

Real-time Linux
in Control Applications Area

R.A. Stephan

M.Sc.Thesis

Supervisors: prof.dr.ir. J. van Amerongen
dr.ir. J.F. Broenink
ir. D. Jovanovic
ir. G.H. Hilderink

Faculty of
Electrical Engineering

University of Twente

August 2002
Report Number
016CE2002

Control Engineering
Faculty of Electrical
Engineering

University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands

Real-time Linux in Control Applications Area
University of Twente

iii

Summary
This thesis describes the design and realization of control software and drivers for a mechatronic
setup. The mechatronic setup has two degrees of freedom, and a separate controller controls each
joint. The software design and implementation is done according to Communicating Sequential
Processes (CSP) concepts on a real-time Linux (RTLinux) platform.

Real-time Linux is a hard real-time version of the standard Linux. It has the facilities the timing
requirements needed to provide real-time behaviour. All the functionality of the normal Linux is
available for development.

Communicating Threads for C++ (CTCPP) (Hilderink, 2001) is an object oriented software package
developed at Control Engineering. This package provides a clear way of concurrent programming
based on the theory of Communicating Sequential Processes (CSP). With CSP a concurrent system
can be described by concurrently running processes that communicate with each other via channels.

The C++ code for the two controllers is generated with the 20-sim program.

A set of device drivers has been developed for the used fast professional data acquisition board. This
has been done in the C++ programming language. Test utilities for testing the drivers have been
created. FIFO communication and data logging have been implemented. A console line print routine
to print to screen from a real-time process has also been created.

Some performance aspects of RTLinux and CSP have been analysed by means of two test programs.
The interrupt latency of RTLinux and the channel communication time of CSP under RTLinux have
been measured. The CSP package has a maximum channel communication time of 5.06 µs. The
interrupt latency of RTLinux is at most 8 µs.

The setup dependent parts have been implemented. The two controllers needed to drive the setup have
been generated with 20-sim. A design for a controller with CSP has been given. This controller will
use interrupt clocked IO to minimize the hardware delays. The performance of the controller was
measured. The X-axis has a maximum error of 4 % and the Y-axis has a maximum error of 6.6 %.The
steady state errors are 0.38 % and 0.12 % respectively.

RTLinux and the CSP package were tested and they are good programs to be used for real-time
programming. The code generation of 20-sim, the device drivers and the support functions are
working well.

Real-time Linux in Control Applications Area
University of Twente

iv

Samenvatting
Dit verslag beschrijft het ontwerp en de implementatie van een mechatronische opstelling met twee
vrijheidsgraden. Elke as wordt door een aparte controller bestuurd. dat door een controller,
geïmplementeerd met Communicating Sequential Processes (CSP) concepten, draaiend op real-time
Linux (RTLinux).

Real-time Linux is een hard real-time versie van de standaard Linux. RTLinux kan de tijdslimieten
halen die nodig zijn voor hard real-time gedrag. Alle functionaliteit van de standaard Linux is
beschikbaar voor ontwikkeling.

Communicating Threads for C++ (CTC++) is een object georiënteerd software pakket dat door
Control Engineering is ontwikkeld. Het pakket levert een manier van parallel programmeren
gebaseerd op de theorie van Communicating Sequential Processes (CSP). Met CSP kan een parallel
systeem beschreven worden door middel van parallel draaiende processen die met elkaar
communiceren over kanalen.

De C++ code voor de controller is gegenereerd door het pakket 20-Sim.

Een set device drivers voor de gebruikte snelle data acquisitie kaart is ontwikkeld in de C++
programmeer taal. Test programma’s voor de verschillende modules op de IO kaart zijn gemaakt.
FIFO communicatie en data logging zijn geïmplementeerd. Een programma om tekst van uit een real-
time proces op het scherm te printen is ook gemaakt.

Bepaalde prestaties van RTLinux en CSP zijn gemeten en geanalyseerd met twee test programma’s.
De interrupt vertraging van RTLinux en de kanaal communicatie tijd van CSP onder RTLinux zijn
gemeten. Het CSP pakket had een kanaal communicatie tijd van maximaal 5.06 µs. De interrupt
vertraging van RTLinux is op zijn hoogst 8 µs.

De opstelling afhankelijke delen zijn geïmplementeerd. De twee controllers die nodig zijn om de
opstelling aan te sturen is gegenereerd met 20-sim.Een ontwerp voor een controller met CSP is
gegeven. Deze controller zal gebruik maken van interrupt gestuurde IO om de hardware vertraging te
minimaliseren De prestaties van de controllers zijn gemeten. De maximale fout in de X-as is 4 % en
de maximale fout in de Y-as is 6.6 %. De stationaire fouten zijn respectievelijk 0.38 % en 012 %.

RTLinux en het CSP pakket zijn getest en het zijn goede programma’s om real-time programma’s te
maken. De code generatie van 20-sim, de device drivers en de ondersteunende programma’s werken
allemaal goed.

Real-time Linux in Control Applications Area
University of Twente

v

Acknowledgements

Although in the beginning I had no idea what I was getting in to, it has been a very interesting project.
I had to (re)master several subjects with which I was not too familiar. Now, at the end of the project,
the subjects are familiar but new ideas and concepts are waiting to be explored.

I would like to thank my supervisors who gave me the opportunity to work on this very promising and
interesting subject.

Job van Amerongen I would like to thank for the opportunity to graduate at the Control Laboratory.

Jan Broenink I thank for giving me a direction to go when I had no idea what subject to explore
during my Master of Science project.

My supervisors Dusko and Gerald I want to thank for the enthusiasm with which they both took up
the task of guiding Peter and me. Also the weekly meetings with you were both fun and helpful, not in
the least for the practice in English and the vitamins in the fruit.

All the students at the lab thanks for the fun we had, when we actually should have been working…

Especially I want to thank my family for supporting me all these years.

Robin Stephan
Enschede, August 2002

Real-time Linux in Control Applications Area
University of Twente

vii

Contents
1 INTRODUCTION... 1

1.1 OBJECTIVES.. 1
1.2 REAL-TIME AND CONCURRENT PROGRAMMING.. 1
1.3 THE DESIGN TRAJECTORY AND ITS HISTORY... 2

1.3.1 The early THESIS approach... 2
1.3.2 Changes in the design methodology ... 3

1.4 CURRENT METHODOLOGY.. 4
1.5 OUTLINE OF THE REPORT ... 4

2 DEVELOPMENT ENVIRONMENT.. 5

2.1 REAL-TIME LINUX ... 5
2.1.1 Scheduling... 6
2.1.2 Interrupts .. 7

2.2 COMMUNICATING THREADS FOR C++ ... 7
2.2.1 Producer – Consumer Example.. 8

2.3 20-SIM .. 10
2.4 SETUP IO INTERFACE ... 11
2.5 REVIEW .. 12

3 SOFTWARE DEVELOPMENT.. 13

3.1 DATA ACQUISITION BOARD DEVICE DRIVERS .. 13
3.1.1 System Timing and Control Module ... 14
3.1.2 Analog Output Timing Module ... 15
3.1.3 Analog Input Timing Module.. 16
3.1.4 Digital IO Module... 16
3.1.5 Counter / Timer Module ... 17
3.1.6 Programmable Function Inputs Module... 17
3.1.7 Miscellaneous Functions .. 17

3.2 SUPPORT UTILITIES .. 18
3.2.1 Test Utilities.. 18
3.2.2 RT-FIFO ... 18
3.2.3 Console ... 19
3.2.4 Logger... 20

3.3 SYSTEM TEST PROGRAMS .. 22
3.3.1 Comstime .. 22
3.3.2 Interrupt Latency .. 24

3.4 REVIEW .. 25

4 CASE STUDY: JIWY... 27

4.1 CONTROLLER INPUT... 27
4.1.1 The Joystick .. 27
4.1.2 Digital Filter... 28

4.2 PLANT DESCRIPTION .. 28
4.2.1 JIWY.. 28
4.2.2 Bondgraph model.. 29
4.2.3 The Box ... 30

4.3 CONTROL SOFTWARE IMPLEMENTATION... 30
4.3.1 Controller simulation models ... 31
4.3.2 Controller Generation models .. 31
4.3.3 Controller with CSP ... 32

4.4 CONTROLLER PERFORMANCE .. 33
4.5 REVIEW .. 35

Real-time Linux in Control Applications Area
University of Twente

viii

5 CONCLUSIONS & RECOMMENDATIONS ... 37

5.1 CONCLUSIONS .. 37
5.2 RECOMMENDATIONS .. 37

A. INFORMATION AND LINKS .. 39

LINUX.. 39
RTLINUX... 39
CPPDOC... 39
CAMSTREAM ... 39

B. DIRECTORY STRUCTURES... 40

CT PACKAGE STRUCTURE ... 40
PROJECT STRUCTURES .. 41
COMPILE SCRIPT.. 42

C. HARDWARE DECISION LIST .. 43

D. PLANT DETAILS ... 44

WIRING.. 44
JIWY MOTORS.. 45

E. NON CLASS METHODS AND DEFINITIONS.. 46

NI6024E.H .. 46
RTL_CONSOLE.C .. 47

F. IMPLEMENTATION DETAILS... 48

REFERENCES ... 49

Introduction

Real-time Linux in Control Applications Area
University of Twente

1

1 Introduction
At Control Engineering of the department of Electrical Engineering at the University of Twente, great
effort is put into developing structured methods for designing real-time systems. To reduce
development time and costs and to prevent errors in the realization of control systems, research has
been performed on adequate design methodologies. This resulted in a structured development
methodology for embedded real-time control systems, which was called Twente Hierarchical
Embedded Systems Implementation by Simulatio (THESIS), (Wijbrans et al., 1993). The objective of
the THESIS project is the automated development of reliable and safe control systems in minimum
development time.

Real-time (control) systems are parallel by nature. This theorem is obvious as control systems
typically consist of (multiple) sensors and actuators that operate simultaneously. The processing of the
sensor data and calculation of the actuator values has to be done at the same time. Often a control
problem can be divided into smaller parts, which could be executed in parallel. By using the
Communicating Sequential Processes (CSP) (Hoare, 1978) formalism, a more natural approach and
understanding of the control problem and design can be achieved.

For the realization of parallel real-time control systems a computing platform and/or a programming
language with support for parallelism and communication is required. In the early stages of THESIS,
a combination of the transputer and the Occam programming language was chosen for the target
hardware and software. This control environment has become obsolete since development in
transputers has stopped and modern microprocessors outperform transputers. Nowadays PCs and
Real-Time Linux (RTLinux) are more often used since they provide a relative cheap solution.
Therefore this assignment focuses on the use of a standard PC in combination with RTLinux and a
CSP.

In order to realize the demo first a PC with Linux and RTLinux was needed. The used PC is a
Pentium Pro 200 MHz running Linux Slackware 8.0 with real-time Linux 3.1. Slackware was chosen
since at that time it was the only distribution that used the 2.2.19 Linux kernel that was needed for
RTLinux 3.1 and higher. To connect the PC to the setup an IO board was needed. An IO board from
National Instruments was selected from a number of IO boards.

1.1 Objectives
The aim of this research is to develop a software controller running on the PC using the real-time
Linux platform that is controlling a mechatronic setup.

The CSP library will be used to develop the concurrent software. The connection between the PC and
the actual setup must be realised using a data acquisition IO board. Device drivers for the data
acquisition IO board under RTLinux must be created. Electronics between the IO board and the setup
has to be realised to drive the sensors and actuators on the setup. The working system should be
demonstrated.

1.2 Real-time and Concurrent Programming
There are several definitions of real-time systems, most of them slightly different. Unfortunately the
topic is controversial, and there does not seem to be an exact agreement over the terminology. One
could consider the Windows operating system to be real-time. “Real-time” is an over-used term that
can be used to mean “right away” or “fast” as in “real-time stock quotes”. In this thesis hard real-time
systems are addressed: those with timing deadlines that must not be missed otherwise the system fails.

Real-time computing systems consist of individual tasks each with their own timing constraints. To
structure and maintain these tasks an Object-Oriented (OO) methodology is preferable, since this will
result in structured software development that promises greater extendibility, maintainability,

Introduction

Real-time Linux in Control Applications Area
University of Twente

2

readability and reusability of code. Also a concurrent methodology is preferable, to allow to execute
the tasks in parallel. It does not necessarily mean that these tasks run on distinct hardware because
they may also be scheduled one at the time on a single processor. Writing concurrent or parallel
software has always been viewed as a minor activity (Gorton et al., 1995). Most software applications
do not need to incorporate explicit parallel activities since adequate performance can be achieved by
sequential code executing. Real-time control and embedded systems programming however utilize
parallelism to achieve additional performance to meet hard real-time constraints. Reasons for using
concurrent programming may be:
• A performance gain from (distributed) multi processor hardware or better processor utilisation;
• Increased application responsiveness;
• A more appropriate structure;
• A faster throughput of data.

1.3 The Design Trajectory and its history
In this section the history of the design trajectory is given. The THESIS design methodology is
discussed followed by the changes in hardware, software and specification methods, which made the
THESIS approach outdated.

1.3.1 The early THESIS approach
The development of real-time systems, with implementation choices such as hardware interfaces,
control algorithms and control software, could become a rather complex process. This is because all
these components have influence on the dynamic behaviour of the system. THESIS is a structured
methodology in which the dynamic properties of a system play an important role. The main idea of
the THESIS project is to develop a system, which covers the complete design trajectory, from
obtaining design requirements to generating code, for embedded real-time control systems. An
objective of THESIS is the mechatronic design approach. In this approach system development is no
longer done by separately developing parts that are integrated later, but the system is treated as a
whole. A second objective of THESIS is verification and validation by gradual refinement of the
model. The result is a functional description of the model. A third objective is the separate
development of parts. These parts (building blocks) are integrated in a later stage. Figure 1 shows the
THESIS design trajectory, which includes:

• Physical system modelling: The dynamic behaviour of the system is object-oriented modelled.

