
faculteit der

elektrotechniek

Universiteit Twente

On training strategies for parsimonious
learning feed-forward controllers

Govert Valkenburg

M.Sc. Thesis

Supervisors: prof.dr.ir. J. van Amerongen
dr.ir. T.J.A. de Vries
ir. B.J. de Kruif

28 February 2001
Report Number
001R2001

Control Laboratory
Dpt. of Electrical
Engineering

University of Twente
P.O. Box 217
NL 7500 AE Enschede
The Netherlands

ii

Summary

This thesis addresses the question how to train a Parsimonious Learn-
ing Feed-Forward Controller (PLFFC). In Learning Feed-Forward control
(LFFC) generally a well-conditioned feedback control signal is used to train
a feed-forward controller, which mainly performs a function approximation.
Then the feedback control signal is seen as an approximation of the in-
verse plant dynamics with respect to a particular reference signal. The
feed-forward controller generally converges to the inverse plant dynamics.

In a PLFFC a so-called parsimonious B-spline network (P-BSN) is used
for the function approximation. In a second order BSN, (the only type used
in this research) a function is approximated part-wise by straight lines. In
a P-BSN a multivariate function is approximated by the sum of a set of
univariate (or lower-variate) sub-BSNs. It is not obvious what information
should be stored in what sub-BSN. If information is stored into the wrong
network, we speak of interference.

It turns out that the quality of training a PLFFC mainly depends on
symmetry in the training paths. Due to symmetry, some effects add up to
zero, which is important for avoiding interference between the sub-BSNs.

The theory was applied both in simulations and in experiments. The
simulations turn out to be successful: a significant decrease of the error is
achieved. It turns out that the error reduction by poor paths is about equal
to the reduction by well-conditioned paths, whereas the extent to which they
extract the correct mappings from the plants is really smaller, in this sense
that the mappings learnt by the BSN do not equal the target functions.
Furthermore it was shown that a poorly conditioned path can even cause
divergence.

In experiments it was found that discontinuous relations in the plant dis-
able the LFFC to learn the correct relations. This remains the same when
PLFFC is used. This is the main reason why the performance PLFFC when
applied to a real plant according to the presented theory, is limited. Fur-
thermore in some cases the difference between reference and system states
is too large. Still a significant error reduction is achieved.

The theory was proven to be correct, with some remarks to its applica-
bility. A training procedure for PLFFC is proposed in the end.

iii

iv

Samenvatting

Deze scriptie behandelt de vraag hoe een Parsimonious Learning Feed-
Forward Controller (PLFFC, spaarzame lerende vooruitregeling) dient te
worden getraind. In Learning Feed-Forward Control (LFFC, lerende vooruit-
regeling) wordt het uitgangssignaal van een goed geconditioneerde terug-
gekoppelde regeling gebruikt om een vooruitregeling te laten leren. Deze
vooruitregeling bestaat uit een functie-approximator. Het terugkoppelings-
regelsignaal wordt gezien als een benadering van de inverse proces-dynamica,
toegepast op het referentie-signaal, welke zo geleerd wordt.

In een PLFFC wordt een Parsimonious B-Spline Network (P-BSN, spaar-
zaam B-spline netwerk) gebruikt voor de functie-approximatie. In een tweede-
orde BSN (het enige type gebruikt in dit onderzoek) wordt een functie be-
naderd door een aantal rechte lijnstukken. In een P-BSN wordt een multi-
variabele functie benaderd door de som van meerdere univariabele (of ‘lager’-
variabele) sub-netwerken. Het is niet op voorhand bekend welke informatie
in welk netwerk dient te worden opgeslagen.

Het blijkt dat het trainen van een PLFFC goeddeels afhangt van de
symmetrie in het trainingspad. Door deze symmetrie middelen bepaalde
effecten precies uit, wat belangrijk is voor het voorkomen van foutief opslaan
van informatie.

De theorie is zowel in simulaties als in experimenten toegepast. De simu-
laties zijn succesvol: een goede reductie van de fout blijkt te worden gehaald.
Het blijkt dat de foutreductie bij slechte paden ongeveer gelijk is aan die
bij goede paden, maar dat goede paden veel beter in staat zijn de fysische
functies uit het proces te abstraheren. Dit laatste wordt beoordeeld door
de inhoud van een netwerk na leren te vergelijken met de fysische functies.
Verder is aangetoond dat een slecht pad divergentie kan veroorzaken.

In experimenten bleek dat discontinue relaties binnen het proces verhin-
deren dat LFFC goed leert. Dit blijkt net zo zeer voor PLFFC te gelden,
waardoor de theorie uit deze scriptie slechts beperkt toepasbaar bleek in de
praktijk. Verder is soms het verschil tussen referenties en systeemtoestanden
te groot. Niettemin is een goede foutreductie behaald.

De theorie uit deze scriptie blijkt correct te zijn, al verdient toepass-
ing verder onderzoek. Een trainingsprocedure voor PLFFC wordt tenslotte
gegeven.

v

vi

Preface

Give me one viewpoint outside of nature, and I will demistify
her to her heart - Archimedes

The present report is the result of half a year of hard work at the Control
Laboratory. I tend to say it was a good time doing, but as Archimedes
stated: one cannot judge on something one is part of. The same holds for
the results of my research. For the time being, they look fairly satisfactory,
but their true value can only be established a long time afterward.

Concerning their present apparent value, I think I should pay gratitude
to my supervisors. I thank Job van Amerongen and Theo the Vries for the
opportunity to carry out this assignment, as well as for the fruitful discus-
sions. A special word of appreciation I speak to Bas de Kruif. Bas’ intensive
guiding has been an important cornerstone for this project. Without, the
outcomes would certainly been different, and then I do not necessarily mean
‘better’. Bas, we do have very different ways of thinking, which I think have
their merits one to another. Good luck with your Ph.D. Thesis!

Furthermore I should thank Belle, Hanneke and Marion, for the sup-
porting company, and sometimes the confronting remarks: these proved to
be the most important archimedean points in my recent life.

Thanks for my parents, for supporting me all the time. Thanks to
Jochem and Wessel for being Jochem and Wessel, without whom I would
not be Govert.

Finally I should thank Adolphe, Nicolo and Igor, for making this life
bearable at all.

Govert Valkenburg

Enschede, february 2001

vii

viii

Nomenclature

Throughout this thesis the following notation is used.

γ learning rate of Learning Feed-Forward Control
d spline width
D set of samples
I unity matrix
J cost function
k discrete time index
m mass of the translator
µµ membership vector of B-spline network
p cross-correlation vector
ωb bandwidth of the control system
ωl high-pass cut-off frequency
p probability
r reference signal
R auto-correlation matrix
R−1 inverse of matrix R
R−̃1 part-wise inverse of matrix R
s Laplace-operator
S sensitivity function
Ts sample time
u control signal
û output of function approximator/ approximation of u
u average of a control signal over a number of samples
w weight vector of B-spline network
ŵ optimal weight vector of B-spline network

ix

x

Contents

1 Introduction 1
1.1 Why learning? . 1
1.2 Parsimonious learning feed-forward control 2

1.2.1 Learning feed-forward control 2
1.2.2 B-spline networks . 3
1.2.3 Parsimonious networks 4

1.3 Case: PLFFC for the linear motor 6
1.4 Aim, methods and thesis outline 7

2 Theory 9
2.1 B-spline networks . 9

2.1.1 Univariate B-spline networks 9
2.1.2 Bivariate B-spline networks 13

2.2 Parsimonious B-spline networks 14
2.2.1 Univariate parsimonious B-spline networks 14
2.2.2 Multivariate parsimonious B-spline networks 18
2.2.3 Pragmatic approach 19

2.3 Noise and frequency behaviour 20
2.4 Stability . 20
2.5 Linear motor model . 21

2.5.1 Cogging . 22
2.5.2 Friction . 22
2.5.3 Commutation . 23
2.5.4 Noise . 24

2.6 Parsimonious learning feed-forward control for the linear motor 25
2.6.1 Linear motor model without commutation 25
2.6.2 Linear motor model with commutation 25

2.7 Network choices and cost functions 26
2.7.1 Position network . 26
2.7.2 Velocity network . 26
2.7.3 Acceleration network 27
2.7.4 Position-velocity network 27

xi

xii CONTENTS

3 Simulation 29
3.1 Simulation design . 29

3.1.1 Learning speed and convergence 30
3.1.2 Regularisation . 30
3.1.3 Paths: order and coverage 30
3.1.4 Paths: symmetry . 31
3.1.5 Spline distributions . 32

3.2 Simulation 1: Optimal learning sequence 33
3.3 Simulation 2: Simple LM . 34
3.4 Simulation 3: LM with commutation 41
3.5 Simulation 4: LM with commutation and noise 47
3.6 Discussion . 48

4 Experiments 51
4.1 Tecnotion linear motor . 51
4.2 PID-design . 52
4.3 Experiment design . 54
4.4 Results . 58
4.5 Discussion . 65

5 Conclusions and recommendations 67
5.1 Conclusions . 67

5.1.1 Results . 67
5.1.2 Principles . 67
5.1.3 Function decomposition and criteria 68
5.1.4 Richness . 68
5.1.5 Symmetry . 69
5.1.6 Divergence . 69
5.1.7 Applicability . 69

5.2 Training procedure . 69
5.3 Recommendations . 71

5.3.1 Convergence . 71
5.3.2 Criteria . 71
5.3.3 Regularisation and filtering 72

A Mathematical theory 73
A.1 Diag-operation . 73
A.2 Partwise matrix inversion . 73

B Matlab procedures 75
B.1 createrefxx.m . 75
B.2 learn.m . 75
B.3 lookup1.m . 76
B.4 lookup2.m . 76

CONTENTS xiii

B.5 smartinv.m . 77
B.6 createtarget.m . 78
B.7 createvalmat.m . 78

C 20-Sim extension lookup2.dll 79

D Files for the Linear Motor 81
D.1 filepath.cc . 81
D.2 lmplffc.cc . 82
D.3 bsnfile.cc . 82

xiv CONTENTS

Chapter 1

Introduction

This thesis describes the results of an M.Sc.-assignment at the Control Lab-
oratory. The purpose of the assignment is to formulate a training strategy
for so-called parsimonious learning feed-forward controllers (PLFFCs). In
this chapter a short introduction to PLFFCs and their specific features is
given. In the last section of this chapter, the goal of the project is formu-
lated, and an overview of the remainder of this thesis is given. We start
with the question why learning is relevant in control theory at all.

1.1 Why learning?

The most commonly formulated control problem, is a situation where we
have a plant that does not by itself behave the way we want it to. In order to
make it behave conform our demands, we need to apply a control algorithm
to the plant. The quality of this control algorithm depends, among other
things, on our knowledge of the plant. This knowledge is often limited.
This can be caused by low-precision production processes (fabricated plants
being slightly different from what the supplier tells), by poor modelling due
to complexity of the process (one could think of environmental processes),
by neglect of high-frequency dynamics, or e.g. by slight changes in the plant
as time proceeds.

In this study we consider plants of which we do not know the entire
dynamics. The objective is to have these dynamics learnt by a function ap-
proximator, and then use this learned mapping to correct for the dynamics.
This technique is referred to as learning control . In this thesis a specific
form of learning control, namely PLFFC, will be addressed.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A SISO feedback control system

1.2 Parsimonious learning feed-forward control

1.2.1 Learning feed-forward control

In figure 1.1 a SISO feedback control system is shown. The respective blocks
C and P represent the compensator and the plant. r is the reference signal,
u is the control signal, e is the error and y is the output signal. The following
sequence of equations holds:

e = r − (PC)e
e(1 + PC) = r

e = (1 + PC)−1r (1.1)

We now continue:

u = Ce

= (1 + PC)−1Cr

=
r

C−1 + P
(1.2)

It now follows that if the transfer function of C is such that the error e
is generally small, the signal u practically equals P−1r, which is exactly
the optimal feed-forward signal (Ȧström and Wittenmark, 1997, p. 234).
Generally this means that C has a large proportional gain, which may be
upper bounded by stability criteria.

If we apply this feed-forward control signal a priori, i.e. as a direct
function of the reference and without measuring the error, we have a so-
called feed-forward controller (FFC). See figure 1.2 for a SISO feedback
control system, enhanced with a feed-forward path.

In our case the mapping from reference r to the feed-forward signal is
not known in advance, so it should be learnt first. The system in figure 1.3
depicts such a learning feed-forward controller, which is adjusted as a result
of previous control actions. In the picture, the block named L represents
a learning strategy. In this project an LFFC is implemented by using a
B-spline network (see also subsection 1.2.2) as a function approximator.

1.2. PARSIMONIOUS LEARNING FEED-FORWARD CONTROL 3

Figure 1.2: A SISO feedback-feed-forward control system

Figure 1.3: SISO learning feed-forward control system

1.2.2 B-spline networks

Artificial Neural Networks (ANNs) constitute a class of function approxi-
mators. ANNs generally learn a mapping from a known quantity (e.g. a
reference signal) to an unknown quantity (e.g. the control signal applied to
the plant). By learning, we get an approximation, and can thus use this
knowledge to increase performance.

A B-spline Network (BSN) is a member of the class of ANNs. In a BSN
a function is approximated by a number of basic splines (a special type of
low-order polynomials), each acting on a finite input range with a certain
weight. The principle of function approximation by a BSN is depicted in
figure 1.4. A more thorough description is given in section 2.1. In this
project a BSNs will be used to learn the mapping from the reference signal
to the control signal. Velthuis (2000, p. 13) and (De Vries, Velthuis and

Figure 1.4: Function approximation by a univariate BSN

Van Amerongen, 2000) give a number of advantages of this type of network:

• A system employing a BSN does not suffer from local minima with

4 CHAPTER 1. INTRODUCTION

respect to the optimality criterion, since the output is a linear func-
tion of the network weights. This means that parameters converge to
certain limit points, regardless of their initial values.

• Local learning is well-supported, since B-splines have only a finite
support, and only a finite number of B-splines have a membership at
a certain input value.

• Tuneable precision is possible: the accuracy of the approximation by
the BSN can easily be influenced by changing the number of B-splines
on a certain input range.

• A BSN is rather transparent, in this sense that its contents can be
interpreted intuitively.

• A BSN has few design parameters, compared with other kinds of
ANNs.

The main disadvantage of a BSN is that it generally suffers from the so-
called curse of dimensionality, which will be addressed in the next paragraph.

A second disadvantage is that due to the local support of the splines,
the generalisation ability of a BSN in general is limited, compared to ANNs
with a larger support of its basis functions.

1.2.3 Parsimonious networks

For a BSN, the number of network weights increases exponentially with the
number of network inputs. From figure 1.5 it is clear that a network fea-
turing two inputs with each domain split up in n splines needs n2 network
coefficients. Beside on memory usage, this also has its implications on train-
ing demands: the required amount of training data increases linearly with
the number of coefficients, so it increases exponentially with the number of
inputs. This phenomenon is known as the curse of dimensionality (Brown
and Harris, 1994, p. 321).

One way to avoid this problem is to replace the bivariate network with
two univariate networks, as shown in figure 1.6. This new configuration is
called a parsimonious network (Velthuis, 2000; Bossley, 1997, p.100).

From the figures it can be seen that the configuration of figure 1.5 has
different properties than the configuration of figure 1.6. In the bivariate
network the output depends on only one point in the input space, which
is uniquely given by the pair of input values (r1, r2). By contrast, in the
univariate networks the output depends on two points in different input
spaces, r1 and r2, which influence both exactly one network.

There are conditions a function has to meet, in order to be approximated
by a parsimonious network instead of a multivariate network. Knowledge is
needed regarding the question whether the multivariate target function can

1.2. PARSIMONIOUS LEARNING FEED-FORWARD CONTROL 5

Figure 1.5: Bivariate B-spline network

be expressed as the sum of univariate functions. I.e., we should be able to
write:

u = u(r1, r2) = u1(r1) + u2(r2) (1.3)

Velthuis (2000, p. 101) explains this ANalysis Of VAriance (ANOVA) for
systems with an arbitrary number of inputs. From this ANOVA-representation
it follows that a reduction of the number of network coefficients is possible
if in the expression

u = u(r1, r2, · · · , rn)
= u0 +

∑
i

ui(ri) +
∑
i,j

ui,j(ri, rj) + · · ·+ u1,2,···,n(r1, r2, · · · , rn)

(1.4)

a sufficient number of terms from the right-hand side (at least the last one)
cancels.

Besides avoiding the curse of dimensionality, there is another advantage
of the second configuration above the first: it has a higher generalisation
ability.

