
University of Twente

Faculty of
Electrical Engineering

Realization of Tool Support for
CSP Diagrams and Generation of

Concurrent Java Software

J.P.A. Hendriks
Master’s Thesis

Supervisors prof.dr.ir. J. van Amerongen
dr.ir. J.F. Broenink
ir. D.S. Jovanovic
ir. G.H. Hilderink

December 2001

 Report 025R2001

 Control Engineering
Faculty of Electrical Engineering

University of Twente
P.O.Box 217

7500 AE Enschede
The Netherlands

 I

 I

Summary

In the Control Engineering Laboratory, a structured method for the development of control
software for real-time embedded control systems is being developed. This method considers
the implementation process as a step-wise refinement from physical system models to
efficient computer code. This method consist of four iterative stages.
1. Physical Systems Modeling, modeling and simulating the behavior of the appliance.
2. Control Law Design, designing and simulating control laws using the acquired model.
3. Embedded Control System Implementation, transforming the control laws to software.
4. Realization, implementing the generated code on the target hardware.
The first two stages are currently very well covered by 20-sim. 20-sim is a software package
for modeling and simulation of the dynamic behavior of dynamic systems.

20-sim has an ANSI C code generator, which automatically converts a complete 20-sim
model or submodel into C code. The generated C code however has a sequential execution
framework and reflects the structure of the code the simulator in 20-sim uses to perform the
simulations. Therefore 20-sim has a limited support for the phases three and four.

The CSP concept provides fundamental concepts for realizing concurrent software for real-
time and embedded systems. It contains formal proofs for analyzing, verifying and
eliminating undesirable conditions, such as raze hazards, deadlocks, livelocks and starvation.
The CSP model has been introduced into Java threads. The CTJ package for Java provides a
small set of design patterns that are sufficient for concurrent programming in Java. The
research presented here is part of the research done at the University Twente to enable the
integration of the CSP concept with the software package 20-sim and for support of the
phases three and four.

During this assignment a tool has been developed which shows the tree-based description
model together with the communication graph and the composition graph. The tree-based
description model is able to describe the CSP aspects visually. The CSP constructs are
shown in a tree structure, like 20-sim uses for its model hierarchy. The communication graph
is a graph of processes and their communication relations. The composition graph shows the
processes with their compositional relationships. Examples of composition relationships are
the sequential and parallel relationships. The compositional graph shows the processes in the
same topography as the communication graph. Furthermore the communication graph of a
controller is comparable with the graphical models shown in 20-sim.

The tool is capable of generating concurrent Java code using the CTJ package. For each
process in the model a separate class is generated. The tool can also generate ANSI C code
with a sequential framework. For every process in the tree-based description model a
separate function is generated. The generated code therefore reflects the hierarchy of the
processes in the tree.

The code generated by 20-sim reflects the structure of the code the simulator in 20-sim uses
to perform the simulations. It is recommended to enhance the code generator of 20-sim to let
20-sim generate code that reflects the structure of the model.

The tool shows the two topographical views, based on the tree based description model. This
should be the other way around. The user should create and change the model using any
topographic view. The tool should then change tree based description model accordingly.
This is also how 20-sim handles its user-interface. It is recommended to enhance the
software to support this.

 II

Samenvatting

Op de leerstoel regeltechniek van de faculteit Elektrotechniek is een gestructureerde methode
voor het ontwerpen van control software voor real-time embedded systemen ontworpen.
Deze methode beschouwd het implementatie proces als een stapsgewijze verbetering van
model van het fysische systeem naar efficiënte computer code. Deze methode bestaat uit 4
iteratieve stappen.
1 Physical Systems Modeling, modellering and simulatie van een fysisch systeem.
2 Control Law Design, ontwerpen en simuleren van een controller voor het model.
3 Embedded Control System Implementation, ontwerpen van de software.
4 Realization, implementatie van de gegenereerde code op de hardware.

De eerste twee stappen worden momenteel zeer goed ondersteund door 20-sim. 20-sim is
een software pakket voor het modelleren and simuleren van het gedrag van dynamische
systemen.

20-sim bevat een ANSI C code generator, die een compleet 20-sim model of submodel kan
converteren in C code. De gegenereerde code heeft echter een sequentieel executie frame. De
structuur van de gegenereerde code komt overeen met de structuur van de code die de
simulator in 20-sim gebruikt voor de simulaties. Daarom worden de stappen drie en vier
slechts beperkt ondersteund door 20-sim.

Het CSP concept bevat fundamentele concepten voor het realiseren van parallelle software
voor real-time en embedded systemen. Het bevat formele bewijzen voor het analyseren,
verifiëren en elimineren van ongewenste condities, zoals raze hazards, deadlocks, livelocks
en starvation. Het CTJ software pakket voor Java bevat een kleine set van ontwerp regels die
afdoende zijn voor het parallel programmeren in Java. Dit onderzoek is onderdeel van het
onderzoek dat gedaan word aan de Universiteit Twente om de CSP concepten te integreren
in het software pakket 20-sim.

Tijdens deze opdracht is een tool ontwikkeld die het tree-based description model laat zien,
samen met de communicatie graaf and the compositie graaf. Het tree-based description
model kan de CSP aspecten visueel laten zien. De CSP constructies worden getoond in een
boom structuur, zoals ook 20-sim gebruikt voor de model hiërarchie. De communicatie graaf
bestaat uit processen en hun onderlinge communicatie relaties. De compositie graaf toont de
processen en hun compositie relaties. Voorbeelden van deze compositie relaties zijn de
sequentiële en de parallelle relaties. De compositie graaf toont de processen in dezelfde
topografie als de communicatie graaf. Verder is de communicatie graaf van een controller
vergelijkbaar met het grafische model zoals dat in 20-sim getoond wordt.

De tool kan parallelle Java code genereren die gebruik maakt van het software pakket CTJ.
Voor ieder proces in het model wordt een aparte klas gegenereerd. De tool kan tevens ANSI
C code genereren met een sequentieel executie frame. Voor ieder proces in het model wordt
dan een aparte functie gegenereerd. De gegenereerde code reflecteert de hiërarchie van de
processen in de boom structuur.

De structuur van de door 20-sim gegenereerde code komt overeen met de structuur van de
code die de simulator in 20-sim gebruikt voor de simulaties. Een aanbeveling is om de code
generator van 20-sim te wijzigen zodat de structuur van de door 20-sim gegenereerde code
overeenkomt met de structuur van het model.

De tool laat de communicatie graaf en de compositie graaf zien aan de hand van het tree-
based description model. Dit had echter andersom moeten zijn. De gebruiker zou de
wijzigingen in het model moeten kunnen doorvoeren in het grafische model. De tool zou dan
aan de hand hiervan de boom structuur moeten aanpassen. Ook 20-sim hanteert deze
methode. Een aanbeveling is om dit in de tool te wijzigen.

 III

Contents

1 INTRODUCTION... 1
1.1 Control Software .. 1
1.2 Communicating Sequential Processes .. 1
1.3 Stepwise Refinement .. 2
1.4 Overview of this report... 3

1.4.1 The objectives of the assignment ... 3
1.4.2 Outline of the report ... 4

2 DESIGNING CONTROL SOFTWARE.. 5
2.1 Introduction .. 5
2.2 Communicating Sequential Processes .. 5
2.3 CSP Diagrams ... 5

2.3.1 Communication Graph ... 6
2.3.2 Composition Graph .. 6

2.4 20-SIM.. 8
2.5 Tree-based Description Model ... 9

2.5.1 Introduction .. 9
2.5.2 Tree-based description model .. 10
2.5.3 The Global Variable Declaration Element ... 12

2.6 The Rectangles Graph .. 12
2.7 The Deployment Graph .. 15
2.8 Outline .. 15

3 USE-CASE.. 17
3.1 Introduction .. 17
3.2 The LINIX system.. 17
3.3 Physical Systems Modeling.. 18
3.4 Controller Design ... 19

3.4.1 The controller ... 19
3.4.2 Safety Layer ... 20
3.4.3 Simulation .. 22

3.5 Embedded control systems implementation ... 22
3.5.1 Model Enhancement... 22

3.6 Code Generation... 25
3.7 Outline .. 25

4 THE DESIGN OF TOPO ... 27
4.1 Introduction .. 27
4.2 Overview .. 27
4.3 The Database .. 28
4.4 The Select View ... 29
4.5 The Tree Structure View .. 30
4.6 The topographical view .. 31
4.7 The Code Generator ... 33
4.8 Outline .. 33

5 USERS MANUAL ... 35
5.1 Introduction .. 35
5.2 Menu Structure of Topo ... 35
5.3 The Tree Structure View .. 36

 IV

5.3.1 The sequence of the tree-elements ... 38
5.3.2 Dialog 1: Subsystem, bios, processor and linkdriver ... 38
5.3.3 Dialog 2: Declaration of variable, channel and global variable 38
5.3.4 Dialog 3: Parallel and priority parallel construct ... 39
5.3.5 Dialog 4: Custom process .. 40
5.3.6 Dialog 5: Channel/variable input/output .. 40
5.3.7 Dialog 6: Code segment ... 41
5.3.8 Dialog 7: Sequential construct ... 42

5.4 The Select View ... 42
5.5 Communication Graph ... 43
5.6 Composition Graph .. 44
5.7 Rectangles Graph.. 45
5.8 Deployment Graph ... 46
5.9 Semantic Rules Checker... 46
5.10 Software Generation... 46

5.10.1 ANSI C code generation .. 46
5.10.2 Java Code Generation... 47

5.11 The Options Dialogs... 49

6 CONCLUSIONS AND RECOMMENDATIONS... 51
6.1 Conclusions .. 51
6.2 Recommendations .. 52

APPENDIX I – TECHNICAL SPECIFICATIONS OF THE LINIX SYSTEM . 53

APPENDIX II – SEQUENCE OF TREE-ELEMENTS................................... 54

APPENDIX III – GENERATED SOFTWARE... 55
III-1 Controller Use-case (ANSI C) ... 55
III-2 Controller Use-case (Java) ... 56
III-3 20-sim vs Topo... 57
III-4 Producer Consumer Example... 61

REFERENCES... 64

 1

1 Introduction

1.1 Control Software
Real-time control systems typically consist of multiple sensors and actuators that operate
simultaneously. They can contain more then one control loop. The processing of the sensor
data and calculation of the output to the actuators has to be done within certain time limits.
The embedded software that is running on such a system must also perform several tasks like
supporting a user interface and safety tasks. To be efficient and reliable, the software should
reflect this natural concurrency.

A single processor can only execute one operation at a time instant. It is not possible to run
more than one task at the same time in the presence of just one processor. A single-processor
system on which such a control systems runs will therefore require a scheduling mechanism.
The calculations of the output to actuators have to be done before a certain hard time limit or
the complete system can fail. The real-time control system has to be able to meet these time
constraints. Either the hardware is fast enough for all software tasks, or the control system
will have to be able to make use of priorities.

It is possible to implement concurrency on a single processor system by directly controlling
the threads that are related to the various processes. Writing these kind of programs is
difficult and error-prone (Drunen, 2000). Threads are low-level entities that are difficult to
control and to understand from a high-level point of view. Directly controlling threads
involves a good understanding of the flow of control of concurrent processes. This increases
the complexity and development time of this kind of programs.