The 20-Sim software (Broenink, 1997) is a modelling and simulation package used to obtain a
correct model;

• Control law design: Using the model acquired in the previous step, a control law or a simplified
version of it is designed. External software like Matlab was used, but nowadays mainly 20-sim is
used.

• Computer system implementation: the transformation process to convert the control laws (i.e.
mathematical formulas) to efficient concurrent algorithms (i.e. computer code) is guided via a
stepwise refinement procedure. After each refinement step, the results are verified by simulation.
This refinement procedure is prototyped in Wijbrans et al. (1993);

• Realization: during the realization of the control system, each step is validated and tested. Step by
step the generated code is implemented on the target hardware and verified with the simulated
results until a satisfactory controller is obtained.

Introduction

Real-time Linux in Control Applications Area
University of Twente

3

Figure 1: THESIS design trajectory

The part of Figure 1 that states under development is currently being researched. This is done in
project TES5224 (Jovanovic, 2001), (Orlic, 2002).

Several implementations of the realization phase have been developed for various target architectures.
These implementations form a modular approach to the design and implementation of control
systems, as applied in mechatronic research. The implementations are:

• The RoViCoM (Robot Vision Control Manager) system (Bruis et al., 1993), its target architecture

is transputer based;
• 20-Works, for single-processor controlled set-ups, accepting C++ code for the control algorithm

(Elgersma, 2000), (Weustink, 1995, 1996);
• The JavaPP (Java Plug ’n Play) project (Hilderink, 2000).

1.3.2 Changes in the design methodology
Due to further developments, the original target software environment is replaced. The usage of
modern programming languages to design software based on the CSP concepts has been investigated.
The JavaPP (Java Plug ’n Play) is an international collaborative effort that introduces the CSP/occam
model into Java (Hilderink, 2000a). The project resulted in similar packages for the programming
languages C and C++. Currently, the following packages are available: for Java the Communicating
Threads for Java (CTJ) package (Hilderink et al., 2000) and the Java Communicating Sequential
Processes (JCSP) (Welch, 1998; Welch and Austin, 2000); for C the Communicating Threads for C
(CTC) package (Hilderink, 2000b) and the CCSP package (Moores, 1999) and for C++ the
Communicating Threads for C++ (CTCPP) package (Hilderink, 2000b).

In addition to the modernized target software environment, also the target hardware environment was
modernized. The original hardware environment that was supported by THESIS has become obsolete
since the development in Transputers has stopped and modern microprocessors outperform the
Transputers. In the new control environment, Transputers are replaced by a heterogeneous mixture of
microcontrollers / DSPs and the transputer links (OS-links) are substituted by IEEE-1355 Data-Strobe
links (DS-links) or other connections (Greve, 1998; Lahpor, 1998).

In addition to the changes in the target hardware and target software also the originally used Ward and
Mellor (Ward and Mellor, 1986; Hatley and Pirbhai, 1988) design specification method has become
obsolete. Nowadays software design tools like UML are available

There is a fundamental change in the paradigm used by the software industry. The focus is shifted
from the tradition system specification and construction, called the waterfall cycle methodology, to
one requiring simultaneous consideration of the system context (i.e. system characteristics such as
requirements, costs), capabilities of products in the market place, and viable architectures and designs,
also called component-based software engineering (CBSE) (Hissam, 2000). In the CBSE
methodology the developer can use existing Components Of The Shell (COTS).

 20-WORKS / CT Matlab / 20-SIM 20-SIM
Physical
System

Modeling

Verification
by

Simulation

Control

Law
Design

Verification
by

Simulation

Computer
System

Implementation

Verification
by

Simulation

Validation
and

Testing

Realization

Under Development

Introduction

Real-time Linux in Control Applications Area
University of Twente

4

1.4 Current methodology
Nowadays it is impossible to separate control engineering from software engineering: the only
efficient way to implement controllers is to transform them into computer code for the chosen target.
In control engineering practice, used software development techniques suffer from insufficiencies in
knowledge in disciplines of software modelling, familiarity with concurrency in software, ways of
allowing for reusability, software testing and so forth. The resulting code functions correctly in first
instance, but is generally not reliable in a non-ideal environment, neither efficient nor extendable. The
control-computer systems are embedded control systems, because the control computer code is
specific to the control system, for which the dynamic behaviour of the setup is essential for the
functionality.

Current research deals with the development of a design framework and a supporting software tool to
efficiently support the mechatronic engineer in developing sophisticated control computer code out of
a set of control laws. Normally, mechatronic design engineers start with modelling the dynamic
behaviour of the plant, and derive a control law for it. This control law is then gradually transformed
via Stepwise Refinement towards efficient concurrent algorithms (i.e. the control computer code).
During this process, simulation is often used as a means of verification. In the end phase, realization
can also be done stepwise, namely by letting parts of the total system stay simulated, and letting other
parts be in the final realization (Broenink, 2001). Especially the step from control law design to
implementation is recognized as critical and not methodologically covered by existing approaches and
tools.

For the modelling control law design parts including their simulations, existing tools (20-sim, Matlab)
suffice. Often graphical modelling languages, e.g. block diagrams, are used in this design process for
structuring and managing the complexity of the control structures. The software development step can
conceptually be covered using the CSP parallel processing paradigm. Since tools for modelling and
control law design nowadays are graphically oriented, a CSP extension as graphical block diagrams
are developed, resulting in CSP diagrams (Hilderink, 2002). CSP diagrams specify concurrency in
block diagrams of communicating processes.

1.5 Outline of the Report
This thesis is divided in 5 chapters. In chapter 2 the used development environment is described.
Details of real-time Linux, Communicating Threads, 20-Sim and the used IO board are discussed.
Then in chapter 3 the developed software is discussed. The developed software consists of the device
driver for the IO board, necessary support functions, and the system test programs. Chapter 4 focuses
on the implementation of the developed software and controllers for the case study. First the setup is
described followed by the controller input. The controller implementation and performance are
described as well. This thesis ends with Chapter 5 in which the conclusions and recommendations are
discussed.

Development Environment

Real-time Linux in Control Applications Area
University of Twente

5

2 Development Environment
In this chapter the development environment is discussed. In this project the development
environment is used to develop the software and hardware needed to implement the total system. The
environment is made up of several software and hardware tools.

The software tools are the following parts.
• Real-time Linux operating system, which can facilitate the timing requirements for real-time

tasks. Real-time Linux can also be used during the software development, because software
editors are present on the system.

• The C++ implementation of Communicating Sequential Processes. This package enables the

rapid development of reliable real-time concurrent software.

• The 20-sim modeling and simulation package. In 20-sim a model of a physical system can be

simulated and a suitable controller for the model can be designed. The latest versions of 20-sim
can generate code from models or sub-models, which can be tested in the real world.

The hardware part in the development environment is the selected IO board. The IO board is used to
connect the controller running on the PC to the real physical system.

2.1 Real-Time Linux
Real-Time Linux (RTLinux) could be a useful operating system to control a mechatronic setup from a
PC. Since it is free and open source, the operating system can be tailored to specific needs. Further all
the advantages of the Linux development environment, like X-windows and the network support, are
available. While Linux is not capable of guaranteeing the predictable time limits needed for real-time
tasks, RTLinux is. The problem with Linux is that Linux, like other general-purpose operating
systems, is designed to optimise average performance. This means that all processes will get a fair
share of CPU time. For real-time programming precise timing and predictable timing is more
important than average performance. This problem was recognized and research on turning Linux into
a hard real-time operating system was started. At FSMlabs (FSMlabs, 2002) this research resulted in
Real-Time Linux (RTLinux).

RTLinux has the facilities to execute periodic tasks at their specified time instants. This way, hard
real-time behaviour can be guaranteed (Barabanov, 2002). RTLinux is a combination of a hard real-
time kernel (RTKernel) and the “standard” Linux kernel. The Real-Time Kernel (RTKernel)
schedules all the real-time processes and runs the standard kernel as the lowest priority task. The
RTKernel runs real-time processes, which each performs their function, e.g. data acquisition from an
IO card. The real-time processes can communicate with each other and non real-time processes by
means of real-time FIFO buffers (RT-FIFO). The Linux kernel can perform all the regular functions,
provided that the real-time kernel allows the normal kernel to execute.

Development Environment

Real-time Linux in Control Applications Area
University of Twente

6

In Figure 2 a data collection application is depicted. The real-time process reads data from a device
and transmits the data through a RT-FIFO to a Linux process. The Linux process will show the data
on the display and stored on the disk.

Figure 2: Data Collection Application

2.1.1 Scheduling
The RTLinux kernel schedules all the kernel level tasks in a predictable way. When no real-time tasks
are scheduled, the RTLinux kernel will schedule the Linux kernel. The Linux kernel schedules all the
Linux processes in the standard non-predictable way. A graphical example is shown in Figure 3.

Figure 3: Scheduling Example

The real-time task 1 is scheduled twice as often as real-time task 2. When one of the real-time tasks
runs the system will stop the Linux task. If two real-time tasks are running at the same time the task
with the highest priority will be executed first. The priority of each task can be set during the thread
creation. When no real-time task is running the Linux kernel is scheduled and it will schedule the
Linux processes.

RTKernel
RT-FIFO

Linux Process RT Processes

X-Windows Linux Kernel

Display Disk Devices

So
ft

w
ar

e
le

ve
l

H
ar

dw
ar

e
le

ve
l

D
at

a

Linux

RT Task 1

 RT Task 2

Development Environment

Real-time Linux in Control Applications Area
University of Twente

7

2.1.2 Interrupts
Interrupts can disturb the timing of the running processes. When the interrupts have not been disabled,
the interrupt handler captures all hardware interrupts. The interrupt handler of the RTLinux kernel
responds to an interrupt by executing a real-time Interrupt Service Routine (ISR) for the occurred
interrupt. When no real-time ISR is available the interrupt will be generated as software interrupt in
the Linux kernel. The interrupt handler of the Linux kernel will respond to this interrupt in the normal
fashion, provided the Linux kernel is scheduled (FSMLabs, 2002).

Figure 4: Interrupts in RTLinux

The handling of a hardware interrupt is shown in Figure 4. Each dotted arrow depicts one of the
following steps.
1. A hardware interrupt is generated. The interrupt handler in the RTKernel receives the interrupt.
2. The interrupt handler in the RTKernel will check if an ISR is installed for that interrupt. If an ISR

is available it will be executed.
3. When no ISR is available in the RTKernel a software version of the original hardware interrupt

will be generated in the Linux kernel.
4. The interrupt handler in the Linux kernel will check if an ISR is installed. If the ISR is installed it

will be executed. When no ISR is available the interrupt will be ignored.

2.2 Communicating Threads for C++
Communicating Sequential Processes (CSP) is founded on mathematical theory, which gives it a good
basis for developing reliable concurrent and distributed software. CSP allows the description of
systems by means of processes that communicate with each other over channels (Hoare, 1985). CSP
hides the thread programming from the user because programming threads is hard to do and errors are
easily made. Threads are low-level entities, which makes understanding and controlling the flow of
control of concurrent tasks difficult and as a result, the complexity and development times may
increase extensively, reducing development time and development costs (Hilderink, 2001).

In the Communicating Threads for C++ (CTC++ or CTCPP) library, an API that implements a subset
of CSP is defined (Hilderink, 2001). The library makes CSP applicable for building concurrent
software in C++ without a need to understand the underlying theory. CTC++ provides all ingredients
for programming concurrent software. One can efficiently control threads without programming the
threads directly. CTC++ puts the thread control to a higher level of abstraction in terms of
communicating processes. Its simple compositional constructs and features make reasoning, designing
and building concurrent programs simple and especially reliable. The complex thread control lies

RTLinux Kernel RT-Scheduler

Hardware Interrupts IO

Software Interrupts IO

Linux Kernel

Device Drivers

System Libraries

Direct Hardware Access

Hardware

User Process User Process User Process

RT
 Task

RT
 Task

RT
 Task

1

2

3

4

Interrupt
Handler

Interrupt Handler

Development Environment

Real-time Linux in Control Applications Area
University of Twente

8

under the hood of these constructs. As a result, the development time scales nearly linear with
complexity (Hilderink, 2001).

There are several terms used in CTC++, of which the essential ones are given below.

Processes
A process is an independent self-contained entity that performs a task (sequence of events) within its
private workspace to achieve a certain goal and during its progress it may interact with its
environment by means of channel communications (Hilderink et al., 1999). Processes can be
composed of multiple simpler processes. Processes do not know each other’s name and cannot
directly alter each other’s state.

Channels
A channel is a shared object that performs communication between processes. Channels provide
synchronization, scheduling and the actual data transfer. Each channel supports one-way point-to-
point synchronous communication between processes. The communication is synchronous, so for one
process to be able to send over a channel, the process at the other end must be ready and waiting for
the communication. The channel connects the two processes. During channel communication one
context switch is performed. The notion of a channel abstracts away from the actual physical
implementation of the communication link. Communication over a channel is by default rendezvous,
but linkdrivers can be used to add buffering and hardware communication to a channel. Buffering is
an option that may in certain circumstances increase performance.

2.2.1 Producer – Consumer Example
In the example shown in Figure 5, two processes are shown: the producer and the consumer. The two
processes are running in parallel. The producer transmits data over the channel to the consumer. This
can only be done if both the producer and the consumer are ready to communicate. When one of the
processes is not ready to perform the communication, the ready process, will block and wait until the
other process is ready. So the two processes will be scheduled and released on channel
communication. When the second process becomes ready for communication, both processes will
continue their execution.

 channel

 ChannelOutput ChannelInput

C P

Figure 5: Producer – Consumer example

Linkdrivers
The CTC++ package provides a linkdriver framework. The purpose of the linkdriver framework is to
perform the separation between hardware-dependent and hardware-independent code in such a way
that it fits neatly into the concept of channel communication. The idea is to accomplish this by
creating a plug and play driver framework that continues on the conceptual idea of communication at
a lower level. Just as a process reads from or writes to a channel, a channel reads from or writes to a
linkdriver. The result of this is that the hardware dependency is completely hidden inside the
channels. Processes need not be aware of any hardware; they just communicate by channels. In Figure
6 the link driver concept (Hilderink, 2001) is graphically depicted.