Nevertheless, the configuration also has some disadvantages. The main
disadvantage is the problem that adjusting the network parameters is not

6 CHAPTER 1. INTRODUCTION

Figure 1.6: Combination of two univariate B-spline networks

trivial: to achieve a certain output of the overall network for a certain
combination of input r1 and input r2, an infinite number of combinations
of outputs of the networks are valid, since the outputs of the univariate
networks are added (see figure 1.6). This has its implications on the training
sets: although training sets might be smaller, a higher demand may be put
on its properties. Furthermore, because of possible interference between
several sub-network and between several splines in one network, multiple
session training may be needed. This thesis addresses strategies to solve
these problems.

With the knowledge from this section and the previous sections, we can state
the following definition: with parsimonious learning feed-forward control
(PLFFC) we indicate the class of systems where parsimonious networks are
incorporated as function approximators in a feed-forward control system.

1.3 Case: PLFFC for the linear motor

The theory formulated in this thesis has been applied to a mathematical
model of a linear motor, as well as to the physical linear motor itself. A
linear motor can be seen as is a moving mass with one degree of freedom,
namely a linear movement. The mass receives its thrust force by magnetic
induction. Several applications of linear motors have been described, ranging
from the Maglev and Transrapid gliding trains, to high-precision scanning
plants for medical purposes. The linear motor considered in the simulations,
has a mass of approximately 37 kg, and a free range of 0.5 m. The physical
linear motor, made by Tecnotion, has a mass of approximately 5 kg, and a
free range of 0.5 m too.

The linear motor comprises some interesting features relevant to this
project. First, its mass may deviate a little from its specifications. This
deviation can be learnt. Second, it suffers from cogging, a force due to non-
homogeneity of the magnetic field. Third, the motor suffers from mechanical
friction. And fourth, it suffers from commutation inaccuracy due to vari-
ations in placement and strength of the permanent magnets, which brings
about an undesirable force.

1.4. AIM, METHODS AND THESIS OUTLINE 7

Because of the non-homogeneity of the magnetic field, the latter depends
on both position and velocity. The other features depend only on accelera-
tion, position and velocity respectively.

These four undesirable properties are well-suited for learning by a PLFFC.
The phenomena are assumed to simply add up, so a decomposition of the
sum is possible. If indeed all undesirable behaviour is due to either of these
phenomena, it can be compensated for by means of a PLFFC.

A more accurate description of the linear motor and the decomposition
for PLFFC is given in chapter 2.

1.4 Aim, methods and thesis outline

The objective of this project is to formulate a training procedure, in order to
let a parsimonious B-spline network learn correctly. The goal of this project
is formulated as follows:

To formulate a framework of principles on learning strategies for
parsimonious learning feed-forward controllers, as well as a design
procedure to develop reference paths for training a parsimonious
learning feed-forward controller.

To this end, first an analysis of both univariate and bivariate BSNs is per-
formed. A number of principles are presented with foundations (chapter 2),
and tested empirically.

From within the framework constituted by these principles, reference
paths can be defined (section 3.1). These reference paths are applied in sim-
ulations with a univariate PLFFC, in simulations with a bivariate PLFFC,
and in simulations with a bivariate PLFFC with measurement noise (chapter
3).

After that, some paths are applied in a real experiment (chapter 4). It
turns out that the possibilities, such as e.g. data storage and mathemati-
cal manipulations, in physical experiments are much more restricting than
in simulations, so not everything valid in simulations can be confirmed in
experiments. Furthermore, we will see that the difficulties of LFFC will
disturb the experiments partly.

From these results some conclusions will be drawn. We will find sufficient
reasons to accept the formulated theory, be it with some important remarks
to its applicability. From this, a procedure for training a PLFFC is given.
Therefore useful recommendations for future research will be given (chapter
5).

8 CHAPTER 1. INTRODUCTION

Chapter 2

Theory

In this chapter the theoretical background of the project is addressed. First
the properties of BSNs are discussed, both the univariate and bivariate fam-
ilies, as well as their parsimonious versions. Furthermore noise and stability
are discussed briefly, as well as a more pragmatic approach to train BSNs.
Then the linear motor model and its implications on PLFFC are addressed.

2.1 B-spline networks

2.1.1 Univariate B-spline networks

In a B-spline network a function is approximated by a number of B-splines.
B-splines (basic splines) are low-order polynomials with special properties.
For more formal definitions of B-splines the reader is referred to Brown and
Harris (1994) and Velthuis (2000). In this project only second order BSNs
are used. These incorporate first order polynomials, i.e. straight lines. In
this case a BSN can be seen as a linear interpolator. The approximation is
illustrated in figure 2.1. The function (bold line) is approximated (dotted

Figure 2.1: Function approximation by a univariate BSN

line) by assigning a weight (‘value’) to each B-spline (blank triangles). For
clarity the distribution of the B-splines is depicted below the approximation
(grey triangles).

9

10 CHAPTER 2. THEORY

In this project the BSNs are updated off-line. This means that during
operation the contents of the network is left unaffected, and between two
runs the new contents of the network is calculated. Two reasons motivate
this decision. Firstly, it provides more accurate time averaging, on which
most of the ideas in this thesis are based. Off-line time averaging of a
discrete-time signal u(k), given by

u =
1
K

K∑
k=1

u(k) (2.1)

with K the number of samples and k the discrete time index, is different
from the on-line approximation

û(k) = γ · u(k) + (1− γ) · û(k − 1) (2.2)

of the time average, where γ is a learning factor. In the online case the
relevance of a sample to the average decreases when the sample was taken
further back in time, whereas in this study all samples are considered equally
important. (Note that by using a time varying learning factor γ, we can
transform the online averaging into the off-line version. This might be inter-
esting for larger training sets and time-varying processes, but it is left out
of scope in this study.)

Secondly, off-line learning prevents instability due to dynamical behaviour
of the learning loop (L-block and feed-forward controller, see figure 1.3), sim-
ply because there is no dynamical behaviour: network weights are updated
only when the plant is not running. With online learning, the properties of
a BSN allow a learning action in a certain sample to influence the output of
the BSN at the next sample. This dynamical behaviour may cause the loop
to become unstable. This dynamical instability should not be confused with
divergence of the network parameters, which can still occur in the off-line
case.

Learning

Every point r in the (one-dimensional) input space corresponds exactly to
one vector of the form µµ(r) = (µ1(r), µ2(r), · · · , µN (r))T . Here every coeffi-
cient µi(r) indicates the extent to which the corresponding B-spline number
i contributes to the output for this r. This extent is usually referred to as
the membership of spline i at point r.

Let weight vector w = (w1, w2, · · · , wN)T be the vector with the magni-
tudes of the B-splines. Then the output û of the network for a certain r is
given by:

û(r) = µµ(r)Tw (2.3)

2.1. B-SPLINE NETWORKS 11

We now want to minimise the difference between this approximation û and
the target function u for the entire domain of r. Therefore we write down
the following cost function:

Jc =
∫ r1

r0
(û(r)− u(r))2 dr (2.4)

with r0 and r1 respectively the minimum and maximum values for r. Ver-
woerd (2000) showed that the optimal solution of w is given by

w = R−1p (2.5)

where R is the auto-correlation matrix defined by

R =
∫ r1

r0
µµ(r)µµ(r)Tdr (2.6)

and p is the cross-correlation vector defined by

p =
∫ r1

r0
u(r)µµ(r)dr (2.7)

However, this relation is valid for continuous functions only (hence the
subscript ‘c’ in the cost function). In order to apply to (2.5) the entire
function u(r) needs to be known, whereas in practice we will only have a
limited number of samples of u. So we need a new cost function which is
minimised for the available number of samples. The following discrete cost
function approximates the continuous one for a set D of samples:

Jd =
∑
k∈D

(u(r(k))− û(r(k)))2 (2.8)

(Note that this function is lower bounded by zero if the number of samples
is smaller than or equal to the number of B-splines.) Now again (2.5) holds
(Verwoerd, 2000), but R and p are defined in a different manner:

R =
∑
k∈D

µµ(r(k))µµ(r(k))T

=
∑
k∈D

µ1(k)2 µ1(k)µ2(k) · · · µ1(k)µN (k)

µ2(k)µ1(k) µ2(k)2 · · · µ2(k)µN (k)
...

...
. . .

...
µN (k)µ1(k) µN (k)µ2(k) · · · µN (k)2

 (2.9)

p =
∑
k∈D

ur(k)µµ(k)

=
∑
k∈D

ur(k)µ1(k)
ur(k)µ2(k)

...
ur(k)µN (k)

 (2.10)

12 CHAPTER 2. THEORY

For a second order BSN R generally has the form

R =

µ11 µ12 0 · · · · · ·
µ21 µ22 µ23 0 · · ·

0 µ32
. 0

... 0
. µN−1,N

...
... 0 µN,N−1 µNN

(2.11)

Here µij is the sum over all samples of the according membership cross term.
It is not unthinkable that a certain spline i remains unvisited, i.e., no sample
in the support of spline i is in the training set. Then the corresponding
µii is zero, as well as its neighbour cross-terms, thus resulting in a singular
matrix R. In this case R cannot be inverted regularly, but it can be inverted
partwise, i.e. all square submatrices that are on the main diagonal of R and
that are not singular can be inverted, and be placed on the corresponding
place on the diagonal of partwise inverse R−̃1. In this case the network can
be seen as a set of sub-networks, each acting on a limited sub-domain of the
original network. See also appendix A for this partwise inversion.

Regularisation

Since training sets generally suffer from noise, disturbances and imperfect
reference paths, differences between the target function and its approxima-
tion can be large. Especially with badly conditioned training sets, network
coefficients can blow up to very large values (R being nearly singular, as a
result of poorly visited splines). To avoid this, regularisation is introduced.
To this end, we introduce an enhanced cost criterion (applying definitions
(2.7) and (2.6) for p and R) respectively:

Jd,r =

∑
k∈D

(u(r(k))− û(r(k)))2

+ wTQw

=
∑
k∈D

(u(r(k)))2 − 2wTp + wTRw + wTQw (2.12)

The only difference between this regularised discrete cost function, and the
former discrete cost function, is that a quadratic penalty is put on the ab-
solute value of the network weights. This penalty is quantised by matrix Q
which should be positive semi-definite (i.e. vTQv ≥ 0 ∀ v), and such that
Q + R is regular (i.e. invertible). From the general appearance of R (see
(2.11)) it follows that these demands are generally met if Q is a positive
diagonal matrix.

To optimise this criterion, we take the gradient with respect to w, and
set it equal to zero, yielding:

∂Jd,r
∂w

= −2p + 2Rw + 2Qw = 0 (2.13)

2.1. B-SPLINE NETWORKS 13

This gives the optimal solution for w:

ŵ = (R+Q)−1p (2.14)

Now the remaining question is how to find a sensible value for Q. In a well-
conditioned training set, we do not want to experience any influence of Q
onto the learning process. Now let’s assume that Q = I · 10−4, with I the
unity matrix. In this case the matrix Q is significant only on those elements
on the main diagonal where R has an accordingly small (or smaller) element.
We should now realise that all elements on the main diagonal of R are sums
of quadratic memberships of certain splines. We can interpret the square
root of these sums as the second order norm of the extent to which the spline
was visited. This norm is at most order 10−2 if the square is at most order
10−4 (which was assumed from the fact that Q is relevant at all). So Q is
relevant only on those splines, which were visited with a membership of 10−2

or less (counted by the second order norm). We can safely call this badly
visited, and assume that with Q = I · 10−4 the influence of regularisation is
justified. Any visit with a membership larger than 10−2, which in case of a
second order BSN equals a single visit to 98% of the support of the spline,
will cause the regularisation to become irrelevant.

This regularisation comes close to the use of the partwise inversion al-
gorithm previously described. The main difference is that partwise inver-
sion deals with singular matrices, which contain sub-matrices which are
by themselves well conditioned. Regularisation on the other hand, takes
care of matrices which are nearly singular (but not necessarily truly singu-
lar) by adding a small-valued non-singular matrix to it. This means that
zero-valued elements will now become nonzero, thus coming up with virtual
visits to splines which are not visited at all, and making the final function
approximation less reliable. From this we can state that partwise inversion
is preferred if the sub-matrices are well conditioned. Should this not be the
case, regularisation can be applied. In practice this means that partwise
inversion should always be applied, and only be replaced by regularisation
if network contents blow up to implausible large values.

2.1.2 Bivariate B-spline networks

Analogously to a univariate BSN, we can interpret a bivariate second order
BSN as a two-dimensional linear interpolation table. For a bivariate BSN
learning is slightly different (Verwoerd, 2000). To get a learning rule, the
network should be transformed in such a way, that a new univariate network
arises. This univariate network can now be dealt with in the same way as
described before. For more details the reader is referred to Verwoerd (2000,
p. 23 and further). The main problem is now that the auto-correlation
matrix R is generally not regular. This means that inversion is impossible,
and that learning can only be performed by a sub-optimal algorithm (which

14 CHAPTER 2. THEORY

after a number of learning episodes still converges to the optimal solution).
In the case of our bivariate BSN this yields the following update rule:

∆w = γ·Diag−̃1

∑
k∈D

µµ(r(k))

∑
k∈D

µµ(r(k)) (u(r(k))− û(r(k)))

(2.15)

See appendix A for the Diag-operator and partwise inversion of a matrix.
Here γ is the learning rate of the BSN, which in case of incorporation in an
LFFC is the same as the learning rate of the LFFC.

2.2 Parsimonious B-spline networks

From now on we classify parsimonious networks after the ‘highest variate’
network contained in it. This means that e.g. a parsimonious network
containing two univariate networks and one bivariate network, is classified
as bivariate. One should not find oneself confused by the fact that the
parsimonious network itself has perhaps even four inputs, although still it
is not classified as four-fold multivariate.

2.2.1 Univariate parsimonious B-spline networks

Four principles with foundations are given in this subsection. They concern
the features of a training data set, as well as the strategies one should follow
when updating a network.

Consider a parsimonious network with an arbitrary number of inputs
r1 · · · rN and an according number of univariate networks. Let the overall
target function u(r1, r2, · · · , rN) (i.e. the function which should be approxi-
mated sufficiently accurately by the network after sufficient training) be the
sum of the partial target functions u1(r1), u2(r2), · · · , uN (rN). Let r(k) =
(r1(k), r2(k), · · · , rN (k))T be the vector of input values as a function of dis-
crete time index k (reference trajectory). Let n,m ∈ [1, 2, · · · , N], n 6= m.
Then the following principles hold.

Principle 2.1 For a small neighbourhood ∆rn0 of an arbitrary but certain
value rn0 of input rn, the learning of a function un(rn) does not suffer from
interference by any function um(rm), if the values of um(rm(k)) for this input
vector sequence r(k) add up to zero over the (r1, r2, · · · , rn−1, rn+1, · · · , rN)×
∆rn0-subspace of r, i.e. if there is no correlation between the functions on
this subspace for the given sequence r(k).

This means that a number of values of rn in ∆rn0 has to occur a number
of times with different values of rm, such that the corresponding values of
target function um(rm) add up to zero, i.e. statistical correlation is zero.

2.2. PARSIMONIOUS B-SPLINE NETWORKS 15

Foundation 2.1 First consider the case where r1 and r2 are discrete vari-
ables. Then ∆rn0 has zero width. Let u be written as (according to the
ANOVA representation):

u(r) = u1(r1) + u2(r2) (2.16)

In this case the foundation is straightforward. Let two vectors r(1) and r(2)
occur, with the values (r1(1), r2(1)) and (r1(2), r2(2)), with r1(1) = r1(2)
and u2(r2(1)) + u2(r2(2)) = 0 . The average of the two function values
resulting from these pairs is:

u =
1
2

(u(r(1)) + u(r(2)))

=
1
2

(u1(r1(1)) + u1(r1(2)) + u2(r2(1)) + u2(r2(2)))

= u1(r1(1)) +
1
2

(u2(r2(1)) + u2(r2(2)))

= u1(r1(1)) (2.17)

This means that the average equals the value of u1(r1(1)), which is exactly
the value learnt by the r1-network for this value of r1. It is not influenced by
values of u2, since these add up to zero. It is obvious that the foundation also
holds for larger numbers of samples, and larger numbers of partial functions
un.

Now consider the case where r1,2 are continuous variables. In this case
it is unlikely that two identical values of r1 will occur. Therefore we should
not consider the exact value of r1, but a small neighbourhood of it. Say a
set of K samples has its values of r1 in a ∆-neighbourhood of r1(1), with
this neighbourhood smaller than the spline width. Then the average value
of this set of samples, as far as it is relevant to the spline, is given by (with
µ the membership of this certain spline):

u =
1
K

K∑
k=1

u(r(k))µ(r(k))

=
1
K

K∑
k=1

u1(r1(k))µ(r1(k)) +
1
K

K∑
k=1

u2(r2(k))µ(r1(k))

≈ µ(r1(·))
K

K∑
k=1

u1(r1(k)) +
µ(r1(·))
K

K∑
k=1

u2(r2(k)) (2.18)

In the last step it was assumed that since ∆ is small in comparison to the
spline width, µ will be approximately constant for the set of samples. The
index k to r1 was replaced by a dot, to indicate that the value of r1 no longer
depends on k. In this case the second sum adds up to zero (premiss of the
principle).