In contemporary control systems, the total system is often distributed. For example, the
Volvo S80 car uses a distributed control system consisting of 18 computers (Legius, 1999).
The advantages are processing speed, reliability, scalability, flexibility, reusability and
concurrent engineering. If each specific task can run on its own processor many of the
problems mentioned above can be avoided. In addition control system consists of different
types of hardware. The control software should be divided into hardware-dependent and
hardware-independent code. Otherwise all code needs to be reviewed whenever, for
example, a sensor or actuator is replaced.

1.2 Communicating Sequential Processes
The theory of Communicating Sequential Processes (CSP) specifies fundamental
synchronization constructs, based on processes, compositions and channel communication
(Hoare, 1985). CSP provides a mathematical notation for describing patterns of
communication using algebraic expressions. It contains formal proofs for analyzing,
verifying and eliminating undesirable conditions, such as raze hazards, deadlocks, livelocks
and starvation. The theory of CSP provides fundamental concepts for realizing concurrent
software for embedded real-time control software.

The CSP model has been introduced into Java threads (Hilderink et al., 1999). Several
packages have been created which enable reliable implementation of a design based on the
CSP concept. These packages are available for Java, C and C++. The CTJ package for Java
provides a small set of design patterns that are sufficient for concurrent programming in Java
(Hilderink, 2001). An important advantage of CTJ is that the programmer has a small but
sufficient set of rules or guidelines available that help designing and implementing reliable
and robust software without undesirable conditions.

 2

Using the CSP model for structuring software, a tree-based description model has been
developed (Volkerink, 2000). A prototype tool that uses this model has been created. This
tool enables a way to design (describe) software based on the CSP model.

A CSP diagram is a graph of processes and their relationships (Hilderink, 2001). A CSP
diagram can specify real-time and parallel software architectures. The graphical presentation
expresses the execution model of a network of processes. Some relationships are
communication-oriented and some are composition-oriented. Therefore, there is a distinction
between the communication-oriented view and the composition-oriented view of the model.
The topographical locations of the processes is the same in both views. The communication-
oriented view presents a communication graph, which shows the communication relations
between processes. The composition-oriented view presents a composition graph, which
shows the compositional relationships between processes. These two graphs will be further
explained in chapter 2.

1.3 Stepwise Refinement
In the Control Laboratory, at faculty of EE of the University of Twente, a structured method
for the development of control software for real-time embedded control systems is being
developed. This method considers the implementation process as a step-wise refinement
from physical system models to efficient computer code (Broenink and Hilderink, 2001).

The design trajectory of a controller consists of 4 iterative stages (see figure 1.1).

1. Physical Systems Modeling. The dynamic behavior of the appliance is modeled and can

be simulated. The purpose is to create a competent model of the system. So, only
relevant and dominant aspects need to be considered. The model can be simulated to
verify whether it satisfies its goals. If possible, the model can be validated (i.e. compared
with measurements on the real system).

2. Control Law Design. The control laws are designed using the acquired model. The

model used to derive the control laws is, normally, a simplified version of the acquired
model of the previous phase. It is possible that certain operating conditions require a set
of control laws. Normally the next, rather common procedure is used:
• Derive a simplified model.

The model obtained by the previous phase is either reduced automatically (e.g. by
linearization and/or order reduction) or diminished by hand to obtain a model
suitable for control law design.

• Verify the simplified model.
The simplified model can be verified by performing the same simulations as with the
detailed model. The results should not be significally different.

Figure 1.1 The Design Trajectory

 3

• Derive the control laws.
Using the simplified model, derive the control laws. For this normally external
software such as Matlab is used.

• Verify the control laws.
The control laws can be verified by simulation. The performance of the control laws
can be checked against the demands.

3. Embedded Control System Implementation. In this phase, the control laws are converted

into computer code. Facilities for safety of the system have to be specified and designed.
Reaction to external commands (user input) is taken into account. For this phase the
industry uses other modeling approaches, for example structured methods or object-
orientation (like UML (Douglass, 1998)).

4. Realization. The in the previous phase developed software is implemented on the target

hardware and validated. The measurements on the real system can be checked with the
simulation results.

The first two stages are currently very well covered by 20-sim (Broenink and Kleijn, 1999).
20-sim is a software package for modeling and simulation of the dynamic behavior of
dynamic systems. The tool has build-in support for designing control laws. Using 20-sim
means that the Physical Systems Modeling, Control Law design and the verification of these
two stages through simulation can be done with one software package.

20-sim has an ANSI C code generator, which automatically converts a complete 20-sim
model or submodel into C code. The generated C code has a sequential framework. The
generator creates several source and header files. After compilation an executable is created
that simulates the model. 20-sim therefore has a limited support for the phases 3 and 4, the
Embedded Control Systems Implementation and Realization.

In the rest of this thesis the focus will be on the three aspects:

• Relationships: For the first two phases, Physical Systems Modeling and Control Law

Design, software tools like 20-sim and Simulink can be used. In these software tools the
user can view the (sub)system as equations or as graphical models. A graphical model
for a controller in 20-sim is a block diagram model. These graphical models show
building blocks and their relations with each other. These relations are data-oriented.
These building blocks or processes with their communication relations can be viewed in
a communication graph. The developed tool shows a communication graph.

• Enhancement: Before the software can be generated, decisions has to be made on the
execution order of the communicating processes. Concurrency can be added. If the
software runs on a multiple processor system, the processes have to be divided over the
separate processors (deployment). For the communication between the software
processes with the hardware, linkdrivers must be used. For this the support of the
composition graph and the tree-based description model is useful. The developed tool
shows a composition graph and a tree-based description model.

• Automatic generation of concurrent software. The Communicating Threads for Java
(CTJ) package (Hilderink et al., 1999) which implements the CSP model in Java is used
in the tool to generate control software in Java.

1.4 Overview of this report

1.4.1 The objectives of the assignment
The objectives of this assignment is to build a tool which shows the tree-based description
model together with the CSP diagrams. Both the communication graph and the composition

 4

graph can be shown individually. The topography of the CSP diagrams should be
comparable with the graphical models shown in 20-sim. The tool should be able to generate
concurrent Java code using the CTJ package. It should be possible to distribute processes
among a distributed processor system. Communication between processes located on
different processors should take place using channels and link-drivers.

1.4.2 Outline of the report
Chapter 2 describes several aspects for designing control software. In chapter 3 a use-case is
described. It shows the different steps from modeling using a communication graph,
simulation, model enhancement using a composition graph to add CSP aspects in order to the
automatic generation of concurrent Java code. In chapter 4 the developed software tool is
described and in chapter 5 consists of a user manual of the tool.

 5

2 Designing Control Software

2.1 Introduction
This chapter describes several concepts which are useful for the development of control
software. Section 2.2 will give a short description on the Communication Sequential
Processes (CSP) theory. In Section 2.3 the two CSP diagrams, the communication graph and
the composition graphs are explained. The Tree-based Description Model is described in
section 2.4.

2.2 Communicating Sequential Processes
The theory of CSP is bases on the idea of several sequential tasks, which can run in parallel,
in sequence or by some choice (Hoare, 1985). Parallel processes can run on distinct
processors or on one processor if they are being scheduled. This creates two problems, how
do these processes communicate and how are they synchronized. When two processes on
two different processors communicate with each other then there has to be a hardware
connection (for example RS232) between the two processors. This hardware has to be
addressed.

In CSP channels are used to pass data from one process to another process. A CSP channel is
an object which is placed between two processes. One process writes to the channel, the
other reads from the channel. The sending process waits until the receiving process is ready,
or the receiving process waits until the sending process is ready before communication takes
place. This means that CSP channels are unbuffered and synchronized processes according
to the rendezvous principle.

The link driver concept can be used to separate hardware-dependent and hardware-
independent code. The hardware-independent code communicates with their environment
using CSP channels. A linkdriver contains all the necessary hardware-dependent code and
takes care of the communication with the hardware. A link driver can be plugged into a
channel. The hardware-independent code communicates to the linkdriver using this channel
(see figure 2.1). The process is therefore not aware of the hardware, it just communicates
using channels.

2.3 CSP Diagrams
The CSP diagrams are introduced by G.H. Hilderink (Hilderink, 2001). There are two kinds
of CSP diagrams. One of them is the communication graph. The other kind is the
composition graph.

Figure 2.1 Linkdriver

 6

2.3.1 Communication Graph
The communication graph is a graph of processes and their communication relations. A
communication relationship is defined as a directed relationship, which represents message
flow between a sender and a receiver process. The communication relationships are data-
oriented. The communication graph is actually a data-flow diagram (DFD) which represents
a network of processes that communicate through channels. A communication relationship is
symbolized as an line with arrow head (►) between two processes. See figure 2.2.

Figure 2.2 shows two processes and their communication relation which represents message
flow between a sender process (Producer) and a receiver process (Consumer). In this case,
the producer performs sending data to the consumer.

2.3.2 Composition Graph
The composition graph shows the processes with their compositional relationships. A
compositional relationship is defined as a labeled relationship between two processes
whereby the label is a two-way or binary operator that expresses their compositional
behavior. The compositional graph shows the processes in the same topography as the
communication graph. The composition graph is control-oriented and represents a special
kind of control-flow diagram that can express concurrency and non-deterministic behavior.
This includes scheduling, priority and choices.

Compositional relationships in the CSP diagram are based on the CSP and CSPP operators.
Thus, operator є { , , , , , , , }. Table 2.1 gives an overview of these
operators.

Operator Inverse Operator Name

 Sequential

 Parallel

 Priority parallel

 Alternative

 Priority Alternative

Table 2.1 Operators

Figure 2.2 Communication relation

Figure 2.3 Compositional relation

 7

Not all of the possible relations between processes have to be shown. If all possible relations
are shown, the graph is a complete composition graph. A complete composition graph of n
processes would therefore show (n * (n – 1)) / 2 relations. For example figure 2.4a shows
three processes P, Q and R and the relations op1 and op2. Figure 2.4b shows a complete
composition graph in contrast to figure 2.4a).

There exists a relation between process P and R, namely op3. Sometimes it is possible to
uniquely determine the relation op3 between process P and R from the relations op1 and
op2. If a relation between two processes can be uniquely determined from another path of
relations between these processes then this relation is called a deduced relation.

So far we have considered the compositional relations between two processes. For a
compositional relation between a process and a group of processes, we need a notion of
grouping, such as using brackets, is needed. For example, P ║ (Q → R). For this a special
composite symbol for the compositional relation is introduced, see figure 2.5.

The use of the composite is limited to one level. To extend this technique an index can be
placed next to the composite symbol. When there is no index placed next to the composite
symbol it implicitly means that it has index one. Figure 2.6 shows 3 examples.

Figure 2.4: a) incomplete composition graph b) complete composition graph

Figure 2.5: a) The composite symbol b) composite construct

 8

2.4 20-SIM
20-sim is a software tool, which can be used to model and simulate real-time
systems(Broenink and Kleijn, 1999). 20-sim models are hierarchical structured and
encapsulation is fully supported. 20-sim supports equations, block diagrams, bond graphs
(Paynter, 1961; Breedveld, 1985), iconic diagrams and any combination of these four
(ControlLabs Product B.V., 2000).

