
University of
Twente

Faculty of Electrical Engineering,

Mathematics & Computer Science

Integrated Design and Implementation Tool
for Multi-Agent Controllers [IDITmac]

G. Bajracharya
MSc Thesis

Supervisors: prof. dr. ir. J. van Amerongen

March 2003

Report 001CE2003
Control Laboratory

Faculty of Electrical Engineering,
Mathematics & Computer Science

University of Twente
P. O. Box 217

7500 AE Enschede
The Netherlands

 dr. ir. T.J.A. de Vries
 dr. ir. J.F. Broenink
 ir. M.H.A. Verwoerd

Abstract

Multi-Agent Controller Systems (MACS) form a new concept in the field of
control engineering. In the Multi-Agent Controller System framework, a
complex control problem is divided into simple control problems and the
solution to each of these problems is implemented as a controller agent.
Controller Agents within MACS are coordinated with each other to solve the
complex problem.

A specification language, MacsML (Multi-Agent Controller Specification
Markup Language), has been developed for specifying MACS, which is based
on XML (Extensive Markup Language) and on MACSL (Multi-Agent
Controller Specification Language), a specification language for MACS that has
been developed previously. A tool, IDITmac (Integrated Design and
Implementation Tool for Multi-Agent Controllers), has been developed in this
thesis, which supports checking of the specification and generation of C++ code
of the specified MACS. The generated code can run in real system. A dll
(dynamic link library) of the MACS can also be generated by this tool, which
can then be used in 20-Sim for simulation purposes.

A demonstration of MACS has been implemented on a mass-spring-mass
system (DemoLin from Imotec BV), and the generated code has been tested
both in simulation (20-Sim) and in real system (20-Works).

Contents

Preface ... v
1 Introduction... 1

1.1 Modern Control Solutions... 1
1.2 Integrated Design and Implementation Tool... 2
1.3 Multi Agent Controller.. 2
1.4 Goals of the project ... 3
1.5 IDITmac .. 4
1.6 Outline of this thesis.. 4

2 Background of the Project .. 7
2.1 Introduction ... 7
2.2 Overview of Methodologies for Controllers ... 7

2.2.1 Control Architecture.. 8
2.2.2 Agents Based Software Development ... 9
2.2.3 Code generation... 11
2.2.4 Controller specification ... 11

2.3 Integrated Approach for Controllers ... 12
2.3.1 Competent Specification of Multi Agent Controller 13
2.3.2 Support for Design of Multi Agent Controller 13
2.3.3 Integrated Implementation of Multi Agent Controller 13

2.4 Conclusion .. 15
3 Multi Agent Controller System Architecture.. 17

3.1 Introduction ... 17
3.2 Agent ... 17
3.3 Multi Agent Controller System... 18

3.3.1 Overview of Multi-Agent Controller Implementation Framework
(MACIF) .. 18

3.4 Architecture of Multi Agent Controller System.................................. 22
3.4.1 Agent ... 23
3.4.2 Sensor Agent ... 24
3.4.3 Actuator Agent .. 24
3.4.4 Controller Agent.. 24
3.4.5 Elementary Agent.. 25
3.4.6 Composite Agent... 25
3.4.7 Coordination Object .. 26
3.4.8 Main Agent.. 26

3.5 Conclusion .. 27
4 Specification of Multi Agent Controller System 29

4.1 Introduction ... 29
4.2 Multi-Agent Controller Specification Language................................. 29
4.3 Multi-Agent Controller Specification Markup Language (MacsML). 30

4.3.1 XML Schema for MacsML ... 32
4.3.2 Basic Structure of MacsML .. 33
4.3.3 Input Ports and Output Ports ... 34
4.3.4 Parameters Definitions and States ... 35
4.3.5 Method Specification .. 35
4.3.6 Controller Agents within Composite or Main Agent 36
4.3.7 Coordination within Composite or Main Agent 36
4.3.8 Connections within Composite or Main Agents 37

(i)

4.3.9 Including Header Files...37
4.3.10 Instances of C++ Classes ...37

4.4 Conclusion...38
5 Design and Implementation of Multi-Agent Controller Systems..............39

5.1 Introduction ...39
5.2 Operating Principle of Multi Agent Controller Systems39

5.2.1 Multi-Agent Controller Systems and the Environment39
5.2.2 Main Agent ..40
5.2.3 Sensor Agent..42
5.2.4 Actuator Agent...42
5.2.5 Coordination Object...43
5.2.6 Composite Agent ...43
5.2.7 Elementary Agent ..44
5.2.8 Realization of Multi-Agent Control Systems45

5.3 Keywords...46
5.3.1 Ports, Parameters and State Variables types46
5.3.2 Sensor and Actuator types for 20-Sim...46
5.3.3 Operating State of Elementary Agents ..46
5.3.4 Keywords of Coordination Objects ...46

5.4 Design of Multi-Agent Controller Systems with 20-Sim48
5.5 Implementation of Multi-Agent Controller Systems with 20-Works..49
5.6 Conclusion...50

6 Case Study...51
6.1 Introduction ...51
6.2 Demonstration Setup (DemoLin) ..51
6.3 Control Problem ..52
6.4 Control Strategy...52

6.4.1 Sensor and Actuator Agents ..54
6.4.2 Motions of DemoLin ...54
6.4.3 PID-Controller and Safety ...56

6.5 Simulation Result ..56
6.5.1 Model of DemoLin ..56

6.6 Implementation Result...57
6.7 Conclusion...60

7 Conclusion and Recommendation...61
7.1 Conclusion...61
7.2 Recommendation ...63

APPENDIX A XML and XML Schema ..65
A.1 Background of XML (Extensive Markup Language)..........................65
A.2 XML (Extensive Markup Language)...65
A.3 W3C XML Schema ...66

APPENDIX B UML...69
B.1 Structural Diagrams...69

B.1.1 Class Diagram..69
B.2 Behavior Diagrams ..70

B.2.1 Sequence Diagram ...70
B.2.2 Statechart Diagram ..71

APPENDIX C Features of IDITmac ..73
C.1 Support for MacsML in IDITmac ...74
C.2 Support for Design and Implementation in IDITmac..........................75

APPENDIX D DemoLin Setup and Model ..77
D.1 Configuration of DemoLin ..77
D.2 Encoders of DemoLin..78

(ii)

D.3 Model of DemoLin.. 78
APPENDIX E Design of PID-Controller for DemoLin............................... 79

E.1 Plant Model ... 79
E.2 Design ... 80
E.3 Online Parameter Tuning .. 81

APPENDIX F Multi-Agent Controller System for DemoLin...................... 83
Bibliography .. 103

(iii)

PREFACE

Thanks are due to a lot of people for their encouragement and help in the
completion of this project.

Firstly, I would like to express my gratitude to Theo de Vries, for his valuable
guidance and continuous support during execution of this project. His
suggestions and critical remarks were instrumental in the success of this thesis. I
would like to thank Job van Amerongen for providing a warm welcome into the
Control Group and for directing me towards finding a project suited to my
interests. I would also like to thank Jan Broenink for his suggestions in the
UML aspects of this project, and Bas de Kruif for his guidance in this project. I
am grateful to Mark Verwoerd for his feedback regarding my report. A special
thanks goes to Paul Weustink and CLP for his help for preparing the movie for
the presentation.

The case study used in this project is implemented in DemoLin, a setup from
Imotec BV. I am grateful to Imotec for providing me the facility to work on
their setup.

I would also like to thank my parents for their ever-present and unconditional
support. Last but certainly not the least, a special thanks to Albert van Breemen
for creating the Multi-Agent Controllers, which provides the framework for this
thesis.

(v)

CHAPTER 1
1 INTRODUCTION

1.1 Modern Control Solutions

Needs of control engineers are growing with the advancement of technologies
in the field of control engineering. Rapid advances in computational power
introduce ability to solve even more complex control problems. Sophisticated
systems have been successfully developed and implemented which exploit
enormous computational power. Almost all present day controllers are being
implemented with software realization to accomplish the increasing needs of the
current problems. Hardware excellence in computer applications supplements
functionality, flexibility as well as cost effectiveness of the computer based
control solutions.

Soft solution approach to hard control problems of industrial environments has
triggered evolution of automation in manufacturing processes. Present industrial
controllers evolved from conventional loop control to hierarchical layered
structures to supplement additional functionalities. Functions such as Sequence
Control, Supervisory Control, Data logging and Interfaces with other plants,
which used to be accomplished with human intelligence, are being implemented
autonomously with the aid of computer supervision. Automation not only
reduces production cost but also improves production efficiency by increasing
production capacity and decreasing production time.

Ease of operation and improved productivity are accomplished through
considerable attention in the design phase. Intensive simulations and rigorous
tests ensure successful performance of the system in consideration. Recent
developments in the field of simulation tools, particularly for mechatronic
systems such as industrial applications, have considerably reduced design cost
by rectifying design faults prior to its implementation, which would else wise be
identified in the testing or even worse in the operational phase of the system.
Numerous commercially available tools [25], [28], [29] are being utilized in the
design of mechatronic systems, which facilitate the controller design and
verification by simulating the designed controller on the model of the plant.

1

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

1.2 Integrated Design and Implementation Tool

In an industrial process, design of controllers involve formulation of reasonably
accurate models of the plant to be controlled, designing control laws based on
the derived models and simulating the designed control laws using available
simulation tools. Whereas implementation is accomplished by converting the
designed control laws to the native code of target systems, most commonly
embedded microprocessor based architecture or personal computer with analog
and digital interfaces. Controllers can be designed in the continuous, discrete or
hybrid time domain whereas implementation is accomplished mostly in discrete
time domain as most of the present day controllers are being implemented in
digital machines. Presence of the vast difference in design and implementation
of control applications is inherent due to different concepts in the field of
control engineering and computer science. Thus, transformation of controller
designs to implementation induces possibilities of errors and unreliable
behaviors. In some cases, these errors cannot be identified by rigorous tests of
the implementation thus these errors results in failure of the system causing
serious and even catastrophic disaster.

Furthermore, a hierarchical layered control structure, which is essential in the
industrial processes, is complicated to be simulated using present simulation
tools for mechatronic systems. Features such as mode switching and state
transition, which are often encountered in a control system, are difficult to
capture in simulation tools and cannot be structured well. Being object oriented,
these tools still cannot accommodate inheritance and polymorphism in the
design, which is a key factor of successful and efficient implementation. The
resulting implementation often tends to deviate from the designed controller,
downgrading the performance of the controller.

The need for an integrated approach in the design and implementation of a
controller for mechatronic systems is mandatory. This project is an effort to
extend these well-proven tools for supporting not only the design aspect of
mechatronic systems but also its implementation phases thus providing an
integrated design and implementation environment, which, apart from
facilitating the implementation of the design, reduces possible errors occurring
in realizing the design and supplements functionality to the design itself.

1.3 Multi Agent Controller

After introduction of ‘objects’, ‘agents’ is a frequently used term in software
development. In general, an agent is referred as an abstract entity that is able to
solve a particular (partial) problem. A complex problem can be solved by a pool
of agents, in which each agent is responsible for solving a part of the whole
problem, thus providing a well-structured problem solving approach. Since

2

Chapter 1 Introduction

multiple agents are acting on their particular problem to solve the complete
complex problem, conflicts between individual agents arise, as these partial
problems are interdependent. These conflicts are resolved by coordination
between the agents.

Multi agent controllers are being implemented in solving control problems also.
Van Breemen (2001) [23] has successfully implemented multi agent controllers
in numerous control problems. Implementations presented also featured
functionalities such as a hierarchical structure of controllers with multi-layered
agents and efficient state transitions with ‘initialize’ and ‘finalize’ procedures.
The framework incorporates bottom-up approach of design enabling
incremental design of controllers. The ability of handling generic control
problems is well suited for applying the framework of multi agent control in the
integrated design and implementation of mechatronic systems. The structured
framework of multi agent controllers can be exploited to ensure well-organized
design and error free implementation.

1.4 Goals of the project

As mentioned earlier, the need for an integrated tool for design and
implementation is inevitable for control system design, which supports the
current developments in the field of controller design. Multi Agent Controller
System has potential to implement advanced control systems, though an
integrated support tool for Multi-Agent Controller System is still lacking. The
main aim of this project is to develop and implement an integrated design and
implementation tool based on Multi-Agent Controller System. The tool should
be based on the Multi-Agent Controller Systems Implementation Framework
(MACSIF) proposed by van Breemen (2001) [23]. The main task description of
the project is summarized as follows.

� Redesign of the specification tool of Multi-Agent Controller Systems to
support efficient and extensible specification.

� Build a design support tool, which can be used to test any designed
Multi-Agent Controller System in a simulation environment.

� Build an implementation support, which allows automated
implementation of the designed Multi-Agent Controller System on real
systems.

� Incorporate the tools into a single integrated tool, which facilitates design
and implementation of Multi-Agent Controller Systems.

3

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

1.5 IDITmac

IDITmac (Integrated Design and Implementation Tool for multi-agent
controller) is the software tool developed in this project to support an integrated
approach for Multi-Agent Controller Systems. A snapshot of the graphical user
interface of IDITmac is shown in Figure 1-1.

Figure 1-1: Snapshot of Graphical User Interface of IDITmac

IDITmac is developed in Java and it utilizes the Xerces 2 Java Parser [33] and
the Microsoft Visual C++ Compiler. The tool supports XML editing, checking,
generation of C++ code, generation of a dll (dynamic link library). The features
of IDITmac are presented in Appendix C.

1.6 Outline of this thesis

Essential features of the implemented Multi-Agent Controller Systems are
presented in this report. The organization of the report is as follows.

Chapter 2 presents a brief discussion of current trends in the field of control
engineering and illustrates applications of Multi-Agent Controller Systems in
this field. A need of an integrated approach is identified in the chapter and the
proposed approach is presented, which combines design and implementation of
Multi-Agent Controller Systems.

4

Chapter 1 Introduction

Chapter 3 describes the architecture of Multi-Agent Controller Systems. The
description presented reflects the implemented system thus forms a basis for
their specification. The architecture is presented in UML class diagrams.

Chapter 4 gives a brief description of MACSL (Multi-Agent Controller
Specification Language), a specification language for Multi-Agent Controller
Systems developed by van Breemen [23]. A guideline for the XML based
specification developed in this thesis, MacsML (Multi-Agent Controller
Specification Markup Language), is presented in the Chapter.

Chapter 5 introduces the operating principle and keywords of the implemented
Multi-Agent Controller Systems. Frameworks for design and implementation of
the integrated approach are presented in the chapter.

Chapter 6 presents a case study of Multi-Agent Controller Systems developed
in this thesis to demonstrate the performance of the designed tool. The
demonstration is supported by experiments performed on the case study.

Chapter 7 presents conclusion and recommendation for further improvement of
the tool developed in this thesis.

5

CHAPTER 2
2 BACKGROUND OF THE PROJECT

2.1 Introduction

This chapter outlines the background of the project. The chapter describes
current research trends in the field of controller architectures and agent based
systems, currently available code generators and current trends of controller
specification. A brief description of developments in controller architectures is
presented with the focus in Mechatronic Systems. A study of agent based
systems in the field of software development and control engineering is
presented with examples of current applications of agents in control
engineering. Current trends in automated code generation and controller
specification are also studied. From the findings of current developments, an
integrated approach of design and implementation of Multi-Agent Controller
Systems is formulated. The integrated approach for controller is implemented in
the project.

2.2 Overview of Methodologies for Controllers

This project unifies the concept of agents in software engineering and the
principle of dividing a complex control problem to supposedly simple and
independent control problems. By coordination between the agents, it combines
the solutions of these simple control problems to solve the complex control
problem. The concept of Multi-Agent Controller is based on the framework
presented in “Agent-Based Multi-Controller Systems, A design framework for
complex control problems”, A. J. N. van Breemen (2001) [23]. Main objective
of the project is to propose a “control architecture” based on Multi-Agents,
recommend specification of the agents and develop design tools (specification
of the agents, validation of the specification, test of the multi-agent system by
simulation) and implementation tools (software realization from the
specification of the agents).

7

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

This project covers four developments in four major fields and unifies these
developments and implements it to solve control problems of mechatronic
systems. The four developments are listed below:

� Control Architecture
� Agents Based Software Development
� Code Generation
� Controller Specification

Current developments in above mentioned fields are narrated as follows.

2.2.1 Control Architecture

The conventional controller design framework mainly focuses upon designing a
single-loop controller for a plant. In this framework, the single controller is
designed based on a single dynamic model of the plant. The general structure of
conventional controllers is shown in Figure 2-1.

Controller

A
ct

ua
to

rs

Plant

Se
ns

or
s

Conventional Control Architecture

Figure 2-1: General structure for feedback controllers

However, modern mechatronic systems are becoming increasingly complex,
such as manufacturing processes, power plants etc. A single dynamic model and
a single loop controller solution for such a complex system is often becoming
the bottleneck in the modern control application. Most of the modern plants can
be described conveniently by multiple models, consisting of (simple) submodels
that describe the plant’s dynamic behavior in particular local regimes of the
plant’s overall operating regime [1] [2]. Various design tools based on operating
regime decomposition are available for designing controllers, such as ORBIT
(Operation Regime Based modeling and Identification Toolkit for Matlab) [1].

Recent developments in hybrid control systems [3] enable design and formal
analysis of control systems for systems with changing dynamics (SCD).
Different hybrid controller strategies that combine loop and logic control, such
as switching controllers [4], are being studied. Various methodologies for
analysis and design are presented for combining continuous time systems,
described by differential/difference equations and discrete event systems,
described by finite automata and Petri Nets [3].

8

Chapter 2 Background of the Project

Further, to simplify control problems, hierarchical control architectures are also
proposed. In hierarchical control architectures, higher levels utilize coarser
models of the system and lower levels deal with detailed models of the system.
Several hierarchical models such as two-layered control hierarchy [5] [6], Open
Control Platform with three-layered hierarchy [7] has been proposed.

Hierarchical structure is inherent in the controller structure of industrial
processes. As illustrated in Figure 2-2, a seven-layered hierarchical structure is
widely implemented in the industrial applications. Two base layers,
Measurement and Actuation and Data Processing, are responsible for data
acquisition and actuation. Loop controllers are generally feedback loop
controllers and in special cases feedforward, adaptive controllers or other
special controller algorithms. Generally, an industrial automation is complex to
be controlled with a single loop controller. Coordination and sequencing of
multiple loop controllers is done by sequence control, also known as logic
control. Supervision of the operation of the controlled processes and data
logging of the performance of the plant is also maintained. Further, a network
interface is provided, which enables exchange of information between the
controlled plants and Human Machine Interface (HMI).