16 CHAPTER 2. THEORY

So far we have neglected the cross terms of µ in (2.6). This is justified
from the fact, that since ∆ is small, we can consider the sum above as a
new set of samples of u1(r1) (without interference of u2!), which will be
incorporated in (2.6) correctly.

Principle 2.2 For a small neighbourhood ∆rn0 of an arbitrary but certain
value rn0 of input rn, the learning of a function un(rn) does not suffer
from interference by any function um(rm) if, for this trajectory r(k), this
um(rm) has an expected value 0 over the (r1, r2, · · · , rn−1, rn+1, · · · , rN) ×
∆rn0-subspace of r corresponding to this rn0, and the number of occurrences
of this value of rn within this neighbourhood is large enough.

Foundation 2.2 Actually this is a generalisation of the first principle. If
the number of occurrences of this value of rn is large enough, the sum over
the (r1, r2, · · · , rn−1, rn+1, · · · , rN)×∆rn0-subspace of r corresponding to this
value of rn will be zero because of the expected value of zero. We should
not neglect the fact that the expected value depends on the trajectory r(k).
The following statistical property holds for a sufficient number of samples
(Bhattacharryya and Johnson, 1977):

1
K

K∑
k=1

u2(r2(k)) ≈ Er(k)[u2] = 0 (2.19)

In this case the foundation is valid. The subscript r(k) in the expected value
Er(k) is shown to emphasize the dependence of E on the trajectory.

Principle 2.3 If a function to be learnt is odd-symmetrical in zero, forcing
this symmetry reduces the interference from and to other functions.

This principle exploits the first and second principle. If all measurements
for negative values of rn are rotated by 180 degrees around the origin, the
density of measurements is practically doubled on the positive domain, which
improves the statistical reliability. Besides, the following foundation is valid.

Foundation 2.3 Again first we discuss the case where r1 and r2 are discrete
variables. Let u2(r2) be odd-symmetrical, i.e. u2(−r2) = −u2(r2)∀r2. Now
let two vectors r occur, with values (r1(1), r2(1)) and (r1(2), r2(2)), with
r1(1) = r1(2) and r2(1) = −r2(2) ≥ 0. Now rotate the sample corresponding
to r(2) (because of its negative value of r2) by 180 degrees around the origin.
We then get:

u =
1
2

(u(r(1))− u(r(2))) (2.20)

=
1
2

(u1(r1(1))− u1(r1(2)) + u2(r2(1))− u2(r2(2))) (2.21)

=
1
2

(u2(r2(1)) + u2(−r2(2))) (2.22)

= u2(r2(1)) (2.23)

2.2. PARSIMONIOUS B-SPLINE NETWORKS 17

Regardless of the value of u1, this summation yields the value of u2(r2(1)).
Because of the odd symmetry also the value of u2 for r2(2) is known.

Now for continuous variables r1,2 the generalisation goes analogously to
the second part of foundation 2.1. It is again obvious that this foundation
also holds for larger numbers of samples, and larger numbers of partial
functions un. It should be noted that in the reference path opposite values
of r2 have to occur with identical values of r1.

The statement that forced symmetry also reduces interference to other
networks, is understood from the fact that a well-trained network leaves a
cleaner residue than a poor-trained one.

Principle 2.4 Consider two networks, that are to learn target functions
that are of the same order of magnitude. If the inputs of the two networks are
completely uncorrelated (i.e. statistical correlation is zero, which does not
necessarily mean that the inputs are independent), the order in which they
learn does not influence the quality of the learning. Moreover, no difference
is brought about by the fact the second learning network uses the residue of
the first network or the original input signal.

If the inputs are correlated, the order does influence the quality of the
learning (assumed that the second network takes the residue of the first as its
input). In that case the network with the smallest number of splines should
learn first.

Foundation 2.4 The first part of the principle follows obviously from prin-
ciple 2.1. If there is no correlation, the data of one function does not influence
the learning of the other function. Since this data is not correlated to the
input, it does not matter whether it is subtracted from the data set (i.e.
using the residue) or not (i.e. using the original input signal).

The second part is less obvious. Again we use principle 2.1. (Its gener-
alisation in principle 2.2 also holds, but is omitted in this foundation.) The
maximal size of neighbourhood ∆rn0 (i.e. the largest size at which we can
still qualify it as sufficiently small - we are not using this size quantitatively
here, yet only qualitatively) depends on the spline width of the network.
This means: the larger a spline is, the more points which add up to zero are
allowed to deviate from this central value rn0. We can say that a network
is expected to generalise more if it consists of larger splines.

We may not directly compare the spline widths of two networks, since
their inputs may consist of different quantities (e.g. position and velocity:
comparing a spline width of 0.01 m with one of 0.1 m/s is a pointless ac-
tivity). Nevertheless, we should take care that the occurring values of both
inputs are well-distributed within their domains. In this case the number of
splines is a competent measure for a sort of ‘normalised spline width’.

This altogether supports the statement that the network with the largest
generalisation, i.e. the network with the (relatively) largest splines, i.e. the

18 CHAPTER 2. THEORY

network with the smallest number of splines, suffers the least from inter-
ference by non-target functions. So this network should learn first, thus
yielding a residue with the least possible interference for other networks.

If the target functions are not of the same order of magnitude, we should
question whether this principle holds. This case is not considered here.

2.2.2 Multivariate parsimonious B-spline networks

As stated before, the ANOVA representation gives a decomposition of a
multivariate function. The general notation of (1.4) is repeated here:

u = u(r1, r2, · · · , rn)
= u0 +

∑
i

ui(ri) +
∑
i,j

ui,j(ri, rj) + · · ·+ u1,2,···,n(r1, r2, · · · , rn)

(2.24)

We can see here, that there is no longer a unique ANOVA-representation
of a function, when partial functions have (among others) the same in-
put variables. Any function ui(ri) can also be incorporated in a function
u···,i,···(· · · , ri, · · ·). Mathematically spoken, there is no such thing as an op-
timal decomposition, since any decomposition yields the original function.
However, from the physical reality we can intuitively define a desired solu-
tion. In the physical reality, the target function is a composition of several
physical functions. We now want the decomposition by our function ap-
proximator to match the function in the same way. This means that the
content of the ‘lowest-variate’ functions is maximal, since the projection of
bivariate functions on any axis are zero. This assumption is essential for
the correctness of this reasoning. This implies that the univariate networks
should be updated first. In this case the information stored in the function
is concentrated as much as possible into the left-hand terms of the ANOVA-
representation, i.e. into the functions ui and uj . In practice this equals the
situation with the highest generalisation ability.

It is important to note that the decomposition which follows from the
ANOVA representation, is not necessarily in accordance with the inverse of
the physical composition of the function. With respect to our linear motor
system this means the following. If the projection of the commutation on
either the position-axis or the velocity axis is nonzero, parts of the commu-
tation will be learnt by the position or velocity network. In this case the
approximation û(r) may perform exactly the same as u(r), but the partial
functions u···,i,··· will not have a one-to-one relation with the physical fea-
tures (such as e.g. cogging and friction) as described in section 2.5. This
gives us a hard time evaluating the performance of the network, since we
can no longer compare the partial approximations with the partial targets
functions.

2.2. PARSIMONIOUS B-SPLINE NETWORKS 19

Principles 2.1, 2.2 and 2.3 also hold for bivariate BSNs. The first and second
principle obviously hold, since a bivariate BSN can be transformed to a
univariate BSN such that a unique bilateral relation exists (Verwoerd, 2000).
The third principle also holds, but a new definition of odd symmetry should
be given. In the bivariate case odd symmetry of a bivariate function to a
certain reference variable rn means:

um,n(rm,−rn) = −um,n(rm, rn) ∀ rn, rm (2.25)

Symmetry in both variables rm and rn did not occur in the present study.
For the sake of completeness it is given here, though. This point symmetry
in the origin is mathematically represented as:

um,n(−rm,−rn) = −um,n(rm, rn) ∀ rn, rm (2.26)

It can now be seen that the third principle still holds, provided that other
reference signals (and their corresponding control signals) are kept equal.

The fourth principle does not obviously hold. It is hard to compare
bivariate and univariate networks. The only point of reference we have, is
the ANOVA-representation, from which we should decide heuristically which
network should be updated first.

2.2.3 Pragmatic approach

Idema (1996, p. 8) provides a more pragmatic approach, which needs more
a priori knowledge. He proposes to design the reference paths in such a way
that one target function is dominant for this movement. E.g. a cogging force
function should be learnt at low velocity, in order to keep friction forces out
of scope. The vulnerability of this approach lies in the fact that one doesn’t
necessarily know in advance how low this ‘low velocity’ should be, or in
general, when a function is dominant or not. So provided that symmetrical
paths can be found,the approach postulated in this thesis, based on more
generally valid theory, is to be preferred.

Nevertheless, the approach by Idema is of additional value to our here-
presented approach. In chapter 3 we will see that sometimes input signals
cannot be chosen uncorrelated. In that case the approach by Idema is of
concern, in order to reduce interference as much as possible.

A similar approach is presented by Steenkuijl (1999). Velthuis (2000, p.
163) calls this method ‘rather heuristic in nature’, since prior knowledge is
required to a high degree. Steenkuijl (1999, p. 29) states that simultaneous
training of several networks is not possible, since with one single path it is
impossible to make one target function dominant. In case we should indeed
not succeed to train with a single path, we could address the methods by
Steenkuijl and Idema.

20 CHAPTER 2. THEORY

2.3 Noise and frequency behaviour

Generally a network can learn a function, as long as its input is correlated to
its output. We know that white noise is not correlated at all. Now consider
a white noise, added to a target function. From 2.2 we may now conclude
that, provided the number of samples on each spline is large enough, the
noise will not have any effect on a BSN, since it is not correlated to the
input of the function.

If a spline is crossed at relative high speed, then a relative small number
of samples is available. This implies that such a fast visited spline should be
visited more often than splines crossed at lower speed, in order to guarantee
a sufficient number of samples to filter out noise.

A frequency transfer function of a BSN is hard to give, if its input is not
given by time (but e.g. in our case: by a reference path). This is considered
irrelevant for this study, so it is left out of scope. Verwoerd (2000) gave
an analysis on frequency behaviour of BSN’s, but this analysis was valid
only for BSNs with time as their only input variable. A frequency analysis
is not considered here, but it is recommended for future research, since it
necessarily has its impact on noise and stability considerations.

2.4 Stability

As stated before, stability is of minor concern in this study. Neverthe-
less, there is no point in creating an algorithm if its application is insecure.
Therefore this topic is addressed briefly here.

Two kinds of instability are relevant in an LFFC. First there is instability
due to dynamical behaviour of the learning loop. This one is excluded by
the fact that learning is performed off-line only. During operation (be it in
simulation or in experiment), the contents of the LFFC are left unaffected.

Second, there is instability in the network parameters, also known as
divergence. It is not by definition to be the case, that network parame-
ters converge at all. Verwoerd (2000) also addressed this in his thesis, but
this only holds for time-indexed LFFC. Velthuis (2000) also addresses this
problem. It is stated there, that a stability condition can be derived, if all
inputs but one of the BSNs are constant. This is not the case in the present
study. The paper by Velthuis, De Vries, Schaak and Gaal (2000) gives some
stability conditions for spline widths, but in our case a problem arises from
the fact that there is no equivalent time corresponding to the spatial spline
width. Furthermore the condition on the learning rate postulated in this
paper only holds for repetitive motions.

In our study, we decided to take a small learning rate, in order not to
compromise stability.

2.5. LINEAR MOTOR MODEL 21

2.5 Linear motor model

Two models of a linear motor have been used. The first is a simplified model.
It consists of a moving mass with one degree of freedom. It incorporates
only a cogging force and a non-linear friction model. The model is depicted
in figure 2.2.

Figure 2.2: Second-order model of the linear motor, incorporating cogging
and non-linear friction

The second model is more realistic: besides cogging and friction also
commutation is incorporated. This second model is depicted in figure 2.3.
The commutation is modelled as the multiplication of velocity with a spe-
cial mapping from position to commutation. In section 2.5.3 this choice is
explained. This model was simulated both with and without measurement
noise.

Figure 2.3: Second-order model of the linear motor, incorporating cogging,
non-linear friction and commutation

In the sequel we will now only use r1 for the reference position, r2 for
the reference velocity and r3 for the reference acceleration. The subscripts
for cost functions J , control signals u and signal approximations û are main-
tained accordingly.

22 CHAPTER 2. THEORY

2.5.1 Cogging

In reality a deterministic (though unknown) force results from the fact that
the magnetic field in a linear motor is not homogeneous. If all magnets
were placed perfectly, and all magnets were equal in strength, this so-called
cogging force would be a periodic (sinus-like) function of the position. In
reality, however, the magnets are not equal in strength, and their placement
is not perfect. This brings about a relationship which is only nearly peri-
odic, with variations in both its amplitude and its frequency. The modelled
cogging force characteristic is depicted in figure 2.4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−15

−10

−5

0

5

10

15

position (m)

C
og

gi
ng

 fo
rc

e
(N

)

Figure 2.4: Cogging characteristic

2.5.2 Friction

To model the friction a modified Stribeck model was chosen. The parameters
of this non-linear friction function are chosen rather arbitrarily. It is not
chosen according to a real application, but rather such that it comprises
a well-discernible non-linearity within the working range of velocity in the
present model. Several representations of the effects described by Stribeck
(1902) are known. In this study a modified version of the formula for friction
from Spreeuwers (1999, p. 63) was used. In this formula all signum-functions
were replaced by tanh-functions with a (sufficiently large) gain acting on the
input, thus yielding the following formula:

Ff (v) = K
(
v +Ks tanh(αtv) · eαev2

+Kc tanh(αtv)
)

(2.27)

2.5. LINEAR MOTOR MODEL 23

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−4

−3

−2

−1

0

1

2

3

4

velocity (m/s)

F
ric

tio
n

fo
rc

e
(N

)

Figure 2.5: Friction characteristic

with K = 33, Ks = 0.05, αe = 20000, Kc = 0.01, and αt = 200. v is the
velocity on which the friction depends. The friction force characteristic is
depicted in figure 2.5.

The replacement of the signum-functions by tanh-functions was made
to avoid a discontinuity around zero. In reality the friction characteristic
comprises a step-discontinuity at zero, and a negative slope near zero. For
larger velocities the friction approaches a linear function of speed. This
replacement significantly increases simulation speed, at the cost of losing
reality. Moreover, this modification simplifies the experiments: generally
discontinuities are impossible for a LFFC to learn, since at low velocities the
difference between the reference velocity and the true velocity will generally
be large. Future research will be needed on learning with more realistic
characteristics and dynamical friction models, to which a pass has been
made by Spreeuwers (1999).

2.5.3 Commutation

As stated before, the commutation is modelled as a multiplication of the
velocity and a special commutation table.

In reality, commutation is a switch of the magnetic field, actively brought
about to make the linear motor work at all. This switch should be synchro-
nized with the transitions through the fields of the permanent magnets. Due
to imperfect placement and imperfect strength of the permanent magnets,
perturbations may result from the poor synchronizing. From this, it follows
that the perturbation depends on both position and velocity.

24 CHAPTER 2. THEORY

The commutation as a function of position and velocity is depicted in
figure 2.6. The lack of reality was accepted at the benefit of homogeneity:
with this value, all occurring values for internal forces are of the same order
of magnitude, in this sense that their values are not negligible with respect
to each other. The smallest maximum value is about 1 N, the largest about
15 N.

−0.1

−0.05

0

0.05

0.1

0

0.1

0.2

0.3

0.4

0.5
−1.5

−1

−0.5

0

0.5

1

1.5

v (m/s)x (m)

F
c (

N
)

Figure 2.6: Commutation force

2.5.4 Noise

The real linear motor setup suffers from measurement inaccuracy. An accu-
racy of 10−6 m is guaranteed, which we interpret as uniformly distributed
noise with a variance σ2 = 1

12 · (10−6)2 (Van Amerongen and De Vries, 1999,
p. 169). In our simulations the measurement noise was modelled as a gaus-
sian noise with a standard deviation of 10−6 m, which is

√
12 times higher

than with the uniform noise model. This margin was taken to guarantee suf-
ficient excitation from the noise, since gaussian and uniform noise sources
are not interchangeable straight away. Replacing a measurement inaccuracy
by a noise signal is in fact incorrect, but it was the easiest way in this case.
Finding more accurate solutions was not aimed within the current project
time.