A bond graph describes a physical system as a number of physical concepts (the elements)
connected by energy flows (the bonds). A bond between two elements transfers power from
one element to the other. An iconic diagram uses icons which look like the corresponding
parts of the physical model. These icons are also connected by energy flows (the
connections). The equations behind the bond graph elements, icons and submodels are
specified as equalities, this means that the variables need not be tagged as inputs or outputs
yet (Broenink, 1999). The interfaces are ports, each with two variables being computed in
opposite directions. For example, a resistor has one port, the variables are current and
voltage. If the current is the input then the model calculates the voltage and vice versa. When
a computation is made for a model, a special routine has to derive a causal form of these
equations. Using this causality the equations can then we rewritten to assignments statements
and have to be sorted. It then is possible that the statements of one submodel are placed
between the statements of another submodel. If a CSP diagram is created for such a model,
then the topography of the processes will not be the same as the topography of the
submodels in 20-sim.

Both the bond graph model and the Iconic diagram model are used to model a physical
system. Developing (generating) software for these models is only useful to simulate the
behavior of the physical system on a computer.

Figure 2.6 Three composition graphs

 9

In contrast, the implementation of control laws do not use energy flows. Models used for
controllers contain only information processing parts. The connections between two
elements are not based on energy flows but on signals (data). The model of a controller in
20-sim is therefore comparable with a communication graph.

20-sim models are hierarchical structured. The model on the top of the hierarchy is called a
mainmodel. The models on the lowest level are called elementary models, and are sets of
equations or assignment statements (Broenink, 1999). 20-sim shows this hierarchical
structure in a tree. In figure 2.7 a 20-sim model of a robot is shown. This demo model comes
with the 20-sim package. The hierarchy shows all the submodels in a tree structure. Every
submodel in 20-sim has an interface. The interface specifies the ports and parameters of a
submodel. The interface of the in the tree hierarchy selected submodel, (in figure 2.7
controller2) is also shown as a tree structure by 20-sim.

2.5 Tree-based Description Model

2.5.1 Introduction
The CSP paradigm offers a language to specify the behavior of software. The algebra of the
CSP language is not a pleasant modeling language for developing software. The user prefers
a graphical user interface and have the tool handle the mathematics. Recently, several design
and specifications methods have been developed. The UML method (Douglass, 1998) is
currently widely used. The research behind CTJ showed that the CSP concepts could be
modeled in UML in the form of design patterns. However, describing the CSP concepts in
UML does not always give a easy overview of the design (Volkerink, 2000).

Figure 2.7 The hierarchy of the submodels and the interface of submodel controller2

 10

The Tree-based Description Model has been developed by Eric Volkerink (Volkerink, 2000).
This model is able to describe the CSP aspects visually. The CSP constructs are shown in a
tree structure, like 20-sim uses for its model hierarchy and the interface of the submodels.
The purpose of the tree-based description model is to integrate the CSP concept with the
modeling and simulation package 20-sim. The next section gives a description of this tree-
based description model.

2.5.2 Tree-based description model
Figure 2.8 shows a tree-based description model of a producer-consumer process. In this tree
a hardware section and a process section can be recognized.

In the hardware section we find the elements, system (), processor (), bios () and
linkdriver (). In the process section we find the hierarchy of the execution framework and
the patterns of communication.

Hardware section
The tree always starts with a system element (), in figure 2.8 called Main. A system can
consist of multiple subsystem elements (), one or more processors () and only one bios
element (). A processor element can consist of one bios element () and one custom
process element (). This custom process element is the start of the process section. The
bios element describes the basic input-output functions of a processor or system. The bios
element can have multiple child bios elements () and multiple link driver elements ().
The bios elements are introduced to structure the link driver elements.

Process section
The processor element can have one custom process () child. For the processor in figure
2.8 this element is called MyProcess. The custom process element can have a list of child
elements. This list can be classified in four sections: (1) the process identification section, (2)
the process interface section, (3) the local variable/channel declaration section and (4) the
process declaration section. This is more clearly illustrated in figure 2.9.

Figure 2.8 Producer – Consumer example

 11

The process identification section identifies the process. The custom process in the tree can
be folded or unfolded. If the process element is unfolded all the children of the element are
shown. For large models with many custom processes, it would show to many details. For
large models the user can unfold only those custom process elements he is interested in and
leave the others folded.

The process interface section shows the process interface. Communication takes place using
variables and channels. In the case channels are used the process interface can consists of
channel input elements (), channel output elements () and channel pass-through elements
(). In the case variables are used the process interface can consists of variable input
elements (), variable output elements () and variable pass-through elements ().

Every process interface element is specified by its local name. In figure 2.9 these are code
and result. These process interface elements are connected to a declaration element or a
process interface element that is in scope. The process interface element result is
connected to the declaration element current. The name of the declaration element is
placed after the equal sign (=) together with its type. The process interface element code is
connected to the interface element amplifier.

The local variable/channel declaration section declares the local channels and variables.
These locally declared channels and variables can be used by the child process section of
MyProcess. In figure 2.9 there are 4 declaration elements: gain, current, count and
type.

The process declaration section forms the body of the process. It can consist of a custom
process element, a code segment or a construct process. In figure 2.9 an example of a custom
process as the body of a process is shown. The body of ProcessA consists of the custom
process ProcessB. A code segment () contains the code of the process.

Figure 2.8 The four sections of the custom process element

Figure 2.9 Connections of the interface elements

 12

A construct process is a composition of processes. The construct process does not have a
process interface section or a local channel/variable declaration section. The only valid child
processes for a construct process are process elements. There are five different construct
processes: parallel, priparallel, sequential, alternative and prialternative. These are the five
defined CSP compositional relationships (Hilderink, 2001). In figure 2.10 an example using
parallel, sequential and priparallel construct elements is shown The tree-based description
model is shown together with the pseudo occam code. The alternative and prialternative
construct processes are not further discussed in this thesis.

Eric Volkerink defines also the elements: Skip, Reader, Writer and TimeSlicer in his thesis
(Volkerink, 2000). These elements and the alternative and prialternative elements are not
further discussed in this thesis.

2.5.3 The Global Variable Declaration Element
Using the tree-based description model for developing software in ANSI C to run a
simulation of the Linix system it became clear that a global variable can be useful. A new
tree element can be created called the global declaration element (). In the example of
software code in Appendix III-3, for example a global variable is used for the time.

In the tree-based description model these global variable declaration elements are placed
between the process interface section and the local variable/channel declaration section.
Figure 2.11 shows an example.

2.6 The Rectangles Graph
This graph shows a completely different view. In this graph not only the custom process
elements are shown but also the parallel and sequential constructs. All these elements are
shown as rectangles. If two processes run parallel they are shown next to each other within a
rectangle of the tree element parallel. If they run sequentially they are shown below each

Figure 2.10 Compositions of processes: a) The construct process b) pseudo Occam code

Figure 2.11 example of a global variable () : time

 13

other within a rectangle of the tree element sequential. This is best seen with an example. In
figure 2.12 the same model as in the tree-based description model of figure 2.10 is shown as
a rectangles graph.

This graph shows that the Process1, Process2, Pripar and Par run sequential, that
Process3 and Process4 run parallel (Process3 running with a higher priority then
Process4) and that Process5 and Process6 run parallel. This graph shows the
hierarchy of processes as a nesting of rectangles. A parallel construct is shown by placing the
rectangles beside each other, a sequential construct is shown by placing the rectangle below
each other.

The rectangles graph can be used to make changes in the compositional relationships
between processes. The user can use the mouse to move each of the rectangles. By pressing
the left mouse key on a rectangle and moving the mouse, the rectangle can be moved. Every
rectangle, including the rectangle representing the sequential or parallel constructs can be
moved this way. The idea behind this is that when for example the rectangle of Process4
is moved and dropped, by releasing the left mouse key, just below Process5 that the tool
will then change the structure of the tree-based description model accordingly to make
Process4 sequential to Process6. The new structure is shown in figure 2.13. An
optimization routine can then be used to remove the priority parallel construct Pripar. This
construct only contains Process3 and can be removed. Placing a rectangle not below but
beside (before or after) an other rectangle would indicate that these processes should run
parallel. Using this technique the sequential and parallel constructs can be manipulated.
Creating a priority parallel construct can be done by first creating a parallel construct and
afterwards changing this construct to a priority parallel construct.

Figure 2.12 a) the construct process b) the Rectangles Graph

 14

The sequence in which the processes are shown in the tree-based description model and the
rectangles graph is important for the sequential and the priority parallel construct. Because
the user can easily place the rectangles below, above, left or right of another rectangle this
sequence can be easily changed.

If in the model more than one processor is present then these processors are shown as
rectangles next to each other. In these rectangles the processes running on these processors
are shown. An example is shown in figure 2.14.

Selecting a process for example Process1 and moving it to the processor Pentium2
would indicate that the process should be allocated on this processor. In an ideal case the tool
should show the communication relationships between the processes and the available link
drivers between the processors. When the user moves a process to another processor the tool
should then let the user choose which link driver should be used for which communication
relationship.

Figure 2.14 Three processors in a rectangles graph

Figure 2.13 a) the changed construct process b) the new Rectangles Graph

 15

2.7 The Deployment Graph
The rectangles graph shows in principle all processes and the (priority) parallel and
sequential constructs. The deployment graph shows only the available processors and those
processes which are candidates to be allocated on another processor. The always has at least
one processor in its design. The deployment graph would then show the processor(s) and a
list of processes which can then be allocated on a processor. The deployment graph is in fact
a compact representation of the rectangles graph.

2.8 Outline
In this chapter three different ways to show the (priority) parallel and sequential constructs
have been described. The tree-based description model as developed by Eric Volkerink
shows the constructs in a tree structure. The other two, the composition graph and the
rectangles graph shows the construct in a more graphical way. The composition graph shows
the model using the same topography as the communication graph. The rectangles graph
uses rectangles to show the structure of the design. Both graph are capable of adding or
removing concurrency to a design.

 16

 17

3 USE-CASE

3.1 Introduction
The use-case presented here is the development of a controller for the Linix system. The
Linix system is described in section 3.2. The method used for developing the controller is as
follows: (1) Physical Systems Modeling: In section 3.3 a model of the Linix system is
created and simulated in 20-sim. (2) Control law design: In section 3.4 a controller is
designed using block diagrams, and simulated in 20-sim. (3) Embedded control systems
implementation: In section 3.5 the composition graph is used to add concurrency to the
design.

3.2 The LINIX system
The Linix is a system build at the Engineering Control Laboratory (figure 3.1). It is used for
educational purposes. It consists of an voltage controlled current output amplifier, an
electromotor and two pulleys which are connected through an elastic band (a flexible
transmission belt).
The amplifier has a ± 5 Volt input voltage range. The output current is between ± 1.33
Ampere. Both pulleys have a certain inertia. The positions of both pulleys are measured by
optical encoders. These encoders have a resolution of 2000 steps/revolution. The output of
these optical encoders are converted into a 16 bit binary representation.

Figure 3.1 The LINIX system

The detailed technical specifications for the LINIX system are in Appendix I.