2.2.2 Agents Based Software Development

An Agent is commonly used in software engineering and artificial intelligence
as entity/program that are responsible for performing a set of tasks in
coordination with its environment. Agents have been widely used in different
contexts, ranging from generic autonomous agents, software agents and
intelligent agents to the more specific interface agents, virtual agents,
information agents, mobile agents and so on [8]. A definition of an autonomous
agent by Franklin and Graesser (1997) is as follows [9].

“An autonomous agent is a system situated within and a part of an environment
that senses that environment and acts on it, over time, in pursuit of its own
agenda and so as to effect what it senses in the future.”

In the field of control engineering also, autonomous agents are being
implemented to solve various control problems [10] [11] [12] [13] [15].
Autonomous controller agents sense their environment, i.e. the plant, by sensors
and react to the environment through actuators, to obtain a desirable
performance. The ability of agents to execute their tasks in coordination with
other agents make them highly effective for structuring distributed control
architectures and hierarchical control systems.

Bianchi and Rillo (1996) [16], implemented a “purposive computer vision
system” using agent based control architecture. Tasks are represented as basic
agents and organized in a hierarchical structure with autonomous agents on the

9

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

top. Bussmann and Schild (2001) [17] implemented agents in a modern
automotive industry using work-piece agents, machine agents and switch
agents. The work-piece agents auction off their current task, while the machine
agents bid for the tasks and the switch agent coordinates the work-piece and
machine agents.

A
ct

ua
to

rs

Plant
Se

ns
or

s

Network Interface

Data Logging

Supervisory Control

Sequence Control

Loop Control

Data Processing

Measurement and Actuation

Discreet Time Transformation Continuous Time

Physical System Interfaces Industrial Controller

Figure 2-2: Hierarchical Structure of Industrial Controllers

Holonic Manufacturing Systems (HMS) [14] introduced a special type of
physical agent called a “holons”, which consists of an information processing
part and often a physical processing part, to provide an open environment for
the manufacture of high-variety low-volume products. “Holons” is derived from
the Greek word holos (signifying whole) with a suffix on (a particle, as in
proton or neutron). Problem solving in an HMS is achieved by holarchies, or
groups of autonomous and cooperative basic holons and/or recursive holons that
are themselves holarchies [18].

Van Breemen (2001) [15] [19] [20] [21] [22] [23] proposed a framework for
designing and implementing hierarchical structured multi-controller systems
using an agent-based framework. In the presented framework, the concept of a
controller-agent is introduced which contains all information of a particular
control (sub-) problem [21] and the controller agency, which consists of a pool
of controller-agents and a coordination object. The coordination object is
responsible for resolving conflicts, sequential execution order and blending
actions of the pool of controller-agents within the controller agency. Different
types of coordination mechanisms such as Parallel, Fixed priority, Winner-

10

Chapter 2 Background of the Project

takes-all, Sequential, Addition have been described. Further, the external
interface of a controller agency is the same as that of a controller agent, which
allows multiple layered hierarchical structures of controller agencies and
controller agents. The given framework is being implemented on various
applications such as a Water Vessel Problem [19], Room Thermostat Control
[20], Process of Corrugated Cardboard [22], Fast Component Mounter [23] and
so on.

2.2.3 Code generation

Use of computer tools for design of control systems has been increasing in
recent decades. Presently, various tools are available for computer aided control
system design (CACSD) [24]. Some of the tools not only support analysis and
design of controllers but also support automated code generation of the
designed controllers for various target systems. Matlab [25] implements Real
Time Workshop Embedded Coder and Stateflow Coder to generate C code
directly from Real Time Workshop and Stateflow diagrams. Products such as
dSpace [26] have been used for implementing code generated from Real Time
Workshop and Stateflow diagrams. Software like MATX/RTMATX [27] also
supports design of controllers and automated code generation from the designed
controller. LabView [28] introduces hardware such as LabView Real-Time
Model and RT series hardware targets, which can run applications, designed in
LabView. 20-Sim [29] also generates ANSI C code of 20-Sim-models or 20-
Sim-submodels that can be used in various systems. Standard templates are
available to generate code for various applications. User defined templates can
also be included to support customized code generation for a broad range of
tasks.

20-Sim also supports linking during simulation through dll (Dynamic Link
Library). The implementation of a control algorithm can be linked with 20-Sim
through dll-functions to test the implementation.

2.2.4 Controller specification

Specifications of loop controllers are mostly presented by equations and
graphical representations. The specification provides information of data flow
and state transitions of the controller.

Since controllers are discrete event systems, they can be analyzed and
synthesized by finite automata (state transitions), and Petri Nets. Petri Nets is a
formal and graphical language, which is appropriate for modeling systems with
concurrency. A preliminary proposal of standard of Petri Nets specification
based on XML (Extensive Markup Language) is being developed [30]. PNML
(Petri Nets Markup Language) is an interchangeable format for description of
Petri Nets and being an extension of XML, it is portable and platform

11

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

independent. PNML has been implemented in industrial logic controller
specification and design [31].

IEC 61499 Function Block is a component based open architecture, for
Distributed Industrial-Process Measurement and Control Systems (IPMCS).
IEC 61499 is derived from PLC Function Blocks (IEC 61131-3) and DCS
Function Blocks (IEC 61804). A standard for XML based specification of IEC
61499 Function Block is also being developed [32].

For the multi agent controller framework of van Breemen (2001), an
organizational diagram has been proposed for illustrating hierarchical structure
of the agents[23]. However, the organizational diagram does not provide
complete information of the agents, as data transfer between agents is not
specified in the organizational diagram. The complete controller specification
(which also includes the hierarchical structure) is defined in a specific text
format.

2.3 Integrated Approach for Controllers

As illustrated in the previous section, various developments in different fields of
control engineering are emerging to support the present needs of the controllers.
Significant developments in the field of controller architectures provide
sufficient support to simplify the design of complex control systems. The multi
agent controller approach provides a backbone for implementing the available
controller architectures in an effective and well-organized fashion. The
framework of multi agent controller [23] accords hierarchical structuring of
controllers, hybrid control systems with state transition and operating regime
philosophy with mode switching. Controller specification and code generation
from the specification ensure an error free and consistent implementation of the
designed controllers.

Combination of these abilities in a single tool would provide a powerful
approach for solving current control problems in an industrial environment.
Thus a tool “Integrated Design and Implementation Tool for Multi-Agent
Controller (IDITmac)” based on the framework of multi agent controller by van
Breemen (2001) [23], is proposed in the project. The tool is primarily designed
for combined use with 20-Sim (Design) [29] and 20-Works (Implementation).
The designed controller is simulated with 20-Sim via a dynamic link library
(dll) and implemented with 20-Works via object files. The structure of the tool
is illustrated in Figure 2-3. Features of the integrated tool are elaborated below.

12

Chapter 2 Background of the Project

2.3.1 Competent Specification of Multi Agent Controller

In the multi agent controller framework, multi agent controllers are coordinated
with each other and their environment to solve a given control problem. In order
to design a good controller, the specification of the controller should be precise
and well structured.

The specification language for multi agent controllers is defined in an XML
(Extensible Markup Language) format. A guideline for the specification is
designed, which specifies the structure of the XML specification. The guideline
is implemented as W3C XML Schemas [34] and the controller specification is
validated against the Schemas to check the integrity of the specification.

2.3.2 Support for Design of Multi Agent Controller

Design tools such as 20-Sim are commonly used for designing mechatronic
controllers. 20-Sim is a Windows-based simulation program for dynamic
systems. 20-Sim also supports run-time linking of simulation with a dynamic
link library module. The specified multi agent controller is simulated in 20-Sim
with a dynamic link library. 20-Sim is a powerful modeling tool for multi-
domain systems as it also supports bond graphs and iconic diagrams.

A library is built in the Microsoft Visual C++ to capture the generic behavior of
multi agent controllers. From the specification of the multi agent controller
defined in XML, C++ code is generated. The generated code is compiled and
linked to generate a dynamic link library module using the Microsoft Visual
C++ compiler and linker. The generated dll (dynamic link library) can be linked
with 20-Sim to simulate the defined Multi-Agent Controller. The process of
translation of the specification of the controllers in XML to C++ code and
generations of the dll from the C++ code is automated by a software tool
developed in java.

2.3.3 Integrated Implementation of Multi Agent Controller

The implementation of Multi-Agent Controller Systems is accomplished in 20-
Works. 20-Works is a C++ (GNU compiler) based platform designed for
control of mechatronic systems at Control Laboratory, University of Twente.
20-Works operates in a fixed sampling period. It also provides a graphical user
interface and online plotting facilities.

An integrated design and implementation approach is adopted for the
implementation of Multi-Agent Controller Systems in which the code generated
for design (with 20-Sim) is implemented on the real system. A framework is
designed for 20-Works for implementing the code generated. The integrated
approach reduces errors in translating the design to implementation.

13

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Controller
Specification

of MAC

Code
Generation

Implementation
with 20Works

Link to
20Sim

Validation

Agent-Based Multi-Controller
Framework

Object
files

Controller
Specification

XML
Specification

Specification of
Agents

dynamic
link library

Support for
20Works

Support for
20Sim

20 Works

Implementation Design

Library for
20Works

Library for
20Sim

C++ code

Figure 2-3: Structure of Integrated Design and Implementation Tool for

Multi-Agent Controller (IDITmac)

14

Chapter 2 Background of the Project

2.4 Conclusion

In this section, current trends in controller design have been studied. Need of a
tool for structuring the control strategy and providing an integrated approach in
design and implementation of a control system to facilitate the current
developments has been identified. Competence of Multi-Agent Controller
Systems in organizing the control strategy has been demonstrated. Generic
characteristics of Multi-Agent Controller Systems enable their application in
almost all types of control systems. The flexible hierarchical structure of Multi-
Agent Controller Systems facilitates appropriate structuring of the control
solutions.

Based on Multi-Agent Controller Systems, a brief description of an integrated
approach for design and implementation has been presented. The presented
approach reduces potential errors that may occur during translation of the
design to the implementation and provides a more realistic design approach.

15

CHAPTER 3
3 MULTI AGENT CONTROLLER

SYSTEM ARCHITECTURE

3.1 Introduction

This chapter gives the basic theory underlying Multi-Agent Controller Systems.
A general description of an agent is presented and an introduction of the Multi-
Agent Controller Implementation Framework developed by van Breemen
(2001) [23] is presented. The architecture of Multi-Agent Controller Systems
implemented in the project is presented with the aid of UML (Unified Markup
Language), which is also a basis for Specification of Multi-Agent Controller
System (Chapter 4). The operating principle of a Multi-Agent System is
presented in Chapter 5.2-Operating Principle of Multi Agent Controller System.

3.2 Agent

Recently, the term “agent” is widely used in various fields of software
engineering. In general, “agent” is termed as an autonomous entity responsible
for performing a certain task in coordination with its community. Since the term
“agent” is used very frequently in various fields with different purposes, a
unanimous definition of the term “agent” cannot be formulated. However, an
agent in general can be described as a system, which exhibits the following
properties.

 Autonomous: an agent is an intelligent entity that can act upon its local task
independently without the assistance from other systems.

Social ability: an agent communicates with its environment (which may be a
community of other agents and/or the physical environment of the whole
system) to achieve the global objective (of the whole system).

Reactivity: an agent perceives its environment and responds positively to the
changes that occur in the environment.

17

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

The agent concept is not an absolute theory, which has a minimum requirement
or a precise guideline that has to be followed to qualify for being an agent. The
agent concept is a way of solving problems by dividing the solution of a
complex problem into many autonomous and well-structured solutions and
coordinating the well-structured solutions to achieve the goal. An agent should
have a well-defined task description and should be able to perform its task by
communicating with other agents and/or the physical environment.

Agents are extensively implemented in the field of artificial intelligence and
distributed computing because of their autonomous and social ability. The
configuration of the agents being implemented in these fields varies according
to the problem to be solved and the approach taken to solve the given problem.
However, the basic principles of the agents comply with the properties
mentioned above.

3.3 Multi Agent Controller System

Apart from the field of artificial intelligence and the field of distributed
computing, agent-based approach is being applied in control systems design
also. Numerous control applications based on agents have been successfully
developed and implemented [10] [11] [12] [13] [14] [15]. The architecture of
the implementation of agents varies depending upon the problem description
and the solution approach. However, the basic principle of autonomous agents
with ability of communication is elemental in almost all the implementations.

A framework for implementing the agent-based concept in control engineering
is proposed by van Breemen (2001) [23]. The “Multi-Agent Controller
Implementation Framework” (MACIF) presents a generic backbone for
implementing controllers as agents. The framework introduces controller
agents, which can be integrated and coordinated efficiently to solve complex
control problems [23]. The controller agents can be tailored to implement
required controllers. The framework also presents a guideline for implementing
these controller agents for solving general control problems.

The tool, “Multi-Agent Controller”, for the “Integrated Design and
Implementation Tool”, developed in this project, is based on the “Multi-Agent
Controller Implementation Framework” (MACIF). An overview of the
Framework is presented in next section.

3.3.1 Overview of Multi-Agent Controller Implementation
Framework (MACIF)

Control systems involve sensors, which measure data of the plant and actuators,
which control the plant according to the given references. From the controller
point of view, a controller has sensor data and references as inputs and actuation

18

Chapter 3 Multi Agent Controller System Architecture

signals as outputs. A Multi-Agent Controller consists of a single agent called
“main agent” which constitutes different agents for reading input data (sensors
and references), processing the input data (control algorithm) and outputting the
actuation signal (actuators). The agents within the “main agent” are responsible
for its local tasks and control the plant via communicating among each other.
Six different primary components constitute the building blocks of the MACIF.
These six agents are described briefly as follows.

Components

Sensor Agent: acquires data from the environment and dispatches the data to
other agents. The environment involves the plant to be controlled and other
external systems such as Human Interfaces (which gives references) or
disturbances. In the discrete time implementation, Sensor Agents acquire these
data from AD-converters (which acquire data from the environment).

Actuator Agent: dispatches the processed data to the environment. In the
discrete time implementation, Actuator Agents dispatch data to DA-converters.

Composite Agent: consists of a group of Controller Agents (i.e. Elementary
Agents and/or other Composite Agents) and a Coordination Object. Composite
Agents enable layered structures of agents, as a Composite Agent may contain
other Composite Agents.

Main Agent (Multi-Agent Controller): is the overall agent responsible for the
whole control system. Main Agent is a kind of a Composite Agent so it consists
of a group of Controller Agents and a Coordination Object. In addition, Main
Agent also consists of a group of Sensor Agents and Actuator Agents, which
interface with the environment. Main Agent is literally the main agent of a
Multi-Agent Controller System. The Main Agent gets information of the plant
to be controlled by its Sensor Agents and acts upon the plant via its Actuator
Agents. A Multi-Agent Controller System has only one Main Agent, which is
responsible for interfacing with the physical system (the controlled plant).

Coordination Object: is contained in all Composite Agents (and Main
Agents). The task of a Coordination Object is to coordinate the behavior of the
Controller Agents that exist within a Composite Agent (or a Main Agent).

Elementary Agent: is the fundamental agent of the MACIF and it implements
local control solutions of the global control problem.

An example of a Multi-Agent Controller System is illustrated in Figure 3-1. The
Multi-Agent Controller System has a Main Agent, “MA1”. “MA1” consists of
two Sensor Agents (“SA1” and “SA2”), two Actuator Agents (“AA1” and
“AA2”) and two Controller Agents (“EA1” and “CA1”). One of the Controller
Agents (“EA1”) is an Elementary Agent and the other Controller Agent

19

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

(“CA1”) is a Composite Agent. “MA1” also comprises a Coordination Object
“CO1”, which coordinates the Controller Agents of “MA1” (i.e. “EA1” and
“CA1”).

The Composite Agent “CA1” has three Controller Agents (“EA2-1”, “EA2-2”
and “EA2-3”). All the three Controller Agents of “CA1” are Elementary
Agents. In addition, “CA1” has a Coordination Object “CO2” which
coordinates the Controller Agents (“EA2-1”, “EA2-2” and “EA2-3”) of the
Composite Agent “CA1”.

These six types of components form basic building blocks of a Multi-Agent
Controller System. Composite Agents allow for a hierarchical structure of the
Multi-Agent Controller System and Coordination Objects allow for proper
coordination (activation) of the sub-agents within a Composite Agent (Main
Agent). Within a Composite Agent, data transfer between its sub-Agents and
data transfer from its sub-Agents to its external (input/output) ports takes place
via connections. Connections recommended by the MACIF are as follows.

Connections

OI Connection: (Output to Input Connection). OI Connection is a channel for
data transfer from an Output Port of a sub-agent to an Input Port of another sub-
agent within a Composite Agent or a Main Agent.

EII Connection: (External Input to Input Connection). In a Composite Agent,
an External Input Port is the Input Port of the Composite Agent. The data
transfer channel from the External Input Port of the Composite Agent to an
Input Port of one of the sub-agents of the Composite Agent is termed as EII
Connection.

OEO Connection: (Output to External Output Connection). A connection from
an Output port of one of the sub-agents of a Composite Agent to an External
Output Port of the Composite Agent is termed as OEO Connection.

A connection from an External Input Port to an External Output Port of a
Composite Agent is merely rerouting of data through a Composite Agent, thus
is a nonfunctional connection. Thus, EIEO Connection is not included in the
Framework.

20

Chapter 3 Multi Agent Controller System Architecture

CA

EA

MA

AA

SA

MA1

EA1

CA1

EA2-2

EA2-3

CO1MA1

AA1

SA2

CO2CA1

EA2-1

AA2

SA1

CO

Main Agent

Elementary Agent

Composite Agent

Coordination Object

Sensor Agent

Actuator Agent

External Input Port

External Output Port

Output-Input
Connection

External Input-Input
Connection

OI

EII

OEO

OI

EII

OEO

EII

OI

OI

OI

OI

OI

OI

Output-External Output
Connection

Input Port

Output Port

Figure 3-1: Organizational diagram of a Multi-Agent System

21

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

As indicated above, direct connections between the ports of a sub-Agent of a
Composite Agent and the ports of a sub-Agent of another Composite Agent is
not allowed. Any such connection should be accomplished through external
ports of the corresponding Composite Agents.