2.6. PARSIMONIOUS LEARNING FEED-FORWARD CONTROL FOR THE LINEAR MOTOR25

2.6 Parsimonious learning feed-forward control for
the linear motor

2.6.1 Linear motor model without commutation

We now want to incorporate the theory of parsimonious networks to the
previously described linear motor, neglecting the commutation force. As
we can see from section 2.5, for the first (most simple) model the only
useful effects to be learnt are cogging, friction and inertia. The latter can be
interpreted as a coefficient in the force as a function of the acceleration. This
sums up to three internal forces, each depending on only one input variable,
namely the cogging depending on the position, the friction depending on the
velocity, and the deviation of mass, resulting in a function of acceleration.
We can now conclude from the ANOVA representation, that in this case
three univariate BSNs suffice. No multivariate BSNs are needed.

Networks will learn the control signals as long as they are correlated
to their inputs. For the position network this means that any part of the
control signal which is correlated to the reference position will be learnt.
The cogging force and the control signal act on the system in an identical
way, namely as a force acting on the translator mass, i.e. on the input of
the first integrator in figure 2.2. This means that the optimal feed-forward
control signal is exactly equal to the cogging characteristic. The same goes
for velocity and acceleration networks.

Now the only problem is the fact that the network uses the reference po-
sition as an input, whereas the learnt force depends on the real position. It
is assumed here that this difference is small, because of the well-conditioned
parameterisation of the PD-compensator. In a situation where this differ-
ence is not small enough, we might have a problem. We can imagine that this
does occur with the velocity network when a discontinuous friction model
is used: at velocities near zero, the deviation of acceleration (and to some
extent of the velocity and position as well) will be relatively large.

2.6.2 Linear motor model with commutation

Now a model with commutation is considered. As argued before, the com-
mutation is dependent on both the position and the velocity. From the
ANOVA representation it follows that now a bivariate network is needed.

The main problem arising from this additional network is the fact that
any signal related to the position can be learnt by both the position network
and by the (position, velocity)-network. The same goes for signals related to
the velocity. This means that the physical composition does not necessarily
equal the composition made by the parsimonious BSN. This requires special
care with reference paths. Other aspects as stated for the motor model
without commutation, also hold for the motor model with commutation.

26 CHAPTER 2. THEORY

2.7 Network choices and cost functions

In order to evaluate simulations, first some criteria have to be formulated
with respect to which the simulation results have to be compared. For each
network a different criterion has to be specified. We briefly address them
here.

2.7.1 Position network

The position ranges from 0 to 0.5 m. The cogging force was modelled by a
linear interpolation table with 1000 entry points. It comprises 32 ‘cogging
periods’, so the rule of the thumb to take about 15 splines per period yields
a number of 500 splines for the position network. The cost function was
defined as:

J1 =
1
N

N∑
n=0

(
u1(

n

N
· 0.5)− û1(

n

N
· 0.5)

)2

(2.28)

N was chosen 49900. This equals 100 summation points for each spline. This
rather large number invokes long calculation times, but smaller numbers
turned out not to yield reliable cost functions.

For the present configuration this cost function is lower-bounded by
J1,min = 1.0 ·10−3. This was found by learning from a manipulated data set,
which consisted of cogging values exactly on these 49900 summation points.
Due to its homogeneity and high density, this set is considered persistent,
i.e. it contains the maximal amount of information in the most unambiguous
way.

2.7.2 Velocity network

The velocity ranges from -0.1 to 0.1 m/s. The friction force was mod-
elled as a continuous function, and learnt with a BSN containing 35 splines.
This number is the result of some preliminary tests: a smaller number does
not enable the visibility of the nonlinear properties near zero (only a lin-
ear function with an offset was visible, then), whereas larger numbers put
higher demands on training sets in order to update all weights sufficiently
accurately.

The cost function was defined analogously:

J2 =
1
N

N∑
n=0

(
u2(

n−N/2
N

· 0.1)− û2(
n−N/2

N
· 0.1)

)2

(2.29)

Here N was chosen 1400, which again equals 100 summation points per
spline.

2.7. NETWORK CHOICES AND COST FUNCTIONS 27

Following the same procedure as for the position network, we find that
for the present configuration, with r2 ranging from -0.1 to 0.1 m/s, J2 is
lower-bounded J2,min = 0.85 · 10−3.

It is worth investigating if a non-homogeneous spline distribution yields
solutions with a higher performance: the non-linearity in the target-function
is found near the origin only, whereas for larger values the function is nearly
linear. This could inspire us to apply a high spline density for small values,
and a lower density for larger values, thus needing less splines in general.
The current learning algorithm as implemented in Matlab can only deal
with homogeneous distribution. And besides, the goal of this project was
to find solutions in general terms. Addressing the distribution uses a priori
knowledge, and thus loss of generality. On the other hand, it is worthwhile
to use knowledge once that it is available.

2.7.3 Acceleration network

The acceleration ranges from -0.1 to 0.1 ms-2. In the present simulations
the only property to be learnt by the acceleration network is the inertia.
In this case the force is a linear function in the acceleration. Then two
splines should suffice. However, the present learning algorithm can handle
odd symmetry only if an odd number of splines is used, so a number of three
was the result. In this case N=200 suffices in the equation:

J3 =
1
N

N∑
n=0

(
u3(

n−N/2
N

· 0.1)− û3(
n

N
· 0.5)

)2

(2.30)

This again equals 100 summation points per spline.
This cost function is lower-bounded by zero, because the force due to

inertia is supposed to be a linear function in the acceleration. Since it also
crosses the origin (no offset), it can be perfectly approximated by a BSN
with three splines, of which the middle one has zero weight.

2.7.4 Position-velocity network

As argued before, the commutation force was modelled as a multiplication of
the velocity with a special commutation table. The commutation table was
generated with the same number of local maxima as the cogging function, so
on the position axis the same number of splines, i.e. 500, was chosen. On the
velocity axis the function is linear, so three splines would suffice. However,
to be able to see eventual nonlinearities, a number of 5 was chosen. This
means that a 5×500 splines bivariate network is needed. Given the fact that
this yields 2500 splines, a wish for 100 summation points per spline on each
direction would yield a (5−1)×(500−1)×100×100 = 19, 960, 000 summation
points. This large number implies long calculation times. This convinces us
to give in a significant amount on accuracy. Since even 10 summation points

28 CHAPTER 2. THEORY

per spline took about an hour to calculate the cost function, we decided to
take only 1 summation point on each spline, on each direction. This choice
was supported by the fact that Matlab matrix-operations can now be used,
which saves a lot of time, too. In this case the cost function is represented
by:

J1,2 =
1

NM

N−1∑
n=0

M−1∑
m=0

(
u1,2(

n

N
· 0.5, m−M/2

M/2
· 0.1)−

û1,2(
n

N
· 0.5, m−M/2

M/2
· 0.1)

)2

(2.31)

with N=500 and M=5. This cost function is lower bounded by zero, because
of the following. On the velocity axis the function is linear, and can thus be
approximated perfectly. In the position direction the summation points of
the cost function exactly coincide with the interpolation knots of the BSN.
This means that on every summation point, the error can become zero, thus
yielding a zero cost. This is not necessarily the optimal solution, but that
is the cost of increasing the speed at which the cost function is calculated.

Chapter 3

Simulation

In this chapter the simulations performed in this study are discussed. First
the design of the simulations is discussed. This concerns learning speed, path
properties and spline distributions. Then the first simulation is discussed,
which concerns the verification of principle 2.4 (learning order). The second
trough fourth simulation concern respectively the linear motor without com-
mutation, with commutation, and with both commutation and measurement
noise.

The apparently strange naming of the paths was due to history: several
more paths have been tried, and the resulting names correspond to computer
files.

3.1 Simulation design

In section 2.5 a detailed description of the linear motor model was given,
so it is not repeated here. The models of figure 2.2 and figure 2.3 were
embedded in a control loop containing a PD-compensator and a learning
feed-forward controller as shown in figure 1.3.

Simulations were performed in the simulation program 20-Sim. This
program is developed by Control Lab Products, a spin-off company from
the Control Laboratory, University of Twente. 20-Sim provides numerous
possibilities to implement models, such as bond graphs, block diagrams and
iconic diagrams. In this study only block diagrams were used.

Each experiment contains only 5 iterations, because the capacities of the
personal computer, on which 20-Sim and Matlab where running, proved to
be limiting. Many iterations together invoke a lot of computing capacity.
More iterations would be necessary if convergence issues were of concern.

29

30 CHAPTER 3. SIMULATION

3.1.1 Learning speed and convergence

For time-indexed LFFC, stability criteria are known (Velthuis et al., 2000).
From this we may assume that for path-indexed LFFC a learning rate chosen
too large may cause divergence of the network weights, although formal
proofs are not found in literature. An expression for the upper bound on
a stable learning factor is not known, so we propose to choose the learning
factor rather conservatively, and then increase it until divergence occurs.
In this project it was found that a learning factor of 0.2 suffices for most
situations.

3.1.2 Regularisation

During preliminary experiments, it was observed that sometimes the cross-
correlation matrix of the velocity network was badly conditioned. Therefore
it was decided to apply regularisation to the velocity network during all
simulations, in order to have comparable conditions for all simulations. As
argued in chapter 2, the regularisation matrix was chosen 1.0 · 10−4 · I, with
I the unity matrix. Here a safety measure on parameter divergence was
taken at the cost of learning accuracy. During the preliminary experiments,
large weights did not occur in the position and acceleration networks, so
regularisation was not applied to them.

3.1.3 Paths: order and coverage

A reference path r is called persistently exciting for a linear system, when
the following holds for all parameters (Löhnberg, 2000) (notation to comply
with the rest of this study):

p(x|θ1)r 6= p(x|θ2)r ⇔ θ1 6= θ2 (3.1)

where x is a system state, θi an arbitrary value of parameter θ and r the ref-
erence path. To say the same in words: the signal r should be such, that we
can tell from measurements, what the system parameters are, with accept-
able uncertainty. With this in mind, we formulate the following demands
on the reference signal for our nonlinear system.

As argued before, four properties of the linear motor system should be
learned: inertia, cogging, friction and commutation. The first three proper-
ties all depend on one system state only (acceleration, position and velocity,
respectively). The last one depends on two of them (velocity and position).
The objective is to learn a control signal, for phenomena each depending on
one or more of these system states. So for learning the cogging, we should
cover the entire position domain, for learning the friction the entire velocity
domain, and for learning the inertia we should cover the entire accelera-
tion domain. For learning the commutation, we should cover the entire
(position,velocity)-domain, i.e. every position should be passed with every

3.1. SIMULATION DESIGN 31

relevant velocity. For covering the entire acceleration domain a third order
signal (i.e. a position reference of which the third derivative, the so-called
jerk , is nonzero) is needed. By proper manipulation we can shape the signal
such that it also covers the position, velocity and (position,velocity)-domain.
One could argue that several second order paths with different accelerations
may also suffice to cover the acceleration domain sufficiently. This is cor-
rect, but a larger number of movements is needed in that case. Therefore a
third-order movement is considered to be more efficient.

The (position,velocity)-domain cannot be covered completely (only think
of the fact that at the edges of the position domain, velocity will generally be
small). The effect of this only becomes manifest if references are prescribed
which use parts of the network that have not been trained. So training
references should cover at least those parts which are relevant for future
references.

The reference should be created such that the signal can be followed
well by the control system. Hence a robust control system is needed already
before learning takes place. In simulation a model was used which was
provided with the software (linear motor model from 20-Sim), which has a
well-conditioned controller. This topic is not considered in this thesis.

3.1.4 Paths: symmetry

The principles in section 2.2.1 allow us to state, that generally a reference
path comprising a high grade of symmetry, enables the networks to learn
well. A simple example of a reference path is depicted in figure 3.1. The
upper three curves represent respectively the position r1, velocity r2 and
acceleration r3 as a function of time (transient representations), the lower
three curves represent the velocity as a function of position, the acceleration
as a function of position, and the acceleration as a function of velocity
(phase-plane representations).

From now on, let the target function of BSN1 be denoted with u1, and u2

and u3 be defined accordingly. Notice that these functions are not explicitly
available, but are only defined as ‘the optimal feed-forward control signals
to compensate for respectively cogging, friction and inertia’.

We see that the (r1, r2) phase-plane is symmetrical in both its vertical
and horizontal axes. The same goes for the (r2, r3) phase-plane. Using
forced symmetry, we can now guarantee that the learning of u1(r1) will not
interfere with the learning of u2(r2) and vice versa, and the same goes for
the learning of u2(r2) and u3(r3). A problem arises when we look at the
(r1, r3)-plane. There is no symmetry, so the premises of the principles in
section 2.2.1 are no longer applied to. Therefore we cannot conclude that
u1(r1) and u3(r3) will not interfere in their mutual learning. Of course it
still can go well, but this will not be by means of the postulated principles.

32 CHAPTER 3. SIMULATION

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

t (s)

r 1 (
m

)

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

t (s)

r 2 (
m

/s
)

0 5 10 15 20
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

t (s)

r 3 (
m

/s
2)

0 0.1 0.2 0.3 0.4
−0.1

−0.05

0

0.05

0.1

r
1
 (m)

r 2 (
m

/s
)

0 0.1 0.2 0.3 0.4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

r
1
 (m)

r 3 (
m

/s
2)

−0.1 −0.05 0 0.05 0.1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

r
2
 (m/s)

r 3 (
m

/s
2)

Figure 3.1: Example reference path

3.1.5 Spline distributions

The spline distribution of a network is influenced by the accuracy at which a
target function should be approximated. Furthermore the available amount
of learning data and its distribution put limits on the spline density. For the
simulations in this chapter the splines were chosen in such a manner that
both the learning and the approximation were expected to be appropriate: a
trade-off was made between high precision of the approximation (i.e. a large
number of splines), and a high training speed (i.e. a low number of splines).
Besides, a spline density chosen too high may result in instability because of
a lacking high frequency suppressing (this is again hard to prove for path-
indexed LFFC, but the analysis by Velthuis (2000) on time-indexed LFFC
should guide as a warning). The splines were distributed homogeneously,
with the number of splines as described in section 2.7:

Network Number of splines
r1 500
r2 35
r3 3
(r1, r2) 500× 5

3.2. SIMULATION 1: OPTIMAL LEARNING SEQUENCE 33

3.2 Simulation 1: Optimal learning sequence

The first simulation was performed to test principle 2.4. The model used is
the complete linear motor model, yet without measurement noise. A very
rich path was used (path P9, see the description in section 3.4; the exact
properties of the path are not of importance, so the path is not discussed
here), in order to gain sufficient information. The only important property
of the path is that the velocity is statistically uncorrelated with both the po-
sition and the acceleration, whereas the position and acceleration do have a
correlation. The position-velocity network was not trained at all, because it
should be the last one to be trained: in order to have the optimal decompo-
sition (see section 2.2.2, where the desired decomposition was discussed), we
want the maximum information to be stored into the univariate networks.

Only one run was performed, after which the cost of the various net-
works was evaluated. Learning was performed in different orders, and every
time subsequent networks used the residue of the preceding networks. One
could argue that performing only one run is not enough for filtering out the
feedback controller dynamics, but the differences after one run were already
so significant, and simulation times that long, that this was thought to be
acceptable.

After one learning episode, the costs for different orders were:

Order J1 J2 J3

1 2 3 0.74 1.2 · 10−3 0.31
1 3 2 0.74 1.2 · 10−3 0.31
2 1 3 0.74 1.2 · 10−3 0.31
2 3 1 0.021 1.2 · 10−3 0.33 · 10−3

3 1 2 0.021 1.2 · 10−3 0.34 · 10−3

3 2 1 0.021 1.2 · 10−3 0.34 · 10−3

where 1 corresponds to position, 2 to velocity and 3 to acceleration. From
these results we may conclude that principle 2.4 holds in practice. First
of all, it is clear that the cost of the velocity network (with cost function
J2) is not influenced at all by the learning order, nor does the sequence
number at which the velocity network is trained influence the other networks.
This corresponds to the fact that the velocity is not at all correlated with
either acceleration or position. Second, it is clear that both the position
network (cost function J1) and the acceleration network (cost function J3)
are trained best if the acceleration network is trained before the position
network is learned. Because of the smallest number of splines, we expect the
acceleration network to have the largest generalisation ability, and indeed it
yields the best results if it is trained first. And of course, if the first network
is trained better, the residue available to the subsequent network is ‘cleaner’,

34 CHAPTER 3. SIMULATION

so learning will be performed better as well. The slightly smaller value of J3

when network 2 is trained first (fourth row in the table), is considered to be
insignificant. Nevertheless a future investigation may be worthwhile to find
out, whether there is a foundation to say that networks with an uncorrelated
input should be trained first.

Tests with noise have not been performed, but from section 2.3 we may
expect noise not to have any influence on the optimal order, nor does the
order influence the sensitivity of the LFFC to noise. This statement is sup-
ported by the outcomes of simulation 4, where it is shown that the influence
of noise on BSNs is small.

