDTRY

The use of macros was done to make the implementation more platform and language independent
between version of the CT library like CTC and CTC++ under RTAI. For CTC and CTC++ under
RTAI the implementation using try/throw/catch cannot be used. In C, these functions do not
exist and under CTC++ under RTAI, these functions cannot be used because of they are in a dynamic
library, which cannot be used in the kernel (See section 2.4).

3.4.3 CTC TRY/THROW/CATCH/ENDTRY macros
For CTC the setjmp and longjmp functions could be used. The setjmp function saves the
current processor context into a structure. When the program returns from a setjmp that stores the
current processor context, the return code is zero. Using the longjmp function the program can
jump back to a previous saved point. When a longjmp is issued, the program will return from the
setjmp function but now with a return code that is not zero. This way a distinction can be made
between the call to setjmp and a jump from longjmp.

Listing 1. Exception handling in C++

Listing 2. TRY/THROW/CATCH/ENDTRY macros in CTC++

 28

Using setjmp / longjmp, the TRY macro in CTC would become:

#define TRY {\
 state_buf local_buf; \
 local_buf.prev = currentThread->handler; \
 current = &local_buf; \
 local_buf.item_thrown = setjmp(local_buf.jmp_buf); \
 if (!(local_buf.item_thrown))

 //The “else”-branch is in CATCH

One can see here that every time the TRY macro is executed, a new state_buf structure is placed
on the stack. This structure is filled with a pointer to the structure from the previous TRY call. This is
needed for a hierarchical exception handling mechanism. Every thread contains a handler pointer that
points to the latest added structure. In the TRY, this handler pointer is updated to point to the new
state_buf.

The saving of the processor context causes some overhead, which is the largest downside to this
implementation of exception handling in CTC. The time for saving the context on a 350 MHz Pentium
II is 0.12 µs (using GCC 3.3.3 for DOS). For a modest program using a low number of TRY macros,
the overhead will be small, but for more complex CTC programs with heavily nested exception
handlers, the overhead will become significant.

The result value from the setjmp call is also stored in the new state_buf. If it is the first call to
setjmp the value will be zero. The if statement will then execute the error-free code. If a
longjmp was made, the value returned by the setjmp will be the value that was thrown. By
storing this value, it can be used in the CATCH statement to give the exception handler the item that
was thrown.

The CATCH macro in CTC becomes:

#define CATCH(ExceptionSet_Name) \
 else { \
 currentThread->handler = local_buf.prev; \
 ExceptionSet *ExceptionSet_Name = \
 (ExceptionSet *) local_buf.item_thown;

The else in the CATCH macro belongs to the if in the TRY macro. This means that the code after
the CATCH statement is executed when the program jumps back to the if statement because of a
longjmp. The first thing it does is resetting the handler pointer to the previous TRY block. This way
when a THROW is executed again, it jumps back to the previous saved processor state.

After this, the thrown value is retrieved from the structure. This value is appointed to a pointer to an
ExceptionSet. The name of this pointer is determined by the name given as parameter to the
CATCH macro.

Listing 3. The TRY macro in CTC

Listing 4. The CATCH macro in CTC

 29

The ENDTRY macro becomes:

#define ENDTRY \
 } currentThread->handler = local_buf.prev; }

The ENDTRY macro restores the current pointer to the previous processor context. This restores
everything that the TRY macro changed. There is no equivalent for ENDTRY in C++ so for the CTC++
implementation this empty.

Using longjmp, the THROW macro in CTC becomes:

#define THROW(ExceptionSet_Ptr) { \
 longjmp(currentThread->handler->jmp_buf, ExceptionSet_Ptr); }

The THROW macro uses the value from the handler pointer to determine the latest saved processor
context for this thread and feeds this together with the value to be thrown into longjmp. It will not
return from this call to the point after the longjmp. Instead, it will return from the setjmp that
saved the used processor context.

The macros given above are a complete solution for CTC.

3.4.4 CTC++ / RTAI exception handling mechanism
The TRY/THROW/CATCH/ENDTRY macros as presented in section 3.4.2 cannot be used for CTC++
under RTAI because try/throw/catch are not available. Without changes, the CTC macros also
cannot be used, because setjmp / longjmp are also not available. Setjmp and longjmp are not
very difficult functions, so they could be written rather easily. When this is done, exception handling
could be implemented using the same macros as the CTC solution. This implementation has one
problem however when used with C++. Consider the example given in Listing 7.

class SomeClass
{
 private:
 char *buffer;

 public:

 SomeClass() {
 buffer = malloc(a_lot); //Alocate a lot of memory
 }

 ~SomeClass() {
 free(buffer); //Release the allocated memory
 }
}

Listing 5. The ENDTRY macro in CTC

Listing 6. The THROW macro in CTC

 30

void SomeFunction() {
 SomeClass someClassInstance; //Allocate a_lot of memory

 …
 //Code that could execute a THROW
 …

 //Here someClassInstance is destructed and the memory released
}

Listing 7. Problematic code when using setjmp/longjmp in C++

In this code, every instance of SomeClass allocated a certain amount of memory. This is for
instance done when SomeFunction is entered. When SomeFunction is left,
someClassInstance is destructed and the memory is given back to the system. This also happens
when SomeFunction is left because of a C++ throw command. That is because throw unwinds
the stack, which means that it will destroy any objects that are on the stack. For classes with a
destructor this includes calling the destructor.

Since throw is not available under RTAI, the C++ macros cannot be used. The CTC macros that can
be used instead, do not unwind the stack. The THROW macro just jumps back to the position of the
setjmp in the TRY macro and resets the registers on the processor. In the above example, this would
mean that someClassInstance is not correctly destroyed and the memory it allocated is not
released. This in turn would result in a serious memory leakage problem.

3.4.5 Exception
One of the demands of exception handling is that is should be possible to precisely determine what the
source of the exception is. This could be done by the possibility to determine the class of the exception
that was thrown. For every source of exception, a class would be derived from a more global type,
with the Exception class at the top. An example would be an EncoderOverflowException that
is derived from an EncoderException, which in turn is derived from Exception.

If this is used, there must be a possibility to determine the type of the class that was thrown. In C++
this is normally done using dynamic casting, which requires RTTI (Run Time Type Interface).
Because RTTI is neither available under RTAI and in C, a type checking method was devised for the
CT library.

For the type checking method, several options were thought of. The options are first explained and
then the pros and cons are mentioned in a table. Example code for all the options can be found in
Appendix B.

1. Array in base class

In the first solution, the Exception class contains an array with pointers to strings containing names
and a counter that contains the derivation level of a certain instance. When an instance of a derived
class is instantiated, the constructors of all the subclasses are called in the order of inheritance
beginning with the Exception class. Each constructor should register itself with its name to the
Exception base class, which then stores a pointer to the name and increases the derivation level.

When a type has to be checked of a certain instance, the base class compares the given name with the
name of that particular instance and all its lower derived names.

2. Linked list of ExceptionType variables

In this solution, every exception derived from Exception should contain an instance of an
ExceptionType class, which is initialized upon construction of the derived Exception with the
name of the derived exception and a pointer to the newly formed exception. The ExceptionType

 31

registers itself with the BaseException class, which is a base for every Exception. This way a
linked list of ExceptionTypes is formed.

When a type has to be checked of a certain instance, the linked list is followed in reversed order. In
each step, the name given to the ExceptionTypes is compared to the given name to compare it
with.

3. Linked list of static ExceptionType variables

This solution looks a lot like the previous mentioned solution, with the difference that the
ExceptionType variable is a static variable. This enables the type check function to do a pointer
comparison to check the type.

4. Virtual functions

In this solution, every derived exception should implement its own virtual function to check the type.
If the type is not correct it can direct the type checking to the type it is derived from. This goes on until
the base class Exception or until the type is correct.

Solution
1. Array in Base class + Only one function call in the constructor
 – A limited level of derivation

Comparison of strings (slow)
Derived exception classes should call SetType(“..name..”)

2. Linked list of
ExceptionTypes

+ Looks very clean in the code
C++ can use operator overloading for type checking

 – Comparison of strings (slow)
Derived exception classes should contain an ExceptionType variable
and initialize this using its constructor.

3. Linked list of static
ExceptionTypes

+ Comparison of pointers (fast)
Nicer call to check type

 – Derived exception classes should have a static variable declaration in
class declaration and in the class implementation and fill a pointer in
base class in the constructor.

4. Virtual functions + A nice C++ way.
 – Derived exception classes should implement all virtual functions

comparison of strings (slow)
Virtual functions are not available in C. A workaround could probably
be made by using function pointers.

From these options, option 2 was chosen for the final implementation, because of the small language
dependency and the clean code it produces. The comparison of strings only occurs in the exception
path so it imposes no run-time overhead during the normal operation. The second downside to this
implementation becomes less of a problem by having code generation for user defined exceptions in
the gCSP tool.

 32

+type : ExceptionType
-top_ExceptionType : ExceptionType *
-next : Exception *
-prev : *Exception *

Exception

+type : ExceptionType

SomeDerivedException

-type_name : char*
-lower_type : ExceptionType *
-exception : Exception *

+isOfType(char* type_name):bool
+isDerivedFrom(char* type_name):bool
+ExceptionType(char* type_name,Exception * exception)
+Name():char*

ExceptionType

1

1

1

1

Figure 20. UML diagram of the Exception class, a user defined exception and the ExceptionType class

A UML diagram of the Exception class is given in Figure 20. This also shows the
ExceptionType class. Every exception or derived exception should contain a variable of this type.
By calling the isOfType() method, one can determine if the exception is exactly of the type
that is passed as a string. Using the isDerivedFrom() method, one can check if the exception is
derived from the exception that is passed as a string and thus is a more specific type then the one
passed.