 18

3.3 Physical Systems Modeling
A model of the LINIX system is created in 20-sim using iconic diagrams (figure 3.2). The
connections between the displayed icons are energy flows. The model has two output
signals, encoder1_out and encoder2_out, and one input signal, current_input. The icons
Encoder1, Encoder2 and MSf are responsible for converting energy flows to signals or vice
versa.

To simulate this model with 20-sim we need to add a signal source. The source is a pulse
generator and gives an output of amplitude 1 between 0.5 and 1 second. The output of the
signalgenerator is connected to the input signal current_input of the Linix model.

The simulation is shown in figure 3.4. In this simulation three signals are shown:
1. Reference, this is the output of the signal generator (a pulse).
2. Angle pully1, this is the angle of pully1 in radian.
3. Angle pully2, this is the angle of pully2 in radian.

SignalGenerator

Linix

Figure 3.2 Linix model in 20-sim

Figure 3.3 Signal source and Linix

current_input

encoder1_out

encoder2_out

MSf
current

DCmotor1

Ground1

Bearing1

J

Inertia1 BeltPulley1

Bearing2

J

Inertia2

BeltPulley2

K
Amplifier

Belt

Encoder1

Encoder2

 19

3.4 Controller Design

3.4.1 The controller
For this example a P-controller is used. The reference signal is the angle of the second
pulley. A value of 1 V of the reference means that pulley2 has to rotate to a position of 1 rad.
As feedback signal the output signal encoder1_out of the Linix model will be used.
Figure 3.5 shows the Linix system with controller and reference, and the data-flow diagram
of the controller.

 a) b)

The output of the reference is connected to the input signal reference of the controller.
The output signal encoder1_out of the Linix model is connected to the input signal
encoder1 of the controller. The output signal control of the controller is connected to
the input signal current_input of the Linix model.

The encoder has a resolution of 2000 steps per revolution. The amplification factor of
submodel Encoder_correction is therefore: (2 * pi) / 2000. The feedback signal must
be corrected for the transmission ratio between the two pulleys, because the feedback signal
is taken from the encoder on the first pulley while we want to steer the second pulley. For
this correction the submodel Encoder_correction is used. The amplification factor in
this submodel is 0.37037037. The proportional gain of the submodel Kp has the value 0.5.

Figure 3.4 Simulation of Linix with pulse as reference

reference

encoder1K
Transmission

K
Encoder_correction

K
Kp

control

Figure 3.5: a) The Linix system with controller and reference, b) the controller

Linix

reference

Controller

 20

3.4.2 Safety Layer
The output of the encoders is converted to a binary 16 bit representation. This means that the
value of the encoders must not exceed ± 215 – 1. To make sure that these values will not be
exceeded, a safety layer will be added. When for example a constant signal is added to the
input signal current_input of the Linix model then the electromotor will start running
with a constant speed. The output of the encoders will constantly rise until they reach the
value of 215 – 1. In figure 3.6 this is shown by the line from A to C. After that point the
value will instantly drop to the value of -215. The safety layer contains a P-controller with a
low proportional gain. This P-controller calculates the control signal which is needed to steer
the output of the encoder slowly to a maximum value. If this control signal is used the

encoder output would follow the line A – B – D. The safety layer will use this control signal
as a maximum value for the signal send to the Linix system. The maximum value of 32000 is
used and not 215-1 to allow some overshoot. Figure 3.7 shows the model of the system
including the safety layer and the submodel SafetyLayer. The output of Encoder2 of
the Linix system is always smaller then the output of encoder1, because the two pulleys
have a different diameter. The submodel Gain1 in the submodel SafetyLayer
compensates this difference.

 a) b)

Both the Safety and Choice submodels are equation submodels. See figures 3.8 and 3.9.
Table 3.1 lists the connections between the input signals and the output signals.

Figure 3.6 Encoder output

Figure 3.7 a) The Linix system with safety layer, b) The SafetyLayer submodel

Linix

Reference

Controller SafetyLayer

encoder2
Controller_in

Control

Choice

Safety K

Gain1

 21

ports
 signal in encoder_in;
 signal out safe_value;
 signal out safe_code;
 end;
parameters
 real K = 0.0001;
 real encoder_start_max = 20000;
 real encoder_abs_max = 32000;
equations
 if encoder_in > encoder_start_max then
 safe_value = (encoder_abs_max - encoder_in) * K;
 safe_code = 1;
 else
 safe_code = 0;
 end;

Figure 3.8 The submodel Safety

ports
 signal in controller_in;
 signal in safe_value;
 signal in safe_code;
 signal out control_value;
end;
equations
 if safe_code > 0.5 then
 if controller_in < safe_value then
 control_value = controller_in;
 else
 control_value = safe_value;
 end;
 else
 control_value = controller_in;
 end;

Figure 3.9 The submodel Choice

From To
Submodel Signal Submodel Signal

Linix encoder1_out Controller encoder1

 encoder2_out Safety encoder_in

Reference Output Controller Reference

Controller control Choice controller_in

Choice control_value Linix current_input

Safety save_value Choice save_value

 save_code save_code

Table 3.1 The connections of the input and output signals

If the encoder output reaches a value of 20000 then the submodel Safety calculates the
maximum value of the control signal save_value and sets the output signal safe_code
to one. The submodel Choice will then calculate the minimum value of the control signal
from the controller controller_in and the save_value of the submodel Safety.
This minimum value is used as output signal to the Linix model. If the encoder output is

 22

lower then 20000, the submodel Choice will use then use the control signal from the
controller controller_in to steer the Linix model.

3.4.3 Simulation
This controller can be verified by simulation. For this an experiment was setup in 20-sim. As
a reference (source) a cycloid function is used. The result of this experiment is shown in
figure 3.10. The simulation shows that between the points A and B the control value of the
safety layer is used.

3.5 Embedded control systems implementation

3.5.1 Model Enhancement
Most of the (sub)systems in 20-sim are I/O-SEQ, meaning that they first read all their input
before giving an output. When these submodels are converted into software, each submodel
can in fact be represented as a software routine. Figure 3.11 shows the tree-based description
model, the communication graph and the composition graph of the Linix system as shown in
figure 3.7a, in case all the processes are run sequentially.

 Not all the possible relations in the composition graph are shown in this example. The
example shows a deduced composition graph. This means that every relation between two
processes which is not shown can be deduced from the graph. For example the relation
between Controller and Linix is a sequential relation from Controller to Linix.

Figure 3.10 Simulation of the Linix model with the safety layer

 23

Figure 3.11 The Linix system a) Tree-based description model

 b) Communication graph

 c) Composition graph

 24

In a design it is not necessary to work with a complete composition graph. The designer is
only interested in those relations which are essential for his design. If the designer wants
process SafetyLayer run parallel to the other processes, then he will have to define all
the relations to the process SafetyLayer as a parallel composition. The resulting graph is
shown in figure 3.12 together with the tree-based description model. In figure 3.13 the
composition graph of the same model is shown using the composite symbol (●).

Figure 3.12 The Linix system with submodel SafetyLayer running in parallel

a) Tree-based description model

 b) Composition graph

 25

3.6 Code Generation
The software tool Topo is used to generate software for the developed controller. This tool
was developed for this assignment and is described in chapter 4 and 5.

The software tool Topo was used to generate the software. For the controller as shown in
figure 3.11 ANSI C code is generated. This code can be found in appendix III-1. For the
controller as shown in figure 3.12 Java code using the CTJ package is generated. Appendix
III-2 shows the generated Java code for the process Main. Only the structure of the code and
the interfaces are generated, the processes do not contain a code block.

In Appendix III-3 the results of a 20-sim simulation for the system as shown in figure 3.5 is
compared with the results of the generated software from a tree-based description model of
the same system.

3.7 Outline
This chapter described a use-case for the development of a controller for the Linix system.
The tree-based description model, communication graph and the composition graph of the
developed controller were shown. The generated software for this model can be found in
appendix III. The code is generated using the Topo. This tool will be described in the next
two chapters.

Figure 3.13 The Composition graph using the composite symbol (●)

 26

 27

4 The Design of Topo

4.1 Introduction
In this chapter the development of the design tool, called Topo, will be described. The
program is written in Microsoft Visual C++. In section 4.2 an overview of Topo is given.
The tool can be divided in five parts, the database, the select view, the tree structure view,
the topographic view and the code generator. In the sections 4.3 to 4.7 these parts are
described.

4.2 Overview
The structure of the tool is shown in figure 4.1.

Figure 4.1 Overview of Topo

 28

From this figure we can divide the tool in 5 parts:

1. The database contains the information shown in the tree structure view and the

topographical view.
2. The select view shows the input/output variables/channels of a process and can be used

by the user to set how much detail the tree view is shown. The user also uses this view to
define which of the four possible topographic views are shown.

3. The tree structure view shows the data as a tree. It shows the tree-based description
model (Volkerink, 2000). This view also takes care for the interaction with the user for
entering new data to, modifying data or removing data from the database. For entering
new data, a syntax rule checker is used.

4. The topographical view shows the information as a graph. There are four different
graphs possible, the communication graph, the composition graph, the rectangles graph
and the deployment graph.

5. The codegenerator performs the conversion from the database contents to software code.
Currently the languages ANSI C and Java are supported.

In the next sections these five parts will be discussed.

 4.3 The Database
For implementing the database there are basically two main alternatives:
• Using an external database (e.g. Microsoft Access).
• Create the database internally in memory.

An external database has the advantage that existing tools can be used to test and read the
database. Most existing databases have built-in safeguards to maintain the integrity of the
database. This can be of great help during the development of the tool. The disadvantage is
that the tool has to access the database using SQL. Several years of experience in
programming databases have shown that it is not always easy to implement queries for
databases.

Implemented the database internally in C++ means that the database will be in memory
constantly. Because a object-oriented language is used to implement the tool a good
separation of the database object and the other parts of the tool can be created, using features
like data protection and information hiding. In addition, the Microsoft Foundation Classes
makes it very easy to read and write internal data to persistent media. As a result it was
decided to implement the database internally as a C++ object.

To implement the database two classes where used, a database class (Cdatabase) and an
element class (CDatabaseElement). In figure 4.2, a tree-based description model is given of a
Producer-Consumer system as an example. Every line of this model corresponds with one
instance of the database element object. The CDatabaseElement object has all the necessary
attributes for such a line. Table 4.1 shows several attributes of CDatabaseElement. The
connection between the elements is implemented using pointers. This means that for
example the label of the parent element can be found very fast. It also makes the use of
efficient recursive routines possible.

 29

Unique
ID

label Type
(enumerated)

Parent
(pointer
to)

Next_sibling
(pointer to)

1 Main System Null Null
2 Processor Processor Main Null
3 PCMain1 Custom Null Null
4 channel Channel PCMain1 Par
5 par Par PCMain1 Null
6 Producer Custom par Consumer
7 out Channelout Producer Object
8 object Variable Producer Code
9 Code Code Producer Null
10 Consumer Custom par Null
11 in Channelin Consumer Object
12 object Variable Consumer Code
13 Code code Consumer Null

4.4 The Select View
The topographic view can show one out of four different graphs. The user has to have a way
to indicate which graph he wants to see. There are three methods which can be used for this:
1 Keyboard, a special keystroke is used for each of the four graphs.
2 Menu option, have the user use the menu system.
3 Buttons, four (radio) buttons are placed inside the program window, one for each graph.