3.3 Simulation 2: Simple LM

Three paths have been applied to the simplified linear motor model. In each
of these three simulations the conservative learning factor of γ = 0.2 was
used. In all simulations the optimal learning order according to principle 2.4
was used, i.e. first the acceleration network was trained, then the residue
was used to train the velocity network, and finally the second residue was
used to train the position network.

Path P1

Firstly reference path P1, see figure 3.2, was applied. It is seen from the
figure that in the (r1, r3)-plane there is no symmetry (besides the point
symmetry with respect to the origin, but in this study this is not a relevant
type of symmetry). With this path we expect the according networks to
learn badly, and the r2-network to learn better.

Path P2

Secondly the path P2, depicted in figure 3.3, was applied. We can see that
the (r1, r3)-plane is still not symmetrical, but at least it is covered more
homogeneously. We expect this path to perform better than the previous
path P1.

Path P4

Thirdly the path P4 was applied. It is shown in figure 3.4. This path
is mostly symmetrical, but a little disorder is introduced: the points with
zero velocity do occur at different positions, instead of several times on the
same place. The philosophy is as follows. We should note the fact that
the acceleration network has three splines on its entire input range, whereas
the position network has 500 splines. This means that some given tracking
error will generally be relatively large compared to the B-spline width of the

3.3. SIMULATION 2: SIMPLE LM 35

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

t (s)

r 1 (
m

)

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

t (s)
r 2 (

m
/s

)

0 5 10 15 20
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

t (s)

r 3 (
m

/s
2)

0 0.1 0.2 0.3 0.4
−0.1

−0.05

0

0.05

0.1

r
1
 (m)

r 2 (
m

/s
)

0 0.1 0.2 0.3 0.4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

r
1
 (m)

r 3 (
m

/s
2)

−0.1 −0.05 0 0.05 0.1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

r
2
 (m/s)

r 3 (
m

/s
2)

Figure 3.2: Simulation reference path P1

position network, whereas it will be relatively small compared to the spline
width of the acceleration network. (We should not neglect the fact that
generally the tracking of the position will be better than the tracking of the
acceleration, but the difference in spline density is considered large enough
to overcome this problem.) With this path, a certain value of r1 occurs with
very different values of r3. It is now more probable (but not certain!) that
the effect on which principle 2.2 was based occurs. We expect this path to
have the best learning capabilities.

36 CHAPTER 3. SIMULATION

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

t (s)

r 1 (
m

)

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

t (s)

r 2 (
m

/s
)

0 5 10 15 20
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t (s)

r 3 (
m

/s
2)

0 0.1 0.2 0.3 0.4
−0.1

−0.05

0

0.05

0.1

r
1
 (m)

r 2 (
m

/s
)

0 0.1 0.2 0.3 0.4
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

r
1
 (m)

r 3 (
m

/s
2)

−0.1 −0.05 0 0.05 0.1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

r
2
 (m/s)

r 3 (
m

/s
2)

Figure 3.3: Simulation reference path P2

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

t (s)

r 1 (
m

)

0 20 40 60
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t (s)

r 2 (
m

/s
)

0 20 40 60

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t (s)

r 3 (
m

/s
2)

0 0.1 0.2 0.3 0.4
−0.1

−0.05

0

0.05

0.1

r
1
 (m)

r 2 (
m

/s
)

0 0.1 0.2 0.3 0.4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

r
1
 (m)

r 3 (
m

/s
2)

−0.1 −0.05 0 0.05 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

r
2
 (m/s)

r 3 (
m

/s
2)

Figure 3.4: Simulation reference path P4

3.3. SIMULATION 2: SIMPLE LM 37

Results

In figure 3.5 the results of simulations with these three paths are presented.
The upper left picture represents the cost of the position network as a func-
tion of the iteration step. The upper right represents the cost of the velocity
network, and the middle left picture represents the cost of the acceleration
network. Their values cannot be compared mutually. The lower left figure
depicts the RMS-value of the positional error. The lower right represents
the RMS-value of the output of the PD-compensator.

1 2 3 4 5
0

5

10

iteration

po
si

tio
n

co
st

1 2 3 4 5
0

0.2

0.4

0.6

0.8

iteration

ve
lo

ci
ty

 c
os

t

P1
P2
P4

1 2 3 4 5
0

5

10

iteration

ac
ce

le
ra

tio
n

co
st

1 2 3 4 5
0

0.5

1

x 10
−5

iteration

m
ea

n
er

ro
r

1 2 3 4 5
0

2

4

6

8

iteration

m
ea

n
co

nt
ro

l s
ig

na
l

Figure 3.5: Results of simulation 2

From the position network cost we can conclude the following. For a
small number of iterations, say up to three, there is no difference between
the network performances of the paths. But when we evaluate after the
fifth iteration, we see that the cost of path P1 is about 50% higher than
the other two paths. Initially the position network converges with the same
speed, but after some time it proves to converge to sub-optimal values.

The velocity network shows different results. Here path P1 starts slightly
worse, but seems to converge to the same optimal cost. After 5 iterations
we see that path P4 yields a 25% higher cost than P2, which is contrary to
our expectation.

In the description of path P4 it was stated that the introduction of a
little disorder increases the probability of principle 2.2 to hold. This does not
hold for the acceleration network, and the price is a decreasing performance
of the position network. The result is that on a certain position the different

38 CHAPTER 3. SIMULATION

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iteration
ac

ce
le

ra
tio

n
co

st

Figure 3.6: Zoom of third plot in 3.5

values of the acceleration do no longer add up to zero. We see here that
the principles result in worse network contents rather than improving it.
The deterioration is apparently small in the phase-planes, but the reasoning
sound plausible, since even a small perturbation can be significant, due to
the small spline dimensions.

The cost on the acceleration network shows a clear development. For
clarity, a zoom of the lower two curves is depicted in figure 3.6. The path
P1 causes the network to diverge. Apparently the path delivers insufficient
information on the inertia, causing network to provide an over-correction,
which needs compensation from the feedback controller. This inspires us
two qualify the path as badly conditioned.

In the last graph we see, that the feedback control signal decreases for
every path, even for paths that are considered to be training improperly.
We should probably explain this from the fact that a neural network can
always approximate a certain data set. In casu this means that a path can
always be learnt to some extent, thus reducing the feedback control signal.
This thought is supported by the fact that the positional error is decreasing
as well. From this we should conclude that both the error reduction and the
feedback control signal reduction on the path itself are not appropriate to
evaluate the quality of learning. To overcome this, a validation path should
be used. However, in the current simulations this was not needed, since the
network contents can be compared with the theoretical optimal values. This
is a global criterion, whereas a validation path is still subjective in this sense,
that it may not necessarily test the quality of learning in an exhaustive way.

The reason why especially path P1 yields the best feedback control signal
reduction, is probably found in the fact that this is the simplest path, so its
control signal can be learnt the best.

We should now explain why a certain path can cause divergence. In
figures 3.7 and 3.8 the phase plane of the reference acceleration and the

3.3. SIMULATION 2: SIMPLE LM 39

measured acceleration are plotted for path P1 and P4 respectively.

−0.1 −0.05 0 0.05 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Reference acceleration

M
ea

su
re

d
ac

ce
le

ra
tio

n

Figure 3.7: Reference acceleration versus measured acceleration, path P1

−0.1 −0.05 0 0.05 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Reference acceleratioin

M
ea

su
re

d
ac

ce
le

ra
tio

n

Figure 3.8: Reference acceleration versus measured acceleration, path P4

We see that for path P1 the relative difference is significantly larger
than for path P4. Furthermore for path P4 the amount of data located
close to the central diagonal is larger. We know that a phase shift being
too large can cause divergence, although in case of a non-linear system and
non-periodical signals phase shift is not a well-suited concept. Nevertheless
we can say that a (relative) difference between reference and measurement
being too large, can cause the same troubles we find when too much phase
shift occurs. Actually, it is a premiss of LFFC that this difference is small

40 CHAPTER 3. SIMULATION

enough. We may say that this difference is too large with path P1, and
appropriately small with path P4, although a sharp distinction cannot be
made in this case.

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−15

−10

−5

0

5

10

15

20

Acceleration

C
on

tr
ol

 s
ig

na
l

Figure 3.9: The control signal versus the reference acceleration, path P1

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−20

−15

−10

−5

0

5

10

15

20

Acceleration

C
on

tr
ol

 s
ig

na
l

Figure 3.10: The control signal versus the reference acceleration, path P4

This reasoning is supported by figures 3.9 and 3.10. In these figures
the control signal is plotted versus the reference acceleration. The central
bold line represents the average as learned by the acceleration BSN in the
first episode. We see that in case of P4 the bold line neatly has a slope
approximately equal to the mass of the translator (37 kg), whereas in case of
P1 even a negative slope is found. This indicates that the difference between

3.4. SIMULATION 3: LM WITH COMMUTATION 41

the reference acceleration and the measured acceleration is too large. We
should conclude that the premiss of LFFC, i.e. that the difference should be
small enough, is not met. This is due to the relatively small accelerations
in path P1, thus the deviation resulting from the cogging and friction being
relatively large. So we should question whether it is the poor quality of the
path (only the extent to which it meets the principles is meant here), or
merely the fact that the acceleration domain is visited sparsely (which is a
quality of the path as well).

Concludingly we can say, that path P2 is the best, because it does not
seem to diverge. Its performances are only slightly better than path P4.
The reason is to be found in the disorder as addressed before, which first
was thought to improve performance. Furthermore path P1 is a poor path,
as expected. However, the expectation was only based on the principles in
chapter 2, whereas it was indicated here that some other properties may have
serious influences on convergence too, in casu the error of the acceleration
being too large.

3.4 Simulation 3: LM with commutation

In this simulation the linear motor model is extended with the commutation.
Now a bivariate BSN is needed.

Path P9

First the path P9 depicted in figure 3.11 was applied. In preliminary tests,
it was found that this path, when applied with learning factor γ = 0.2, gave
acceptable results.

The first part of the path (up to t = 70 s) consists of cycloids. This part
is meant to deliver information for the univariate networks. The second
part (from t = 70 s) consists of movements at constant velocity (third order
acceleration, i.e. the third derivative (jerk) of the position is a piece-wise
constant function of time). This second part is supposed to deliver infor-
mation for the bivariate network: all positions are passed at three velocities
(each velocity occurring both in positive and negative direction). This is ex-
actly enough to cover all 5 splines in the velocity-direction of the bivariate
network.

We expect this path to learn well, because it does meet the requirements
for principles 2.1, 2.2, and 2.3 to a high extent.

Path P9b

The second path applied, P9b (figure 3.12), consists of only the first 70 sec-
onds of P9. This means that the explicit training of the bivariate network

42 CHAPTER 3. SIMULATION

0 50 100
0

0.1

0.2

0.3

0.4

0.5

t (s)

r 1 (
m

)

0 50 100
−0.1

−0.05

0

0.05

0.1

t (s)

r 2 (
m

/s
)

0 50 100
−0.1

−0.05

0

0.05

0.1

t (s)

r 3 (
m

/s
2)

0 0.2 0.4
−0.1

−0.05

0

0.05

0.1

r
1
 (m)

r 2 (
m

/s
)

0 0.2 0.4
−0.1

−0.05

0

0.05

0.1

r
1
 (m)

r 3 (
m

/s
2)

−0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

r
2
 (m/s)

r 3 (
m

/s
2)

Figure 3.11: Simulation reference path P9

is omitted. Since the movement still covers a large part of the (r1, r2)-plane,
we may still expect the network to learn a bit. Because of the nonzero ac-
celeration at this part, we expect the interference into the bivariate network
from the acceleration network to be filtered out worse. We expect this path
to train moderately well.

Path P9c

The third path applied, P9c (figure 3.13), consists of the first 35 seconds
of path P9. This path does hardly comprise symmetry in the phase plane
representations. Furthermore it does not cover the entire (r1, r2)-domain.
We expect this path to train badly, so it is performed in order to investigate
whether the principles really make a difference.

Path P1

The fourth path applied, P1, is the same as the first path applied to the
linear motor model without commutation (see figure 3.2). We expect this
path to perform worse than the previous paths, because the signal is less
rich: there are not sufficient data points to train the acceleration network
properly. The point in carrying out this simulation, is to be found in the
fact that it does not comprise stagnations within the working range of the
linear motor, only at its boundaries. Since stagnations may result in dirty
control signals (because of the nonlinear friction), it is possible that the lack

3.4. SIMULATION 3: LM WITH COMMUTATION 43

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

t (s)

r 1 (
m

)

0 20 40 60
−0.1

−0.05

0

0.05

0.1

t (s)
r 2 (

m
/s

)

0 20 40 60

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t (s)

r 3 (
m

/s
2)

0 0.1 0.2 0.3 0.4
−0.1

−0.05

0

0.05

0.1

r
1
 (m)

r 2 (
m

/s
)

0 0.1 0.2 0.3 0.4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

r
1
 (m)

r 3 (
m

/s
2)

−0.1 −0.05 0 0.05 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

r
2
 (m/s)

r 3 (
m

/s
2)

Figure 3.12: Simulation reference path P9b

of stagnations yields a better training, even when the principles are poorly
met.

Results

In figure 3.14 the results of this simulation are represented identically, except
for the fact that the middle right graph now represents the development of
the cost of the position-velocity network as a function of the iteration. The
graphs now represent respectively: the position network cost, the velocity
network cost, the acceleration network cost, the position-velocity network
cost, the RMS value of the error, and the RMS value of the output of the
feedback controller, each of them represented as a function of the iteration
step.

We see a nice convergence of the cost on the position network. Path
P1 performs the worst, the others perform equally well. From this we can
already dispose of our figuring, that the lack of stagnations may outperform
paths that may even better meet the requirements for the principles. The
lack of symmetry in the (position, acceleration) plane (see fifth graph in
figure 3.2) probably causes interference, thus giving a worse performance.

In the velocity cost, we again see a convergence. What catches the eye,
is the fact that path P1 joins the best performers, whereas now path P9c
performs the worst. The latter is in accordance with our expectation. The
former is rather surprising, since the most important range of the velocity
network is near stagnation (this is the most intricate part of the friction

44 CHAPTER 3. SIMULATION

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

t (s)

r 1 (
m

)

0 10 20 30
−0.05

0

0.05

0.1

t (s)

r 2 (
m

/s
)

0 10 20 30

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t (s)

r 3 (
m

/s
2)

0 0.1 0.2 0.3 0.4
−0.1

−0.05

0

0.05

0.1

r
1
 (m)

r 2 (
m

/s
)

0 0.1 0.2 0.3 0.4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

r
1
 (m)

r 3 (
m

/s
2)

−0.1 −0.05 0 0.05 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

r
2
 (m/s)

r 3 (
m

/s
2)

Figure 3.13: simulation reference path P9c

characteristic), which is now badly visited. What we have here, is a nice
confirmation of principle 2.1: even although the velocity domain is not cov-
ered with a large number of different positions or accelerations, still the
symmetry neatly has the effect it is suspected to have.

In the cost of the acceleration network, we see a divergence on path P1.
The explanation for this is exactly the same as given in the interpretation
of simulation 2. We see that P9 and P9b perform equally well, and both go
to the low value of 4 · 10−4. This is not surprising, since the part with linear
movements of path P9 is supposed to influence the velocity network only.
In figure 3.15 it is seen that path P9c causes divergence at the acceleration
network

What really bothers, is the fact that after a few iterations, the cost on
the position-velocity network starts to increase again. Probably for such a
complex network (i.e., a large number of splines, hence a relatively small
number of samples for each spline), the learning rate is still too large. Be-
cause of the simulations taking much time, a new simulation with even a
lower learning rate was not performed. Further investigation is needed on
this point.

Secondly one could argue that, like described for the acceleration network
in the previous simulation, some difference between the references and the
according system states may be too large to enable convergence. It will now
be argued, that this is not the case. In figure 3.16 the phase-plane for path
P1 is shown. The second and third graph show zooms on the same graph,

3.4. SIMULATION 3: LM WITH COMMUTATION 45

1 2 3 4 5
0

5

10

15

iteration

po
si

tio
n

co
st

1 2 3 4 5
0

0.2

0.4

0.6

0.8

iteration

ve
lo

ci
ty

 c
os

t

P9
P9b
P9c
P1

1 2 3 4 5
0

5

10

15

iteration

ac
ce

le
ra

tio
n

co
st

1 2 3 4 5
0

20

40

60

80

iteration

po
si

tio
n−

ve
lo

ci
ty

 c
os

t

1 2 3 4 5
0

0.5

1

1.5
x 10

−5

iteration

m
ea

n
er

ro
r

1 2 3 4 5
0

5

10

iteration

m
ea

n
co

nt
ro

l s
ig

na
l

Figure 3.14: Results of simulation 3

in the outer left and uppermost parts respectively. In the zooms the pins
represent the difference between the reference (position, velocity)-pair and
the measured (position, velocity)-pair. The head of the pin represents the
reference, the tail the measured value. The differences visible in the zooms
are the largest occurring ones. What we see is that the maximum error in
the position is about 10 · 10−6 m, and the maximum velocity error is about
0.5 ·10−3 m/s, both of which are small compared with the spline dimensions.
Even the handful of irregularly positioned pins in the outer left part of the
first zoom, are small compared to the spline dimension of 1 mm by 0.05
m/s. So in this case the LFFC-premiss, i.e. that the error should be small
compared with the spline dimensions, is justified.

