

Recognition of Structures
in Numerical Data

International Master Student in Mechatronics:

Dimitrios Iakovou

MSc. Thesis

 Supervisors: Prof. Dr. Ariën J. van der Wal
 Prof. Dr.Ir. Job van Amerongen
 Ir. Mark Verwoerd

 Report No: 003CE2003
 March 2003

Control Engineering Laboratory
Electrical Engineering Department

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Acknowledgements

Working on this project was similar to trying to navigate a ship on an open sea. There
are so many directions to take and places to explore. Only with the support of your
fellows and your personal work its possible to finally reach your destination. Now, after
having completed this project’s work, I can look back and see that with all its
difficulties, it was a very educating and enjoyable “journey”.

Acknowledging the people who help me get this far, I want to thank my parents and
brothers, for their ‘multilevel’ support and for their love. I would also like to thank Prof.
Dr. Ariën J. van der Wal for finding this project for me, for being an inspiring
supervisor and instructor (though sometimes too confident about my abilities). I also
want to thank Prof. Dr. Ir. Job van Amerongen, as if not for him, I might not have the
chance to do my Master studies in the University of Twente. But mostly, I want to thank
Prof. van Amerongen for being there for all of the students, and for providing a warm,
family like atmosphere together with the rest of the members of the Control Group.
Finally, I would like to thank all of my friends for being there for me when I needed
them, and for helping me to develop a taste for beer and frikandel.

Abstract

In control engineering, system identification is of the utmost importance for determining
the correct control parameters for a plant. In the present research we investigate the
structures present in numerical plant data and derive symbolic expressions that
correspond to these structures. Therefore, this research can also be applied to the inverse
problem. For the development of such a recognition system, we will make use of the
morphogenetic neuron. Like classical neuron networks, the Morphogenetic neurons are
capable in recognizing, but in a higher level of abstraction. The Morphogenetic neurons
are able to encode abstract, symbolic expressions that characterize the relations between
the inputs and outputs of a system.

Generally, in most measured data, there are (hidden) underlying relations (correlations,
invariants, rules). Our approach is to automatically recognize these underlying
structures by observing the dimensionality of the basis that is required for representation
of the data. The basis is approximated by a morphogenetic neuron. The basic problem is
the selection of the number and the type of the variables that will participate in the basis
functions. Additionally, it is desired not to make any a-priori assumptions on the
properties of the numerical data and let the Morphogenetic neuron derive to a solution
unaided.

Within this project, the research has been limited to 2-dimensional space for
computational reasons, but this technique is generally applicable to n-dimensional
space.

Recognition of Structures in Numerical Data Contents

Dimitrios Iakovou 1

Contents

1) INTRODUCTION

3

2) THEORETICAL BACKGROUND
 2.1) Introduction
 2.2) The Morphogenetic Neuron
 2.3) Mathematical Background of Morphogenetic Neuron
 2.4) Fuzzy Logic

5
5
5
6
7

3) DESIGN OF EVALUATOR
 3.1) Introduction
 3.2) Evaluator Definition
 3.3) Evaluator Design
 a) Local Level operations
 b) Global Level operations
 3.4) Fuzzy Logic Estimator Design

11
11
11
12
13
15
16

4) SIMULATION ENVIRONMENT
 4.1) Introduction
 4.2) Simulation Platform
 a) Selection of variables.
 b) Multinomial Power –Basis Functions Construction
 c) Data Importing
 d) Construction of Initial I/O Matrix-Vector
 e) Training and Structure Recognition
 f) Fitting Optimization
 g) Fitting Evaluation
 e) Importing Noise
 4.3) Graphical User Interface

21
21
22
22
22
23
24
24
25
26
27
27

5) TESTS & RESULTS
 5.1) Introduction
 5.2) Simple Numerical Example of Circle Recognition
 5.3) Structure Recognition Tests
 a) Eight Curve
 b) Eight Curve with noise
 c) Difolium Curve Autonomous procedure
 5.4) Noise and Data Population Influence

31
31
31
34
34
38
41
43

6) DISCUSSION & RECOMMENDATIONS
 6.1) Introduction
 6.2) Discussion
 6.3) Recommendations

49
49
49
50

7) CONCLUSIONS

51

8) REFERENCES 53

Recognition of Structures in Numerical Data Contents

Dimitrios Iakovou 2

APPENDIX A – Various Other Recognition Tests

55

APPENDIX B – Graphic User Interface Manual

61

APPENDIX C – Running the Platform in MatLab

67

Recognition of Structures in Numerical Data Introduction

Dimitrios Iakovou 3

1
Introduction

The first step towards designing a controller for a process or a system is the
development of an efficient system model. There are times when these models can be
constructed by having knowledge of the dynamics of the elements that exist on the real
system. But what happens when this knowledge is unknown and we need to treat the
system as a black box? At these cases system identification techniques are the ones that
help us develop an approximate model of the system, using input and output sampled
numerical data.

There are numerous methods to perform system identification on a given “black box”
(Parameterization, Model reduction, etc). This project sets the basis for the development
of such an identification technique using the “Morphogenetic Neuron” of G. Resconi
and A. J. van der Wal [1]. At this first step, the morphogenetic neuron is used to
recognize structures hidden in numerical data and derive a symbolic (multinomial)
expression of those structures (Fig.1.1).

Fig.1.1: Functionality of the Morphogenetic Neuron

Every plant, system, process can be simply thought of as an equation that relates the
numerical values of the input(s) to the ones of the output(s). This relating information
exists hidden in the input/output numerical data. The use of the morphogenetic neuron
aims to the automatic recognition of those underlying (hidden) relations in the
numerical data. The efficiency of the recognition of the morphogenetic neuron depends
on the number of participating variables, the maximum multinomial power, the number
and type of the participating basis functions.

To evaluate the performance of the morphogenetic neuron and the quality of the
recognition algorithm several tests were performed. In this first approach the test were
performed on data belonging to known multinomial curves (circle, ellipse, difolium,
trifolium, etc). These tests were constricted in two dimensions, for computational
reasons, but this technique is without restriction applicable to n-dimensional space.
Further tests were performed on the same curves but with the addition of noise into the
numerical data values, to evaluate the influence of noise in the recognition process.

Recognition of Structures in Numerical Data Introduction

Dimitrios Iakovou 4

An autonomous evaluator based on statistic and soft computing means was also
implemented to estimate the goodness of the fit to the data and choose the best
multinomial fitting curve. This evaluator also performs some optimization operations
and is able to manipulate and control the parameters of the algorithm using the
Morphogenetic neuron.

Finally, a platform was developed to provide the user with the ability to manually
control and set the recognition parameters and observe the whole process. All of the
parts of this project were implemented and developed using MatLab development tool
and its toolboxes.

Recognition of Structures in Numerical Data Theoretical Background

Dimitrios Iakovou 5

2
Theoretical

Background

2.1) Introduction

Within this chapter a more extensive description of the morphogenetic neuron as well as
its structural elements will be given. Additionally, a reference on the mathematics
background of the morphogenetic neuron, its dependencies and the parameters that
govern its behavior will be made. Finally, a description of the Fuzzy Logic inference
mechanism and background will be given.

2.2) The Morphogenetic Neuron

The morphogenetic neuron that was developed by A.J. van der Wal and G. Resconi [1]
is in principle a neural network model, since the output is basically the weighted sum of
the inputs. Still, there are fundamental differences between the morphogenetic neuron
and the classical neuron of McCulloch and Pitts. The learning process, unlike the classic
neuron, does not happen iteratively but it is a one step process leading to the final
contributing input weights. The most important difference is that the morphogenetic
neuron has the ability to produce abstract relations between the inputs and the outputs
and exceed the “black box” capabilities of the classical neuron. The morphogenetic
neuron is designed, based upon recent studies from neurobiology, to perform similar
activities to the human brain for learning, recognition and identification of underlying
structures in data (vision, sound, etc). From this point on, for more convenience, the
“morphogenetic neuron” will be referred as “neuron” in the body of this document,
unless any other distinctions are clearly made.

The neuron consists of four parts (Fig.2.1): the basis functions, the training data, the
basis functions’ weights and the output (recognized structure). The most important
element of the neuron is the basis functions, and the correct choice of the basis functions
is very crucial for achieving efficient results.

Recognition of Structures in Numerical Data Theoretical Background

Dimitrios Iakovou 6

Fig.2.1: The Morphogenetic Neuron

The basis functions play two roles in the neuron. They are used by the training data to
derive the basis weight values, and they are also combined with those weight values to
produce the final mathematical representation of the recognized structure in the data.

Within this work, the neuron was used to recognize structures (of the multinomial form)
in data existing in a two dimensional orthogonal coordinate system. Therefore the result
of the neuron will always be a multinomial function, where each of the basis functions
will be an element of the multinomial.

2.3) Mathematical background of the Morphogenetic Neuron

The neuron actually performs a multinomial fit on the training data. In general, every
multinomial function can be described by the following equation (Eq.2.3.1) where ψ are
the basic elements (variables or relation among variables, e.g. x2, y2z6, etc) of the
function and w are the weights (coefficients) of those basic elements. These basic
elements will be referred to as “basis functions”.

∑
=

=
n

j
jjwf

1
ψ Eq.2.3.1

If we have a number of sets of input and output numerical data samples of the same
system, then for each of the input/output numerical data group, a multinomial equation
of the type of Eq.2.3.1 can be formed. Since the data sample sets belong to the same
system, they must all satisfy the same multinomial equation, when the correct basis
function weights are applied. Still, the number and form of the basis functions that take
part in the multinomial is unknown. Therefore an initial estimate of the possible
elements ψ and their numerical value according the data sample sets must be made. In
matrix form, Eq.2.3.1 can be rewritten in the form of Eq.2.3.2, where ‘m’ is the number
of the basis functions and ‘n’ is the number of the numerical data. Each column of the

Recognition of Structures in Numerical Data Theoretical Background

Dimitrios Iakovou 7

DataMatrix contains the numerical value of the basis function for the corresponding
numerical data group.

11 * mxnxmnx WeightsDataMatrixf = Eq.2.3.2

The rest or the approach is based on solving Eq.2.3.2 towards finding the vector
Weights. There is need to isolate the weights vector in order to be able to calculate its
value. For this reason both parts of the equation are multiplied with the transposed
DataMatrix (Eq.2.3.3).