Output/
External Input
(Source)

Input/
External Output
(Destination)

Figure 3-2: Multiple Source connected to single destination

In all the connections, the data types of the connecting ports should be the same.
In addition, conflict situations may arise due to combinations of connections,
which result in multiple source and single (or multiple) destination of the data
(see Figure 3-2). For EII connections and OI connections, such ambiguous
situations are prohibited. For OEO connections, coordination object coordinates
OEO connections and decides the active connection (active source). The active
connection changes dynamically according to the operating conditions (see
Section 5.3.4).

3.4 Architecture of Multi Agent Controller System

The “Multi-Agent Controller Implementation Framework” consists of the six
fundamental components, namely Sensor Agent, Actuator Agent, Composite
Agent, Main Agent, Coordination Object and Elementary Agent. Based on the
features of these components, the components can be categorized in a
hierarchical structure as shown in the UML (United Markup Language) class
diagram (Figure 3-3). A description of UML is presented in Appendix B.

In the Multi-Agent Controller System, Main Agent can be considered as an
extension (specialization) of Composite Agent. In the object-oriented concept,
Main Agent is considered as inherited from Composite Agent. In addition,
Composite Agent and Elementary Agent can be categorized as Controller
Agent. Controller Agent is an abstract (conceptual) class. In other words,
Controller Agent itself is not one of the six base components of the Multi-Agent
Controller System but it accommodates the common behaviors of Elementary
Agent and Composite Agent. Finally, Sensor Agent, Actuator Agent, Controller
Agent and Coordination Object can be considered as a sub type of Agent. Agent
is also an abstract class.

22

Chapter 3 Multi Agent Controller System Architecture

Elementary_Agent

Controller_Agent Actuator_Agent

Coordination_Object

Agent

Main_Multi_Agent_Controller

Sensor_Agent

Composite_Agent

Figure 3-3: Generalization (inheritance) of Components of Multi-Agent
System (UML class diagram)

The six fundamental components of the Multi-Agent Controller can be
described in terms of the classification presented in Figure 3-3. Description of
the classification is presented in a top-down approach. Higher classes (or
categories) are presented beforehand. Sub classes inherit the architecture of
their super class, so the features, already presented in their super class, are not
reiterated in the sub classes.

3.4.1 Agent

An Agent is a generic component of the Multi-Agent Controller System. The
architecture of an Agent is illustrated in Figure 3-4. An Agent has a name field
(of string type), which identifies the agent. It also consists of a set of ‘Input
Ports’ and a set of ‘Output Ports’. ‘Input Port’ imports data from other agents
whereas ‘Output Port’ exports data to other agents. Agents also have
‘Parameters’. ‘Parameters’ are variables, which can be initialized while creating
(instantiating) an Agent.

‘States’ are variables used within the Agent that retain a value over sample
instants. An Agent has ‘start():void’ and ‘stop():void’ methods. Both the
methods have a return type of ‘void’ and no arguments (no inputs to the
methods). The ‘start():void’ method is the startup sequence of the Agent and the
‘stop():void’ method is the shutdown sequence of the Agent.

23

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

-name : string

+start():void
+stop():void

contains1 *

contians
1

*

contains 1*

*
contains

1

Output_Port

Agent

Parameter

Input_Port

State

Sensor_Agent Actuator_Agent

Figure 3-4: Architecture of Agent (UML class diagram)

3.4.2 Sensor Agent

Sensor Agent is one of the base components of the Multi-Agent Controller
System. Sensor Agent specializes its super class, Agent, and has an additional
method ‘sense():void’. The ‘sense():void’ method acquires data from AD-
Converter (or the environment). The architecture of Sensor Agent is shown in
Figure 3-5(a).

3.4.3 Actuator Agent

Actuator Agent is a base component of the Multi-Agent Controller System and
is a kind of Agent. Actuator Agent has an additional method ‘actuate():void’.
The ‘actuate():void’ method transfers data to DA-Converter (or the
environment). The architecture of Actuator Agent is shown in Figure 3-5 (b).

+sense():void
 +actuate():void

(a) (b)

Figure 3-5: Architecture of (a) Sensor Agent (b) Actuator Agent
(UML class diagram)

3.4.4 Controller Agent

Controller Agent is an abstract Agent (i.e. not one of the base components of
the Multi-Agent Controller System). Controller Agent specializes Agent. In
addition, Controller Agent has a boolean attribute ‘operating_state’.
‘operating_state’ indicates the operating state of the Controller Agent. If
‘operating_state’ is true, then the Controller Agent is active else the Controller
Agent is inactive. Controller Agent has two additional methods
‘acknowledge(boolean ack):void’ and ‘activation():real’. The first method has a
boolean argument ‘ack’ and a return type of ‘void’ and the second method has

24

Chapter 3 Multi Agent Controller System Architecture

no arguments and a return type of ‘real’. The ‘activation():real’ method
processes the activation request of the Controller Agent and returns the degree
of activation of the Controller Agent. The degree of activation ranges from 0 to
1, 0 indicating the Controller Agent wants to be inactive. The
‘acknowledge(boolean ack):void’ method receives acknowledgement of the
activation request. The Controller Agent is activated if ack is true. The
architecture of Controller Agent is shown below.

+operating_state : boolean

+acknowledge(boolean ack):void
+activation():real

Controller_Agent

Elem entary_Agent

Figure 3-6: Architecture of Controller Agent (UML class diagram)

3.4.5 Elementary Agent

Elementary Agent is one of the base components of the Multi-Agent Controller
System. Elementary Agent is a kind of Controller Agent hence inherits all the
features of Controller Agent. In addition, Controller Agent has four methods
‘initialize():void’, ‘finalize():void’, calculate():void’ and ‘update():void’. The
‘initialize():void’ method is executed when an inactive Elementary Agent
becomes active and the ‘finalize():void’ method is executed when an active
Elementary Agent becomes inactive. The ‘calculate():void’ method is executed
when the Elementary Agent is active and it performs the necessary calculation
of an active Elementary Agent. The ‘update():void’ method is executed both in
active and inactive state of the Elementary Agent and it normally updates the
‘State’s of the Elementary Agent. The architecture of Elementary Agent is
illustrated below.

+initialize():void
+finalize():void
+calculate():void
+update():void

Figure 3-7: Architecture of Elementary Agent (UML class diagram)

3.4.6 Composite Agent

Composite Agent is one of the base agents of the Multi-Agent Controller
System. Composite Agent is also a kind of Controller Agent thus inherits all the
behaviors of Controller Agent. Composite Agent comprises a set of Controller
Agents (sub Agents). Composite Agent has a Coordination Object, which
coordinates its Controller Agents (sub Agents). Composite Agent also contains
a set of ‘OI Connection’s, ‘EII Connection’s and ‘OEO Connection’s. The
architecture of Composite Agent is illustrated in the figure below.

25

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

*

contains 1 contains
1

1

* * *

1 11

1*

coordinates

Coordination_ObjectController_Agent

Com pos ite_Agent

EII_Connection OEO_ConnectionOI_Connection

Coordination_Object

Figure 3-8: Architecture of Composite Agent (UML class diagram)

3.4.7 Coordination Object

Coordination Object is also one of the base components of the Multi-Agent
Controller System. Apart from the inherited behaviors from its super class,
Agent, Coordination Object consists of three additional methods
‘resolute():real’, ‘decide(boolean ack):void’ and ‘combine():void’. Coordination
Object exists within a Composite Agent (and also in a Main Agent) as
illustrated in Figure 3-8. The ‘resolute():real’ method processes activation
requests of Controller Agents (sub Agents) of the Composite Agents (or the
Main Agent) and returns the degree of activation of the Composite Agent (or
the Main Agent). The ‘decide(boolean ack):void’ decides upon the activation of
the Controller Agents (sub Agents) of the Composite Agent (or the Main
Agent). The ‘combine()’ method combines the output of the Controller Agents.
The architecture of Coordination Object is presented in Figure 3-9.

+resolute():real
+decide(boolean ack):void
+combine():void

Figure 3-9: Architecture of Coordination Agent (UML class diagram)

3.4.8 Main Agent

Main Agent is one of the base components of the Multi-Agent Controller
System. Main Agent is a kind of Composite Agent and has all the behaviors of a
Composite Agent. As Main Agent is the prime agent of any Multi-Agent
Controller System, Main Agent interacts with the environment of the system
through its ‘Sensor Agent’s and ‘Actuator Agent’s. Main Agent has an
additional method ‘tick():void’. The ‘tick():void’ method is called at every

26

Chapter 3 Multi Agent Controller System Architecture

sampling instant of the Multi-Agent Controller System. The architecture of
Main Agent is illustrated below.

+tick():void
itsSensors

1*
itsActuators

1 *

Main_Agent

Actuator_AgentSensor_Agent

Figure 3-10: Architecture of Main Agent (UML class diagram)

3.5 Conclusion

An introduction of Multi-Agent Controller Systems as implemented in this
thesis has been presented in this section. The architecture of the Agents has
been presented, which forms a basis for the specification of Multi-Agent
Controller Systems. The architecture of Agents has been structured in a
hierarchical order and has been presented in UML notations, which forms a
formal documentation of the Agents.

27

CHAPTER 4
4 SPECIFICATION OF MULTI AGENT

CONTROLLER SYSTEM

4.1 Introduction

A specification language for Multi-Agent Controller Systems has been
developed in this project. The specification language is named as Multi-Agent
Controller Specification Markup Language (MacsML). MacsML is based on
Extensive Markup Language (XML). A brief description of MacsML is
presented in this chapter. The structure of MacsML is defined in XML Schemas
and a brief introduction of the Schemas developed is presented in this chapter.

A brief introduction of another specification language, Multi-Agent Controller
Specification Language (MACL), developed in van Breemen (2001) [23], is
also presented in this section. In addition, an introduction to the tools support by
IDITmac (tool developed in this project) for MacsML is also presented.

4.2 Multi-Agent Controller Specification Language

Multi-Agent Controller Specification Language (MACSL) is a specification
language for Multi-Agent Controller recommended by van Breemen (2001)
[23]. The specification of a Multi-Agent Controller System is described in a
specific format in a text file. The six base components of Multi-Agent
Controller Systems are defined by six different keywords namely, ‘sensor’,
‘actuator’, ‘cagent’, ‘coordination’, ‘mac’ and ‘cagency’. Van Breemen (2001)
[23] also describes a set of keywords, which can be used in the specification.

A simple example of an Elementary Agent implementation of a P-Controller
(Proportional Controller) is schematically represented in Figure 4-1. The
P-Controller has inputs, outputs, parameters and a ‘calculate():void’ method as
listed in the figure below.

29

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Elementary Agent: PController

PController
control_signal reference

measurement

inputs real reference;
real measurement;

outputs real control_signal;
parameters real kp=1.0;
calculate():void {

 control_signal
 =kp*(reference-measurement);
}

Figure 4-1: Schematic representation of an Elementary Agent, PController

MACL specification the P-Controller is presented in Table 4-1. The
specification is in a plain text format though boldface typesetting is used to
highlight keywords of MACL.

Table 4-1: An Example of MACL (specification of the P-Controller in
 Figure 4-1)

PController.msf

cagent PController;
/*Specification of a MACS implementation of
P-Controller in MACSL*/
 inputs
 real reference;
 real measurement;
 outputs
 real control_signal;
 parameters
 real kp=1.0;
 calculate {
 control_signal=kp*(reference-measurement);
 }
end;

4.3 Multi-Agent Controller Specification Markup
Language (MacsML)

A specification of Multi-Agent Controller Systems named as Multi-Agent
Controller Specification Markup Language (MacsML) has been developed in
this project. The specification, MacsML is base on the architecture of Multi-
Agent Controller Systems present in Section 3.4) Architecture of Multi Agent
Controller System. In the specification, Multi-Agent Controller Systems are
described in an XML file. Collection of the XML specification files defines the
Multi-Agent Controller System. The structure of the XML specification is
defined in XML Schemas.

30

Chapter 4 Specification of Multi Agent Controller System

Advantages of the use of XML as a specification format in the MacsML are
listed below.

Standard: XML is a standard Markup Language, defined by W3C
recommendation [35]. XML is becoming increasingly popular in the field of
software engineering and it is applied in almost all new software development
projects.

Extensibility: XML can be easily extended to add functionality. New tags can
be defined and implemented without changing much of the existing systems.
Thus, any additional functionality of the Multi-Agent Controller System that
might be introduced in future could be easily incorporated.

Portability: The XML recommendation is platform independent and is
supported by all major computing platforms available. XML is becoming a
common markup language over the Internet, which will facilitate possible future
deployment of the Multi-Agent Controller System to multiple platforms over
the Internet.

Structure: XML documents are well structured with Markups thus less
susceptible to errors during processing of the document.

Usability: XML Schema and Document Type Definition (DTD) can be used to
define and check the structure of the XML documents. Various ready-to-use
and proven parsers such as Simple API for XML (SAX), Document Object
Model (DOM) parsers are available for parsing (processing) XML documents
against the defined Schemas. In addition, automatic generation of XML
specifications, for example from a graphical user interface, is quite simple with
the tools mentioned.

A MacsML specification of the P-Controller (schematically illustrated in Figure
4-1) is illustrated in Table 4-2. Similar to MACL, MacsML also uses a plain
text format. In the example, boldface typesetting is used to highlight XML tags.
The specification specifies the name, input ports, output port, parameter and
‘calculate():void’ method of the Elementary Agent. A Schema
CagentSchema.xsd is assigned to the specification (PController.xml, Line: 6,
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"). The structure of the
document is according to the structure defined by the Schema. A description of
the Schemas used in MacsML is presented in the next section. The MACL
specification of the same P-Controller is presented in Table 4-1.

31

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Table 4-2: An Example of MacsML (specification of the P-Controller in
Figure 4-1)

PController.xml
<?xml version="1.0"?>
<!--*Specification of a MACS implementation of
P-Controller
<cagentclass
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">

in MacsML-->

 <name>PController</name>

 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>reference</name>
 </input>
 <input>
 <type>real</type>
 <name>measurement</name>
 </input>
 <output>
 <type>real</type>
 <name>control_signal</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>kp</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>

 <implementation>
 <elementary>
 <calculate>
 <![CDATA[
 {
 control_signal=kp*(reference-measurement);
 }
]]>

 </calculate>
 </elementary>
 </implementation>

</cagentclass>

4.3.1 XML Schema for MacsML

As the specification of the Agent is described in an XML document, XML
Schemas have been developed which define the structure of the specification.
Three Schemas, namely CagentSchema.xsd, CoordinationSchema.xsd and
MacSchema.xsd, have been developed. CagentSchema.xsd defines the structure

32

Chapter 4 Specification of Multi Agent Controller System

of the specification of Sensor, Actuator, Elementary and Composite Agents.
CoordinationSchema.xsd describes the structure of the specification of
Coordination Objects and MacSchema.xsd defines the structure of the
specification of Main Agents. Important descriptions of the structure of the
MacsML are presented in following sections.

4.3.2 Basic Structure of MacsML

Every XML document should have a root element and all the other tags should
be nested within the root element. A common root tag <cagentclass> is being
used for Sensor Agents, Actuator Agents, Elementary Agents, Composite
Agents and Coordination Object (CagentSchema and CoordinationSchema). For
Main Agents (MacSchema), another root tag <mac> is introduced. The root tag
of a specification differentiates Main Agent from other components, as Main
Agent is a special agent of Multi-Agent Controller Systems, which interacts
with the environment (the plant).

As illustrated in Table 4-3, Table 4-4 and Table 4-5, both the <cagentclass>
and <mac> elements have a sequence of nested elements of <name>,
<interface> and <implementation>. The <name> is an elementary node,
which should contain the name of the agent. The <interface> node contains
information of interface of the agent to other agents or in the case of Main
Agent, the environment (the plant). The <interface> node is optional for
CoordinationSchema, as Coordination Object may not require declaration of an
interface, as the ports of a Coordination Object are defined implicitly to
facilitate dynamic size of ports (see section comment).

The implementation of agents is described within the <implementation> node.
The <implementation> node of Sensor, Actuators, Elementary and Composite
Agents have a <sensor>, <actuator>, <elementary> and <composite> sub
node respectively. The <implementation> node of Coordination Object has a
<coordination> sub node and Main Agent has a <composite> sub node. The
implementation of agents is nested within the respective sub nodes.

Table 4-3: Basic Structure of specification of Sensor, Actuator, Elementary
and Composite Agents (CagentSchema)

<cagentclass
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>............</name>
 <interface>
 .
 .
 </interface>
 <implementation>
 .
 .
 </implementation>
</cagentclass>

33

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Table 4-4: Basic Structure of specification of Coordination Agent
(CoordinationSchema)

<cagentclass
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CoordinationObject.xsd">
 <name>............</name>
 <interface>
 .
 .
 </interface>
 <implementation>
 .
 .
 </implementation>
</cagentclass>

Table 4-5: Basic Structure of specification of Main Agent (MacSchema)

<mac
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MacSchema.xsd">
 <name>............</name>
 <interface>
 .
 .
 </interface>
 <implementation>
 .
 .
 </implementation>
</mac>

4.3.3 Input Ports and Output Ports

Input Ports and Output Ports of an agent are described by <input> and
<output> tags. Type and name of an Input Port or Output Port is defined in the
nested tags, <type> and <name>. For Sensor, Actuator, Elementary, Composite
and Coordination Agents, the <name> node contains the name of the variable
of the port and the <type> node contains the type of the variable. Variables
defined in <input> node and <output> node can be referred to in the
implementation of the specification. The only variable type currently
implemented for the ports of Multi-Agent Controller Systems is ‘real’ (or
equivalent C++ variable declaration, ‘double’). An example of an input port and
output port declaration for an agent is shown in Table 4-6.

Table 4-6: Input Port and Output Port declaration of an agent

<input>
 <type>real</type>
 <name>position</name>
</input>

<output>
 <type>real</type>
 <name>current</name>
</output>

For Main Agents, the type of an Input Port is class name of a Sensor Agent and
the type of an Output Port is the class name of an Actuator Agent. The name

34

Chapter 4 Specification of Multi Agent Controller System

field contains the instance name of the Agent. An example of an input port and
an output port declaration for a Main Agent is shown in Table 4-7.