The ExceptionType class uses the exception pointer to find the exception it belongs to. Then it
uses the top_ExceptionType pointer to find the last registered ExceptionType. It then
compares the given string to the string stored in type_name and returns true if they are the same. If
they are not the same, the isOfType() method will return false. The isDerivedFrom() method
repeats this process with the ExceptionType of the parent class (pointed to by the lower_type
variable). It does so until either the strings match or the Exception class is reached and thus a
parent class cannot be found.

In CTC++, operator overloading is used such that one can also use == and >=, the former calling
isOfType() and the latter calling isDerivedFrom().

As mentioned above, the Exception class contains an ExceptionType variable called type.
The string given to this variable is “Exception”. Therefore, if one calls the method
isDerivedFrom() passing it the string “Exception”, the result will always be true, because every
exception is derived from Exception.

The Exception class also contains two pointers called prev and next. They are use by the
ExceptionSet class (See below) and they point to the next and previous exception in the exception
set.

 33

Class SomeDerivedException : virtual public Exception
{
public:
 ExceptionType type;
 SomeDerivedException() : type(“SomeDerivedException”, this) {
 }

};

Listing 8. Example code of a class declaration of a derived exception

When one wants to write a new derived exception, that exception should also contain a variable of the
type ExceptionType that is initialized in the constructor. Listing 8 shows the class declaration of
the SomeDerivedException of Figure 20. Although this is not used in this example, a user-
defined exception can of course have extra arguments in its constructor, this way providing more
information on the source of the exception.

3.4.6 ExceptionSet
An ExceptionSet is a collection of zero or more Exception objects. Exception objects can
be added and removed from the set. In Figure 21, a UML diagram is given of the ExceptionSet
class.

The user can get the first exception of the set by calling the First() method. This will return the
contents of first, which is a pointer to the first exception of the set. At this moment, the current
pointer is set to this exception. Using the Remove() method, the exception pointed to by current
(the “current exception”) is removed from the set and a pointer to the removed exception is returned.
The current pointer is updated to point to the next exception. If there is no next exception, the
pointer will be null.

The exception that current points to can always be retrieved by calling the Current() method.

Using the isHandled() method, the exception set is signaled that the “current exception” is
handled. The exception is removed from the set and deleted. The isHandled() method returns the
next exception in the set. If an exception cannot be handled, the next exception can be retrieved by
calling the Next() method. This will update the current pointer and return the next exception in
the set without removing or deleting the old one.

An Exception can be added to the set by calling the Add() method or giving it in the constructor. It is
also possible to add the contents of an ExceptionSet to another ExceptionSet. All the
exception are removed from the former and added to the latter. The empty exception set is not deleted.

 34

-first : Exception *
-last : Exception *
-current : Exception *

+Add(Exception * exception):void
+Add(ExceptionSet * exceptionSet):void
+Remove():Exception *
+First():Exception *
+Current():Exception *
+Next():Exception *
+isHandled():Exception *
+isEmpty():bool
+ExceptionSet()
+ExceptionSet(Exception * exception)
+ExceptionSet(ExceptionSet * exceptionSet)
+~ExceptionSet()

ExceptionSet

Figure 21. UML diagram of the ExceptionSet class

3.4.7 ExceptionConstruct
The ExceptionConstruct class is the implementation of the EXCeption construct. The
constructor of the ExceptionConstruct requires a pointer to a Process and a pointer to an
ExceptionHandler. The implementation of the run() method of the ExceptionConstruct
is given in Listing 9.

void ExceptionConstruct::run() {
 TRY {
 process->run();
 } CATCH (exceptionSet) {
 exceptionhandler->run(exceptionSet);
 } ENDTRY;
}

As can be seen the implementation is straightforward. This implementation can also be used in a user
written process. This way a separate ExceptionConstruct is not necessary, saving memory
usage and runtime overhead.

3.4.8 ExceptionHandler
The ExceptionHandler class is something that looks a lot like a process, but it is not derived
from Process. It contains a virtual run(ExceptionSet *) method. This routine is called by
an ExceptionConstruct as the exception handler.

The reason for not making it a normal Process is that it needs to know somehow about the
ExceptionSet that was thrown. If an exception handler is specific for certain exception, it should
iterate through the received ExceptionSet, handle the exceptions that are supported and then
throws the remaining ExceptionSet higher up. The exception handling mechanism does not check
for which type the handler has been written. It just looks for the first exception handler in the
propagation path.

Listing 9. Implementation of the ExceptionConstruct::run method

 35

void SomeHandler::run(ExceptionSet *eSet) {
 Exception *exc = eSet->First();
 while (exc) {
 if (exc->type.isDerivedFrom("ExceptionName")) {
 //Do things here that are specific for this type of exception.
 //...
 exc->isHandled();
 } if (exc->type.isDerivedFrom(“SomeOtherException”)) {
 //...
 exc->isHandled();
 } else {
 //Place code here for when the exception type cannot be handled.
 //...
 exc = eSet->Next();
 }

 }

 //Do general things here
 //...

 //Check if the remaining set is empty
 if (!eSet->isEmpty()) {
 //And THROW if it is not empty
 THROW(eSet);
 } else {
 //delete the set when it is empty
 delete eSet;
 }
}

Listing 10 shows a code template for an exception handler. This exception handler iterates through the
given exception set in a while loop. Using the isDerivedFrom() method, it checks if the
exception is of a type that it can handle. When the exception is handled, it is removed from the
exception set and deleted by calling the isHandled() method, which returns the next exception of
the set. If the exception cannot be handled, the Next method is called, to get the next exception in the
set.

When the handler has iterated through the set, code is executed that is not specific for the kind of
exception. After execution of this code, the handler checks if the set is empty and deletes the empty set
if this is the case. If the set is not empty, it means that not all exceptions have been properly handled,
and the set is THROWN.

3.4.9 (Pri)Parallel construct
The (Pri)Parallel construct was changed in such a way that it collects ExceptionSets that are
thrown by child processes. If all child processes have terminated and one of them threw an
ExceptionSet, the Parallel construct will also throw an ExceptionSet, which contains all the
exceptions from the child processes.

Because child processes are on different stacks, the ExceptionSets that are thrown by them can
only be caught on their own stack. Therefore, there must be some code before the actual run method of
the child process. This was already necessary, because one cannot determine the address of a non-
static method of a class. Such an address is necessary for the scheduler because it has to know where
the execution of a thread should start. For this purpose, the ProcessFix__run function was
written.

Listing 10. Template for an exception handler

 36

For the exception handling mechanism, the ProcessFix__run method was changed in such a
way that it catches ExceptionSets that are thrown by the child process it starts. If an
ExceptionSet is caught, the set is added to the ExceptionSet of the Parallel construct that
contains the process.

For performance reasons, the parallel contains no ExceptionSet when it starts. When the first
ExceptionSet from a child processes is caught, the Parallel construct takes over that
ExceptionSet as its own. This way, it saves memory and processing time during the exceptional
operation.

3.4.10 (Pri)Alternative construct
The (Pri)Alternative construct in CT, as analyzed in section 3.3.5, can be seen as having 3 phases. To
recall: the first phase is that it checks all the guards, the second phase is that it waits for guards to
become ready and the third phase is selecting and running the selected process.

The first phase is always executed. During this phase, the enableAlting() method of each Guard
is called. This in turn calls the setGuard() method of the channel it is associated with. In this
function, the channel can add an Exception to the ExceptionSet of the alternative if the
channel is not functioning correctly. When the Alternative construct has checked all the Guards, it
checks if its ExceptionSet is still empty. If this is not the case, it throws the ExceptionSet,
which is a collection of Exceptions generated by guards/channels.

If the ExceptionSet of the Alternative construct is empty, it waits until one Guard becomes ready.
This is done using a semaphore, which is released by the channel when it becomes ready. During this
period, the channel can also add an Exception to the ExceptionSet of the Alternative construct
and wake up the Alternative construct. When the Alternative construct wakes up, it checks again if its
ExceptionSet is empty. If this is not the case, it throws the ExceptionSet higher up.

When the ExceptionSet is still empty, it depends on the invocation method of the Alternative
construct if it calls the run() method of the process associated with the guard. If the run() method
of the Alternative construct was invoked, it calls the run() method associated with the Guard. If an
ExceptionSet is thrown during the execution of this process, it propagates through the Alternative
construct.

Just like the in the Parallel construct, the Alternative construct does not contain an ExceptionSet
of itself. Instead, it takes the first ExceptioinSet as its own.