11 *** mxnxm
T

nx
T WeightsDataMatrixDataMatrixfDataMatrix = Eq.2.3.3

This will result to the G matrix, which contains all the information of the data and is
rectangular. It is also identical to the least squares matrix as it contains all the squared
elements across it main diagonal. Also the result of the transposed DataMatrix and the
output vector is replaced by the b matrix (Eq.2.3.4).

11 *__ mxmxmmx WeightsMatrixGMatrixb = Eq.2.3.4

Since the G matrix is rectangular, its inverse matrix can be calculated as long as it can
be defined (determinant is nonzero). If the G matrix is invertible then both sides can be
multiplied with it resulting with the values for the weights of the basis functions
(Eq.2.3.5).

1

1
1 _*_ mxmx MatrixbMatrixGWeights −= Eq.2.3.5

Having obtained the basis functions weights, the multinomial can be reconstructed. The
resulting multinomial is the best possible fit according the freedom that is given to the
neuron. It is obvious that the performance of the neuron depends directly to the
selection and number of the basis functions. Therefore an evaluation mechanism is
required to estimate the quality of the fitting and the possible need of change of the
neuron’s parameters.

2.4) Fuzzy Logic

As it was mentioned in paragraph 2.3, the efficiency of the neuron in recognizing a
structure depends on the correct selection of the participation basis functions. Therefore
it is important that the generated multinomial is tested and evaluated for its ability to fit
to the numerical data.

When the numerical data are indefinitely accurate, there are several mathematical
procedures, such as Chi-square, that can help identify the best fit. In reality, noise or
errors are always present in numerical data, making the use of some kind of selection
mechanism a necessity. For this reason Fuzzy Logic was selected to be used to aid the
evaluation mechanism in identifying the best fit.

Recognition of Structures in Numerical Data Theoretical Background

Dimitrios Iakovou 8

The task of recognizing a good multinomial fit is very complex. Even among people,
what seems to be a good result for some is not for others according their requirements
and experience. Fuzzy controllers make use of experience models. The description of
the decision rules is not an explicit formula, but it is expressed in linguistic form. The
basic problem in the design of a fuzzy logic evaluator is the representation of such an
experience model in a concise and computational treatable way.

In general, there must be a mechanism that is able to translate the several parameters of
the recognized multinomial to fuzzy concepts (fuzzification). There must also be a
mechanism to make the fuzzy decisions according the controlling knowledge as stored
in linguistic rules (Inference). Finally, there must be a mechanism that translates the
fuzzy output commands (decisions) into values which will determine the quality of the
multinomial fit (defuzzification).

Fuzzy variables are characterized as “Membership Functions” (MFs). They may
partially overlap with each other and associate numerical values with linguistic values
via a weight. The same procedure applies to the fuzzy outputs. The inference
mechanism contains a Rule Base that makes decisions (activates output Membership
Functions) according to the fuzzy inputs (enabled input Membership Functions). They
are of the following form:

If InputX is MF1 and InputY is MF2 then OutputZ is MF3

The first step is to determine which fuzzy rules have been enabled according the
participating input membership functions. The activation is represented in Eq.2.4.1,
where “Rj” is the rule number “j” and “σj” is the function that determines whether the
rule has been activated according to the “InputX” and “InputY” (or any other inputs that
may exist).

()InputYInputXR j
j ,:σ Eq.2.4.1

Then we have to calculate the weight for the output membership function(s) for each of
the activated rules (for this example the weight of MF3 of OutputZ). This can be
implemented with Eq.2.4.2.

() () ()()InputYInputXInputYInputXR MFMFj
j

21 ,min,: µµσ = Eq.2.4.2

The final weight that will be applied to the activated membership function of the fuzzy
output is determined by Eq.2.4.3. There, the maximum “ξMF3” of all the output weights
calculated with Eq.2.4.2, which correspond to the specific output membership function
is determined.

()ALLMF σξ max3 = Eq.2.4.3

The final step is to defuzzify the output function to produce a numerical value. There
are several methods to implement these steps; the most common way though is to
determine the final value with a simple calculation of the center of gravity of the surface
below the final output membership function, Eq.2.4.4.

Recognition of Structures in Numerical Data Theoretical Background

Dimitrios Iakovou 9

∑
∑

⋅⋅

=

⋅⋅

== MFsofNo

v
v

MFsofNo

v
vv

COA

InputYInputX

InputYInputX
y #

1

#

1

),(

),(

µ

µξ
)

 Eq.2.4.4

Recognition of Structures in Numerical Data Theoretical Background

Dimitrios Iakovou 10

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 11

3
Design of

Evaluator

3.1) Introduction

The morphogenetic neuron’s performance depends on the freedom (parameters) that it
is given when fitting a multinomial to the numerical data. Thus, the neuron performs the
best possible fit regardless if the final outcome is actually over fitting or under fitting.
Therefore an evaluation mechanism was necessary in order to determine the quality of
the outcome of the recognition procedure and alter the neuron’s parameters if necessary
(Fig.3.1).

Fig.3.1: Evaluating Mechanism

In this chapter the implementation of such an evaluating operator will be presented. The
Evaluator is based on soft-computing and statistic methods.

3.2) Evaluator Definition

The aim of the evaluator is to determine the quality of the fit. Still, even though the
concept of evaluating a multinomial fit sounds trivial, in reality, the task of determining
the quality of a data fit is complex and laborious. Several decisions have to be made in
order to specify the requirements of a good fit. A simple example is displayed in the
following figures (Fig.3.2.a & Fig.3.2.b)

Morphogenetic Neuron

EVALUATION
OPTIMIZATION

MECHANISM

RECOGNIZED
MULTINOMIAL

f(x,y,…n)

B
A
S
I
S

F
U
N
C
T
I
O
N
S

D
A
T
A

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 12

a) Low Order Curve Fit b) High Order Curve Fit

Fig.3.2: Multinomial Fitting Examples

As it is shown in Fig.3.2.a a least square low order curve is fitted to the data, whereas at
Fig.3.2.b a higher power multinomial is used. According to one’s needs, the concept of
“good fitting” finds new interpretations. Therefore, within this work a definition of the
required “good fit” had to be given before the design of the evaluator can take place.
Within this work, a good fit was defined as the multinomial result of the morphogenetic
neuron that meets the following criteria (prioritized):

i) has the lowest multinomial power
ii) makes use of the fewest basis functions
iii) has minimum mean value of the distances of the data points to the

recognized curve

Still there is one exception to these rules, in case the fit of a higher power uses
significantly less basis functions than the one of a lower power. Only in this case the
fitting of a higher power will be characterized as a better fit.

3.3) Evaluator Design

The evaluating mechanism performs a number or operations on the outcome of the
morphogenetic neuron. The evaluation and the optimization of the neuron’s
performance are implemented in a number of iterative steps and are separated to “Local
Level” and “Global Level” operations (Fig.3.3).

Fig.3.3: Evaluator Flow Diagram

As “Local Level” operations are defined the optimization operations that take place on
the same multinomial power recognition iterations. The “Global Level” operations are

Recognition
Procedures

Local
Operations

Global
Operations

Increase Multinomial Power

Ready
?

Ready
?

End Operation

Yes

Yes No

No

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 13

the ones that aim to distinguish the best multinomial fit among the resulting
multinomials of different powers.

a) Local Level operations

At the local level, two are the main operations for evaluation and optimization. These
steps are the elimination of the basis functions that contribute insignificantly to the
recognized structure, and the calculation of the mean value of the data point-to-curve
distances (Fig.3.4).

Fig.3.4: Flow Diagram of Optimization on Local Level

Recognition
Procedures

Select Multinomial with
least Basis Functions and
minimum Distance mean

value

End Operation

Yes

Yes

No

No

Data-to-Curve
Mean Distance

Evaluation

All Basis
Used?

Store in Array
-Mean Value
- Weights
- Recognized Multinomial

Remove small
weighted Basis

Functions

Basis Functions
No# Reduced?

Change Output Basis
Function (to repeat

Recognition)

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 14

As it can be seen in the flow diagram of Fig.3.4 there is a “buffer” array where all the
recognized multinomial are stored until the final selection, on local level is made. There
is a loop where the insignificant basis functions are eliminated and forces new
recognition process with the updated (fewer) basis functions.

The elimination of less contributing basis function occurs in every iteration step in local
level. The elimination is based on the value of the corresponding weights of each of the
basis function. It was determined experimentally that the basis functions with weights
less than the 1/1000 of the maximum weight value can be deleted from the recognized
multinomial, improving its performance. It must be taken into consideration that this
value was derived from experiments with multinomial curves with relatively small
coefficients (up to value of 20). For multinomials with higher coefficients a smaller
elimination threshold should be applied (less than 1/1000).

Another operation on the local level is the brute evaluation of the fit. The first step is to
determine the minimum distance from each of the data points from the recognized
curve. For this reason the coordinates of points belonging to the recognized curve are
required. These points must be at least of the same number as the data points that were
used for the recognition, and they should be equidistantly distributed on the recognized
curve. Then the distance between each of the data points and the points on the curve, is
calculated (DistanceDATA-CURVE =sqrt[(XDATA - XCURVE)2+(YDATA - YCURVE) 2]). For each
of the data points, the minimum calculated value is the one that will be used to describe
the distance of the point to the curve (Fig.3.5).

a) b)

Fig.3.5: Distance Data point to Curve. In ‘b’ has more points on the recognized curve
than ‘a’, and therefore the estimations of the minimum distances are more precise.

It can be easily understood from Fig.3.5 (a, b), that the selection of the points on the
recognized curve plays a significant role for the more precise evaluations of the
minimum distances (point “d2” in Fig.3.5.b is close to the actual value of the minimum
distance). After determining all the minimum distances, a mean value operator is used
to all the calculated minimum distances to evaluate the mean deviation of the data
points from the recognized curve.

A secondary operation that takes place at local level is the experimentation on output
basis functions. For the recognition procedure, there is need to define a basis function as
an output. The selection of the output function is initially arbitrary. Still, after all
optimization steps have been made and the best mean distance value has been

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 15

determined, all remaining basis functions (one by one) are used as output functions to
investigate possible further improvement of the neuron’s results.