Because the selection of which graph is shown is an important feature of the program the
third option, using four radio buttons, is chosen.

Erik Volkering developed a program for his thesis which shows the tree-based description
model (Volkerink, 2000). Using this program it became clear that for models with many
interface elements it was difficult to see the hierarchy of the processes clearly. An option to
show the tree-based description model without the interface elements would solve this. A
disadvantage of this is, that the interface is no longer visible. 20-sim shows the interface
elements of the selected submodel, in a separate window. By implementing such a window
in Topo, the user can view the hierarchy of processes in a compact manner and at the same
time see the interface elements of one process.

Figure 4.2 Tree-based description model of a producer-consumer system

Table 4.1 Some attributes of a database element

 30

In figure 4.3 an example of the select view is shown.

The leftmost part of this view shows the interface elements of the selected process in the tree
structure view. If the selected element in the tree structure view is not a process element then
the parent process of the selected element is shown with its interface elements.

The middle part of this view contains three radio buttons.
1 20-sim, the tree-based description model in the tree structure view is shown comparable

with the software package 20-sim. For Topo this means that only the system elements
and process elements are shown. See figure 4.4 a).

2 Compact, besides the elements shown in the 20-sim options, this option also shows the
processor elements, the codeblock elements and the elements for the composition
relations like parallel, priority parallel and sequential. See figure 4.4 b).

3 Extended, all the elements in the tree-based description model are shown in the tree
structure view. See figure 4.4 c).

In the rightmost part, the user can select which graph (Communication graph, Composition
graph, Rectangles graph or Deployment graph) is shown in the topographic view.

4.5 The Tree Structure View
Because this research is a continuation of the work of Erik Volkerink, the design of this view
was based on his design of the tool Embedded (Volkerink, 2000). This view shows the tree-
based description model which is discussed in section 2.5. Editing a model in Topo can only
be done by changing the tree-based description model. The model cannot be changed in the
topographic view. In 20-sim this is different. Editing of a model in 20-sim can only be done
in the topographic view.

To enter new elements in the design the menu structure is used. Before the user can select a
menu item to enter a new element, the syntax rules checker first checks which type of
elements can be entered. The same syntax rules as used in the program Embedded are

Figure 4.3 The select view

Figure 4.4 The tree-based description model of the Producer consumer example

 31

implemented in Topo. For example, after a variable declaration element (), one is not
allowed to add any child. The syntax rules are described in Appendix II.

4.6 The topographical view
The topographic view can show four different graphs. These graphs use the contents of the
database to create the graphs. Changing the contents of the database is done by the tree
structure view.

1. The communication graph shows the processes and their communication relationships.

This graph should be comparable with the way 20-sim shows a data-flow diagram. The
processes are therefor shown as rectangles and the relationships as line with a arrow
head(►). When there is more then one relationship between two processes, these
relationships have to be shown separately. In figure 4.5 two ways to archive this are
shown.

Because 20-sim uses the intermediate points as shown in figure 4.5b) this method is also
used in Topo. To minimize the programming effort only one intermediate point will be
supported.

2. The composition graph shows the processes and their composition relationships. This
graph uses the same topography for the processes as the communication graph. The
processes are shown as rectangles. The routine used for showing these rectangles in the
communication graph can be used for the composition graph. The relationships are
shown as lines with a label which indicates the type of the composition { , , , ,

}. The alternative relationships { , , } are not supported by Topo.

Showing all the possible relations between all processes is not necessary. The tool
should initially make a selection of all possible relationships and show these. The user
should then be able to indicate which relationships he wants to see. The most important
relationships to show initially are the relationships between the child processes of a
parallel or sequential construct. The sequence in which these child processes are placed
in the tree-based description model indicates the direction of the sequential and priority
parallel composition. Figure 4.6 gives an example.

Figure 4.5 two ways to show two relationships between two processes

Figure 4.6 The composition graph of three sequential processes

 32

Only the relationship between Process1 and Process2 and the relationship between
Process2 and Process3 are shown. A problem occurs if one of these child
processes is a parallel or sequential construct. Such a construct is not shown as a process
in the graph. For this situation the composite symbol (●) has to be used. Figure 4.6
shows the use of this composite symbol if the Process2 of figure 4.5 is replaced by a
parallel construct.

3. The rectangles graph shows the processes as rectangles. The rectangles for child

processes are placed inside the rectangle of the parent process. For a sequential construct
the child processes are placed below each other and for a parallel construct the child
processes are placed next to each other. The size of the rectangle for the parent process
has to be changed so that all the child processes will fit into this rectangle.

The rectangles graph shows the hierarchy of the processes in the tree-based description
model. Because the number of levels in the tree-based description model can be large,
the number of levels shown in the rectangles graph have to be limited. In the select view
the user can be set the number of levels the rectangles graph will show.

The rectangles graph can be used to make changes in the compositional relationships
between processes. This can be done by using the mouse to move the rectangles and
‘drop’ them on their new position. The structure of the tree-based description model can
then be changed to this new situation. Because the rectangles graph shows the processors
as rectangles, this graph can be used to allocate processes on another processor.

4. The deployment graph shows the processors which are defined in the tree-based
description model as rectangles places next to each other. Inside these rectangles, the
processes that run on these processors and which are candidates to be allocated on
another processor are shown as rectangles. These processes can then be moved (‘drag
and drop’) to another processor. The deployment graph is in effect a more compact
version of the rectangles graph.

If a process, that communicates with another process on the same processor, is allocated
on another processor, then the communication has to take place using a linkdriver. To
make this visible to the user, the communication relationships between the processes and
the available linkdriver on each processor should be visible in the deployment graph.
The deployment graph should let the user choose which linkdriver should be used.

Figure 4.5 The composition graph using the composite symbol (●)

 33

4.7 The Code Generator
The code generator uses the contents of the database to generate software code. To develop
the code generator two alternatives were considered.

1 Design a general algorithm for code generation and use a separate database for the

language dependency.
2 Create a code generation algorithm for each language.

Using the first alternative makes adding a new target language relatively easy. The
disadvantage, however, is that because of the differences between the target languages the
general algorithm for code generation is not easy to develop. Also the database for the
language dependency can become very complex. The advantage of the second alternative is
that the code generator can be customized for a specified target language.

The current implementation of the code generator is based on a separate code generator for
each target language. Currently two code generator algorithms are implemented. One for
ANSI and one for Java. The code generator for Java uses the CTJ package (Hilderink et al.,
1999). The code generator for ANSI C generates the code using a sequential framework.
This generator can easily be enhanced to make use of the CTC software package (Hilderink,
1999).

4.8 Outline
In this the design of the software package Topo, bases upon the tree-based description
model, is described. Topo can show the CSP diagrams and generate software code. Several
tests have shown that the software code generated by the tool compiles and runs. The next
chapter will give a users manual of Topo.

 34

 35

5 Users Manual

5.1 Introduction
In this chapter a users manual of Topo is given. The tool is based on the tree-based
description model. This model shows the hierarchy of the processes in a tree structure. In
figure 5.1 a screen view of the program is shown. The screen view shows the tree structure
view, the select view and the topographic view.

The menu structure of Topo is described in section 5.2. The tree structure is described in
section 5.3. This section also describes the editing of the model. The select view is described
in section 5.4. The topographic view can show four different graphs, the communication
graph, the composition graph, the rectangles graph and the deployment graph. These are
described in the sections 5.5 through 5.8. In section 5.9 the use of the semantic rules checker,
which is used before generating the software, is described and in section 5.10 three option
dialog boxes are described.

5.2 Menu Structure of Topo
The menu structure is shown in figure 5.2. Only the menu items specific for Topo are
discussed. The others are standard for window applications.

For entering new elements in the tree structure the Add Child or Insert Sibling submenu of
the Edit submenu has to be selected. The Insert Sibling submenu has the same sub options
as the Add Child submenu. Not all menu items in these submenu’s can be selected. The
elements Alternative, PriAlternative, Reader, Writer, Skip, Stop, TimeSlicer, Input Guard,
Output Guard, Skip Guard and Timeout Guard are not supported by Topo and are currently
disabled. The entering of new elements to the model is further discussed in section 5.3.

Figure 5.1 Screen view of Topo

 36

 * The Insert Sibling submenu has the same sub options as the Add Child submenu.

The submenu Options in the submenu View has three menu items, General Options, ANSI
C and Java. These menu items each start a dialog box for options. These dialog boxes are
further discussed in section 5.11.

The submenu Build contains the submenus Check Code and Generate Code. These are
used for running the semantics rules checker (section 5.9) and for starting the code
generators (section 5.10).

5.3 The Tree Structure View
This view shows the tree-based description model which is discussed in section 2.5. The user
can delete an element from the model, modify an existing element or add an element to the
model.

Tree elements can be deleted from the tree by selecting the element, using the mouse or the
arrow keys of the keyboard (↑, ↓), and pressing the ‘Delete’ key. The tool will instantly
remove the selected element and all its children from the tree. The tool will not ask for
confirmation and a ‘redo’ facility is not present.

Modifying existing elements takes place by ‘double-clicking’ in the tree on the element.
Topo will then show a dialog window in which the user can modify the item belonging to the

Figure 5.2 Menu structure

 37

element. The tool will use the same dialog window as for new tree elements. The title of this
window however begins with the word ‘Modify’ instead with the word ‘New’.

For entering new elements for the tree structure the menu is used. Not all menu items can be
selected. The syntax rules checker first checks which type of elements can be entered. For
example, a system element can have only one bios element. The syntax rules checker will
first check if the system element has a bios element before enabling the Bios menu item. If
there is a bios element present then the menu item for bios will be disabled. In appendix II, a
table can be found with the rules which the syntax rules checker enforces. For entering the
data for the tree elements seven dialog windows are used for the following groups of
elements:

1. Subsystem (), bios (), processor () and linkdriver ()
2. Declaration of variable (), channel () and global variable ()
3. Parallel construct () and priority parallel construct ()
4. Custom process ()
5. Variable input (), variable output (), channel input () and channel output ()
6. Code segment ()
7. Sequential construct ()

These dialog windows are shown in the section 5.3.3 through 5.3.9. The Producer Consumer
example of figure 5.3 will be used to show each of these dialog windows.

Each of the dialog windows has three items in common:
1. Name, the name is used as the label for the tree element in the tree structure.
2. Description, this is a text field where a description for the tree element can be

entered. The code generator will generate comments in the source using this
description. However not all tree elements are treated as such.

3. Sequence, this field gives the user the ability to change the sequence of the elements
in the tree structure. This is explained in section 5.3.1.

Figure 5.3 Producer Consumer example

 38

5.3.1 The sequence of the tree-elements
The tool will in principle append a new child to the already existing children. The sequence
in which they are shown is the same as the sequence they are entered. The only exception is
the sequence of the sections of the custom process element. The sequence of the five sections
of the custom process (process identification, process interface, global declaration, local
declaration, child process) cannot be changed. The user can change the sequence of the tree
elements within one section. Also the sequence of the children of a construct element (for
example parallel, sequential) can be changed by the user. The tool will not change the
sequence directly. The sequence will be changed during the loading the file from the disk.
Therefore after setting all relevant sequence numbers, the data has to be saved to disk and
reloaded before the changes take effect.

