University of Twente

EEMCS / Electrical Engineering
Control Engineering

PC104 stack mechatronic control
platform

Erik Buit

M.Sc. Thesis

Supervisors

prof.dr.ir. J. van Amerongen
dr.ir. J.F. Broenink

ir. P.M. Visser

March 2005

Report nr. 009CE2005
Control Engineering
EE-Math-CS
University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

[PC104 stack mechatronic control platform

Summary

A part of the research at the control engineeratdgptatory of the University of Twente is on the
design trajectory of embedded controllers. As d phathe research, tools are being designed for the
design of heterogeneous distributed controllersceCihe controller is designed in a design tool like
20sim, it has to be tested and implemented. Thingesnd implementation phase is verified by
simulation. For the verification by simulation pkas Hardware-In-the-Loop setup has been build in
co-operation with the Boderc (Beyond the Ordindgsign of Embedded Real-time Control) project
at the Embedded Systems Institute. The setup eantaiir embedded PCs and two desktop PCs. The
embedded PCs can run the controller(s) and thalegktop PCs can run a simulated version of the to
be controlled plant. To get the designed contrali@ning on the setup, as it was built in the prasi
project, knowledge is needed of the systems asdftfare engineering.

The aim of this project is to allow mechatronic ieegrs to use the setup without any knowledge of
the software engineering process. To accomplish thimethod has been designed and developed that
performs the software engineering part. The methachplemented in a set of tools. The tools allow
easy connection of the hardware to the model, eablutask generation, deployment of the generated
task onto the setup, viewing and modifying valueany task online and offline, logging of valueslan
automatic retrieval of the logged values.

For connecting the hardware to the model a hardwardiguration file template and hardware
connection tool have been designed and develogezitéimplate file contains hardware specific calls
to access the hardware and has to be filled once syftware engineer for every hardware device.
After the template has been filled the hardwarenegtion tool can use the template to connect model
signals to the defined hardware.

On the embedded PCs and simulation PCs an, fompthigct designed and developed, application
controls all the running tasks. A protocol to conmicate to the application has also been designed
and developed. The application has full controlratie tasks started by the tools that are running o
the stack. To start the controllers on multipldigtes at the same time a synchronized start theg us
the CAN bus has been implemented. Tasks are altaihatgenerated and in case of a failure the
user is notified.

The method is working and allows easy hardware eciion. Task can be started and stopped and
values can be retrieved and modified by a graphisat interface. Logging has been implemented into
command prompt applications.

The hardware connection files are hard to write arederror prone. A tool that can assist in writing
the files and do syntax checking is necessaryltavadasier generation. The tools work on the same
mechanism as the code generator of 20sim and dmeldnplemented into 20sim to allow easy
hardware connection from within 20sim. When usingiltiple controllers a synchronization
mechanism between the controllers must be perfortoegrevent drift between the different
controllers. The application running on the embeldaied simulation PC has been written to run under
Linux and use Ethernet to communicate. This aptinacould be ported to other operating systems
and the communication could be expanded with eSB Dommunication to allow the tools to run on
multiple hardware architectures.

Control Engineering

Introduction ii

Samenvatting

Een deel van het onderzoek dat gedaan wordt hiffdigling control engineering van de Universiteit
Twente is naar het ontwikkel traject van ingebedxgelaars. Een deel van onderzoek bestaat uit het
ontwikkelen van gereedschappen om heterogene gbedestrde regelaars te kunnen ontwerpen. Als
de regelaar is ontworpen in bijvoorbeeld 20sim, hdeworden getest en geimplementeerd. De test
en implementatie fase wordt geverifieerd door miidde simulatie. Voor het verifiéren door middel
van simulatie is een Hardware-In-de-Loop opstellgebouwd in samenwerking met het Boderc
(Beyond the Ordinary: Design of Embedded Real-tamtrol) project van het Embedded Systems
Institute. De opstelling bestaat uit vier embed@&$tis en twee simulatie PC’s. de embedded PC's
worden gebruikt voor het uitvoeren van de regetaken en de simulatie PC’s worden gebruikt om
het te besturen proces na te bootsen. Om een aegglade opstelling, zoals deze is gebouw in een
vorig project, te laten draaien, is er kennis nadig software ontwikkeling.

Het doel van dit project is de mechatronische orpgierein staat te stellen de opstelling te gebruiken

zonder kennis van software ontwikkelingsproces€en.dit te bereiken is een methode ontworpen en

ontwikkeld, die het software ontwikkeling procesvaert. De methode is geimplementeerd in een set
gereedschappen. De gereedschappen maken het tdgeliware aan een model te koppelen, een
uitvoerbare taak te genereren, een taak op dellopsigt te laten voeren, waarden te bekijken an a

te passen in elke taak verbonden en niet verborapestaan van waarden en automatisch extraheren
van de opgeslagen waarden.

Om hardware aan een model te koppelen is een hegdwafiguratie bestand en een hardware koppel
gereedschap ontworpen en ontwikkeld. Het configraidaéstand bevat hardware specifieke functies
die nodig zijn om de hardware aan te sturen. Vdlke bardware moet één maal een configuratie
bestand worden gevuld door een software ontwikkeMadat het configuratie bestand is aangemaakt,
kan het hardware koppel gereedschap de configuggiguiken en elk signaal van een model
koppelen aan de, in het hardware configuratie hdstaeschreven hardware.

Op de embedded en simulatie PC’s draait een, vib@ralect ontworpen en ontwikkeld, programma
dat alle draaiende taken beheert. Een protocol @amnwnicatie mogelijk te maken tussen met het
programma is ook ontworpen en ontwikkeld. Het paogma heeft volledige controle over de taken
die door de gereedschappen zijn opgestart en dradam regelaars op meerdere stations op hetzelfde
moment te starten is een gesynchroniseerde starogen die gebruik maakt van de CAN verbinding
van de opstelling. Taken kunnen automatisch woglegenereerd en op het moment dat een fout
optreedt wordt de gebruiker geinformeerd.

De methode werkt en maakt het mogelijk om eenvobdrgiware te koppelen. Taken kunnen worden
gestart en gestopt en waarden kunnen opgehaalelsehrgven worden door middel van een grafische
interface. Het opslaan van waarden is geimplemahie@pdracht regel programma'’s.

De hardware configuratie bestanden zijn lastigcteigren en erg fout gevoelig. Een gereedschap dat
kan assisteren en de syntaxis kan controlerendigyram dit te vereenvoudigen. De gereedschappen
werken op dezelfde manier waarmee 20sim code gemezr kan daardoor in 20sim geintegreerd
worden om hardware koppelingen vanuit 20sim mdgédij maken. Wanneer er meerdere regelaars
worden gebruikt moet er een synchronisatie methamtelen ontwikkeld om drift tussen de regelaars
tegen te gaan. Het programma dat op de embeddesi d?&Ait is gemaakt voor Linux en gebruikt
Ethernet om te communiceren. Het programma kan petgeorden naar andere architecturen en de
communicatie zou uitgebreid kunnen worden met bijegeeld USB communicatie om op meerdere
architecturen te kunnen draaien.

University of Twente

ii PC104 stack mechatronic control platform

Preface

After a one and a half year career of fork trucividg | understood that loading trucks was not the
thing | wanted to do for the rest of my life. | idmack to school and finished the MTS and HTS.
After the HTS | knew how to get things done by paoghhe right buttons but not why it worked. At

the University | wanted to learn more about the svbghind the hows. With this report, | finish my

Master of Science study in the field of Electri¢gahgineering at the University of Twente and
understand a lot more of the whys behind the hows.

| would like to thank Marcel Groothuis, Peter vaendBosch and Olaf van Zandwijk for testing the
tools and giving valuable feedback.

Most of all, | would like to thank my girlfriend Ad Poelstra for standing by me all those years.

Erik Buit

Hasselt, March 2005

Control Engineering

Introduction iv

Contents
I 1 (o Yo ¥ o 10 o 1
11 (CToT=1 o) B (TSI (ol o PP PTSRRR 1
1.2 Design trajectory of an embedded controllercccoeeiiiii e, 1
1.3 Implementation of an embedded CONtrOller.......cccccovviiiiiiiii e, 2
1.4 Hardware in the 100p SIMUIATION ...t 3
g R ¥ [o o 1= = o) | 3
1.4.2 Hardware-in-the-loop Simulation used........coceee oo, 3
15 Implementation diffICUITIESeeiiiii e 3
1.6 LTS T (0 | o TP 4
1.6.1 Limitations Of the SEIUDcooiiiiiiiiiiiiet ettt e e e e e e e e e e e e e e e e e e eeeees 6
1.6.2 Setup after MOAIfICAtION.uuuuieiieeee e e e e e e e ee e et e e eeeeeeeeeeee s e e rrreeeeeeeeeeeeeeeeees 6
1.7 L L= =0 I 1T 7
1.8 OULIINE OF tNE TEPOIT ...t ereeer e e e e e e bbb e e e e e e e e aane 7
2 MSC t00IS OVEIVIEWuiiiiiiiiiie et 9
2.1 PUIPOSE ... ettt e e e et e e r e e e e e e e e eene 9
2.2 101 SRR 10
2.3 Extensible Markup Language (XML)oooimmm e, 10
24 Architecture of the tool chain............oooe 11
2.5 Generalization of NArdWAreoo i 13
2.5.1 Problem definition ... 13
T OV 1 (=10 | A= 10] o] (0T U] PP 13
2.5.3 General hardware ProCEAUIE o e e eeeiiiee et e e e e e e st e e e asesasseeeeaeens 14
2.5.4 Code generation process and generated appliCationN............oovvcvviiiieieeeeeriiiiinns 15
2.5.5 POSSIDIE SOIULIONS.....ciiiiiiiiiiiiieii e eeeece ettt e e e e e e e e e e e e eeeseeeeeeeeeeeeannnes 15
2.6 (@] o 11T PO 16
3 MSc tools implementationcooveviiiiierie e, 17
3.1 HardwWare CONMNECIOLccceeiiiiiii e e e s s a e s a e e e e e e e e e e e e e e e e eeeee e n s s e e e e e e e e e aas 17
3.1.1 Graphical USEr INTEITACEoiiiiiiee ettt e e e 17
3.1.2 Implementation of the hardware CONNECLONccccvvviriiiuiimniiiiieeee e e e eeaanes 18
3.2 COMPIIEE ASSISTANTuvviiiiiiiiiiiiiiiit e e e e e e e e e e e e e e e e e et e e e e e e e e e e e et e e e aeaaaaeaaaaaaaaeaaaaaaaaaaees 19
3.3 DEPIOYMENT MANAGETeiiiiiieeiiiiiiiiiie e et e e e e e e s s bbb e e e e e eeeeesereeeeeeeeeaann 19
34 (O0] o Tod 1§ 1= o] 1SR 21
4 Command and Control Environmentccccooeveviiieveiinievennnnnn, 23
4.1 PUIPOSE ... e ettt e e e e e e 23
4.2 11T o = o =L PP 23
4.3)Y a1ed 1] g1 7d=To =) 7= o SRRSO PPPPPP 23
4.3.1 INVESIGAEU OPLIONSveeeiiieeeiiiiiitit e e e e e ettt e et e e e e e s s et e e e e eeen e e e e e e e e e e e e anes 24
4.3.2 Detailed descriptions of synchronized start OptioNS...........coevvvviivriiieiieeeee e 25
N T T @ [od 11 [o [PSP PPRRRP 27
4.4 CommMaANd [INE PrOGIAMSuuuuiiiieeiee s e cmmmmmn e e e e eeeeeeeeee e et e e e et e e e e et e e e e e e e e eaeaaaaaaaaaaaaeaes 27
4.4.1 Sending a SYNC PUISBENUSYNEcciiiiiiiiiiiiiiee e e ettt e e e s s s a e e e e e 28
4.4.2 Getting ValUESEEIVA)cooiiiiiiiiiee et 8.2
4.4.3 Manipulating ValueSSBIVA)ccccoeeiiieii i, 29
4.4.4 Automatic logging of valueddgval)ccceciiiiiiiiiiiieee e, 29
4.4.5 Manual logging of values{artlog,getlogcoovviiiiiiiiiiiieiie e 29
5 Embedded StackK...........ooovviiiiiiiiic 31
5.1 Linux device driver standards in the Anything IQVEr ... 31
5.2 ANnything 1O deVviCe driVEN........cccoo i 31
5.21 INitand ClEANUP..........coiiiiiii e 31
5.2.2 The /proc and /devV file SYSIEMSccoiimmeeeeeiiiiee e 31

University of Twente

v PC104 stack mechatronic control platform

5.2.3 Read and WIte OPEIAtiONSuuuuiiiiiiiicceiieee e e e e e e e e e eeee s 32
5.2.4 Input and output CONtrol OPEIALIONS..........oummmmeeeerrrernnennnnnnnnnnnnnnnnnnnnnnarerernne 32
5.3 LXRT extension Of the driVEEooeiiiieeiiii e eeeeene e 32
5.4) = (o1 Qo F= V=1 0 1 (o] o [PPSR 33
S B R = (o) (o o7 | I PP PPPPPRP 33
5.4.2 IMPIEMENTALION......ccoii i e 35
6 DEMO SEIUPS. et e 39
6.1 [=10 1V = TSP 39
6.2 Y0011 L= PSPPI 39
6.3 1Yo ol 11| OO PPPPPPPPRE 39
L TG T I 1 0701 = 39
6.3.2 IMPIEMENTATIONeiiiiiiiiiiiiiiiee et s et e e e e e e s e e e e eeebb e e e e e eeeeeeeaans 40
6.4 RESUILS... .ottt e et e e e e e e e e bt eeeeaeeeeeeeee bbb e e e e e e eeraraa s 41
6.4.1 Simulation versus real-time HILicceemiiiiiiiiiiiiiie e smmaresaanens 42
6.4.2 Simulation versus real Plantouceeeeeri i, 42
7 Conclusions and recommendations...........cccceeevviiiieeiiineeeeiiee e, 45
7.1 CONCIUSIONS ..o 45
7.2 RECOMMENAALIONS.......ouuiiii e ereee e e e e et e e e e e e e ee e nnnnb e e eeeeeesraaans 45
Appendix | Compiling Linux based sources on MS Windows 47

Appendix Il Building the root file system from scratch (the hard way)
48

Appendix Il Hardware configuration filesccccooeviiiiinneennnnn. 54
Appendix IV Command and control DLL...........cccccccoviiiiiiiieeeeennnn. 57
Appendix V Scite, Doxygen, WXDeVv-CPPccccccciiiiiiiiiineeeennnn. 61
Appendix VI Common pitfalls...........ccccooeeeiiiiii e, 64
REFEIENCES ..oee 66

Control Engineering

1 PC104 stack mechatronic control platform

1 Introduction

At the Control Engineering chair of the departmElgictrical Engineering of University of Twente the
main focus is the design of embedded controlleos.tke design and simulation of controller- and
plant models a software package called 20sim has theveloped (CLP, 2002).

When the model of the controller has been desigmedsimulated in 20sim the next step in the design
trajectory is to test the controller in the realrldoln order to test the controller, a platforrmiseded
that can steer the modelled plant. One of theqia$ used for this step is a DSP board.

To get the controller from 20sim to the platfornvesal successive steps are needed. First 20sim
generates C code in order to export the functipnafito a general format. The C code is then
manually loaded into the DSP development envirorimBme code is compiled and deployed on the
DSP. The DSP now operates as the controller. Ififications need to be made to the model, or one
of the variables needs to be changed, the comfdepe of modelling, simulation, code generation,
compiling and deployment has to be repeated.

1.1 Goal of research

The goal of this research is to present a geneeshad for deploying tasks on an embedded device
like an embedded PC or DSP. The proposed methodl Imeuportable to other architectures and/or

operating systems to be used for future setupshé&umore, the method must simplify and automate
the current process in such a manner that it iessiicle for controller engineers who don’t have

knowledge about compiling and deploying.

A second goal is to abstract the model from thelware implementation by designing a method

where the hardware is connected to the model withioy constraints to the model or hardware.

As a result of this research it must be possibleerdorm a task generated by this method for ampthe
existing setup. The results of this task, i.e. emalewill be compared to the results of a previous
project (Groothuis, 2004) to validate the method.

1.2 Design trajectory of an embedded controller

Present-day requirements for reliable and effityeektendable/updateable software for embedded
systems, stress the availability of proper desigfivare, assisting the complete design stretch.
Especially, wherembedded control systerase concerned, having the behaviour of the complete
system available as dynamic model in the desighisgaoucial for effective design work.

For an ECS, computational latency must be smallpewed to the time constants of the appliance.
Examples are robots, production machines like watigspers, motor management and traction control
of automobiles.

The embedded computer system is considered hetexoge and distributed, because modern systems
are often composed of existing subsystems, hauimay town control software and processors.
Furthermore, systems must be easitalable and adaptable to support ever changing functional
specifications and evolution of computer hardware.