When all possible optimizations have occurred and all possible structures have been
recognized, the best one needs to be determined among them. All the recognized
structures are stored in the “buffer” array. At this point, first the multinomials with the
fewer participating basis functions are selected. From this final selection, the
multinomial with the smallest point-to-curve distance mean is the one that will be
selected to be passed on to the Global level (best local fit).

b) Global Level operations

This is the level where the final decision making and evaluation takes place. This level
is also responsible for increasing the allowed multinomial power of the basis functions.
Another array is used in global level to house the best multinomial fits of each of the
local level results.

Fig.3.6: Flow Diagram of Multinomial Selection in Global Level

The fuzzy estimator compares the results of two subsequent results, one of a smaller
power and one of a higher. Therefore the global array has to have at least two entries in
order for the fuzzy estimator to be operative (Fig.3.6). On each global loop where the

Recognition Procedures
Local Operations

End Operation

Yes

Yes

No

No

Lower order
Multinomial better
than higher one??

Store in Array
- Best of local multinomial fits

Do Fuzzy
Estimation

Array longer
than 2 rows?

Increase allowed
multinomial power

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 16

fuzzy estimator is active, only the most recent entries are used for the evaluation. If the
estimator finds the higher power multinomial as the better fit, then the allowed
multinomial power is increased and further recognition is allowed. If the estimator’s
result is that the lower power fit is better, then the process stops, and the lower power
multinomial is the final result of the platform.

3.4) Fuzzy Logic Estimator Design

The estimation rules for the determination of the goodness of a fit depend completely on
the process to be recognized and the requirements and understanding of the user. As
was presented in Fig.3.2, different multinomial fits can each be selected as the best fit,
under certain circumstances. The Fuzzy estimator was used to accommodate two
competing effects and the subjectivity present in the definition of a good data fit. For the
development of the estimator, the rules that were follower are the ones are also
displayed in paragraph 3.2. Therefore, the best fit:

a) has the lowest multinomial power
b) makes use of the fewest basis functions
c) has the minimum mean value of the distances of the data points to the recognized
curve

As it was mentioned in paragraph 3.3, the estimator must compare the outcomes of two
successive multinomial power recognitions and decide which satisfies better the above
rules. The first step for the design of the fuzzy estimator is to identify the number and
type of inputs and outputs that are required for the process.

To comply with the desired rules, there must be an input responsible for the number of
the basis functions, and an input for the values of the data-to-curve distance means. Also
the information about the power of the multinomial must also be imported in the
estimator. The comparative nature of the estimator allows the incorporation of
knowledge of rule ‘a’, for the definition of the inputs necessary to describe rules ‘b’ and
‘c’. The comparison is implemented between two successive multinomials, which
requires the existence of a lower and a higher power multinomial. This information can
be used to define comparison values for the fuzzy estimator. For example the following
equation:

LowHigh NoFunctionBasisNoFunctionBasisrenceBasisDiffe ____ −= Eq.3.4.1

The numerical value of ‘BasisDifference’ carries the value of the difference of the
number of basis functions that are used for the recognition between two successive
multinomials. Since, the order of the subtraction is known, the sign (-, +) of the ‘Result’
value carries also information on which basis function no is bigger (‘-’ = Low power
multinomial number bigger, ‘+’ = High power multinomial number bigger). A similar
operator can be used to define the comparison between the data-to-curve mean values.

The first input of the controller is the “MeanRatio”, which represents the ratio of the
mean values of the data-to-curve distances of two successive recognized multinomials.
The mean ratio is given by the following equation

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 17

ValueMeanPolynomialPowerLower
ValueMeanPolynomialPowerHigherMeanRatio

= Eq.3.4.2

It can also be seen in Eq.3.4.2 that the information about the order of the recognized
multinomials can also be derived by the final numerical value of “MeanRatio’
(‘MeanRatio<1’ = Lower Power Multinomial Mean Value is bigger, ‘MeanRatio>1’ =
Lower Power Multinomial Mean Value is smaller).

The input “MeanRatio” consists of the following five membership functions as
displayed in Fig.3.7:

- VeryGood: When the higher power recognized multinomial has a significantly

smaller point-to-curve distance mean value than the one of the lower power
recognized multinomial [0 0.34].

- Good: When the higher power recognized multinomial has smaller point-to-curve
distance mean value than the one of the lower power recognized multinomial [0.2
1].

- Equal: When the higher power recognized multinomial and the lower power
recognized multinomial have approximately the same point-to-curve distance mean
value [0.85 1.15].

- Bad: When the higher power recognized multinomial has a larger point-to-curve
distance mean value than the one of the lower power recognized multinomial [1 3].

- VeryBad: When the higher power recognized multinomial has a significantly larger
point-to-curve distance mean value than the one of the lower power recognized
multinomial [2 +inf].

Fig.3.7: ‘MeanRatio’ Input of Fuzzy Controller Estimator

Then second estimator input is the “BasisDifference”, which represents the difference of
the number of basis functions that are used in the two successive multinomials
(Eq.3.4.1.

The input “BasisDifference” also consists of five membership functions as displayed in
Fig.3.8:

- LowBasisLotBigger: When the number of basis functions used in the lower power

recognized multinomial is a lot larger than the number of the basis functions used in
the higher one [-inf –4].

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 18

- LowBasisBigger: When the number of basis functions used in the lower power
recognized multinomial is larger than the number of the basis functions used in the
higher one [-6 -0].

- Zero: When the number of basis functions used in the lower power recognized
multinomial is the same as the basis function number used in the higher one [-0.5
0.5].

- LowBasisSmaller: When the number of basis functions used in the lower power
recognized multinomial is smaller than the number of the basis functions used in the
higher one [0 6].

- LowBasisLotSmaller: When the number of basis functions used in the lower power
recognized multinomial is a lot smaller than the number of the basis functions used
in the higher one [4 +inf].

Fig.3.8: ‘BasisDifference’ Input of Fuzzy Controller Estimator

The estimator is called to make a decision on which of the multinomials is better fitting
the numerical data. As it was also mentioned in paragraph 3.3, if the lower power
recognized multinomial was found fittest then the process is terminated. It was decided
to combine the two requirements. Therefore, the “Evaluation” output of the consists of
three membership functions as displayed in Fig.3.9:

- Stop: When the lower power recognized multinomial is found more fit [-1 0].
- Undecided: When both recognized multinomials are found equal fitting [-0.2 0.2].
- Continue: When the higher power recognized multinomial is found more fit [0 1].

Fig.3.9: ‘Evaluation’ Output of Fuzzy Controller Estimator

The rules of inference for the estimation of the best fit depend on the rules initially set
from the recognition requirements (rules ‘a’, ‘b’ and ‘c’). In general, if the lower
recognized multinomial has lower point-to-curve distance mean value and makes use of

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 19

the same or less number of basis functions than the higher one, then the lower
recognized multinomial is the best candidate and vise versa. Taking this rule as a base,
the following set of fuzzy rules was determined (Table 3.1).

TABLE 3.1 (Fuzzy Rules)
 Mean Ratio

Basis Difference Very Good Good Equal Bad Very Bad
LowBasLotBigger Continue Continue Continue Continue Undecided

LowBasBigger Continue Continue Continue Undecided Stop
Zero Continue Continue Undecided Stop Stop

LowBasSmaller Continue Undecided Stop Stop Stop
LowBasLotSmaller Undecided Stop Stop Stop Stop

In the above table the relation between he output and the two inputs is displayed. The
corresponding surface of the above table is displayed in the following Fig.3.10. It can
easily be understood from the surface, that the behavior is non-linear.

Fig.3.10: Fuzzy estimator’s decision surface

Recognition of Structures in Numerical Data Design of Evaluator

Dimitrios Iakovou 20

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 21

4
Simulation

Environment

4.1) Introduction

For deriving the output weights (Eq.2.3.5) with the use of the neuron, it is necessary to
calculate the ‘b’ and ‘G’ matrices. Additionally, a display and evaluation of the neurons
results must take place in order to achieve further optimization. Therefore, a platform
(additional supporting algorithms) was necessary to provide the ability to produce these
‘b’ and ‘G’ matrices, and control and manipulate their parameters before they are
entered in the neuron.

This platform as well as the neuron’s algorithm was developed in MatLab using its GUI
toolbox. At this chapter, the functionality and the order of the steps required to use the
developed platform will be presented. More information about the GUI’s functionality
and controls is presented in Appendix B. The flow diagram of the functionality of the
platform is presented in the following Fig.4.1.

Declare Variables Set Maximum Power

Determine Basis Functions

Load Numerical Data

Assign Data to Variables

Insert Noise
in Data

Determine I/O Matrices

Recognize Structure

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 22

Fig.4.1: Flow Diagram of Morphogenetic Neuron’s Platform

The functionality of the elements (or groups of elements) of the flow diagram of Fig.4.1
is explained in the following paragraphs.

4.2) Simulation Platform

The simulation platform consists of a number of supporting algorithms of the neuron’s
main algorithm. These algorithms ensure the correct implementation of the recognition
process, evaluation and resetting of the initial parameters of the procedure. Most of the
support algorithms exist to provide the neuron with its basic elements (b, G matrices),
whereas the rest exist for optimization purposes.

a) Selection of variables.

This is the initial part of the platform where declaration of the names and number of the
participating variables takes place. These are the variables that will be used to construct
the recognized multinomial. The number of the variables used depends on the number
of numerical data sets that are used for the recognition of the structure. Within in this
project the majority of structures to be recognized are two-dimensional, and therefore
only two variables are used. The name of the variables can be anything, but for easiness
the “x” and “y” symbols are used in the tests of chapter 5.

b) Multinomial Power –Basis Functions Construction

The power of the multinomial is the maximum power that the basis functions of the
recognized multinomial are allowed to have. Therefore, the value of the maximum
power is also responsible for the form and number of the basis functions. For example,
assume it is allowed to have a maximum power of “3” and there are two variables (x, y)
participating in the construction of the basis functions. Then the resulting basis
functions to meet this criteria would be: 1, x, y, xy, x2, y2, xy2,x2y, x3, y3. From the
example it can be easily be understood that the higher the allowed power is, the more
the initial participating basis functions that can be constructed.