Table 4-7: Input Port and Output Port declaration of an agent

<input>
 <type>TwenteSensor</type>
 <name>positionSensor</name>
</input>
<output>
 <type>TwenteActuator</type>
 <name>currentSensor</name>
</output>

4.3.4 Parameters Definitions and States

Parameter definitions and states are described by <parameterdef> and <state>
tags respectively. Similar to input and output ports, they also have <type> and
<name> sub nodes. In addition, a parameter definition has a <defaultvalue>
tag, which is the initial value of the parameter when the agent is instantiated.
Parameters and States can have a variable type of ‘real’, ‘boolean’ or ‘Int’ (or
equivalent C++ variable declaration, ‘double’, ‘bool’ or ‘int’). An example of a
parameter definition and state declaration is shown in Table 4-8 and Table 4-9
respectively.

Table 4-8: Parameter Definition declaration of an agent

<parameterdef>
 <type>real</type>
 <name>kd</name>
 <defaultvalue>1.0</defaultvalue>
</parameterdef>

Table 4-9: State declaration an agent

<state>
 <type>int</type>
 <name>cycle</name>
</state>

4.3.5 Method Specification

The implementations of the methods in the Multi-Agent Controller System are
defined in C++ code and are contained inside a CDATA section (as C++ code
may contain special characters which would otherwise be recognized as
markup). The input ports, output ports, states and parameter definitions are
considered as declared variables and can be referred to inside the code. In
addition, methods should return a value of the correct return type. An example
of an activation method specification is illustrated in Table 4-10. The activation
method returns either 1.0 or 0.0 (real type).

35

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Table 4-10: Declaration of activation method an agent

<activation>
<![CDATA[
 {
 if (load_position>Max_Load_Pos_Limit)
 return 1.0;
 else
 return 0.0;
 }
]]>
</activation>

4.3.6 Controller Agents within Composite or Main Agent

Controller Agents in a Composite or Main Agent are specified by <cagent> tag.
The <type> tag of the specification consists of the type of the Controller Agent
and the <name> tag consists of the instance name of the Controller Agent. In
addition, the <parameters> tags consist of initialization of parameters, which
include the name of the parameter and its initial value. An example of a
declaration of a controller agent is illustrated in Table 4-11.

Table 4-11: Declaration of a Controller Agent within a Composite Agent

<cagent>
 <type>PosLimit</type>
 <name>posLimit</name>
 <parameters>
 <parameter>
 <name>kp</name>
 <value>25</value>
 </parameter>
 <parameter>
 <name>kd</name>
 <value> </value> 22
 </parameter>
 </parameters>
</cagent>

4.3.7 Coordination within Composite or Main Agent

Similar to the declaration of Controller Agents, a Coordination Agent
declaration also has a <type> and <name> tag. However, only one
Coordination Object is allowed within a Composite or Main Agent. An example
of declaration of a Coordination Object is presented in Table 4-12.

Table 4-12: Declaration of Coordination Object in some agent

<coordinationclass>
 <type>FixedPriority</type>
 <name> y</name> fixedPriorit
</coordinationclass>

36

Chapter 4 Specification of Multi Agent Controller System

4.3.8 Connections within Composite or Main Agents

Connections within Composite or Main Agent are specified in <from> and
<to> tags. The <from> tag contains the source of the connection, an External
Input or an Output, whereas the <to> tag contains the destination of the
connection, an Input Port or an External Output Port. As mentioned in Section
3.3.1, an EIEO connection is non functional thus connections from an External
Input to an External Output are not permitted. External Input Ports and External
Output Ports are specified by their name. Input ports and output ports of
controller agents within a composite or main agent are specified by name of the
controller agent followed by a dot and the name of the port. An example of a
connection between an external input port, ‘reference’, and an input port,
‘reference’, of a controller agent, ‘simpleController’, is illustrated in Table
4-13.

Table 4-13: Declaration of connection

<connection>
 <from>reference</from>
 <to>simpleController.reference</to>
</connection>

Name of External Input Port

Name of Input Port

Name of Controller Agent

4.3.9 Including Header Files

Header files, which are required for the specification of an agent, can be
enclosed within <include> tags. The specification can have multiple includes.
An example of the <include> tag is presented in Table 4-14. In the example, a
header file “cmath” is included in the specification, which is required for use of
the “fabs” function.

Table 4-14: Declaration of inclusion of a header file

<include>cmath</include>
.
.
<activation><![CDATA[{
)(fabs(error)<maxError)); return ((double
}]]></activation>

4.3.10 Instances of C++ Classes

Instances of C++ classes can also be included in the specifications of Agents.
Declaration of instances is specified within <instances> tags as illustrated in
Table 4-15. The name of the class is included in a <type> tag and the name of
its instance is included in a <name> tag. The instance is treated as a pointer
instance, it is created with a constructor with no arguments, and it is deleted
when the Agent is destroyed.

37

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Table 4-15: Declaration of instance of C++ class

<instances>
 <instance>
 <type>EncoderInterface</type>
 <name>encInt</name>
 </instance>
</instances>

4.4 Conclusion

The specification language, MACSL, developed by van Breemen [23] has been
briefly introduced and development of the XML based specification language,
MacsML, has been presented. MacsML improves the structure of the
specification of Multi-Agent Controller Systems and provides a basis for future
extensions. The Schemas designed define the structure of MacsML. These
Schemas can be easily extended to support additional functionalities of Multi-
Agent Controller Systems.

The support provided by IDITmac for creating specifications and checking the
integrity of specifications has been discussed in Appendix C.1. IDITmac
extracts the information of an agent from its MacsML specification to generate
code for the agent. Furthermore, IDITmac can be extended to support a
graphical specification of Multi-Agent Controller Systems in which the
graphical specification can be translated to a MacsML specification.

38

CHAPTER 5
5 DESIGN AND IMPLEMENTATION OF

MULTI-AGENT CONTROLLER
SYSTEMS

5.1 Introduction

Multi-Agent Controller Systems are implemented in ANSI C++. The operating
principle of Multi-Agent Controller Systems is presented in this section. Based
on the operating principle, a C++ library is developed for Multi-Agent
Controller Systems. The code generated for a Multi-Agent Controller System is
combined with the library and simulated with 20-Sim and implemented with 20-
Works in real systems. The interface of 20-Sim and 20-Works with Multi-Agent
Controller Systems is presented in this section. In addition, keywords used in
the specification of agents are briefly discussed.

5.2 Operating Principle of Multi Agent Controller
Systems

5.2.1 Multi-Agent Controller Systems and the Environment

The developed Multi-Agent Controller Systems should support design and
implementation of a control system, thus a Multi-Agent Controller System has
two different environments. In the design phase, the Multi-Agent Controller
System acts upon a model of a plant. The Multi-Agent Controller System
interacts with the model through a simulation program, in this case 20-Sim.
Therefore, 20-sim is the environment (also called Actor in UML terminology)
for the Multi-Agent Controller System in its design phase. Implementation of
Multi-Agent Controller Systems is accomplished in corporation with 20-Works
thus it is the environment of Multi-Agent Systems for the implementation
phase. Multi-Agent Systems interact with the plant to be controlled through 20-
Works. The environments of Multi-Agents Controller Systems are also
illustrated in the schematic diagram in Figure 5-1.

39

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Multi-Agent Controller Systems have a common interface with their
environments. A Multi-Agent Controller System has a Main Agent, which is
responsible for interacting with its environment. The Main Agent has Sensor
Agents and Actuator Agents to transfer data from or to the environment.

Plant/

Model of Plant

MACS

20-Works/20-Sim
Interface to

MACS

Environment of MACS

Actuator Signals Sensor Signals

start tick stop

Figure 5-1: Schematic diagram of Multi-Agent Controller Systems

The Main Agent has three main operations namely ‘start():void’, ‘tick():void’
and ‘stop():void’, as defined in the framework of Multi-Agent Controller
Systems, which are invoked by the environment. The ‘start():void’ method is
called during the startup of the Multi-Agent Controller System. This method
initializes the Multi-Agent Controller System. The Controller System is
implemented as a discrete system with a fixed sampling period. At each
sampling instant, the sensor signals and actuator signals of the plant are sampled
when the ‘tick():void’ method is invoked. The ‘stop():void’ method is called
during the shutdown of the Multi-Agent Controller System and it runs the
shutdown sequence of the System.

A sequence diagram of the Multi-Agent Controller System is presented in
Figure 5-2. The environment (20-Sim or 20-Works) calls the ‘start():void’
method in the startup of the system. Each sampling event of the environment
invokes the ‘tick():void’ method. Finally, at the shutdown of the system, the
‘stop():void’ method is called. A detailed description of the operating principle
of 20-Sim and 20-Works is presented in section 5.4 and section 5.5 respectively.

5.2.2 Main Agent

Main Agent has sub agents of type Sensor Agent, Actuator Agent, Coordination
Object and Controller Agent. As described in the previous section, the
environment invokes three operations of Main Agent. Each of these events
triggers different events of its sub agents. Sequence diagrams of each of the

40

Chapter 5 Design and Implementation of Multi-Agent Controller Systems

three events are presented in Figure 5-3 (a), (b) and (c). These sequence
diagrams can be considered as cascaded with the main sequence diagram of the
Multi-Agent Controller System presented in Figure 5-2. In a Main Agent,
Controller Agents are coordinated by its Coordination Object as described in
Section 5.2.5.

Startup

Shutdown

Sampling
Events

start():void

:Main
Agent

tick():void

tick():void

tick():void

stop():void

t = sampling_time

Environment

Figure 5-2: Sequence diagram of operation of MACS

In addition, Main Agent could have multiple Sensor Agents and Actuator
Agents. Main Agent invokes methods of each of the Agents. The order of
execution of methods is the same as the order of definition of the Agents in their
specification. For example, in the specification of a Main Agent ‘MA1’, Sensor
Agents ‘SA1’ and ‘SA2’ are defined consecutively (as illustrated in Table 5-1).
The start method of MA1 will invoke the start method of SA1 first and then the
start method of SA2.

Table 5-1: A part of Specification of a Main Agent ‘MA1’

Main Agent: MA1.xml

 <name>MA1</name>
 <interface>
 <ports>
 <input>
 <type>Sen </type> sorType1
 <name>SA1</name>
 </input>
 <input>
 <type>SensorType2</type>
 <name>SA2</name>
 </input>

41

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

start():void

:Main
Agent

:Sensor
Agent

:Actuator
Agent

:Coordination
Object

start():void
start():void

start():void

(a)

 :Main
Agent

:Sensor
Agent

:Actuator
Agent

:Coordination
Object

tick():void
sense():void

actuate():void

resolute():void

decide(bool ack)
:void

combine():void

(b)

stop():void

:Main
Agent

:Sensor
Agent

:Actuator
Agent

:Coordination
Object

stop():void
stop():void

stop():void

(c)

Figure 5-3: Sequence diagrams of Main Agent

5.2.3 Sensor Agent

Sensor Agent is a basic agent, thus does not have sub agents. Thus, the event
received by Sensor Agent does not trigger other events. Sensor Agent has three
events namely, ‘start():void’, ‘sense():void’ and ‘stop():void’. These methods
execute the code sequence stated in its specification. The ‘sense():void’ method
contains code sequence to acquire sensor data from the environment. Other two
methods run the startup and shutdown sequence of the agent.

5.2.4 Actuator Agent

Actuator Agent has ‘start():void’, ‘actuate():void’ and ‘stop():void’ methods.
These methods are stated in the specification of the agent. The ‘actuate():void’

42

Chapter 5 Design and Implementation of Multi-Agent Controller Systems

method provides actuator signals to the environment. The other two methods
run the startup and shutdown sequence of the actuator.

5.2.5 Coordination Object

Coordination Object is contained within a Composite Agents or Main Agent.
Composite or Main Agent have a set of Controller Agents and Coordination
Object is associated with the Controller Agents. Events of Coordination Object
trigger events of the Controller Agents. Sequence diagrams of Coordination
Object are shown in Figure 5-4. Controller Agent could be a Composite Agent
or an Elementary Agent.

 :Controller
Agent

:Coordination
Object

start():void
start():void

(a)

 :Controller
Agent

:Coordination
Object

resolute():real activation()
:real

decide(bool ack)
:void acknowledge

(bool ack):void
combine():void

(b)

 :Controller
Agent

:Coordination
Object

stop():void
stop():void

(c)

Figure 5-4: Sequence diagrams of Coordination Object

5.2.6 Composite Agent

Composite Agent is a kind of a Controller Agent. Composite Agent has a set of
Controller Agents (sub agents) and a Coordination Object. Composite Agent
conveys its event to its Coordination Object. Sequence diagrams of Composite
Agent are illustrated in Figure 5-5.

43

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

 Coordination
Object

start():void

Composite
Agent

start():void

(a)

 Coordination
Object

resolute():real

decide(bool ack)
:void

combine():void

Composite
Agent

activation()
:real

acknowledge
(bool ack):void

(b)

 Coordination
Object

stop():void

Composite
Agent

stop():void

(c)

Figure 5-5: Sequence diagrams of Composite Agent

5.2.7 Elementary Agent

Elementary Agent is a basic agent. Elementary Agent is a kind of Controller
Agent and has ‘start():void’, ‘stop():void’, ‘activation():real’,
‘acknowledge(bool ack):void’, ‘initialize():void’, ‘calculate():void’,
‘finalize():void’ and ‘update():void’ methods. All the methods except for the
‘acknowledge(bool ack):void’ method are specified in the specification of the
Elementary Agent. The first two methods are responsible for the startup and
shutdown sequence of the Elementary Agent. The activation method processes
the activation request of the Elementary Agent and returns its preferred degree
of activation. The degree of activation ranges from 0.0 to 1.0, 0.0 meaning the
Agent does not want to be active and 1.0 meaning the Agent wants to be active.

The acknowledge of an activation request is processed by the
‘acknowledge(bool ack):void’ method. The argument of the method, ‘ack’ is the
acknowledgement signal. This method triggers a sequence of events as
illustrated in sequence diagram of Figure 5-7. Elementary Agents have two
states, namely Active state and inActive state. As illustrated in the statechart of
Figure 5-6, if the argument, ‘ack’, is true the Agent is activated (switched to
Active state) else the Agent is deactivated (switched to inActive state). The

44

Chapter 5 Design and Implementation of Multi-Agent Controller Systems

‘initialize():void’ method is invoked when an inActive agent becomes Active.
This method contains code sequence for the transition of an agent from Active
state to inActive state. The ‘calculate():void’ method is invoked if an agent is
Active and it contains the code sequence of calculation of an Active agent. The
‘finalize():void’ method is invoked when an Active agent becomes inActive and
it contains the code sequence for transition of an agent from inActive to Active
state. The ‘update():void’ method is invoked irrespective to the state of the
agent, thus contains code sequence for both Active and inActive states. This
method usually updates the states of the agent.

inActive ActiveinActive Active

acknowledge[ack==false]/
finalize();

acknowledge[ack==true]/
calculate();
update();

acknowledge[ack==true]/
initilize();

acknowledge[ack==false]/
update();

Figure 5-6: Statechart of Elementary Agent

Both in Active
and InActive States

Transition from
Active to inActive

In Active State

:Elementary
Agent

activation()
:real

acknowledge
(bool ack):void

[ack & !Active]
initialize()

[ack]
calculate()

[!ack & Active]
finalize()

update()

Transition from
inActive to Active

Figure 5-7: Sequence diagram of Elementary Agent

5.2.8 Realization of Multi-Agent Control Systems

Based on the operating principle described above an ANSI C++ library is
developed. The library can be used with the Microsoft Visual C++ Compiler
(for 20-Sim) and the GNU C++ Compiler (for 20-Works) to implement Multi-
Agent Controller Systems. The specifications of Multi-Agent Controller System
can be translated to C++ code, which inherits the operating principle captured in
the library.

45

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

5.3 Keywords

5.3.1 Ports, Parameters and State Variables types

Multi-Agent Controller Systems implemented in the thesis currently support the
port type of “real” (or equivalent C++ type “double”). For parameters and state
variables, “real” (“double”), “boolean” (“bool”) and “int” are supported. The
declaration of the variable type is included inside the <type> tag (see Section
4.3.3 and Section 4.3.4)

5.3.2 Sensor and Actuator types for 20-Sim

For the design of a Multi-Agent Controller System with 20-Sim, sensor
readings and actuator signals are transferred to and from the system through 20-
Sim. Thus, the type of sensor agent and the type actuator agent for 20-Sim
implementations are included in the Multi-Agent Controller System framework.
Keywords, “TwenteActuator” and “TwenteSensor”, are defined for the sensor
agent and the actuator agent. Sensor and actuator types are declared in the
<type> tag (see Section 4.3.3). The sensor agent has an output port, “output”
and the actuator agent has an input port, “input”.

5.3.3 Operating State of Elementary Agents

As mentioned in Section 5.2.7, Elementary Agents have two operating states,
“active” and “inactive”. The operating state of an Elementary Agent is specified
by a boolean variable, “active”. The variable, “active”, can be used in the
specification of the agent to acquire its operating state. Its value is “true” if the
agent is in the “active” state and “false” if the agent is in the “inactive” state.
The operating state of the agent is particularly useful in processing its activation
request to determine its operating state.

5.3.4 Keywords of Coordination Objects

Coordination Objects are encapsulated in Composite Agents. The Coordination
Object of a Composite Agent is associated with its sub agents and is responsible
for coordinating them (see Section 5.2.5). The Coordination Object has
information of its sub agents, which can be accessed through the defined
keywords.

Some of the information of the sub agents is stored in a vector template class. In
C++, a vector is a STL (Standard Template Library) container, which provides a
form of dynamic array that can be expanded to accommodate additional
elements. The dynamic property of vectors enables specification of generic
Coordination Objects, which supports virtually any number of sub agents. The
elements of a vector can be accessed randomly. For example, the ith element of a
vector, “v”, can be accessed by “v [i]”. The size of a vector is given by
“size():int” function. The size of the vector, “v” is given by “v.size()”.