With the developed methothe user (mechatronic engineer) is released froeuing skills on
programming the target hardware and interface dsvife.g. real-time behaviour and priority
scheduling), and yet get results equivalent to g¢hobtained by an experienced software design
engineer. Furthermore, the transformation processonvert the algorithms for the control, i.e.
mathematical formulae, to efficient computer codd possibly the concurrent implementation of the
algorithms, is guided via a stepwise refinementedure. After each refinement step, the results are
verified by simulation.

The main objective of the method is to support the user fragonic engineer) at implementation of
control systems, to eliminate design and codingrerand to diminish development costs.
This is accomplished by (Wijbrans, 1993):

« Verification and validation.

* Mechatronic design approach.

Control Engineering

Introduction 2

» Separate development of reusable parts.

As is quite common for contemporary Computer—Aidamhtrol System Design software methods,
abstraction partitioning andhierarchycan reduce the complexity of a complete system.syktem is
partitioned into a hierarchical set of modules. iBgrthe design process, the level of detail will
change: during control law design, the A/D convelite assumed to be ideal, while during the
implementation phases, extra detail is added, t@mrecisely describe the behaviour.
The complete design trajectory of controllers casgw the following four parts (see Figure
1)(Broeninket al, 1998)

* Physical Systems Modelling.

» Control law Design.

 Embedded System Implementation.

* Realization.

Physical Control Law Embedded o
System < > Design < System < » Realization
Modeling Implementatior
Verification Verification Verification Validation
by by by and
Simulation Simulation Simulation Testing

Figure 1: Design trajectory

After the control law(s) have been designed, thesdnto be implemented on the embedded computer.
The starting point of this phase is that the cdrimvs have been verified by simulation using the
detailed model, assuming ideal devices for impldatén: sensors, actuators and algorithmshdo
have any effects on the performance of the ECS.

1.3 Implementation of an embedded controller

To structure this implementation process the fallmaprocedure must be followed(Wijbrases al,
1993):

1. Integrate control laws and user requirements

2. Add technology—independent functionality

3. Add technology—dependent functionality

4. Add timing characteristics

This procedure does not prescribe the order inlwtiie development must take place, but instead the
designer has the freedom to tackle the individublgroblems in any order.

The implementation of the embedded system is aggroofstepwise refinemefitom control laws to
control algorithms, a specification from which cantgr code for the target processors (i.e. embedded
computers) can be generated automatically andyktfarwardly.

For the Boderc project a simulation method calieddware-in-the-Loop Simulatiois used to verify
the embedded system implementation. This setupgbbars build and the next section will give an
overview.

University of Twente

3 PC104 stack mechatronic control platform

1.4 Hardware in the loop simulation

For the design, implementation and validation ohtoa systems Hardware-In-the-Loop (HIL)
simulation is increasingly being required, wherensoof the control-loop components are real
hardware, and some are simulated. Usually, a psotessimulated because it is not available
(concurrent engineering), or because experimertstivé real process are too costly or require taohm
time. The real-time requirements for such simufaidepend on the time-scale of the process and the
simulated components involved.

1.4.1 Purpose of HIL

HIL simulators allow to test and validate theal embedded control system (ECS) under different
workloads and conditions. Other simulation methddsot allow testing the real embedded control
system as a complete system. Often the controlietr, pvhich is about only 20-30% of the ECS
software (Pasetti and Pree 2001), or the softwamgponents are tested independently. HILS makes it
possible to test the complete ECS system.

1.4.2 Hardware-in-the-loop Simulation used
The Hardware-In-the-Loop simulation (HILS) wheree ttnethod of this project is developed for,
involves connecting the actual ECS to a computimgwith a real-time simulation model of the plant.
This is depicted in the middle situation of Fig@re

| Real-time simulation |

— | N

control prototyping | (hardware in the loop| |software in the loop
real process, simulated process, simulated process,
simulated control real control simulated control
system system system
ECS—~@~Plany) HECS+@0~flany +ECS~1o—Elan)

Figure 2: Kinds of real time simulation

The main advantages of HIL Simulation are:

* Plant models used during off-line design and sittafor the controller development can
now be used for the ECS testing. This implies thasoftware testing, the stubs representing
the plant now can be proper models instead of €ragnal generators. This results in better
quality of the ECS tests, allowing for a less cdogikd integration phase.

« Software design and testing can be moved to aneeatésign phase, i.e. before a first
prototype is available, allowing concurrent engimege between the different design
disciplines. This results in a shorter time to nadrk

 The ECS software changes can straightforwardlyheeled for consistency with the design.
Test software and test data written in the corteslign stage can be reused easily.

An additional benefit is that plant models used dfirline design and simulation during the control
development can be reused for the ECS testing.

1.5 Implementation difficulties

The Physical Systems Modellingnd Control law Designare fully supported by 20sim. The step
towardEmbedded System Implementai®still a large one.

Control Engineering

Introduction 4

Embedded system implementation starts by creati@gjn2templates. The templates contain a
platform specific task framework with predefineckdas that are replaced by 20sim with model
specific functions. The current version of the BDsbde generator has an option to generate fursction
calls defined as DLL function calls in the simutetiinto the code. A disadvantage is that the DLL
function call in the model has to be changed iEotiardware is used. This makes the model hardware
dependentvhich disagrees with the idea that a model mustdvdware independent.

After the code is generated from templates, ittbdse converted to a task that can be executedeon t
target device. This conversion process can be atmhrby scripts that are called from 20sim. The
next step that has to be performed is the compdimg linking of the sources. Because every target
has its own specific compiler and compiler optidhere is no straightforward way in generating
executable tasks.

After compiling the task it needs to be deployedhmntarget. This could be performed by scripts, bu
if more devices are used or a different setup ésluhe scripts must be altered to that specifigpse

In order to validate the results of a task, thelalegggl task needs a means to report the results. Thi
could be implemented into the model, but agaimtibeel is depending on the hardware.

The methods proposed in this thesis pose a soltgiomercome the given implementation difficulties.
Furthermore, a tool chain is implemented as précbacept.

1.6 Test setup

ey T Y EEE
Figure 3:Setup

The HIL setup contains two types of PCs, simulaff@®s and embedded PCs. The development PC
running the modelling software is not a part of #&up and can be located anywhere where an
internet connection to the stack can be realisedthis project a set of libraries have been btlikat
run on the development PC that make command androtoof the setup possible from the
development PC.
The PCs are connected by three types of mediaoamsin Figure 4:

» |/O for simulation signal transfer between the pé®Cs

» CAN for synchronization

» Ethernet for control command
The difference between the types of PCs and the®RRiEbe explained next.

University of Twente

5 PC104 stack mechatronic control platform

= |/O
CAN
Ethernet

Development
station

Figure 4: overview of the complete setup

Development station:

The development statiols used to design and simulate the model in dpweémt phase. The
development station can be any kind of PC runniigdaws because the current version of libraries
are made for Windows and 20sim can currently oaly on Windows. The station needs to have an
Ethernet connection that is connected to the PQddatds (Mechatronic stack) and the SIM PC
(Simulation PC) as shown in Figure 4. The develammséation is used to control and monitor all the
other PCs.

M echatronic Stack:
A mechatronic stacls a set of boards that together can interact avitiechatronic plant or simulation
PC. In other literature it is sometimes definedeathedded control systefBCS) (Sanvido, 2002)
(Jovanovicet al, 2001). An ECS is a system that is included inltigger system and can not be seen
from the outside world as being such. ECS is, li&s project, a too general description and theeefor
not used. A mechatronic stack has only one goaltlaaidgoal is to control a plant by sending signals
to the plant and reading signals back from thattpla
The mechatronic stack used consists of three boards

 CPU board

» CAN controller board

* Programmable IO board
All boards of the mechatronic stack are in the RCi@®m factor and therefore called PC104. The
CPU board has a VIA Eden fanless CPU that is desdigm be used in embedded applications.

Simulation PC:
A simulation PCis a common of the shelf (COTS) desktop PC extndi#h project specific
hardware to be used in the experiments. The Pgéneed with the following hardware:

» CAN controller board

* Programmable 10 board
The simulation PCs run the same version of embedgedating system as the embedded stacks. An
advantage of this approach is that from the devedoy station view there is no difference between

Control Engineering

Introduction 6

the stacks and the simulation PCs. The simulatiGs Bre used to simulate a real plant that was
modelled in 20sim.

FPGA:

The programmable 10 boards (Mesa Electronics, 2@@4)he stacks and simulation PCs contain a
field programmable gate array (FPGA). An FPGA carpbogrammed by loading a data file into the
FPGA [Xilinx]. Both the simulation PCs and the ermdfled stacks contain an FPGA board. Signal
exchange between simulation PCs and embeddednstatii go through these FPGA boards in real-
time. Because the FPGA can be programmed, the coination between the simulation PCs and the
embedded stack can be in any digital format. Thisva the user to simulate not only the plant and
the controllers but also the type of signals, fkése width modulation.

1.6.1 Limitations of the setup

The implementation that was used in the previoogept (Groothuis, 2004) consisted of a number of
scripts that where executed in sequence. Thesgtscampiled the C code generated by 20sim and
uploaded the executables to the stacks. For execatithe tasks a command on the stack itself bad t
be given to start the experiment. At the end of@kperiment a file with values was stored on the
embedded stack. This file could be retrieved fromdtack and compared to the simulated values.
This approach is sufficient if the all parameta®s lenown in advance and the modeller has knowledge
of the internals of the stacks. If another plansw@be tested, the sources of the templates hbd to
modified to connect the hardware to the software.
There are some other drawbacks to this approacforliexample, the compile stage of the process
generates an error, the sources have to be compjlétind in order to find any faults because the
scripts stop without warning if a fault occurs. Tueer is not notified of what internally happened a
generated the faulty instruction. If the templatesnpile without faults, the new model can be
generated and tested. This process is very labtemdgive and error prone.
A more general approach of the process is the n&sed this project. The fault sensitive or labour
intensive parts of the previous approach are:

» Connecting hardware to the software

e Compiling the sources

» Uploading the executables

e Starting the experiments (synchronously)

» Downloading the results
The commands needed for rapid prototyping thairapessible with the approach are:

» Connection hardware to software independent ofvinarel and model

* Changing variables online

» Using the same approach on different targets

Chapter 2 gives new insights on how to get richeflimitations and add more functionality to the_HlI
setup. The next section is an overview of what&mplished with the methods defined in chapter 2.

1.6.2 Setup after modification
The methods designed for this project allows falhttol over the complete setup. Graphical user
interfaces haven been developed for the followiad pf the deployment process:
* Model independent hardware selection
» Connection of the hardware to the software
e Compiling the source code
» Uploading hardware specific configurations
» Uploading embedded tasks
» Starting the embedded tasks
* Deleting embedded tasks
* Viewing and modifying variables

University of Twente

7 PC104 stack mechatronic control platform

The following command and control actions have biegplemented into the protocol and can be
accessed by command line applications:

» Starting the experiments embedded tasks synchriyn@ase used in distributed controllers)

» Start and stop logging of variables

* Retrieving logged results

1.7 Used Tools

A variety of tools is used to develop the tool ch&ior this project a few tools have been tested on
usability. A small overview of the tools is giveark a more extensive overview is given in Appendix
V Scite, Doxygen, wxDev-CPP.

wxDevCPP

DevCPP (Bloodshed, 2004) is an open source deveopmnvironment that can be used cross
platform. wxDevCPP (Kathiresan, 2005) is the windaxgrsion of DevCPP extended with options to
easily create graphical user interfaces. A big athge is that when building applications for
Windows and only wxWidges libraries are used, tpgliaations can be easily without modification
ported to other platforms like Linux. The developmenvironment looks a lot like Visual C (by
Microsoft) which makes it easy accessible. The ®atill under development, but crashes are not
really fatal.

Scite
Scite (Scintilla, 2005) is a text editor that can donfigured completely. Examples of functions that
are standard supported are:

* syntax highlighting

» code hints

» code folding

» abbreviations
A programming language called LUA makes it possiblereate every possible command. There are
several configuration files that can be edited Wit editor itself. There are three kinds of option
Global, User defined and language specific. Glaimions are the same for every user. User options
can be used to configure the editor for a useariétion like username can be stored here. A script
could be build that for every user fills a headé&hwhe user information.

DoxyGen

DoxyGen (Heesch, 2005) is a source documentatiphicagion. Documenting sources is most of the
times really annoying. If the sources meet certainstrains and comments are written with certain
tags, DoxyGen can find these tags and generate HTsilex, Man pages, RTF and XML version of

the documentation.

1.8 Outline of the report

The second chapter gives an overview of the dedigon@ chain. The relation between the tools as
well as the data path is explained. The chapteclades with the problem of connection hardware to a
model without changing the model itself, as is tierent situation. The solution to overcome this
problem is given.

The third chapter explains the tool chain in mogtai and how the tool chain can be used to gemerat
deploy and control an embedded task.

The fourth chapter elaborates on the command anttateenvironment. The chapter starts with the
synchronized start option. The synchronized staontrollers in a distributed controller is crucia
because all controllers depend on each other. Abeumf options have been investigated on how to
propagate the start signal through the system amdeplained in this chapter. An unwanted, but
expected behaviour was noticed and is discussing @&nd of the chapter.

Control Engineering

Introduction 8

The fifth chapter discusses the software designédbaild to run on the embedded stacks. It wilitsta

with a discussion how Linux kernel drivers are terit and what constraints they should obey.
Following a general overview, the new version & triver of the anything IO board used in HILS
setup will be explained. After that a paragraplasicated on how the internals of LXRT work and
why it is necessary for real-time communication.eTlast section of this chapter explains the
application running on the stack necessary to mak@munication to the development station
possible. The protocol and internal structure at Hpplication are explained.

In the seventh chapter the demonstrations of ththadewill be explained. The first paragraph

contains information about a, for this project deped, FPGA configuration, which allows easy data
transfer between two PCs. The following paragraphsivow the results.

The last chapter contains conclusion and statesmeendations for further research.

University of Twente

9 PC104 stack mechatronic control platform

2 MSC tools overview

The mechatronic stack connection (MSC) tools asetaf tools that allows rapid prototyping on any
embedded controller that complies with the, in thapter defined, requirements. In this chapter an
overview of the tools is given.

2.1 Purpose

For verification and testing models of physicalnigaor controllers, a platform that can exchange
physical signals is needed. In a previous MSc ptdjéroothuis, 2004) the hardware to do these tasks
has been chosen and built. The hardware consists ebedded PC104 CPU board, an Anything 10
board and a CAN controller. The CPU board contaivdA EDEN 667 MHz processor and standard
PC connections like keyboard, network and VGA catinas (SECO, 2005).

The assembly of the cards is calletechatronic stackThe mechatronic stacks are running an
embedded version of Linux. The complete setup stsif 4 mechatronic stacks, two simulations PCs
and a development station that are connected a @givFigure 5. The simulation PCs are used for
simulation of the plant. The development stationaisvindows machine running the tool chain
developed in this project.

mm |/O
mmm CAN
Ethernet

Development
station

Figure 5: A complete overview of the setup.

Without the tool chain knowledge is needed of Lirtoxget applications to run on the stack. For
example, how to build an application that can rarthee stacks and how to setup up a connection that
can transfer data from a development PC to a sinskmulation PC and visa versa. Many modellers
and control engineers are not familiar with Linuxsoftware engineering. Many software engineers
are not familiar with modelling and simulation. €lmse the gap a tool chain has been build to do the
software engineering part so that modellers andrabengineers can benefit from the embedded
platforms that are used in the Boderc project.

Control Engineering

MSC tools overview 10

2.2 Tools

To automatically generate executable control safvitlom a model, in e.g. 20sim, the steps shown in
Figure 6 should be performed. The designed andales® tool chain assists in this process.

Code N Hardware L Codz_a Executable Deploy-
generator| | connector compile ment

Figure 6: Transformation process

After the code has been generated by the modedloftyvare an application called thardware
connectoris started. This application allows the user tonaxt hardware to the model. In paragraph
2.5 the process of connecting hardware is explaimegaragraph 3.1 the hardware connector itself is
explained.

After the hardware connector has finished, an apfitin called theompiler assistanis started. This
tool compiles the code with the appropriate comled the right flags. The application is explained
in paragraph 3.2.

When the code has been compiled into an executatiole! calleddeployment manages started. This
application can connect to the embedded stackax, ftop tasks. The tool can also manipulate
variables on the stack and retrieve informatiomfithe stack. The usage and implementation of the
tool are explained in paragraph 3.3.

On the stack an application callsthck daemois running to allow the development PC to contect
the stack. The stack daemon and the designed pt@aeexplained in detail in section 5.4.

2.3 Extensible Markup Language (XML)

For this project several small applications whewddbinstead of one large application to do the
transformation process from model to a task runwmimghe mechatronic stack. This method is called
piped filterand allows intermediate starts and progress eatifin of intermediate results between the
separate applications. This approach is chosehatddtter projects can benefit from one or more of
these stand alone applications.