Evaluate

Eliminate Small
Basis Functions ? Change Maximum

Multinomial

Terminate

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 23

The algorithm first computes all the possible combinations among the number of the
variables up to the maximum allowed power and stores them in a matrix. The formula
that computes the maximum number of combinations is displayed in Eq.4.2.1.

1__)1(*__ −+= VariablesOfNoPowerPowernsCombinatioOfNumber Eq.4.2.1

For instance, for the example of the ‘2’ variables with a maximum allowed power of
‘3’, the algorithm would produce twelve combinations (Fig.4.2.a), from which only nine
are valid and selected (Fig.4.2.b). Each column of Fig.4.2 corresponds to one of the
variables and each of the rows is the possible combinations of the variables with respect
to the maximum allowed power (Fig.4.2.c).

⇒













































03
32
22
12
02
31
21
11
01
30
20
10

 ⇒



































03
12
02
21
11
01
30
20
10



































⇒



































3

2

2

2

3

2

03

12

02

21

11

01

3

2

1

x
yx

x
xy
xy
x
y
y
y

yx
yx
yx
yx
yx
yx
yx
yx
yx

o

o

o

a b c
Fig.4.2: Power combinations for Basis Function construction

As it can be seen in the final constructed basis functions there is no constant number
basis function present. Therefore special care must be taken in order to add a constant
number to participate in the recognition of the structure. This step is necessary to
compensate for any possible need for a constant (variable less) element in the
recognized multinomial. The constant value that is added by the platform is the number
‘1’, but it can be any other constant value.

c) Data Importing

This part is where the numerical data are inserted into the neuron. The data are stored
into columns, one for each of the participating variables. These columns must exist in a
text file, separating the columns with any separating character (space, tab). Special care
must be taken about the order that the participating variables are declared, as their order
will determine the column with numerical data that they will be linked to. This means
that the first declared variable will be linked with the numerical data set of the first
column, the second variable to the second column and so on.

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 24

As soon as the data has been imported, they are plotted on coordinate system on the
display. Since within this project the research is based on two-dimensional structures
the plot is restricted to two dimensions. It is easily understood that the number of
numerical data must be higher or equal to the number of selected basis functions to
avoid over fitting situations.

d) Construction of Initial I/O Matrix-Vector

At this phase, the construction of the training data matrix as well as the output vector
selection is performed. The first step in this procedure is to calculate the numerical
value of each of the basis functions. It has already been mentioned that various
combinations of the participating variables construct the basis functions. Since the
numerical value of those variables is already available form the “Data Importing” part,
it is easy to calculate the exact value of the basis function for each set of imported data.
Therefore, the training data matrix is constructed, which has a column containing the
numerical values of each of the basis functions Fig.4.3. The order that the basis
functions are used to construct the data matrix is not important, as long as the same
order is kept when reconstruction the recognized multinomial.























=

g
n

f
nnnnn

gf

gf

gf

gf

nxm

bababa

bababa
bababa
bababa
yxyxyx

DataMatrix

L

MOMMM

L

L

L

L

1
1
1
1
1
1

333333

222222

111111

Fig.4.3: Implementation of the data matrix

For the neuron’s algorithm to perform, an output vector is required. To select this output
vector, the optimum situation would be to have knowledge and select the basis function
that is most likely to participate on the final recognized structure. Unfortunately, from
the numerical data, no safe assumption can be made on which of the basis functions will
be participating in the final recognized structure. For this reason, an arbitrary initial
basis function selection is made (usually the first basis function of the combinations
list). This means that the final DataMatrix that is used in the neuron is similar to the one
of Fig.4.3, but without the column of the basis function that was chosen as an output.

The arbitrary choice of the output function also makes necessary the further refinement
of the recognized multinomial. The refinement of the multinomial is required in order to
eliminate any undesired basis functions that were forced to participate in the initial
multinomial, due to their use as an output.

e) Training and Structure Recognition

This is the step where the mathematical computations take place, as they are described
in paragraph 2.3. The resulting weights are coupled with their corresponding basis

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 25

functions (Fig.4.4) and used to construct the symbolic multinomial representation of the
recognized structure.

[]























⋅=

−

−

1

3

2

1

1321_

m

m

w

w
w
w

bfbfbfbfbfOutput
M

L

Fig.4.4: Coupling of the calculated weights with their corresponding basis functions.
Where “Output_bf” is the symbolic representation of the selected output basis function,
“bf” is the symbolic representation of the DataMatrix basis functions and “w” are the

numerical values of the calculated basis functions’ weights.

As it was mentioned at paragraph 4.2.d, for the correct construction of the resulting
multinomial, the order that the symbolic basis functions in Fig.4.4 must be the same as
the order that these basis functions were imported in the DataMatrix.

f) Fitting Optimization

In the initial recognition step of structures in the numerical data, the neuron is trying to
fit all the available basis functions. This means that all basis functions are assigned a
weight, even when this should not be the case (e.g. fitting a circle with a 3rd order
multinomial). These basis functions are usually easy to identify, as they are usually
being assigned respectively small weights and contribute slightly to the general
behavior of the recognized multinomial. An example of fitting optimization due to
elimination of undesired basis functions is displayed in Fig.4.5.

Fig.4.5: Improvement of recognition by basis function elimination

All of the basis functions are forced to be fitted in the initial recognition step, because
there are always errors introduced in the data, either from noise or rounding operations.

Another, optimization that could be applied on the recognized multinomial, is the
elimination of common variables. This is only applicable to multinomials that do not
contain a constant basis function, and can be rewritten in the form of:

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 26

Multinomial = Variable*Root_Of_Multinomial = 0

At these cases, when the recognized curve passes through the beginning of the
coordinate system, the neuron is incapable to distinguish the existence of additional
(zero point curves) in the recognized multinomial. Though the performance of the
recognized curve does not change, it is wise to extinguish any extra non-contributing
terms.

Another parameter that influences the performance of the neuron and has already been
mentioned several times is the selection of the output basis function. Even though after
a number of iterations the unused basis function will be eliminated, a selection of a basis
function as an output that is likely to take part in the final multinomial will lead to the
desired result faster. An example of how the selection of the output function influences
the initial result is displayed in the following Fig.4.6.

Fig.4.6: Improvement of recognition by output basis function selection. The crosses are

the numerical data points; the line is the detected multinomial.

In Fig.4.6, points that belong to the difolium curve are inserted in the neuron for
recognition. The difolium curve has no constant factor. Therefore if the neuron is forced
to use the constant factor by selecting it as an output basis function, then the result will
be the one on the left of Fig.4.6. But if a non constant basis function is selected as
output, then the resulting multinomial resembles the one presented on the right of
Fig.4.6.

g) Fitting Evaluation

Since no a-priori knowledge is available about the power that would efficiently fit all
the numerical data, a mechanism must be developed to develop and evaluate several
multinomials of different powers and choose the best one.

The mechanism is starts the fitting from the smallest possible power. The lower
multinomial power curves that can be recognized are of the 2nd order (no reason to use
this method to fit a line into data). An evaluation mechanism is present and with the aid
of a fuzzy logic estimator, a decision is make on whether the recognition procedure

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 27

should continue or terminated. If the procedure is continued, the allowed order of
multinomial to be recognized is incremented by one and the recognition procedure is
repeated. If the procedure is terminated, then the best multinomial fit has occurred in the
previous lower order, and that recognized multinomial curve is the final result of the
recognition. The evaluation and estimation takes place according the procedures that
were discussed in chapter 3.

e) Importing Noise

In any process, the “clarity” of the data samples is of the play a significant role for the
correct estimation and control. Still, in real life situations, noise is always present in the
data samples. Therefore, it is important to evaluate the performance of the neuron with
data that contain noise. For this reason noise generators were developed to introduce
noise in the numerical data, according the demands of the user. The platform has the
ability to introduce Uniform noise to the numerical data, with respect to the desired
noise level.

To introduce uniform noise to the numerical data, an equal set of normally distributed
random numbers are generated. This set has ‘zero’ mean value, a variance of ‘one’ and
deviation of ‘one’.

Then this set is scaled to the desired noise value that can be imported by the user
through the platform. The formula for the generation of uniform noise is given by
Eq.4.2.2.





 <=

Else

nnNoise
,0

,
2
1

)(σ
σ Eq.4.2.2

4.3) Graphic User Interface

The different elements of the platform are used to develop the Graphic User Interface
(GUI) that is displayed in Fig.4.7. The GUI, like the rest of the algorithm/platform, is
constructed in MatLab using the GUI Development Toolbox. Each element of the
algorithm has been separated in the GUI by a frame and contains its own control
objects.

The GUI was developed to provide the ability for the user to interact with the whole
recognition process and alter its parameters, as well as to display the final recognition
products. The GUI and the recognition process have two modes, the Autonomous and
the Manual. Within both the Manual and Autonomous mode the GUI the user can:

a) Select and load the text file containing the Numerical Data of the structures that
is to be recognized. The list of files containing numerical data is displayed in a
list box.

b) Define the number and the name of the variables that will be used for the
construction of the basis functions.

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 28

c) Select the option of autonomous of manual recognition. In “Autonomous” mode
the fuzzy logic estimator is the one that alters and manipulates the parameters of
the morphogenetic neuron and makes decision for the best multinomial fit. In
“Manual” mode, the user is responsible for the control of the recognition
process.

d) Insert uniform noise in the numerical data. The user can apply noise on either or
both directions of the coordinate system. The user can also select the boundaries
of the generated noise values.

e) Inspect the position of the numerical values on plot, as well as the recognized
multinomial.

f) Zoom in and out in the plotted structures for inspection. Reset the plot and
export the plot image to a file.

Fig.4.7: Graphic User Interface

Within only the Manual mode the GUI the user can:

i) Select the maximum allowed multinomial power for the construction of the
basis functions.

ii) Manually, delete any undesired basis functions and define the basis function
that is to be used as an output.

iii) Display the weights of the used basis functions and decide which ones need
to be eliminated.

iv) At all times display the numerical values of the basis functions and of the
variables.

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 29

All intermediate and final results are displayed graphically in the axes (plot) object of
the GUI in a graphic form. The same results are presented in their symbolic form in the
“Detected Multinomial” frame. More extensive information on the parts and the use of
the GUI can be found in Appendix B.