Figure 22 shows three sequence diagrams of possible behavior of the Alternative construct when an
exception occurs. Example 1 shows the behavior when an exception is signaled during the checking of
the guards :

1. The Alternative construct calls the EnableAlting method of Guard1
2. Guard1 calls the SetGuard method of channel1
3. Channel1 adds an Exception to the ExceptionSet of the Alternative construct
4. The Alternative construct calls the EnableAlting method of Guard2
5. Guard2 calls the SetGuard method of channel2
6. The Alternative construct throws the ExceptionSet

Example 2 shows the behavior when an exception is signaled while the Alternative construct waits for
a guard to signal a communication attempt:

1. The Alternative construct calls the EnableAlting method of Guard1
2. Guard1 calls the SetGuard method of channel1
3. The Alternative construct calls the EnableAlting method of Guard2
4. Guard2 calls the SetGuard method of channel2
5. The Alternative construct waits until it is woken up by a channel
6. Channel1 adds an Exception to the ExceptionSet of the Alternative construct and

wakes up the Alternative construct

 37

7. The Alternative construct throws its ExceptionSet

Example 3 shows the behavior when an exception is thrown by a chosen process:

1. The Alternative construct calls the EnableAlting method of Guard1
2. Guard1 calls the SetGuard method of channel1
3. The Alternative construct calls the EnableAlting method of Guard2
4. Guard2 calls the SetGuard method of channel2
5. The Alternative construct waits until it is woken up by a channel
6. Channel1 signals a communication event to the Alternative construct and wakes up the

Alternative construct
7. The Alternative construct calls the run method of Process1
8. Process1 throws an ExceptionSet

 38

Figure 22. Sequence diagram of the behavior of the (Pri)Alternative construct

3.5 Evaluation
The presented exception-handling concept does have some downsides.

The first has to do with the memory allocation. This problem is however not specific for the CT
library, but common for all systems.

//Some guarded code in our real time process
…
 THROW(new ExceptionSet(new Exception));
…

Listing 11. Example code for memory allocation in a real time program

Alternative

Construct

Guard1

Channel1

Process1

Guard2

Channel2

1

1

1

2

2

2

4

3

3

5

4

4

3

5

5

6

6

7

6

7

8

Example 1

Example 2

Example 3

 39

If we look at the code above, it has the problem that memory allocation is done in the real time part.
To be able to guarantee that the parent process still meets it deadline, there be a bound on the time it
takes to allocate memory. Furthermore, the allocation and de-allocation of the Exceptions and
ExceptionsSets can cause memory fragmentation. This in turn could lead to memory allocation
problems, when one wants to allocate a large piece of memory.

One possibility to solve these problems is by allocating a new ExceptionSet and Exception
in the initialization stage of the object that throws the ExceptionSet. Either the ExceptionSet
should be used only once or the exception handler should not delete the ExceptionSet and the
Exception. In the latter case, the number of ExceptionSets that the object allocates should be
equal to the number of invokers it has, so that it can throw a unique ExceptionSet to each
invoker. This solution is however not usable when the number of users of an object is unknown, like in
an “any to any” channel.

A second downside to this concept is that there is no way of letting the compiler check which
exceptions are thrown and if a process is allowed to do so (like the protection in Java and the possible
protection in C++). How a certain process reacts to certain exceptions should be mentioned in the
specification of the Process. The specification should mention what kinds of exceptions are handled by
that process, meaning they are not thrown higher up. It can be assumed that every other exception is
thrown higher up by the process.

With respect to property five in section 3.2.2, the mechanism presented in this thesis can only handle
software exceptions. When there is a desire to handle hardware exception, these should be mapped to
software exceptions by the OS in combination with CT.

3.6 Conclusions
The CT library is enriched with an exception handling mechanism. It is based on unsuccessful
termination of processes and looks like the C++/Java try/catch. This enhancement contributes
substantially on applicability of CSP/CT paradigm in building reliable systems, as it provides the main
instrument for fault-tolerance.

The common drawbacks attached to this sort of fault-tolerance provisions are identified and possible
solutions are analyzed.

Chapter 4 demonstrates exploitation of the developed mechanism.

 41

4 Exception handling demonstrators

4.1 Introduction and Outline
In chapter 3 an exception handling mechanism for CT has been presented. This chapter will give some
examples of how this mechanism can be used. All of the examples are also translated into CTC++
programs.

The examples that will be given in this chapter are:

1. Division by zero.
This will show the behavior when an exception is thrown from a process.

2. JIWY watchdog cable.
This will show the mechanism of throwing an exception from an external channel

3. “No zero” channel.
This will show the mechanism of throwing an exception from an internal channel. This will
also discuss the mechanism of channel rejection.

4. Examples of exception handling in an ensemble of parallel processes:

a. Division by zero with two processes
This shows the use of channel rejection the concurrent environment

b. Soft end stops in JIWY
This will show how the rejection mechanism can be used in real setup.

c. Comstime with channel rejection
This will give an example of how channel rejection can be used to terminate a
program.

Section 0 will first describe the JIWY setup as it was at the beginning of this research. During this
research extra hardware was added to the JIWY setup. For this system, new software had to be written.
Both the hardware and the software will be discussed in section 4.3. After this, the examples
mentioned above are discussed in section 4.4. Each example starts with a presentation of the
mechanism. After this, a concrete execution is given.

4.2 Demonstrator setup
Jiwy is a two DOF (degree of freedom) robotic end-effecter developed at the Control Engineering Lab.
The setup is described in (Broenink et al., 2002) and (Jovanovic, Dusko et al., 2002).

4.2.1 Hardware
The JIWY setup consists of 2 parts (See Figure 23). The first part is the mechanical part. It consists of
two axes, each having a motor with gearbox, a pulley and an encoder connected to the end-effecter.

The second part is a box that contains a power supply, current amplifiers and some electronics for
encoder interfacing. This box is connected to a NI6024E interface card in a PC by means of a cable
that contains the low power steering signals, encoder signals and extra, unused signals.

Figure 23. Schematic view of the JIWY setup

End-effector

Electronics box
• Power supply
• Amplifiers
• Encoder interface

PC
• NI6024E card

 42

From the power box, three cables run to the mechanical part of the setup consisting of the end-effecter.
Two of these cables contain the motor steering and the encoder signals. The third cable can be used for
extra signals and will in the future be used for end stop switches. Switches would be placed near the
mechanical end stops of the axes, this way providing feedback on when a mechanical end stop is
reached.

The three cables all have a spare wire that is not used for control of the setup. Instead, it can be used as
a watchdog cable. The idea is that when this cable is interrupted, a signal is given to the processor
controlling the setup. The circuitry and software for this feature will be discussed in section 4.3.

4.2.2 Software
Figure 24 shows the model of the original JIWY software. It contains two parallel branches, with no
communication between them. Each branch contains five processes that are in sequence.

The RotateLeft processes let the axis turn to one side by maintaining a constant velocity. If the
velocity is zero while the motor has a steering value, the RotateLeft processes assume that the axes
have hit their mechanical end stops. At this point, the encoder value is saved. This encoder value is the
mechanical limit on the left side. The Back processes that are executed next are position controllers
that make the axes go back to the initial position. The following RotateRight processes do the same as
the RotateLeft processes but to the opposite direction. They store the encoder values for the
mechanical limits on the right side. The next processes in the sequential constructs are the Jiwy
processes. These are also position controllers. The desired positions are read two axes of a joystick.
The center position of the joystick corresponds to the center position of JIWY.

The encoder values of the center position of JIWY are determined on basis of the encoder values of
the mechanical limits determined by the RotateLeft and RotateRight processes.

The Jiwy processes terminate upon reading that the stop button on the joystick has been pressed. The
sequential constructs then start to execute the Home processes. These are also position controllers that
set JIWY back to its center position. The Home processes will stop when the center position has been
reached.

Figure 24. GML model of (old) JIWY software

 43

4.3 Digital Inputs
As mentioned in the previous section, provisions had been made for using watchdog cables and end
stop switches. They were however not yet implemented. Part of this assignment was to implement the
watchdog cables. They could then be used as examples for the exception handling mechanism.

4.3.1 Hardware demands
The current control of the setup is done using a PC that contains a NI6024E interface card. This card
contains sixteen analog inputs, two analog outputs, two counters and eight digital inputs. Of these
eight digital inputs, two are already used by the optical encoder interface. This means that there are six
digital inputs left.

When the two desired extensions, namely the watchdog cables and the end stop switches, would be
incorporated, seven digital inputs are needed at least: three for the watchdog cables and four for the
end stops (two switches for both axes). More digital inputs would be welcome, because then extra
switches, like safety switches, could be attached in the future. Because only six inputs were available
and at least seven were needed, extra digital inputs had to be added.

Because the expected rate of change of the inputs is very low, polling would, in total, give more
overhead then interrupt driven behavior. Having the inputs interrupt driven also makes the
demonstrator better in the sense, that CT responsiveness to external events can be clearly shown.

Since the NI6024E card has too few digital inputs and is not capable of generating interrupts that
indicate a change to the digital inputs, additional interfacing hardware is designed. For this extra
hardware, there were a few options:

A new interface card

This interface card would be connected to the PCI bus and would typically contain 24 to 48 IO pins. It
would support Interrupt on Change, which means that when an input changes, an interrupt is
generated.

Extra circuit connected to parallel port

The extra circuitry that would be added would provide the Interrupt on Change functionality. The
interrupt output of the circuitry would be connected to the interrupt pin of the parallel port. The
parallel port has enough inputs to read three watchdog signals and four end switch signals. However,
multiplexing the signals could be an option, this way providing more then eight inputs for future
expansions.

Extra circuit connected to NI6024E card

In this case, like in the previous, the extra circuitry would provide the Interrupt on Change
functionality. The interrupt output of the circuitry would be connected to a GATE input of the
NI6024E card. When the counters on the NI6024E card are used as encoder interface, the GATE
signals are not used and can be used to generate an interrupt to the processor. Because there are only
six usable digital inputs left on the NI6024E card, the end switch signals and the watchdog cable
signals would have to be multiplexed. The output of the multiplexer would be connected to the digital
IO pins of the NI6024E card.