The problem when using multiple small applicatimthat data must be transferred between all these
applications. Data could be passed from one apjgitao the next by memory, but this approach is
not preferable because if another project wantss® an application a way of passing the input
parameters to the application must be specifiechelinory transfers are used the developer of the new
project must know the internals of the existinglegaion, which is not preferable.

The use of a configuration file is preferable, hessano knowledge of the application is needed and
only knowledge of the structure of the configuratide is needed. If files are used to do the data
transfer between the applications, a small palsgrdan read data from and write data to the filistm

be written. An advantage of an application spegficser is that the data that has to be storedds p
through to the next application can in generalrhaller because there has to be no overhead because
of generalization. A disadvantage is that the stmecof the parser must be known to the developer
that wants to use the application due to the rechogdundancy. The learning curve of an application
specific syntax will in general be bigger than tlearning curve of a standard syntax because
knowledge can already be present. Another thirthas errors in the configuration must be detected
and a structure of error messages must be deveiopeder to find faults.

XML (W3C, 2004) is a document syntax that allowsratje of any kind of data. The goal of XML is
to make a document human readable and have a sshtak to easily find errors in documents.

The XML standard defines only the syntax of theuwloent. The open structure is the strength of
XML, because almost anything can be described in_XWhis feature is also a weakness, because if
the structure is not well defined, XML has the temcl to get unreadable, despite the fact XML is
used.

University of Twente

11 PC104 stack mechatronic control platform

An example of a piece of XML syntax that is usethis project is explained in Listing 1.

<CCE>
<Executable Type="20 Sim" Name="example" Directdn/temp\example” ParamNr="2" VarNr="9">
<Constants>
<pi ID="0" />
</Constants>
</ Executable >
</CCE>

Listing 1: XML example

Tags form the main structure of the XML documentad is a word surrounded by ‘<’ and *>’. The
value between the brackets may be of any valuerasds it does not start with a number and does not
contain punctuation marks. A tag is closed by #maesvalue, but starting with a /.

An XML document always has one root, in the exanitgle CCE. The root has in the example only
onechild, Executable. The Executable node has seattributes Type, Name, Directory, ParamNr
and VarNr. Nodes may have children, if a node lashildren the tag ends with />, the tag is cldse
immediately which means this is the only node dmaale are no further children. Nodes on the same
level are called siblings.

The advantage of XML used as configuration filehiat there are a lot of parsers available, and a lo
of application can read and write XML. Data canréieved from XML documents by searching the
parent child relations and the knowledge by thdiegion of the document structure.

2.4 Architecture of the tool chain

The applications in the tool depend on each otimeorder to pass the information that is added by
each tool a configuration file is used. The configion file, in the XML format, is “CCE options” in
Figure 7 where the complete conversion proceshas/s. All the applications and the intermediate
formats, except 20sim and gCSP, have been desmmdeveloped for this project. 20sim or gCSP
can be used to start the chain. Both 20sim and g€8Bo possible, but not yet implemented.

Control Engineering

MSC tools overview 12

CCE CCE
. Code ! | Code !
:::.' generation:__::, __:__‘: generation:___‘_—__

< - < -

e i

Hardware
description
Process
CCE
options and
code

Generated Code

CCE option

Compile/
Process
CCE
options

Executable

CCE option

Upload
files to
stacl

Legend:

: Adapted/used files
CCE option

Figure 7: Conversion process from model to exedeitab

When 20sim is used, a template of the configurdfilenis filled with project information by 20sim.
Each tool in the tool chain will add informationttte CCE options file and extract the information i
needs added by a previous application. The infaomahat is added to the file will be explained in
the section about the tool.
For this project three libraries are built and ienpénted as DLL'’s:

* XXp.dll to parse 20sim template files

o tXML.dIl which is a XML parser based on the tiny XMbroject

* UTMSc.dll for communication with the stack daemon
The tools depend on the libraries as shown in Ei@urThe library structure has been chosen to have
an open structure that can be easily modified taréuinsights and usability for other application.
Another advantage of a library is that implementadi of functions can be changed without having to
re-compile the applications, as long as the inte$aand number of interfaces remain the same.

University of Twente

13 PC104 stack mechatronic control platform

The libraries are now in the form of DLL's. If theols are to be used with another operating system,
like Linux, the DLL can be rebuilt as libraries ftihhat operating system. Most of the function
implementations in the library are kept platforrdépendent and should be easy portable.

Figure 8: Tool dependencies

2.5 Generalization of hardware

This paragraph describes the difficulties and gipessible solutions when a general hardware

independent model that can be converted to C aodst be converted to an application that drives

real physical hardware. In these chapters 20sitakisn as an example to explain the processes. Any
other tool that can generate C code from templziase used in the same way.

2.5.1 Problem definition

When designing models with tools like 20sim therusants to abstract the model from the real
implementation. The model must represent the plaumt,must not be dependent of any hardware
implementations that do not belong to the planpldnt that takes an analogue signal as input, for
example, is not depending on the way this signgéiserated.

The user must be able to specify the hardware énobthe last stages of designing. At the verifarat
stage to be able to have a model that is complatdigpendent of the hardware. Any hardware can
now be used to generate the analogue signal fremexample, as long as the timing and accuracy
demands of the model are met.

A new problem is introduced by these constraiffitdd hardware implementation is not known at the
design stage, hardware must be described in suay @hat every kind of hardware can be connected
to the model without changing the model itself.

In the proceeding paragraphs solutions are givewvéocome the problem of generalizing hardware by
looking at what has to be defined to access thdwere.

2.5.2 Current approach

20sim has a function to use DLL's for special chdtions in models. When C code is generated, the
DLL function call will end up in the code with tlewnnected signals as parameter vectors. What was
done is that function calls with the same namehasOLL where added to the source by means of
libraries. The linker connected the function cadisthe final executable and made hardware access
possible.

A disadvantage of this approach is that in 20sinerupty DLL must be made to allow simulation.
The DLL is not a real calculation but a ‘trick’ tese hardware after the code is generated. Another
disadvantage is that the naming of the functiofs@@ts blurred. The templates needed to cope with
the DLL function calls, and initialization had te lperformed in the template. For every piece of
hardware a different template is needed. If moas thne device is used the number of templates will
grow exponentially to allow the user to use anydkof hardware configuration. Not taken is into
account is the fact that hardware may need talizéd differently in some situations. For example
analogue input or output card may have a range..@D@ or 10..20mA. If these options must be
selectable by the user even more templates neée toade. In the next section hardware will be

Control Engineering

MSC tools overview 14

generalized in order to overcome the problem oftiplel templates and get rid of the DLL ‘trick’ in
20sim.

2.5.3 General hardware procedure

When looking to other tools that can be used tosfier data to the environment like dSpace, Simulink

and Comedi there are similarities in they way tlotua data transfer is managed. dSpace and
Simulink have a set of devices that can be usedaastdndard in how data must be transferred. These
devices or devices that can communicate in thedatdnway can be used in their code. A drawback is

that user defined code is hard to implement ang prddefined hardware can be used. Hardware that
is not in their database or does not communicatiegin standard can not be invoked.

Comedi is an open framework where specific piedende have to be added. This approach is good
if the developed software must be able to switah fetween hardware. A drawback is that there is a
large overhead for simple devices.

Combining the options from the three mentioned igpfibns a general structure for hardware can be
extracted and will be given in the next sections.

General overview

Initial Ready
state for use

Figure 9: Common hardware sequence.

If looking at hardware from a different perspectijest what has to be done to get data from the CPU
to the environment and visa versa, all hardwarebehin the same way. After starting up it is in an
initial state as shown in Figure 9. After initiation of the hardware by a driver it is ready fee @nd
can be used by applications. Applications then dpendevice by retrieving a handle to the device
from the driver and start an application specifitialization. The hardware is now in use and ready
for reading, writing and control operations. Whée tapplication is done using the hardware, the
driver is notified by the application it no longazeds the handle and the device is reinitialized.

Initialization

Before the device can be used, a handle has tethieved from the kernel if an operating system is
used. Through this handle the device is known ey kérnel and the requested operation will by
directed to the appropriate device. After the hardis been retrieved initialization may be needed t
put the hardware in the desired state.

When looking at devices like DSP boards which, una@mal circumstances, have no kernel, a
handle can be defined as the base address of tiwIcaegisters. Initialization has to be done ba t
registers with an offset to the base register aad lwe initialized at in the same way as with an
operating system, with a difference to use reablWare addresses instead of a handler. This is
possible because the location of the addresses riutesary because additional hardware can in
general not be added to the device.

When the hardware is in the desired state thaliziition is finished.

Read, write and I/O operations

Read, write and I/O operations need to be donénemptevious retrieved handle or I/O address. The
function to get and put data from and to the harevigin most cases a simple read or write operatio
If reading and writing is more difficult most ofeéhtimes libraries are used that convert the more
difficult operations into a simpler version.

University of Twente

15 PC104 stack mechatronic control platform

Deregistering

When the application wants to terminate, the hardwaay have to be reinitialized. It could be
possible that, for example, the FPGA configuratian lead to dangerous situations when the control
from the CPU is removed. For this kind of actione aipplication can reinitialize the hardware into a
safe state. After the hardware is in the desiratéshe retrieved handle has to be returned t&eireel

in order to notify the kernel that the device islonger needed. The returning of the handle, ie eas
device can be opened just once, must be doneotw ather applications to open the device.

2.5.4 Code generation process and generated application

In order to describe the possible solution, knogtedf what happens when code is generated and
executed on the embedded stack is needed.

Code Code | Deploy-
generator compiler Executable ment
manager

Figure 10: Transformation process

The actual transformations are seen as black btixesquare boxes in Figure 10. For now it is not
important to know the details of these black bdresrder to understand the process. The black boxes
will be explained in later chapters.

The C code that, for example, 20sim can generdigiid from templates. These templates contain the
framework of the application and the model spedificle is inserted into this framework by 20sim.
When 20sim has generated C code after the modehipleted these files need to be transformed by a
black box into an executable application that canrbn on the embedded stack, or any other
processing device. The embedded stack or otheegsotg device will be callegdrgetfrom now on.

After the executable has been generated the exdelsatransferred to the target by a black box and
started there. Possible solutions on how to comoat@ito the hardware are given in the next section.

2.5.5 Possible solutions

There are two moments in the conversion proceshdhdware can be connected to the software. The
first moment is the moment before transformingabde into the executable. If the hardware specific
code is inserted into the generated code at thismieng the generated application ‘knows’ how to
handle the hardware.

The other possibility is to use standard hardwanetions in the application and build an intermesdia
layer on the target that transforms the generalvisare data transfer calls to hardware specificscall
This approach is callegrapping The principal of the wrapper is shown in Figuie 1

Hardware |

~
~
A Hardware Il

Figure 11: hardware call wrapper

Advantages of the first method are that the hardwan be accessed faster because the commands are
directly send to the hardware and that no additiGodtware is needed to do the data transfer.
Advantages of the second method are that the nstdgs$ relatively simple and that other hardware
can be connected without changing the executable.

Control Engineering

MSC tools overview 16

2.6 Conclusion

The tools can not only be used with 20sim, but \aitly tool generating ¢ code. The tool chain has an
open structure, which allows the user to use thlastavith any kind of software development
environment. Parts of chain or the whole tool cle@in be used to do rapid prototyping of any kifid. |
for example, only code compilation and uploadinghi® stack is needed without the need of hardware
connection, the chain can be started with the clempihe result will be that the sources are coeupil
and the generated executable can be uploaded hétddgployment manager. The only options that
have to be changed are in the configuration file.

It is possible to generalize hardware in such a Wy it can be connected to the model without
changing the model. The hardware connector, exgiain paragraph 3.1, uses code modification to
connect the hardware to the model because thigisnbst general form and can be easily ported to
other architectures. With this approach the DLL -doet have to be used anymore in 20sim and
signals can be directly connected.

To use already designed models that use the Dlitk*twith the tool, the functions previously
defined in the libraries have to be inserted intbaadware description template as described in
Appendix Il Hardware configuration files. The DUunctions must be removed from the model,
signals must be reconnected by the hardware camant the model must be rebuilt with the tool
chain. The rebuilding process is fully automated ahould be easy. The only part that can lead to
difficulties is the template implementation partéese no tool is yet available to generate a tampla
and it has to done by hand.

University of Twente

17 PC104 stack mechatronic control platform

3 MSc tools implementation

3.1 Hardware connector

This method of the modifying code can be easilggnated into 20sim and is not depending on any
software running on the target. This makes it gasyable to other targets. In the next paragraph th
hardware connector will be explained and all theaitief the implementation will be mentioned.

Hardware connector

Hardwsare

Kind M ame Inputs Outputs Add
AnyioP'wWMEns FPGA Encoder15 Fba:15

Remaove
< >
In- and outputs

Input name D Connection

part2 0 Dev: 0 Kind:Encoder, Ch: 0 Inputs

Outputz

Connect
Edit

Digconnect

= [
o z
i1

=
2 g
g [ai)
= =.

[a1]

=

Figure 12: Hardware connector

3.1.1 Graphical user interface

Figure 12 shows the graphical user interface otdrelware connector. The top list box contains the
hardware that is currently used. TRamefield will contain the name of the configuratidmat has
been specified by the hardware configuration desighind contains the kind of hardware that is
used. In and outputs will contain the kind of irdasutputs that are in the configuration in the form
kind:number. If more than one kind is available tlext kind is separated by a comma and added to
the list of inputs or outputs.

The bottom textbox contains the in or output of ¢therent model. With the add and remove buttons
hardware can be added and removed. When the attihbsitpressed a file chooser dialog is shown.
The configuration files are all in the XML standaadd contain the functions that are needed to
control the hardware.

If the connect button or the edit button is presaatialog box as shown in Figure 13 is opened. The
device, 10 kind and channel can be selected here.

With the continue button the settings will be canee, the code will be modified and the application
will be closed to be followed by the code genetator

Control Engineering

MSc tools implementation 18

Select a device, kind and channel @@
hd

Device | gnyioPwMEnc

10 Kind |Encoder v

Channel |[EEEN v

[[o=]

Figure 13: Connect a channel

3.1.2 Implementation of the hardware connector

When 20sim generates the code, a list of variablatso generated in the template file made far thi
project. This list contains all the variables ugsethe model and also all the inputs and outputthef
model. The hardware connector reads the list at gato extract the in and output names. After the
list has been processed it checks if a hardwarBguwation file is already present.

The hardware configuration file is explained in &pdix Ill. In this appendix the use of the hardware
configuration, as well as the hardware descripfiles is described.

When hardware was connected to the model in aqueviun these settings will be loaded, checked
for changes in inputs and outputs of the model audinto the hardware manager to speed up the
generation process. It is assumed that in mossdasehardware connections do not change in case of
a model changes.

When hardware is added or removed, the descrifnifonmation of that device is added or removed
to/from the hardware configuration file. When chalsnare connected to or removed from inputs or
outputs of the model, the hardware configuratida i immediately updated, by adding or removing
the connection in the hardware configuration file.

When continue is pressed, the hardware connectbronly need the hardware configuration file,
because this file contains all the necessary irdtion.

Model Sub model
Read() Open()
Write() Close()
xxmain.c xxsubmod.c

Figure 14: Standard ¢ model of 20 Sim

To be able to smoothly integrate the hardware otionénto 20sim changes have been kept small to
the ‘standard’ ¢ code generation files. Figure hdws the organization of the ‘standard’ template
files. The model file does the read and write op@na and the sub model file opens and closes the
hardware.

In this first setup of the hardware connector amy files, xxmain.c and xxsubmodel.c, contain the
hardware dependent information. In future versiohghe hardware connector it is recommended to
scan all the template files to get rid of the fieeming dependency of the hardware connector angl hav
a more flexible configuration that can handle 20sidifications of the ‘standard’. This has not yet
been implemented, because of timing constraintsisfproject.

The hardware connector first reads the sub modkelxiisubmod.c and scans it for tokens to be
replaced. This file will contain after modificatitine open and close routines of the hardware. friest
include files, needed to compile the source, adeddAfter that the global variables and open and
close routines of all hardware devices are addededessary, channel initialization and removal is
added to the open and close routines respectively.

University of Twente

19 PC104 stack mechatronic control platform

The actual transfer of data from the model to theWare is added in the main loop of 20sim. First
the include files, necessary to compile the sousce,added. After that, the global variables ared th

read and write routines are added. If necessatg,staling functions are added as last to the filain

to be able to use any kind of format. 20sim use®bbes of the double format. Most IO devices use
integer values so that in most cases transformafitime value is needed.

The model files do now have all information neettedontrol the hardware. The hardware connector
starts up the compiler, after modifying the projeonfiguration file by adding the libraries and the

include paths that are needed for the hardwaresaduactions.

3.2 Compiler assistant

The compile process of the sources generated bynduelling tool and modified by the hardware
connector is depending on what hardware is usedeTable to use the hardware the compiler needs
to know where the headers are and what librariest brilinked to the final executable.