Development Environment

Real-time Linux in Control Applications Area
University of Twente

9

Figure 6: Linkdriver concept

Compositions
There are a few fundamental processes that can specify the relation between certain processes. These
are the Sequential, Parallel, Alternative, priority-based Parallel (Priparallel) and priority-based
Alternative (Prialternative) constructs. Since the compositions are processes themselves, they can be
nested. In case of Priparallel constructs, this could result in an infinite amount of priority levels. A
description of the compositions is discussed next.

• The Sequential construct executes its processes in sequence. The sequence starts when the run

method is called. When all the processes of the sequential construct have terminated successfully,
the sequential construct will terminate itself. A code example is shown below.

void main(void)

{

...

...// create processes and channels

...
Process *processlist[] = { process1, process2 };
Sequential *seq = new Sequential(processlist, 2);
seq->Run();
...

}

• There are two parallel constructs. The standard Parallel and the Priparallel. The Parallel
composition is started when its run method is called. This will run all the specified processes in
parallel. Each process is assigned a thread of control with equal priority. Only when the Priparallel
composition is used, the assigned threads will have different priorities. The first process in the list
of the Priparallel will get the highest priority. When all processes have terminated successfully, the
parallel composition will end. A code example is shown below.

void main(void)

{

...

...// create processes and channels

...
Process *processlist[] = { process1, process2 };
Parallel *par = new Parallel(processlist, 2);
par->Run();
...

}

Software
Process

Hardware
Process

Channel

linkdriver

Hardware dependent

Hardware independent

Development Environment

Real-time Linux in Control Applications Area
University of Twente

10

• The alternative construct also has two versions: a standard Alternative and a Prialternative. The
alternative composition is included to support non-determinacy for channel usage. This
composition gives a process a choice to read from one of a number of channels. Which channel is
to be determined by the guards. Guards are objects which each guard a process. When a channel
becomes ready for communication, because a process has written to it, it will signal the guard. The
guard now becomes ready. When the alternative composition is executed, it will check the guards
and choose between one “ready” guard and execute the corresponding process. The sequence in
which the guards are handled is not determined, but in CT it is first come first serve. When the
Prialternative construct is used the first process in the list will have priority over the other
processes. The first code example shown below is a manager process. This process creates two
guards for the reader processes. As soon as one of the guards is ready, the reader belonging to that
guard will be executed.

void Manager::Run(void)
{

...
guard1 = new Guard(in1, reader1);
guard2 = new Guard(in2, reader2);
Guard[] *guardlist = { guard1, guard2 };
alt = new Alternative(guardlist, 2);
...

}

In the next code example the manager process is running in parallel with two producers. It is not
known which producer is the first to become ready. When a producer is ready, it will signal the
guard of its reader process. This reader process will then be executed.

void main(void)
{
 ...
 ...// create processes and channels
 ...

Process *processlist[] = { producer1, producer2, manager };
Parallel *par = new Parallel(processlist, 3);
par->Run();
...

}

Scheduling
A process that wants to access a channel that is not (yet) ready will be descheduled until the channel
becomes ready. Waiting on a channel does not consume time (except for the context switch) because
other processes can continue. So all processes that are dependent on communication from other
processes will be descheduled until their channels become ready. A parent process schedules a child
process when the run method of the child process is executed. If a process reaches the end of its run
method, it will automatically be descheduled.

2.3 20-Sim
At the Control Laboratory, the modelling and design package 20-sim (Controllab Products, 2002) is
used to design and analyse control systems (Broenink, 1997). The program runs on MS Windows
based machines and provides the designer an interactive way of modelling, designing and simulating
control systems. Recent versions of 20-sim are extended with an ANSI-C code generator. When a 20-
sim model is checked and simulated, an option can be selected to generate ANSI-C code. The
generated code can be tested in the real world.

Development Environment

Real-time Linux in Control Applications Area
University of Twente

11

The code generation is done for a specific target. Every target has it own requirements and ways to be
initialised and handled. So for every target a specific template has to be written. To be able to generate
RTLinux C++ code one of the existing templates of 20-sim had to be adapted. Gerald Hilderink did
this.

20-sim can generate code for the entire model or for sub-models in sequential execution frameworks.
The code is based on a simulator framework, which is purely sequential and therefore inherits all the
disadvantages of a single thread of control. The 20-sim code generation has been adapted in such a
way that every sub-model can be code-generated individually and each sub-model is wrapped by a
CSP process. Each process executes its own sub-model and the entire framework of the program can
be composed using processes and CSP primitives. This allows executing sub-models (processes) in
sequence, in parallel, or by choice. These sub-models can also be executed at different priorities in
order to meet certain real-time constraints.

20-sim is used to simulate the entire system from setpoints to plant. With the simulation a controller
with desired behaviour can be designed. When the design phase is completed the 20-sim is used to
generate the code needed to implement the controller.

2.4 Setup IO Interface
As shown in Figure 7 the complete setup consists of a Controller, IO and a plant (JIWY).

Figure 7: General Control System

Every controlled plant has sensors and actuators, connected to the controller. In order to do this an IO
board was needed. From several alternatives the NI6024E was chosen as the interface board to
connect the controller to the sensors and actuators. The list with all the interface boards, from which
this IO board was chosen, can be found in Appendix C. The NI6024E is a fast data acquisition (DAQ)
board from National Instruments. The following modules, shown in Figure 8 are available on the
board:
• The PCI bus interface.
• The Data Acquisition System Timing Controller (DAQSTC).
• The Analog Input Module (AITM).
• The General Purpose Counter / Timer (GPCT).
• The Digital IO module (DIO)
• The Analog Output Module (AOTM).
• The Programmable Function Inputs (PFI).
The abbreviations are used in the manuals of the IO board and for the conformity they are used in this
document as well.

Controller

Safety
Constraints

Control
Algorithm

D
at

a
A

na
ly

si
s

IO

Setup

(JIWY)

UI

Development Environment

Real-time Linux in Control Applications Area
University of Twente

12

Figure 8: Component Connection Diagram

The interface board has a total maximum sample rate of 200K samples/s. 8 differential or 16 single
ended analog inputs with 12-bit resolution and 2 analog outputs with 12-bit resolution are available. 2
timer / counter modules and 8 digital IO lines are also available. Programmable function inputs are
available, although the other modules may use certain pins of the PFI for their own functions.

The DAQSTC is a timing module that can be programmed to generate all the necessary timing signals
to drive the other modules on the board. The AITM can be used to measure voltages from sensors,
while the AOTM can be used to drive amplifiers needed for motors. The GPCT can be used for timing
(e.g. frequency measurement) and counting of various signals (e.g. event counting). They can also be
used to interface digital relative optical position encoders. The DIO lines can be used to measure or
drive digital signals. The PFI module can be programmed in such a way that external signals can be
used as internal trigger signals for the other modules on the IO board. The details of the functions will
be discussed in section 3.1.

2.5 Review
In this chapter the development environment was introduced. The development environment is the
combination of hardware and software tools, which were used to develop the control software.

The first part of the environment that was introduced is RTLinux. This is a hard real-time version of
the standard Linux operating system. RTLinux can facilitate the timing requirements needed for real-
time processes and also provides all the facilities of the Linux OS. A communication mechanism
between the two kernels was introduced. This mechanism uses RT-FIFOs for the communication.

The second part of the development environment is the CTC++ package. This package is an
implementation of CSP concepts in C++. With CTC++ fast and reliable real-time software can be
developed in a short time. The most important terms of CTC++ were introduced and explained.

The simulation and modelling package 20-sim is the third part of the development environment. With
20-sim models of physical systems can be modelled and simulated. Controllers for the models can be
designed and then tested with the model. The latest versions of 20-sim have code generating abilities,
so the designed models or controllers can be implemented in code, which is generated automatically.

The fourth and last part of the environment is the IO board. A selection from several IO boards was
made and a data acquisition board from National Instruments was selected. On the IO board two
analog outputs, 16 analog inputs, two counter/timers and a digital IO port are available. All the
modules are connected to the central timing chip that controls the timing for the entire IO board.

PCI Bus
Interfac

e
AOT

Module
AIT

Module
DAQ-
STC

PFI
Module

DIO
Module

GPCT
Module

Software Development

Real-time Linux in Control Applications Area
University of Twente

13

3 Software Development
With the help of the development environment, described in chapter 2, software has been developed.

The most important part of the developed software is the device driver for the IO board. Without it no
connection between the controller on the PC and the actual setup can be made.

In order to make the system easier to use support utilities have been created. These utilities can be
used to test the four most important modules of the IO board, to enable the RT-FIFO communication,
to print messages to the screen and to log data to the hard disk.

Two programs to test RTLinux and the CTC++ package are developed as well. The programs measure
the channel communication time and the interrupt latency. The results are given at the end of the
chapter.

3.1 Data Acquisition Board Device Drivers
The used data acquisition board (DAQ) contains several modules, which are all interconnected
through the DAQSTC module. For each of the modules classes have been created which control each
part of the hardware so that the functions can be performed from software. The details of all the
classes can be found in the documentation generated with CPPDOC. The relation between the classes
is shown in Figure 9.

Figure 9: Class Relation Diagram

The DAQSTC class is the most important class. All other classes, except for the FIFO classes, are
dependent on the DAQSTC class. From the DAQSTC there are six sub classes:

• GPCT.

The GPCT has two sub classes, namely the GPT and the GPC. These classes implement the
timer and counter units.

• AOTM.
The AOTM has one sub class: the DAC class. The DAC class implements the DAC units.

• AITM.

DAQSTC

FIFO Output

FIFO Input

 GPCT

GPT

GPC

AOTM

DAC

DIO

PFI

AITM

SinglePinOut

SinglePinIn

Parallel

Serial

SerialHW

MISC

Software Development

Real-time Linux in Control Applications Area
University of Twente

14

The AITM class is the implementation of the analog input.
• DIO.

The DIO class has five sub classes. The two SinglePin classes implement the single pin IO
mode. The parallel and serial classes implement the parallel and serial IO modes respectively.
The SerialHW class implements the serial IO mode with a hardware clock.

• PFI.
The PFI class implements the PFI functions.

• MISC.
The MISC class implements some functions that are needed by the SerialHW and PFI classes.

Next there are the two FIFO classes. These classes implement the RT-FIFO communication between
the RTLinux and the Linux processes.

3.1.1 System Timing and Control Module
The System Timing and Control module (DAQSTC) controls all of the modules and gives the user
access to the registers on the board. Through the registers the modules can be programmed to perform
the available functions. The details about bit settings for the various functions can be found in the
manuals of the IO board (NI6024E, 1995, 1998). The DAQSTC object has only one implemented
method: Initialise. This method will initialise the shadow registers for the register access and perform
the PCI bus initialisation. The class and methods are shown in Figure 10.

Figure 10: DAQSTC class

Register Access
Some registers can be read directly, because these registers must be fast since they are frequently
used. The other registers are accessed in a windowing scheme. Windowing requires two IO operations
for each register, in favour of fewer addresses. This was done to preserve compatibility with older
boards and to limit the size of the IO address space (i.e., IO window). These windowed registers are
primarily used for setup functions, while the direct addressable registers are used for data acquisition.
The addresses of all the registers and their functions can be found in the DAQSTC reference manual
and the Register Level Programmers Manual (NI6024E, 1995, 1998). These register addresses are
defined in the file NI6024E.h.

In order to minimize the number of used register addresses on the IO board, in addition to windowing
registers were given a double function. When a read to an address is invoked, the appropriate read-
only function register is selected. When a write to the same address is started, the write-only function
register is accessed. This greatly reduces the number of addresses. This implies that a write-only
register can’t be read to see what settings are made. So a way of storing all settings for read back was
created. Every time data is written to a write-only register, the data is also written to a software copy
of that register, which is kept in memory. Each register read or write has a register name, a value and
a READ/WRITE flag. When a read occurs on a write-only register and the WRITE flag is included,
the content of the software copy register is returned. The same applies in reversed form for the write
on a read-only register. This software copy scheme is build into the read and write methods. Some of
the registers are strobe registers. This means that when a bit in the register is set once and immediately
cleared afterwards. To correctly use these registers, the software copy must not be updated. A strobe
method was written to deal with this. The prototypes of these functions are described in Appendix E.
The functions are located in the NI6024E.h file.

PCI Initialisation
The DAQSTC also handles the communication with the PCI bus. PCI read/write routines can be used
to communicate with a PCI board, since the PCI bus interface handles all the communication between

DAQSTC

DAQSTC()
~DAQSTC()
Initialise

Software Development

Real-time Linux in Control Applications Area
University of Twente

15

the PCI bus and the PC. Rubini (Rubini, 1998) shows how the BIOS in the PC maps the IO space of
the PCI board to certain regions in the IO space of the PC during boot time. The start addresses of
these regions are located in the Base Address Registers (BARs). These BARs are located on the PCI
board. By means of BIOS-PCI functions, the contents of the BARs can be read. The PCI
configuration memory is structured for every PCI board as shown in Table 1. The addresses shown
are 16 bit addresses.