 44

Solution

1. New interface card + Lots of digital inputs

 – New drivers had to be written

Extra cable connection from the JIWY box to the PC

Expensive

2. Extra circuit connected
to the parallel port

+ Exactly meets the design requirements

 – Design time of the circuitry

Extra cable connection from the JIWY box to the PC

3. Extra circuit connected
to the NI6024E card

+ Exactly meets the design requirements

 – Design time of the circuitry

Still a limited number of inputs (although 12 should be enough)

It was decided to implement option 3, the extra circuitry connected to the NI6024E card. The cost of
this solution would be low, it probably cost only a little bit more time and there are no extra cables
needed between the controlling computer and the JIWY setup.

4.3.2 Debouncing
When a switch is being closed or opened or a cable is being connected or disconnected, the contact is
never made or released instantly. Because of the contact bouncing, the software can think that the
input changed many times, very rapidly. This is undesirable and can cause misinterpretation in the
software.

For a 3-pole switch, this can be circumvented by using the schematic given in Figure 25. The problem
with 3 pole switches comes mostly from the transition period between breaking contact with one side
and making contact with the other. During this period, the signal has no clear defined state. In given
circuit, the capacitor stores the state of the signal during these transition periods, until definitive
contact has been made. This provides an adequate method to prevent bouncing.

Besides the end switches, the watchdog connection also had to be debounced. This type of connection
can be seen has two states (connected or not) in contrast to the three states of a 3-pole switch. For the
watchdog, it was desirable to have a quick detection of the disconnection event. When the cable would
be reconnected, the event detection mechanism could be slower.

For debouncing the watchdog cables, the schematic of Figure 26 has been made. Shown is only one
cell, for debouncing a single switch or cable. Six of these cells were added to the circuitry so more 2-
pole switches could be added in the future.

The FET in combination with the resistor connected to the gate inverts the signal. This was necessary
to have a fast detection of disconnection events. The FET, the capacitor and the resistor connected to
them form a delay stage. When the FET conducts current (so when the switch is opened), the capacitor
quickly discharges, this way giving a sharp negative edge on the signal line. If the switch is closed, the
FET stops conducting current and the capacitor begins to charge. When the threshold of the input is
reached, a new signal level is detected. If during this charging, the switch opens again (because of
contact bouncing) the capacitor discharges rapidly again. It is not until a steady state of the switch is
reached, that the signal level reaches the input threshold.

 45

Figure 25. Schematic for debouncing a 3-pole switch

Figure 26. Schematic for debouncing a 2-pole switch

4.3.3 Print buildup
The extra circuitry was built up using some analog electronics for the debouncing of the watchdog
cables and an Altera EPLD for the digital part. The complete schematic of the print is given in
Appendix C, together with the AHDL code that is in the EPLD.

Figure 27 gives an overview of the parts on the print and what is in the EPLD. For the inputs from the
watchdog cables, the print contains the debouncing circuitry given in section 4.3.2. The capacitors for
debouncing the end switches can be mounted in the switches themselves, so they are not placed in the
print.

The twelve debounced signals go into an Altera EPLD. This first synchronizes the inputs to a clock the
circuit receives from the NI6024E card. This sampling also removes glitches in the input signal that
have a width equal to or less then the clock width.

The values that come from the sampling/filtering part are constantly compared to the value that was
last read by the program. If these differ, the interrupt output is set high. This rising flank can trigger an
interrupt on the NI6024E card. When a read action is signaled, the EPLD updates its internal registers
that store the last read value, this way resetting the interrupt output.

The twelve inputs to the print are multiplexed into two groups of six inputs. Which of the two groups
is read is determined by the same signal as the one that signals the read operation. This means that
always the six end switch inputs are read first and then the six watchdog cable signals.

 46

4.3.4 Software changes

Digital input device driver
The design of the extra digital input circuit is such that data should be read only once for every
interrupt, otherwise interrupts can get lost, i.e. input changes can go undetected. Consequently, it must
not be allowed that multiple CT channels read the digital inputs independently.

Updating multiple channels can be done in two ways. The first solution is a single channel that reads
all the digital inputs at once. This channel is connected to a process that distributes the separate bits to
the processes that need them. The downside to this solution is that the individual values can only be
distributed to processes and not to other channels. Therefore, for instance the encoder channel cannot
check the status of the watchdog cable and raise an exception if the cable is broken.

The second solution, which is used here, is that a digital input device driver does the reading from the
hardware and distributes the desired values to individual registered channels. Channels can provide
read values to processes or use them for other purposes, for example error detection. In this way, the
encoder channel can check the status of the watchdog cable.

Linkdrivers
During a previous assignment, (link)drivers for the NI6024E card were written (Stephan, 2002).
Because of the new options of exception generation when a watchdog cable is broken, some
extensions had to be added.

First, some changes have been made to the NI6024E drivers. An interrupt manager for the card was
written, which distributes an incoming interrupt to registered routines, depending on the source of the
interrupt. The timer/counter driver was changed, such that one can choose if a flank on the Gate pin
triggers an interrupt.

Second, the linkdrivers for the encoders have been changed. During a read of the old linkdriver the
reading task is blocked. The reading task is only unblocked by a timer interrupt. In the interrupt-
routine, the encoder value is read and the blocked task gets unblocked. If however the watchdog cable

Figure 27. Contents of JIWY print

Sampling/
Filtering

Last Read

Not Equal?

Mux

Read

Output Select

Data

Interrupt

Inputs

Altera

Print

End switches

Watchdog

Cables

Debouncing Altera
(EPLD)

NI6024E
Read

Output Select

Data

Interrupt

 47

has been broken, it can be assumed that the encoder signals have been corrupted, which means the
encoder value is incorrect. In this case, an exception should be thrown.

Listing 12 shows the code of the new linkdriver. In the new linkdriver, the reading task can also be
unblocked by an interrupt from the NI6024E card. The interrupt is passed through the NI6024E
interrupt manager, then through the digital input device driver to the channel. If the new linkdriver
observes that the watchdog cable is broken, it sets the cables_problem variable and unblocks
the reading task. The current state of the watchdog cable is always stored in the current_status
variable. When the suspended task is resumed, it checks if an error occurred by looking at the
cable_problem variable. If an error occurred, the current state of the watchdog cable is read. If
the status is ok, the cable_problem variable is reset until a new problem arises. Finally, a new
ExceptionSet containing a WatchdogException is thrown if a problem occurred.

More explanation on using interrupts to detect error situations is given in section 4.4.2.

void NewLinkdriver::read(int *data) {
 //Check if there has been a cable break, or that the cable is still broken
 if (cable_problem) {
 if (current_status == CABLE_OK)
 cable_problem = false;
 THROW(new ExceptionSet(new WatchdogException(encoder_nr)));
 }

 //Read a encoder value. This will block the process until the encoder is
 //read in a timer interrupt or a cable interrupt signals a problem
 OldLinkdriver::read(data);

 //Check again if there has been a cable break
 //It might have changed while it was blocked during the read
 if (cable_problem) {
 if (current_status == CABLE_OK)
 cable_problem = false;
 THROW(new ExceptionSet(new WatchdogException(encoder_nr)));
 }
}

Listing 12. Example code of the changed encoder linkdriver

4.4 Examples

4.4.1 Raising exceptions in a process

Mechanism
Figure 28 shows a basic GML model of a process that is guarded by an exception handler. When an
exception is thrown in Process1, the EXCeption construct catches it and redirects the exception to
ExcHandler1 by calling its run(ExceptionSet *eSet) method. This can then handle the
exception in the exception set. Listing 13 shows example code of how an exception is thrown.

Figure 28. Basic model of throwing exception from a process

 48

#include “csp/lang/include/ExceptionSet.h”

…

void Process1::run() {
…
 if (someErrorCondition) {
 THROW(new ExceptionSet(new SomeExceptionType(arguments)));
 }
…
}

Example 1: Division by zero
Figure 29 shows an example of the mechanism described above. The Calculate process reads values
from the keyboard. In this case, it does so using C++ functions, but it could also do so from a
keyboard channel. After a value is read, it tries to divide a constant by the value that has been read.
Before performing the division, it checks if the value that has been read is not 0, which would result in
a division by zero exception from the processor. Because processor generated exceptions cannot be
caught by the CTC++ library, the program should do this check itself. If this value is 0, a
DivisionByZeroException object is allocated and added to a new ExceptionSet object.
A pointer to this ExceptionSet is then thrown. The pointer is caught by the EXCeption construct.
This calls the run(ExceptionSet *) method of CalculateHandler, which then prints an error to
the screen and terminates.

By not placing the error handling code inside the Calculate, but let Calculate throw an exception, the
response to an error situation can be changed more easily, because the exceptional operation is isolated
in the CalculateHandler process. Beside this, the Calculate process gets more general and therefore
more reusable.

Figure 29. Model of division by zero example

4.4.2 Raising exceptions in an external channel

Mechanism
Discussed above is the mechanism for raising exceptions in a process. Instead of throwing an
ExceptionSet in the code of the process, it can also be thrown in the code of a channel, both
internal and external. This example will discuss throwing from an external channel. Throwing from an
internal channel will be discussed in section 4.4.3.