46

Chapter 5 Design and Implementation of Multi-Agent Controller Systems

In a Coordination Object, the result of activation request of its sub agents,
(“real:activation()”) is stored in a vector, “mu”. Acknowledgment signals to its
sub agents are stored in another vector, “ack”. Another vector,
“subAgentOutput”, gives first output of its sub agents. A method,
“double getSubAgentOutput (int subAgentIndex, int outputIndex)” gives an
output indicated by the output index, “outputIndex”, of a sub agent indicated by
the sub agent index, “subAgentIndex”. Outputs of the Composite Agent are
stored in a vector, “out”. An example of the default (when no coordination is
specified) Coordination Object of Multi-Agent Controller Systems is presented
in Table 5-2. In the default coordination, a Composite Agent wants to be active
if all its sub agents want to be active. The acknowledge signal of the Composite
Agent is conveyed to its sub agents. The Coordination Object is embedded in
the library.

Table 5-2: Specification of the default Coordination Object

 Coordination Object: Default.xml
<?xml version="1.0"?>
<!--Default.xml-->
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CoordinationObjectSchema.xs
d">
 <name> </name> MasterSlave
 <implementation>
 <coordination>
 <resolute><![CDATA[
{
 double minMU=1.0;
 for (int i=0; i<mu.size(); i++)
 {
 if (mu[i]<minMU)
 minMU=mu[i];
 }
 return minMU;
/*wants to be active if all sub agents want to be active*/
}
]]></resolute>
 <decide><![CDATA[
{
 for (int i=0; i<ack.size(); i++)
 ack[i]=acknowledge;
/*convey acknowledge signal to all sub agents*/
}
]]></decide>
 </coordination>
 </implementation>
</cagentclass>

47

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

5.4 Design of Multi-Agent Controller Systems with
20-Sim

Multi-Agent Controller Systems is implemented in C++, which is linked with
20-Sim, for simulation purposes, through a static dll. In the 20-Sim
environment, the simulator attaches the dll-file when a single run or a multiple
run simulation is started and it detaches the dll-file when the simulation is
stopped. 20-Sim recognizes four predefined functions (“Initialize():int”,
“InitializeRun():int”, “TerminateRun():int”, “Terminate():int”) within a dll. The
“Initialize():int” and the “Terminate():int” functions are called after attaching
and before detaching the dll-file by the simulator. The “InitializeRun():int” and
the “TerminateRun():int” functions are called before starting and after finishing
every run of the simulation. The dll-file can also have user-defined functions,
which can be called from 20-Sim during the simulation. An example of dll-
function call is presented in Table 5-3. The 20-Sim function, “dll”, takes two
string arguments and a vector of data type real. The first string arguments is the
file name of the dll-file and the second argument is the name of the user-defined
function, within the dll-file, to be called. The vector argument passes an input
array to the user-defined function. The “dll” function outputs a vector, which
gives an output array of the user-defined function.

An interface has been developed to use dll-function calls of 20-Sim. A dll-file is
generated for a Multi-Agent Controller System, which interfaces the Multi-
Agent Controller System with 20-Sim. The “Initialize():int” function
instantiates the Main Agent (and Main Agent instantiates its sub agents and
coordination object subsequently). The “Terminate():int” function destroys the
instance of the Main Agent. The “InitializeRun():int” and the
“TerminateRun():int” runs “start():void” and “stop():void” events of Main
Agent. Apart from the four predefined functions, the dll-file also contains an
additional function, “mac”. The “mac” function sets the sensor values of the
Multi-Agent Controller System, calls the “tick():void” method of Main Agent
and gets the actuator values of the Multi-Agent Controller System to 20-Sim.
The sequence diagram of the interface is illustrated in Figure 5-8.

The first four functions are called automatically by 20-Sim. This function is
called by the 20-Sim function, “dll”. An example of 20-Sim submodel, which
interfaces with a Multi-Agent Controller System, is presented in Table 5-3. As
illustrated in the table, the first argument specifies the file name of the dll-file
and the second specifies the function to be called, which is the “mac” function.
In the example, the “dllin” is a vector (of size 1x1), which gives the sensor
signals (x_motor) to the Multi-Agent Controller System. The “dll” function
outputs another vector, “dllout”, which consists of the actuator signal (voltage).
As the “mac” calls the “tick():void” function of the Multi-Agent Controller
System, it should be called at a fixed time interval (in terms of simulation time).

48

Chapter 5 Design and Implementation of Multi-Agent Controller Systems

Thus, the dll function call should be implemented in a discrete system of 20-
Sim.

Start Single or
Multiple Run
Simulation

start():void

:Main
Agent

setSensorValues()

tick():void

stop():void

20-Sim

DLL
Interface

Initialize()
create()

InitializeRun()

mac()

TerminateRun()

Terminate()

getActuatorValues()

Start
Simulation

Calculation of
Simulation

End Single or
Multiple Run
Simulation

Stop
Simulation

distroy()

Figure 5-8:Sequence Diagram of interface to 20-Sim with Multi-Agent

Controller System

Table 5-3: Example of a 20-Sim submodel for interfacing Multi-Agent
Controller System with a dll-function call

 MacInterfaceModel.em
equations
 dllin = [tor]; x_mo
 dllout = dll(‘DemoLin.dll’,’mac’,dllin);
 voltage = dllout[1];

5.5 Implementation of Multi-Agent Controller Systems
with 20-Works

The Multi-Agent Controller System framework defines three events, the start,
tick and stop events that have to be invoked by an external interface. The start
event and the stop event are triggered while starting and stopping the Multi-
Agent System. The tick event is triggered at each sampling event. 20-Works
provides the interface, which calls the tick event at a fixed time interval.

20-Works is software developed at Control Laboratory, University of Twente to
support application of control systems. It is a collection of classes, which can be
used to implement controllers. 20-Works has a user interface based on Borland

49

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Turbo Vision. It also provides a timer, which delivers the sampling events and a
graphical screen, which contains “views” for online plotting of its variables. 20-
Works also provides sets of sensors, actuators, controllers, generators and
storers. 20-Works executes two loops: a synchronous loop and an asynchronous
loop. Sensors, actuators, controllers and generators are executed in the
synchronous loop, which is synchronized by the timer and storers and views are
executed in the asynchronous loop.

For Multi-Agent Controller Systems, the timer and the views of 20-Works is
used to get the timer events and to plot the variables of Multi-Agent Controller
Systems. The timer event is used to call the tick function of Multi-Agent
Controller Systems. The adopted implementation of 20-Works and Multi-Agent
Controller Systems is described in Figure 5-9. The start event and stop event of
Multi-Agent Controller Systems are executed before starting and after ending
the loops.

Plot

Tick

tick ()::Main Agent

Time

Synchronous Loop

Sensor and
Actuator Agents

Asynchronous Loop

Software Hardware

View

MACS

Timer

Sample

Physical
Process

Figure 5-9: Functional Model of 20-Works implemented in Multi-Agent
Controller Systems

5.6 Conclusion

A brief description of operating principle of Multi-Agent Controller Systems is
presented in this section. The operating principle is captured in a C++ library. A
framework is presented for implementing Multi-Agent Controller Systems in
20-Sim and 20-Works.

The developed library is embedded in the tool, IDITmac. Automated code
generation of the agents is implemented in IDITmac (see Appendix C.2). Based
on the framework for 20-Sim, automated generation of dll-files is also
implemented in IDITmac. An integrated approach of design and
implementation of agents is realized by utilizing the same library and the same
codes for both the cases.

50

CHAPTER 6
6 CASE STUDY

6.1 Introduction

A case study of a Multi-Agent Controller System is carried out in this thesis. In
the case study, the concept of agents is applied in the simulation and in the real
system. A brief description of the system to be controlled and the controller
system designed is presented in this section. Simulation results and results of
the implementation is also presented here. The main aim of the case study is to
demonstrate the ability of the tool designed in this thesis for integrated design
and implementation of control systems.

6.2 Demonstration Setup (DemoLin)

The developed tool is tested in a demonstration setup, DemoLin. The setup is a
mass-spring-mass system, developed at Imotec BV for demonstration purposes.
A schematic diagram of DemoLin is presented in Figure 6-1 and a detail
diagram is presented in Appendix D. The system has a base plate (motor mass),
which is driven by a linear motor (Yaskawa SGLGW 60A365A). Another mass
(end effectors mass) is connected on the top of the base plate with two flexible
iron plates. Both the masses are attached to pretension belts. Both the belts are
supported by pulleys mounted on two shafts. In the left shaft, the pulley of the
lower belt is fixed whereas the pulley of the upper belt is connected with
bearings. In the right shaft, the pulley of the upper belt is fixed and the pulley of
the lower belt is connected with bearings.

For the control purpose, position measurement of the motor mass is taken as a
feedback signal. Since the index pulse of the linear encoder is not accessible,
the calibration of the linear encoder is done with the index pulse of the
rotational encoder (encoder of the end effectors mass). Within the full stroke
movement of the masses, the shafts make more than one revolution thus two
pulses are generated by the index signal of the rotational encoder. One of the
pulses is encountered when the left edges of the masses are aligned with the left

51

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

shaft and another pulse is encountered at 70 mm from the left end stop. The
position of the first index pulse is taken as 0 mm position.

Motor Mass

Linear Motor

Left Shaft

Pulley and Belt

End Effectors Mass

Iron Plate

Right Shaft

Figure 6-1: Schematic Diagram of DemoLin

6.3 Control Problem

DemoLin is a demonstration setup, designed for demonstration of controller
performances at Imotec BV. A basic controller should be implemented in
DemoLin to demonstrate the application of Multi-Agent Controller System. The
criteria of the controller are stated as follows.

� Calibration: Since the encoders in DemoLin are incremental encoders, the
encoders should be calibrated.

� Homing: After calibrating, the masses should be positioned in a home
position (at x_motor = 0 mm).

� Motion: DemoLin should make repetitive strokes of + 115 mm (from the
home position) and –115 mm (towards the home position).

� Safety: Safety should be implemented in the system to prevent unstable
and oscillating motions of the masses, which may occur due to
disturbances.

6.4 Control Strategy

The controller is implemented in a Personal Computer. The position of the
masses is fed through an encoder interface card. The motor is actuated by a
voltage reference from the DA card (Digital to Analog Card) of the computer. A
Multi-Agent Controller System is designed and implemented in DemoLin. The
design of the controller is tested in 20-Sim with the dll-file generated by

52

Chapter 6 Case Study

IDITmac. The implementation of the designed controller is accomplished in 20-
Works with the code generated for the Multi-Agent Controller System by
IDITmac. The organizational diagram of the designed controller is presented in
Figure 6-2 and the MacsML specification of the controller is presented in
Appendix F.

DemoLin

daAgent
:DAAgent

encoderAgent
:EncoderAgent

mainAgent
:DemoLin

overallController
:OverallController

voltage

voltage

x_motor

x_motor

calibrated calibrated

(a)

 SequentialOverallController

goLeft
:GoSteady

goRight
:GoSteady

goHome
:GoHome

demoMode
:DemoMode

x_motor

x_motor

x_motor

x_motor

x_motor

reached

calibrated

reached

voltage

voltage

voltage

voltage

voltage

(b)

GoHome

homePath
:FinPosThirdOrderPath x_motor volta

x output SP

MV

prevX
ge pidController

:PID_s

(c)

53

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

DemoMode

periodicThirdOrderPath
:PeriodicThirdOrderPath

pidController
:PID_s

x_motor voltage
x output SP

MV

(d)

CyclicPeriodicThirdOrderPath

rightPath
:ThirdOrderPath

leftPath
:ThirdOrderPath x

x

x

(e)

Figure 6-2: Organizational diagram of Multi-Agent Controller System for
DemoLin

6.4.1 Sensor and Actuator Agents

As illustrated in Figure 6-2(a), the control system has a “mainAgent” of class
(or type) “DemoLin”. The “DemoLin” agent has a sensor agent,
“encoderAgent:EncoderAgent”, and an actuator agent, “daAgent:DAAgent”.
The “DAAgent” provides a voltage output (“voltage”) to the DA-Card. The
“EncoderAgent” gives position of the motor mass (“x_motor”) and has an input
(“calibrated”). The encoder has to be calibrated for absolute position readings.
The input, “calibrated”, indicates the calibration status of the sensor. The input
value of less than 0.5 signifies that the encoder is not calibrated, so the reading
of the linear encoder is reset when the index pulse of the rotational encoder is
encountered. In other cases, the linear encoder is not reset. During the startup,
the input, “calibrated”, is set to 0.0, as the encoder is not calibrated. The input is
set by another agent after a calibrating motion is completed, which is explained
the next section.

6.4.2 Motions of DemoLin

DemoLin performs three motions in a sequential order. As the encoders are not
calibrated, DemoLin firstly performs a calibrating motion during which the
linear encoder is calibrated. After calibration, it performs a homing motion,
which positions the masses at the home position (x_motor = 0 mm). After the
masses are homed properly, a demo motion is performed, where the setup
makes a repetitive stoke of +115 mm and –115 mm. The motions performed are
described as follows.

54

Chapter 6 Case Study

Calibrating motion

The first task of the controller is to calibrate the encoder. The encoder is
initially set in the calibrating mode and the linear encoder reading is reset
whenever the index pulse of the rotational encoder is encountered. As
mentioned in Section 6.2, the index pulses occur twice during the full stroke
motion of the setup. To ensure the encoder is reset correctly, the correct index
pulse (when the left edges of masses align with the left shaft) should be
encountered at the end of the calibrating motion. Thus, DemoLin first performs
a left to right motion until it is stopped by the right end stop to ensure it is in
right side of the correct index pulse. Then it moves from right to left direction
until it is stopped by the left end stop. At the end of calibrating motion, the
masses encounter the correct index pulse, thus, the encoder is reset correctly.
Thus, the “calibrated” signal is sent to the encoder after the calibrating motion
is completed.

The calibrating motion is performed by “goRight:GoSteady” and
“goLeft:GoSteady” agents of “OverallController” agent. Both the agents are
instances of “GoSteady” agent class. The “GoSteady” is an elementary agent,
which implements a proportional velocity control, which can be summarized by
following equation.

() KxxV ref ⋅∆−∆=

where,

V is voltage to the DA card,

refx∆ is reference incremental change in position,

x∆ is measured incremental change in position,
and K is gain factor of the controller.

The “GoSteady” agent deactivates when the masses are stopped (by the end
stops), and gives a signal, “reached”. The output, “reached”, of the “goLeft”
agent is connected to the “calibrated” input of the “encoderAgent”, thus the
sensor switches to non-calibrating mode as soon as the “goLeft” agent is
deactivated i.e. the calibrating move is completed.

Homing Motion

Homing motion positions the masses at the home position (x_motor = 0 mm),
which is accomplished by “goHome:GoHome” agent. The “GoHome” agent is a
composite agent, which contains a PID-controller agent,
“pidController:PID_s_safety” and a third order path generator agent,
“homePath:FinPosThirdOrderPath”. The “FinPosThirdOrderPath” generates a
path from the current position of the masses (given by the input “prevX” before
activating) to a final position, specified in a parameter of the agent, “Hfin”.

55

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Demo Motion

Demo Motion performs a repetitive, back and forth motion of 115 mm stroke
length from the home position and is implemented in “demoMode:DemoMode”
agent. The “DemoMode” agent has a periodic third order path generator
“periodicThirdOrderPath:PeriodicThirdOrderPath” and a PID-controller,
“pidController:PID_s_safety”. The “PeriodicThirdOrderPath” agent generates a
cyclic path and is implemented with a left to right stroke generator,
“rightPath:ThirdOrderPath” and a right to left stroke generator,
“leftPath:ThirdOrderPath”. The “ThirdOrderPath” agent generates a third order
path from an initial position, specified in a parameter of the agent, “Ho”, and
with a stroke length, specified in a parameter of the agent, “Hm”.

6.4.3 PID-Controller and Safety

The implemented PID-controller, “PID_s_safety” is a series form controller.
The implemented controller is based on a 20-Sim PID-Controller
implementation, “Controller-PID_s” and safety is added to the implementation.
The controller deactivates as soon as the error signal exceeds a certain
maximum value (specified in a parameter of the agent, “maxError”). Once the
controller is deactivated due to safety reason, it cannot be reactivated. The
design of the PID-Controller is presented in Appendix E.

6.5 Simulation Result

6.5.1 Model of DemoLin

The model used for simulation of DemoLin is a mass spring mass model as
shown in Figure 6-3. A viscous friction model is implemented in the model. A
detailed description of the model is presented in Appendix D.

ViscousFriction

IronPlates
YaskawaServoPack

m

UpperMass

m

LowerMass

F

YaskawaLinearMotor

x_loadx_motor

voltageDACard

Figure 6-3: Model of DemoLin

Calibration of the encoder is not implemented in the model thus the calibrating
motion is not simulated. The Homing Motion and Demo Motion are simulated
with the dll-File generated for the designed Multi-Agent Controller System. In
the model, the position of the motor mass is initialized to –0.2 mm. DemoLin
performs Homing Motion and Demo Motion as shown in Figure 6-4.

56

Chapter 6 Case Study

Homing and Demo Motion

0 1 2 3 4 5 6 7 8
time {s}

P
os

iti
on

 o
f M

ot
or

 {m
}

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

goHome

demoMode

(a)

Homing and Demo Motion

0 1 2 3 4 5 6 7 8 9 1
time {s}

V
ol

ta
ge

 to
 D

A
C

ar
d

0

-1

-0.5

0

0.5

1

(b)

Figure 6-4: Simulation result of Homing and Demo Motions

6.6 Implementation Result

The designed control system is implemented in a real system with 20-Works.
Results of the implementation are presented in the fingers below. The
Calibrating Motion and the Demo Motion are presented in Figure 6-5. The
Demo Motion is presented in Figure 6-6 and Figure 6-7. A case of Safety is also
illustrated in Figure 6-8, in which a disturbance (manual obstruction of the
masses) is introduced which result in the tracking error greater than the
maximum limit and the PID-Controller is deactivated.

57

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

0 1 2 3 4 5 6 7 8 9 10
-0.1

-0.05

0

0.05

0.1

0.15

P
os

iti
on

 o
f M

ot
or

 M
as

s
[m

]

Calibrating and homing motion

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

V
ol

ta
ge

 to
 D

A
 C

ar
d

[V
]

goRight goLeft goHome

Figure 6-5: Plots of Calibration and Homing Motions

In the calibrating motion, the Motor position reading is reset whenever the
index pulse of the rotational encoder is encountered.