Recognition of Structures in Numerical Data Simulation Environment

Dimitrios Iakovou 30

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 31

5
Tests & Results

5.1) Introduction

To estimate the performance of the neuron for the discovery of underlying structures in
numerical data, a number of tests were conducted. The numerical data that were used in
these tests are groups of points belonging to known curves (circle, ellipse, difolium,
trifolium, etc). The quality of the neuron’s results will be estimated according to its
curve fitting ability, even when there is an amount of noise (Uniform, Gaussian) in the
numerical data.

In the following paragraphs, a number of tests will be displayed as well as a small
numerical example to demonstrate the functionality of the neuron’s algorithm. For each
of the tests that are conducted, plots of the numerical data and the fitted curve are
displayed as well as the initial and recognized multinomial function. Additional tests,
and curve fittings are displayed in Appendix A.

5.2) Simple Numerical Example of Circle Recognition

For this simple numerical example a circle is used with a curve function of “x2+y2=1”.
A number of points belonging on this circle are selected to be use as the input training
data of the morphogenetic neuron. These data are displayed in Table 5.1 and presented
plotted in Fig.5.1. Let’s assume that we have the following data on an x-y orthogonal
coordinate system.

Fig.5.1: Numerical Data Plot

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 32

TABLE 5.1 (Numerical Data)

x 0.9511 0.8090 0.0 -0.9945 -0.8760 -0.2097 -0.1045 0.9135 0.9781 0.9945 1.000

y -0.3190 0.5878 1.0 -0.1045 -0.5000 -0.9701 -0.9945 -0.4077 -0.2079 -0.1045 0.000

Since the numerical data have been obtained, there is need to define the maximum
power of the multinomial that is to be fitted to the data. It is already known that the
circle is of 2nd power multinomial, and to help make the example easier to understand it
was selected directly. The responsibility of multinomial power selection falls on the
performance estimator which is not used in this example. Since the selected power is ‘2’
the resulted basis functions for the two input variables are: 1, x, y, x*y, x2 and y2. The
next step it to calculate the numerical values of those basis functions for every pair of
input (x, y) values. This action will result to the following initial DataMatrix that is
displayed in Table 5.2.

TABLE 5.2 (Data Matrix)
1 x y x*y x2 y2
1 0.9511 -0.3190 -0.3034 0.9046 0.1018
1 0.8090 0.5878 0.4755 0.6545 0.3455
1 0 1 0 0 1
1 -0.9945 -0.1045 0.1039 0.9890 0.0109
1 -0.8760 -0.5000 0.438 0.7674 0.25
1 -0.2097 -0.9701 0.2034 0.0440 0.9411
1 -0.1045 -0.9945 0.1039 0.0109 0.9890
1 0.9135 -0.4077 -0.3724 0.8345 0.1662
1 0.9781 -0.2079 -0.2033 0.9567 0.0432
1 0.9945 -0.1045 -0.1039 0.9890 0.0109
1 1 0 0 1 0

One of the basis functions has to be selected as the output of the multinomial function.
For this example the basis function of ‘1’ was selected, and therefore the “f” vector of
Eq.2.2 is equal to the first column of the matrix of Table 5.2. The actual “DataMatrix”
that is going to be used in the algorithm is the rest of the columns of Table 5.2.









































=

01001
0.01090.98900.1039-0.1045-0.9945
0.04320.95670.2033-0.2079-0.9781
0.16620.83450.3724-0.4077- 0.9135
0.98900.01090.10390.9945-0.1045-
0.94110.04400.20340.9701-0.2097-
0.250.76740.4380.5000- 0.8760-

0.01090.98900.10390.1045-0.9945-
10010

0.34550.65450.47550.5878 0.8090
0.10180.90460.3034-0.3190-0.9511

DataMatrix









































=

1
1
1
1
1
1
1
1
1
1
1

f

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 33

Since these matrices have been determined, then the rest of the procedure is simple
application of the equations of paragraph 2.3. Therefore the calculation of the “G”
matrix results to the following:























−
−−

−−
−−

−

==

0858.37638.04664.09299.00507.0
7638.04055.6012230869.14053.3
4664.0012237638.00507.00868.1
9299.00869.10507.08587.33417.0

0507.04053.30868.13417.01506.7

* DataMatrixDataMatrixG T

Then, if “G” matrix is invertible (in this case it is), the calculation of the “G-1” is
required and results to:























−−−
−−−
−−−

−−
−−−

=−

4099.00078.03377.01059.00556.0
0078.02459.01704.00826.01469.0
3377.01704.00836.21930.04094.0

1059.00826.01930.03180.00846.0
0556.01469.04094.00846.02765.0

1G

From Eq.2.3 the “b” matrix was defined as the following, and results to:






















−

==

8586.3
1506.7
3417.0
0204.2

4615.3

* fDataMatrixb T

Finally, the weights that need to be applied to the basis functions to give “birth” to the
recognized multinomial; can be calculated from Eq.2.5 and result to:























−
−

== −

0040.1
9946.0
0019.0
0017.0

0031.0

*1 bGWeights

The resulting weights are applied to the all the basis functions except the one that was
selected for output. Therefore the resulting recognized multinomial is the following:

0.0031*x-0.0017*y-0.0019*x*y+0.9946*x2+1.0040*y2=1

It can easily be seen that the recognized multinomial is very similar to the original
(x2+y2=1) from which the numerical data were derived. The plotted multinomial is

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 34

displayed in Fig.5.2 and is represented by the line, whereas the crosses represent the
used numerical data.

Fig.5.2: Recognized structure

5.3) Structure Recognition Tests

Several tests were performed in order to evaluate the performance of the neuron and its
supporting algorithms. In this paragraph, only a few of the tests will be presented in
order to demonstrate the performance of the system under certain common/special
situations. More recognition examples are displayed in Appendix A.

In the first example (Eight) an extensive description of the several intermediate possible
steps until the final recognized multinomial will be given. At the rest of the tests, as well
as the ones that are presented in Appendix A, only the important information will be
presented.

a) Eight Curve

The eight curve has the Cartesian equation of x4=a2(x2-y2), and it is represented in
Fig.5.3. For this test the value of ‘a’ was set equal to ‘2’. Data points that belong on this
curve and are displayed as red crosses, were fed in the neuron for recognition.

Fig.5.3: Eight Curve [x4=a2(x2-y2)]

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 35

From the equation of eight curve, it can be seen that the curve passes from the center of
the coordinate system. As it was mentioned in previous paragraphs the system begins its
recognition with the smallest possible allowed power. Therefore the power is set to ‘1’,
and the allowed basis functions are:

1st Power Basis Functions: 1, x, y

Selecting the “1” basis function as an output, the following recognized multinomial
equation (Eq.5.3.1) is resulted, which is a line almost identical with the ‘x’ axis.

11138.60022953.0 17 =+ − xey Eq.5.3.1

Then the maximum allowed power is raised to ‘2’ and the allowed basis functions are:

2nd Power Basis Functions: 1, x, x2, xy, y, y2

Again, selecting the “1” basis function as an output, the following recognized
multinomial equation (Eq.5.3.2) is resulted.

11908.09279.0 22 =+ xy Eq.5.3.2

Plotting Eq.5.3.2 on the same coordinate system as the numerical data, produce the
image of Fig.5.4. The blue line represents the recognized multinomial, which represents
an ellipse.

Fig.5.4: Recognized 2nd order curve (blue line)

It is obvious by the display of Fig.5.4, that there is an under fit, as the ellipse doe not
pass from all the data points of the eight curve. The maximum allowed power is once
more raised to ‘3’ and the allowed basis functions are:

3rd Power Basis Functions: 1, x, x2, x3, y, xy, xy2, y2, x2y, y3

Again, selecting the “1” basis function as an output, the following recognized
multinomial equation (Eq.5.3.3) is resulted.

14001.019.0
1110055.093.00024.0

31622

215171532

=−++

+−−+−+
−

−−−

xeyxx
xyexyexeyyy

K

K
 Eq.5.3.3

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 36

Eq.5.3.3 after optimization resulted to Eq.5.3.4.

11908.09279.0 22 =+ xy Eq.5.3.4

Plotting Eq.5.3.4 on the same coordinate system as the numerical data, produce the
image of Fig.5.5. The blue line represents the recognized multinomial, which represents
an ellipse.

Fig.5.5: Recognized curve with maximum allowed multinomial power ‘3’ (blue line)

Even though the maximum allowed power of the multinomial was ‘3’, the neuron has
recognized an ellipse as the underlying structure in the data. Still, there is an obvious
under fitting of the curve towards the numerical data. The maximum allowed power is
increased to ‘4’ and the resulting basis functions are:

4th Power Basis Functions: 1, x, x2, x3, x4, y, xy, x2y, x3y, y2, xy2, x2y2, y3, xy3, y4

Again, selecting the “1” basis function as an output, the following recognized
multinomial equation (Eq.5.3.5) is resulted.

15.125.74.1
44.00002.06.496.72.1
6.252022.20013.031.530005.0

4315314

2222315214

1414432

=+++

+−+−++

+−+−−+

−−

−−

−−

xyxexe
yxyxxxyexye
xyexeyyyy

K

KK

K

 Eq.5.3.5

The multinomial of Eq.5.3.5 is displayed in the following Fig.5.6.a. As it can be seen
that the curve fitting is becoming better but still the resulted multinomial does not
resemble the equation of the eight curve. At this point the recognized multinomial curve
can be locally optimized by eliminating the basis function that are not contributing
significantly to the resulted outcome (small weighted basis functions). After
optimization, the constant basis function was eliminated as well as a number of other
basis functions and the resulted multinomial has the form of Eq.5.3.6.

224 0002.12501.0 xyx =+ Eq.5.3.6

Plotting Eq.5.3.6 on the same coordinate system as the numerical data, produce the
image of Fig.5.6.b.