A third explanation could be looked for in the fact, that poor learning
abilities of the acceleration network cause the (position, velocity)-network
to diverge. This was confirmed by an extra simulation, performed without
an acceleration network. In this simulation only the paths P1 and P9b were
applied, on a set of 10 iterations. The results are displayed in figure 3.17.
What we see now, is that with P9b we have convergence on all networks,
within the current iteration axis. It should be noted that the vertical axis of
the (position, velocity)-cost does not start at zero, so the relative decrease of
the cost is rather small. This is probably due to the fact that the acceleration
is not learnt: the training set available for the (position, velocity)-network
is ‘polluted’ with the acceleration-related forces.

Furthermore we see an increasing cost at the position network for path

46 CHAPTER 3. SIMULATION

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iteration
ac

ce
le

ra
tio

n
co

st

Figure 3.15: Zoom of third graph in figure 3.14

0 0.2 0.4

−0.1

−0.05

0

0.05

0.1

Position

V
el

oc
ity

0 2 4 6

x 10
−5

−6

−4

−2

0

2

4

6
x 10

−4

Position

V
el

oc
ity

0.23 0.24 0.25 0.26 0.27

0.0995

0.1

0.1005

Position

V
el

oc
ity

Figure 3.16: Phase shift in the (position, velocity)-plane with path P1

P1 after a number of iterations. It is is assumed that this was already the
case in previous simulations, only it was not seen that time because of the
shorter iteration axis. We should from now on assume that a poor path (i.c.
P1) can cause divergence, and that a poor relation between the reference
and a true state (i.c. the acceleration) can cause divergence as well.

Now we return to the original simulation. Perhaps even the most sur-
prising, is the fact that with respect to the (position, velocity)-network path
P1 beats all the others. This draws our attention, since the (position, ve-
locity) network is not covered well at all (see figure 3.2). This implies that
the network should not train well by any means. We should conclude that
due to the small number of splines on the velocity axis (5) requires only a
sparse coverage of the (position, velocity)-plane is needed.

In this simulation the same surprising feature occurs: the path which is
considered performing the worst, yields the highest reduction of the control
signal. We should follow the same reasoning as in simulation 2, i.e. that a
simple path is easy to learn.

3.5. SIMULATION 4: LM WITH COMMUTATION AND NOISE 47

2 4 6 8 10
0

5

10

Iteration

P
os

iti
on

 c
os

t

2 4 6 8 10
0

0.2

0.4

0.6

Iteration

V
el

oc
ity

 c
os

t

P9b
P1

2 4 6 8 10
0

0.5

1

1.5

2

Iteration

A
cc

el
er

at
io

n
co

st

2 4 6 8 10
10

12

14

16

Iteration

P
os

iti
on

−
ve

lo
ci

ty
 c

os
t

2 4 6 8 10
0

0.5

1

1.5
x 10

−5

Iteration

M
ea

n
er

ro
r

2 4 6 8 10
0

2

4

6

8

Iteration

M
ea

n
co

nt
ro

l s
ig

na
l

Figure 3.17: Simulations without acceleration network

The mean error and the mean control signal display a monotonous de-
crease for all paths.

For the position-velocity network, path P9b performs the best, followed
by P9c at a 50% difference and P9 at a 100% difference. Apparently the
linear movements at the end disturb the learning of commutation rather
than supporting it. We currently do not have an explanation for this, so
further investigation is needed.

Concludingly we can say that, according to our expectations, path P9
performs the best. Path P1 is worthless because of its divergence at the
acceleration and position networks, but considering its other features, it per-
forms surprisingly well. Furthermore, P9b and P9c perform slightly worse,
according to our expectation. With respect to the result on the position-
velocity network, we can say that linear movements are not as useful as we
expected, and besides these prove to yield divergence for unknown reasons.

3.5 Simulation 4: LM with commutation and noise

In the last set of simulations, exactly the same experiments were performed
as in simulation 3, only with a gaussian measurement noise, its standard
deviation σ = 1µm chosen as explained in 2.5.4. The results are depicted in
the usual manner in figure 3.18.

We only notice subtle differences with simulation 3. The interpretation
given for simulation 3 practically holds for simulation 4. The only significant
difference is found in the mean feedback control signal, which increases with

48 CHAPTER 3. SIMULATION

1 2 3 4 5
0

5

10

15

iteration

po
si

tio
n

co
st

1 2 3 4 5
0

0.2

0.4

0.6

0.8

iteration

ve
lo

ci
ty

 c
os

t

P9
P9b
P9c
P1

1 2 3 4 5
0

5

10

15

iteration

ac
ce

le
ra

tio
n

co
st

1 2 3 4 5
0

20

40

60

80

iteration

po
si

tio
n−

ve
lo

ci
ty

 c
os

t
1 2 3 4 5

0

0.5

1

1.5
x 10

−5

iteration

m
ea

n
er

ro
r

1 2 3 4 5
0

5

10

iteration

m
ea

n
co

nt
ro

l s
ig

na
l

Figure 3.18: Results of simulation 4

amounts up to 25%. It is common that measurement noise increases the
RMS value of a feedback control signal (its nett effect may still be zero,
but this does not go for the power generated from it, which can be seen as
frequency components added to the ‘clean’ steering signal). Apart from that,
this experiment confirms our theory that noise hardly influences learning of
BSNs: because of its lack of correlation, it doesn’t have a nett effect.

One more small difference is that now path P9b performs slightly better
than path P9 with respect to the (position, velocity)-network, in accordance
to our expectations. However, the difference is too small to judge on, and
besides, this expectation was invalidated by the simulation without noise.

In figure 3.19 the curve of P9 and P9b almost exactly coincide, so they
are visible as a single line.

In this simulation again, we see that the path which is considered per-
forming the worst, manages to reduce the feedback control signal the best.
We may again conclude that the mean control signal is not very suited for
judging on learning.

3.6 Discussion

In this chapter the results of the simulations have been discussed. Beside
the positive outcomes, we should not neglect the following items, which need
special care.

3.6. DISCUSSION 49

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iteration

ac
ce

le
ra

tio
n

co
st

Figure 3.19: Zoom of third graph of figure 3.18

Firstly it was found that the order principle mainly holds. Nevertheless it
is surprising that it turns out to be optimal (be it at only a small headstart)
if the network with the uncorrelated function (i.c. the velocity network) is
trained first, whereas in the principle it was stated that in this case the order
of the network should not influence the quality of learning. An explanation
should be looked for.

Secondly it was found that some paths cause divergence. Partly this was
due to meeting the principles poorly. But certainly not less important, it
was found that a path designed poorly, can cause the system not to meet
the LFFC premiss, i.e. the error in the states should be small. Furthermore
it was proven by others that the learning factor influences convergence. The
lack of a well-formulated criterion puts a limit on the accuracy of the simu-
lation design. A convergence analysis if path-indexed LFFC would brighten
these problems.

Thirdly an explanation was not found for the fact that movements at
constant speed disturb the learning of the (position, velocity)-network rather
than supporting it.

Fourthly it was found that the reduction of both the mean feedback
control signal and the error on the paths themselves are poor measures of
the quality of learning. Using the cost functions for the various networks
is better, but then the problem remains that the costs cannot be compared
mutually, so an eventual trade-off cannot be made. In this sense a validation
path would be of additional value.

50 CHAPTER 3. SIMULATION

Chapter 4

Experiments

In this chapter the experiments with the linear motor are addressed. The
linear motor (LM) is made by Tecnotion. It is controlled with a personal
computer with a Pentium-II 233MHz. First a brief description of the LM is
given, followed by the tuning procedure for the feedback controller. Then
the results of the experiments are given, and followed by a discussion.

In this chapter again names of the paths are due to history.

4.1 Tecnotion linear motor

The LM receives its thrust force from a set of coils, mounted above a grid
of permanent magnets. A photograph of the lab setup is shown in figure
4.1. The translator of the LM approximately has a mass of 5 kg. The LM

Figure 4.1: The Tecnotion linear motor

can provide a thrust force of 930 N, which limited by the hardware. The
maximum allowed acceleration is 10 ms-2, the maximal velocity is 2 m/s.
The LM has a free range of 0.74 m. Since the translator itself has a length

51

52 CHAPTER 4. EXPERIMENTS

of 22 cm, and approximately 10 cm is taken as a safety margin on the left
side, and about 2 cm on the right side, a working range of 40 cm was used in
the experiments. The LM suffers from all features we have discussed before:
inertia deviation, friction, cogging and commutation inaccuracies. Just like
with the simulations, this means that we need three univariate BSNs, and
one bivariate BSN. Unfortunately only univariate networks are available in
the current software environment, so commutation inaccuracies cannot be
corrected for. It was decided not to implement a bivariate BSN, since the
available time was limited.

4.2 PID-design

In order to obtain the correct feed-forward signal, we first need to design a
robust feedback control. A PID compensator was used, in series with a roll-
off filter, such that the following transfer function was achieved (Coelingh,
2000, p. 76):

Cpi(s) = K · τis+ 1
τis

Cds(s) =
τds+ 1
τdβs+ 1

Ch(s) =
1

τhs+ 1
C(s) = Cpi(s) · Cds(s) · Ch(s)

= K ·
(
τis+ 1
τis

)
·
(
τds+ 1
τdβs+ 1

)
·
(

1
τhs+ 1

)
(4.1)

Here K is the proportional gain of the compensator, τi the integration time
constant, τd the differentiation time constant, and τh the roll-off time con-
stant. The PID was implemented on a computer. The discrete time conver-
sion was performed as a backward Euler differentiation approximation, i.e.
the Laplace-variable s was replaced with the discrete time transfer function
as follows:

s ≈ z − 1
zTs

(4.2)

With this computer a sample time Ts = 1 ms was chosen. The main reason
was to limit the number of sampling points which have to be stored. Of
course control intervals and sampling intervals for off-line learning purposes
do not necessarily coincide, but creating an ‘under-sampling’ method would
require more implementation time than available. At this sample rate the
amount of processor time during a sample interval proved to be sufficient.
Furthermore the sample period limits the bandwidth of the control system.
At the sample frequency of 1 kHz, a bandwidth of 350 rad/s (56 Hz) could
be achieved. This proved to be sufficient to a high degree for the relatively

4.2. PID-DESIGN 53

slow paths used, although at a higher bandwidth a higher active stiffness
would probably reduce the error due to friction and cogging. The bandwidth
ωb was chosen from preliminary experiments: for a good performance, the
bandwidth should be as large as possible, but it is limited by the control
sample time. It is defined as the frequency for which the sensitivity func-
tion S first crosses the 0 dB line from below (Coelingh, 2000, p.78). The
sensitivity function S is defined by:

S(s) =
1

1 + P (s)C(s)
(4.3)

where P (s) and C(s) are the transfer-functions of respectively the plant
(i.c. the ideal mass, see below) and the compensator. After calculating the
controller parameters, a Bode plot of the sensitivity function will be given.

The PID parameters were assigned using the design rules formulated by
Coelingh (2000). Here the LM is viewed to as an ideal mass, i.e. without
friction and other forces. The following system parameters were chosen:

Parameter Value Unit
m 5 kg
ωb 350 rad/s
ωl 1 rad/s
β 0.1
Sl 10−5

Here m is the mass of the translator, ωb the bandwidth of the control sys-
tem, ωl the frequency below which signals are cut off, and Sl the maximum
value of the sensitivity function below the cut-off frequency ωl. The mass
presented here is probably lower than the true mass, but this conservative
estimate was chosen in order to avoid too high stiffness: the mass used
for dimensioning influences the proportional gain linearly, which may cause
instability if it is too large.

Then the parameters of the PID-compensator are calculated using Coel-
ingh (2000, p. 86):

τd =
1

2ωb
√
β

(4.4)

K = 2ω2
bm

(
ω2
b τ

2
dβ + 1

ω2
b τ

2
d + 1

)
(4.5)

τi ≤
SlK

ωl
(4.6)

τh < βτd (4.7)

54 CHAPTER 4. EXPERIMENTS

Frequency (rad/sec)

P
ha

se
 (

de
g)

M

ag
ni

tu
de

 (
dB

)

100

110

120

130

140

150

160

170

180

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−100

−50

0

50

Figure 4.2: Bode plot of the PID-compensator with roll-off filter

The values of τh = 0.9 · βτd and τi = SlK
ωl

were chosen. The former should
be as large as possible to limit the controller bandwidth, the latter as large
as possible to get sufficient gain at low frequencies. This evaluated to the
following numerical values:

Parameter Value Unit
τd 4.5 · 10−3 s
K 0.44 · 106

τ1 4.4 s
τh 0.41 · 10−3 s

A Bode plot of the compensator is given in figure 4.2. A Bode plot of
the achieved sensitivity function is given in 4.3.

The implementation of the PID controller was already available at the lab.

4.3 Experiment design

During preliminary experiments, it turned out that at high velocities and
accelerations, the phenomena named before were hardly visible: at higher
speeds, the kinetic energy of the moving mass is relatively large (it increases
quadratically with the speed), compared to the work committed by cogging
and commutation forces. From these results it was decided to use only low

4.3. EXPERIMENT DESIGN 55

Frequency (rad/sec)

P
ha

se
 (

de
g)

 M

ag
ni

tu
de

 (
dB

)

−300

−250

−200

−150

−100

−50

0

50

100

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−400

−350

−300

−250

−200

−150

−100

−50

0

 ω b

Figure 4.3: Sensitivity function of controlled mass

velocities and accelerations, of 0.11 m/s and 0.05 ms-2 respectively. Two
paths were used to train the PLFFC. A third path was used to evaluate the
quality of the learning of the other paths. The third path was considered
complex enough to yield an appropriate evaluation. In fact the training
paths are rather simple in nature. This results from the fact that a limit is
put on the length of the paths: due to limited computer resources, only about
one minute can be stored. With longer paths probably more information
can be extracted from the LM. The first path, P12, is depicted in figure
4.4. It consists of a number of cycloid parts. As we look at the (position,
acceleration)-plane, we see that it is well covered. Within the restrictions of
the control setup, this a rather good achievement. We expect this path to
train well.

The second path, P13, is displayed in figure 4.5. We see that the (posi-
tion, velocity)-plane is covered worse, so with this path we expect the system
to suffer from correlation more that with the previous path.

The last path, P14, is used for evaluation only. It consists of some
fast and slow cycloid parts, and fast and slow parts at constant velocity
(acceleration with a third order movement, i.e. finite and partwise constant
jerk). The basic philosophy of the experiment is to find out what error
reduction can be achieved on this path, by training with the other paths.
Evaluating the error reduction on the training paths themselves may also
be useful, but this does not allow us to compare the paths. Furthermore,
this doesn’t say much at all, since a training set should never be used as a

56 CHAPTER 4. EXPERIMENTS

0 10 20 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (s)

x
(m

)

0 10 20 30
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

t (s)

v
(m

/s
)

0 10 20 30
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

t (s)

a
(m

/s
2)

0.1 0.2 0.3 0.4 0.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

x (m)

v
(m

/s
)

0.1 0.2 0.3 0.4 0.5
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x (m)

a
(m

/s
2)

−0.04 −0.02 0 0.02 0.04
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

v (m/s)

a
(m

/s
2)

Figure 4.4: Path P12

validation set for an ANN.
During preliminary experiments, it was found that again in this case

the optimal learning order holds. This means first training the acceleration
network, followed by the velocity network and the position network.

During preliminary experiments it was also found that some data ma-
nipulation was necessary. Since stiction causes the I-action of the PID to
increase, unreliably large steering values were found at small (but nonzero)
velocities. (Of course, at zero velocity large signals are needed to conquer
the stiction force, but this cannot be learnt in LFFC.) This convinced us
to discard samples at low velocities. In casu this meant that only with re-
spect to the position network samples are discarded if the velocity reaches
values below 0.01 m/s. We should note that this means discarding the most
intricate part of the function, but apparently we do not have a choice. An
alternative solution would be to turn off the I-action, but this would increase
the static error and the error at low velocities, which is not preferable.

The other networks used the entire batch of samples to update their
weights.

The experiments were carried out with learning factors ranging from 1
down to 0.05.