Address Offset Addr

0x00 0x02 0x04 0x06 0x08 0x0A 0x0C 0x0E
0x00 Vendor

ID
Unit
ID

Comman
d

Status Revisio
n

Class
Code

CLS Latenc
y

Heade
r

BIST

0x10 BAR0 BAR1 BAR2 BAR3
0x20 BAR4 BAR5 Reserved Reserved
0x30 Expansion ROM

Base Address
Reserved Reserved INT

line
INT
pin

Mn
GNT

Max
Lat

0x40-
0xF0

Available for PCI unit

Table 1: PCI Configuration Memory

The BIOS maps the IO space of the PCI board to the upper limit of the IO space of the PC. To be able
to access the PCI board with the conventional read/write functions of C and C++, its IO space must be
remapped to a new memory segment. The Initialise method searches the PC for a PCI bus and, if
present, for the IO board. When the IO board has been found, the two BAR addresses (BAR0 and
BAR1) used by the NI6024E will be read from the board and remapped to the following base
addresses: Base Address0 = 0xd0000 and Base Address1 = 0xd1000.

3.1.2 Analog Output Timing Module
The analog output timing module (AOTM) has two bipolar analog output channels. The Digital to
Analog Converters (DAC) in these channels can generate an analog voltage from –10V to +10V with
a resolution of 12 bits. The AOTM has two main modes: DAQSTC driven mode and CPU driven
mode. In DAQSTC driven mode the AOTM can be fully programmed to generate any waveform
desired. However, this requires the entire waveform to be known in advance, which is not applicable
in control applications. In the CPU driven mode the CPU can directly write to the DACs on board of
the NI6024E. The CPU driven mode has been fully implemented. The AOTM object has several
methods used for the setup of the module. When the AOTM has been initialised in the CPU driven
mode the DAC object can be requested from the AOTM with the GetDAC method. Two DAC objects
can be requested from the AOTM: DAC0 and DAC1. The write method implemented for the DAC
objects generates the corresponding voltage on the output when called. The write method can be
called with a value that must be between –2048 and 2047. Values that are out of this range will be
corrected to the maximum values. The classes and their methods are shown in Figure 11.

Figure 11: AOTM and DAC class

DAC

DAC(DACUnit)
~DAC()
DirecSetOutputValue(value)

DACUnit

AOTM

AOTM(UpdateGroup, OutputMode)
~AOTM()
AO_Arming()
AO_Board_Personalize()
AO_DAC_Config()
AO_Reset_All()
SetOutputMode(OutputMode)
GetDAC(DACUnit)

UpdateGroup
OutputMode
DACUnit

Software Development

Real-time Linux in Control Applications Area
University of Twente

16

3.1.3 Analog Input Timing Module
The analog input timing module (AITM) has 16 uni-polar input channels. These channels can also be
used in bipolar mode, which requires two uni-polar channels. The resolution of the Analog to Digital
Converters (ADC) is 12 bits. Just like the AOTM, the AITM can be fully programmed for a scan
sequence. The used gain is software selectable. Note that the input range of the channel is dependent
on the gain. The details can be found in the manuals (NI6024E, 1998). The AITM is not working.
After several weeks of programming it still did not work and other people could not find any faults.
Since it is not used for this project at the moment it is left as is. Only the AITM object has been
implemented. This object has no implemented methods. The class and methods are shown in Figure
12.

Figure 12: AITM class

3.1.4 Digital IO Module
The Digital IO module (DIO) consists of one 8 bits port. This port can be used as input or output, in
various modes. The supported modes are:
• Parallel IO without a hardware clock.
• Serial IO without a hardware clock.
• Serial IO with a hardware clock.
The parallel IO mode can also be used to drive each pin individually, so a “virtual” single pin mode
can be used. Note that Pin 6 and 7 can also be used as up/down inputs for the counters. If this is the
case the parallel IO mode cannot be used! The SerialHW mode needs a clock to operate. This clock
function is located in the MISC class. See the documentation for the class details. The DIO object
must be created while specifying which mode to use. An object depending on the specified mode is
created. For each of the modes read and write methods are created. These methods are linked to the
read and write methods of the DIO object. This holds for the Serial and Parallel modes, but not for the
SinglePin modes. Since 8 pins are available 8 SinglePin objects can be created. Linking the read and
write methods to the DIO object will not work There is only one DIO object with one read or write
method and there can be eight singlePin objects, so read and write methods are implemented in the
SinglePin objects themselves.

The Serial, Parallel and single pin modes are fully implemented. The Serial hardware clocked mode
depends on the clock setup, which is not implemented since it was not used The DIO class and its
sub-classes with all the methods are shown in Figure 13.

Figure 13: DIO class and sub-classes

AITM

AITM()
~AITM()

DIO

DIO(Mode)
~DIO
Read()
Write(char)

Mode

Parallel

Parallel(Direction)
~Parallel()
Read()
Write(data)

Direction
SinglePinIn

SinglePinInput(pin)
~SinglePinInput()
Read()

Pin
SinglePinOut

SinglePinOutput(pin)
~SinglePinOutput()
Write(data)

Pin
Serial

Serial()
~Serial()
Read()
Write(data)

SerialHW

SerialHW()
~SerialHW()
Read()
Write(data)

Software Development

Real-time Linux in Control Applications Area
University of Twente

17

3.1.5 Counter / Timer Module
The General Purpose Counter/Timer module (GPCT) contains two units, each of which can be used as
counter or timer. The resolution of the two units is 24 bits. The counters can be used for counting
signals, which are routed from the input, or from signals of the other modules on the NI6024E. In
combination with the pins 6 and 7 of the DIO module an up/down counter can be created for digital
incremental encoders. The timers can generate timing signals that can be routed to the outputs or to
other modules of the NI6024E. The GPCT object has only two methods: GetTimer and GetCounter.

When the Counter object is created it can be configured for the RelativePositionSensing mode. In this
mode the counter in combination with pins 6 and 7 of the DIO module form two up/down counters.
When this mode has been initialised (the position is initialised to “0”.) the counters must be armed to
start counting. Disarming the counters will make them stop counting. The last value remains in the
counter register until a reset is performed or the counter is armed again.

Only the counters of the GPCT are implemented, since the position encoders generate pulses with a
direction signal. For the counters only the relative position sensing method has been implemented.
The GPCT class and the sub-classes are shown with their methods in Figure 14.

Figure 14: GPCT, GPC and GPT classes

3.1.6 Programmable Function Inputs Module
The Programmable Function Inputs (PFI) pins can be used as inputs for external generated timing
signals. These pins can internally be routed to any of the timing signals needed for any of the
modules. These pins can also be used as outputs, where they supply the internal timing signals to the
outside. The PFI object enables the modules to use an external signal as source for a timing signal.
The constructor needs a pin number and an IO direction. The specified pin will then be put in the right
mode. In the setup of the other modules, these modules can be configured to use a PFI pin as source
or destination for a timing signal. The PFI pins are fully implemented. The class and methods are
shown in Figure 15.

Figure 15: PFI class

3.1.7 Miscellaneous Functions
The miscellaneous functions are embedded in the MISC class. This class has three methods:
• MSC Clock Configure. This method configures the clock for the serial IO with hardware clock.
• MSC FOUT Configure. This method configures the FOUT register settings for the analog input.
• Analog Trigger Control. This method configures the settings for the analog trigger control.
The class and methods are shown in Figure 16. These three methods are used for other modules,
however not for one other module but several modules. In the manuals these functions are stated as

GPT

GPT()
~GPT()

GPC

GPC(Counter,Mode)
~GPC()
Arm()
Disarm()
SetMode(Mode)
GetCounterValue()
GetSaveRegister()
Initialize(Counter,Mode)
Read()
Reset()

Counter
Mode

GPCT

GPCT()
~GPCT()
GetCounter(Counter)
GetTimer(Timer)

Counter
Timer

PFI

PFI(Pin, IOdirection)
~PFI()

Pin
IOdirection

Software Development

Real-time Linux in Control Applications Area
University of Twente

18

miscellaneous functions. The functions could have been implemented in each of the classes that use
them, but for conformity a MISC class was created.

Figure 16: MISC class

3.2 Support Utilities
Apart from the device drivers for the IO board four support utilities were needed. The utilities are:
• Test utilities for the analog input, analog output, digital IO and the encoders.
• RT-FIFO communication.
• A program to print messages to screen.
• A data-logging program.

3.2.1 Test Utilities
The test utilities are designed to test the DAQSTC and the modules. With the utilities the correct
operation of other connected hardware can be tested. There are four test utilities: ADC, DAC, DIO
and ENCODER.
• ADC is the test program for testing the analog input system. This is not implemented because the

AITM module is not working.
• DAC is the analog output test program. It will test both the DAC channels in their full range.

When the program is started, the output of DAC0 will start at 0V and rise to the maximum, while
DAC1 will start at 0V and fall to the minimum. Then the DAC0 will fall from maximum to the
minimum. DAC1 will do the opposite. Next both the DACs will return to 0.Connecting the output
to an oscilloscope can show the actual signals.

• DIO is the Digital IO test program. The program will output the value 0 to 255 on the eight digital
IO lines. Eight LED’s connected to the port can be used as a display.

• ENCODER is the test program for the counters and clock converter electronics. When started it
will read the value of the digital incremental encoders and print that value to the kernel buffer.
This step will be repeated 50 times.

3.2.2 RT-FIFO
Since the Linux kernel can be pre-empted by a real-time task at any moment in time, no Linux routine
can safely be called from real-time tasks. The RTLinux kernel provides simple buffers and they are
used for passing information between RTLinux processes or between Linux processes and RTLinux
processes. These communication buffers are called real-time FIFOs (RT-FIFO). RT-FIFO buffers are
allocated in the kernel address space. The real-time task interface to RT-FIFOs includes creation
(rtf_create), destruction (rtf_destroy), reading (rtf_get) and writing (rtf_put) functions. Reads and
writes are atomic and do not block (Barabanov, 1996). Non-blocking avoids priority inversion. For
the RT-FIFOs handlers can be created. The handlers function exactly like an interrupt handler, only
these handlers react on read/write actions on RT-FIFOs instead of interrupts Two types of RT-FIFO
handlers are available.
The function
int rtf_create_handler(unsigned int fifo, int (* handler)());
creates a handler, which is called when data is read from or written to RT-FIFO fifo from the non real-
time side. The second function
int rtf_create_rt_handler(unsigned int fifo, int (* handler)());
creates a handler, which is called when rtf_put or rtf_get is called on RT-FIFO fifo. Linux

MISC

MISC()
~MISC()
MSC_Clock_Configure()
MSC_FOUT_Configure()
Analog_Trigger_Control()

Software Development

Real-time Linux in Control Applications Area
University of Twente

19

processes see RT-FIFOs as ordinary character devices. The full features of the Linux API can be used
to access the devices.

The RT-FIFOs are implemented in two FIFO classes: FIFO_Output and FIFO_Input. The FIFO
classes specify a read and write method, which can be used to communicate via the RT-FIFOs. The
FIFO classes transmit objects. Data to be transmitted must be cast to an object. On the other side of
the RT-FIFO the object must be cast to the original type. The two function calls show how this is
done.

fifo-object1->write((void*)&data, sizeof(data));
void* data=fifo-object2->read();

Details about the classes can be found in the documentation. The two FIFO classes are shown in
Figure 17.

Figure 17: FIFO Input and Output classes

3.2.3 Console
In a real-time module, the standard print statements cannot be used since this function is designed to
operate in user space and not in kernel space. Instead the real-time version (rtl_printf) of the
statements can be used. The only drawback is that these print statements are directed to the kernel
buffer. The contents of the kernel buffer can be printed to the screen with the “dmesg” command.
Console provides a means of printing messages from the real-time program via RT-FIFOs to the
screen. This is graphically depicted in Figure 18.

Figure 18: Console communication method

On the real-time side, there are four functions available in the console package, which is located in the
file rtl_console.c. The functions are discussed below.

• int fd = rtl_console_open(int rt-fifo);

This function opens the RTFIFO rt-fifo, and returns the pointer fd to the opened RT-FIFO.
This function must be called in the “init_module” section.

• rtl_console_printf(int fd, const char* format, …);
This function behaves exactly like the printf and rtl_printf statements. The same formatted
arguments can be used. The only difference is that the pointer fd has to be specified.

• rtl_console_kill(int fd);
This function sends a termination command to the non real-time side. This will close the non
real-time side client. This function must be called in the main program and not in the
“cleanup_module”. When the “cleanup_module” is called, all resources are freed. When the
non real-time client has the RT-FIFO opened, the resources cannot be freed and the
“cleanup_module” will fail.

• rtl_console_close(int fd);
This command will destroy the RT-FIFO. This function must be called in the
“cleanup_module” section of the real-time program.

RT
Process

Console
(Linux Process)

RT-
FIFO

FIFO_Output

FIFO_Output(RTFIFO)
~FIFO_Output()
Write()

RTFIFO
FIFO_Input

FIFO_Input(RTFIFO)
~FIFO_Input()
Read()

RTFIFO

Software Development

Real-time Linux in Control Applications Area
University of Twente

20

When the real-time process is started, the non real-time program, called “console” can be started. If
the program is started without any switches the program will try to connect to RT-FIFO 63 by default
to read the data. By specifying a switch, another RT-FIFO can be selected. E.g. "./console 2".
Console will print all the messages from the RT-FIFO to the screen. The program can be stopped by
pressing Ctrl-C on the non real-time side or by sending the “kill” command from the real-time side.

3.2.4 Logger
Logger is a program that reads data from the RT-FIFOs and writes that data to a file. The data is
stored in a format that 20-sim can read. This way, measurement data can be displayed in 20-sim. In
the logger directory there are two “.c” files: logger.c and logger2.c. Both the files read a different
format from the RT-FIFOs. To use the program a priori knowledge of the type of the transmitted
variables is needed. The loggers expect data from each of the RT-FIFOs in the formats shown in
Table 2 and Table 3. Note that the number of samples (n) and the number of RT-FIFOs (f) are not
fixed. There can be a total of 64 RT-FIFOs.

Logger.c transmits two values per RT-FIFO per iteration: namely one integer and one long double.