205im code compiler. E|§|@
Fieading enviroment

| l

Figure 15: Code compiler dialog

When the compiler assistant is started, first téables used in the model will be parsed and atlwed
configuration file. This step is necessary to gateethe information about the variables needed in
following applications like the deployment managed the CCE environment.

All the preceding applications add library and reafile location information to the configuration
file. The code compiler started by the compilerisiaat will extract the information from the
configuration file and start compiling the sourceith the appropriate settings. The output of the
compiler is redirected to the text box on the Gldl.case of an error the textbox will contain this
information in order to be able to correct the erand have an overview of what is happening.
Warnings will also be shown in the box but will dioeak the chain. In case no errors have occurred
the deployment manager will be started. An advantaigusing the compiler assistant is that the
compile process is now controlled.

An advantage is that all library and header depecide are now handled by the compiler assistant.
This prevents manually editing the script files,iethneeds knowledge of compiler flags and script
languages. The code compiler allows the user tergé®m an executables without knowledge of
compiling sources and script languages.

3.3 Deployment manager

After the code has compiled, the program and hatelveanfiguration specific files have to be
uploaded to the embedded stack. The deploymentgeahas been developed with the constraint that
other targets must be usable. Linux is now the safyported target, because this is the only tahget
stack daemon is available for. If DSP is used,ugiplto the USB connection has to be made which
uploads the executable without a stack daemonDB# cannot run a stack daemon, because DSP has
no OS and can thus not run multiple applicationsléfault because it has no multithreading support.

Control Engineering

MSc tools implementation 20

Deployment manager, g |E| @

Hogt
Type
| Litiues A |

|IP address or hostname

110.0.1.250 |
Check host

Tazk

Type

| vl

MHame of executable

| | Browsze...

Figure 16: Deployment manger GUI

Figure 16 shows the deployment manager GUI.

Features:
Before uploading the stack needs to be checkedsfan expected state. Checking the stack can be

done by pressing the ‘Check host’ button. The dapknt manager will try to contact the stack. If the
stack is unreachable a message will be showngdelicheck the address of the host. If the conoecti

is successful the GUI in Figure 17 will be showreTstack in this example has one 20sim task
running called Testmodel. The nodes of the modataio the variables that are in that node name

category.
Configuration of host g@@

Host info

= uclbc
Hardware
= Saftware
= TwenteSim
[=- Testmodel
[=J- Constants
pi
(=)~ Parameters
(=W avelGenerator]
omega
= Yaniables
(=W avelGenerator]
output
(=) SignalM onitor
input
pant]
part2
CcTC
CTCPP
TwenteSim_CTCPP
Other

Figure 17 Overview of configuration

If there are any tasks running on the stack thaevetarted by the stack daemon the deployment
manager can kill these tasks. Tasks that are adedtby the stack daemon can not be killed because

University of Twente

21 PC104 stack mechatronic control platform

no housekeeping information of the process is albhdl Killing a task is done by selecting the to be
deleted task and pressing delete.

Viewing and modifying parameters and variablesls® possible with the deployment manager. To
view a value of a parameter or variable the item toabe selected. After the selection the F2 button
has to be pressed (Normal change command of Winddwe GUI in Figure 18 will be shown. The
name of the parameter or variable will be in thp tf the dialog (in this case the amplitude of
WaveGeneratorl as shown in Figure 17). The valogvstis the value of the moment the get value
command was processed on the stack. The valueecahdmged to the appropriate value and written
to the stack with the ‘write’ button. Cancel wilbse the window without changing the value on the
stack.

Modify value E@@

amplitude

Walye |2.700000

Wwrite “ Cancel |

Figure 18: viewing and possibly changing value GUI.

Uploading:
Tasks can be uploaded in three states:

» Direct start

e Synchronized start

* Logging start
The direct start mode is used when synchronizetiasta logging are both not selected. After thé tas
and configurations have been uploaded the taskwilitarted by the stack daemon. The synchronized
start will result in a task that has opened thellare but is not started yet. T&gnc serverexplained
in paragraph 5.4.2, will listen to the CAN bus #ostart event. The start event will trigger thetst&
the application. The logging start will result inmaiting task on the stack. The task will wait for
logging event from the client to start the taske Thurpose of the logged start is that the loggdr wi
start the task and that results from the modelagged from the first moment. The first time staimp
the logged values will by time 0.
Usability of the various upload states is giverparagraph 4.3 with the command prompt logging
commands.

Before the tool chain, uploading of the task andhfigoiration was also done by scripts. A
disadvantage is that addresses had to be knownelibi® script was started. If, again, a fault ocdir
the scripts would exit and not inform the user aliba fault. Deletion of tasks was not available] a
starting task had to be done by hand.

3.4 Conclusions

The hardware connector allows the user to conngckimd of hardware to any model. The hardware
connector stores the connected channels to makesisible to change models and not having to
reconnect the hardware to the signals.

The compiler assistant compiles with the flagsrdediand links the needed libraries to the execeitabl
The output of the compiler is redirected to the GbJallow the user to debug any faults that occur.
With the deployment manager the user can seleosf bheck the host and upload the task with the
advantage of error messages in case of an errggefTplatform inspection is supported and the user
has control of tasks that are uploaded with the l®@@pent manager. The deployment manager
enables rapid deployment of task without knowledigine internals of the target platform.

Control Engineering

MSc tools implementation 22

The deployment manager can also be used to reidewdifier information of processes, variables and
parameters. To get the information the node hae teelected that the information is needed from and
the space bar has to be pressed. A dialog will @pp&th the identifier information. This is very
useful in combination with command line commands.

University of Twente

23 PC104 stack mechatronic control platform

4 Command and Control Environment

The Command and Control Environment (CCE) is aofeabols that can send information to- and
extract information from the embedded stacks. Taméwork and a set of command line tools have
been built that can perform the tasks. The onlgghiot built is graphical user interface. The pcoto
may have to be extended with other function thagnemot thought of at this time.

4.1 Purpose

Rapid prototyping demands a flexible developmentrenment that can generate control software
and makes it possible to tune parameters. Stastogping and restarting of tasks must be possible
with only a few clicks in order to get results &st To compare result from simulations and the3HIL
the embedded stacks must be able to transfer aé#te development station. In order to be ableoto d
multiple runs of the same test with different valube development station must be able to change
values in the stack applications without havingetauild the software.

4.2 Interfaces

The UTMSc.dll is a library written for this projettiat contains all the functions that are impleradnt

in the protocol. Appendix IV gives a detailed ovew of all the functions and defined words used in
the DLL. The DLL contains interfaces that can bedusom applications. A description on how to use
the DLL is given in this section.

Open connection

OpenMSc(
4 y
Get configuration Send control Send data exchange
file command command

Close connection
CloseMSc(

Figure 19: State chart of protocol.

Before the connection can be used it first has doopened as shown in Figure 19. The four
mechatronic stacks and the two simulation PCs tmisontrolled and therefore six connections at the
same time must be possible. The DLL supports sbenegd connections at the same time. After a
command has been send, a new command can be Semdmiore commands have to be send the
connection must be closed in order to let othdfmsta connect to the stack daemon.

The configuration file that resides on the stackrmdan makes it possible to connect the CCE to
already running tasks. Information about the rugrtesks and variables of these tasks are stored in
the configuration file. The DLL can retrieve thenfiguration file from the stack. The configuration
file also contains identifiers of processes andades.

4.3 Synchronized start

To start distributed 20sim models and other digtetd software experiments over multiple systems a
synchronized start is needed. A synchronized starts the application on all the participatingides

Control Engineering

Command and Control Environment 24

at exactly the same time. In the simulation phhagei$ done implicitly because all the controllaus

in one simulation environment and there are notiead constraints. On the embedded stacks the start
of the experiment has to be done on every stackratgty.

A timestamp is defined as the number of contropfothat have been performed from the start of the
controller. The result of a synchronized starthiattthe logged values on all devices started by the
synchronized start have the same timestamp if ngnat the same frequency. Comparison of the real
values with the simulated values can be done withoy pre-processing because the timestamp of
every sample should be the same.

The control loop frequency of the mechatronic staickthe HIL setup is chosen to be 1 kHz. The
sample frequency of the simulation PCs is ten tifaster then the controller frequency as shown in
Figure 20.

Sample time 10@s at 10 kHz

o v v v v v v v v

Simulation PCs

Sample time 1 ms at 1 kHz

e e SR e |

Embedded Stacks

Figure 20: Sampling time

In order to get a timestamp that is the same #seirsimulated situation, all the stations needetanb
the same cycle. The time can be calculated byatmpke frequency. If the simulation PCs are used the
start command needs to be propagated through #tensyin maximal 100 us. If only the stacks are
used the start command needs to be propagatedgthtbe system in less than 1 ms to keep every
station in the same step, because they run at'‘tbriiiz.

The maximum propagation time may have a maximuant@t of 100 us in order to be sure that all the
stations are in every situation in the same step.

In the following section a comparison of some mdthdo accomplish a synchronized start is
described. First a small introduction to the teghek is given where after a more detailed explanati
is given.

4.3.1 Investigated options
* FPGA pin:
The Anything 10 board has 72 digital 10 pins. Orfetleese pins can be used to send or
receive the start signal.
« CAN:
On the stacks a CAN bus controller is availableclvidan communicate to all the systems in
the HIL setup. CAN is able to broadcast messaga#i the connected devices.
* Ethernet:
All the systems are connected by an Ethernet caoiomedt is possible to broadcast messages
and in this way signal all the systems to startetkgeriment.
» Parallel port:
All the boards have a parallel port. These portet&pins that can be used as IO port. All the
systems can be connected to a master that sensiathsignal.
» Serial:
e 232: Serial 232 is a point to point connection.asg chain, as shown in Figure 21, could
be build to use this option.
» 485: Serial 485 is a multi master system. All systecan be connected to the same line
and in this way a broadcast can be generateddditianal hardware is needed.

University of Twente

25 PC104 stack mechatronic control platform

L v | v v

Master Client Client Client

Figure 21: Daisy chain

« USB
All the boards have a USB port. All the USB porés de connected by a USB bridge and in
this way reach all devices to send the start signal

e Fire wire
Additional hardware is needed to support fire viiegause there are no firewire boards on the
setup. Fire wire has a synchronized broadcasttrasignal the systems.

4.3.2 Detailed descriptions of synchronized start options

FPGA pin
The FPGA can use external signals as a clock sigihare are 2 pins that can be used as an external
clock. If a setup would be build with this optiomne system will be the master and all the other
systems slaves. The master generates a signgbianhis pin is connected to the other slave syste
clock pin. The signal is converted to an internygbiich signals the system the experiment must be
started.
Advantage:
» Fast, because the interrupt is generated the maimestgnal arrives.
» Easy connection, only one wire is needed to coralktiie devices.
» Cheap, the 10 board is already there.
Disadvantage:
« Dangerous, if a fault is made in the configurationl there is more then one master on the line
the outputs of the two master systems will shooui.
« Elaborate, all the FPGA configurations have to hswgport for the start option. The driver
and link drivers need to be adapted to supporstiue interrupt.

CAN

CAN is a serial connection between all the systdmshis case, there is again one master and the
other systems act as slave. All slave systems eapub in a listening state. When the master

broadcasts the send message, all the slaves catatbed. The master is will also read its own

broadcast and will started at the same time asléves.

Advantage:

» Fast, because an interrupt is generated the maimemessage arrives. A disadvantage is that
the board is located at the ISA bus which is slotien the PCI bus. But because al the
systems suffer the same latency, it doesn’t hawe ta problem.

» Easy connection, the CAN bus is already connectedl the devices.

» Cheap, the 10 board is already there.

Ethernet

All the systems are connected by Ethernet, bedais@sed to program and control the systemg. If i
is used to synchronize the start of an experinmdmig to be taken into account that a hub is usdd a
not a switch. The difference between the two i$ éhswitch contains logic that does the routingolhi
can cause latency and a hub is a passive devicpish@asses the messages.

Two protocols can be used, TCP and UDP. The adgardaad also the disadvantage is that UDP has
no correction protocol. The packet is sent andrassuto arrive. With TCP transmission faults are
corrected, but this is a major disadvantage, becaasknowledge is about how long it took to correct

Control Engineering

Command and Control Environment 26

the error. TCP has also the disadvantage thatntrm send broadcasts and every participating
member has to be notified. It is thus preferreduse UDP to start the experiment and have an
acknowledgement from the receiving systems whigeetkperiment is already running.
Advantage:
» Fast, application can wait for the broadcast.
» Easy, Ethernet is already connected.
» Cheap, Interface is already there.
Disadvantage:
» Experiment demands, because an acknowledgemen bassend, the system cannot be used
at its full speed or else the message will nevesdnal.
» Latency, the server will not receive its own messagd synchronization of the master with
the slaves can be a problem.

Parallel
The parallel port has 8 bidirectional 10 pins. histoption again one system will be the masterttdl
slaves will have one of their IO pins connectedtpin on the master. The moment the experiment
starts the master will change the value on all dbenected pins. In this way the clients will be
signalled.
Advantage:
e Cheap, the parallel port is on the systems.
Disadvantage:
» Dangerous 1, parallel ports are very sensitivfdatlts. In case of a cable mismatch or if the
master is wrongly configured permanent damage eahdresult.
» Dangerous 2, all the nodes need to be on the sapmdys If one of the supplies has a dip in
the voltage, the connected system or all the athgtems will burn their parallel port.
» Usage, the parallel port is now already used teedtie status display on the HIL setup.
» Latency, the server will not receive its own messagd synchronization of the master with
the slaves can be a problem.

Serial 232
There are two serial ports on all the systems. R$23a point to point connection. In order to carine
all the systems together a daisy chain needs taulfe This means that the second serial port of is
connected to the first of the next. The messagkeprilpagate through the system when all systems
echo the message from the first to the secondl penita
Advantage:
» Easy, all devices need to be connected by twomodlem cables
e Cheap, all the systems have two serial ports.
Disadvantage:
» Slow, the message has to propagate though allygterss at a maximum of 115200 Bits/s.
Because of the daisy chain the transmission tinge thabe multiplied by the number of
systems. The first system has started the tranemime earlier than the last station.

Serial 485
On the PC104 boards there is on communication thatt can be set in RS485 mode. This mode
makes it possible to build a network with on singdble. The setup will contain one master that
broadcasts the message to all the systems.
Advantage:

» Easy, just one cable that connects to all the BysRRS485 ports
Disadvantage:

» Cost, for the two simulation PCs additional RS48&ls have to be bought

» Latency, the server will not receive its own messagd synchronization of the master with

the slaves can be a problem.

University of Twente

27 PC104 stack mechatronic control platform

USB
By means of a bridge multiple USB hosts can be ecotau to each other. It is possible for the host to
communicate to another host. Broadcasting mesdages possible because the protocol defines an
endpoint. And thus every slave has to be infornmalitithe start event.
Advantage:

« Easy, connecting all the hosts to a switch
Disadvantage:

* Not synchronous, because all the systems needdighalled sequentially.

e Costs, a USB 6 port hub and 6 host to host calded to be bought.

Fire wire
Firewire card can be daisy chained to each othee. grotocol supports isochronous channels which
can be used to signal all devices. A disadvantagegain that, like USB, all slaves have to be digda
after each other.
Advantage:

« Easy, the devices can be connected by a standewdré cable.
Disadvantage:

* Not synchronous, because all the systems needdighalled sequentially.

» Cost, additional hardware has to be bought foptti®4 stacks and the simulation machines.

4.3.3 Conclusion

Ease of Chance on Time of sync Costs to this
connecting damaging propagation project

FPGA +- -- ++ ++

CAN ++ ++ ++ ++

Ethernet ++ ++ + ++

Parallel +- - +- —+

232 + ++ - ++

485 + ++ + -

USB + ++ - --

Fire wire + ++ ++ -

-- is really bad, - is bad, +- is normal, + is gp®d is very good

As can be seen CAN is the preferred option andptien that is used in this project. The hardware i
already there, easy to connect, low probabilityswong connection and very fast.

When measurements where performed on the perfoamainthe synchronized start an expected but
unwanted behaviour came up. When using multiplérobers with unsynchronized clocks drift may
occur. When the experiments where started syncheiynarift was observed of one millisecond in a
ten minute run. An external synchronization is tmeeded to keep the controllers in the same
calculating period. The CAN bus can also be usedttis purpose, but it advisable to do a new
inventory of synchronization methods. If, for exdeypa digital input is taken to synchronize the
controllers a signal generator could be used takctbe devices. In this way a variable clock is
possible.

4.4 Command line programs

For the general functions, command prompt appboatihave been built. The set makes it possible to
manipulate the tasks running on the stack.

Control Engineering

Command and Control Environment 28

Starting and stopping of task is not possible \thign command line programs, but this functionakty i
available in the deployment manager that allowsalignformation of the stack in order to make life
easier. The functions that can be performed bygdimemand line tools are:

* Getting values of variables and/or parameters ersthck §etva).