5.3.2 Dialog 1: Subsystem, bios, processor and linkdriver

 This dialog window is used for the elements subsystem (), bios (), processor () and
linkdriver (). The window contains only the three common items: Name, Description and
Sequence.

5.3.3 Dialog 2: Declaration of variable, channel and global variable
The dialog window is shown in figure 5.5. This dialog window is used for the elements
channel (), variable () and global variable (). The window contains the three common
items: Name, Description and Sequence.

The other items in the window:
• Type, this item defines the type of communication. Currently there are four types of

communication defined: integer, double (floating point), character and boolean.
• Initial, for a global variable () or a variable () it can be useful to set a initial value.

For a channel declaration this element is ignored.
• Constant, for a global variable () or a variable () it can be useful to define the

variable as a constant. For a channel declaration this element is ignored.
• In, when a input variable cq input channel of a child process is connected to this

declaration element then the item in contains the name of this child process and the name
of the input variable cq input channel. In figure 5.5 the name of the child process is
TwoConsumers and the name of the input channel is in1.

• Out, when a output variable cq output channel of a child process is connected to this
declaration element then the item out contains the name of this child process and the
name of the output variable cq output channel. In figure 5.5 the name of the child
process is Producer and the name of the input channel is out1.

Figure 5.4 Dialog 1: Subsystem (), bios (), processor () and linkdriver ()

 39

5.3.4 Dialog 3: Parallel and priority parallel construct

This dialog window is used for the parallel () and priority parallel (). The window
contains the three common items: Name, Description and Sequence.

Figure 5.5 Dialog 2: channel (), variable () and global variable ().

Figure 5.6 Dialog 3: parallel () and priority parallel ()

 40

There is one other item in the window:
• Priority, when the element is a priority parallel construct then the checkbox is set.

Changing a parallel construct to a priority construct can be realized by setting this
checkbox.

5.3.5 Dialog 4: Custom process

This dialog window is used for the custom process (). The window contains the three
common items: Name, Description and Sequence.

There is one other item in the window:
• Nr of Iterations, this item is used by the code generator to decide whether a for-loop or a

while-loop has to be generated. This loop is placed around the child process elements of
this element. There are three possibilities:
1. The value of the item is equal to zero: a while (true) loop will be generated.
2. The value of the item is equal to one: no loop is generated.
3. The value of the item is greater then one: a for loop is generated.

5.3.6 Dialog 5: Channel/variable input/output
The dialog window is shown in figure 5.8. This dialog window is used for the variable input
(), variable output (), channel input () and channel output (). The window contains
the three common items: Name, Description and Sequence.

There is one other item in the window:
• Connected, A channel or a variable input/output element has to be connected with a

channel declaration element or a channel interface element from the parent process. The
tool will select all the available possibilities and show them in a selection list. The value
‘not_connected’ is added to enable the user to first enter these elements and to create the
declaration elements and the connections to them at a later time. In the tree name of the
declaration element will be shown after the name of input/output element. In figure 5.8
the channel output element out2 is connected to the declaration channel element
channel2.

Figure 5.7 Dialog 4: custom process ()

 41

5.3.7 Dialog 6: Code segment

Figure 5.8 Dialog 5: input variable (), output variable (),
 input channel () and output channel ()

Figure 5.9 Dialog 7: code segment ()

 42

The dialog window is shown in figure 5.9. This dialog window is used for the code segment
(). The window contains the three common items: Name, Description and Sequence.

There is one other item in the window:
• Code, This is a text editor in which the user can enter the statements. The code generator

uses this text literally.

5.3.8 Dialog 7: Sequential construct

This dialog window is used for the sequential construct (). The window contains the three
common items: Name, Description and Sequence.

There is one other item in the window:
• Nr of Iterations, this item is used by the code generator to decide whether a for-loop or a

while-loop has to be generated. This loop is placed around the child process elements of
this element. There are three possibilities:
4. The value of the item is equal to zero: a while (true) loop will be generated.
5. The value of the item is equal to one: no loop is generated.

The value of the item is greater then one: a for loop is generated.

5.4 The Select View
In figure 5.11 an example of the select view is shown.

The leftmost part of this view shows the interface elements and the declaration elements of
the selected process in the tree structure view. In this example the process Producer is

Figure 5.10 Dialog 7: sequential construct ()

Figure 4.3 The select view Figure 5.11 The select view

 43

shown. If the selected element in the tree structure view is not a process element then the
parent process of the selected element is shown with its interface elements.

The middle part of this view, labeled ‘Tree view’, contains three radio buttons.
1. 20-sim, the tree-based description model in the tree structure view is shown comparable

with the software package 20-sim. For Topo this means that only the system elements
and process elements are shown. See figure 5.12 a).

2. Compact, besides the elements shown in the 20-sim options, this option also shows the
processor elements, the codeblock elements and the elements for the composition
relations like parallel, priority parallel and sequential. See figure 5.12 b)

3. Extended, all the elements in the tree-based description model are shown in the tree
structure view. See figure 5.12 c).

In the rightmost part, labeled ‘Topographic view’ the user can select which graph,
Communication graph, Composition graph, Rectangles graph or Deployment graph, is
shown in the topographic view. In the edit field next to the rectangles graph the user can
enter a number. This number is used by the rectangles graph for the number of levels shown
in this graph.

5.5 Communication Graph
The communication graph shows the custom processes as rectangles. The communication
relationships are shown as lines with an arrow head (►). The user selects a custom process
element in the tree view. Topo will then show the communication graph for this process. In
figure 5.13 an example is shown. The user can move these rectangles around the screen
using the mouse. The new place of the rectangles is written to the database. When the user
enters a new custom process in the tree view, the place of the rectangle of this new process
will always be the same. When more then one process element is added, they will all be
placed on the same spot (left-upper corner of the view).

Figure 5.12 The tree-based description model of the Producer – Consumer example

 44

20-sim has the ability to add or remove intermediate points on these lines (Figure 5.14 shows
8 intermediate points). Topo always has always one intermediate point on each line. This
intermediate point can be either visible or invisible. This point cannot be removed. Initially
this point is always placed on the middle of a line. If a process (rectangle) is moved the lines
are redrawn and the point is again placed on the middle. Only when the user moves a point to
a different location with the mouse, the point stays fixed on this new position (figure 5.15).
To bring the point back to its initial state the user has to place the point using the mouse on
the coordinate (0, 0), this is the top-left corner of the topographic view window. The
software will then set he point to its initial state. These intermediate points can be made
visible through the menu view – options – general options.

5.6 Composition Graph
The composition graph shows the processes with their composition relationships. The
topography of the processes is the same as with the communication graph. Because of this
Topo uses the same routine for placing the rectangles of the processes on the view. Instead of
looking at the communication relationships, the tool will now look for the tree elements
parallel and sequential. These tree elements form the compositional relationships.

Figure 5.14 Intermediate points on connections (20-sim)

Figure 5.15 The tool has one intermediate point

Figure 5.13 a) tree-based description model b) communication graph of the same model

 45

In the tree-based description model of figure 5.13a) the following compositional relation-
ships can be recognized:
1. Proc1 and proc2 run parallel. A parallel compositional relation is drawn.
2. Proc3 and proc4 run sequential. Logically a sequential compositional relation is drawn.
3. Proc2 run parallel to the sequential construct with the name Seq. This has as a result that

the tool draws a parallel compositional relation with the composite symbol (●).

The resulting composition graph is shown in figure 5.16.

5.7 Rectangles Graph
This graph shows a completely different view. In this graph not only the custom process
elements are shown but also the parallel and sequential constructs. All these elements are
shown as rectangles. If two processes run parallel they are shown next to each other within a
rectangle of the tree element parallel. If they run sequentially they are shown below each
other within a rectangle of the tree element sequential. This is best seen with an example. In
figure 5.17 the same model as used in the composition graph of figure 5.16 is shown as a
rectangles graph.

From this graph we conclude that proc3 and proc4 run sequential and that proc1,
proc2 and the sequential construct Seq run in parallel. This graph shows a nesting of
rectangles. The most outer rectangle is the tree construct, selected in the tree view. The
maximum number of levels can be set by the user in the select view. The user can use the
mouse to move each of the rectangles. By pressing the left mouse key on a rectangle and
moving the mouse, the rectangle can be moved. Every rectangle, including the rectangle
representing the sequential or parallel constructs can be moved this way.

Figure 5.16 The composition graph

Figure 5.17 The rectangles graph

 46

If in the model more than one processor is present then these processors are shown as
rectangles next to each other. In these rectangles the processes running on these processors
are shown. An example is shown in figure 5.18.

Selecting a process for example Process1 and moving it to the processor Pentium2
would indicate that the process should be allocated on this processor. This is currently not
implemented.

5.8 Deployment Graph
The rectangles graph shows in principle all processes and the parallel and sequential
constructs. The deployment graph was meant to show only the available processors and
those processes which are candidates to be allocated on another processor. Currently the
deployment view only shows a rectangle for each processor included in the tree structure.

5.9 Semantic Rules Checker
Every tree element in the process interface section, variable input (), variable output (),
channel input () and channel output (), have to be connected to a declaration element.
The data-entry part of Topo however does not enforce this. Topo allows the user to enter the
elements in the process interface section and to make the connections later. The semantic
rules checker check for the absence of these connections and reports them in a window. The
user can run this routine using menu option Build – Check code – Java or the menu option
Build – Check code – ANSI C. Both menu options currently run the same routine.

5.10 Software Generation
The tool can generate ANSI C code and Java code. Before the code is generated Topo checks
whether all the tree elements of the process interface section are connected to a declaration
element. Using Topo showed that the absence of this connection was the most commonly
made error.

 5.10.1 ANSI C code generation
An ANSI C program file can be generated. The tool generates one program file. The name of
the file is initially set to the name of the system with extension ‘cpp’. The user can change
the filename and the directory where the file will be placed. The tool uses the standard file
dialog window of Windows for this. The generated program has a sequential execution
framework. For every custom process tree element a function is generated. In Figure 5.19 the
generated source file is shown next to the tree-based description model.

Figure 5.18 Three processors in a rectangles graph

 47

///
// System name : Main
// Date and time : Mon Feb 02 02:02:02 2002
///

//include files
#include <iostream.h>

void PCMain1();
void Producer(int* Var_out);
void Consumer(int Var_in);
void main()
{
 PCMain1();
}
void PCMain1()
{
 int variable = 0;
 Producer(&variable);
 Consumer(variable);
}
void Producer(int* Var_out)
{
 *Var_out = 10;
}
void Consumer(int Var_in)
{
 cout << Var_in;
}

The source code is generated in five stages:
1. The header. The header shows the name of the system and the date and time of

generation.
2. The include files. In this example only ‘iostream.h’ is included. The user can choose,

which include files have to be included in the source using a options menu. Currently
only the include files ‘iostream.h’, ‘math.h’, ‘time.h’ and ‘stdlib.h’ can be selected. This
options menu can be reach using the menu (View – Options – ANSI C).

3. Declaration. All the generated functions (PCMain1, Producer and Consumer) are
declared in this section.

4. Main procedure. The main procedure is generated. This procedure simply calls the first
custom process which is defined in the tree structure.