 Number of RT-FIFOs ⇒ (f)
RT-FIFO x RT-FIFO x+1

index (integer) data (long double) index (integer) data (long double)
1 … 1 …
2 … 2 …
3 … 3 …

Sam
ples⇒

 (n)

4 … 4 …

Table 2: Logger data format

Logger2.c transmits the index (an integer) through the first RT-FIFO while the other RT-FIFOs are
used to transmit the data (long doubles).

 Number of RT-FIFOs ⇒ (f)
RT-FIFO #1 RT-FIFO #2 RT-FIFO #3 RT-FIFO #4

index (integer) data (long double) data (long double) data (long double)
1 … … …
2 … … …
3 … … …

Sam
ples⇒

 (n)
4 … … …

Table 3: Logger 2 data format

The real-time program must be started before the logger program, otherwise the logger program will
generate an error since the RT-FIFOs are then not yet created by the real-time program. The logger
program will loop forever, until Ctrl-C is pressed.

At the real-time process the data must be transmitted through the RT-FIFOs. This is done in exactly
the same way as shown in section 3.2.2. On the non real-time side the logger program must be started
with the following command:

./logger [switches]

The switches are required and must be the two following types. The order is not important.

-f fifos where fifos are the numbers of the RT-FIFOs to use in the specified order. There are

64 RT-FIFOs with numbers from 0 to 63.

-o outputfile where outputfile is the name of the file in which the data is stored. An “.n” extension

is automatically added. This makes it easy to open the file with 20-sim since 20-sim
searches for files with an “.n” extension..

Software Development

Real-time Linux in Control Applications Area
University of Twente

21

An example of the command is:

./logger –o testdata –f 0 1 23

This will save the data read from RT-FIFOs 0, 1 and 23 to the file testdata.n. The “data file” options
in 20-sim can easily read the contents of the file.. However, take note that when other programs are
used to read the file, a problem with the decimal separator may occur since Linux uses “.” and other
operating systems may use “,”. This will result in strange numbers. When 20-sim is used, this will
cause no problem.

Minimum RT-FIFO Size
The logger runs on the Linux kernel, therefore it must be considered that the non real-time logger will
not get any CPU time, because the RTKernel consumes all of it. When this happens, the RT-FIFO
must have enough space to store all the data, otherwise errors are generated in the real-time process.
All variables require a certain amount of space in memory to be stored. The amount of space needed
for every type of variable differs, also the same type of variable can use more or less space on
different operating systems. In Table 4 the sizes of the various variable types for the Linux operating
system are shown.

Variable Type Size in Bytes

(Linux)
CHAR 1
SHORT 2
Unsigned SHORT 2
INT 4
Unsigned INT 4
Long INT 4
LONG 4
Unsigned LONG 4
FLOAT 4
DOUBLE 8
Long DOUBLE 12

Table 4: Variables storage size

As can be seen the long double is the largest variable. With the known sizes equations on the RT-
FIFO size can be created. If we have a sample frequency of “f’ Hertz and the controller will run “t”
seconds, this will result in “n” sample moments where ‘n” is:

ftn ∗=

Equation 1: Number of sample moments

If all the data and one index is transmitted through only one RT-FIFO the buffer size of the RT-FIFO
will be:

()ldoublevnbytesBuffsize ∗+∗∗= int1)(

Equation 2: Buffer size

where n is the number of sample moments, int is the size of an integer, v is the number of variables to
log and ldouble is the size of a long double.

For large numbers of variables and high sample frequencies the buffer size will grow very fast. To
keep the size of the RT-FIFO reasonable it was decided to transmit one variable per RT-FIFO. This
was implemented in two ways: Logger 1 uses one RT-FIFO to transmit an index and other RT-FIFOs
for every data value. Logger 2 uses each RT-FIFO to transmit one index and one data value.

Software Development

Real-time Linux in Control Applications Area
University of Twente

22

Logger 1 uses one RT-FIFO per variable, but it transmits an index and a data value per RT-FIFO. For
logger 1 the sizes of the RT-FIFOs can be calculated with the following equation:

() nldoublezeFIFObuffsiDataRT ∗+=− int

Equation 3: Data RT-FIFO size for logger 1

As discussed logger 2 uses one RT-FIFO for an index and a RT-FIFO for every variable. For logger 2
the sizes of the RT-FIFOs can be calculated with the following equations:

nzeFIFObuffsiIndexRT int*=−

Equation 4: Index RT-FIFO size for logger 2

nldoublezeFIFObuffsiDataRT *=−

Equation 5: Data RT-FIFO size for logger 2

As can been seen from Table 4 the storage size of an integer int is 4 bytes and the size of a long
double ldouble is 12 bytes.

An example: 2 variables are logged. The sample frequency f is 100Hz. The program run time t is 10s.
According to Equation 1 the number of sample moments n is 1000.
The resulting RT-FIFO sizes are shown in Table 5.

 RT-FIFO 1 size

(bytes)
RT-FIFO 2 size
(bytes)

RT-FIFO 3 size
(bytes)

Logger 1 1600 1600 (Not used)
Logger 2 4000 1200 1200

Table 5: Buffer sizes

The size of the RT-FIFOs is reduced at the cost of more RT-FIFOs to be used. If all the data is
transmitted through one RT-FIFO its size will be 3200 bytes for logger 1 and 2800 bytes for logger 2.

3.3 System Test Programs
In order to do some tests on the system, without any test case dependent code, two test programs were
created. The first program is a real-time version of the Comstime program. The second program is
designed to measure the interrupt latency under the real-time kernel.

3.3.1 Comstime
The CTC++ package contains an example benchmark program called Comstime. Comstime is
designed to calculate the time needed to perform channel communication. For the benchmark on the
RTLinux system, a real-time version has been created. The program consists of four processes,
connected as shown in Figure 19. The program works as described below.

Figure 19: Comstime Program Structure

0

T i++

∆

Software Development

Real-time Linux in Control Applications Area
University of Twente

23

The ‘0’ block outputs a 0 on the first run, but on subsequent runs this block will output the value
received on the input. The ‘delta’ block copies the value of the input to both of the outputs. The ‘T’
block records the time, when it receives the input from the ‘delta’ block. The ‘i++’ block will
increment the input value by one and transmit it to the ‘0’ block. Each arrow signifies a channel on
which the data is transported. Communication over one channel requires one context switch. The PAR
statement inside the ‘delta’ block also requires one context switch. In total there are five context
switches per loop. The program will perform the loop until the ‘T’ block reaches 1000. The total
program execution time thus stands for 5000 context switches with channel communication.

The Comstime benchmark was performed under different conditions. It was performed under
RTLinux firstly with a system load of 100% and secondly with a load of approximately 1-2%. Letting
the “grep” utility recursively search in all the files on the hard disk, for the string “a”, generated the
system load. Three of these processes were started. The load on 1-2% is the normal load when no user
processes are running. The benchmark was also performed on the same machine running under DOS.
The DOS system utilized a system load of approximately 1%. The results of the benchmarks are
shown in Figure 20.

Figure 20: Comstime Benchmark Results

As can been seen from Figure 20 the picture, the channel communication time (with context switch
time!) for DOS remains constant. The channel communication time for RTLinux varies somewhat
when the system load is 100 percent. When the load is dropped to 1-2%, the variation of the channel
communication time is decreased. In a real-time context the worst case is the most important. The
worst-case channel communication time is 5,06 microseconds. Unfortunately the system load under
DOS cannot be increased since DOS is a single task OS.

System Benchmark Test

4

4.2

4.4

4.6

4.8

5

5.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Run

C
h

an
n

el
 C

o
m

m
u

n
ic

at
io

n

T
im

e
(u

s)

0

10

20

30

40

50

60

70

80

90

100

S
sy

te
m

 L
o

ad
 (

%
)

RTLinux Channel Com. Time DOS Channel Com. Time RTLinux Load DOS LOAD

Software Development

Real-time Linux in Control Applications Area
University of Twente

24

3.3.2 Interrupt Latency
An example program from a Real-time Linux website (Holler, 2000) shows the interrupt latency by
means of a simple program. The program requires a few wires connected to the parallel port and an
oscilloscope as shown in Figure 21.

Figure 21: Test Hardware schematic

Pins 2 and 3 are the two least significant bits of the 8 data bits. Pin 10 is the acknowledge input of the
port and pin 25 is the ground of the port. With the above connection, the software can generate a
hardware interrupt on the parallel port by means of setting pin 3 in a high state. The instruction to put
pin 3 in a high state also puts pin 2 in a high state. Since pin 2 is connected to the oscilloscope, the
level of the pins can be seen.

An interrupt handler responds to the caused interrupt by putting pins 2 and 3 in a low state, and thus
disabling the interrupt. The transitions can be seen on the oscilloscope. The program was started as a
periodic thread, which was scheduled to run every 100 µs. This results in a steady picture on the
oscilloscope, which looks like Figure 22. The times of the four points shown are stated in Table 6.

Figure 22: RTLinux Interrupt latency

System Load Idle Cycles

(%)
t1
(µs)

t2
(µs)

t3
(µs)

t4
(µs)

High
? 1=t2-t1

Sample time
? 2=t3-t1

Low
? 3=t3-t2

No extras, just
X(-windows)

97 101 108 201 208 7 100 93

Camera, Mouse
Interrupts & X

58.6 101 109 201 209 8 100 92

Load Function,
Mouse Interrupts
& X

0 101 109 201 209 8 100 92

Table 6: Interrupt Latency results

The system load that has been generated consists of IO operations that cause extra interrupts.
Searching in all the files on the entire hard disk for the string “a” generated the system load: a
continuous stream of interrupts. With 5 of these searches the total system load would reach 100%.
The total cycle time (? 2) of the program is 100 µs. The fastest interrupt latency (? 1) with a system
load as low as possible is 7 µs. For 100% system load the cycle time remains constant, but the
interrupt latency increases to 8 µs. The worst-case interrupt latency is 8 µs. The latency time is
regardless of the total load. The RTLinux kernel can schedule the program exact on the specified 100
µs.

? 2

? 3 ? 1

t1 t2 t3 t4

Oscilloscope

Parallel port

Software Development

Real-time Linux in Control Applications Area
University of Twente

25

On the website (Holler, 2000), where this test was found, test results for two PCs with the same test
are shown. These results are shown in the following table with the above results. The mentioned
Pentium Pro is the PC used for the project.

PC Average Latency

(µs)
Maximum Latency
(µs)

Pentium II / 300 MHz 5 <10
486 DX2 / 66 MHz 35 65
Pentium Pro / 200 MHz 7.66 8

Table 7: Latency Comparison

As can be seen from the results in Table 7 the latency of the used PC is slightly slower than a Pentium
II and much faster than a 486 PC. This is not surprising, since the two Pentiums are running on a
much higher clock frequency, and are designed with totally different processor architectures.

3.4 Review
In this chapter the developed software was discussed. There are three major parts of software: device
driver for the IO board, support functions and system test programs.

First device drivers for the IO board were created. For each of the modules one or more classes were
created.

Four small programs to test the analog IO modules, the digital IO module and the counter/timer
module are created. These programs can be used to test whether the IO board is working and if the
connected setup responds to the IO signals. The real-time FIFO communication has been
implemented. The Console program was created. It provides functions to use in the real-time program
and a client to display all messages on the non real-time kernel. A data-logging program was created
that logs data transmitted from the real-time kernel to the standard kernel to a file.

Two system test programs were developed. The first program measures the channel communication
time of the CTC++ package. The second program measures the interrupt latency of the RTKernel.

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

27

4 Case Study: JIWY
In order to test the developed software and tools, a case study is performed. In the case study the
design of the system is performed with the developed tools for the setup that is going to be used.
In Figure 23 a block diagram of the entire system is shown. The system consists of the setpoint
generator, the controller the box and the actual plant JIWY.

Figure 23: Total System block diagram

The setpoint generator is implemented as an analog joystick. The implementation is described in
section 4.1. The combination of JIWY and the box is the actual plant. The plant is described in section
4.2. The controller is generated with 20-sim. This is described in section 4.3. The performance of the
realised control system is discussed in section 4.4.

4.1 Controller Input
A standard analog joystick was available and it was chosen to be the input device that provides the
desired setpoints for the controller. As shown in Figure 24 the joystick generates the setpoints for the
controller (Jovanovic, et al., 2002).

Figure 24: Controller block schematic

4.1.1 The Joystick
For the simulation a dll function for 20-sim to interface the joystick to the controller was needed. Tijs
Lammertink created this dll for the 20-sim models (Lammertink, 2002). The dll function can be used
to connect real hardware to the model in 20-sim. This way the controller can be simulated with the
real joystick.

For the implementation a real-time joystick driver was needed. Gerald Hilderink created the real-time
joystick driver. This resulted in a joystick module. These modules must be loaded into the kernel and
in this way they become part of the kernel. When the module is loaded, the joystick module can
communicate with the controller.

The joystick driver sends the setpoints for each axis to the controller. A signal limiter is included to
limit the joystick steering signal, since the joystick will not always have the same limit on both sides
of each axis. The controller will keep running until the joystick button is pressed. The controller

PC IO Card Amplifiers Motors

Encoders

End Switches

Encoder Interface

Controller Box JIWY

Power Supply

Joystick

Camera

Setpoints

Joystick

Controller

IO board

& Box

buttons &
 X,Y data

steer signals

position
Setup

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

28

calculates the new steering signal from the setpoints and the position signals. The steering signals are
passed through the device driver to the IO board and from there to the setup.
The actual position of the joystick is obtained by applying a voltage on the input. The voltage will
charge a capacitor through a variable resistor. This resistor will vary with handle movement. As soon
as the voltage is applied a counter is started. The output is now continuously polled until it goes high.
Then immediately the counter is stopped. With the elapsed time and the known value of the capacitor,
the value of the variable resistor can be calculated. The resistance is a measure for the movement.