When an exception is thrown from an external channel, the THROW is executed in the code of the
channel (the read or write method). This code is however executed in the context of a certain process.

Listing 13. Example code of throwing an ExceptionSet from a process

 49

If an exception is thrown inside this code, the exception will be caught in the context of the calling
process. Effectively, the mechanism of throwing, propagating and handling an exception is the same
regardless if an ExceptionSet is thrown from a process or a channel. This keeps the mechanism
uniform while it lets the user choose to guard the code at the most appropriate place. It may depend on
the application or the user’s taste to place guarding code in processes or channels or both. This allows
a separation of error detection concerns: in complex fault-tolerant distributed software all anticipated
errors can be divided into those arising from data communication (detected by channels) and those
arising from data processing (detected by processes).

In Figure 30, the read method of the external channel input is executed in the context of Process1.
This means that if an exception is thrown in the code of input, the exception is caught by the
ExceptionConstruct, which in turn will call the run(ExceptionSet *) method of
ExcHandler1.

Figure 30. Basic model of throwing an exception in an external channel

When one wants to throw exceptions inside an external channel, one must make sure that this is not
done inside an interrupt routine. Because an interrupt routine is not executed in the context of the
acting (reading/writing) process, one should not throw an exception inside the interrupt routine. The
best solution is to store the fault condition in the channel, wake up blocked processes, and then have a
check on fault conditions inside the read or write method. Listing 14 gives example C++ code for an
external input channel that uses interrupts.

When interrupts are not used, a simple check at the beginning of the read or write method on possible
error conditions is sufficient. See Listing 15 for an example of an external output channel that does not
use interrupts.

Example 2: Single JIWY axis with watchdog cable
As an example of throwing from an external channel, the JIWY setup is used. The old program was
used with a few changes. The first is that the new encoder channels are used, that check for continuity
on the watchdog cable. If there has been a moment of discontinuity, the new encoder channel throws
an exception.

The second change was the addition of an ExceptionHandler for every axis. This exception
handler checks for exceptions that are thrown because of discontinuity in the watchdog cable. If such
an exception was thrown, the exception handler sets the output to the motor to zero, prints a message
to the screen and waits for a stop or restart signal from the joystick. If it receives a stop signal, the
exception handler stops, this way stopping the program for this axis. Because the other axis also
receives the stop signal, the complete program stops.

If the exception handler receives a restart signal, it reads from the encoder and catches any exception
that is thrown. If no exceptions are thrown, it means that the cable shows continuity again and the code
for this axis restarts from the alignment phase. If an exception was thrown during this read, a message
is printed that tells that the cable is still not working. The exception then again waits for a stop or
restart signal. This goes on until a stop is received or a restart is received and the cable is in order.

 50

void InterruptChannel::read(double *data) {
 checkForErrorAndThrow();

 checkForDataAndBlock(double *data);

 checkForErrorAndThrow();
}

void InterruptChannel::checkForErrorAndThrow() {
 if (problem) {
 if (currentStatus == STATUS_OK) {
 problem = false;
 }
 THROW(new ExceptionSet(new SomeChannelException()));
 }
}

void InterruptChannel::checkForDataAndBlock(double *data) {
 if (!dataAvailable) {
 lock();
 }
 if (dataAvailable) {
 *data = *tempData;
 dataAvailable = false;
 }
}

void InterruptChannel::dataInterruptHandler() {
 //This interrupt routine is called when new data has arrived
 dataAvailable = true;
 tempData = readDataFromHardware();
 unlock();
}

void InterruptChannel::errorInterruptHandler() {
 //This interrupt routine is called when the error condition has changed
 currentStatus = readStatusFromHardware();
 if (currentStatus != STATUS_OK) {
 problem = true;
 }
 unlock();
}

void NonInterruptChannel::read(int *data) {
 if (readStatusFromHardware() != STATUS_OK) {
 THROW(new ExceptionSet(new SomeChannelException()));
 }

 *data = readDataFromHardware();
}

Listing 14. Throwing in an external channel that does use interrupts

Listing 15. Throwing in an external channel that does not use interrupts

 51

Figure 31 shows the model of one JIWY axis. In the demonstrators, two of these axes run in parallel,
each controlling one degree of freedom. There is no communication between the axes, so when an
exception is thrown in one of the axis, the other axis continues normally. Section 4.4.4 will discuss
solutions for concurrent exception handling, in which the other axis also terminates.

Figure 31. Model of one JIWY axis with exception handling for the watchdog cable

4.4.3 Raising exceptions in an internal channel (to two sides of a channel)

Mechanism
For exception throwing in an internal channel, the mechanism is the same as when throwing an
exception in a process or an external channel. This means that when an exception is thrown in the code
of the channel, it is caught in the context of the process that is executing that code.

If processes are blocked on code in the channel and the error condition arises, the blocked processes
should be unblocked. When they resume their execution of the code of the channel, a check should
occur for the error condition and an ExceptionSet should be thrown.

Figure 32 shows a basic model of exception handling when the exception is thrown on an internal
channel. Suppose the channel in the figure throws exceptions to two sides. Because eventually in the
context of both Process1 and Process2 an exception is thrown, they both terminate. For Process1,
ExcHandler1 is executed and for Process2 ExcHandler2 is executed. When both exception handlers
have terminated, the Parallel construct also terminates.

If the internal channel would only throw an exception to one side, only that side will terminate and the
other side will block on the communication event. This is again the problem described in section 3.3.6.
A solution to this problem will be given in section 4.4.4.

 52

Figure 32. Basic model of throwing exceptions on internal channels

Example 3: NoZeroChannel
Figure 33 shows a model that is derived from the model in Figure 32 while the functionality is
equivalent to example 1. In this example, there are two processes, ReadfromKeyboard and Calculate,
which together do the same as the Calculate process of example 1. The two processes communicate
through a channel. ReadFromKeyboard reads a value from the keyboard (using C++ functions) and
sends that value to the Calculate process. This process tries to divide a constant by the received value
and prints the output to the screen.

Because division by zero is illegal, a channel was adapted to throw an exception to both sides of the
channel when a zero is written to the channel. Therefore, when a writer tries to write zero to the
channel, the channel stores this value and then throws an ExceptionSet that contains a
ZeroWrittenException to the writer. If a reader was blocked on the channel, it gets unblocked.
When the execution of the reader continues (inside the read method), an ExceptionSet containing
a ZeroWrittenException is also thrown to the readers’ side. Both ReadFromKeyboard and
Calculate terminate because of the ExceptionSets that have been thrown and their exception
handlers are executed. They both print a message on the screen and terminate.

 gives the code of the read and the write method of the channel from this example. The structure for
the read method looks a lot like the code of the read method of Listing 14. This is because from a
reader’s point of view, a write action is an asynchronous event, just like an interrupt.

The structure of the write method is a bit different, because the error condition is caused in the write
method. If both sides could cause an error condition, the code of the write method would more closely
resemble the code of the read method.

Channel rejection
When a channel is rejected, any action on this channel like reading and writing, but also guarding, will
result in throwing an exception (except rejecting the channel again). In CTC++ this is an exception of
type ChannelRejectedException. If an action already started but got blocked, the blocked
process is woken up and an exception is thrown in the context of that process.

The concept of channel rejection is a very useful tool to terminate running processes. This can be
useful for termination of the complete program or parts of the program.

The code in the ChannelBase.cpp file of the CTC++ library is also a good example of how exceptions
can be thrown to two sides of a channel.

 53

virtual void read(char *data) {
 //Check for a possible error condition
 if (zeroWritten == true) {
 THROW(new ExceptionSet(new ZeroWrittenException()));
 }

 //Wait for a writer to come along!
 waitingreaders++;
 Channel<char>::read(data);
 waitingreaders--;

 //Check for a possible error condition
 if (zeroWritten == true) {
 THROW(new ExceptionSet(new ZeroWrittenException()));
 }
}

virtual void write(char *data) {
 // Check for a possible error condition
 if (*data == 0) {
 zeroWritten = true;
 //Check if there is a readers waiting!
 if (waitingreaders > 0) {
 //And wake it up if there is by finishing the communication
 Channel<char>::write(data);
 }
 THROW(new ExceptionSet(new ZeroWrittenException()));
 } else {
 zeroWritten = false;
 }

 //Everything is OK so wait for a reader to come along
 Channel<char>::write(data);
}

Listing 16. Example code for throwing in an internal channel

Figure 33. Example of throwing exceptions on internal channels

 54

Figure 34. Basic model of raising exception in a parallel composition

4.4.4 Raising exception in parallel compositions

Problem and solutions
The basic problem is already discussed briefly in section 3.3.6. Another example is given in Figure 34.
If an exception is thrown from Process1 (which consequently gets terminated), the thrown exception is
not handled until the parallel that contains Process1 terminates. This only happens when Process2 and
Process3 also have terminated. If these do not terminate, but instead Process3 waits for
communication with Process2 and Process2 waits for communication with Process1, the exception
remains unhandled and the program deadlocks.

If termination of Process2 and Process3 is not necessary for a proper handling of the exception, a
possibility is to associate the exception handler with Process1 (See Figure 35). The combination of
Process1 and ExcHandler1 should then also restart, else there is still the possibility that Process2 and
Process3 get blocked and thus cannot terminate.