» Changing variables and/or parameters on the ssatka).

« Automatic logging of variables and/or parametelgesto a file lpogval).

* Manual logging of variables and/or parameters \&atoea file étartlog, getlog.

» Sending a synchronised start commaseh(isync
With this set of tools all functionality needed fiapid prototyping are given. All commands take
parameters that can be passed to the applicatithreiform -argument identifier=valueAn example
is:

getval —a=MS1.utwente.nl —p=1234 —i=123 —v=21,315,2

This example will get the values with identifiers, B, 5 and 24 of process identifier 123 from port
1234 of the stack with the name MS1.utwente.nl.

In the next section the optional parameters areognded by {}. The identifiers of processes and
variables/parameters can be retrieved by the deygoy manager. The section on the deployment
manager (paragraph 3.3) describes how to retrlmvélentifier information.

4.4.1 Sending a sync pulse (sendsync)

Starting of experiments synchronously over multg@atrollers and/or simulation PC'’s can be done
by uploading a task to every controller and simaaPC with the wait for sync mode in the
deployment manager. Tisendsyncommand will send a synchronize package on théduoarand

takes the following parameters:

a Address of the stack

{p}: Port number on which the stack daemon is ragniDefault is 1500.

The stack must be connected to the CAN interfaceder to be able to send the synchronized start
command. The stack may participate in the experinienvhich case the command will start the local
waiting tasks also. If the stack does not partigifhe signal will only be send to the CAN bus
because no local application is waiting.

4.4.2 Getting Values (getval)

The retrieval of values can be done with gletvalcommand. The getval command can take the

following parameters:

a Address of the stack

{p}: Port number on which the stack daemon is ragniDefault is 1500.

i: Process identifier of the process where thealdeis are located.

V. Identifiers of the variables that have to beiestd. The argument is in the foridentifier {,
identifier } The pattern between the brackets can be repeatex/éry value that needs to be
retrieved.

The retrieve command will output the time stamphefvalues and the values themselves. The time

stamp is used as an indicator on at what poiritria the sample is taken. The output of the valses i

given in the form:

ID o containg’

a andp in the retrieved output contains the appropridéntiifier and value respectively.

The retrieval of values is very useful for quiclecking of a variable or some variables. The command

can not be used for logging because the retrienahial depends on Windows which is by definition

not real-time. The function can however be, formepke, coded in a loop to see every second how a

signal is evolving or incorporated in 20sim to digpresults.

University of Twente

29 PC104 stack mechatronic control platform

4.4.3 Manipulating values (setval)

The manipulation of values can be done withgatvalcommand. The setval command can take the

following arguments:

a Address of the stack

{p}: Port number on which the stack daemon is ragnDefault is 1500.

i: Process identifier of the process where thealdeis are located.

Vi Identifiers of the variables that have to beraed with the value that needs to be written. The
argument is in the formdentifier: value{, identifier: value[The pattern between the brackets
can be repeated for every value that needs to itervr

The command will return a message with the statubeowrite action (success, fail). Values can be

written at any point in cycle, even when a taskvating to be started by a synchronized start or

logging event. It is possible in this way to do es&¥ runs with the same task but other values.d@o d

this the task is uploaded with the wait for syntimp The task will be started but not yet runnitsg

control loop. The values that need to be changachosv be changed to the appropriate values. After
the values haven been changed the synchronizel $gsend to start the task and the task is running
with the modified values. To repeat the proceswder to tune the control loop the task can beteéle
and uploaded in the wait for sync option again. Valkeles can be tweaked and this loop can repeated
until the desired behaviour is met.

4.4.4 Automatic logging of values (logval)

There are two kinds of logging, automatic and méantiae difference is that by manual logging the
values have to be retrieved by hand, while autamatjging does it all automagically. The reason for
implementing manual logging is explained in theagaaph of manual logging.

Thelogval command can take the following parameters:

a Address of the stack

{p}: Port number on which the stack daemon is ragnDefault is 1500.

i: Process identifier of the process where thealdeis are located.

Vi Identifiers of the variables that have to beiesed. The argument is in the foridentifier {,
identifier } The pattern between the brackets can be repeatexvéry value that needs to be
retrieved.

t: Simulation steps that need to be logged. Thekstthemon has no notion of the speed on

which the controller is running, for that reasark$i have to be given. If a controller runs at
1kHz and the time to log values is 1 second a 1 have to be given as the ticks
argument. The ticks can be calculated by multigtime frequency by the log time.

f: Filename of the file where the values have tddgged.

The logval command will start the logging processtloe stack and will try to retrieve the values
every half second. When the stack daemon is sgljihg it notifies the logval command that logging
is still active. After another half a second thgal command will try again. This pattern will repe
until the stack daemon is ready logging. The valwilk than be stored to a file in the comma
separated format that look like this:

Timestamp,value{,value}

{Timestamp,value{,value}}

The comma separated format has been chosen beadoseof software packages understand the
commonly known standard.

When tasks are uploaded in the wait for log sthey tcan be started with the automatic logging
command. The result will be that the log will cantthe values from the start point up to the tifmat t
has been specified by ticks.

4.45 Manual logging of values (startlog,getlog)

Manual logging of values separates the logging ggsdnto two commands. One starts the logging
process and another to retrieve the values. Sgattie logging process is done by thirtlog
command that can take the following parameters:

Control Engineering

Command and Control Environment 30

a Address of the stack
{p}: Port number on which the stack daemon is ragniDefault is 1500.
i: Process identifier of the process where thealdeis are located.

V. Identifiers of the variables that have to beiestd. The argument is in the foridentifier {,
identifier } The pattern between the brackets can be repeatex/déry value that needs to be
retrieved.

t: Tick that need to be logged. The stack daeman rmanotion of the speed on which the

controller is running, for that reason ticks hawdeé given. If a controller runs at 1kHz and the
time to log values is 1 second a 1000 ticks havieetgiven as the ticks argument. The ticks
can be calculated by multiplying the frequency gy fbg time.

The command to retrieve the values isge#ogcommand that takes the following parameters

a Address of the stack

{p}: Port number on which the stack daemon is ragniDefault is 1500.

f: Filename of the file where the values have tddgged.

The manual logging functions come in handy whens&iduted control that uses the synchronized
start is used that has to be logged from the diyste. First all stacks are loaded with the taskthe
wait for sync state. With the manual command loggstarted on all the stacks. After all stacles ar
in the logging state and waiting for the sync pulee pulse is send to all of the stacks and atlksta
will start and log from the beginning for a certgeriod of time. After the logging has finished thik

log files can manually be retrieved from all thecss to be compared with the simulated results.

University of Twente

31 PC104 stack mechatronic control platform

5 Embedded stack

The embedded stacks used in the HIL setup run oenavedded version of Linux. The embedded
version has a subset of the runtime functions ¢hatbe used in Linux. The subset is called micro C
libraries (uClibc) (Andersen, 2004) which is a seibsf the GNU C libraries (Glibc) (GNU, 2001).
The kernel is a standard version modified with RTé@kupport real-time behaviour. RTAI uses a set
of kernel patches that make Linux have real-timgabdities. A set of modules must be loaded into
the kernel to do the actual scheduling and ottedrtime functions.

5.1 Linux device driver standards in the Anything IO driver

When this project started a device driver to cdnthe hardware of the anything IO board was
available. This driver was developed at the Unieiisy (Groothuis, 2004). The driver was able to

load the FPGA that is on the board and do IO omaraton the board. The driver was a first version
and did not use the Linux standard approach of>tkernel drivers (Rubini and Corbert, 2001). An

example is that the FPGA had to be programmed \uiita operation to the board. A write operation

is normally used to do output data transfer from @PU to the device. To be able to maintain the
driver more easily the driver was rewritten accogdio the Linux standards.

5.2 Anything IO device driver

A device driver is a special kind of kernel modWfeernel modules in Linux are used to run in the
kernel and perform a certain task there. A diffeeehetween a kernel module and an application is
that an application has a main function. When trennfunction of an application terminates the
application terminates and memory is released. rAdtenodule has no main function. Instead is has
several functions that can be used by everyoreif &re defined as such.

The kernel module always has at least two functiémié module and cleanup_module. The init
module is to initialize the kernel module and th# kernel what functions are available and tostegi

all resources needed by the module. The cleanupttieeopposite. It tells the kernel the functiores a
no longer available and releases all resources.

A device driver is a special kind of kernel modb&zause it accesses hardware. When a device driver
is loaded a driver can scan if any hardware islabi@ or can take parameters when loaded that tell
where the hardware is located. An advantage ofnaatioc hardware scanning is that no hardware
information has to be given to load the driver. i8adivantage is that all possible locations must be
scanned for the hardware.

5.2.1 Init and cleanup

The Anyio driver is implemented to not take anygmaeters. An advantage of the Anything 10 boards
is that they reside on the PCI bus. The PCI busalragister of devices that are connected. Theekern
has this register of devices that can be used pylaver. The driver asks the kernel at start ugny
Anything 10 device is available. The resourceshaf tound device will be returned to the driver that
allocates the memory resources. This loop is caatdruntil the kernel can find no more devices. The
devices are then available for use and the drix#s #s initial phase.

The cleanup function loops through all the regededevices, releasing and deregistering the
resources.

5.2.2 The/proc and /dev file systems

When the Anyio driver is loaded the kernel can asdés functions and use the device. In order for
applications to use the device, an entry pointithatcessible to the applications has to be adidesl.
normal way in Linux is to register the device unttex /dev file system. The user can open and close

Control Engineering

Embedded stack 32

the device by using its /dev name, for example /algyio0. By this device handle read, write and
control operations can be performed on the device.

To get information from a device or a group of degi Linux has a special kind of file system called
the “/proc” file system. The /proc file system hmsormal directory structure that contains ‘normal’
files. If the file is read a special function iretdriver is executed that outputs the status ofléhvéces

in text file format. When data is written to th&efianother function in the driver is executed theat
take any kind of format. This method of reading amdting is implemented in the driver.
Programming and other control functions of the FP&Available in the current version with the
implementations these functions. Reading the fijja®s information about the board or boards.
Writing to the files programmes, resets or activaeonfiguration in the FPGA.

5.2.3 Read and write operations

The read and write functions are currently not enpénted. The purposes of the Linux read and write
functions are to do a transfer of multiple bytemniror to the board. An advantage of using the read
and write function is that user space programs azress the device by standard read and write
functions of the Linux kernel. The /dev entry iddor these functions. The reason the read arte wri
functions are not yet implemented is that themoisyet any FPGA configuration that requires read o
write function to large amounts of bytes. The motridgrat a FPGA configuration is available, a
standard way of transferring large blocks of datastmbe determined and used in future FPGA
programs. The current approach allows reading aftthg/to and from the device in a different way.

5.2.4 Input and output control operations

The Linux kernel has a special way of communicatather than read or write, between program and
driver. Some devices have special functions like gikample, setting the baud rate of a serial @evic
These functions can not be called read or writections, but do need to be accessible from
applications. For this kind of functions I/O coriti® implemented. The Anything 10 has functions
that must be implemented as I/O control to satibfy Linux standard. Functions that are currently
implemented are FPGA control functions and spaeat and write functions of a byte, integer, or
word from or to the device. The FPGA 1/O controhdtions now make it possible to control the
FPGA from within the application. With the previousrsion of the driver the application could not
program the FPGA. To be sure that the right FPGgram was loaded into the FPGA an extra check
was implemented to check the name and versioneofuhning FPGA program. A disadvantage of
this method is that the FPGA program is active feethe application is started which can lead to
undesirable side effect like uncontrolled steerofgl/O. In the new version of the driver, the
application has full control over the FPGA and qaogram and start it at any moment in the
application. Resetting the FPGA is also possibletorn to a failsafe mode, in case of any error.
When a FPGA program is compiled the compiler wiltetmine the value of the unused pins. It will
sometimes occur that the interrupt pin, when unugets set by the FPGA configuration. Linux will
receive an interrupt from the FPGA and try to samit if an interrupt service routine is implemeahte
Because the pin cannot be reset it will stay higte Linux kernel will again execute the interrupt
service routine. A life lock is the result becaasdy the service routine is executed sequentidlty.
prevent this behaviour the interrupt service raattan be enabled and disabled by 1/O control
operation for configurations that need the intetrup

5.3 LXRT extension of the driver

All Linux system calls like reading, writing andOl/control depend on the Linux kernel. Because
Linux is by definition not real-time these funct®oannot be executed in real time.

LinuX Real-Time (LXRT) is an extension to the Ré&ame Application Interface (RTAI, 2004)
developed at the DIAPM (Dipartimento di Ingegnekierospaziale - Politecnico di Milano) of Milan,
Italy and makes it possible to execute kernel fionst in real-time by a special interface. The
Anything IO board is used in real-time experimeand a real-time interface is needed.

University of Twente

33 PC104 stack mechatronic control platform

I/O control functions are managed by the Linux lkeérrAny real-time application using these
functions was left to real time characteristicd.wfux and can never be real time. To the interfaice
the Anything 10 driver two real time entries haveeh added, reading and writing. With these
functions reading and writing of a single or mukifpytes, integers or words is possible in reaktim
The overhead of the LXRT interface is in the ordemicro seconds(RTAI, 2004). Measured result
are 12,1 us with I/O, 7,9 us without 1/O.

5.4 Stack daemon

This paragraph describes the management programnguion the mechatronic stack that is called
stack daemanThe stack daemon is the communication gatewaydmst the stack and development
station. All commands from the development statmthe stack are sent to the daemon. The daemon
processes the command and performs the requesied ac the stack.

! Development station Embedded stack or simulation PC

Shared
mem/
ﬂ Semaphor

Function

1

1

1

1

1

1

. calls .
; Communi-
i

1

1

1

1

1

cation DLL

Figure 22: Stack connection overview

5.4.1 Protocol

The connection between the communication DLL aedstack daemon is of the server client type and
are connected as in Figure 22. The stack daemtbre iserver that processes requests from the DLL.
After the connection has been established commandbe send to the stack daemon. An advantage of
the client server model is that the embedded stdloks run the server side, do not need to waigt an
processing power when no client is connected.

To keep the protocol simple and easy to procegenaral structure for all packets has been chdsen.
this way the stack daemon can determine what abtmsk should be performed and overhead is kept
low.
Commands are split up in groups of command typesrder to make processing on the server side
faster. The server can determine from the commahnidhapart of the stack daemon code should be
executed. Every group has the same general pamkedf and is extended if necessary.
There are five groups of commands:

* Task commands

* Programming commands

* Exchange commands

* Logging commands

e Utility commands

The commands are sent by TCP/IP packet to the dtahon.

General packet:

cmd | <data> |

Every packet contains a 32 bits integer value withcommand. After the command the data field is
filled with the group specific data. The data fielth have a variable length.

Control Engineering

Embedded stack 34

Task commands:

cmd | taskID |

The data field will be filled with the process IDthe task. There are five commands that can be sen
to the stack daemon to control an application. ddmamands are start, stop, suspend, resume and Kill.
The commands perform the following:

» Start: Starts a task.

e Stop: Stops a task and can be restarted.

» Suspend: Stops the given task from executing. Theegs information is stored. From this

point the task can only be killed or resumed.
* Resume: Resume a previously suspended task.
» Kill: Stop the task from executing and delete @nfrthe memory.

The following commands described can have a lefigith The length field contains the length of the
message after the length field. This is done taltle to separate the packages on arrival and ttkche
if the complete package is received. Applicatiosisg TCP/IP will not receive packages in the same
order and of the same length as they are sentebgahding application, because of the OSI layérs. |
for example, five packages are send the receivagreay have to do ten read actions. It may also be
possible that al bytes are received at once. Theribed behaviour is typical for TCP/IP and a resul
from the protocol. Error checking is not necessarthis case because the TCP/IP protocol already
takes care of that. The data field will be fillettwthe XML string that belongs to that program.

Programming commands:

cmd | length | housekeeping info | program/configuration

A programming command transfers a task or configumao the mechatronic stack. The message will
contain housekeeping information for the stack daerithe housekeeping contains information about
what is send and what to do with the configuratiortask after upload. An example is the wait for

sync tag, which notifies the stack daemon the shsluld be started by the SyncServer, explained in
paragraph 5.4.2. After the housekeeping informatien package contains the task or configuration
files.

Exchange commands:
Get:

cmd | length | PID| indices

Set:

cmd | length | PID| indeX valug index | value |

Exchange commands make it possible to read or exigry variable in the model. This prevents
variable selection in advance to the actual sinanatas is the case with the previous version
developed by Control labs.

If the command is a request for values, the datll fiill be filled with a process identifier and
identifiers of the variables to retrieve. PID cdangathe identifier of the task and indices contidia
indices of the variables. The stack daemon willnrethe timestamp and all values in the order ef th
request.

Answer:

timestamp| values |

If the command is a write of values, the data figilll be filled with a process identifier and iddidrs
of the variables to write immediately followed lhetvalue to write. If more than one value is wntte
the pattern index value must be repeated for evalne.