4.1.2 Digital Filter
When the joystick driver was used, it turned out that the signal coming from the joystick port was
polluted with noise. A digital filter was designed to filter the noise. This digital filter had the desired
effect (Jovanovic, 2002). An analog filter cannot be implemented since the architecture of the joystick
port does not allow a filter to be included. The digital filter has the transfer function shown in
Equation 6.

43
2

2
3

1
4

0

43
2

2
3

1
4

0

bZbZbZbZb
aZaZaZaZa

X
Y

++++
++++

=

Equation 6: Filter Transfer function

The parameters of the filter are stated in Table 8.
Numerator Denominator
a0 1.3293728899e-5 b0 1.0
a1 5.3174915595e-5 b1 -3.671729089162
a2 7.9762373393e-5 b2 5.067998386734
a3 5.3174915595e-5 b3 -3.115966925202
a4 1.3293728899e-5 b4 0.7199103272919

Table 8: Filter parameters

This filter removed the noise from the joystick signal. However the signal still had overshoot. To filter
this overshoot another filter for each axis was deigned.
The filters have the following transfer functions:

9465.0
026767.0026767.0

−
+∗

=
Z

Z
X
Y

Equation 7: Overshoot Post Filter X-axis

9048.0
04762.004762.0

−
+∗

=
Z

Z
X
Y

Equation 8: Overshoot Post Filter Y-axis

4.2 Plant Description
As discussed before the plant consists of JIWY and the box. In this section first JIWY is discussed
followed by the bondgraph model of JIWY. At the end of this section the box is discussed in detail.

4.2.1 JIWY
The setup used in the project was dubbed JIWY. It was used in the M.Sc. thesis of Andre Veltman
(Veltman, 1988). It was chosen as setup, since it was available in the laboratory and the mechanics
had been described in detail. However, this doesn’t mean that no other setup can be used. For example
the Linix setup (Elgersma, 2000), also present in the laboratory, can be used instead as long as a new
controller is generated.

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

29

JIWY has two degrees of freedom, one of which rotates in the horizontal (φ) and the second in the
vertical (θ) plane, as shown in Figure 25. The two axes can move independent from each other. The
maximum angle that can approximately be rotated for the horizontal angle is 295O and for the vertical
angle it is 165O.

Figure 25: JIWY rotations Figure 26: JIWY and Box

Two DC-motors are mounted on JIWY. The speed of each motor is decreased by a set of gears. First a
gear with a ratio of 1/5 decreases the angular velocity. The resulting speed is then reduced by means
of chain wheels with a belt. The chain wheels have a transfer ratio of 1/4. The total speed reduction
from motor to end-effector is thus 20/1.

For the position feedback each axis was equipped resolvers. Resolvers are fairly complex to use. It
was decided to use incremental optical position encoders instead. These encoders have 500 slits per
revolution. The encoders generate two phase-shifted square wave signals.

A digital USB web cam will be mounted on top of JIWY. This is a standard Philips web cam. The
Linux camstream package is used to drive it (Camstream, 2002). Control over a computer network for
JIWY by means of the camera is currently under development (Smith, 2002).

4.2.2 Bondgraph model
The bondgraph model of the setup, including its parameters was taken from Veltman (Veltman,
1988). A bond graph model of JIWY was made. The bond graph model is shown in Figure 27. It is for
one axis only. Two of these models are needed for JIWY. The parameters are listed in Table 9.

phi

Current_Control_phi TF
Gear_phi

TF
Belt_phi

1

R
Dmot_phi

I

Jmot_phi

R
Dcam_phi

I

Jcam_phi

1 Se
Se_phi

GY
Motor_phi

MSf
MSf_phi

q

Figure 27: JIWY Bond graph model

θ

ϕ

Z

X

Y

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

30

Parameter Value (phi) Value (theta) Description
MSf 1 1 modulated flow source

multiplication factor
g 0.0394 Nm/A 0.0394 Nm/A gyrator constant
Jmot 2.63e-6 Kgm2 2.63e-6 Kgm2 inertia of motor
Dmot 1.77e-6 Nms/rad 1.77e-6 Nms/rad dissipation of motor
Gear 4 4 transformer constant 1
Belt 5 5 transformer constant 2
JCam 4.5e-3 Kgm2 3.0e-3 Kgm2 inertia of end effector
DCam 13.5e-6 Nms/rad 13.5e-6 Nms/rad dissipation of end effector
Mext 0 Nm 0 Nm external force

 Table 9: JIWY Parameters

4.2.3 The Box
The box is a box of additional electronics between JIWY and the PC. The box consists of power
amplifiers to drive the motors, an emergency button, a power supply for the different parts and some
electronics to convert the quadrature encoder signals into counter signals ready for the IO board
(NI6024E, 1996). The system can be extended with optional end-switches, for additional safety to
avoid physical damage.

• The amplifiers used are the Maxon ADS 50/5 servo amplifiers. These amplifiers can be operated

on a large voltage range. They can supply 5A continuous and can supply a peak current of 10A.
The amplifiers can handle a power of maximum 250W.

• The amplifiers are equipped with an emergency button. This button will turn the outputs of the
amplifiers off. The button only acts on the amplifiers, the controller will keep on running!

• The encoder interface is made up of two LS7084 quadrature clock converters. These chips convert
the two phase-shifted signals from the optical encoders to a logical pulse and an up/down signal
(NI6024E, 1996). The pulse and the up/down signal are connected to the NI6024E board. The
counter module will increment or decrement its value on each pulse.

• The power supply is a PC power supply. It is capable of supplying 12A at 12V. This is more than
enough to drive the motors. According to Equation 9 in appendix D, running the motors at 12 volt
will result in a motor speed of 881 RPM, which is equivalent to 92.26 rad/s.

4.3 Control Software Implementation
For the setup implementation the setup dependent parts had to be created. The block diagram in
Figure 28 shows the various parts of the complete setup.

Figure 28: Setup Block Schematic

As shown in Figure 28 the controller is made up of hardware and software parts. These parts can be
either setup dependent or independent. All the setup independent parts are created in advance and can
be re-used for every setup. The setup dependent parts must be created or adapted for every setup. The
controller is specially generated for JIWY.

Joystick

JIWY

Controller

IO Device

Driver

IO Board

Box

Joystick

Port

Joystick
Device
Driver

Hardware
Layer

Software
Layer

JIWY
Specific
Parts

Digital
Filter

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

31

4.3.1 Controller simulation models
First a controller has been simulated with 20-sim. The model, which is used to simulate the entire
system, is shown in Figure 29.

x_signal
DigitalFilterX

y_signal
DigitalFilterY ControllerVertical

ControllerHorizontal

A D
DA1

A
D

encoder1

A D
DA2

A
D

AD2

K

power_amp_phi

K
Gain_Encoder_X

Motor_phi

K

power_amp_theta

Motor_theta
K

Gain_Encoder_Y IO Control JIWY Joystick
Figure 29: JIWY 20-SIM Simulation Model

The model shown in the above figure can easily be compared to the model shown in Figure 28. The
joystick device driver and the digital filter are simulated in the joystick block as shown in Figure 29.
The controller is simulated in the control block and the IO and JIWY are simulated in the IO and
JIWY block respectively.

The controller is implemented in the simulation model as a standard PID block. This block
implements all the aspects of a PID controller. The parameters for the controller are shown in Table
10. A PID controller was used to compensate for changes in parameters of the used setup. A PID
controller is a robust controller that is fairly immune to variations in the model parameters.

Component Parameter Value (X-axis) Value (Y-Axis)
Signal Limiter Max ±450 ±450
Gain K1 K1 165 165
Gain K2 K2 318.3 318.3
PID K 2000 4000
PID Td 13 2
PID N 10 10
PID Ti 15 10

Table 10: Controller Parameters

The IO block is a model of the power amplifiers used as unity amplifiers. Finally the JIWY block is
implemented with two of the bondgraph models as shown in Figure 27.

4.3.2 Controller Generation models
For sub models expressing controlling parts, from which code is generated, the model looks like
Figure 30. The model shown is for only one axis, so two of these models are needed.

Device Driver Control Joystick Driver

DAQSTC_DAC0 Joystick_X_axis

DAQSTC_Encoder0

Control_X

Figure 30: Real-life Controller Model (one axis)

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

32

This model is essentially the same. The joystick and IO blocks are changed to blocks that will create
the appropriate function calls when the code is generated. The controller model will be generated in
code and linked to the code of the other models. When C code is generated from this model it will
implement the software layer as shown in Figure 28.

4.3.3 Controller with CSP
Unfortunately the CSP package at present does not run under RTLinux. A controller with CSP can
thus not be implemented. However a design can be given. The first step in creating a controller with
CSP would be running both controllers for each axis in parallel. This can be done with the help of a
PAR block. The PAR block has two processes: JIWY_X_Axis and JIWY_Y_Axis. This is
graphically shown in Figure 31. Each block shown consists of a controller model as shown in Figure
30. Gerald Hilderink developed the graphical syntax (Hilderink, 2002).

Figure 31: CSP Controller

As shown in Figure 31 the controllers of the two axes are now running in parallel. However the blocks
inside the controllers themselves can also be put in parallel to each other. This is shown in Figure 32.

Figure 32: Parallel processes

The digital filter process and the controller process of one axis run in parallel. These two processes
together form a one axis process. The two axes processes run in parallel with each other. All processes
can thus be put in parallel to each other.

The next step can be to put all the sub-parts of the controller process in parallel. Also if desired the
CSP controller can be extended with features like safeguarding and exception handling. These
features can then all be running in parallel to the controllers.

Interrupt Clocked hardware access
The hardware access in the controller without CSP is demand driven. This means that when the IO
function is called the hardware will be accessed. This causes delays, since the processes are waiting
for the hardware to complete the functions. However for the CSP controller the hardware access must
be interrupt driven. In this way, the sample rate of the program can be changed without editing and
recompiling the entire program. Also the delays of the hardware access can be minimised.

To realise the interrupt driven IO, one of the timers form the PC is reprogrammed to generate an
interrupt at the desired frequency. An Interrupt Service Routine (ISR) for this interrupt is installed.
This ISR will trigger the hardware access. This process is graphically depicted in Figure 33.

DigitalFilterX ControllerHorizontal µ
3

2

DigitalFilterY ControllerVertical µ
3

2

…

…

Horizontal
JIWY Axis

Vertical
JIWY Axis

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

33

Controller LD

LD

LD

Timer Interrupt

Figure 33: Interrupt Clocked IO

The controller is connected to the IO linkdrivers (LD) with channels. The linkdrivers will be
sequentially executed by the ISR. The linkdrivers will read the input values from the hardware and
send the output values to the hardware. When the linkdrivers have all been executed, the ISR will end.

Figure 34: Synchronization

The channels can schedule the controller process to run and retrieve the values read from the
hardware. This is shown in Figure 34. The controller is synchronized with the IO operation. The
controller will calculate the output with the newest input values and store the new output value. When
the ISR is called again, it will again read the hardware and output the latest outputs. This way the
controller will always be operating on valid data.

4.4 Controller Performance
The controllers that were generated were tested. The tests have been performed with the help of the
logger utility. The logger was used to log the joystick steer signal and position of the axes.
The controller without CSP has been tested. The results are shown in Figure 35 and Figure 36.

hardware
read/write

controller
calculation

hardware
read/write

controller
calculation

Timer interrupt Timer interrupt time

synchronization synchronization

ISR

controller

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

34

X-axis

-2,00E+05

0,00E+00

2,00E+05

4,00E+05

6,00E+05

8,00E+05

1,00E+06

1,20E+06

1,40E+06

1,60E+06

SP x MV x error

Figure 35: X-axis controller

In Figure 35 the performance of the X-axis controller is shown. The controller has a maximum error
of 4 %. The maximum steady state error is 0.38 %.

Y-axis

-2,00E+05

0,00E+00

2,00E+05

4,00E+05

6,00E+05

8,00E+05

1,00E+06

1,20E+06

SP y MV y error

Figure 36: Y-axis controller

In Figure 36 the performance of the Y-axis controller is shown. The controller has a maximum error
of 6.6 %. The maximum steady state error is 0.12%.

Case Study: JIWY

Real-time Linux in Control Applications Area
University of Twente

35

4.5 Review
In this chapter the case study JIWY was discussed. The case study was performed to test the tools in a
real-life mechatronic design project.

At first the input device was described. This input device generates the setpoints for the controllers. A
standard analog joystick was selected. The joystick signals were polluted with noise, so a digital filter
was designed to clean the signals.

The used setup, called JIWY was described in detail. The box connecting JIWY to the setup was
realised. The box contains some electronics for the optical encoders, the power amplifiers and the
power supply.

The implemented controller was discussed. First the simulation models were shown followed by the
code generation models. Also an approach to implement a controller with CSP was given.

In the last section the performance of the controller was discussed. With the stepwise refinement
procedure the controller can be gradually improved. The X-axis controller has a maximum error of
4% and a steady state error of maximally 0.38 %. The Y-axis controller has a maximum error of 6.6
% and a steady state error of maximally 0.12 %

Conclusions & Recommendations

Real-time Linux in Control Applications Area
University of Twente

37

5 Conclusions & Recommendations
In this chapter the conclusions and recommendations are discussed. In section 5.1 the conclusions are
discussed and in section 0 the recommendations are discussed.

5.1 Conclusions
1. RTLinux is a good platform for real-time programs.

The hard real-time behaviour of RTLinux is very good. Real time programs are scheduled
within the µs. This holds for full system loads with and without interrupts. The maximum
interrupt latency of RTLinux is 8 µs.

2. Channel communication time is at least 5.06 µs.
The time needed to perform channel communication with the CSP package is at least 5.06 µs.
For all the communication this is the worst-case delay.

3. The code generation feature of 20-sim works good.
When the designed controller has the desired behaviour, the code for the controller can be
generated on the RTLinux PC. The code can then be compiled and executed. The total process
from simulation model to real-life model takes in total only three commands.