Figure 35. Moving the exception handler

If termination of Process2 and Process3 is required, a more elaborate scheme is needed. In this case,
Process1 needs a separate exception handler. This exception handler has to signal Process2 and
Process3 to stop somehow. After this, it should throw the received exception again so it can be

 55

handled by the higher exception handler ExcHandler, when Process2 and Process3 are finished (See
Figure 36).

Figure 36. Process1 with ExcHandler1

As already mentioned, ExcHandler1 should stop Process2 and Process3. It has two options to do so:
using channel communication (a stop channel) and using channel rejection.

Stop channel

One solution is to use channels to Process2 and Process3 that signal them to stop. This can become
hard to reason about when Process2 and Process3 also have a channel from other processes that tells
them to stop. When not properly designed, there is a risk of deadlock. This occurs when Process2 or
Process3 have already terminated because of a signal from a fourth process. In this case, ExcHandler1
cannot complete the communication with Process2 and Process3 and thus will not terminate.

Figure 37. Stopping processes using channels

 56

Figure 38. Stopping processes using channel rejection

Channel rejection

Another solution is to have ExcHandler1 reject the channel between Process1 and Process2 and the
channel between Process 2 and Process3. See Figure 38 for a GML model of this solution, where
rejections are annotated with bold crosses.

The result will be that as soon as Process2 and Process3 try to perform an action on the channel, they
will both terminate. At this point all the processes are terminated, and the parallel construct will throw
its own ExceptionSet. This ExceptionSet contains all the exceptions from the
ExceptionSets that were thrown by its child processes. This ExceptionSet will be caught by
the EXCeption construct which then calls ExcHandler. ExcHandler can now filter out the exceptions
that were thrown because of the rejection of the channels and handle the exceptions that remain.

The model in Figure 38 is a simple model that suffices when exception can only be raised in Process1.
A more general solution is that Process1, Process2 and Process3 all have an exception handler that
rejects the channels the process communicates through. Figure 39 shows a GML model of this
situation.

When this solution is used, it does not matter where an exception is thrown. Every process will
terminate because all channels will get rejected. Because the exception handlers of the processes can
filter out the exceptions caused by channel rejection, only the exception that matters arrives at
ExcHandler. If exceptions are thrown in two processes at the same time, they both will be collected by
the parallel and they both propagate to ExcHandler, which can then handle both exceptions. A
downside to this general solution is that more try/catches are executed, which takes execution time.

 57

Figure 39. Stopping processes using channel rejecting

Example 4a: Division by Zero with two processes and channel rejection
This example is a variation to the example 1 and example 3.

In this example, the channel between ReadKeyboard and Calculate is a normal channel, so not one that
is specifically written. If a zero was written to the channel by ReadKeyboard, the Calculate process
reads this from the channel. When it tries to make the division, it anticipates division by zero and it
throws a DivisionByZeroException. This is caught by the exception handler
CalculationHandler. Upon receiving a DivisionByZeroException, CalculationHandler rejects
the channel between ReadKeyboard and Calculate and then terminates. After rejecting the channel, the
ReadKeyboard process will also terminate. The exception handler ReadingHandler checks the
exceptions and removes any ChannelRejectedExceptions. If any exceptions remain, it throws
the set higher up. This will however not occur in this example.

At this point, both processes have terminated and thus the parallel terminates.

Figure 40. Division by zero example with channel rejection

Example 4b: JIWY axis with soft end stops and program termination
Mechanical systems usually have limited movement ranges. In the case of JIWY, there are mechanical
end stops that prevent the rotational JIWY joints from turning too far and break the cables connected

 58

to the motor or encoder. When JIWY hits the end stop, it is a very abrupt stop, which could eventually
lead to damage to the setup. A way to prevent this is by programming software end stops. A software
end stop takes action when JIWY gets too close to a hardware end stop and prevent the setup from
hitting the hardware end stop.

Although more gentle solutions can be used to prevent the hitting of the end stop, it is specified in this
example that reaching a software end stop is such a serious event that the complete program should
terminate. An example of a more gentle solution is the addition of an extra process between the output
of the controllers and the real output that would prevent the setup from hitting the mechanical end
stop.

Because in this example, the complete program has to terminate, it means that not only the axis that
hits the end stop should terminate, but also the axis that is functioning properly. Therefore, it is not an
example as in section 4.4.2, in which the axes are completely uncoupled, but a problem of exception
handling in a parallel composition.

Figure 41, Figure 42 and Figure 43 give the GML model of the new JIWY software used in this
example.

The motor steering values from the controllers go via channels to the Safety process. The Safety
process reads the calculated steering values from these channels, processes these values and then sends
them to the (external) motor channels. An example of this processing can be a limitation of the
steering values to prevent damage to the motors. Exception handling could be used here as well.

In order to guard the system against exceeding the allowed rotational ranges, processes
jiwy_horizontal and jiwy_vertical are changed to incorporate THROW statements. Every time new
encoder values are read, they are compared to the virtual positions of the software end stops. If an axis
gets to close to the mechanical end stop, i.e. exceeds the software end stop, a
SoftEndStopException is thrown.

When an exception is thrown, it is caught by the appropriate handler. The handler rejects the steering
channel that runs to the Safety process and throws the received ExceptionSet higher up. Then
Safety process gets terminated because of the rejected channel and SafetyHandler is executed.
SafetyHandler rejects the two steering channels coming into the Safety process, thereby making sure
that the other axis will also terminate.

The exception handler of the other axis will filter out the ChannelRejectedException and if its
ExceptionSet is not empty throw it higher up.

At this moment, the three child processes of the parallel construct have terminated and the parallel
construct will throw the collection of exceptions, which will eventually reach the GlobalHandler.

 59

Figure 41. Top level model of JIWY software

Figure 42. Compositional model of the Servo process

 60

Figure 43. Communications model of the Servo process

Example 4c: comstime with channel rejection to terminate
Comstime is a program that is often used to benchmark languages or libraries that are based on CSP
concepts. Figure 44 shows the standard GML model of the program.

The Prefix process starts with writing a zero on its output channel. The Delta process sends the values
it receives from the Prefix process to the TimeMeasurement and Increment processes. The Increment
process increments the value it receives by one and sends the incremented value to the Prefix process,
which after outputting a first zero just sends out what it receives.

The TimeMeasurement process determines the time it takes to go round one loop of the program. It
does so by measuring the time between the reading of the 1st and for example the 10.000st value.

Figure 44. Comstime model (without termination)

 61

The comstime program in Figure 44 never terminates. This behavior is generally not desired. This
comstime program could under DOS and Linux be stopped by pressing CTRL-C, but in many other
programs this is not an option. Therefore, a change has to be made to make the complete program
stop.

A µ primitive repetition process with a true guard indicates an infinite loop. In order to stop the
program, the infinite loops should be changed, such that they all stop at the same time. This can be
done with conditional repetition where the guards are either checking a global variable (instead of
being constant true) or local counters with the same limit for all loops. One should take care that
there are no processes blocked on channels at the moment a loop stops. Otherwise, the other loops will
not reach their stopping condition, what is equivalent to deadlock. That makes this way of
synchronizing repetitive loops hard to reason about.

Using exception handling together with channel rejection gives an alternative. Figure 45 and Figure 46
show the compositional model and communication model for this solution.

In this solution, the TimeMeasurement determines when the program should terminate. It does so by
rejecting the channel to the Delta process before terminating. Because of the channel rejection, Delta
will terminate by throwing an exception. If the exception handler of the Delta process also rejects all
the channels the Delta process communicates with, the Prefix and the Increment processes will also
terminate. When that happens, all processes are terminated and the program terminates.

Although only the Delta really needs an exception handler to propagate the terminating sequence of
channel rejections, in this solution every process is given an exception handler. These exception
handlers reject the channels connected to the processes they guard. Which channels should be rejected
is given to the constructor of the exception handler. There is no direct way the exception handler can
determine this by itself.

 62

Figure 45. Compositional model of comstime with termination using channel rejection

Figure 46. Communication model of comstime with termination using channel rejection

 63

ChannelRejectingHandler::ChannelRejectingHandler(ChannelBase **channels,
int size) {
 for (unsigned int i = 0; i < size; i++) {
 this->channels[i] = channels[i];
 }
}

void ChannelRejectingHandler::run(ExceptionSet *eSet) {
 Exception *exc = eSet->First();
 while (exc) {
 if (exc->type >= "ChannelRejectedException") {
 //Do things here that are specific for this type
 //of exception.
 exc = eSet->isHandled();
 } else {
 //Place code here for when the exception type
 //is unknown.
 exc = eSet->Next();
 }

 //Do general things here
 for (unsigned int i = 0; i < nrOfChannels; i++) {
 channels[i]->reject();
 }

 //Check if the remaining set is empty
 if (!eSet->isEmpty()) {
 THROW(eSet);
 } else {
 delete eSet;
 }
 }
}

Listing 17. Constructor and run method of the comstime exception handlers

Listing 17 shows the run method of the exception handlers. They do not handle specific types of
exceptions, but only reject all the given channels. This way, all the processes will eventually
terminate, either normally or because of a channel rejection.

 65

5 Conclusions and recommendations

5.1 Conclusions
CTC++ under RTAI

• It is now possible to compile programs using the CT library that are able to run under RTAI, a
real time Linux variant. The are 2 problems when doing this:

o Functions that are in a shared library cannot be used. This means many functions that
C/C++ programmers are accustomed to like printf or malloc cannot be used.
The Linux kernel and RTAI do provide some alternatives.

o It is impossible to include Linux kernel header files. This can be solved by copying
the variable or function prototypes into a header file that can be included in C++.