5. Functions. For each of the custom processes in the tree-based description model a
function is generated. The input parameters are passed by value, the output parameters
are passed by reference. The procedure body of PCMain1 calls the two functions
Producer and Consumer and the procedure body of the functions Producer and
Consumer consist out of a code segment.

5.10.2 Java Code Generation
The code generator for Java generates a separate class file for each custom process in the tree
structure. For tool will use the name of the custom process as the name of the file and for the
name of the class. These names should not be changed. The tool uses the standard file dialog
window of Windows. In this window the directory in where the files are generated can be
changed. The filename used in this window should not be changed.

The tool first generates a source file for the first custom procedure in the tree structure. This
source file will include the main() method. In Figure 5.20 the generated source file for this
first custom procedure is shown next to the used tree-based description model.

Figure 5.19 a) generated ANSI C code b) the tree-based description model

 48

///
// System name : Main
// Class name : PCMain1
// Date and time : Mon Feb 02 02:02:02 2002
///

//import files
import csp.lang.*;
import csp.lang.Process;
import csp.lang.Integer;

public class PCMain1 {
 public static void main(String[] args) {
 new PCMain1();
 }

 public PCMain1() {

 final Channel_of_Integer channel =

new Channel_of_Integer();
 Process par =
 new Parallel(new Process[] {
 new Producer(channel),
 new Consumer(channel)
 });
 par.run();
 }
}

The source code is generated in three stages:

1. The header. The header shows the name of the system, the class name and the date and

time of generation.
2. The import files. The user can choose, which include files have to be included in the

source using a options menu. Currently only the import files ‘csp.lang.Integer’,
‘csp.lang.Process’ and ‘csp.lang.*’ can be selected. This options menu can be reach
using the menu (View – Options – Java).

3. The class. The class PCMain1 is defined. In this class two methods are generated,
namely main() and PCMain1(). In method PCMain1() a Channel_of_Integer is declared.
Also a process par is declared as a Parallel object. The Parallel object itself is a process
and its arguments are processes which will be run in parallel when the run() method of
the object Parallel is called.

In figure 5.21 the source file for the custom process Producer is shown.

Figure 5.20 a) generated Java code b) the tree-based description model

 49

//
// System name : Main
// Class name : Producer
// Date and time : Mon Feb 02 02:02:02 2002
//

//import files
import csp.lang.*;
import csp.lang.Process;
import csp.lang.Integer;

class Producer implements Process {

 ChannelOutput_of_Integer out;
 Integer object;
 public Producer(
 ChannelOutput_of_Integer out_gen) {
 out = out_gen;
 object = new Integer();
 }
 public void run() {
 object.value = 100;
 out.write(object);
 }
}

Figure 5.21 generated Java code for custom process Producer

5.11 The Options Dialogs
There are three option dialog windows used in Topo:
1. General options, using this dialog window the user can indicate whether Topo has to

show the intermediate points on the communication relationships in the communication
graph.

2. ANSI C, using this dialog window the user can indicate which include files the ANSI C
code generator should generate in the code.

3. Java, using this dialog window the user can indicate which Java libraries should be
imported in the generated Java code.

These ANSI C and the Java dialog windows are shown in figure 5.22. The General options
dialog window is shown in figure 5.23.

Figure 5.22 a) ANSI C option dialog b) Java option dialog

 50

Figure 5.23 General option dialog

 51

6 Conclusions and Recommendations

6.1 Conclusions

A tool was implemented which shows a model as a tree based description model together
with its communication graph or its composition graph. Changes made in the tree based
description model are also directly shown in the communication or composition graph. The
tree based description model shows the hierarchy of processes in a tree structure together
with the communication relationships and the composition relationships like sequential and
parallel.

• The hierarchy of processes is best shown in the tree-based description model.

• The communication graph shows the communication relationships better then the tree-

based description model.

• The composition graph shows the compositional relationships better then the tree-based

description model.

• During the testing of the code generator for ANSI C it became clear that a tree element

for defining a global variable, for example for the time, would be useful. Consequently a
global variable tree element was added.

The tool can show the tree based description model in three different ways:
1. Extended: The processes are shown together with the communication relationships and

the compositional relationships. It provides the most detailed view of the tree.
2. Compact: Only the processes and the compositional relationships are shown.
3. 20-sim: Only the processes are shown in the tree. The tree is shown with the same detail

as 20-sim shows its submodels.

• Using the tool proved that this was a useful feature. In a design with many interface

elements it can be difficult to see the hierarchy of the processes. By removing the
communication and compositional relationships from the view the hierarchy stands out
more clearly.

• The tool can also show a so-called rectangles graph. This graph shows the processes and

their composition relationships as rectangles. It shows the hierarchy of the processes and
the compositional relationships very well.

• The tool is capable of generating ANSI C code. This code uses a sequential execution

framework. For every process in the tree-based description model a separate function is
generated. The tool can also generate Java code. The Communicating Threads for Java
(CTJ) package which implements the CSP model in Java is used to generate concurrent
software. For every process in the tree based description model a class is generated. The
generated code for both target languages therefore reflect the hierarchy of the processes
in the tree.

• The choice for using an internal database proved to be correct. The time spend

programming the database routine was limited compared to the time spend on
programming the other parts of the tool.

 52

6.2 Recommendations

• The tool demands the user to enter the compositional relationships in the tree structure,

before the tool can show the topographic views. It would be better if the changes in the
design would be made possible through the topographic view, like in 20-sim. The tool
should then change the tree structure to reflect these changes.

• The tool generates source code that reflects the hierarchy of the processes in the tree-

based description model. It is recommended to change the code generator of 20-sim so
that the generated code by 20-sim also reflect this hierarchy.

• The addition of the global variable tree element is not allowed in the CSP concept. It is

advised to have it removed.

• Several tree elements have an attribute which the code generator uses to determine

whether a loop (for-, whileloop) has to be generated. Conditional loops can only be
expressed inside a code segment. This is not visible in the tree based description model.
Loop control is an important issue in software. To make these loops visible in the tree
structure a new tree element ‘loop’ has to be designed.

• The user should have more influence on which composition relationships are shown in

the composition graph. Currently there is one routine which shows a selection of the
relationships, with no alternatives.

• The deployment view currently only shows the available processors. The processes

which run on these processors have to be placed inside those rectangles. The user should
be able to move these processes to another processor.

• The linkdrivers should be made visible in the deployment view. When a process is

moved from one processor to another and this process has an communication
relationship with another process then the user should be able to choose between the
available linkdrivers.

• The rectangles graph could provide an graphical interface for changing concurrency in

the model. It should be investigated whether this could be a useful technique.

• The tool currently only shows the sequential, parallel and priority parallel compositional

relationships. It should be investigated how the alternative and priority alternative can be
added to the model.

 53

APPENDIX I – Technical Specifications of the LINIX System

Motor:

Type Maxon 2260.815.51.216.200
Motor constant 0.073 Nm/A
Nominal Voltage 36 V
Inertia without pulley 63.5 e –6 kgm²
Inertia with pulley 97.3 e –6 kgm²

Transmission:

Diameters of the pulley on the motor shaft 20 / 40 mm
Diameters of the pulley on the load shaft 120 / 108 mm
Transmission belt type Philips 3112 384 01361
Transmission belt stiffness 78.4 Nm / 210 mm
 Transmission 1 180 N/m
 Transmission 2 170 N/m
Inertia of the pulley on the motor 33.8 e –6 kgm²
Inertia of the pulley on the load 1.37 e –3 kgm²
Number of belts 4
Distance between shafts of the pulleys 103 mm

Inertia ratios:

Transmission 1 (20 mm – 120 mm pulleys) 0.72
Transmission 1 (40 mm – 108 mm pulleys) 0.34

Sensors:

Both shafts HP5540 200 steps / revolution

Power Amplifier:

Input voltage range ± 5 V
Controlled output current range ± 1.33 A
Controlled output voltage range ± 28 V

 54

APPENDIX II – Sequence of Tree-elements

Tree element Possible children Condition

BIOS One BIOS allowed

PROCESSOR

SYSTEM

SYSTEM

CUSTOM One CUSTOM allowed PROCESSOR
BIOS One BIOS allowed

BIOS BIOS
LINKDRIVER

CHANNELIN,
CHANNELOUT,
CHANNELIO

VARIABLEIN,
VARIABLEOUT,
VARIABLEIO

CUSTOM

CUSTOM, PAR, SKIP, STOP,
PRIPAR, READER, WRITER,
SEQ, TIMESLICER,
CODE

One of these allowed

PAR CUSTOM, PAR, SKIP, STOP,
PRIPAR, READER, WRITER,
SEQ, TIMESLICER,
CODE

PRIPAR CUSTOM, PAR, SKIP, STOP,
PRIPAR, READER, WRITER,
SEQ, TIMESLICER,
CODE

SEQ CUSTOM, PAR, SKIP, STOP,
PRIPAR, READER, WRITER,
SEQ, TIMESLICER,
CODE

GUARDIN CUSTOM, PAR, SKIP, STOP,
PRIPAR, READER, WRITER,
SEQ

One of these allowed

GUARDOUT CUSTOM, PAR, SKIP, STOP,
PRIPAR, READER, WRITER,
SEQ

One of these allowed

GUARDTIMEOUT CUSTOM, PAR, SKIP, STOP,
PRIPAR, READER, WRITER,
SEQ

One of these allowed

GUARDSKIP CUSTOM, PAR, SKIP, STOP,
PRIPAR, READER, WRITER,
SEQ

One of these allowed

All other elements can’t have a child. These elements are: CHANNELIN, CHANNELOUT,
CHANNELIO, VARIABLEIN, VARIABLEOUT, VARIABLEIO, LINKDRIVER, SKIP,
STOP, READER, WRITER, CODE, TIMESLICER, CHANNEL, VARIABLE, GLOBAL.

 55

APPENDIX III – Generated Software
In chapter 3 a controller was developed. The software tool Topo was used to generate the
software. In III-1 the ANSI C code is shown for the controller as shown in figure 3.11.
Appendix III-2 shows the generated Java code for the process Main of the controller as
shown in figure 3.12. Only the structure of the code and the interfaces are generated, the
processes do not contain a code block. In Appendix III-3 the 20-sim simulation for the model
shown in figure 3.5 is compared with the results from the software generated using Topo.
Appendix III-4 shows the generated Java code for a producer – consumer example.