4.3. EXPERIMENT DESIGN 57

0 10 20 30 40
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (s)

x
(m

)

0 10 20 30 40

−0.1

−0.05

0

0.05

0.1

t (s)

v
(m

/s
)

0 10 20 30 40
−0.05

0

0.05

t (s)

a
(m

/s
2)

0.1 0.2 0.3 0.4 0.5

−0.1

−0.05

0

0.05

0.1

x (m)

v
(m

/s
)

0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

x (m)

a
(m

/s
2)

−0.1 −0.05 0 0.05 0.1
−0.05

0

0.05

v (m/s)

a
(m

/s
2)

Figure 4.5: Path P13

0 20 40
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t (s)

x
(m

)

0 20 40

−0.04

−0.02

0

0.02

0.04

0.06

t (s)

v
(m

/s
)

0 20 40
−0.05

0

0.05

t (s)

a
(m

/s
2)

0.1 0.2 0.3 0.4
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x (m)

v
(m

/s
)

0.1 0.2 0.3 0.4
−0.05

0

0.05

x (m)

a
(m

/s
2)

−0.04 −0.02 0 0.02 0.04 0.06
−0.05

0

0.05

v (m/s)

a
(m

/s
2)

Figure 4.6: Path P14

58 CHAPTER 4. EXPERIMENTS

L. factor It. Est. mass Mean err. Max. err.
P12 0.05 0 9.1 kg 0% 0%

1 28 kg +3% -3%
0.5 0 91 kg 0% 0%

1 303 kg -25% -30%
1 0 182 kg 0% 0%

1 392 kg -34% -39%
2 * -30% -2%

P13 0.05 0 40.3 kg 0% 0%
1 74 kg -3% -5%

0.5 0 403 kg 0% 0%
1 614 kg -29% -36%

1 0 806 kg 0% 0%
1 1023 kg -37% -39%
2 * -33% -45%

*) An asterisk denotes a quantity that was not evaluated.

Table 4.1: Experimental results

4.4 Results

From various points of view, the results of the experiments are rather disap-
pointing. As can be seen in table 4.1, in all experiments divergence occurred.
This was primarily seen from the facts that the mass of the translator was
heavily overestimated (10 to 100 times its real value), and from the fact
that the increment of the mass estimation did not decrease. Furthermore,
in most cases the error was reduced only in the first episode, increasing it
again in following episodes. It was also seen that errors on the training paths
themselves sometimes did increase even at the first iteration. These errors
are not presented here. Only the error reductions on path P14, relative to
the original error, are presented.

Divergence (or more precisely: incredibly large estimates for the mass)
occurred both for high learning factors and low learning factors. The lat-
ter suggests that other reasons for divergence than a learning factor chosen
too large should be looked for. We address the problem found in simula-
tions, that the differences between true system states and the corresponding
references are too large. First we look at the acceleration, since this was
the largest trouble in the simulations. To this end we have to estimate the
acceleration from the position measurement. This was done by first calcu-
lating the second gradient of the position measurement, and then filtering
this gradient with an anti-causal 10th order low-pass Butterworth filter, its
cut-off frequency chosen 25 Hz. Choosing this frequency too low causes the

4.4. RESULTS 59

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Reference acceleration

E
st

im
at

ed
 a

cc
el

er
at

io
n

Figure 4.7: Estimated acceleration against reference acceleration, path P12

estimate to become unreliable, whereas at larger values only noise is found
in the result. This acceleration estimate is plotted against the reference
acceleration in figure 4.7 for path P12.

We see a trend with a slope of 1, but this trend is polluted with devia-
tions. These deviations are large compared with the values of the accelera-
tion. Given the evaluation of the simulations, we should assume that this is
one of the main reasons for bad learning, and possibly for divergence.

Applying the same analysis to both the position and the velocity, only
insignificant differences between the references and states were found. We
should assume that these differences are not responsible for the divergence.

Furthermore, a projection of the control signal on the (reference) accel-
eration axis, depicted in figure 4.8, showed a lot of noise, and averaging this
projection into a network yielded an unreliable estimate of 180 kg. This
average is represented by the central bold dashed line. Its graphical repre-
sentation seems to deliver a reliable average, but the numerical value inval-
idates it. This projection should be classified as badly suited for training.
We should expect the acceleration network to leave a dirty residue because
of its bad learning. Surprisingly no effects of this are found in the position
and velocity networks, as addressed below.

The projection of the feedback control signal on the velocity axis is shown
in figure 4.9. The bold dashed line represents the content of the network
after learning. We see no reason to qualify this network as badly trained.

We finally address the projection of the feedback control signal on the po-
sition axis. This projection is depicted in figure 4.10 for path P12. The
central bold line is the average as learnt by the network, the upper and

60 CHAPTER 4. EXPERIMENTS

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−400

−300

−200

−100

0

100

200

300

400

Acceleration

 F
or

ce

Figure 4.8: Projection of feedback control signal on acceleration axis, path
P12

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−400

−300

−200

−100

0

100

200

300

400

Velocity

F
ee

db
ac

k
co

nt
ro

l s
ig

na
l

Figure 4.9: Projection of feedback control signal on velocity axis, path P12

4.4. RESULTS 61

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−400

−300

−200

−100

0

100

200

300

400

Position

F
ee

db
ac

k
co

nt
ro

l s
ig

na
l

Figure 4.10: Projection of feedback control signal on position axis, path P12

lower thin lines are the true projections.
We see that the learnt control signal comprises sharp edges. These can

probably be eliminated by applying an appropriately designed filter, but
this is not investigated here. Beside these sharp edges we have no reason to
qualify the contents of this network as bad.

62 CHAPTER 4. EXPERIMENTS

The only reason for the occurring divergence thought of so far, was
the difference between true acceleration and reference acceleration being
too large. Therefore a small additional experiment was performed, where
only the position and velocity were trained. This test was performed at an
arbitrarily chosen learning factor 0.5. Again paths P12 and P13 were used
for training, and P14 for evaluation. The results are given in the tables 4.2
and 4.3. Error reductions are evaluated on path P14, with respect to the
original error. Furthermore the RMS values of the updates of the networks
are given.

It. RMS Err Max Err Pos. upd. Vel. upd.
0 0% 0% 11.4 48.2
1 -27% -36% 5.8 22.4
2 -35% -42% 9.0 11.9
3 -32% -40% 13.6 5.8

Table 4.2: Results of additional experiments with P12

It. RMS Err Max Err Pos. upd. Vel. upd.
0 0% 0% 14.4 84.4
1 -29% -37% 16.2 41.1
2 -37% -46% 3.6 20.7
3 -37% -43% 8.3 10.8

Table 4.3: Results of additional experiments with P13

What we see is that in both cases the RMS value of the update of the
velocity network decreases rapidly. This indicates convergence, although for
a conclusive statement more iterations are needed. The convergence goes at
the same speed (it is divided by two each step). The difference by a factor
2 is easily understood from the contents of the networks, drawn in figures
4.11 and 4.12 for path P12 and P13 respectively. The mean is taken over
the full velocity domain, whereas path P12 covers only half as much as path
13 does. In the figures the convergence is well visible.

4.4. RESULTS 63

−0.1 −0.05 0 0.05 0.1 0.15
−250

−200

−150

−100

−50

0

50

100

150

200

250

Velocity

Le
ar

ne
d

fr
ic

tio
n

fo
rc

e

iteration 1
iteration 2
iteration 3
iteration 4

Figure 4.11: Contents of velocity network after several iterations, path P12

−0.1 −0.05 0 0.05 0.1 0.15
−250

−200

−150

−100

−50

0

50

100

150

200

250

Velocity

Le
ar

ne
d

fr
ic

tio
n

fo
rc

e

iteration 1
iteration 2
iteration 3
iteration 4

Figure 4.12: Contents of velocity network after several iterations, path P13

64 CHAPTER 4. EXPERIMENTS

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−50

0

50

100

150

200

250

300

350

Position

Le
ar

ne
d

co
gg

in
g

fo
rc

e

Figure 4.13: Contents of position network after several iterations, path P12

From these results we may conclude that it was indeed the divergence
of the acceleration network causing the velocity network to learn badly.
Unfortunately we do not see a confirmation of our expectation, i.e. that
path P12 should enable learning better than P13. Actually, we from the
velocity network we should qualify path P13 as better than P12, since a
larger part of the network is filled with credible values.

For both paths we do not see any interference from other effects (i.c.
cogging, inertia), but this is generally hard to see with this relative small
number of splines. So we should be careful when concluding that inter-
ference from acceleration and position dependent forces is excluded by the
symmetry.

Unfortunately we see a slight increase of the maximal error in the last
iteration. Since the mean error still decreases, this is hard to judge on.
Nevertheless, the feature should not be neglected.

The contents of the position network, depicted in figures 4.13 and 4.14 for
path P12 and P13 respectively. For clarity only the result of the last iter-
ation was depicted. The iterations in between did not comprise the same
progress as with the velocity network, their development is much more ar-
bitrary with both paths. With both paths we see a very irregular pattern,
and especially some large peeks at positions where the motor stands still.

The results of the position network are much more credible, than with
the original experiments. This founds our hunch that learning the inertia

4.5. DISCUSSION 65

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−50

0

50

100

150

200

250

300

350

Position

Le
ar

ne
d

co
gg

in
g

fo
rc

e

Figure 4.14: Contents of position network after several iterations, path P13

badly also influences the quality of the learning of the cogging. But from
the contents of the networks we should conclude, that other influences must
exist as well. One could think of learning speed, spline density, and the
fact that the friction causes interference to the network at small velocities.
Furthermore the sharp edges in the network contents may cause undesirable
signals, that may have a negative influence on convergence. These options
cannot be investigated within the current project time.

Unfortunately we still cannot judge on the principles very well. We may
cautiously conclude that the cogging does not influence the learning of the
friction, but since the friction still causes interference to the cogging, we
should question the applicability of the symmetry principle. Since inertia
cannot be learnt at all within the current domain, we cannot judge either
on the question whether it interferes to other effects.

4.5 Discussion

In this chapter the experiments have been discussed. It was seen that con-
vergence is hard to achieve. One source of trouble was eliminated by turning
off the acceleration network, but still success was not achieved. Further re-
search is needed.

Furthermore we should not neglect the sharp edges found in both the
position and velocity networks. They will generally cause high-frequent
control signals, which is undesirable. Therefore sophisticated filtering is

66 CHAPTER 4. EXPERIMENTS

needed to ‘smoothen’ the control signal. It is not unlikely that convergence
will then be achieved easier.

In the current set of experiments, both the acceleration and velocity are
chosen small, in order to keep the cogging visible. On the other hand, apply-
ing these small values causes a bad tracking with respect to the acceleration,
which heavily disturbs learning. From this we should question whether a
real PLFFC can be trained by a single path at all. It is not unlikely that
this is only possible applying various paths, which focuses our attention to
the approaches by Idema (1996) and Steenkuijl (1999).

Because of these poor results, it is impossible to say whether the prin-
ciples from section 2.2.1 are applicable in practice. They hold for properly
conditioned data sets, but apparently it is hard to generate such a data set
from a practical plant.

Chapter 5

Conclusions and
recommendations

In this chapter the general conclusions of the M.Sc. assignment are drawn.
Then a new training procedure for parsimonious learning feed-forward con-
trollers is proposed. Finally, some recommendations for future research are
formulated.

5.1 Conclusions

5.1.1 Results

We should state here, that some presumptions were made undeservedly.
First of all the statement that the difference between the reference and the
system states is small compared with the spline width, was not met in case
of the acceleration. This proved to be troublesome in both the simulations
and the experiments.

Second, convergence analysis was considered of minor concern. It was
assumed that a learning factor chosen small enough would guarantee con-
vergence, which proved not to be justified.

Third, in the experiments it was also assumed that symmetry neatly
eliminates the effects of certain phenomena. It was seen that in some cases
too large perturbations occurred to eliminate the effects: in the experiments,
the large steering signals due to stagnations are not filtered out in the posi-
tion network.

Beside these negative outcomes, we can still see some positive points, as
addressed below.

5.1.2 Principles

Uncorrelatedness of data prevents interference from a target function to the
learning of another target function. So the principles presented in section

67

68 CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

2.2.1 generally hold:

1. If a phenomenon adds up to zero for every small subdomain of a func-
tion, it does not disturb the learning of such a function.

2. If the number of samples is large enough, it is also sufficient if only
the expected value is zero.

3. If a function to be learnt is odd-symmetrical, this symmetry can be
used to eliminate other influences.

4. The order in which functions are learnt, influences the quality of the
learning. As a rule of the thumb, the network with the smallest number
of splines should be trained first.

We should emphasize here, that these principles are mainly proven in the
simulations, and hardly in experiments. Both the simulations and experi-
ments show, that the applicability of the principles largely depends on the
general condition of the LFFC. E.g. it was shown that phase shift on the
acceleration can heavily disturb the learning, thus making the principles use-
less at all. Furthermore, it was shown that paths that meet the premisses
of the principles poorly, do not necessarily perform badly, although there
seems to be a correlation between these two.

5.1.3 Function decomposition and criteria

It follows from the theory, that the contents of the network after training do
no necessarily equal the physical function decomposition. This is currently
not taken into account when assigning the criteria. Furthermore it is not
clear a priori whether the ’quality’ of learning should be measured by the
error reduction, or by the exact extraction of physical functions. In experi-
ments the learnt relations are still heavily polluted, so we cannot judge on
the question whether their contents approximate the true physical functions,
or just a function that gives a control signal, appropriate to a certain ex-
tent. In the simulations the contents did approximate the true functions,
but the conditions of the simulations were much more ‘smooth’ than in the
experiments.

5.1.4 Richness

From the simulations it follows that richness of the paths, i.e. the extent to
which it covers the input domains of the networks, is essential. It directly
follows from the simulations that a rich path generally outperforms a path
that covers input domains poorly.

Furthermore, while considering this richness, we should state that not
only the density at which a domain is covered is important, but also the re-
lation between the expected difference between the reference and the system

5.2. TRAINING PROCEDURE 69

state, and the maximal values of these references. Stated more concretely:
e.g. the domain of the acceleration should be chosen such, that the differ-
ence between the reference acceleration and the true acceleration is small
compared with this domain. This was found in simulations and experiments.
Unfortunately, in the latter case a solution was not found.

5.1.5 Symmetry

The theory presented in this thesis is a useful tool, but one of its weaknesses
is found in the point that for a number of target functions symmetry is
assumed. It also holds for asymmetrical functions, but in this case it is
much harder to guarantee that a number of samples adds up to zero.

5.1.6 Divergence

It was noticed that in some cases a path can even cause divergence, whereas
other paths cause convergence with the same learning factor. The former
should be referred to as poorly conditioned. Firstly this can be caused by
low richness. Secondly it can be the result from paths meeting the principles
of this research poorly. And thirdly, this can result from the ratio of the
error to the domain. (See 5.1.4.)

5.1.7 Applicability

From the experiments, we can question the applicability of the theory to
real situations. Some extensions are necessary for application to real plants.
Especially the relative error of the system states is important. This requires
knowledge a priori, which actually was one of the things we tried to avoid
in this project.

5.2 Training procedure

The results of this research do not replace the ideas postulated by Idema
(1996) and Steenkuijl (1999), but rather should be seen as an addition to
them. Here we present a training strategy combining the benefits of the
existing theories.

It is assumed that the PLFFC itself is well-conditioned. This means that
the composition of the parsimonious network is able to fit the decomposition
of a function by the ANOVA-representation (which is, again, not unique in
case of multivariate sub-functions), and that spline distributions are chosen
appropriately. In casu this means that the distributions are dense enough
to fit expected spatial frequencies of the target functions, and that they are
sparse enough to filter out high frequencies. Furthermore it should be taken

70 CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

into account that the required training time increases with the number of
splines.

The feedback control should also be conditioned well, i.e. the difference
between the reference variables and system states should generally be small.

It should be noted that in case of a physical experimental setup, this
strategy has not proven to be successful. Nevertheless, in simulations it
was successful. Furthermore it suffers from the fact, that convergence is not
guaranteed a priori.

Then we propose the following steps to be taken:

1. Apply prior knowledge if available, using the approaches by Idema
and Steenkuijl. If any phenomenon can be learnt by making it dom-
inant over other phenomena, this should be pursued. For remaining
phenomena, the following steps should be taken. The networks incor-
porating phenomena already compensated for should not be adapted
any more, or at the most with a relatively small learning factor.

2. Determine the spatial conditions put on paths, by analysing the re-
lation between different reference variables. If they are independent,
choosing them uncorrelated is easy. If they are dependent, for example
by a differential relation, special care should be taken when defining
a reference path. In case of a differential relation, this determines the
order of the reference path.

3. Determine the domain of every sub-function to be covered.

4. Try to find a path that covers all phase-planes of the reference variables
in a symmetrical way (in case of symmetrical target functions), or in
such a way that the average of a target function is zero on any arbitrary
cross-section of the other reference variables (see principle 2.1) (in case
of asymmetrical functions). The tough part, in case of asymmetrical
functions, is to find out when the cross-section is zero.