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 37

(a) (b)
Fig.5.6: Recognized curve with maximum allowed multinomial power ‘4’ (blue line)

It can be seen in Fig.5.6.b that the fitting is quite efficient, and from Eq.5.3.6 we can
derive the equation of the eight curve x4=22(x2-y2). Even though the multinomial fit of
the 4rt order multinomial seems to be sufficient enough, we continue to investigate for
higher multinomial power fitting. This action is required, as there is no a-priori
knowledge about the optimum power value, and therefore is has no way to know
whether a higher will not produce a better result. Therefore, the maximum allowed
power is raised to ‘5’ and the resulting basis functions are:

5th Power Basis Functions: 1, x, x2, x3, x4, x5, y, xy, x2y, x3y, x4y, y2, xy2, x2y2, x3y2, y3,
xy3, x2y3, y4, xy4, y5

Again, selecting the “1” basis function as an output, the recognized multinomial
equation that was resulted is displayed in Fig.5.7.a. As it can be seen that the quality of
the curve fitting has not improved and it seems to be over fitting on the data. After
performing local optimization of the multinomial, Eq.5.3.7 is obtained.

325 0002.12501.0 xxyx =+ Eq.5.3.7

Plotting Eq.5.3.7 on the same coordinate system as the numerical data, produce the
image of Fig.5.7.b.

(a) (b)
Fig.5.7: Recognized curve with maximum allowed multinomial power ‘5’ (blue line)

It can be seen in Fig.5.7.b that the fitting is quite efficient, and it is obvious that there is
an over fit on the numerical data. From Eq.5.3.7 we can derive the equation of the eight
curve x4=22(x2-y2) and a line x=0 which is actually what is presented in Fig.5.7.b. This
is evidence of over fitting and it is expected since the neuron has more freedom in

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 38

fitting multinomials. When allowing higher order multinomials to be fitted to data
belonging to curves of lower order, it is expected to have extra structures that are there
to compensate for the excess of freedom. Observing the final result of the 5th order fit it
is easy to understand that the result is a 4th order curve (Eight curve) and a 1st order line
summing up to 5th order. If we allowed a 6th order fit the result would again be a 4th
order curve and a 2nd or two 1st order curves (depending on the symmetry) in order for
the final result to be a 6th order curve.

b) Eight Curve with Noise

At this recognition test the population of the numerical data of the eight curve is
reduced to half. Additionally, uniform noise has also been added to the data. For
different values of noise in the numerical data the following results have been obtained.

For noise magnitude of ‘0.05’ the best fit is obtained with a fourth order multinomial
and the recognized structure is presented in the following Fig.5.8.

Fig.5.8: 4th order recognized curve for 0.05 noise in data (blue line)

The resulted multinomial of the recognition is the following, where the original basis
functions of the eight curve appear in bold.

0.027y-3.9y2-0.1y3-0.126y4-0.007xy2-0.014xy3+3.98x2+0.0179x2y+0.055x2y2=x4

It can be seen for the above recognized multinomial, that the dominant (higher
weighted) basis functions (y2, x2 and x4) are the ones actually belong to the initial eight
curve (x4=22(x2-y2) = 4x2-4y2) and carry approximately the same weights as the ones of
the initial curve (3.9y2 ≈ 4y2, 3.98x2 ≈ 4x2 and x4=x4).

The noise in the numerical data of the eight curve is increased by ‘0.05’. For noise
magnitude of ‘0.1’ the best fit is obtained with a fourth order multinomial and the
recognized structure is presented in the following Fig.5.9.

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 39

Fig.5.9: 4th order recognized curve for 0.1 noise in data (blue line)

The resulted multinomial of the recognition is the following, where the original basis
functions of the eight curve appear in bold.

0.015x3y +0.248 x4-0.003-0.015y+1.18 y2+0.016 y3-0.212y4-0.021xy -0.009xy3= x2

If we multiply each part of the recognized multinomial we have the following:

0.06x3y +0.92 x4-0.012-0.06y+4.72 y2+0.064 y3-0.848y4-0.084xy -0.036xy3= 4x2

Again, it can be seen for the above recognized multinomial, that the dominant (higher
weighted) basis functions (y2, x2 and x4) are the ones actually belong to the initial eight
curve and carry approximately the same weights as the ones of the initial curve (4.72y2,
4x2 and 0.92x4). The only differences are the fact that the basis function of y4 also
started to have a significant role to the final outcome, as well as the introduction of a
constant value basis function that does not allow the curve to pass through the center of
the coordinate system.

The noise in the numerical data of the eight curve is again increased by ‘0.05’. For noise
magnitude of ‘0.15’ the best fit is obtained again with a fourth order multinomial and
the recognized structure is presented in the following Fig.5.10.

Fig.5.10: 4th order recognized curve for 0.15 noise in data (blue line)

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 40

The resulted multinomial of the recognition is the following, where the original basis
functions of the eight curve appear in bold.

-0.03-0.1y-4.204y2+0.05y3+0.5y4-0.14xy-0.05xy2+0.27xy3+4.06x2-0.11y2x2-0.04x3y= x4

Again, it can be seen for the above recognized multinomial, that the dominant (higher
weighted) basis functions (y2, x2 and x4) are the ones actually belong to the initial eight
curve and carry approximately the same weights as the ones of the initial curve
(4.204y2, 4.06x2 and x4). Still, now a lot more basis functions are starting to contribute
to the final outcome, and the constant value begins to play a more significant role.

For noise magnitude of ‘0.2’ the best fit is obtained again with a fourth order
multinomial and the recognized structure is presented in the following Fig.5.1.

Fig.5.11: 4th order recognized curve for 0.2 noise in data (blue line)

As it can be observed from Fig.5.11, the recognized multinomial begins to escape the
“closed curve” shape that the initial eight curve possesses. The resulted multinomial of
the recognition is the following, where the original basis functions of the eight curve
appear in bold.

0.068+0.49y-5.86y2-0.55y3+1.82y4+0.01x-0.038xy+4.11x2+0.013x2y2= x4

Again, it can be seen for the above recognized multinomial, that the dominant basis
functions have now exceeded the ones that describe the initial eight curve. The ‘y2’
bases function as and the constant values are now obtaining more important roles.

From the above recognition results it can be seen how noise in the data can actually
influence the quality of the multinomial fit, at least at the level of resemblance with the
initial (expected) eight curve.

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 41

c) Difolium Curve Autonomous Procedure

The difolium curve has the Cartesian equation of 4axy4=(x2+y2)2 (where ‘a’ was set
equal to ‘1’) as it is displayed in Fig.5.12.a. For this test the morphogenetic neuron will
autonomously decide for the best multinomial fit, both for the initial curve numerical
data, but also for data containing noise of ‘0.1’.

The first recognition process is implemented on numerical data that do not contain any
noise. The morphogenetic neuron, initially attempts to fit a 2nd order multinomial and
the result is displayed in Fig.5.12.b.

(a) Initial Difolium curve (b) 2nd order fitted
multinomial

(c) 3rd order fitted
multinomial

(d) 4th order fitted

multinomial
(e) 5th order fitted

multinomial
Fig.5.12: Automated recognition and selection on difolium curve without uniform noise

in the numerical data (blue line)

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 42

The result of the fit, as a point-to-curve distance mean, carries the value of ‘0.1290’.
The estimator is not yet active as it requires at least two entries to perform the
comparison and derive to some result. Therefore the maximum allowed power is
increased and a 3rd order multinomial is being attempted for fitting.

The result of the 3rd order fit is displayed in Fig.5.12.c. The point-to-curve distance
mean value this time is ‘0.0826’. The evaluator is active and taking into account the
difference in number of the used basis functions and the value of the point-to-curve
distance means, it derives to the result that the second fit was better than the first one,
and gives the order to continue to a higher power. Therefore the allowed multinomial
power in this step is of 4th order.

The result of the 4th order fit is displayed in Fig.5.12.d. The point-to-curve distance
mean value this time is ‘0.0050’. The evaluator is again derives to the result that the 4th
order fit was better than the one of the 3rd order, and continues the recognition with a
higher power. Therefore the allowed multinomial power in this step is of 5th order.

The result of the 5th order fit is displayed in Fig.5.12.e. The point-to-curve distance
mean value this time is ‘0.0051’. The point-to-curve distance mean value at this
recognition is approximately equal to the one of the 4th order multinomial fit. Still the
evaluator takes into account the difference in number of the used basis functions and the
fact that the 4th order multinomial is a lower order fit and arrives to the result that the 4th
order fit was better than the one of the 5rd order. Then, it terminates the procedure and
decides that the 4th order multinomial is the best candidate.

The resulted multinomial of the recognition is the following:

0.49992 x2y2+0.2505 x4+0.25028 y4= xy4

It can be seen at the above recognized multinomial, that it is actually equal to the
function of the initial difolium curve (4xy4=(x2+y2)2), when all members are multiplied
by ‘4’.

The second autonomous recognition process is implemented on numerical data that
contain uniform noise of ‘0.1’. The same procedure as above was followed and the
results are displayed in the following Fig.5.13.

The recognition algorithm starts the process with a 2nd order multinomial, and an ellipse
is recognized, which is displayed in Fig.5.13.a. The point-to-curve distance mean value
that was obtained was ‘0.1297’. The allowed maximum power is incremented and the
3rd order multinomial fit is displayed in Fig.5.13.b. The evaluator decides that the 3rd
order fit is a better candidate and allows the procedure to continue, since the distance
mean is better (0.0852) than the 2nd order.

Then a 4th order multinomial is fitted in the numerical data. The recognized structure is
displayed in Fig.5.13.c. Here it is obvious that the influence of the noise has altered the
expected result, still the point-to-curve distance mean value has improved to ‘0.0371’.
The recognized curve hardly resembles part of the initial dfolium curve. Still the
resulting fit, is better that the one of the 3rd order and therefore the evaluator allows the
process to continue.

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 43

(a) 2nd order fitted
multinomial

(b) 3rd order fitted
multinomial

(c) 4th order fitted
multinomial

(d) 5th order fitted
multinomial

Fig.5.13: Automated recognition and selection on difolium curve with uniform noise of
‘0.1’ in the numerical data (blue line)

The outcome of the recognition of the 5th order is displayed in Fig.5.13.d. It can be seen
that the actual result is not sufficient, and numerically the point-to-curve distance mean
value has become worse (0.0416). Therefore the evaluator selects the multinomial
expression of the 4th order as the best candidate for the fit.

The resulting multinomial of the fourth order is the following where the original basis
functions of the difolium curve appear in bold.

2.7x y2-x-1.3xy -0.4x y3+5.5x2+2.9x2y-x2y2-9.7x3-1.5x3y +4.1x4+0.3y2+0.3y3= y4

It can be seen for the above recognized multinomial that one of the initial existing basis
functions ‘x y4’ was eliminated during the optimization process, and does not participate
at the final result. This occurs due to the high amount of noise in a relatively small
population on numerical data. The influence of the number of data population to the
goodness of a fit will be discussed in the following paragraph.