10 11 12 13 14 15 16 17

0

0.02

0.04

0.06

0.08

0.1

P
os

iti
on

 o
f M

ot
or

 M
as

s
[m

]

Demo motion

10 11 12 13 14 15 16 17
-2

-1

0

1

V
ol

ta
ge

 to
 D

A
 C

ar
d

[V
]

rightPath leftPath rightPath

Figure 6-6: Plot of Motor Mass position and Voltage in Demo Motion

58

Chapter 6 Case Study

11.3 11.4 11.5 11.6 11.7 11.8 11.9 12 12.1 12.2 12.3

0

0.02

0.04

0.06

0.08

0.1

P
os

iti
on

 o
f M

ot
or

 M
as

s
[m

]
R

ef
er

en
ce

 [m
]

Traking Error in Demo Mode

11.3 11.4 11.5 11.6 11.7 11.8 11.9 12 12.1 12.2 12.3
-4

-2

0

2

4

Tr
ac

ki
ng

 E
rro

r [
m

m
]

Reference

Position of Motor Mass

Figure 6-7: Tracking error in Demo Motion

In Demo Mode, the error between the reference path and the measurement is
within ±4 mm and steady state error is within ±0.4 mm.

10 11 12 13 14 15 16 17

0

0.02

0.04

0.06

0.08

0.1

P
os

iti
on

 o
f M

ot
or

 M
as

s
[m

]

Safety

10 11 12 13 14 15 16 17
-2

-1

0

1

V
ol

ta
ge

 to
 D

A
 C

ar
d

[V
]

Disturbance
Introduced

Figure 6-8: Activation of Safety when error exceeds maximum error limit

As observed in the figure above, the controller attempts to overcome the
disturbance and as the error exceeds the safety limit, the controller is
deactivated. The motion of the motor mass after the safety is activated is
because of the disturbance.

59

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

6.7 Conclusion

A Multi-Agent Controller System is successfully designed and implemented on
DemoLin with the tool developed in this thesis. The ability of agents to
organize the control solutions is demonstrated in the case study. An integrated
approach of design and implementation is pursued by simulating the designed
Multi-Agent Controller System in 20-Sim and implementing the simulated
design with 20-Works.

In addition, some aspects of the plant, such as calibration of sensors and
interface with DA Card and Encoder Interface Card, which are not included in
their models, can be easily added in the implementation. Similarly, an
implemented Multi-Agent Controller System can be easily extended to support
additional functionality.

60

CHAPTER 7
7 CONCLUSION AND

RECOMMENDATION

7.1 Conclusion

This project is evolved from the MACSIF (Multi-Agent Controller Systems
Implementation Framework) and the MACSL (Multi-Agent Controller
Specification Language) developed by van Breemen [23]. The achievements of
this thesis are illustrated in Figure 7-1. The figure is extension of the proposed
structure in Figure 2-3. The achievements are summarized as follows.

Structured and competent specification of Multi-Agent Controller
Systems

A XML based specification, MacsML, has been designed for Multi-Agent
Controller Systems. The MacsML provides a structural aspect to specifications
of agents. MacsML is extensible. Support tools for MacsML can be easily
designed, as various tools are available for XML.

Platform Independent Implementation of Multi-Agent Controller
Systems

An ANSI C++ based library of classes has been developed in the thesis, which
can be used in various platforms. The designed library has been successfully
tested in a Microsoft Compiler and a GNU compiler.

Fully functional tool for Integrated Design and Implementation

The designed tool for Integrated Design and Implementation, IDITmac,
provides a fully functional tool for design and implementation of Multi-Agent
Controller Systems.

61

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Controller
Specification

of MAC (MacsML)

Code
Generation

Implementation
with 20Works

Link to
20Sim

Validation

Agent-Based Multi-Controller
Framework

JAVA

JAVA

Object
files

Controller
Specification

XML Schema

MacsML
Specification

Specification of
Agents (MACSL)

dynamic
link library

C++ code

Support for
20Works

Support for
20Sim

20 Works

Implementation Design

Library for
20Works

Library for
20Sim Xerces Parser

Visual C++ Compiler GNU Compiler

Figure 7-1: Developed tool for Integrated Multi-Agent Controller Systems

62

Chapter 7 Conclusion and Recommendation

Demonstration of Multi-Agent Controller Systems

The ability of Multi-Agent Controller Systems to solve complex problems and
organize the solution has been demonstrated in the case study, DemoLin. In
Multi-Agent Controller Systems, a stepwise refinement process of controller
design and implementation can be achieved through addition, removal and
improvements of agents without affecting the rest of the design.

7.2 Recommendation

The tool developed in this thesis provides basic facilities for integrated design
and implementation of Multi-Agent Controller Systems. The desirable
improvements to the tools are presented as follows.

Probe for agents: Major constraint of the tool is lack of debugging facilities. A
facility to monitor ports and states is desirable for debugging the agents in a
controller system. A name field is provided in Agents, which can be used for
this purpose.

Port type: Currently, ports of data type “real” (“double”) are implemented in
this thesis. The data type should be extended to include more data types such as
integer, boolean etc.

Mac Works: Multi-Agent Controller Systems is currently implemented with
20-Works which is designed for a different environment, thus many of the
functionalities of 20-Works is not useful. 20-Works should be extended to
support the agent environment.

Mac enabled 20-Sim: Interfacing of Multi-Agents Controller Systems with 20-
Sim through dll-files provides a good solution for the integrated approach.
However, 20-Sim should provide specialized functions for calling of start, tick
and stop functions and transferring sensor and actuator data.

Off-the-shelf agents: A library of standard Agents such as PID Controller
agents, Path Generators, Neural and Fuzzy Agents should be designed.
Moreover, a wider range of Coordination Objects should also be designed, as
Coordination Objects are the most critical and reusable components of Multi-
Agent Controller Systems.

IDITmacPlus: A graphical specification of Multi-Agents Controller Systems
should be introduced and tools should be provided which translate the graphical
specification to MacsML specification. A DOM parser is recommended for this
purpose, which is more powerful than the currently used SAX Parser. A DOS
and Linux based tool is desirable as implementation of agents is mostly
accomplished in these environments.

63

APPENDIX A
XML AND XML SCHEMA

A.1 Background of XML (Extensive Markup Language)

In 1969, IBM introduced Generalized Mark-up Language (GML) as a means of
allowing the text editing, formatting and information retrieval subsystems to
share documents. GML evolved as Standard Generalized Mark-up Language
(SGML). In 1986, SGML was established as an ISO standard, ISO 8879. A
simplified application of SGML was developed for rendering of documents in
the web, which is now known as Hyper Text Markup Language (HTML).
HTML has a fixed set of tags.

The World Wide Web Consortium (W3C) combined the power of SGML with
the simplicity of HTML and came up with Extensive Markup Language (XML).
XML is a subset of SGML. W3C released recommendation of XML 1.0, in
February 1999 and recommendation of XML 1.0 (Second Edition), in October
2000 [35].

A.2 XML (Extensive Markup Language)

Markup Language: Markup gives meaning to a document. An example of
Markup is highlighting of text in a document. A Markup Language is just a set
of rules defining Markup structure. In XML, anything in angle brackets (<…>)
is considered Markup (also referred as tag).

Like its predecessor, SGML, XML is a meta language. Unlike HTML, XML
doesn’t have predefined tags and tags can be invented according to the need of
the XML application. Thus, XML can be used to describe, store and process
virtually any kind of data.

Tags: XML documents are text documents. An example of XML document is
illustrated in Table A.1 Each opening tag, such as <name>, in an XML
document has a closing tag, such as </name>. All XML documents should have
a root element (also referred as start tag and end tag), in the example
<cagentclass> </cagentclass> is the root element of the XML document. The
elements (tags) of XML document should be properly nested. For example,
<name>, <interface> and <implementation> elements are nested inside
<cagentclass> tag.

65

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Comments: In XML documents, comments are enclosed in <!-- -->.
Comments may appear anywhere in a document outside other markup and
anything inside the comment block is ignored by XML processors (parsers).

Processing Instruction (PI): Processing instructions (PI) begin with <? and
end with ?>. The processing instructions are information for the application.
The PI begins with the PITarget used to identify the application to which the
instruction is directed. In the example, the XML declaration <?xml
version=“1.0”?> is a PI , xml is the PITarget and version= “1.0” is version
declaration.

CDATA: CDATA Sections (<![CDATA …]]>) are used to escape blocks of
text containing characters, which would otherwise be recognized as markup.
XML processor treats them as a character data. CDATA blocks are used to
include special characters as character data, as inside the <calculate> tag in the
example.

XML has become quite popular for data storing thus various parsers and tools
are available for XML parsing. The tags of XML document are not predefined
by the W3C recommendation and different tags can be defined according to the
requirement of the application. XML documents can be checked if the
documents consist of the tags being defined and if the structure of the tags is
according to the defined syntax. XML Schema, DTD (Document Type
Definition) are used to define the tags of XML documents. Description of XML
Schema is presented in next section.

A.3 W3C XML Schema

XML Schema was originally proposed by Microsoft, but it became an official
W3C recommendation in May 2001 [36] [37] [38]. An XML Schema
establishes a set of rules for constraining the structure and articulating the
information set of XML document instances. XML Schema is an XML
document itself. XML Schema defines legal building block of an XML
document. XML Schema can be customized to support any syntax. The
designed XML Schema can be used to check XML documents against the given
syntax. XML documents which validating against XML Schema is called
validating XML document.

66

Appendix A: XML and XML Schema

Table A.1: An Example of Multi-Agent Controller Specification Markup
Language (specification of a P-Controller)

PController.xml

<?xml version="1.0"?>
<!--A Comment which is ignored by parser-->
<cagentclass
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name> ler</name> PControl
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>reference</name>
 </input>
 <input>
 <type>real</type>
 <name>measurement</name>
 </input>
 <output>
 <type>real</type>
 <name>control_signal</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>kp</name>
 <defaultvalue>1</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <calculate>
 <![CDATA[
{
 control_signal=kp*(reference-measurement);
}
]]>

 </calculate>
 </elementary>
 </implementation>
</cagentclass>

The example presented in Table A.2 (a part of the xml document presented in
Table A.1) assigns a Schema, “CagentSchema.xsd”, to the XML document. The
structure of the document is validated against the Schema,
“CagentSchema.xsd”.

Table A.2: Declaration of Schema

PController.xml

<cagentclass
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">

67

APPENDIX B
UML

UML can be used in modeling software projects. UML defines twelve types of
diagrams, organized in three categories. The diagrams used in the thesis are in
the following sections.

B.1 Structural Diagrams

Structural diagrams are used to model the static structure of a system. It shows
the static relationship between classes. Class Diagrams are used to describe the
structure of classes within a system.

B.1.1 Class Diagram

A class is denoted by a box with the class name in bold at the top (Figure B.1).
The attributes of the class appear below the class name. The key operations of
the class appear below the attributes.

+attribute1 : attrType1
+attribute2 : attrType2
+Method1():returnType
+Method2():returnType

Attribute
Name

Attribute
Type

Method
Name Return Type

of Method

Class
Name

AClass

Figure B.1: A class notion

Association

Associations represent relationship between instances of classes. A line
connecting both classes represents their association (Figure B.2). The
multiplicity of a relationship is represented by numbers, which are printed next
to each end of the association. An asterisk (*) indicates a many (zero or more)
multiplicity. The example presented in Figure B.2 shows association between
an employer and its employees.

69

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

*

1
Multiplicity

Employer

Employee

Company

Department

Department

SalesAdminstration

Figure B.2: Example of associations

Composition

Composition is a whole/part relationship in which a class (the whole) contains
another class (the part) and creation and destruction of the part is responsibility
of the whole. It shows ownerships of classes and represented by a line with a
filled diamond shaped end. As shown in Figure B.3, the diamond shaped end of
the relationship is in the owner’s (the whole’s) side.

*

1

Whole

Part

Figure B.3: Example of composition

Inheritance

Inheritance (also known as generalization) is used for modeling a kind-of-
relations. It is represented by a line ending with a triangle. As illustrated in
Figure B.4, the triangular end is towards the parent class.

Parent Class

Child Class

Figure B.4: Example of Inheritance

B.2 Behavior Diagrams

Behavior diagrams are used to model the dynamic behavior of the system, for
example state changes within an object. Two kinds of Behavior diagrams is
described in the following sections.

B.2.1 Sequence Diagram

Sequence diagrams describe how groups of objects collaborate in some
behavior over time. It shows the messages that are passed between objects. In

70

Appendix B: UML

sequence diagrams, objects are represented in rectangular boxes as illustrated in
Figure B.5.

Named
Object

Anonymous
Object

Group of
Objects

IBM:Company :Company :Company

Figure B.5: Object representation in Sequence Diagrams

Each object has a ‘time line’ showing its creation and destruction. Messages of
objects are represented as horizontal arrow and conditions are enclosed in
square brackets. Figure B.6 shows an example the process of support request by
a customer. In the example, the customer is not a part of the company (system)
thus represented as an Actor.

Process of
support request
in a company

technical Support
:Employee aCustomoer

:Customer

customer Support
:Employee

requestSupport() [technical]
requestSupport()

provideSupport()

provideSupport()

Time line

Figure B.6: Example of Sequence Diagram

B.2.2 Statechart Diagram

Statechart diagrams show the possible states of an object and the transitions that
cause a change in state. States are represented in rounded rectangles and
transitions are represented by arrows from one state to another. Events or
conditions that trigger transitions are included beside the arrows. The action that
occurs as a result of an event or a condition is expressed in the form, “/action”.
An initial pseudostate is represented by a black circle. An example of a
statechart of lifecycle of employees in a company is presented in Figure B.7.

71

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

trainee

staff

fired retired

trainee

fired retired[bad_work]
/terminate_service(); [bad_work]

/terminate_service();

[end_of_month]
/give_salary();

[age_limit_reached]
/give_farewell();
terminate_service();

[good_work]/promote();

[end_of_month]
/give_pension();

[end_of_month]
/give_salary();

Initial
Pseudostate

Figure B.7: Example of statechart

72

APPENDIX C
FEATURES OF IDITMAC

A tool, IDITmac (Integrated Design and Implementation of multi-agent
controllers), is designed in this thesis to facilitate design and implementation of
Multi-Agent Controller Systems. The main functionalities of the tool can be
summarized as follows.

� Creating and editing of MacsML specifications
� Checking of MacsML specifications
� Code Generation of ANSI C++ code from MacsML specifications
� Generation of dll file for Multi-Agent Controller Systems from their

MacsML specifications

IDITmac has a Graphical User Interface, which is developed in Java Swing
(Figure C.1). As shown in the figure, the interface has four display panels. The
“XML File”, the “Header File” and the “CPP File” panels is used to display the
MacsML specification, the generated header file and the generated C++ file of
an agent. The “Output” panel gives status of the tool.

Figure C.1: Snapshot of Graphical User Interface of IDITmac

73

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

IDITmac is developed in Java and it utilizes the Xerces 2 Java Parser [33] for
extracting information from MacsML specifications. The extracted information
of an agent is stored in a collection of Java objects and translated to an ANSI
C++ code. The tool requires the Microsoft Visual C++ Compiler for the
generation of dll-file (for 20-Sim).

C.1 Support for MacsML in IDITmac

The developed tool, IDITmac, also supports complete editing and checking of
MacsML specification files. The editing functionality is similar to a general text
editor. MacsML specifications are checked against corresponding Schemas and
the structural error in a MacsML document is reported in the output panel of the
tool. IDITmac facilitates checking integrity of a document while editing. The
prominent features of IDITmac regarding MacsML are as follows.

Fully functional text editor

IDITmac is a fully functional text editor especially designed for MacsML.
Common features of a text editor such as opening existing MacsML files,
saving files (MacsML and generated codes), printing files are included in
IDITmac. Editing facilities such as cut, copy and paste are supported in the tool.
Other useful functions such as an indicator for unsaved files and warning of loss
unsaved data while closing or processing of a file are also added in the tool.
Text editing functions are under File and Edit menus.

Templates for Agents

IDITmac also provides templates of MacsML documents for all the six basic
types agents of Multi-Agent Controller Systems. Templates are convenient
starting tools for specifying agents, as the user can easily customize the
templates to build desired agents. Templates can be accessed by File+New
Template menu.

Checking of XML specifications

IDITmac also supports checking of MacsML specifications of the Multi-Agent
Controller Systems, allowing the user to check the specifications while editing.
Feedback of structural errors in a MacsML document is reported to the user by
an error prompt and the description of the error is presented in the output panel.
Checking of a MacsML document can be done via the Build+Check XML
menu.

74

Appendix C: Features of IDITmacUML

C.2 Support for Design and Implementation in
IDITmac

The architecture and the operating principle of Multi-Agent Controller Systems
is captured in an ANSI C++ library of classes, which can be used in both the
Microsoft Visual C++ compiler (for 20-Sim) and the GNU C++ compiler (for
20-Works). The MacsML specifications of a Multi-Agent Controller System
can be translated to C++ code, which inherits the operating principle captured in
the library. The library for Microsoft is embedded with IDITmac so that dll-files
can be automatically generated for Multi-Agent Controller Systems.

Directory Structures defined by IDITmac

IDITmac supports two directory structures, a Base Directory Structure and an
Organized Directory Structure, of the specification files of a Multi-Agent
Controller System. In the Base Directory Structure, the specification files can be
located in a single directory (Project Directory) as illustrated in Figure C.2 (a).
In the Organized Directory Structure, the specification files can be organized in
a predefined structure as illustrated in Figure C.2 (b). As illustrated in the
corresponding figures, the generated codes (.h and .cpp) are saved in a “source”
directory and the compiled object files (.obj) are stored in a “bin” directory. The
generated dll-file (.dll) is stored in a “models” directory.

Generated dll-File (.dll)

MacsML specifications (.xml)

Generated Source Code (.h/.cpp)
Compiled Object Files (.obj)

(a)

Generated dll-File (.dll)

MacsML specifications (.xml)

Generated Source Code (.h/.cpp)
Compiled Object Files (.obj)

(b)

Figure C.2: Directory Structures defined by IDITmac
(a) Base Directory Structure (b) Organized Directory Structure

75

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

C++ Code Generation

C++ Codes for agents is generated by Build+Generate Code menu. The
specification is checked against corresponding Schemas prior to the code
generation. For Composite (and Main) Agents, facility of generation of the
codes for all its sub agents is also provided (Build+Generate Code All menu).
The generated codes can be implemented with the developed library.