5. Size the path such that it covers the domains correctly. One should
take into account, that the number of samples available for every spline
should be large enough. This demand depends on the expected vari-
ance of the samples within the spline. Furthermore it should be taken
into account, that the speed at which transition through the domain
takes place is limited by the fact that at high speed the phase shifting
by the control loop can become too large. And finally, the scaling
of the path should be such, that the difference between the reference
variables and the system states is relatively small.

6. Apply the path to the plant.

5.3. RECOMMENDATIONS 71

7. Use projections of the feedback control signal on the several axes to
update the function approximators with a unity learning factor. The
network with the highest generalisation ability (which is generally the
network with the smallest number of splines) should be updated first,
and then using the residue of the control signal to update the sub-
sequent networks. Furthermore the difference between reference vari-
ables and system states should be evaluated. If they are too large,
either the path should be resized, or one should decide not to use the
according networks.

8. Repeat this iteratively from 6, until a satisfactory error reduction is
achieved, or otherwise go to 9.

9. If the network contents do not converge, try a lower learning factor.
In this case the expected number of runs needed to train the PLFFC
increases accordingly, so the relevance of this approach decreases.

10. If a lower learning factor does not achieve good results, a richer path,
i.e. a path that covers the input domains better, can be tried, starting
from 6.

5.3 Recommendations

5.3.1 Convergence

In this thesis convergence mostly was an issue of trial-and-error. If a power-
ful criterion on convergence for path-indexed LFFC systems were available,
experiments and simulations would be easier to condition. In the present
project, convergence sometimes was rather distracting our attention from
the core. However, in the current literature no such criterion was found,
and indications exist that this is hard to find. Nevertheless a challenging
question remains. This thesis demonstrates that convergence may not only
depend on the learning factor, but also on the path used for training. Also
the idea of applying different learning factors to different networks might be
worth investigating.

5.3.2 Criteria

The criteria used in this thesis do not suffice entirely for our purposes. The
demands on a criterion depend on the purpose of the training, which was
not taken into account here: for industrial purposes probably only the error
reduction is relevant, whereas for scientific modelling and identification, a
precise approximation of the physical functions is more important. This
trade-off was not addressed in this thesis. Furthermore it might be worth-
while to take into account which part of the domain should be judged on:

72 CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

generally a path cannot cover the entire input domain. In that case, the
parts, that are visited poorly, cause the cost function to yield high values.

5.3.3 Regularisation and filtering

Generally in learning with a PLFFC, filtering can take place in two ways:
transient and spatial. Transient filtering could consist of applying an anti-
causal (zero-phase) filter to the learning signal. (Causality is not a con-
straint, when updating is performed off-line.)

Beside this transient filtering, also spatial filtering can be considered.
Applying an anti-causal filter to the network contents (or its updates) may
increase its performance: if one succeeds to achieve a higher ‘degree of
smoothness’, high frequencies in the time domain caused by the BSN will
be reduced, which may improve the overall performance.

Either type of filtering has its own benefits. At this point no judgement
can be passed on them, so further investigation is needed.

Appendix A

Mathematical theory

A.1 Diag-operation

The Diag-operation is widely used, but hardly provided with notation. It
is defined as follows:

Definition A.1 (Diagonal matrix of a vector) Let v be a vector with
v = (v1, v2, · · · , vN). Then the diagonal matrix corresponding to v is given
by:

V = Diag(v) =

v1 0 · · · · · · 0

0 v2 0 · · ·
...

... 0
.

...
...

...
. 0

0 · · · · · · 0 vN

(A.1)

A.2 Partwise matrix inversion

By definition a singular matrix in non-invertible. A matrix containing empty
(=zero valued) rows and/or columns does not have full-rank, and is therefore
singular. However, if a matrix consists of regular submatrices, each of them
located on the main diagonal, we can apply the following partwise inversion.

Definition A.2 (Partwise matrix inversion) Let R be a matrix of the
form:

R =

0 0 · · · · · · 0

0 [R1] 0 · · ·
...

... 0 0 0
...

...
... 0 [R2] 0

0 · · · · · · 0 0

(A.2)

73

74 APPENDIX A. MATHEMATICAL THEORY

Then the partwise inverse R−̃1 of R is given by:

R−̃1 =

0 0 · · · · · · 0

0 [R1]−1 0 · · ·
...

... 0 0 0
...

...
... 0 [R2]−1 0

0 · · · · · · 0 0

(A.3)

It is clear that for regular matrices the only submatrix complying to this
definition is the matrix itself, thus yielding the partwise inverse to be equal
to the regular inverse.

Of course the number of submatrices and their location on the main diagonal
are arbitrary. In linear systems theory this matrix R can be interpreted as
a set of decoupled systems. The partwise inversion can then be interpreted
as the individual inversion of each of the systems.

Practically the same goes when R is the auto-correlation matrix of a
set of samples for training a BSN. In case empty rows exist (necessarily
accompanied by empty columns), the BSN can be interpreted as a set of
sub-BSNs, each acting on a separate subdomain. The partwise inversion
can then be interpreted as the individual inversion of the auto-correlation
matrices of each of these sub-BSNs.

Appendix B

Matlab procedures

B.1 createrefxx.m

Files named createrefxx.m create paths according to the same names in
this thesis. They consist of a part creating cycloid paths, and a part creating
linear parts with third-order acceleration.

A version of createrefxx.m specially conditioned for the Tecnotion Lin-
ear motor setup is available in the directory lmexp.

B.2 learn.m

This file performs one learning episode for the 20-Sim model ’Linear Mo-
tor’, as found in 20-Sim/LM50. It assumes a matrix result to be present in
the workspace. The first column should contain the control signal produced
by the PD-compensator. The second column should contain the reference
position, the third the reference velocity, and the fourth the reference ac-
celeration, each of which are used as the input of the networks. The fifth
should contain a time stamp of each sample.

Four networks are generated: a position network, a velocity network, an
acceleration network, and a (position, velocity)-network. These are saved in
files, which are used directly by the 20-Sim model. The networks are trained
in the optimal order: acceleration, velocity, position, (position, velocity).
Several options can be assigned in the code. The most important are the
variables additive and gammaz. The first determines whether the network
is either cleared before updating, or that the newly calculated weights are
added to the old ones. The second constitutes the learning factor of the
network z.

A version of learn.m specially conditioned for the Tecnotion Linear mo-
tor setup is available in the directory lmexp.

75

76 APPENDIX B. MATLAB PROCEDURES

B.3 lookup1.m

The function lookup1 performs a first order interpolation on a table defined
by from and to.

It performs exactly like the Matlab function interp1, except for that it
is much faster, because some safety checks are left out. For inputs outside
the range of the table a linear extrapolation is used, where only the two
outmost table entries are used. index always indicates the leftmost table
entry used for either interpolation or extrapolation.

Usage: [RESULT,INDEX]=LOOKUP1(FROM,TO,IN)

Example:

FROM = [1 2 3 4 5 6 7]
TO = [7 5 3 1 3 5 7]

[RESULT,INDEX]=LOOKUP1(FROM,TO,3.5)

Yields:
RESULT = 2
INDEX = 3

Example:

[RESULT,INDEX]=LOOKUP1(FROM,TO,8)

Yields:
RESULT = 9
INDEX = 6

B.4 lookup2.m

The function lookup2 performs an interpolation on a two-dimensional lookup-
table. This function behaves just like the Matlab routine interp2, except
for that it is much faster, because some safety checks are left out.

Usage: [RESULT,INDEX1, INDEX2] = LOOKUP2(FROM1,FROM2,TO, IN1, IN2)

TO is a matrix of which the contents are used as interpolation
points. FROM1 and FROM2 should contain distributions of the axes
of the matrix. IN1 and IN2 should contain the entries at which the
interpolation is desired.

B.5. SMARTINV.M 77

For values outside the domains specified by FROM1 and FROM2 linear
extrapolation is performed, where only the two outmost are used.

INDEX1 and INDEX2 contain the lowest indexes of interpolation
points used.

Example:

FROM1 = [1 2 3]
FROM2 = [1 2 3]
TO = [2 2 2;

2 1 2;
2 2 2]

[RESULT,INDEX1,INDEX2]=LOOKUP2(FROM1,FROM2,TO,1.5,1.5)

Yields:
RESULT = 1.75
INDEX1 = 1
INDEX2 = 1

B.5 smartinv.m

The function smartinv performs the part-wise inversion as described in
appendix A.

If a square matrix contains a zero-valued row, and the according column
is zero-valued as well, these row and column can be left out before inversion
is performed. In systems theory this equals the situation where independent
systems are inverted separately. In B-spline learning it equals the situa-
tion where several sub-domains of the network are well-visited, with these
domains separated by sub-domains that are not visited.

Usage: [AI]=SMARTINV(A)

Example:
A = [1 1 0 0;

0 2 0 0;
0 0 0 0;
0 0 0 4]

AI=SMARTINV(A)

Yields:

78 APPENDIX B. MATLAB PROCEDURES

AI = [1 -0.5 0 0;
0 0.5 0 0;
0 0 0 0;
0 0 0 0.25]

B.6 createtarget.m

This file creates the target matrix of a bivariate commutation network, as
depicted in figure 2.6.

B.7 createvalmat.m

This file creates a validity matrix, on which learning can be based. It is
designed rather arbitrarily only to exclude unreliable boundaries.

Appendix C

20-Sim extension lookup2.dll

Evaluating a two-dimensional second order BSN is the same as using a two-
dimensional lookup table with linear interpolation. Control Lab Products
does not provide such a table working properly. Therefore a system was
implemented from the scratch, by creating a DLL-file with Microsoft Visual
C++. Currently the DLL can only handle tables of 500×5 elements, where
the first dimension corresponds to the first input. A 20-Sim submodel is
provided to incorporate the DLL correctly. The DLL should be located
either in the 20-Sim/bin-directory or the current working directory.

The DLL opens the file bsnxv.tab, which should be placed in the current
directory. The file should contain the table entries, in typewriter order (i.e.
a table with 500 lines and 5 columns, which is read line by line).

The file uses exactly the same algorithm as the Matlab procedure lookup2
which was described previously.

79

80 APPENDIX C. 20-SIM EXTENSION LOOKUP2.DLL

Appendix D

Files for the Linear Motor

The following files were made for the Linear Motor lab-setup. They were
made in ANSI-C++, to be incorporated in existing control software. Three
objects were made: a reference path generator with data-file input, a parsi-
monious feed-forward controller and a B-spline network that can only read
files, without being able to learn.

D.1 filepath.cc

The code in filepath.cc reads a data-file with reference data, and uses
this data to generate a path. The path is performed cyclic, i.e. at the end
it is started from the beginning again.

The file to read should consist of four columns of floating point numbers,
with the format: [time position velocity acceleration]

For example:

0.000e0 0.000e0 0.000e0 1.000e-1
1.000e-3 0.500e-7 1.000e-4 1.000e-1
2.000e-3 2.000e-7 2.000e-4 1.000e-1
3.000e-3 4.500e-7 3.000e-4 1.000e-1

describes the first four samples of a second order reference path.

Furthermore the file should apply to some other restrictions:

• The file should be homogeneous, i.e. the differences between the time
indices should be equal.

• The path described by the file should be cyclic, i.e. it should stop
exactly at the same point as where it started. This follows from the
fact that discontinuities in the path should be avoided in order to avoid
large control signals.

81

82 APPENDIX D. FILES FOR THE LINEAR MOTOR

The object is not robust with respect to the following failures:

• Non-existent data files

• Non-homogeneous data files

• Oversized data-files; the size is limited by the size of the table, declared
in filepath.h, which depends on compiler and computer capacities.

• Switching between different path generators. If the user starts a new
path generator, for example path2.cc, the homing procedure is ini-
tialized wrongly. Therefore the user should always restart the program
before using a new path generator, both in case of switching to and
from the file-based generator.

D.2 lmplffc.cc

The code in lmplffc.cc combines a PID-controller and three BSNs to form
a PLFFC. This object itself does not really do anything. It only instantiates
the objects from pid.cc and bsnfile.cc. Furthermore it assigns appropri-
ate names to the instances of bsnfile.cc, for which purpose the member
variable name was made public.

D.3 bsnfile.cc

The code in bsnfile.cc delivers BSNs for the controller in lmplffc.cc.
The BSNs are only capable of reading a file with weights, and then per-
form linear interpolation. To this end some parameters of the original file
lmbsn.cc were replaced with default values. One important modification,
was that the variable name was made public, in order to enable lmplffc.cc
to identify the instances of the object.

The input file, generally with the extension .wgt, should contain two
columns of floating point numbers, the first of which contains the input
value, and the second the according weight. The file should be homogeneous,
i.e. the spline width should be equal for all splines. For example:

-0.100e0 -1.000e0
0.000e0 0.000e0
0.100e0 1.000e0

constitutes a straight line through the origin, with a slope of +10, defined
on the range [-0.1 0.1].

The object is not robust with respect to the following failures:

D.3. BSNFILE.CC 83

• Non-existent .wgt-files

• Oversized .wgt-files; the maximal size depends on the declaration in
bsnfile.h, which on its turn is limited by compiler and computer
capacities

• inputs outside the range on which the network is defined by the .wgt-
file

• non-homogeneous spline distributions

84 APPENDIX D. FILES FOR THE LINEAR MOTOR

Bibliography

Ȧström, K. and Wittenmark, B. (1997). Computer-controlled systems -
theory and design, Information and systems science series, third edn,
Prentice Hall.

Bhattacharryya, G. and Johnson, R. (1977). Statistical concepts and meth-
ods, Wiley series in probability and mathematical statistics, John Wiley
and sons.

Bossley, K. (1997). Neurofuzzy Modelling Approaches in System Identica-
tion, PhD thesis, Faculty of engineering and applied science, University
of Southampton.

Brown, M. and Harris, C. (1994). Neurofuzzy adaptive modeling and control,
Prentice Hall International UK.

Coelingh, H. (2000). Design support for motion control systems, PhD thesis,
Control laboratory, University of Twente.

De Vries, T., Velthuis, W. and Van Amerongen, J. (2000). Learning feed-
forward control: a survey and historical note, Proceedings 1st IFAC
conference on Mechatronic systems.

Idema, L. (1996). Design of parsimonious learning feed-forward controllers,
Master’s thesis, Control Laboratory, Universtity of Twente.

Löhnberg, P. (2000). System identification and adaptive control, number
024R99 in Lecture notes, University of Twente.

Spreeuwers, L. (1999). Learning friction compensation, Master’s thesis, Con-
trol Laboratory, University of Twente.

Steenkuijl, J. (1999). Design of a learning feed-forward controller for a
robot manipulator, Master’s thesis, Control Laboratory, Universtity of
Twente.

Stribeck, R. (1902). Die wesentlichen eigenschaften der gleit- und rollen-
lager, Zeitschift des Vereins Deutscher Ingenieure 46(36,38): 1341–
1348, 1432–1438.

85

86 BIBLIOGRAPHY

Van Amerongen, J. and De Vries, T. (1999). Meet- en regeltechniek, deel 2,
second edn, University of Twente, Control laboratory.

Velthuis, W. (2000). Learning feed-forward control - theory, design and
applications, PhD thesis, Control Laboratory, Universtity of Twente.

Velthuis, W., De Vries, T., Schaak, P. and Gaal, E. (2000). Stability analysis
of learning feed-forward control, Automatica 36: 1889–1895.

Verwoerd, M. (2000). Convergence analysis of learning feed-forward control,
Master’s thesis, Control Laboratory, Universtity of Twente.

Acknowledgement

Photograph in figure 4.1 (page 51) by Job van Amerongen.

Typesetting made in LATEX.

Index

A priori control signal, 2
ANN, 3
ANOVA-representation, 5
Artificial neural networks, 3

B-spline, 9
B-spline network, 3

Bivariate, 13
Backward differentiation, 52
Basic spline, 9
BSN, 3

Cogging, 22, 26
Commutation, 23, 27
Convergence, 30
Cost function, 11, 26

discrete, 11
Curse of dimensionality, 4

Experiment design, 54

Friction, 22, 26

Generalisation ability, 5

Inertia, 27

Jerk, 31

Learning, 10
feed-forward control, 2
local, 4
order, 17, 33
speed, 30

LFFC, 2
Linear interpolator, 9
Linear motor, 6

Membership, 10

Noise, 20, 24

Odd symmetry, 16
Off-line training, 10

Parsimonious B-spline network, 4
Parsimonious B-spline networks, 14

multivariate, 18
classification of, 14
univariate, 14

Parsimonious learning feed-forward
control, 6

Partwise inversion, 12
Paths

coverage, 30
order, 30

Persistent excitation, 30
Phase-plane representation, 31
PID-design, 52
PLFFC, 6

for the linear motor, 25

Regularisation, 12, 30
Residue, 17
Roll-off filter, 52

Spline distribution, 32
non-homogeneous, 27

Stability, 20
Stagnation, 42

Tecnotion linear motor, 51
Transient representation, 31

Uncorrelatedness, 17

Weight, 9
vector, 10

87