5.4) Noise and Data Population Influence

It can be easily understood that noise existing in data introduces difficulties in the
“correct” recognition of structures. As it is displayed in Fig.5.14.b, the addition of noise
in the numerical data results to a structure that differs from the original expected one
(Fig.5.14.a). Still, this does not mean that the recognition is not satisfactory.

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 44

(a) Numerical Data without noise (b) Numerical Data with noise
Fig.5.14: Influence of Data Noise in Recognition

Furthermore, the lesser the number of available numerical data is, the more the number
of possible multinomial structures to be fitted. This can also be derived from Fig.5.15
where the numerical data used to recognize the structure belong to a circle.

(a) Large number of Numerical Data (b) Small number of Numerical Data

Fig.5.15: Influence of Data Population in Recognition

Therefore, another question was raised on how and in what extent the addition of noise
and the change of number of numerical data influence the recognition procedure and
result. I order to determine that influence factor; a number of tests were executed.

A set of numerical data was subjected to structure recognition while the uniform noise
was imported to it, and the number of its data population was reducing. The experiment
that is presented below was performed on the numerical data of the curve “trifolium”
which is displayed in Fig.5.16.

The trifolium curve is a 4th order multinomial curve. The initial developed population of
this curve was 334 data points and contained only rounding errors. Out of this

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 45

population, another five sets of data points were produced with less number of points
(223, 167, 112, 84 and 42 data points).

Fig.5.16: Trifolium Curve

Each of this set was used for manual structure recognition starting from 2nd multinomial
fit to 8th multinomial fit. For all the intermediate steps their point-to-curve mean
distance was obtained. Then, different amounts of noise (from 0 to 0.3) were imported
in the data, and the recognition process was again initiated from 2nd multinomial fit to
8th multinomial fit. Plotting the resulting point-to-curve mean distance values of each of
the nth multinomial recognized curves of data with ‘sigma’ amount of noise, the surfaces
of Fig.5.17 are produced.

0

0.1

0.2

0.3

2
4

6
8

0

0.1

0.2

0.3

Polynomial Power

334 Data Points

Noise Sigma

M
ea

n
D

is
ta

nc
e

0

0.1

0.2

0.3

2
4

6
8

0

0.1

0.2

0.3

Polynomial Power

223 Data Points

Noise Sigma

M
ea

n
D

is
ta

nc
e

Surface A (334 points)

Surface B(223 points)

0

0.1

0.2

0.3

2
4

6
8

0

0.1

0.2

0.3

Polynomial Power

167 Data Points

Noise Sigma

M
ea

n
D

is
ta

nc
e

 0

0.1

0.2

0.3

2
4

6
8

0

0.1

0.2

0.3

Polynomial Power

112 Data Points

Noise Sigma

M
ea

n
D

is
ta

nc
e

Surface C (167 points) Surface D(112 points)

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 46

0

0.1

0.2

0.3

2
4

6
8

0

0.1

0.2

0.3

Polynomial Power

84 Data Points

Noise Sigma

M
ea

n
D

is
ta

nc
e

0

0.1

0.2

0.3

2
4

6
8

0

0.1

0.2

0.3

Polynomial Power

42 Data Points

Noise Sigma

M
ea

n
D

is
ta

nc
e

Surface E (84 points)

Surface F(42 points)

Fig.5.17: Surfaces of point-to-curve mean distance values according the noise in data
and the maximum allowed multinomial fit.

As it can be seen in all of the surfaces, there is a steep slope, when the allowed
maximum multinomial fit reached the value of the order of the trifolium curve (4th
order). This is the first indicator that the required multinomial power might have been
reached (Fig.5.18).

(a) 3rd order fit (b) 4th order fit
Fig.5.18: Difference of recognized Multinomials when the surface slope occurs.

A second observation that can immediately be made from the surfaces is that the more
the noise in the data, the worse the value of the point-to-curve distance mean. Still the
use of higher order multinomials seems to produce an acceptable result. As it can be
seen in Fig.5.19.b, even though the recognized multinomial might have reduced the
resulted point-to-curve distance mean value, but the outcome (eve though satisfactory)
does not resemble the initial trifolium curve.

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 47

(a) 4th order fit without noise (b) 8th order fit with noise
Fig.5.19: Difference of recognized Multinomials when noise is present.

A third observation is that when then number of participation numerical data is reduced
(Surface F); higher order multinomials can provide good results regardless the amount
of noise in data.

(a) 4th order fit without noise (b) 8th order fit with noise
Fig.5.20: Difference of recognized Multinomials when small data population.

As it is displayed in Fig.5.20, the multinomial fit again might be good numerically, but
the outcome again does not resemble the initial curve.

Recognition of Structures in Numerical Data Tests & Results

Dimitrios Iakovou 48

Recognition of Structures in Numerical Data Discussion & Recommendations

Dimitrios Iakovou 49

6
Discussion &

Recommendations

6.1) Introduction

During this project, many roads could be followed and investigated. Many of them were
followed and many of them are still left to be explored. The morphogenetic neuron
offers a generic solution to the curve fitting problem and can find application in
numerous other processes. This work sets the basis towards the direction of using the
morphogenetic neuron for structure recognition. Therefore priority was given to the
paths that will lead to the correct recognition of structures and secondarily to the ones
that lead to the estimation of the quality of that fit.

To support and evaluate the functionality of the morphogenetic neuron, a number of
mechanisms were developed. The mechanisms also offer space for further investigation
and improvement. These matters will be presented in the following paragraphs.

6.2) Discussion

The morphogenetic neuron was used within this project to recognize structures in two
dimensional orthogonal spaces. Its capabilities though are not limited to two
dimensional or orthogonal spaces. The morphogenetic neuron can make use of the
properties of dot product of vectors and recognize structures in non orthogonal
multidimensional spaces. The recognition process is straight forward and noticeably
fast.

At this first step, the morphogenetic neuron was able to identify the underling structures
in numerical data. It was shown that, up to a certain level, the morphogenetic neuron is
robust and can still recognize structures similar to the ones that were expected. Still, the
multinomial fit is sufficient even with high noise in data, though the structure differs a
lot from the expected.

An evaluating and optimizing mechanism was developed to estimate the goodness of
the fit and manipulate the parameters of the morphogenetic neuron. Still, it must be
stated that this mechanism is designed according a subjective definition of an optimum
fit. The chi-squared test was applied to the recognize curve to get an estimation of the
goodness of the fit, but upon implementation the algorithm was not any different that
the squared mean value of the point-to-curve distance mean.

Recognition of Structures in Numerical Data Discussion & Recommendations

Dimitrios Iakovou 50

6.3) Recommendations

As it was stated also in the introduction paragraph, there is a lot o space for research
within this field. Still a few more steps can be taken at this point in order to enhance the
performance of the currently existing platform.

a) At this point the estimator only calculates how well the data fit on the
recognized multinomial, and does not take into account that there might be parts
of the multinomial do not correspond to any points (paragraph 5.3.a where the
eight curve of 5th order is recognized with a line that should not exist).
Therefore, a further optimization of the estimator or the addition of higher
intelligence should be implemented.

b) A parameter that controls the estimation of the goodness of the fit is the point-to-
curve distance mean. The point-to-curve distance is calculated according
paragraph 3.3.a, and though it provides a sufficient approximation, a more
accurate calculation of the distances would be useful.

c) The research for other statistical methods, instead of using the mean value of the
calculated point-to-curve distances, could prove helpful.

d) The output value of the fuzzy logic estimator can be used to estimate a certain
confidence level value of the goodness of the resulting multinomial fit.

e) A certain clustering of points before applying the recognition algorithm could
help achieve better recognition results in data that contain noise.

f) When the final multinomial has been detected, an estimation of the noise
existing to the data according the recognized multinomial could prove useful for
better optimization.

g) Further work should be directed towards adopting the present recognition
scheme for system identification.

Recognition of Structures in Numerical Data Conclusions

Dimitrios Iakovou 51

7
Conclusions

The Morphogenetic neuron is a very powerful tool to use for recognizing structures
hidden in plant numerical data. It is robust and can efficiently recognize structures even
with data that contain a certain amount of noise. The recognition algorithm is straight
forward and fast. Still, its performance depends on the selection of its recognition
parameters (allowed multinomial order, number and type of basis functions).

The application of optimization mechanisms (elimination of insignificant basis
functions, selection of the optimum output function) to the final recognized
multinomial, improved the quality of the fitting.

The multinomial fit evaluating mechanism based on statistical and soft-computing
means, is performing efficiently. Nevertheless, the evaluating mechanism could be
further researched and improved.

The developed platform was very useful for conducting and observing the various
experiments. It reduced experimentation time for the setting up of the recognition
parameters for different test.

Recognition of Structures in Numerical Data Conclusions

Dimitrios Iakovou 52

Recognition of Structures in Numerical Data References

Dimitrios Iakovou 53

8
References

[1]

[2]

[3]

[4]

[5]

G. Resconi, A.J. van der Wal , “A data model for the Morphogenetic Neuron”,
Int. J. General System, Vol.29(1), pp.141-174, 2000

Elisa Alghisi, “A study on Boolean functions by a neural network model”,
Mathematical Department, Catholic University, Brescia, Italy, 2001

D. A. Berry, B. W. Lindgren, “Statistics – Theory and Methods”, Second
Edition 1996, Wadsworth Publishing, ISBN 0-534-50479-5

K.M. Passino, S. Yurkovich, “Fuzzy Control” Addison Wesley, Menlo Park,
CA (1998)

G. Resconi, A.J. van der Wal , “The Morphogenetic Neuron”, not yet published

Recognition of Structures in Numerical Data References

Dimitrios Iakovou 54

Recognition of Structures in Numerical Data Appendix A

Dimitrios Iakovou 55

Appendix A – Various Other Recognition Tests

In this Appendix, a number of multinomial fitting examples are presented for different
sets of numerical data. These recognitions have been implemented to display the
performance of the Morphogenetic neuron, according to the population of the numerical
data and the amount of existing noise.