Commands that do both at the same time are noibp@eecause there is no read/write command.

Logging commands:
Start logging:

cmd | length | PID| indices Duratign

University of Twente

35 PC104 stack mechatronic control platform

Get Log:

lcmd [data |
The start loggingcommand will start a task on the stack that ldgs values given in indices to be
logged for a certain time. The PID field contaihe identifier of the process the values need to be
logged from. The maximum time and/or values that ba logged depend on size of the internal
memory of the stack or simulation PC. Values ast fogged into the internal memory and the size of
the internal memory limits the maximum logging si2dter logging is completed, the development
station has to retrieve the values itself bydbelogcommand. If logging is still active the values can
not be retrieved to guarantee real-time behaviadrlagging of all the data. If the log has not been
retrieved the logging can not be started againéwent data loss.

Utility commands:
cmd | <data> |
At the moment no utility function uses the datédfi§ he data field is available for future commands

GetConfig:

GetConfig gets the configuration from the stacktagiown to the stack daemon at that moment in
time. The data field is empty. With the GetConfitgronand, applications that connect to the stack can
retrieve the status of the stack. This option aflaisconnecting from the stack daemon and at a late
point in time continuing without having to know dhing about the status of all tasks. Keeping the
status locally could also be implemented but hdsgadisadvantage. For example if a task is has
terminated a local configuration will not be updhtgithout a connection. The stack daemon will
receive a terminate signal from the task and upitlaiecal configuration. If the GetConfig command
is issued the configuration without the terminatesk will be given.

SyncStart:

The stacks that participate in the synchronoud §itat have to be initialized. First a task with a
Sync="yes"” option has to be uploaded to the statks will place the uploaded task into a waiting
queue for a synchronized start. After all the patiting stacks are in the waiting state they can b
started with the SyncStart. This command has tedn¢ to any stack that has connection to the CAN
bus. A patrticipation stack can be used, but aldifferent stack that has access to the CAN busean
used to send the command.

Sync starsends the start command to the CAN bus and staskasimultaneously on multiple stacks.
The data field is empty.

5.4.2 Implementation

The implementation of the stack will be explained & 20sim generated control loop. Other
applications can be used in the same way but daravailable the moment this document is written.

Housekeeping

When the stack daemon is started, an empty XML wnhectt is generated to support the internal
housekeeping. The document contains informationutaliee hardware and the software. At the
moment only the software information is availaltdardware information and information of the CPU
are implemented as dummy interfaces and can leal fillith information about CPU usage and the
status or configuration data of the hardware.

When a task is uploaded the housekeeping informasiach as variable names and variable identifiers
of the task, is added to the internal document. Whtee configuration is downloaded to the
development station the document can be parsegtitacethe stack status. After the information is
added and the task is started, the process idantifiadded to the configuration in order to allow
access to the application. When the task quits &illed by the user the process information wél b
removed from the configuration in order to keepdbeument up to date.

Control Engineering

Embedded stack 36

The reason XML is used for the housekeeping is ttatembedded stack can just add the received
information to its internal structure after additige process identifier information. In this way the
processing is done at the development stationd®py from the stack.

Memory access and starting
In normal operation the stack daemon and the adjwit share one shared memory and two
semaphores as shown in Figure 23.

! Synchronize 20Sim task!

Embedded stack or Simulation PC

Shared mem

Stack daemon

Ethernet

Figure 23: internal connection on the stack

The shared memory semaphore is to guard the meimrymutual access by the stack daemon and
the 20sim task. It has been implemented as a res@@maphore that has the nice feature of priority
inheritance. Priority inheritance prevents prioritwersion which can cause deadlock of a process
(Buttazo, 2002). When the stack daemon or the egumin wants to read the memory the semaphore is
checked, if it is there the semaphore will be taked the memory will be read or written. If the
semaphore is not there the application will waitif@éo reappear and then read the memory.

The synchronize semaphore in Figure 23 is usedv tfpe stack daemon the ability to start the
application at any give point in time. If the aggliion has been uploaded without the synchronized
start or logging option, the application will stag soon as it is uploaded that is, the stack daawib
signal the application right away. If the synchmmu start is used, a separate thread, calent
server is started to listens to the CAN bus for a syooime signal. If the synchronize signal is
received, the sync server will signal the applaratio start as shown in Figure 24. This multitheshd
approach has been chosen to give the user theéyabiluse the stack daemon even when a task is
waiting to be synchronized. If the multi approaciswot chosen the stack daemon would be listening
to CAN bus and to user could not access it anymWadting applications had to be started before they
could be aborted which is an unwanted result.

If the logging option is chosen the applicationlw# started after the logging command has beeth sen
from the development station. The logger will sigtee task to start by the synchronize semaphore.
This option makes it possible to log values friomo0.

University of Twente

37 PC104 stack mechatronic control platform

Embedded stack or Simulation PC
Sync Server R e e e R kT P

Sem

Stack daemon

Ethernet

Figure 24: connectlons when waiting for a synchredistart

For the logging of values, another semaphore idl tsesynchronize the stack daemon with the task
that needs to be logged as shown in Figure 25. 3dnisaphore has been implemented as a binary
semaphore. If the semaphore is given and the semapias the value 0 the value will be raised to

one. If the value of the semaphore is one it stays in contrary to normal semaphore that keeps
counting. If the semaphore has the value one, angitocess can take the semaphore. If it wants to
take it again it has to wait until some procesgithe semaphore again. In this way synchronization
of two processes can be achieved with the advattagj¢he taking process does not need to exist.

Logging

Embedded stack or Simulation PC
Logglng thread Y
Next cycle 20Sim task'

Sem

20Sim loop

Shared mem

Ethernet

A
A 4

Stack daemon

Figure 25: Stack daemon in logging mode

If logging is requested by the user the stack daewit) start a separate task that takes the semapho
and stores the current value of the requested blasaThe separate thread is used to provide the
possibility to stop a logging action because thelstdaemon will still be running. All other command
will also be possible, so changing variables whilgging is an option. The application that starttesl
logging action can even be disconnected and comthedta later stage when, for example, logging is
finished.

After storing the values the logging thread wiltleyto a next take action of the binary semaphotke a
gets blocked until the task has made another lodpgives the semaphore again. The logging thread

Control Engineering

Embedded stack 38

will do this loop for the requested amount of tim&fer the loops have been done the stack daemon
will be signalled that the values are ready fongfar. The client has to retrieve the values sffitdf

the logging action has not yet been completed lieatowill be informed that the logging process is
still busy by returning an error value. If the lagg has been completed the values will be retutoed
the stack daemon. The next retrieval of log validlgeturn the values to the client.

Memory map

20sim has an option of using favourite variablegh\Whe previous CCE used at control lab products,
it was necessary to insert all variables that ctwéldnonitored and modified into the favourites. Wit
the new tool chain all variables can be modified amonitored which has the advantage of not having
to select variables at forehand.

The 20sim generated code uses a static arrayr@atdhe data. In the new design, developedHisr t
project, the static array is copied into a sharedhory after every cycle. At the beginning of theley
the memory is copied from the shared memory taathay. In this way a little overhead is generated
by the copy action, but al variables can be acceasrintime.

Measurements have been done on a model provid€Ciywith 164 variables. The calculation time
of the model without the copy action takes 56 use Talculation time of the model with the copy
action takes 62 us. The copy action takes 6 usrafgssing time for 164 values, which is 6% of
processing power for a 10 kHz controller and 6%«afdrkHz loop.

The modified 20sim loop looks like Figure 26. Tiniial memory is copied to the shared memory
before entering the loop to keep the first loopgame as the following loops and to be able toenedr
and modify values when the task is waiting foratstvent. When the loop is entered the memory is
copied from the shared memory and the calculatwagerformed. After the calculations the memory
is copied back and the loop is blocked by the tirtighe timer expires the next loop is performed.

Copy data to
shared memory

<
<«

\ 4
Copy data from
shared memory

v

20Sim loop

!

Copy data to
shared memory

v

Wait for timer

I

Figure 26: 20sim loop for MSc

University of Twente

39 PC104 stack mechatronic control platform

6 Demo setups

To demonstrate the usability of the tools a dentops&om the University called ‘linix’ is used (see
Figure 27). This setup was also used in proje¢Gobothuis, 2004). The results will be compared to
see if the results from this tool chain are theesasmwith the scripts, which should be.

Figure 27: Picture of Linix

6.1 Hardware

The used hardware will contain one PC104 boardaredsimulation PC. In the first two tests the
PC104 and a simulation PC will be used. The sirradawill be faster than real time using the direct
link developed for this project and the second $aten will be the real-time simulation with the
inverse PWM and encore FPGA configuration develdpe&roothuis. In a third test the PC104 will
steer the real linix with the same controller asdum the real-time simulation. The HIL setup viad
controlled from a development PC.

6.2 Software

The developed tool chain will be used to genetaecbontrol software. Two controllers will generated
but with different hardware. The first controllerillwbe connected to the directlink FPGA
configuration, which consist of 15 32 bits and Bbhits input registers and 15 32 bits and 15 16 bit
output registers. The simulation PC will also barected to the directlink FPGA configuration, as
explained in paragraph 6.3. This setup will be destrated with the synchronized start method. The
model that was used in the previous project widbabe used for this project, with the differencat th
the templates of this project will be used.

The second controller will be connected to the mostFPGA configuration which constists of 15
PWM outputs and 15 encoder inputs. This contrallidir be used in the real-time experiment and to
steer the real ‘linix’. The plant for the real-timemulation will be buid with the inverse PWM eneod
FPGA configuration. This configuration can read PVEMnals and steer encoder pulses. From the
controller there should be no difference betweersttup in the simulation and the real linix.

The on-line parameter modifying will be demonstialby building the model with the parameters to
turn the small wheel one turn. After modificatiohaovalue the big wheel will make one complete
cycle.

6.3 Direct link
Direct link is a FPGA configuration developed fhistproject.

6.3.1 Purpose

After a model has been simulated in 20sim and ¢w@debeen generated testing the model without
looking at the real-time behaviour is a good tessde the effect of the signals to the model. df th
example of Figure 28 has to be simulated on thedékiup the controller must run on the mechatronic
stacks and the plant on the simulation PC. To tearike data between the PCs, a link is needed that
can transport the data. To test the accuracy oftdghat is needed the accuracy of the D/A coavert
and the quantizer must be selectable.

Control Engineering

Demo setups 40

Contraller % Plant

Quantize |

Figure 28: 20sim model example

The Direct link FPGA configuration makes it poseilib transfer data from one board to another.
When the data has been completely received byettaiving side an interrupt is generated to signal
any waiting task the data is ready. In this waydbstrollers can calculate the model, send data and
wait for the other side. This loop does not haveraal time behaviour but is a good first test.

Wait for
signal and
receive data

Calculate

20Sim model Send data

\ 4

A 4

A

Another usability of the configuration can be thastér than real-time simulation. Because the
controllers just wait for the other side the lodpcontroller plant can performed at maximum speed.
After calculating the values at one side the datbbe send to the other side and calculated there.
this way it is possible to do simulations fastezrthn the real environment which can also result in
rapid prototyping.

6.3.2 Implementation

The configuration consists of two buffers. Datdhaf input and output memory can be read, data of
only the output memory can be written. Readingatigut buffer can be used to check the last written
data.

Schematic layout of the configuration is given igufe 29.

University of Twente

41 PC104 stack mechatronic control platform

| AnylO 1 L1 Anylo 2
i In memory «| Data <-H] Data |4/ Out memory i
! (Received data) i I (data to be send) i
| b |
1 00 g !
! o |
! Clk <—{—i é = CIk !
E Out memory > Data .: % —» Data » |n memory |
i (data to be send) NS i (Received data) !

Clk — =+ Clk
Figure 29: Schematic view of the direct link.
Pin layout:
Output pins Function Input pins Function
24 Master Clock 48 Receive clock
25 Sending 49 Receiving
26-33 Data out 50-57 Datain

Port three and four need to be cross connectecebatihe two anything IO boards. A loop back test is
also possible. For the loop back test, port theeeth be connected to port four on the same device.

Adress range Bit width Address separation Memory giRer #
0x1C00-0x1C3C 32 Bit 4 Bits Out 0-15
0x1840-0x185E 16 Bit 2 Bits Out 32-47
0x1C60-0x1C9C 32 Bit 4 Bits In 0-15
0x18A0-0x1BE 16 Bit 2 Bits In 32-47

The control registers are located at 0x18FF andC8¥L When data is written to this address, the
board will start sending the data to the outpthatfrequency of the PCI bus divided by four which
4/33 MHz. All registers will be sent to the othéesin one byte at a time basis. Every transfatavé
takes:

(15 * 4) + (15 * 2)) * 4/33MHz = 90 * 1.38s = 120us.

When reading from this address the interrupt fldghe reset and a value will be returned contagnin
the interrupt count.

6.4 Results

The results of (Groothuis, 2004) and this testsvshan error in a cyclic pattern. This might come
from drift in the controllers because the clocks mot synchronized. With the faster than real-time
simulation, made possible by the direct link, thet tan be repeated. It is assumed that the oocerre
of errors will not occur because the controlleles smchronized by their output.

Control Engineering

Demo setups 42

6.4.1 Simulation versus real-time HIL

Figure 30 shows the results of the simulation dredHIL setup running in real-time. The S_Pos and
S _PWM are the signals in the 20 simulated modet. ThPOS and C_PWM are the signals from the
HIL setup running in real time. The error betweka two is shown at the bottom. The results are the
same as measured by (Groothuis, 2004). The ertbe isesult of drift in the controller boards.

20-Sim simulation versus HIL simulation

8
Q 15
% 10
b 5
X o) t +
|]
1
§ 0.5 /\
| - | e,
D_l e~ —— \v/
U)-O.S
-1
n 15
o
o 10
0 s
0 | 1]
1
= 0.5
; ‘/\ | | .
o g — - \'/
Ol-o.s
-1
n 15
o
a 10
05
0 ¢ t t t t i i
0.01
— 0.005
o
= 0
W 0,005
-0.01
0 0.5 1 1.5 2 2.5 3 3.5 4
time {s}

Figure 30: 20sim simulated results versus HIL

6.4.2 Simulation versus real plant

Figure 31 shows the results of the 20sim simuladiod the measured results from the real plant. The
S_Pos and S_PWM are the signals in the 20 simutatetel. The R_POS and R_PWM are the signal
measured from the real plant. The error betweemdthgal position of linix and the simulated positio

is shown at the bottom. The error is larger thatghror measured by (Groothuis, 2001). The cause of
this larger error is in the model of the Linix. Térhas a large influence on the setup, bearings ewgar
which causes larger resistance. Another aspelotipdwer supply that has to be tuned to the mdédel.
small change in the supply settings result in @dyigor smaller error. What can be concluded is that
the tool chain generates models with the same lalvaas the scripts, which was the fact to proof.

University of Twente

43 PC104 stack mechatronic control platform

20-Sim simulation versus real plant

[}
o
]
5 10 / \
@
x o t + + + t +
s 1
E 0 ‘A\ — : ! e
U)I V
v -1
3
o.l 10
(9)]
"0 + t t t t t
§| 0 I -_—— : \\‘/Au
T 04
3
n.l 10
v
"0 ¢ t t t t t
0.2
§ O ———— /—\ ; t \'/’\ ;
"2
0 0.5 1 15 2 2.5 3 35
time {s}

Figure 31: 20sim simulated results versus realtplan

Control Engineering

Demo setups 44

University of Twente

45 PC104 stack mechatronic control platform

7 Conclusions and recommendations

7.1 Conclusions

Method

As a result of this project a means of approacht®sn introduced that can be used to generalize
hardware. It is possible to connect to hardwarey@oerated code from any application that can
generate code and a list of in- and output sigimédstemplate files. The method completely abstract
the software model from real hardware. It is alessible to use the same model on different hardware
and even different targets. To allow easy connaaticthe signals from the software to the hardveare
tool has been designed and written that makessgible to make the hardware connections.

Tool chain

The process of code generation to deployment afsk has been generalized in this project. The
generalization makes it possible to build a toaishthat can perform the complete trajectory from
connecting hardware to the model to deploying amdtrolling the task. The tool chain, that was
designed and built also, makes it possible perftrencomplete trajectory of generating a task to
deployment of that task through a graphical intmfaAfter installation, the tools make it possitie
use the mechatronic stacks and simulation PCs utithay knowledge of compilers, scripts and
Linux.

CCE library

The command and control library makes it possibldd rapid-prototyping with a mechatronic stack.
The library is fully functional and can be usedaicommand and control environment. All functions,
except the uploading function, are available throagmmand prompt applications. The library can
start and stop tasks on a mechatronic stack fromin@ows machine through a graphical user
interface. Some functions, like retrieving and nfigidg values, have been implemented in the tool
chain and can be accessed through a graphicalintegiace. A synchronized start mechanism has
been designed and implemented to start distribatauroller and HIL experiments and can be
accessed through a command prompt application. iRgaxhd writing of any variable has been
implemented in the library and is available throtigh graphical user interface that is also usedhi®r
deployment of a task. Logging of any variable sogbossible but only through a command prompt
link to the library.