4. The developed software works good.
In the case study the device driver works very well. In the dubbeleflex project (Beekman,
2002) the device driver was used too. When the read and write functions for the IO board
were changed the device drivers worked under 20-works without any problems. The support
functions are used to log data. This is very useful in measuring the controller performance.

5. The Controllers are working good.

The response is somewhat slow due to the noise filters, but the maximum errors are 4 and 6.6
% for X and Y respectively. The steady state errors are maximal 0.38 and 0.12 % for X and Y
respectively

5.2 Recommendations
1. Create a controller with everything in parallel.

To fully utilize the parallel capabilities of CSP all sub-processes of the controllers can be put
in parallel.

2. Use UML to create the controller.
UML can also be used to generate a controller. Especially since UML can be used in
conjunction with CSP to optimally use and apply real-time concepts (Visser, 2002), it would
be interesting to see how the controller generated by UML behaves.

3. Put the controller parameters in an “ini” file.
When the controller code has been generated, the parameters are stored in the generated files.
When the parameters are stored in a separate file, the controller code only has to be generated
and compiled once. The controller can read the parameters from the file at run-time. As long
as the structure of the controller is not changed, the controller can be tested with two
commands: a generate parameters command and the execute command. A template can be
changed to support this feature.

4. Test the entire system on a faster PC.
The influence of the PC on the performance of the system should be investigated. The
currently used PC is a Pentium Pro 200 and recent processors have different architectures.
This in combination with the higher clock speed might increase the system performance.

Conclusions & Recommendations

Real-time Linux in Control Applications Area
University of Twente

38

Appendices

Real-time Linux in Control Applications Area
University of Twente

39

A. Information and Links

Linux
Information on Linux can be found on numerous websites. A good starting point is
http: //www.linux.com

Since the install instructions for each distribution differ, no install instructions are given. The
installation instructions for the Linux distribution of your choice can be found on the website of that
distribution. For example:
http://www.redhat.com
http://www.slackware.org
http://www.debian.org
http://www.bsd.org

RTLinux
The installation instructions of RTLinux can be found at the FSM Labs website, which is located at
http://www.fsmlabs.com/. The installation instructions vary somewhat with each new version, so
always get the correct file for your version of RTLinux. For additional information the mailing lists at
FSM Labs or the Internet can be searched.

CPPDOC
CPPDOC is a software too that can generate documentation from C++ source files. A special way of
commenting in the source files is read by CPPDOC. The comments that are read will be put in a
generated HTML document.

The most common way of commenting that CCPDOC reads is shown below:
/**
 * A line with comments.
 * Another line with comments
 */
Other functions exist but they can be found at the CPPDOC website: www.cppdoc.com.

Camstream
The camstream package is a web cam driver for the Linux operating system. It can be found at the
following website: http://www.smcc.demon.nl/camstream/

Appendices

Real-time Linux in Control Applications Area
University of Twente

40

B. Directory Structures
The following directory structure was adopted on the RTLinux workstation. There are two main
branches of sub-directories that are used. The first one is the branch of the CT package. The directory
structure of this branch is mandatory and must not be altered. The second branch is the user’s project
directory. The location of this structure is mandatory, but the structure can be customised to some
extent.

CT package structure
The directory structure of the CT packages is as follows:

/usr/shared/ct/complete/
/usr/shared/ct/distrib/

The directory ‘complete’ contains the complete CT version with the source code, header files, shell
scripts and other files. The directory ‘distrib’ contains almost the same files as the complete version,
only the source code and some shell scripts are not included. Inside these two directories, the CTC,
CTCPP and CTJ (optional) (Hilderink, 2000) packages are found, which have a defined directory
structure. The structure can be found below.

ctcpp/csp/lang/

- The basic csp classes. An overview of them is given in Table 11.
- The interfaces for channel inputs and channel outputs. The ChannelInput interfaces

provide a read-only interface and the ChannelOutput interfaces provide a write-only
interface.

CSP Classes Class Description
Alternative The alternative composition. Invoking the run() method will execute one

of its processes with a ready status by choice.
AltingQueue Single priority FIFO queue for sorting objects by guard priority or process

priority.
Channels Channels are the means whereby processes exchange information; a

channel class is available for all of the common data types (bool, char,
double, float, int) as well as proxy types.

DispatcherFix Provides a way to run the dispatcher from the CTC kernel as a C++
process.

Guard Guard objects are part of the alternative compositions. The channel
belonging to the guard may be selected by the composition when it is
ready.

IdleTaskProces
s

IdleTask object for use in the parallel compositions.

LinkDriver The linkdriver interface.
Parallel The parallel composition. Invoking the run() method will execute its

processes in parallel.
PriAlternative Priority-based alternative composition.
PriParallel Priority-based parallel composition.
ProcessFix Presents a callback function for running processes.
Process The process interface. It forces objects to implement a run() method,

which performs a sequential task. Nesting compositions is allowed
because the compositions are processes themselves.

Sequential The sequential composition. Invoking the run() method will execute its
processes in sequence.

Vector A vector object that dynamically grows and shrinks.

Table 11: CTCPP Classes

Appendices

Real-time Linux in Control Applications Area
University of Twente

41

ctcpp/csp/io
- The exception classes. CTCPP supports exception handling.

ctcpp/csp/io/linkdrivers/

- The rendezvous, buffer and serial port linkdriver classes.

ctcpp/csp/util/

- An MS-DOS executable called makeproc.exe that will create template process class and
header files.

ctcpp/csp/util/buildingblocks/

- The reader, writer and delta building blocks.

ctcpp/doc/api

- A detailed class description in HTML.

ide

- Project files for the RHIDE development and a makefile script.

ctc

- The CTC package. The core classes are used when compiling the CTCPP package.

Project Structures
The project directory structure is located in the user’s home directory. It is advised to adopt the
following directory structure.

~/programming/ Programming directory, with the entire

project directories and README file.
~/programming/doc Documents directory, with all the documents

needed for the programming. Stuff like what
header files are available etc. Documents
needed exclusively for one project should be
stored in a document directory in the project
directory.

~/programming/tmp Temporary files, which can be stored here
during compilation and building. Be aware
that this directory can be emptied at any
time.

~/programming/projects/ Projects directory, preferably with a
README file on all of the projects.

~/programming/projects/<project01>/ Directory with all the files of “project01”.
The structure of each individual project is
free to choose.

It is recommended to structure the project directories as the following example:

/project01/tmp Temporary files which can be removed at any time. Be aware

that this directory can be emptied at any time.
/project01/src Source code of the project.
/project01/src/include Include directory with project specific header files.
/project01/doc Project specific documents.
/project01/bin Project specific executable files, like programs and scripts.

Appendices

Real-time Linux in Control Applications Area
University of Twente

42

Compile script
The locations of the include directories for the Linux, RTLinux and CTC(PP) source tree should be
specified to the compiler. Locations of other included files should be specified inside the source files.
The include directories can be specified in the compile script. In the project the following compile
script was used.

g++ -DGPP -D__KERNEL__ -Wall -Wstrict-prototypes -fno-strict-
aliasing -pipe -fno-strength-reduce -m486 -malign-loops=2 -malign-
jumps=2 -malign-functions=2 -DCPU=586 -DMODULE -g -D__RTL__ -
D_LOOSE_KERNEL_NAMES -I/usr/src/rtlinux-3.1/linux/include -
I/usr/src/rtlinux-3.1/include -I/usr/src/rtlinux-3.1/include/compat
-I/usr/src/rtlinux-3.1/include/posix -I/usr/share/ct/complete/ctcpp
-I/usr/share/ct/complete/ctc -fno-exceptions -fno-rtti -r -c
cppmain.cpp -o cppmain.o

ld -r -o apps.o `g++ -print-file-name=crtbegin.o` cppmain.o `g++ -
print-file-name=crtend.o`

Appendices

Real-time Linux in Control Applications Area
University of Twente

43

C. Hardware Decision List
In this appendix all the hardware from which the NI6024E board, the ADS 50/5 Amplifiers and the
HEDS5540-A11 encoders were chosen is shown. The light grey columns are the items that were
chosen as most suitable. Table 12 states the various IO boards, while Table 13 shows three amplifiers.
Table 14 shows two encoder types.

Board PCI-6024E KPCI-
3102

PCI-
6040E

DAQCard
1200

PCI-
6025E

Manufacturer NI Keithley NI NI NI
Type PCI PCI PCI PCI PCI
Max Total Sample rate (KS/s) 200 225 250 100 200
Analog Input Channels 8d/16s 8d/16s 8d/16s 4d/8s 8d/16s
Analog Input Resolution (bits) 12 12 12 12 12
Analog Input Conversion Time (µs) 5 6.6 3 13 5
Analog Channel Acq Time (µs) 3
Max Analog In Sample rate (KS/s) 200 150 1.25M 100 200
Analog Output Channels 2 2 2 2 2
Analog Output Resolution (bits) 12 16 12 12 12
Analog Output Settling Time (µs) 10 50 3 5 10
Max Analog Output Sample rate
(KS/s)

10 1 10

Extra Digital IO Channels 8 23 8 23 32
Max Digital IO Samplerate (KS/s) 3M
Timers 2 4 2 3 2
Max Timer Freq. (MHz) 20 5 20 20 20
Encoder Interface Yes* No Yes* No Yes*
Price (EUR) inc. VAT 1023.4 971.99 1779.05 1362.55 1184.05
Lead Time (Days) 10 21 10 10 10

* with quadrature clock converters

Table 12: IO Board selection table

Manufacturer Maxon Maxon Farnell
Type ADS 50/5 ADS 50/10 (add-on) 4Q-2A DC
Supply Voltage (V) 12-50 12-50 10-35
Imax out (A) 10 20 2
Icont out (A) 5 10 2
Max Power (W) 250 500 60
Efficiency (%) 95 95
Price (EUR) inc. VAT 318.21 104.98 156.19
Lead Time (Days) 1 1 1

Table 13: Amplifier selection table

Manufacturer HP HP
Type HEDS5540-A11 HEDS5500-A11
Supply Voltage (V) 5 5
Channels 3 2
Pulses Per Revolution 500 500
Shaft Diameter (mm) 4 4
Price (EUR) inc. VAT 44.63 48.88
Lead Time (Days) 1 1

Table 14: Encoder selection table

Appendices

Real-time Linux in Control Applications Area
University of Twente

44

D. Plant Details
In this appendix details about the plant are described. In the first section the wiring used to connect
JIWY to the box is described. In the second section the motors mounted on JIWY are discussed in
detail.

Wiring
Each axis uses one cable with the pin out as stated in Table 15. Table 16 describes the pin out of the
third cable, which is used for digital IO. Table 17 describes the connections on the clock converter
circuit board.
Motor 1 (Horizontal) OR Motor 2 (Vertical)
PIN # Sub-
D

Label Description Color

1 Gnd Ground Blue (center) + Grey
2 Vcc +5 Volt Supply Red (center)
3 Encoder A Encoder Channel A signal Green (center)
4 Tacho + Tacho plus signal Pink
5 Tacho - Tacho minus signal Orange
6 Motor - Motor minus lead Purple + Black
7 Motor + Motor plus lead Brown + White
8 Encoder B Encoder Channel B signal Light Blue
9 WD Signal Watchdog Signal Yellow

Table 15: JIWY Motor Wiring & Color scheme

Digital I/O
PIN # Sub-
D

Label Description Color

1 Gnd Ground Blue (center) + Grey
2 Vcc +5 Volt Supply Red (center)
3 Endstop H1 Horizontal endstop 1 Green (center)
4 Endstop H2 Horizontal endstop 2 Pink
5 Endstop V1 Vertical endstop 1 Orange
6 Endstop V2 Vertical endstop 2 Purple + Black
7 Reserved Reserved for future use Brown + White
8 Reserved Reserved for future use Light Blue
9 WD Signal Watchdog Signal Yellow

Table 16: JIWY Digital I/O Wiring Color scheme

Appendices

Real-time Linux in Control Applications Area
University of Twente

45

Quadrature Clock Converter
Connector Pin # Description

1 Pulse A Encoder H
2 Pulse B
1 Pulse A Encoder V
2 Pulse B
1 Gnd Power IN
2 Vcc
1 Vcc Power OUT
2 Gnd
1 Clock source
2 Up / Down source

Counter H

3 Gnd
1 Clock source
2 Up / Down source

Counter V

3 Gnd

Table 17: Quadrature Clock Converter Wiring

JIWY Motors
Two DC-motors are used to drive the joints. These motors are 15-watt motors from Maxon. The
maximum supply voltage is 24 volt and the maximum continuous current is 786 mA. The starting
current of these motors is 3020 mA.

The motors are equipped with a built in DC-tacho. The tacho will generate 0.52V / 1000 rpm. The
motors have the series number: 2332.968-51.236-200. More information can be found at the Maxon
website (Maxon, 2002).

The speed of each motor is dependent of the supply voltage according to the following formula found
in the datasheet of the motors (Maxon, 2002).

()






 ⋅

∆
∆

−
⋅−

= B
N

CC
B M

M
n

U
nV

n 02
[RPM]

Equation 9: Motor speed calculation

The known values are taken from the motor datasheet:
• Operating Torque MB = 30.9 [mNm]
• Nominal motor voltage UN = 24 [V]
• Motor no-load speed at UN, n0 = 5750 [RPM]
• Speed/torque gradient of the motor ? n/? M = 49.0 [RPM mNm-1]
Supply voltage VCC

When all the values are substituted in the equation and supplying the motors with 12 volt, this will
result in a motor speed of 881 RPM, which is equivalent to 92.26 rad/s.

Appendices

Real-time Linux in Control Applications Area
University of Twente

46

E. Non Class Methods and Definitions
This section contains methods and definitions, not belonging to a particular class. The following files
contain the methods and definitions: NI6024E.h and rtl_console.c

NI6024E.h
The NI6024E.h file contains the following definitions and functions.