• It is possible to port existing CTC++ for DOS based programs to a CTC++ for RTAI based
version. As an example, a program that controls JIWY was ported from its DOS version to a
RTAI version. For this, changes had to be made to the interface card library. The RTAI
version of the program shows better behavior then the DOS version if it is run in a DOS box
under windows.

Exception handling in CT

• CTC++ is enriched with an exception handling mechanism, the main function used for fault
tolerance. Together with channel rejection, it offers a powerful tool for termination of parts of
the program.

• The EXCeption construct is supported by the GML tool (as can be seen in all the figures given
in this report).

• User can define its own type of exception. The type of the class can be determined without
using C++ RTTI.

• Although an implementation is possible under RTAI, it can lead to memory leaks.

5.2 Recommendations
Making it possible for CTC++ programs to run under LXRT.

LXRT is an extension to RTAI that makes it possible to run real time programs in user space. This
means that dynamic libraries can be used, although when a System call is made into the Linux kernel
(not the RTAI kernel), the program jumps back from hard real time (RTAI) to soft real time (Linux
with raised priority). One problem when using LXRT would be IO interfacing, especially interrupt
servicing.

Investigate the possibility for immediate termination of the (Pri)Parallel construct

This would solve the problem of the behaviour in a concurrent environment. The number of exception
handlers, that are needed to reject all the channels, could be greatly reduced. The problem with
implementing this, is that when it process is waiting for an event (channel communication for
example), there should be a method to let the process retreat from the event in an orderly fashion. In a
normal channel, there is a counter that counts the number of waiting readers. If a reading process that
is blocked should terminate because of an exception in a parallel process, the counter in the channel
should be decreased with one.

Find a CSPm expression for the exception handling mechanism

When the implemented exception handling mechanism can be expressed in CSPm, design using this
mechanism can be checked for correctness. Until then, a very large pro for CSP based designs, the
possible checking for correct behaviour, is not possible for design using the exception handling
mechanism.

 66

Use the exception handling mechanism on a more extensive mechanical setup

For a large mechanical set, a safety scheme was developed (Eglence, 2003). It would be useful to try
to implement that safety scheme using the CT library and the developed exception handling
mechanism.

Have more support for exception handling in gCSP.

Two features would be very helpful if they would be incorporated into the gCSP tool:

• Generating frameworks for user-defined exceptions. This way, the user-defined exception is
always properly derived and it will always contain the necessary ExceptionType variable.

• Option to specify the type of exceptions an exception handler can handle. The tool can then
generate code in accordance with the exception handler template given in section 3.4.8.

 67

Appendix A Compiling a program with CTC++ for RTAI
Below, a bash script is given that can be used to compile CTC++ programs to run under RTAI.

#!/bin/bash
#this script assumes that there is a tmp directory

#fill in the variables below
MODULE_NAME=
CTC_DIRECTORY=
CTCPP_DIRECTORY=
RTAI_INCLUDE_DIRECTORY=
RTAI_CPP_DIRECTORY=
LINUX_INCLUDE_DIRECTORY=

rm -f $MODULE_NAME
cd tmp
rm -f *.o

#fill in the necessary options below. Recommendation: -Wall -O2
OPTIONS=''

#these options are fixed!
OPTIONS=$OPTIONS’ –c’
OPTIONS=$OPTIONS' -fno-rtti -fomit-frame-pointer -fno-exceptions'
OPTIONS=$OPTIONS' -fno-common -fno-strict-aliasing -fno-strength-reduce'
OPTIONS=$OPTIONS' -DGPP -DCSP -DRTAI'
OPTIONS=$OPTIONS' -D__KERNEL__ -DMODULE'

INCLUDES=' –I’$LINUX_INCLUDE_DIRECTORY
INCLUDES=$INCLUDES' –I’$RTAI_INCLUDE_DIRECTORY
INCLUDES=$INCLUDES' –I’ RTAI_CPP_DIRECTORY
INCLUDES=$INCLUDES' -I'$CTCPP_DIRECTORY
INCLUDES=$INCLUDES' -I'$CTC_DIRECTORY

#fill in the paths for the include files
INCLUDES=$INCLUDES''

#fill in the files that need to be compiled
FILES=''
FILES=$FILES''

#uncomment the next line if static libraries other than the
#CT library should be used and fill in the library directory after the -L
#LIBRARY_DIR=’ –L’

#uncomment the next line if static libraries other than the
#CT library should be used and fill in the library name (without lib)
#after the -l
LIBRARY=’ -l’

g++ $OPTIONS $INCLUDES $FILES

ld -m elf_i386 -Ur -o ../$MODULE_NAME $RTAI_CPP_DIRECTORY/crtsbegin.o *.o
$RTAI_CPP_DIRECTORY/crtsend.o -L$CTCPP_DIRECTORY/lib -lcsp $LIBRARY_DIR
$LIBRARY

cd ..

 69

Appendix B Code for the four options of type
determination

Appendix B.1 Option 1

class Exception
{
 private:
 const char *type_names[100];
 int type_counter;

 protected:
 void SetType(const char * string) {
 if (type_counter < 100) {
 type_names[type_counter++] = string;
 }
 };

 public:
 Exception() {
 type_counter = 0;
 SetType("Exception");
 };

 bool isOfType(const char *string) const {
 return !((bool) strcmp(string,type_names[type_counter-1]));
 }

 bool isDerivedFrom(const char *string) const {
 int i;
 for (i = type_counter; i > 0; i--) {
 if (!(strcmp(string, type_names[i-1]))) {
 return true;
 }
 }
 return false;
 };

 const char * Type() const {
 return type_names[type_counter-1];
 }
};

class RejectedException : public Exception
{
 public:
 RejectedException() {
 SetType("RejectedException");
 }
};

class EncoderRejectedException : public RejectedException
{
 public:
 EncoderRejectedException() {
 SetType("EncoderRejectedException");
 }
};

 70

Appendix B.2 Option 2

class ExceptionType;
class BaseException {
 private:
 ExceptionType *top_ExceptionType;
 friend ExceptionType;

 public:
 BaseException() {
 top_ExceptionType = 0;
 }
};

class ExceptionType {
 private:
 const char *type_name;
 ExceptionType *prev_type;
 BaseException *be;

 public:
 ExceptionType(const char *string, BaseException *be) {
 prev_type = be->top_ExceptionType;
 be->top_ExceptionType = this;
 this->be = be;
 type_name = string;
 }

 bool isOfType(const char *string) {
 return !((bool) strcmp(string,be->top_ExceptionType
 ->type_name));
 };

 bool isDerivedFrom(const char *string) {
 ExceptionType *exception_type = be->top_ExceptionType;
 while (exception_type) {
 if (!strcmp(string, exception_type->type_name))
 return true;
 exception_type = exception_type->prev_type;
 };
 return false;
 };
};

class Exception : public BaseException {
 public:
 ExceptionType type;
 Exception() : type("Exception",this) {
 }
};

class RejectedException : public Exception {
 public:
 ExceptionType type;
 RejectedException() : type("RejectedException", this) {
 }
};

 71

class EncoderRejectedException : public RejectedException {
 public:
 ExceptionType type;
 EncoderRejectedException() : type("EncoderRejectedException",this) {
 }
};

 72

Appendix B.3 Option 3

class ExceptionType {
 private:
 ExceptionType *prev;
 friend class Exception;

 public:
 ExceptionType() {
 prev = 0;
 };

 ExceptionType(ExceptionType &type) {
 prev = &type;
 }
};

class Exception
{
 protected:
 ExceptionType *my_type;

 public:
 static ExceptionType type;
 Exception() {
 my_type = &type;
 }

 bool isOfType(ExceptionType &type) {
 return (my_type == &type);
 }

 bool isDerivedFrom(ExceptionType &type) {
 ExceptionType *temp = my_type;
 while (temp) {
 if (temp == &type)
 return true;
 temp = temp->prev;
 }
 return false;
 }
};
ExceptionType Exception::type;

class RejectedException : public Exception {
 public:
 static ExceptionType type;
 RejectedException() {
 my_type = &type;
 }
};
ExceptionType RejectedException::type(Exception::type);

class EncoderRejectedException : public RejectedException {
 public:
 static ExceptionType type;
 EncoderRejectedException() {
 my_type = &type;
 }
};
ExceptionType EncoderRejectedException::type(RejectedException::type);

 73

Appendix B.4 Option 4

class Exception {
 public:
 Exception() {
 }

 virtual bool isOfType(const char *string) {
 if (!strcmp(string, "Exception")) {
 return true;
 }
 return false;
 }
};

class RejectedException : public Exception {
 public:
 RejectedException() {
 }

 virtual bool isOfType(const char *string) {
 if (!strcmp(string,"RejectedException")) {
 return true;
 }
 return Exception::isOfType(string);
 }
};

class EncoderRejectedException : public RejectedException {
 public:
 EncoderRejectedException() {
 }

 virtual bool isOfType(const char *string) {
 if (!strcmp(string,"EncoderRejectedException")) {
 return true;
 }
 return RejectedException::isOfType(string);
 }
};

 75

Appendix C Digital input print for JIWY

Appendix C.1 Schematic

 76

Appendix C.2 AHDL code of Altera chip
TITLE "jiwy_digital_inputs";
INCLUDE "lpm_mux.inc";