III-1 Controller Use-case (ANSI C)

///
// System name : Main
// Date and time : Mon Feb 02 02:02:02 2002
///

void Main();
void Reference(double* Output);
void Controller(double Reference, double Encoder, double* control);
void SafetyLayer(double Controller_in, double encoder2, double*
Control_value);
void Linix(double current_input, double* Encoder1_out, double*
Encoder2_out);
void main()
{
 Main();
}
void Main()
{
 double Refe = 0;
 double Cont = 0;
 double Save = 0;
 double Enc1 = 0;
 double Enc2 = 0;
 Reference(&Refe);
 Controller(Refe, Enc1, &Cont);
 SafetyLayer(Cont, Enc2, &Save);
 Linix(Save, &Enc1, &Enc2);
}
void Reference(double* Output)
{
}
void Controller(double Reference, double Encoder, double* control)
{
}
void SafetyLayer(double Controller_in, double encoder2, double*
Control_value)
{
}
void Linix(double current_input, double* Encoder1_out, double* Encoder2_out)
{
}

 56

III-2 Controller Use-case (Java)

///
// System name : Main
// Class name : Main
// Date and time : Mon Feb 02 02:02:02 2002
///

//import files
import csp.lang.*;
import csp.lang.Process;
import csp.lang.Double;

public class Main {

 public static void main(String[] args) {
 new Main();
 }

 public Main() {

 final Double Refe = new Double();
 final Double Cont = new Double();
 final Double Save = new Double();
 final Double Enc1 = new Double();
 final Double Enc2 = new Double();
 Process Seq =
 new Sequential(new Process[] {
 new Reference(Refe),
 new Controller(Refe,
 Enc1,
 Cont),
 new SafetyLayer(Cont,
 Enc2,
 Save),
 new Linix(Save,
 Enc1,
 Enc2)
 });
 Seq.run();
 }

}

 57

III-3 20-sim vs Topo

From this model (also shown in figure 3.5) a simulation in 20-sim is performed. In this
simulation the output signal of the reference and the angle of the second pully of the Linix
system are shown.

Linix

reference

Controller
reference

encoder1K
Transmission

K
Encoder_correction

K
Kp

control

The Linix system with controller The controler submodel

Title

0 2 4 6 8 10
time {s}

re
fe

re
nc

e

an
gl

e
pu

lly
2

{r
ad

}

-10

0

10

20

30

40

-10

0

10

20

30

40

 58

Using the design tool Topo a tree-based description model is created. This model is shown
together with the composition graph and the communication graph.

For this tree-based description model the tool Topo generates the next ANSI C code.

 59

///
// System name : LinixC
// Date and time : Mon Feb 02 02:02:02 2002
///

//include files
#include <iostream.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

void Linix();
void reference(double* out1, double* out2);
void control(double ref_out, double lin_out, double* out);
void linix(double in, double* out);
void display(double in);
void main()
{
 Linix();
}
double step = 0.0001;
double tijd = 0;
void Linix()
{
 double control_out = 0;
 double reference_out1 = 0;
 double reference_out2 = 0;
 double linix_out = 0;
 for (int ii=100000;ii>0;ii--)
 {
 reference(&reference_out1, &reference_out2);
 control(reference_out1, linix_out, &control_out);
 linix(control_out, &linix_out);
 display(reference_out2);
 }
}
void reference(double* out1, double* out2)
{
 const double start_time = 1;
 const double stop_time = 4;
 const double amplitude = 30;
 const double pi = 3.14159;
 if (tijd < start_time)
 *out1 = 0;
 else
 if (tijd > stop_time)
 *out1 = amplitude;
 else
 {
 *out1 = 2 * pi * (tijd - start_time) / (stop_time - start_time);
 *out1 = (amplitude * (*out1 - sin(*out1))) / (2 * pi);
 }
 tijd = tijd + step;
 *out2 = *out1;
}
void control(double ref_out, double lin_out, double* out)
{
 const double K1 = 0.37037;
 const double K2 = 0.5;
 *out = K2 * (ref_out - K1 * lin_out);
}
double inertia1_f = 0;
double inertia1_phi = 0;
double inertia2_f = 0;
double inertia2_phi = 0;
double belt_x = 0;
void linix(double in, double* out)
{
 double amplifier_I = 0;
 double dcmotor_T = 0;
 double bearing1_T = 0;
 double bearing2_T = 0;
 double belt_F = 0;
 double pully1_T = 0;
 double pully2_T = 0;
 const double K_amp = 0.266;
 const double km = 0.073;

 60

 const double d = 0.001;
 const double J1 = 9.73e-005;
 const double J2 = 0.00262;
 const double k_belt = 680;
 const double radius1 = 0.04;
 const double radius2 = 0.108;
 amplifier_I = K_amp * in;
 dcmotor_T = km * amplifier_I;
 bearing1_T = d * inertia1_f;
 belt_x += (inertia1_f * radius1 - inertia2_f * radius2) * step;
 belt_F = k_belt * belt_x;

 pully1_T = radius1 * belt_F;
 inertia1_f += ((dcmotor_T - bearing1_T - pully1_T) / J1) * step;
 inertia1_phi += inertia1_f * step;

 bearing2_T = d * inertia2_f;

 pully2_T = radius2 * belt_F;

 inertia2_f += ((pully2_T - bearing2_T) / J2) * step;
 inertia2_phi += inertia2_f * step;

 *out = inertia1_phi;
}
void display(double in)
{
 if ((tijd > 1.99998 && tijd < 2.00001) ||
 (tijd > 2.99998 && tijd < 3.00001) ||
 (tijd > 3.99998 && tijd < 4.00001) ||
 (tijd > 4.99998 && tijd < 5.00001))
 {
 cout << "tijd = ";
 cout << tijd;
 cout << " ";
 cout << in;
 cout << " ";
 cout << inertia2_phi;
 cout << "\n";
 }
}

After compiling and running this program, the results can be compared with the results from
the 20-sim simulation.

Time (sec) Reference

(Topo)
Angle pully2
(Topo)

Reference
(20-sim)

Angle pully2
(20-sim)

2 5.86353 1.52614 5.865033285529 1.526051631923
3 24.1335 17.3443 24.13496671643 17.34395976869
4 30 31.7673 29.99999999608 31.76771474944
5 30 29.9478 30 29.94783813783

 61

III-4 Producer Consumer Example
The tree-based description model of the example is:

It shows a Producer process and two Consumer processes which run sequentially. For this
example Topo generates five sources: MyProcess.java, Producer.java, TwoConsumers.java,
Consumer1.java and Consumer2.java.

MyProcess.java:

///
// System name : Main
// Class name : MyProcess
// Date and time : Mon Feb 02 02:02:02 2002
///

//import files
import csp.lang.*;
import csp.lang.Process;
import csp.lang.Integer;
import csp.lang.Double;

public class MyProcess {

 public static void main(String[] args) {
 new MyProcess();
 }

 public MyProcess() {

 final Channel_of_Integer channel1 = new Channel_of_Integer();
 final Channel_of_Integer channel2 = new Channel_of_Integer();
 Process par =
 new Parallel(new Process[] {
 new Producer(channel1,
 channel2),
 new TwoConsumers(channel1,
 channel2)
 });
 par.run();
 }

}

 62

Producer.java:

///
// System name : Main
// Class name : Producer
// Date and time : Mon Feb 02 02:02:02 2002
///

//import files
import csp.lang.*;
import csp.lang.Process;
import csp.lang.Integer;
import csp.lang.Double;

class Producer implements Process {

 ChannelOutput_of_Integer out1;
 ChannelOutput_of_Integer out2;
 Integer object;
 public Producer(
 ChannelOutput_of_Integer out1_gen,
 ChannelOutput_of_Integer out2_gen) {
 out1 = out1_gen;
 out2 = out2_gen;
 object = new Integer();
 }
 public void run() {
 object.value = 100;
 out1.write(object);

 object.value = 200;
 out2.write(object);
 }
}

TwoConsumers.java:

///
// System name : Main
// Class name : TwoConsumers
// Date and time : Mon Feb 02 02:02:02 2002
///

//import files
import csp.lang.*;
import csp.lang.Process;
import csp.lang.Integer;
import csp.lang.Double;

class TwoConsumers implements Process {

 ChannelInput_of_Integer in1;
 ChannelInput_of_Integer in2;
 public TwoConsumers(
 ChannelInput_of_Integer in1_gen,
 ChannelInput_of_Integer in2_gen) {
 in1 = in1_gen;
 in2 = in2_gen;
 }
 public void run() {
 Process Seq =
 new Sequential(new Process[] {
 new Consumer1(in1),
 new Consumer2(in2)
 });
 Seq.run();
 }
}

 63

Consumer1.java:

///
// System name : Main
// Class name : Consumer1
// Date and time : Mon Feb 02 02:02:02 2002
///

//import files
import csp.lang.*;
import csp.lang.Process;
import csp.lang.Integer;
import csp.lang.Double;

class Consumer1 implements Process {

 ChannelInput_of_Integer in;
 Integer object;
 public Consumer1(
 ChannelInput_of_Integer in_gen) {
 in = in_gen;
 object = new Integer();
 }
 public void run() {
 in.read(object);
 java.lang.System.out.println(object);
 }
}

Consumer2.java:

///
// System name : Main
// Class name : Cosumer2
// Date and time : Mon Feb 02 02:02:02 2002
///

//import files
import csp.lang.*;
import csp.lang.Process;
import csp.lang.Integer;
import csp.lang.Double;

class Cosumer2 implements Process {

 ChannelInput_of_Integer in;
 Integer object;
 public Cosumer2(
 ChannelInput_of_Integer in_gen) {
 in = in_gen;
 object = new Integer();
 }
 public void run() {
 in.read(object);
 java.lang.System.out.println(object);
 }
}

 64

REFERENCES

Breedveld, P.C. (1985), Multibond-graph elements in physical systems theory, Journal of the

Franklin Institute, 319, (1/2), 1-36.
Broenink, J.F. (1999), 20-Sim software for hierarchical bond-graph/block-diagram models,

Simulation Practice and Theory, 7, 481-492.
Broenink, J.F. and G.H. Hilderink (2001), A structured approach to embedded control

systems implementation,
Broenink, J.F. and C. Kleijn (1999), Computer-aided design of mechatronic systems using

20-SIM 3.0, Proc. 2nd Workshop on European Scientific and Industrial
Collaboration WESIC'99, Newport, United Kingdom, (Ed.), 27-34.

ControlLabs Product B.V. (2000), Helpfile 20-sim,
Douglass, B.P. (1998), Real-Time UML: developing efficient objects for embedded systems,

Addison Wesley Longman, 0-201-32579-9.
Drunen, J.M.v. (2000), Realization of link drivers implementing CSP-channels on 20-

controller, MSc thesis, Faculty of Electrical Engineering, Control Laboratory,
University of Twente, Enschede, Netherlands.

Hilderink, G.H. (1999), Communicating Threads for C, internal document,
Hilderink, G.H. (2001), Communicating Threads for Jave (CTJ) internet home page,

http://www.rt.el.utwente.nl/javapp,
Hilderink, G.H. (2001), CSP diagram: an introduction, internal document,
Hilderink, G.H., J.F. Broenink and A.W.P. Bakkers (1999), Communicating threads for Java,

Proc. 22nd World Occam and Transputer User Group Technical Meeting, Keele,
UK, (Ed.), 243-261.

Hoare, C.A.R. (1985), Communicating Sequential Processes, Prentice Hall, 0-13-153271-5
(0-13-153289-8 PBK).

Legius, M. (1999), Volvo S80, PT Embedded Systems, 10-15.
Paynter, H.M. (1961), Analysis and design of engineering systems, MIT Press, Cambridge,

MA,
Volkerink, H.J. (2000), CSP Design Models, Methodology and Tool support for Real-Time

Embedded Distributed Heterogeneous Software, MSc thesis, Faculty of Electrical
Engineering, Control Laboratory, University of Twente, Enschede, Netherlands.