Definitions
#define REGISTER unsigned short
#define WORD unsigned short
#define BYTE unsigned char
#define DWORD unsigned int

These definitions are made, so that it is clear of which type the variables in the read/write
functions are.

#define NI_ID 0x1093
#define CARD_ID 0x2a70

These are the definitions for the PCI ID of the National Instruments Company and the board
ID of the NI6024E board. The IDs are used to search the PCI bus for the correct IO board.
These IDs are usually defined in the file pci.h but if an older version of Linux is used the Ids
may not yet be included. In later Linux versions a definition in pci.h can be used or the local
define can be used.

Functions
Read/Write functions attributes
In the read/write functions the following attributes are used:
REGISTER reg is the register from or to which is read or written.
BYTE mode is the READ or WRITE flag.
WORD data is the data to be written.
The WORD functions write a 16-bit of data and the DWORD functions write 32-bit of data to two
adjacent registers.

There are two types of functions available, namely Windowed mode and Direct mode functions. The
functions all operate on the registers and on data values. The data values can either be a WORD (16
bit) or a DWORD (32 bit). All the functions are shown below.

• WORD DAQ_STC_Windowed_Mode_Read(REGISTER reg, BYTE mode)
• void DAQ_STC_Windowed_Mode_Write(WORD data, REGISTER reg, BYTE

mode)
 These are the prototypes of the windowed mode WORD read/write functions.
• void DAQ_STC_Windowed_Mode_Strobe(WORD data, REGISTER reg, BYTE

mode)
 This is the prototype of the windowed mode WORD strobe write function.
• WORD DAQ_STC_Windowed_Mode_dRead(REGISTER reg, BYTE mode)
• void DAQ_STC_Windowed_Mode_dWrite(DWORD data, REGISTER reg, BYTE

mode)
These are the prototypes of the windowed mode DWORD read/write functions.

• void DAQ_STC_Windowed_Mode_dStrobe(DWORD data, REGISTER reg, BYTE
mode)

 This is the prototype of the windowed mode DWORD strobe write function.
• WORD DAQ_STC_Direct_Mode_Read(REGISTER reg, BYTE mode)

Appendices

Real-time Linux in Control Applications Area
University of Twente

47

• void DAQ_STC_Direct_Mode_Write(WORD data, REGISTER reg, BYTE
mode)

 These are the prototypes of the direct mode WORD read/write functions.
• void DAQ_STC_Direct_Mode_Strobe(WORD data, REGISTER reg, BYTE

mode)
 This is the prototype of the direct mode WORD strobe write function.
• DWORD DAQ_STC_Direct_Mode_dRead(REGISTER reg, BYTE mode)
• void DAQ_STC_Direct_Mode_dWrite(DWORD data, REGISTER reg, BYTE

mode)
 These are the prototypes of the direct mode DWORD read/write functions.
• void DAQ_STC_Direct_Mode_dStrobe(DWORD data, REGISTER reg, BYTE

mode)
 This is the prototype of the direct mode strobe write function.

rtl_console.c
The rtl_console.c file contains function prototypes, which enable the user to print from a real-time
program to a non real-time program. The following prototypes are available.

int fd = rtl_console_open(int rt-fifo);

This function opens the RTFIFO rt-fifo, and returns the pointer fd to the opened RT-FIFO.
This function must be called in the “init_module” section.

rtl_console_printf(int fd, const char* format, …);
This function behaves exactly like the printf and rtl_printf statements. The same formatted
arguments can be used. The only difference is that the pointer fd has to be specified.

rtl_console_kill(int fd);
This function sends a termination command to the non real-time side. This will close the non
real-time side client. This function must be called in the main program and not in the
“cleanup_module”. When the “cleanup_module” is called, all resources are freed. When the
non real-time client has the RT-FIFO opened, the resources can’t be freed and the
“cleanup_module” will fail.

rtl_console_close(int fd);
This command will destroy the RT-FIFO. This function must be called in the
“cleanup_module” section of the real-time program.

Appendices

Real-time Linux in Control Applications Area
University of Twente

48

F. Implementation Details
In his appendix problems, details or tricks encountered during the development are described. A short
solution or description is given.

• File Permissions RT-FIFOs

The file permissions on the RT-FIFOs as set by Linux are that a user process can only read from
them. When a write action is started an error will occur. Changing the permissions with the
chmod command can easily solve this problem.

• C / C++ Combination

In order to use C and C++ code in combination with each other, a few tricks must be performed.
In the init_module section the following code must be included.
__do_global_ctors_aux();
In the cleanup_module section the following code must be included.
__do_global_dtors_aux();
When including files for the project special care must be taken with the C and C++ files. The C
files must be included within the parenthesis of the “extern “C” ” statement. Also some
definitions have to be changed. A short example is shown below. Furthermore the file
rtl_cpp.h must be included.

extern "C" {
#define class _class
#define new _new
#include <C header files>
#undef class
#undef new
}
#include <rtl_cpp.h>

• Floating Point arithmetic in RTLinux

RTLinux supports floating points in the programs. However to use them, the floating-point flag
must be set in the thread attributes. Since floating point operations require more CPU time the
operations are not permitted by default.
#include <rtl_sched.h>
int pthread_setfp_np(pthread_t thread, int flag);
pthread_setfp_np allows or disallows the use of floating-point arithmetic operations in a real-time
thread. flag is zero to disallow floating-point operations, or non-zero to allow them.

• Use of Threads in RTLinux
When a RTLinux program has been written, make sure the thread deschedules itself. When the
real-time thread keeps running it will consume CPU time. This can result in system lock. The
real-time thread is then consuming 100% CPU time and the standard Linux kernel doesn’t get any
CPU time and therefore seems frozen. If this happens and no way of interrupting the real-time
thread is included the only way to solve this is a hardware reset. Because of the reset the Linux
file systems will not be cleanly unmounted, which could eventually results in data loss!

• CTC / CTCPP Modules in RTLinux

In order to be able to use the CTC and CTCPP files in a real-time program the CT modules must
be loaded. This can be done as “root” user with the two following commands in the specified
order:

insmod /usr/share/ct/complete/ctc/examples/module/ctc.o
insmod /usr/share/ct/complete/ctcpp/examples/module/ctcpp.o

References

Real-time Linux in Control Applications Area
University of Twente

49

References
Barabanov, M, Yodaiken, V, (1996). Real-Time Linux. Linux Journal.

http://www.fsmlabs.com/developers
Barabanov, M, (2002). FSMLabs - Creators of RTLinux. http://www.fsmlabs.com/
 FSMLabs. 2002.
Beekman, N, (2002), Controller design for the DubbeleFlex with 20-works (preliminary title) Faculty

of Electrical Engineering, Control Laboratory, University of Twente, Enschede, The
Netherlands.

Broenink, J.F., (1997). Modelling, Simulation and Analysis with 20-sim, Special Issue CACSD
Computer Aided Control Systems Design, Journal A Benelux quarterly journal on automatic
control, vol. 38, September 1997, no. 3, pp. 22-25.

Broenink, J.F, Hilderink, G.H, A structured approach to embedded control systems implementation,
presented at 2001 IEEE International Conference on Control Applications, México City,
México, 2001.

Camstream, 2002, Webcam driver for Linux. http://www.smcc.demon.nl/camstream/
Controllab Products, 2002. 20-SIM http://www.20sim.com
Cornes, P., (1997). Linux A-Z, the.

Harlow, Prentice Hall.
CPPDOC (2001). HTML Documentation generated from the C++ classes. http://www.cppdoc.com/
Drunen, J.M., van (2000). Realization of Link Drivers implementing CSP-channels on 20-controller.

Faculty of Electrical Engineering, Control Engineering, University of Twente, Enschede, The
Netherlands.

Elgersma, L.M., (2000). A concurrent runtime system for 20Works, Faculty of Electrical Engineering,
Control Engineering, University of Twente, Enschede, The Netherlands.

FSMlabs, 2002., FSMlabs homepage. http://www.fsmlabs.com
Gorton, I., Jelly, I., Croll, P., Nixon, P., (1995). Directions in software engineering for parallel

systems, Editorial, Software Engineering for Parallel Systems Mini-track, HICSS 28, Hawaii,
2nd-6th January.

Greve, O.J. (1998), Design of a A/D D/A board using DS-links for a real time control environment,
MSc thesis, Faculty of Electrical Engineering, Control Engineering, University of Twente,
Enschede, The Netherlands.

Hatley, D.J. and I.A. Pirbhai (1988), Strategies for Real-Time System Specification, Dorset House
Publishing, 0-932633-11-0.

Hilderink, G.H., Broenink, J.F., Bakkers, A.W.P., (1999). Communicating threads for Java,
Proc. of the 22nd World Occam and Transputer User Group Technical Meeting, pp.243-261,
Keele, United Kingdom.

Hilderink, G.H. (2000). Communicating Threads for Java (CTJ) home page,
http://www.ce.utwente.nl/javapp.
Hilderink, G.H. (2000b), CTC and CTCPP Reference Manual, internal document, Faculty of
Electrical Engineering, Control Engineering, University of Twente, Enschede, The
Netherlands.

Hilderink, G.H., (2001). Communicating Threads for C++ - A White Paper. Faculty of Electrical
Engineering, Control Engineering, University of Twente, Enschede, The Netherlands.

Hilderink, G.H, (2002). A graphical specification language for modelling concurrency based on CSP,
presented at Communicating Process Architectures 2002, Reading United Kingdom.

Hissam, S.A. (2000), CBS Overview, http://www.sei.cmu.edu/cbs/overview.html.
Hoare, C.A.R., (1985). Communicating Sequential Processes,

Prentice Hall, London, United Kingdom.
Holler, M., (2000). RealTimeLinux. 2002. http://midas.psi.ch/rtlinux/
Jovanovic, D., G. H. Hilderink, et al. (2001). Integrated Design Tool for Embedded Control Systems.

Progress 2001 Workshop, Veldhoven, Netherlands.
Jovanovic, D, Hilderink, G.H, Broenink, J.F, (2002). A Communicating Threads case study: JIWY.
 Communicating Process Architectures 2002, pp. 231-330. Reading, United Kingdom.

References

Real-time Linux in Control Applications Area
University of Twente

50

Lahpor, G.J. (1998), The design of a low-cost multi-processor system, MSc thesis, Faculty of
Electrical Engineering, Control Laboratory, University of Twente, Enschede, Netherlands.

Lammertink T, (2002),20-sim DLL function for a real-time Linux joystick (preliminary title) Faculty
of Electrical Engineering, Control Laboratory, University of Twente, Enschede, The
Netherlands.

Lewis, B., (1996). Threads Primer: A guide to multithreaded programming.
California, SunSoft Press.

Maxon Motors, (2002). Maxon ADS 50/5 ServoAmplifier User Manual.
Maxon Motors. 2002.

Maxon Motors, (2002). Maxon Motors Website. http://www.maxonmotor.com/index_a.cfm
 Maxon Motors. 2002.
Moores, J. (1999), CCSP - A Portable CSP-Based Run-Time System supporting C and occam,

WoTUG-22 Architectures, Languages and Techniques, Keele, (Ed.)
Mosterman, P.J. (1991), Structured specification for control system implementation, MSc thesis,

91R076, Faculty of Electrical Engineering, Control Laboratory, University of Twente,
Enschede, The Netherlands.

NI6024E, (1995). DAQ - DAQ-STC Technical Reference Manual.
National Instruments. 2002.

NI6024E, (1996). Using quadrature encoders with E series DAQ boards.
National Instruments. 2002.

NI6024E, (1998). DAQ - 6023E/6024E/6025E User Manual.
National Instruments. 2002.

NI6024E, (1998). DAQ - PCI E-series Register-level Programmer Manual.
National Instruments. 2002.

Orlic, B. and J. F. Broenink (2002). CSP channels for CAN-bus connected embedded control systems.
Progress 2002 Workshop (to be published), Utrecht, Technology Foundation (STW).

Rubini, A., (1998). Linux Device Drivers.
Sebastopol, O'Reilly & Associates, Inc.

Silberschatz, A., P. G. a. G. G. (2000). Applied Operating System Concepts.
New York, John Wiley & Sons.

Smith, L, (2002), JIWYNET, a project to implement the control of the mechatronic system JIWY over
a computer network. Faculty of Electrical Engineering, Control Engineering, University of
Twente, Enschede, The Netherlands.

Veltman, A. (1988). Regelen en Modelleren van een 2-assige camera opstelling.
Faculty of Electrical Engineering, Control Engineering, University of Twente, Enschede, The
Netherlands.

Visser, P.M, (2002), Control software design and safeguarding with the support of UML and CT.
Enschede, University of Twente, The Netherlands.

Ward, P.T. and S.J. Mellor (1986), Structured Development for Real-Time Systems, Yourdon Press.
Welch, P.H. (1998), Java Threads in the Light of occam/CSP, Architectures, Languages and Patterns,

Canterbury, UK, P. H. Welch and A. W. P. Bakkers (Ed.), 259-283.
Welch, P.H. and P.D. Austin (2000), The JCSP homepage, www.cs.ukc.ac.uk/projects/ofa/jcsp.
Weustink, P, (1995, 1996), 20-Works program code and several test programs, Faculty of Electrical

Engineering, Control Engineering, University of Twente, Enschede, The Netherlands.
Wijbrands, (1993). Twente Hierarchical Embedded Systems Implementation by Simulation

(THESIS): A structured method for controller realization, PhD thesis, ISBN 90-9005933-4.
Wijhe, C. van (1998). Device Drivers for DS-Links. Enschede, University of Twente.
Yodaiken, V. (). The RTLinux Manifesto. Socorro NM 87801, Department of Computer Science,

New Mexico Institute of Technology.