PARAMETERS
(
 INPUTS_PER_GROUP = 6
);

SUBDESIGN jiwy_digital_inputs
(
 CLK : INPUT =
GND;
 INP[2..1][INPUTS_PER_GROUP..1] : INPUT = GND;
 READ_STROBE :
INPUT = VCC;
 MUX_SELECT_INPUT :
INPUT = GND;
 OUT[INPUTS_PER_GROUP..1] : OUTPUT;
 INT_OUT : OUTPUT;
)

VARIABLE
 INPUT_FFS[6..1][INPUTS_PER_GROUP..1] : DFF;
 READ_LATCH[2..1][INPUTS_PER_GROUP..1] : DFF;
 OUTPUT_MUX
 : lpm_mux WITH (LPM_WIDTH=INPUTS_PER_GROUP, LPM_SIZE=2,
LPM_WIDTHS=1);
 FILTERED_INPUTS[2..1][INPUTS_PER_GROUP..1] : NODE;

BEGIN

 INPUT_FFS[][].CLK = CLK;
 INPUT_FFS[6..5][].D = INP[][];
 INPUT_FFS[4..3][].D = INPUT_FFS[6..5][].Q;
 INPUT_FFS[2..1][].D = INPUT_FFS[4..3][].Q;

 FOR GROUP IN 1 TO 2 GENERATE
 FOR INPUT_NR IN 1 TO INPUTS_PER_GROUP GENERATE
 TABLE
 INPUT_FFS[GROUP+0][INPUT_NR], INPUT_FFS[GROUP+2][INPUT_NR],
INPUT_FFS[GROUP+4][INPUT_NR] => FILTERED_INPUTS[GROUP][INPUT_NR];
 0 , 0
 , 0
 => 0;
 0 , 0
 , 1
 => 0;
 0 , 1
 , 0
 => 0;
 0 , 1
 , 1
 => 1;
 1 , 0
 , 0
 => 0;
 1 , 0
 , 1
 => 1;
 1 , 1
 , 0
 => 1;

 77

 1 , 1
 , 1
 => 1;
 END TABLE;
 END GENERATE;
 END GENERATE;

 READ_LATCH[][].D = FILTERED_INPUTS[][];
 READ_LATCH[][].CLK = !READ_STROBE;

 OUTPUT_MUX.data[][] = READ_LATCH[][].Q;
 OUTPUT_MUX.sel[] = MUX_SELECT_INPUT;

 OUT[] = OUTPUT_MUX.result[];

 IF !READ_STROBE THEN
 INT_OUT = GND;
 ELSE
 INT_OUT = !(FILTERED_INPUTS[][]==READ_LATCH[][].Q);
 END IF;

END;

 78

Appendix C.3 Usage
The following piece of code is an example of how to use and initialize the encoder channels and the
object needed for the digital input print.

//allocate a new DAQSTC object
 DAQSTC *daqstc = new DAQSTC();
 ICM *icm;
 ISHandler *ishandler;
 DAC *dacX, *dacY;
 GPC *encoderX, *encoderY;
 int irqnr;

 unsigned char old_mask, new_mask;
 unsigned int pic_port, irq_offset;

//Initialize the DAQ-STC. This will start the PCI-initialization
 daqstc->Initialise();
//Request the IRQ number of the card
 irqnr = daqstc->GetInterruptNr();
 if (irqnr == -1) {
 return(-1);
 }

//Determine the appropriate port and bits on the PIC chip
 if (irqnr < 8) {
 pic_port = 0x21;
 irq_offset = 0;
 } else {
 pic_port = 0xA1;
 irq_offset = 8;
 }

//--- Interrupt Control
//Allocate a new Interrupt Control Manager object
 icm = new ICM();
//Install the allocated ICM as interrupt handler
 ishandler = Processor__registerInterruptService(irqnr, icm, 1);

//--- Counters
 DigitalInputDeviceDriver *dig_dd = new DigitalInputDeviceDriver();
 encoderX = new NewEncoder(GPC::Counter0, *dig_dd);
 encoderY = new NewEncoder(GPC::Counter1, *dig_dd);

//Register the DigitalInputDeviceDriver as callback for the ICM
 icm->registerCallback(*dig_dd,ICM::G0_Gate,true);

//Allocate the encoder channels
 encoderX->Initialize(GPC::Counter0,GPC::RelativePositionSensing);
 encoderY->Initialize(GPC::Counter1,GPC::RelativePositionSensing);
 encoderX->Reset();
 encoderY->Reset();
 encoderX->SetMode(GPC::RelativePositionSensing);
 encoderY->SetMode(GPC::RelativePositionSensing);
 encoderX->Arm();
 encoderY->Arm();

 79

//Enable the interrupt on the PIC chip
 old_mask = inportb(pic_port);
 new_mask = old_mask & ~(1 << (irqnr - irq_offset));
 printf("old_mask = %X, new_mask = %X\n",old_mask, new_mask);
 outportb(pic_port, new_mask);

//Enable the clock to the digital input print
 MISC::MISC_FOUT_Configure(MISC::SLOW, 16);
 MISC::MISC_FOUT_Enable();
//Setup the gate input to be an interrupt source
 GPC::DigInterruptSetup();

 81

References
Broenink, J.F., D. Jovanovic and G.H. Hilderink (2002), Controlling a mechanic setup using Real-time

Linux and CTC++, Proc. Mechatronics 2002, Enschede, S. Stramigioli (Ed.), pp. 1323-1331,
ISBN: 90-365-17664.

Brown, N.C.C. and P.H. Welch (2003), An Introduction to the Kent C++CSP Library, Proc.
Communicating Process Architectures 2003, 7-10 September 2003, Enschede, Netherlands, G.
H. Hilderink (Ed.), pp. 139-156, ISBN: 1 58603 381 6.

Buhr, P.A. and W.Y.R. Mok (2000), Advanced Exception Handling Mechanisms, IEEE trans.
Software Eng., 26, (9), pp. 820-836, ISSN:

Burns, A. and A. Wellings (2001), Real-TIme Systems and Programming Languages, Pearson
Education, 0201729881.

Cristian, F. (1995), Exception Handling and Tolerance of Software Faults,in: Software Fault
Tolerance, 3, M. R. Lyu, John Wiley & Sons Ltd., Chichester, 81-107.

Eglence, M. (2003), Design and realization of a safe control system for a parallel manipulator, MSc
thesis 010CE2003, Control Laboratory, University of TWente, Enschede.

FormalSystems (2004), FDR2 Refinement checker for CSP models, http://www.fsel.com.
Foundation, F.S. (1989), The GNU General Public License (GPL), pp. ISSN:
Hilderink, G.H. (2002), A graphical Specification Language for Modeling Concurrency based on CSP,

Proc. Communicating Process Architectures 2002, 15-18 Sep 2002, Reading UK, P. W. James
Pascoe, Roger Loader, Vaidy Sunderam (Ed.), pp. 255-284, ISBN: 1-58603-268-2.

Hilderink, G.H. and J.F. Broenink (2003), Sampling and timing a task for the environmental process,
Proc. Communicating Process Architectures 2003, Enschede, Netherlands, G. H. Hilderink
(Ed.), pp. 111-124, ISBN: 1 58603 381 6.

Hilderink, G.H., J.F. Broenink, W.A. Vervoort and A.W.P. Bakkers (1997), Communicating Java
Threads, Proc. Proc. WoTUG-20 on Parallel programming and Java, Enschede, Netherlands,
(Ed.), pp. 48-76, ISBN: 1383-7575.

Hilderink, G.H., D.S. Jovanovic and J.F. Broenink (2003), A multimodal robotic control law modelled
and implemented with the CSP/CT framework, Proc. Communicating Process Architectures
2003, 7 - 10 September 2003, Enschede, Netherlands, G. H. Hilderink (Ed.), pp. 315-334,
ISBN: 1 58603 381 6.

Hoare, C.A.R. (1985), Communicating Sequential Processes, Prentice Hall, 0-13-153271-5 (0-13-
153289-8 PBK).

Jovanovic, D., G.H. Hilderink and J.F. Broenink (2002), A communicating Threads -CT- case study:
JIWY, Proc. Communicating Process Architectures 2002, 15-18 Sep 2002, Reading UK, V.
Sunderam (Ed.), pp. 311-320, ISBN: 1-58603-268-2.

Jovanovic, D.S., B. Orlic, G.K. Liet and J.F. Broenink (2004), gCSP: A Graphical Tool for Designing
CSP Systems, Proc. Communicating Process Architectures 2004, 5-8 Sep 2004, Oxford, UK,
M. Green (Ed.), pp. 233-251, ISBN:

LinuxOnline (1994), The Linux Home Page at Linux Online, http://www.linux.org.
Ros, M. (2004), JIWY with a camera, Individual Design Report, Control Laboratory, University of

Twente, Enschede.
RTAI (2004), DIAPM RTAI - RealTime Application Interface, http://www.rtai.org.
Stephan, R.A. (2002), Real-time Linux in Control Applications Area, MSc thesis 016CE2002, Dept.

Electrical Engineering, University of Twente, Enschede.
Welch, P.H. and D.C. Wood (1996), The Kent Retargettable occam Compiler, Proc. Parallel

Processing Developments, WoTUG-19, Nottingham, United Kingdom, B. C. O'Neill (Ed.), pp.
143-166, ISBN: 9051992610.