Generation dll-file for 20-Sim

IDITmac can generate a dll-file for a Multi-Agent Controller System, which can
be used with 20-Sim. The specifications are checked against the corresponding
Schemas and translated to C++ codes. The translated codes are compiled and
linked by the Microsoft Visual C++ Compiler. The compiling and linking
outputs (and errors if any) are displayed in the output panel. The compiler is not
embedded in the tool and the path of the compiler has to be specified (by
Tools+Resource Directories menu). Dll-files can be generated by Build+Build
dll menu.

The structure of the tool, IDITmac, is illustrated in Figure C.3.

MACS library

IDITmac/Xerces Parser jar files

MACS include files

Demos for 20 Sim

MACS source files

MacsML Templates

MacsML Schemas

Documentation of MasML Schemas

Figure C.3: Organization of IDITmac

76

APPENDIX D
DEMOLIN SETUP AND MODEL

D.1 Configuration of DemoLin

DemoLin is a demonstration setup developed at Imotec BV, for demonstration
purpose of controller performance. It is a mass spring mass system, which is
actuated by a linear motor (ironless synchronous permanent magnet). A
schematic diagram of DemoLin is presented in Figure D.1. The Motor Mass is
driven by the Linear Motor. The End Effectors Mass is connected to the Motor
Mass with two flexible Iron Plates. Both the masses are supported by belts and
pulleys, which are connected to two shafts. The pulleys of the End Effectors
Mass is rigidly connected to the right shaft and connected via bearing to the left
shaft. Similarly, the pulleys of the Motor Mass is rigidly connected to the left
shaft and connected via bearing with the right shaft.

Motor Mass

Linear Motor

Left Shaft

Pulley and Belt

End Effectors Mass

Iron Plate

Right Shaft

110

100

400585

515

All dimensions are in mm

Figure D.1: Schematic Diagram of DemoLin

The dimensions of DemoLin are presented in the figure above. A detailed
description of components of DemoLin is as follows.

77

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Mechanical configuration

End Effectors Mass m][61 kg=

Motor Mass][42 kgm =

Stiffness of Iron Plates (in the direction of motion)]/[63.956 mNc =

Viscous friction coefficient of the Motor Mass]/[2 msv =µ

Motor Description
Type: Ironless synchronous permanent magnet
Model: Yaskawa SGLGW60A365A
Thrust constant]/[63 ANkm =

Servo Amplifier
Type: Yaskawa Servo Pack SGDH 08AE
Gain factor]/[1.1 VAA =

D.2 Encoders of DemoLin

A linear encoder is placed beneath the Motor Mass to measure the motor
position. A rotational encoder is attached to the right shaft, which gives the
position of the End Effectors Mass. Both the encoders are incremental encoders.
The rotational encoder has an index pulse, which is triggered when the shaft is
in a particular position. The index pulse is encountered twice within a full
stroke motion of DemoLin. One index pulse is encountered when the left edge
of End Effectors aligns with the left shaft and other is encountered when the left
edge of the End Effectors is 76 mm right from the left shaft. The index pulse of
the linear encoder cannot be detected during the experiments performed in
DemoLin.

D.3 Model of DemoLin

The iconic diagram of model of DemoLin is illustrated in Figure D.2. A viscous
friction model is included and the parameter of viscous friction is estimated
during experiments. The viscous friction coefficient, vµ , is taken as []ms /2 .

End Effector MassMotor Mass

Iron PlatesLinear Motor
Servo Pack

Viscous Friction

mmF

x1x2

voltageDACard

Figure D.2: Iconic Diagram of model of DemoLin

78

APPENDIX E
DESIGN OF PID-CONTROLLER FOR
DEMOLIN

E.1 Plant Model

The model of plant used for controller design is a mass spring mass system,
which is described in iconic in Figure E.1.

m1 m2 F

c

x2 x1

Figure E.1: Iconic Diagram of mass spring mass system

The numeric values are described as follows.

kgm 61 =

kgm 42 =

kgm 10=

mNc /63.956=

where,

1m is mass of the Motor Mass

2m is mass of the End Effectors Mass
m is total mass
and is spring constant of the Iron Plate in the direction of motion. c

The dominant stiffness is located in the system thus it is a Flexible Mechanism
[46]. Anti-Resonance frequency of the plant is given by

srad
m
c

ar /63.12
1

==ω

Resonance frequency is given by

srad
m
c

m
c

r /96.19
21

=+=ω

and the frequency ratio is

79

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

4.0
2

=







=

r

ar

ω
ω

ρ

Measurement is performed at the Motor () (Concept AR [46]) and the
transfer function of the plant is given by

2x

() 2543

422

2

2

22

22

2 1035.61059.1
1035.61098.31

ss
s

s
s

ms
sP

ar

r

r

ar

⋅+⋅
⋅+⋅

=⋅
+

+
⋅=

ω
ω

ω
ω

E.2 Design

A design based on Coelingh [46] is presented in this section. The Optimal
dimensionless controller settings for the Concept AR is given by

Position loop quantity and position loop gain:

8.0=Ω p

() 4.10202 =⋅Ω⋅= arpp mk ω

Velocity loop quantity and velocity loop gain:

9.0=Ωd

64.113=⋅Ω⋅= ardd mk ω

derivative time constant is given by

s
k
k

T
p

d
d 111.0==

A PID controller in Series form is implemented

e

N
T

s

Ts
Ts

kU
d

d

i
p ⋅



















⋅+

⋅+
⋅







⋅

+⋅=
1

111

Integral time constant, T , is chosen such that the integral action does not

affect the proportional and the derivative action (the maximum phase shift of
the controller), which is illustrated in the bode plots of the PID controller (in
Series form) below.

0.1=i

80

Appendix E: Design of PID-Controller for DemoLinUML

Bode Diagram of PID-Control ler (kp=1020.4, Td=0.111)

Frequency (rad/sec)

P
ha

se
 (d

eg
)

M
ag

ni
tu

de
 (d

B
)

60

65

70

75

80

85

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-90

-45

0

45

90

Ti=100 Ti=10 Ti=1 Ti=0.1

Ti=10

Maximum Phase Shift

Ti=100 Ti=1 Ti=0.1

Figure E.2: Bode Plot of PID-Controller

The performance of the controller designed suffers from the friction present in
the real system. A good estimation of friction on the system is not available
thus, another design is consider in which the gain of the controller is increased
to overcome the drawback of the friction.

E.3 Online Parameter Tuning

Firstly, the proportional gain and the derivative time constant of the controller
are tuned (with a high value of the integral time constant). The system shows
unstable behavior when the proportional gain is approximately 20000, so a
lower value of gain is chosen.

After a good value of proportional gain and the derivative time constant is
obtained, the integral time constant is adjusted so that it does not affect the
proportional and the derivative action. The parameters of the implemented
controller are as follows.

0.15000=pk

1.0=dT

0.1=iT

81

APPENDIX F
MULTI-AGENT CONTROLLER
SYSTEM FOR DEMOLIN

DemoLin (Main Agent)

 Main Agent: DemoLin.xml

<?xml version="1.0"?>
<mac xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MacSchema.xsd">
 <name>DemoLin</name>
 <interface>
 <ports>
 <input>
 <type>EncoderAgent</type>
 <name>encoderAgent</name>
 </input>
 <output>
 <type>DAAgent</type>
 <name>daAgent</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>OverallController</type>
 <name>overallController</name>
 </cagent>
 </cagency>
 <connections>
 <connection>
 <from>encoderAgent.x_motor</from>
 <to>overallController.x_motor</to>
 </connection>
 <connection>
 <from>overallController.calibrated</from>
 <to>encoderAgent.calibrated</to>
 </connection>
 <connection>
 <from>overallController.voltage</from>
 <to>daAgent.voltage</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</mac>

83

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

EncoderAgent (Sensor Agent)

 Sensor Agent: EncoderAgent.xml

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>EncoderAgent</name>
 <include>"EncoderInterface.h"</include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>calibrated</name>
 </input>
 <output>
 <type>real</type>
 <name>x_motor</name>
 </output>
 <output>
 <type>real</type>
 <name>x_load</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>enc2m_mot</name>
 <defaultvalue>4.0e-6</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>enc2m_load</name>
 <defaultvalue>4.7e-6</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <sensor>
 <states>
 <state>
 <type>int</type>
 <name>prevEnc2Count</name>
 </state>
 </states>
 <instances>
 <instance>
 <type>EncoderInterface</type>
 <name>encInt</name>
 </instance>
 </instances>
 <start><![CDATA[{
 calibrated=0.0;
 prevEnc2Count=0;
 encInt->Initialize();
 encInt->Reset1Mid();
 encInt->Reset2Index();
 }]]></start>

84

Appendix F: Multi-Agent Controller System for DemoLinUML

 <sense><![CDATA[{
 long count;
 if (calibrated<0.5)
 {
 count = encInt->Enc2();

 if (prevEnc2Count!=count)
 encInt->Reset1Mid();
//reset encoder 1 according to index pulse of encoder 2
 prevEnc2Count=count;
 }
 count = encInt->Enc1Mid();
 x_motor=count * enc2m_mot;
 }]]></sense>
 </sensor>
 </implementation>
</cagentclass>

DAAgent (Actuator Agent)

 Actuator Agent: DAAgent.xml

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>DAAgent</name>
 <include>"DAQ.h"</include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>voltage</name>
 </input>
 </ports>
 </interface>
 <implementation>
 <actuator>
 <instances>
 <instance>
 <type>DAQ_AO</type>
 <name>da</name>
 </instance>
 </instances>
 <start><![CDATA[{
 da->AO(0.0);
 }]]></start>
 <actuate><![CDATA[{
 da->AO(-voltage);
 }]]></actuate>
 <stop><![CDATA[{
 da->AO(0.0);
 }]]></stop>
 </actuator>
 </implementation>
</cagentclass>

85

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

OverallController (Composite Agent)

 Composite Agent: OverallController.xml

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>OverallController</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>x_motor</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage</name>
 </output>
 <output>
 <type>real</type>
 <name>calibrated</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>GoSteady</type>
 <name>goRight</name>
 <parameters>
 <parameter>
 <name>refPositionIncrement</name>
 <value>0.00005</value>
 </parameter>
 <parameter>
 <name>K</name>
 <value>40000</value>
 </parameter>
 <parameter>
 <name>minPositionIncrement</name>
 <value>10e-6</value>
 </parameter>
 <parameter>
 <name>minVoltage</name>
 <value>0.0</value>
 </parameter>
 <parameter>
 <name>maxVoltage</name>
 <value>1.5</value>
 </parameter>
 <parameter>
 <name>startingCount</name>
 <value>500</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>

86

Appendix F: Multi-Agent Controller System for DemoLinUML

87

 <type>GoSteady</type>
 <name>goLeft</name>
 <parameters>
 <parameter>
 <name>refPositionIncrement</name>
 <value>-0.00005</value>
 </parameter>
 <parameter>
 <name>K</name>
 <value>40000</value>
 </parameter>
 <parameter>
 <name>minPositionIncrement</name>
 <value>10e-6</value>
 </parameter>
 <parameter>
 <name>minVoltage</name>
 <value>-1.5</value>
 </parameter>
 <parameter>
 <name>maxVoltage</name>
 <value>0.0</value>
 </parameter>
 <parameter>
 <name>startingCount</name>
 <value>500</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>GoHome</type>
 <name>goHome</name>
 </cagent>
 <cagent>
 <type>DemoMode</type>
 <name>demoMode</name>
 </cagent>
 </cagency>
 <coordination>
 <class>Sequential</class>
 <name>seq</name>
 </coordination>
 <connections>
 <connection>
 <from>x_motor</from>
 <to>goRight.x_motor</to>
 </connection>
 <connection>
 <from>x_motor</from>
 <to>goLeft.x_motor</to>
 </connection>
 <connection>
 <from>goLeft.reached</from>
 <to>calibrated</to>
 </connection>
 <connection>
 <from>x_motor</from>
 <to>goHome.x_motor</to>
 </connection>

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

 <connection>
 <from>x_motor</from>
 <to>demoMode.x_motor</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

GoSteady (Elementary Agent)

 Elementary Agent: GoSteady.xml

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GoSteady</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>x_motor</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage</name>
 </output>
 <output>
 <type>real</type>
 <name>reached</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>refPositionIncrement</name>
 <defaultvalue>0.00005</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>K</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>minPositionIncrement</name>
 <defaultvalue>4.7e-6</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>minVoltage</name>
 <defaultvalue>0.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>maxVoltage</name>
 <defaultvalue>1.5</defaultvalue>
 </parameterdef>

88

Appendix F: Multi-Agent Controller System for DemoLinUML

89

 <parameterdef>
 <type>real</type>
 <name>startingCount</name>
 <defaultvalue>100</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>real</type>
 <name>prevX_motor</name>
 </state>
 <state>
 <type>int</type>
 <name>wait_counter</name>
 </state>
 </states>
 <start><![CDATA[{
 wait_counter=0;
 reached=0.0;
 voltage=0.0;
 }]]></start>
 <finalize><![CDATA[{
 voltage=0.0;
 reached=1.0;
 }]]></finalize>
 <activation><![CDATA[{
 if (wait_counter<startingCount)
 return 1.0;
 else
 return ((double)(fabs(x_motor-
prevX_motor)>minPositionIncrement));
 }]]></activation>
 <calculate><![CDATA[{
 voltage=(refPositionIncrement-(x_motor-prevX_motor))*K;
 if (voltage>maxVoltage)
 voltage=maxVoltage;
 if (voltage<minVoltage)
 voltage=minVoltage;
 wait_counter++;
 prevX_motor=x_motor;
 }]]></calculate>
 </elementary>
 </implementation>
</cagentclass>

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

GoHome (Elementary Agent)

 Elementary Agent: GoHome.xml

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GoHome</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>x_motor</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>FinPosThirdOrderPath</type>
 <name>homePath</name>
 <parameters>
 <parameter>
 <name>Tm</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>2.0</value>
 </parameter>
 <parameter>
 <name>Hfin</name>
 <value>0.0</value>
 </parameter>
 <parameter>
 <name>samplingtime</name>
 <value>0.001</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>PID_s_sp</type>
 <name>pidController</name>
 <parameters>
 <parameter>
 <name>K</name>
 <value>5000.0</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>1.2</value>
 </parameter>
 <parameter>

90

Appendix F: Multi-Agent Controller System for DemoLinUML

91

 <name>N</name>
 <value>10</value>
 </parameter>
 <parameter>
 <name>Ti</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>minimum</name>
 <value>-3.0</value>
 </parameter>
 <parameter>
 <name>maximum</name>
 <value>3.0</value>
 </parameter>
 <parameter>
 <name>MV_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>output_scale</name>
 <value>0.01443</value>
 </parameter>
 <parameter>
 <name>macError</name>
 <value>0.01</value>
 </parameter>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 </parameters>
 </cagent>
 </cagency>
 <connections>
 <connection>
 <from>x_motor</from>
 <to>homePath.prevX</to>
 </connection>
 <connection>
 <from>homePath.x</from>
 <to>pidController.SP</to>
 </connection>
 <connection>
 <from>x_motor</from>
 <to>pidController.MV</to>
 </connection>
 <connection>
 <from>pidController.output</from>
 <to>voltage</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

DemoMode (Composite Agent)

 Composite Agent: DemoMode.xml

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>DemoMode</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>x_motor</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>PID_s_sp</type>
 <name>pidController</name>
 <parameters>
 <parameter>
 <name>K</name>
 <value>15000.0</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>0.1</value>
 </parameter>
 <parameter>
 <name>N</name>
 <value>10.0</value>
 </parameter>
 <parameter>
 <name>Ti</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>minimum</name>
 <value>-3.0</value>
 </parameter>
 <parameter>
 <name>maximum</name>
 <value>3.0</value>
 </parameter>
 <parameter>
 <name>MV_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>output_scale</name>
 <value>0.01443</value>

92

Appendix F: Multi-Agent Controller System for DemoLinUML

 </parameter>
 <parameter>
 <name>macError</name>
 <value>0.005</value>
 </parameter>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>PeriodicThirdOrderPath</type>
 <name>periodicThirdOrderPath</name>
 </cagent>
 </cagency>
 <connections>
 <connection>
 <from>x_motor</from>
 <to>pidController.MV</to>
 </connection>
 <connection>
 <from>periodicThirdOrderPath.x</from>
 <to>pidController.SP</to>
 </connection>
 <connection>
 <from>pidController.output</from>
 <to>voltage</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

FinPosThirdOrderPath (Elementary Agent)

 Elementary Agent: FinPosThirdOrderPath.xml

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>FinPosThirdOrderPath</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>prevX</name>
 </input>
 <output>
 <type>real</type>
 <name>x</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>Tm</name>
 <defaultvalue>1.0</defaultvalue>

93

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Td</name>
 <defaultvalue>2.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Hfin</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>samplingtime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>real</type>
 <name>time</name>
 </state>
 <state>
 <type>real</type>
 <name>Ho</name>
 </state>
 <state>
 <type>real</type>
 <name>Hm</name>
 </state>
 </states>
 <initialize><![CDATA[{
 Ho=prevX;
 Hm=-Ho+Hfin;
 time=0.0;
 }]]></initialize>
 <activation><![CDATA[{
 if (!active)
 return 1.0;
 else
 return (time<(Tm+Td));
 }]]></activation>
 <calculate><![CDATA[{
 double u;
 u=time/Tm;
 if (u<0.25)
 x=Ho+Hm*(16.0*u*u*u/3);
 else
 if (u<0.75)
 x=Ho+Hm*(1.0/6.0-2.0*u+8.0*u*u-(16.0*u*u*u/3));
 else
 if (u<1.0)
 x=Ho+Hm*(-13.0/3.0+16.0*u-
16.0*u*u+16.0*u*u*u/3.0);
 else
 x=Ho+Hm;

94

Appendix F: Multi-Agent Controller System for DemoLinUML

 time=time+samplingtime;
 }]]></calculate>
 </elementary>
 </implementation>
</cagentclass>

PID_s_safety (Elementary Agent)

 Elementary Agent: PID_s_safety.xml

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>PID_s_ safety </name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>SP</name>
 </input>
 <input>
 <type>real</type>
 <name>MV</name>
 </input>
 <output>
 <type>real</type>
 <name>output</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>K</name>
 <defaultvalue>1020.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Td</name>
 <defaultvalue>0.1174</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>N</name>
 <defaultvalue>10</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Ti</name>
 <defaultvalue>1000</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>minimum</name>
 <defaultvalue>-5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>maximum</name>