7.2 Recommendations

» Most of the bugs reported by testers of the hardwannector tool where XML related. To be
sure the configuration files do comply with the gfieation an editor with syntax checking of
configuration files should be designed and written.

 The hardware manager uses the same approach {ngptakens) for parsing files as 20sim
does and could be integrated into 20sim to addtimmality to the real-time toolbox.

* Synchronized start now uses the Linux schedulertiiigtshould be changed to a real-time
interface to get better results (now 1ms..100us).

* When the synchronized start performance was medsumas noticed that the drift in the
models on multiple stacks was significant. In ortteuse the stacks in a distributed setup a
synchronization mechanism should be designed apk:imented.

« The hardware connector parses the files ad hoc.p@hameters from the configuration files
are assembled and inserted into the code. The melementation of the hardware connector
should first build a hardware tree and than pahgegenerated tree into the tokens in the
sources to get more transparency.

* Port the stack daemon to DSP to be able to us€@tedll on a DSP board and benefit from
that environment. Because a DSP lacks the use tifplauthreads, the templates could be

Control Engineering

Conclusions and recommendations 46

changed, to allow the stack daemon to be compiltedthe final executable and allow access
trough the USB port.

* Make the stack daemon Ethernet connection multitted to be able to connect multiple
development stations to one stack daemon. Thisdcte very useful in educational
environments where more users must be able to eh&ss, or variables on the stack. If
more applications are build that must be connetdeithe stack daemon the single threaded
approach is not sufficient.

University of Twente

47 PC104 stack mechatronic control platform

Appendix | Compiling Linux based sources on MS Windows

This document describes how to build uClibc foradws. Cygwin and uClibc allows cross compiling
for Linux from a windows based host.

Cygwin installation:
Get the install executable form the Cygwin pate://ww.cygwin.comand install.
Select these extra packages to use uClibc in cy(fwou press view in the top right corner the lis
will be alphabetically organized to ease selection)
* auto-make
e auto-conf

e bison
o flex
e gettext
e gettext-develop
e gcc
make
e patch
e patch-utils
e wget
UClibc build:

Start Cygwin by using the desktop shortcut.

Make a directory opt in cygwin by entering:
mkdir /opt
Get the tarball from the UT cvs repository (Devettigctory) and download it into the opt directory
of cygwin. In case cygwin was installed on the @alit will be c:\cygwin\opt. Extract the zippedsdfi
in the opt directory using your favourite compreasiool and go to the sources directory in cygwin b
entering:
‘ cd /opt/uclibc/sources ‘
To set all the flags of the files (including thesexte flags) enter:
| Chmod 777 * |
Go up one level to get in the uclibc directory lyeging:
‘ cd .. ‘
To start the compile process enter:
‘ make ‘
After a while a few options will be asked. It isvégkd to use the following:
» 1-386 (option 7) as answer on the first question.
* Generic 1386 (option 1) as answer on the secondtigue

The rest of the options can be left as they asg §ater Enter).

The uClibc toolchain will now be build. Go out anave lunch, get some coffee and wait... The
process of compiling takes 45 minutes on a 2400 MMD Athlon.

After to uClibc compilation process is completed thol chain is in /opt/uclibc/toolchain_i386

Control Engineering

Appendices 48

Appendix Il Building the root file system from scratch (the hard
way)

This document is the guide on how to build the eddied root file system for the embedded boards. If
a new file system (fs) on the embedded boards efHit setup is needed this document can be a
guide. In case the hard way is to hard, (Groott2084) has written a set of scripts that autonfzed
steps. A disadvantage of using scripts is that,nmm@ng open source software, configurations may
change daily. In order to understand the interaat$ enable the reader to build the root file system
even when some small changes are made to the spthisedocument is in a step by step way.

The embedded stacks use a smaller version of thé Gl¥braries. In order to get applications running
on the stacks a tool chain, that compiles the gabtes to use the smaller version, is needed.tdbls
chain will be the base of the root file system. Ikifaries needed on the file system are genefiayed
the tool chain. After the tool chain is built thersdard utilities, e.a. login and file utilitieseteto be
built. Busy box is a single executable that behasmost common Linux commands. The busy box
executable needs to be built first. The hearthinfix, the kernel, is build next. In order to givet
Linux kernel real-time capabilities a patch hadéoapplied to the kernel sources before buildirg th
kernel. Last but not least the RTAI kernel modwes built. The RTAI modules provide the real-time
functions to the kernel.

After everything has been build, the new file sgsis built in a special directory. The directoryllwi
be mounted to a loop device of Linux. A loop devie® make a file act as a file system. After thee fi
system is ready, the loop device will be disconegend the file system will be compressed to reduce
disk space on the embedded device. The to be drélatsystem will be in a directory called tmpfs.

Preperations:
Backup the old file system before building the rfewin case anything goes wrong the old version can
be restored.

A backup can be made by copying the rootfs.gz amiihuz from the embedded stack.

After the backup, the following packages need toldsnloaded:
e UuClibc buildroot (www.uclibc.org)
* Busybox (www.busybox.nétversion 1.00
* Linux kernel (www.kernel.org version 2.4.29
e RTAI (www.rtai.org version 3.1

Tool chain:
The tool chain is part of the buildroot of uClilixtract the compressed uClibc file and type:
‘ make
Select the options:
Tool chain options:
» Select Build/install c++ compiler and libstdc++
Package Selection for the target:
* Remove the busybox option (We do this manually)
Target Options:

* Remove all selection (We do this manually)

Quit and save the configuration. Now enter again:
\ make

University of Twente

49 PC104 stack mechatronic control platform

After a while the process will ask some questidmsuathe architecture. The following options must
be chosen:

e C3
This will build the complete build root system fau (this may take a while!!!).

< If something went wrong in the menu selection,itfenu can be opened again by entering:
‘ make menuconfig ‘

BusyBox:
Next busy box is compiled. Extract the busybox sewand enter:

make menuconfig \

The options that should be chosen are given below:
Install options:
» Change the Busybox installation prefix to ../tmpfs
Build options:
» Cross compiler (and set the prefix to the previpubsliild tool chain
YOUR_DIR/buildroot/build_i386/staging_dir/bin/i3d&rux-uclibc-)
Coreutils:
» Dos2unix/unix2dos
Debian Utilities:
* Run-parts
« Start-stop-daemon
Editors:
o Awk
Login/Password Management:
o getty
* login
e Use internal password...
e Support for shadow passwords
e Use busybox shadow...
Linux modules:

e Insmod

e Lsmod

e Modprobe

e Rmmod
Networking Utilities:

e ifupdown

¢ Netstat

Linux system utilities:
e Support mounting NFS file systems

Save new configuration file and enter:

make

Kernel:

We now need to compile the kernel. Extract the @tw the directory. The kernel has to be patched
first in order to be able to use RTAI. If you da meant to use RTAI (and not want to use any real-
time applications) you can skip the patching sectiod directly go to the menu section.

Control Engineering

Appendices 50

Before we can patch the kernel the RTAI source si¢ethe extracted. In the RTAI source directory is
a directory called patches. It is located underatvae/arch/i386. Select the patch that matches you
kernel and copy it into the root directory of thexikel.

If your kernel version is not present, the patah loa modified to your kernel. Open the patch fild a
look for the kernel version of the patch, for th4.27 version it looks something like this:

diff -uNrp linux-2.4.27/Makefile linux-2.4.27-adeldsakefile

--- linux-2.4.27/Makefile 2004-08-08 01:26:080000000 +0200

+++ linux-2.4.27-adeos/Makefile 2004-08-14 23:5808®000000 +0200

@Q@-1,7+1,7 @@

VERSION =2

PATCHLEVEL =4

SUBLEVEL = 27

-EXTRAVERSION =

+EXTRAVERSION = -adeos

KERNELRELEASE=$(VERSION).$(PATCHLEVEL).$(SUBLEVEBJEXTRAVERSION)

Before changing we make a copy by entering
’ cp hal16-2.4.27.patch hal16-2.4.29.patch ‘

If we want to change it to 2.4.29 we have to modify

| SUBLEVEL = 27 |
to

| SUBLEVEL = 29 |
After changing the patch file we safe it and caw apply the patch.

Go into the kernel directory and enter

\ patch —p1 < hal”your-kernel”.patch \
Check if all modifications are done. If a modifiicat is failed, patch will tell what failed and weif
‘.rej’ file. Most of the times it is easy to soltlee patch error and perform the patch yourself.
We can now configure the kernel by typing:

’ make menuconfig ‘

The following changes need to be made, all optabraild be built into the kernel (*) unless othemvis
mentioned the module (m) should be built:
Loadable module support:
* Remove the ‘Set version information on all modylmisols’
Processor type and features:
e C3 Processor famly
* Unselect ‘Symetric multi-processing support’
General setup:
» Adeos support
» Unselect ‘Power management support’
Parallel support:
» Parallel port support
Block devices:
* Loopback device support
* RAM disk support
» Default RAM disk support, set to the size needed.e¢xample 32 MB is 32768
* Initial RAM disk support
Network device support:

University of Twente

51 PC104 stack mechatronic control platform

* Ethernet (10 or 100 MBitp» Realtec RTL-8139 as module (M)
File systems

« DOS FAT fs support

e VFAT (Windows 95) fs support

Other options may be selected or unselected, muistthe minimal setup to get Linux running but

We can save the config again and build the kempe&rering:
make bzlmage modules

RTAI:
The last thing that has to be build is RTAI. Gmittte directory of RTAI and again enter:
Make menuconfig

Select and modify the following:
General:
» Set Linux source tree to your Linux source

To build RTAI enter:
make

Assembly:
Now the fun starts, all packages that are needetluilt and the peaces can be assembled.

First make a clean virtual file system by entering:
dd if=/dev/zero of=rootfs bs=1k count=<SizeYouLike>

<SizeYouLike> has to be the size you specifiechenkernel config, which is the size of your ram
drive e.g. 16M. This command will generate a filled with zeros and with a size will be the sizmuy
defined.

Before we can continue we have to have root rigtser su and give the root password or add sudo
to the next instructions).
Setup one of the loop devices to the rootfs byrarge

\ losetup /dev/loopO0 rootfs \
This command will connect the first loop devicehe rootfs.

Make a file system on the device by entering:
‘ mke2fs /dev/loop0 ‘
The file will now be partitioned as a file system

Create a directory that can be seen as the fitersywith the following command:
| mkdir tmpfs |

Mount the file system to the directory by entering:
\ mount /dev/loop0 tmpfs \

The first thing that is copied to the new virtuige Bystem is busybox. Go back to the busybox
directory and enter:

‘ make install ‘

Copy all the libraries to the file system. This@newhat tricky...

Control Engineering

Appendices 52

Go to the buildroot/build_i386/root directory. Thisectory has to be copied, with all the attrilsute
intact to the tmpfs. This can be done by entering:

\ cp -a*././l./[tmpfs \

Due to an error in the buildroot the C++ librarée not in the root. We have to copy them manually
Go to the /buildroot/build_i386/staging_dir/lib datory and enter:
| cp -a *c++*s0* ..1../../..[tmpfs/lib/ |

Now the kernel modules can be copied to the tn@ésto the linux directory and enter:
] make modules_install INSTALL_MOD_PATH=/<YourDir>/pfs ‘
Where <YourDir> is the complete path to the tmpfs

Make a special dir for the rtai modules by entering
\ mkdir /<YourDir>/tmpfs/lib/modules/<your-kernel>-ads/rtali \
Go to the rtai directory and go to the modulesalimgy. Copy the modules to the tmpfs by entering
\ cp -a * ../../tmpfs/lib/modules/2.4.29-adeos/rtai/ \

The dev file systems needs several common dev@ueshe CVS server is a script called mknod.sh
copy this script to your root of the build. Enter

’ ./mknod.sh ‘
The devices will be now be created under tmpfs/dev.

We now have a bootable version of an embeddedmy#itgou would like to, you could test it. Make
sure that there is another bootable Linux kerneahse there is no network support yet.

To get the network running do the following: Charige S40network file, which is located in the etc
directory of your temporary file system, to:
#!/bin/sh

. letc/sysconfig/network

configure network
echo setup network

echo setting loop back interface
ifconfig lo up $LO_IPADDR

echo setting network interface
ifconfig ethO up $ETHO_IPADDR
route add default gw $GATEWAY

Next make a directory called sysconfig and puteadalled network into it. The network file should
contain the following:

export HOSTNAME="<YOUR_HOST_NAME>"

export GATEWAY="<YOUR_HOST_GATEWAY_IP>"

export LO_IPADDR="127.0.0.1"

export ETHO IPADDR="<YOUR_HOST_IP>"
export ETHO_NETMASK="255.255.255.0"

Because the kernel does not have the network adeqtapiled into the kernel it first has to be lodde

University of Twente

53 PC104 stack mechatronic control platform

Loading the network adaptor is done by installimg todule. We make a new initialization file in the

etc/init.d directory and call it SO1modules

Create the file by entering:
‘ Touch etc/init.d/SO1modules ‘
Change the flags by entering
Chmod 777 etc/init.d/SO1modules ‘
Now fill the file with the following:
#Load modules
/shinf/insmod rtai_hal
/sbin/insmod rtai_ksched
/sbin/insmod rtai_sem
/shbinf/insmod rtai_shm
/shinf/insmod rtai_Ixrt
/sbin/insmod mii
/sbin/insmod 8139too

The tmpfs can now be copied to the flash drive.

Control Engineering

Appendices 54

Appendix Ill Hardware configuration files

This appendix describes the configuration filesdusgthe hardware connector.

Parameters:

Kind

The kind of device, e.g. FPGA, analogue or digital.

Device number

When multiple cards of a certain kind are preseatuser must be able to select a device id.
Configuration file

In case a file must be downloaded into the deviedite must first be uploaded to the stack. This
parameter contains the name of the local file thagt be uploaded.

Includes

The include files that are needed in all the fitest contain 10 functions.

Globals

Global variables needed in all files. Variabled tantain the token %handle% will be the samelin al
files. In the main file they will be declared amdthe other files defined as external. Variables no
defined as %handle% will be different in all files.

Options

Special compiler must be defined here. Speciabaptcan optimization options, but also librariest th
need to be included.

Parameters:

Parameters must contain two children: Input an@utut

I nput

The children of input contain the name of the ind the number of inputs of that kind.
Output

The children of output contain the name of the ougmd the number of outputs of that kind.

Startup:

Sequence

Some hardware must be initialized before openefld@ other hardware must be opened before it
can be initialized (Ol). The user must be ableslec the sequence of events.

Children of startup:

Open

The open routine assigns a handle to device tsbé at the reading and writing parts. The funcipn(
itself is put into the function attribute.

Initialize

Children of initialize:

Card

The driver sets all the in and outputs to a cetbaimaviour. It is also possible that a configurafite
must be downloaded to the device. The functiongs)fiis(are) put into the function attribute.
Channel

Some hardware has channels that need to be imdtibfieparately. For these devices a channel
initialization can be defined. The function(s) ifse(are) put into the function attribute. If the
functions need to have variables the Global atteilmust be filled with these values. The file where
the initialize function is called is the only filbese global variables appear. The global option is
needed because C is used and C has the resttitéibvariables must be defined before the functions

Transfer:
Scale

University of Twente

55 PC104 stack mechatronic control platform

After reading and before handing the value to #n@egated code it is possible to scale the valiae to
certain range. With outputs the same must be pessib

Read/ Write

Reading and writing a channel have a certain fondthat must be executed. The 20sim generated
functions must be replaced by hardware specific ohke function attribute contains the function.
The scale attribute contains the scaling function.

Shutdown:

Sequence

Some hardware must be first closed and than r€s&t (vhile other hardware needs to be reset first
and than closed (RC).

Reset

Bring back the card to a failsafe mode. The fumcttiribute contains the function(s).

Close

Release all handles to the device. The functioibate contains the function(s).

Control Engineering

Appendices 56

Template XML document of hardware

Names between % signs can be filled by the HardWaot names between $ signs can be defined by
the user.
<Device name>
<Parameters DevicelD="$DevID$" Config="$FileLocati$” Includes="$IncludeFiles$”
Globals="$Variable;CommonVariable%handle%$" CFldg&ompilerFlags$”
Options="$CompilerOptions$">
<Input>
<$TypeOfinput$ Nr="$NumberOfinputs$” />
<\Input>
<Output>
<$TypeOfOutput$ Nr="$NumberOfOutputs$” />
<\Output>
<\Parameters>
<Startup sequence="$0I1$">
<Open function="$0penCode$"><\Open>

<Initialize>
<Card function="$CardInitializationCode$ %Corffigo” />
<Channel>
<Input Globals="$Variable$” function="$ChannellrdtizationCode$
%type% %channel%” />
<Output Globals="$Variable$”
function="$ChannellnitializationCode$ %type% %chalia” />
<\Channel>
<\Initialize>
<\Startup>
<Transfer>

<Read scale="$ScalingFunction$” function="Read céatgpe% %channel%"/>
<Write scale="$ScalingFunction$” function="Writede %type% %channel%"/>
<\Transfer>
<Shutdown sequence="RC" >
<Close function="Close code”’><\Close>
<Reset function="Reset code"><\Reset>
<\ Shutdown >
<\Device name>

Tokens
The following tokens must be used in the templies that need to be processed.