Recognition of structures in numerical data that initially belong to a circle. The data on

the left figure contain less noise than the right one. For the left figure, the resulting
multinomial is of the 2nd order, whereas the right one is of 4th order.

Recognition of structures in numerical data that initially belong to an ellipse. The data
on the left figure contain less noise that the middle and right one. For the left figure, the

Recognition of Structures in Numerical Data Appendix A

Dimitrios Iakovou 56

resulting multinomial is of the 2nd order, whereas the middle one is of 4th order. For the
right one the morphogenetic neuron was used to fit an 8th order multinomial to the data.

Recognition of structures in numerical data that initially belong to an eight curve. The
data on the left figure contain no noise unlike the one on the right. In both cases a 6th

order multinomial was allowed to be fitted in the data without performing any
optimization techniques.

These are examples of resulting multinomial when over fitting is allowed to numerical
data that contain sufficient amount of noise. The numerical data of the left figure belong

to an eight curve, whereas the numerical data of the right figure belong to a difolium
curve.

Recognition of Structures in Numerical Data Appendix A

Dimitrios Iakovou 57

Recognition of structures in numerical data that initially belong to a rotated infinity
curve. The numerical data on both figures contain no noise. At the left image no

optimization techniques have been used yet. On the right figure, over fitting (6th instead
of 4th order) is allowed to take place on “accurate” data.

Recognition of structures in numerical data that initially belong to a rotated infinity
curve. The data on the left figure contain less noise than the right one. The recognition,

in both cases, has been implemented autonomously by the Morphogenetic neuron’s
algorithm and resulted to 4th order multinomials.

Recognition of Structures in Numerical Data Appendix A

Dimitrios Iakovou 58

Recognition of structures in numerical data that initially belong to a trifolium curve.
The numerical data on both figures contain no noise. During the recognition, in both

cases, the Morphogenetic neuron was allowed to over fit in “accurate” numerical data.
The figure on the left contains a 5th order curve, whereas the figure on the right

contains a 6th order curve.

Several examples of autonomous curve fitting to numerical data (trifolium) for different

amounts of noise and number of data samples.

Recognition of Structures in Numerical Data Appendix A

Dimitrios Iakovou 59

Trifolium curves with different amount noise and numerical data samples. The

Morphogenetic neuron is allowed to over fit with 8th order multinomials. Clearly on the
left figure the curves passes through almost every point, but the final outcome differs

from the original trifolium curve.

Recognition of Structures in Numerical Data Appendix A

Dimitrios Iakovou 60

Recognition of Structures in Numerical Data Appendix B

Dimitrios Iakovou 61

Appendix B – Graphic User Interface Manual

At this Appendix the usage of the developed platform will be explained, as well as the
most important actions behind it. The Graphical Users Interface (GUI) of the
morphogenetic neuron, if the one displayed in the following Fig.B.1.

Fig.B.1: The GUI while in use

The GUI gives the possibility to the user to overlook the recognition procedures and
follow each of the recognition steps. The Platform can run either autonomously or
manually. At autonomously mode the user can have no input in the multinomial fit
evaluation process, whereas in the manual mode, the user is the one who selects the best
fit and manipulates the parameters of the morphogenetic neuron. The GUI is divided in
several different parts, one for each of the required steps. These separate parts are
displayed on the GUI with a frame line around them and are explained in detail in the
following paragraphs.

a) Data Importing

This is the part where the data is imported in the platform. As it can be viewed in
Fig.B.2, a number of text files are displayed in a list window within this part. These files
are the ones that contain the numerical data of the structure that needs to be recognized.

Recognition of Structures in Numerical Data Appendix B

Dimitrios Iakovou 62

These files must exist in the “DataSets” directory that exists in the same folder as the
platform’s MatLab m-files.

Fig.B.2: The Load Data part

The data in these files are organized in columns. Each column contains the numerical
value of one variable that has been measured. For instance, one column contains all the
values of the variable ‘x’, another all the values of a variable ‘y’ and so on. Each of the
rows contains the numerical values of the variables for the same measurement. For
example, if the measured values of ‘x’ and ‘y’ are ‘a’ and ‘b’, then ‘a’ and ‘b’ must exist
on the same row.

The user can select the name of the file that carries the data, and then press the “Load
Numerical Data” button. The values inside the selected file will be imported in a matrix
with as many rows and columns as the number of the samples and the measured
variables. Once the data are loaded, they are displayed in the axes window existing
within the platform.

b) Variable Declaration

This is the part where the declaration of the variable names is implemented and the
decision for autonomous or manual use of the morphogenetic neuron (Fig.B.3). To set a
variable, a name must be given at the blank field above the buttons and the “Set
Variable” button must be pressed. When a variable is set, it appears on the list at the
right of the frame. To delete a variable, a variable form the list must be selected, and the
“Delete Variable” button must be pressed. An indicator, showing the number of the total
variables that have been declared exists under the list window (No. of War).

Fig.B.3: The Input Variables part

When pressing the “Autonomous” button, the platform is set in the autonomous mode,
all the controls of the GUI are disabled and every action from that point on is taken by

Recognition of Structures in Numerical Data Appendix B

Dimitrios Iakovou 63

the platform. In any other case the platform operates manually and enables the user to
interact and manipulate the parameters and performance of the recognition procedure.

c) Maximum Multinomial Power

At this is the part the maximum allowed power of the basis functions is set (Fig.B.4).
This selection of the maximum power has meaning only in the manual recognition
mode. When setting the power and pressing the “Generate Combination List” button,
the platform calculates all the possible combinations among the declared variables up to
the selected maximum power, and stores them in and matrix of ‘char’ type.

Fig.B.4: The Maximum Power part

The full description of the algorithm that calculates all the basis functions is presented
in paragraph 4.2.b.

d) Basis Function Combinations

The generated basis function list of the process that was described in the previous
paragraph (‘c’) is displayed in a list box within this part (Fig.B.5). Here the user is able
to select and delete any basis functions appearing on the list. This way, the user can
control the performance of the recognition algorithm, and therefore its output. An
indicator of the number of the basis functions existing in the list is also present.

Fig.B.5: The Basis Function part

The “Delete Combination” button deletes from the combination list the one that is
selected. The “Restore Combs” button restores the initial combinations in the list. When
the unwanted basis functions have been deleted from the list then the “Calc.
Combinations” button initiate the calculation of the DataMatrix. As described in
paragraph 5.2. Then, the “Define Output” button is the one that used the selected basis
function from the list as the system’s output. The “Define Output” button, initially
deletes the selected basis function from the list. Then, it cuts the numerical values for
the DataMatrix and stores them in a vector to be used by the neuron.

Recognition of Structures in Numerical Data Appendix B

Dimitrios Iakovou 64

e) Recognition

In this part, the actual recognition takes place. Here all the matrices that were
constructed in the previous steps are imported in the morphogenetic neuron. The
“Recognize Structure / Generate Multinomial” button initiates the recognition
procedures and performs the mathematic operations that are described in paragraph 2.3.

Fig.B.6: The Recognition part

The “Reset Plot” button resets the axes of the platform to the state where only the initial
numerical data are plotted. After the curve is recognized, a line plotting it form on the
axes will appear. This way the user has visual representation of the recognized curve
plotted on top of the initial numerical values. This way an immediate estimation of the
goodness of the fit can me made.

f) Initial Optimization

It is already mentioned the body of this report, that the first step that someone can take
towards optimizing the outcome of the recognition, is to eliminate the basis functions
that contribute very little to the final multinomial. This can be very easily determined by
the values of the weights of each of the basis functions.

This part is the one that enables the user to view the resulting weight and delete the
basis functions that are thought to be insignificant.

Fig.B.7: The Weight Optimization part

The “Display Weights”, displays the values of the final basis function weight in the list
box existing in the middle of the GUI. The weights appear in the same order as the basis
functions in the combinations list box. The “Del. Small Weights” button eliminates the
small weights in the same manner as it is implemented in the autonomous mode.

g) Data Noise

When the data are imported in the platform, contain only rounding errors and no actual
noise. In order to test the performance of the morphogenetic neuron with noisy data, a
way to impose noise in the dada had to be implemented. At this part, there are two types
on noise that can be imported in the data and in two directions (Fig.B.8).

Recognition of Structures in Numerical Data Appendix B

Dimitrios Iakovou 65

The first noise generator is the “Uniform Noise” one. When this option is selected, then
the value in the edit box is used to indicate the maximum possible value of the noise. A
vector with length equal to the number of the samples is formed and filled with
uniform-random values existing between ‘-Value of Edit box’ and ‘+Value of Edit box’.

Fig.B.8: The Data Noise part

At this part, the user can also choose the direction that the noise will be applied
(Horizontally, Vertically).

h) Axes Submenu

A number of controls were also developed for the axes were the plots appear (Fig.B.9).
The first two commands deal with zooming in and out to the plot, for the user to have
closer observation of the goodness of the fit. The “Normal View” command brings the
plot to its initial condition with both the numerical data and the recognized multinomial
present.

Fig.B.9: The Axes Menu part

The “Reset Plot” command is the same as the “Reset Plot” button of paragraph ‘e’, and
resets the plot to its initial condition with only the numerical data plotted. The “Export
Plot” command exports the image that appears in the axes to an Encapsulated Postscript
File. The file is saves in the “Images” directory which exists in the same folder as the
platform’s m-files. The name is the same as the date and time that the export was
instructed.

Recognition of Structures in Numerical Data Appendix B

Dimitrios Iakovou 66

Recognition of Structures in Numerical Data Appendix C

Dimitrios Iakovou 67

Appendix C – Running the Platform in MatLab

For the Morphogenetic Neuron platform to be executable in MatLab 6.5, the following
files must exist in the “work” or the current working directory of the MatLab directory
or in any of the predefined MatLab paths.

MatLab GUI & Function code m-files
Combo.m
CurvePoints.m
DevOrthWeights.m
EvalPolynomial.m
FactorFunction.m
FindFactors.m
FormulaDisplay.m
FuzzyEval.m
MorfoGen.m
Numconvert.m
Place_Powers.m
ProducePoly.m
VarCurves.m

Fuzzy Logic Controllers
FuzzyEstimatorN.fis

GUI figure
MorfoGen.fig

To start the simulations just type “morfogen” after the MatLab 6.5 window command
prompt as is displayed in the following figure.