95

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>MV_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>output_scale</name>
 <defaultvalue>0.01443</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>maxError</name>
 <defaultvalue>0.05</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>sampletime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>boolean</type>
 <name>isSafe</name>
 </state>
 <state>
 <type>real</type>
 <name>error</name>
 </state>
 <state>
 <type>real</type>
 <name>scaled_MV</name>
 </state>
 <state>
 <type>real</type>
 <name>factor</name>
 </state>
 <state>
 <type>real</type>
 <name>uD</name>
 </state>
 <state>
 <type>real</type>
 <name>uI</name>
 </state>
 <state>
 <type>real</type>
 <name>ideal_output</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError</name>
 </state>

96

Appendix F: Multi-Agent Controller System for DemoLinUML

97

 </states>
 <start><![CDATA[{
 isSafe=true;
 }]]></start>
 <initialize><![CDATA[{
 prevError=0.0;
 }]]></initialize>
 <finalize><![CDATA[{
 output=0.0;
 }]]></finalize>
 <activation><![CDATA[{
 return (isSafe);
 }]]></activation>
 <calculate><![CDATA[{
 scaled_MV = MV_scale * MV;
 error = SP - scaled_MV;
 if (fabs(error)>maxError)
 {
 output=0.0;
 isSafe=false;
 return;
 }
 factor = 1 / (sampletime + Td / N);
 uD = factor * (sampletime * K *error + Td * K * (error
- prevError) + Td * uD / N);
 uI = uI + sampletime * uD / Ti ;
 ideal_output = uI + uD;
 output = output_scale * ideal_output;
 if (output<minimum)
 output=minimum;
 if (output>maximum)
 output=maximum;
 prevError=error;
 }]]></calculate>
 <update><![CDATA[{
 scaled_MV = MV_scale * MV;
 error = SP - scaled_MV;
 }]]></update>
 </elementary>
 </implementation>
</cagentclass>

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

PeriodicThirdOrderPath (Composite Agent)

 Composite Agent: PeriodicThirdOrderPath.xml
<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>PeriodicThirdOrderPath</name>
 <interface>
 <ports>
 <output>
 <type>real</type>
 <name>x</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>ThirdOrderPath</type>
 <name>rightPath</name>
 <parameters>
 <parameter>
 <name>Tm</name>
 <value>0.95</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>Ho</name>
 <value>0.0</value>
 </parameter>
 <parameter>
 <name>Hm</name>
 <value>0.1</value>
 </parameter>
 <parameter>
 <name>samplingtime</name>
 <value>0.001</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>ThirdOrderPath</type>
 <name>leftPath</name>
 <parameters>
 <parameter>
 <name>Tm</name>
 <value>0.95</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>1.0</value>
 </parameter>
 <parameter>

98

Appendix F: Multi-Agent Controller System for DemoLinUML

 <name>Ho</name>
 <value>0.1</value>
 </parameter>
 <parameter>
 <name>Hm</name>
 <value>-0.1</value>
 </parameter>
 <parameter>
 <name>samplingtime</name>
 <value>0.001</value>
 </parameter>
 </parameters>
 </cagent>
 </cagency>
 <coordination>
 <class>Cyclic</class>
 <name>cyclic</name>
 </coordination>
 </composite>
 </implementation>
</cagentclass>

Sequential (Coordination Object)

 Coordination Object: Sequential.xml
<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CoordinationObjectSchema.xs
d">
 <name>Sequential</name>
 <implementation>
 <coordination>
 <states>
 <state>
 <type>Int</type>
 <name>lastActiveAgentIndex</name>
 </state>
 </states>
 <start><![CDATA[{
 lastActiveAgentIndex=0;
 }]]></start>
 <resolute><![CDATA[{
 if (lastActiveAgentIndex>=mu.size())
 return 0.0; //all agents activated
 double maxActivation;
 maxActivation=0.0;
 for (int i=lastActiveAgentIndex; i<mu.size(); i++)
 {
 if (maxActivation<mu[i])
 maxActivation=mu[i];
 }
 return maxActivation;
 }]]></resolute>
 <decide><![CDATA[{
 if (acknowledge)
 {
 if (lastActiveAgentIndex>=mu.size())

99

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

 return; //all agents activated
 for (int i=lastActiveAgentIndex; i<mu.size(); i++)
 {
 if (mu[lastActiveAgentIndex]>0)
 //active agent still wants to be active
 {
 ack[lastActiveAgentIndex]=acknowledge;
 return;
 }
 else
 {
 lastActiveAgentIndex=(lastActiveAgentIndex+1);
 //activate next agent
 if (lastActiveAgentIndex==mu.size())
 return; //all agents activated
 }
 }
 }
 //else
 //lastActiveAgentIndex=0; //restart after
activating;
}
]]></decide>
 <combine><![CDATA[{
 out [0]= subAgentOutput[lastActiveAgentIndex];
 //return output of active agents
 }]]></combine>
 </coordination>
 </implementation>
</cagentclass>

Cyclic (Coordination Object)

 Coordination Object: Cyclic.xml
<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="CoordinationObjectSchema.xs
d">
 <name>Cyclic</name>
 <implementation>
 <coordination>
 <states>
 <state>
 <type>Int</type>
 <name>lastActiveAgentIndex</name>
 </state>
 </states>
 <start><![CDATA[{
 lastActiveAgentIndex=0;
 }]]></start>
 <resolute><![CDATA[{
 double maxActivation;
 maxActivation=0.0;
 for (int i=0; i<mu.size(); i++)
 {
 if (maxActivation<mu[i])
 maxActivation=mu[i];

100

Appendix F: Multi-Agent Controller System for DemoLinUML

101

 }
 return maxActivation;
}
]]></resolute>
 <decide><![CDATA[
{
 if (acknowledge)
 for (int i=0;i<mu.size(); i++)
 {
 if (mu[lastActiveAgentIndex]>0)
 //active agent still wants to be active
 {
 ack[lastActiveAgentIndex]=acknowledge;
 return;
 }
 else
 {
 lastActiveAgentIndex=(lastActiveAgentIndex+1) %
mu.size(); //activate next agent
 }
 }
 else
 lastActiveAgentIndex=0; //restart cycle if inactive
 }]]></decide>
 <combine><![CDATA[{
 out [0]= subAgentOutput[lastActiveAgentIndex];
 //return output of active agents
 }]]></combine>
 </coordination>
 </implementation>
</cagentclass>

BIBLIOGRAPHY
[1] T. A. Johansen and B. A. Foss. ORBIT - Operating Regime Based Modeling

and Identification Toolkit, Control Engineering Practice, 6:12, 77–86, 1998

[2] Leith, D. and W. Leithead, Analytic framework for blended multiple model
systems using linear local models International Journal of Control (1999)

[3] P. Antsaklis, X. Koutsoukos, and J. Zaytoon, On hybrid control of complex
systems: A survey European Journal of Automation, 32(9-10): 1023–1045,
1998.

[4] M. Zefran and J. W. Burdick, Design of switching controllers for systems
with changing dynamics, Proceedings 37th Conference on Decision and
Control, pp. 2113–2118, 1998

[5] G.J. Pappas, G. Lafferriere, S. Sastry. Hierarchically consistent control
systems. IEEE Transactions on Automatic Control, vol. 45:6, pp. 1144-
1160, 2000.

[6] T. Moor, J. Raisch, J.M. Davoren, Computational advantages of a two-level
hybrid control architecture, Proceedings 40th IEEE Conference on Decision
and Control, pp. 358-363, December 2001

[7] L. Wills, S. Kannan, B. Heck, G. Vachtsevanos, C. Restrepo, S. Sander, D.
Schrage, and J. V. R. Prasad, An open software infrastructure for
reconfigurable control systems, in Proceedings 19th American Control
Conference (ACC-2000), Chicago, IL, June 2000, pp. 2799-2803.

[8] M. Luck, M. d’Inverno. A conceptual framework for agent definition and
development.The Computer Journal, 44(1):1–20, 2001.

[9] S.Franklin, A.Graesser, “Is It an Agent, or Just a Program?: A Taxonomy
for Autonomous Agents”, Intelligent Agents III: Agent Theories,
Architectures, and Languages, Proceedings of ECAI’96 Workshop(ATAL),
Hungary, Aug.1996 (From Lecture Notes in Artificial Intelligence 1193, pp.
21-35, 1997).

[10] http://www.dcs.gla.ac.uk/mac/, MAC - Multi-Agent Control: Probabilistic
reasoning, optimal co-ordination, stability analysis and controller design for
intelligent hybrid systems, A four year Research Training Network within
the European Commission's 5th Framework, starting in April 2000.

[11] http://www.ee.byu.edu/ee/control/MASC.html, MASC - Multi-Agent
Satisficing Control Group, Brigham Young University, Department of
Electrical & Computer Engineering, Provo, UT, USA.

[12] http://www.cc.gatech.edu/ai/robot-lab/research/multi-agent.html,
Multiagent Robotic Systems, Mobile Robot Lab, Georgia Institute of
Technology
Atlanta, Georgia, USA

[13] http://www.lti.pcs.usp.br/mappel/, MAPPEL - Multi-Agent Collaborative
and Adversarial Perception, Planning, Execution, and Learning, Project in
collaboration of Escola Politécnica da Universidade de São Paulo,

103

http://www.dcs.gla.ac.uk/mac
http://www.ee.byu.edu/ee/control/MASC.html
http://www.cc.gatech.edu/ai/robot-lab/research/multi-agent.html
http://www.lti.pcs.usp.br/mappel/

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

Universidade de São Paulo, Universidade Estadual de Campinas, Instituto
Tecnológico de Aeronáutica, Carnegie Mellon University.

[14] http://hms.ifw.uni-hannover.de, [HMS] - Holonic Manufacturing Systems,
project Intelligent Manufacturing Systems (IMS) program in collabration
with The Broken Hill Proprietary Co. Ltd. (Australia), University of
Calgary (Canada),Softing GmbH (Europe), Yaskawa Electric Corporation
(Japan), Rockwell Automation/Allen-Bradley LLC (USA)

 [15] http://www.rt.el.utwente.nl/agent/, Agent-Oriented Design of Control
Systems, Control Laboratory, Faculty of Electrical Engineering,
Mathematics & Computer Science, University of Twente, Enschede, The
Netherlands

[16] R. A. C. Bianchi, A. H. R. C. RILLO, A distributed control architecture for
a purposive computer vision system IEEE Symposium on Image, Speech
and Natural Language Systems (ISNL) - IEEE International Joint Symposia
on Intelligence and Systems 1996, P. 288-294. 1996

[17] S. Bussmann, K. Schild: Self-Organizing Manufacturing Control: An
Industrial Application of Agent Technology, Proceedings 4th International
Conference on Multi-agent Systems (ICMAS' 2000), Boston, MA, USA,
2000, pp.87-94.

[18] R. W. Brennan, M. Fletcher, D. H. Norrie, An agent-based approach to
reconfiguration of real-time distributed control systems, IEEE Transactions
on Robotics and Automation, Vol.18, Iss.4, 2002 Pages: 444- 451

[19] A.J.N. van Breemen. Water vessels under control, January 1996. Practical
assignment report, University of Amsterdam, Intelligent Autonomous
Systems

[20] A.J.N. van Breemen, T.J.A. de Vries. Design and implementation of a
room thermostat using an agent-based approach. Control Engineering
Practice, 9(3):233-248, 2001.

[21] A.J.N. van Breemen, T.J.A. de Vries. An agent-based framework for
designing multi-controller systems. Proc. Of the Fifth International
Conference on The Practical Applications of Intelligent Agents and Multi-
Agent Technology, pages 219-235, 2000.

[22] A.J.N. van Breemen, T.J.A. de Vries, J.B. Striper. An agent-based
framework for local model approaches. 16th IMACS World Congress 2000
on Scientific Computation, Applied Mathematics and Simulation, EPFL,
August 2000.

[23] A.J.N. van Breemen. An Agent-Based Multi-Controller Systems, A design
framework for complex control problems. PhD thesis, University of Twente,
Enschede, The Netherlands, 2001.

[24] J. van Amerongen, H.J.Coelingh and T.J.A. de Vries. Computer support
for mechatronic control system design, Robotics and Autonomous Systems,
vol. 30, nr. 3, pp. 249 - 260, PII: SO921-8890(99)00090-1, 2000.

[25] http://www.mathworks.com/, The MathWorks Consulting Services,
Matlab/Simulink

[26] http://www.dspace.de, dSpace

104

http://www.rt.el.utwente.nl/agent/
http://www.mathworks.com/
http://www.dspace.de/

Appendix F: Multi-Agent Controller System for DemoLinUML

105

[27] Masanobu Koga, MaTX/RtMaTX: A Freeware for Integrated CACSD,
Proc. of CACSD'99, Kohala Coast-Island, Hawai'i, U.S.A., pp.451-456
(1999)

[28] http://www.ni.com/, National Instruments, LabView

[29] http://20sim.com, Controllab Products B.V., 20-Sim

[30] http://www.informatik.hu-berlin.de/top/pnml/ Petri Nets Markup
Language, Standardization of XML based interchangeable format for Petri
Nets.

[31] G. Frey, M. Minas. Internet-based development of logic controllers using
signal interpreted Petri nets and IEC 61131. In Proc. 5th World Multi-
Conference on Systemics, Cybernetics and Informatics (SCI 2001), Orlando
(FL) USA, volume 3, pages 297-302, July 2001.

[32] http://www.holobloc.com/ HOLOBLOC, Function Block Based, Holonic
Systems Technology

[33] http://xml.apache.org/xerces2-j/index.html, Xerces 2 Java Parser

[34] http://www.w3.org/XML/Schema, W3C (World Wide Web consortium)
XML Schema

[35] http://www.w3.org/TR/2000/REC-xml-20001006, Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October
2000

[36] http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/ XML Schema
Part 0: Primer, W3C Recommendation, 2 May 2001

[37] http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/ XML Schema
Part 1: Structures, W3C Recommendation, 2 May 2001

[38] http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/ XML Schema
Part 2: Data types, W3C Recommendation, 2 May 2001

[39] http://www.xmlspy.com/products_ide.html/ XMLSpy 5

[40] C. S. Horstmann, Practical object-oriented development in C++ and Java,
Wiley Computer Publications, 1997, ISBN: 0-471-14767-2 (pbk)

[41] B. P. Douglass, Doing hard time: developing real-time systems with UML,
objects, frameworks, and patterns, Addison-Wesley, 1999, ISBN: 0-201-
49837-5

[42] H.M. Deitel, XML: how to program, Prentice Hall, 2001, ISBN: 0-13-
028417-3

[43] C, Hughes, T. Hughes, Mastering the standard C++ classes: an essential
reference, Wiley computer publications,. 1999, ISBN: 0-471-32893-6
(pbk./CD-ROM)

[44] http://java.sun.com/j2se/1.4.1/docs/api/, JavaTM 2 Platform, Standard
Edition, v 1.4.1, API Specification, JavaTM Technology

[45] http://msdn.microsoft.com/library/default.asp, MSDN Library, Microsoft
Corporation

http://www.ni.com/
http://20sim.com/
http://www.informatik.hu-berlin.de/top/pnml/
http://www.holobloc.com/
http://xml.apache.org/xerces2-j/index.html
http://www.w3.org/XML/Schema
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.xmlspy.com/products_ide.html/
http://java.sun.com/j2se/1.4.1/docs/api/
http://msdn.microsoft.com/library/default.asp

Integrated Design and Implementation Tool for Multi-Agent Controllers [IDITmac]

[46] H.J Coelingh, Design Support for Motion Control Systems: a Mechatronic
Approach, Ph.D. Thesis, University of Twente, Enschede, The Netherlands.
2000

[47] http://www.w3schools.com/, W3CSchools Online Web Tutorial,
W3CSchools.com

106

http://www.w3schools.com/

	Introduction
	Modern Control Solutions
	Integrated Design and Implementation Tool
	Multi Agent Controller
	Goals of the project
	IDITmac
	Outline of this thesis

	Background of the Project
	Introduction
	Overview of Methodologies for Controllers
	Control Architecture
	Agents Based Software Development
	Code generation
	Controller specification

	Integrated Approach for Controllers
	Competent Specification of Multi Agent Controller
	Support for Design of Multi Agent Controller
	Integrated Implementation of Multi Agent Controller

	Conclusion

	Multi Agent Controller System Architecture
	Introduction
	Agent
	Multi Agent Controller System
	Overview of Multi-Agent Controller Implementation Framework (MACIF)

	Architecture of Multi Agent Controller System
	Agent
	Sensor Agent
	Actuator Agent
	Controller Agent
	Elementary Agent
	Composite Agent
	Coordination Object
	Main Agent

	Conclusion

	Specification of Multi Agent Controller System
	Introduction
	Multi-Agent Controller Specification Language
	Multi-Agent Controller Specification Markup Language (MacsML)
	XML Schema for MacsML
	Basic Structure of MacsML
	Input Ports and Output Ports
	Parameters Definitions and States
	Method Specification
	Controller Agents within Composite or Main Agent
	Coordination within Composite or Main Agent
	Connections within Composite or Main Agents
	Including Header Files
	Instances of C++ Classes

	Conclusion

	Design and Implementation of Multi-Agent Controller Systems
	Introduction
	Operating Principle of Multi Agent Controller Systems
	Multi-Agent Controller Systems and the Environment
	Main Agent
	Sensor Agent
	Actuator Agent
	Coordination Object
	Composite Agent
	Elementary Agent
	Realization of Multi-Agent Control Systems

	Keywords
	Ports, Parameters and State Variables types
	Sensor and Actuator types for 20-Sim
	Operating State of Elementary Agents
	Keywords of Coordination Objects

	Design of Multi-Agent Controller Systems with �20-Sim
	Implementation of Multi-Agent Controller Systems with 20-Works
	Conclusion

	Case Study
	Introduction
	Demonstration Setup (DemoLin)
	Control Problem
	Control Strategy
	Sensor and Actuator Agents
	Motions of DemoLin
	Calibrating motion
	Homing Motion
	Demo Motion

	PID-Controller and Safety

	Simulation Result
	Model of DemoLin

	Implementation Result
	Conclusion

	Conclusion and Recommendation
	Conclusion
	
	Structured and competent specification of Multi-Agent Controller Systems
	Platform Independent Implementation of Multi-Agent Controller Systems
	Fully functional tool for Integrated Design and Implementation
	Demonstration of Multi-Agent Controller Systems

	Recommendation