%IO_INCLUDES% Include files
%Il0_GLOBALS% Global variables
%10 _INITIALIZE% Initialization functions. Initialiation and opening of the

Board as well as channel
%IO_READ_ROUTINE% Read routines
%Il0_WRITE_ROUTINE% Write routines
%l0O_CLOSE% Closing routines. Reset as well aseclo

University of Twente

57 PC104 stack mechatronic control platform

Appendix IV Command and control DLL
This appendix describes the functions and definedigvused in the UTMSC DLL

#i ncl ude <string>

Namespaces
namespacstd

Defines
#defineM SPFPGA 0

Send a PFGA program to the stack.
#defineM SPCONTROL 1

Send a 20sim controller to the stack.
#defineM SPCTC 2

Send a CTC program to the stack.
#defineM SPCTCPP 3

Send a CTCPP program to the stack.
#defineM STKILL 4

Kill a process on the stack.
#defineM STSUSPEND 5

Suspend a process on the stack.
#defineM STRESUME 6

Resume a process on the stack.
#defineM SGETCONF 7

Get the configuration of the stack.
#defineM SPHWCONF 10

Send a hardware configuration to the stack.
#defineM SGETVALS 20

Get values from the stack.
#defineM SLOGVALS 25

Start logging values from the stack.
#defineM SGETLOG 26

Get logged values from the stack.
#defineM SSETVALS 30

Send values to the stack.
#defineM SSENDSYNC 40

Send a synchronized start command.
#defineKILLD 100

Kill the daemon.
Functions
EXPORT intInitM Sc (char *stackName, int stackPort)

Initialize a connection to the mechatronic contstdck at address stackName and port stackPort
. The stackName may be the ip address or thedbg#&mne of the stack.

EXPORT char *GetConfig (int SockNr)
Get the configuration of the stack connected td&Noc
EXPORT intProgramM S (int sockNr, char *fileName, char *configData, kihd)

Control Engineering

Appendices 58

Send the file fileName to the stack connected¢kMr . kind is the kind of file that will be send
to the cotrol stack:.

EXPORT intControlM S (int sockNr, int pid, int Cmd)
Send the command Cmd to process pid on the ataciected to SOCKNTr .

EXPORT intGetValM S (int sockNr, int pid, int number, int *IDs, doubtealues)
Get value or values of the IDs in process pidttenthe stack connected to sockNr and put the in
values . The buffer where the values are storditlad with the time stamp as the first value. Afte
the time the values will be returned. The allocateeimory needs to be the number of values + 1
times the size of a double.

EXPORT intSetValM S (int sockNr, int pid, int number, int *IDs, doubtealues)
Set value or values from values of the IDs ircpss pid on the the stack connected to SockNr .

EXPORT intLogValM S (int sockNr, int pid, int number, int *IDs, intdb.ength)
Start logging of number IDs in process pid oe the stack connected to sockNr for a duration
of logLength model ticks The buffer where the emlare stored is filled with the time stamp as
the first value. After the time the values willieturned. The allocated memory needs to be the
number of values + 1 times the loglength timessthe of a double.

EXPORT intGetLogM S (int sockNr, int pid, double *values)
Get the previously logged values from the stack. DbL will allocate the memory for the value
and thus the calling function has to free the buffe

EXPORT intSendSync (int SockNr)
Send a sync pulse to one of the stacks. This stidtlgenerate a CAN command to all the
connected stacks to start the experiment.

EXPORT intKilld (int sockNr)
Kills the stackdaemon on the stack connected tkNroc

EXPORT intGetAnswer (int SockNr)
Get the answer of the stack connected to sockNhetast send command.

EXPORT intCloseM Sc (int sockNr)
Close the connection sockNr to the mechatronicai@tack.

Detailed Description

Function Documentation

EXPORT int CloseMSc (int sockNr)
Close the connectiospckNr to the mechatronic conrol stack.

Parameters:
sockNr
Returns:
0 in case of succes, a value of SOCKET_ERROR ia o&failure

EXPORT int ControlMS (int sockNr, int pid, int Cmd)
Send the commandmd to procespid on the stack connectedgockNr.

Parameters:

sockNr,pid,Cmd
Returns:

0 in case of success, 1 in case of failure
Note:

Success of this function only tells the commandsefully been send to the stack. Execution of the
command is not garanteed.

University of Twente

59 PC104 stack mechatronic control platform

EXPORT int GetAnswer (int SOCKNTr)
Get the answer of the stack connectesiockNr on the last send command.

Parameters:
SOCKNr
Returns:
The answer from the stack

EXPORT char* GetConfig (int sockNr)
Get the configuration of the stack connectegddokNr.

Parameters:

SOCKNr
Returns:

1 on succes, 0 in case of a failure
Note:

The returned pointer has been allocated by the dll.
DO NOT FORGET TO FREE THE MEMORY !!!

EXPORT int GetLogMS (int sockNr, int pid, double * values)

Get the previously logged values from the stacle DibL will allocate the memory for the value
and thus the calling function has to free the buffe

Parameters:

sockNr,pid,values
Returns:

The number of values in case of a success, a Regatiue in case of an error
Note:

<note>

EXPORT int GetValMS (int sockNr, int pid, int number, int * IDs, double * values)
Get value or values of tHBs in procespid on the the stack connectedstuckNr and put the in
values. The buffer where the values are stored is fil&th the time stamp as the first value. After
the time the values will be returned. The allocateamory needs to be the number of values + 1
times the size of a double.

Parameters:

sockNr,pid,number,IDs,values
Returns:

1
Note:

Remeber to free values yourself.

EXPORT int InitMSc (char * stackName, int stackPort)

Initialize a connection to the mechatronic consitaick at addresgackNameand poristackPort.
ThestackNamemay be the ip address or the logical name o$thek.

Parameters:
stackName,stackPort
Returns:
socket number on succes, -1 in case of a failure

EXPORT int Killd (int sockNr)
Kills the stackdaemon on the stack connectesbtdNr.
Parameters:
sockNr
Returns:
0 in case of success, 1 in case of failure

Control Engineering

Appendices 60

EXPORT int LogValMS (int sockNr, int pid, int number, int * IDs, int logLength)
Start logging ofhumber IDs in procesgid on the the stack connectedstackNr for a duration
of logLength model ticks The buffer where the values are stigdilled with the time stamp as
the first value. After the time the values will leturned. The allocated memory needs to be the
number of values + 1 times the loglength timessike of a double.

Parameters:

SockNR,pid,number,IDs,length
Returns:

1 on succes, 0 in case of a failure
Note:

<note>

EXPORT int ProgramMS (int sockNr, char * fileName, char * configData, int kind)

Send the fildileName to the stack connected $ockNr. kind is the kind of file that will be send
to the cotrol stack:.

1: FPGA file
2: 20sim controller

3: CTC/CTCPP program

Parameters:

sockNr,fileName,configData,kind
Returns:

1 on succes, 0 in case of a failure

EXPORT int SendSync (int sockNr)

Send a sync pulse to one of the stacks. This stdltlgenerate a CAN command to all the
connected stacks to start the experiment.

Parameters:

SOCKNr
Returns:

Always 0

EXPORT int SetValMS (int sockNr, int pid, int number, int * IDs, double * values)
Set value or values fronalues of thelDs in procespid on the the stack connectedstmckNr.

Parameters:
sockNr,pid,number,IDs,values
Returns:
1
Note:
Remeber to free values yourself.

University of Twente

61 PC104 stack mechatronic control platform

Appendix V Scite, Doxygen, wxDev-CPP

For this project open source development tools hised. In this appendix is an overview of which
applications where used and how they can be used.

Scite

Scite is an editor like notepad, but fully confighle. Scite is based on the SCintilla Text Editas
possible to run scite on windows as well as on xinu

Abbreviations

Abbreviations make it possible to translate a deéined word into an other word or series of words.
With abbreviations it is possible to write codetéasbecause commonly used code can be put into an
abbreviation.

Syntax highlighting

Syntax highlighting makes it possible to interpdetede faster because predefined words, numerical
values and comments can be shown in a differeoucol

User defined functions

Scite supports LUA which is a script language thakes it possible to build almost any user function

% stackd.cpp - ScilE [1 of 2]
File Edit Search “iew Tools Options Language Buffers Help

DEHR & Q

1 stackd.cpp | 2 tinystr cpp

177 return 0; -
178

1749 sprintf (SemMame, "=xLEId" , Td-pid);

180 SEM* logSem = (SEM*)rt_get_adr (nam2num{Sembame));

181 - if {(1MogSem){

182 printf{"Could not find the log semaphore %s!1%n", SemMame);
183 return 0;

184 T

185 printf{"Getting: "J;

186 + for (int x = 0; x ¢ ld-snumids; x +){

1849 printf{".%\n"J;

130

191 rt_printk{"Logging started4n");

192 sprintf (SemMame, " =5x3d" , Td-spid);

1323 SEM* syncSem = (SEM*)rt_get_adr {namznum{SemName});

194

135 iF{1d-sstart)

196 rt_sem_signal {syncsem);

157

198 rt_make_hard_real_time(J;

199

200 + while (1d-»Toopcount 1= loops || stoplog){

218 rt_make_soft_real_time(J;

213

220 rt_shm_free {namznum{MemName} 3 ;

221 Td-sfinished = 1;

222

223 rt_task_delete{log_Serwver);

224

225 rt_printk{"“nLogging has finnished :-J%n"J;

226

227 pthread_exit{MULL);

228 1

229

230

231 —1int wain (int argc, char *arge[]) {

232 -
< ¥

line 1, column 1 (IMNS) (CR4+LF) - O chars selected

Download
http://scintilla.sourceforge.net/SciTEDownload.html

Control Engineering

Appendices 62

DoxyGen
DoxyGen is a tool that can interpret code andaetridocumentation from comments in the code. The

interprted comments can be formatted in many faspthe most commonly used are HTML, LaTeX,
RTF and PDF.

Wizard
Doxygen GUI frontend E]@

File Help

Step 1: Configure doxygen

Choose one of the following ways to configure doxygen

Step 2: Save the configuration file

Save... Status: not saved
Step 3: Specify the directory from which to run doxygen
Working directory: | Select...
Step 4: Run doxygen
Start Status: ot running Save log...

Output produced by doxygen

The wizard makes it possible to generate documentatithout going into the doxygen configuration
files. The configuration files can also be edited 4 lot of knowledge of the doxygen internals is
needed. The same wizard is available for Linux Wimakes is very easy to use on both platforms.

Download
http://www.stack.nl/~dimitri/doxygen/download.htntdtestsrc

University of Twente

63 PC104 stack mechatronic control platform

wxDev-CPP

wxDev-CPP is a free development environment thatbeald graphical user interfaces and runs on
windows. It is a clone of Dev-CPP that runs onetipig platforms. Applications build with
wxDeVvCPP are easy to port because xwWidgets is usalfidgets is a platform independent C++
library.

Below is a screen shot made while developing théviare connector

™ Dev C++ 4.9.9.0-wxcbeta-6.4 - [HardwareConnector | - HardwareConnector. dev

Bestand Bewerken Zoeken Beeld Project Ukvoeren Debug Gereedschappen WS Vensters Help

BE DEwc S |90 288 Q| &GE (B
@ R;a b B ER | "f-‘ @ [__"| Mgt ’_f] Invoegen @ Toogle _g Ganaar |
| |]
— —— 13 | HwConnectDlg. weform | HwCornectDla.h | HwConneotDlg.cpp | HwConnectDlghpp.cop | HWSelectopp | HwSelectwe € % |-‘5|| s
Praject | Klassen || Debug|
= ,@ HardwareConnectar ~ i Selector
[HwConnectépp.ic = AT i BoxSizer
§ vcomatiow g - ;-
& i || Kind Mame | Inputs Outputs #idd ik Shlichoiel
: i | GridSizer
!HWConnectDIg:wxDialog b : I FlexGridSizer
.Pmpemes |_E_v51t§|7 i A StaticTest
Center |True)
S wsDislog L S [[ok] Button
Dialog5tyle [wsCAPTION, o [ehd nlfoues i BitrmapButon
Emt s ff‘]d't L 1|10 Hame ID Connection Change view- I =
] GeneralStyle ; o] Edi
: 2 I emo
lcan \Edit Picture 1% % CheckBox
IDMame 1D_DIALOGT i . - i
IDVale oo : LS @ RadicButton
Left i 7 ComboBox
Mame HwConnectD| =
Titls |Hardware cont =h ListBox
“width 437 3 [ListChl
ToolTips | j . Z IE Treelhl
{ c Grid M
et
::::::::::::::::::::: e ScrollBar
ﬂ SpinButton
e ¥

£ 36 Invoegen Done parsing in 0,61 seconds

As can be seen in the screen shot wxDevCPP has tmesiame look and feel of Visual C from
Microsoft. For me, getting to know the environmtauk a real short period.

Download
http://wxdsgn.sourceforge.net/index.html

Control Engineering

Appendices 64

Appendix VI Common pitfalls

Building an embedded system is a complex task withot of dependencies. Because of the
dependencies a fault is made very fast. In thigagy a list of common pitfalls is given in order t
reduce the number of failures.

Busybox

Linux kernel RTAI modules

Hardware

Figure 32: Layers in Linux

The tasks running on the embedded stack depenideonniderlying boxes show in Figure 32. All the
layers need to be build by hand and that's wheseetimmon faults are coming from.

The next section will treat every layer and poiut the critical options.

Compiler

When using embedded stacks another version of tlieacies is used. The normal c libraries are in
the order of tens of megabytes while the micrdoalies are in the order of megabytes. This gain in
space is very valuable on embedded devices becamrsememory can be used for logging of data or
memory requirements of final controllers can belkma

User space programs need to be compiled with thepiter that built the libraries installed on the
embedded stack. If a version mismatch of the liesaand executable occurs the operation system will
generate an unknown library error. Kernel modulesndt depend on the compiler and can be
compiled with any compiler. A point to look afterthat the kernel includes are set to the apprigpria
kernel.

Kernel:

Before building the kernel, it has to be patchethvlTAI. Make sure the patch is of the version of
RTAI you want to use. Even small version mismatcimag result in kernel panic faults.

The kernel can be compiled with any compiler.

RTAI modules:

As said before, the kernel modules of RTAI may bengiled with any compiler. The user space
examples and libraries need to be compiled withntieeo ¢ compiler that has been used to build the
libraries on the stack. An example of a librarytthas to be compiled with the embedded compiler is
the LXRT library that needs to be linked with apptions that use LXRT. Strange compiler errors
will occur when the wrong version of compiler issdgo compile the user space programs. A point to
look after is that the kernel headers and normatiées point to the appropriate locations. A common
fault is that the libraries are compiled against lormal Linux include directory /usr/include. Siga
result will occur if this is the case.

BusyBox:
Busy box is a user space program and thus neduols compiled with the embedded compiler. Busy
box can be compiled statically and dynamically. Huvantage of statically is that the embedded

University of Twente

65 PC104 stack mechatronic control platform

station will alwaysboot, because it does not depend on any libramethe embedded stack. And
disadvantage is that the busy box executable wilubstantially larger.

User space programs

User space programs, as mentioned before, neeé twotnpiled with the embedded compiler. A
common mistake is that the program is dependindilbaries and these libraries have not been
compiled with the embedded compiler. Unresolveémls will be the result of this fault.

LXRT

When LXRT functions are used that do any schedutimg task must have a real-time counterpart. A
real-time counterpart is initialized by the rt_taslt() function. If this function has not been led
and a LXRT function is called the LXRT module wilash with an OOPS. The fault is retraceable to
the get_current() function that contains an empinter because the real time task does not exist.

Control Engineering

Appendices 66

References

Andersen, E. (2004uClibc websitehttp://www.uclibc.org

Bloodshed (2004)DevCPP websitehttp://www.bloodshed.net/

Broenink, J.F., G.H. Hilderink and A.W.P. Bakket998), Conceptual design for controller software
of mechatronic systema: Proc. Lancaster Int. Workshop on Engineeribgsign
CACSD'98Lancaster, United Kingdom, pp. 215-229, ISBN: 1-836D57-2.

Buttazo, G.C. (2002Hard real-time computing systeniduwer academic publishers, Dordrecht,
ISBN: 0-7923-9994-3.

CLP (2002) Controllab Products B.Vhttp://www.20sim.com

GNU (2001),GNU C Library reference manual,
http://www.delorie.com/gnu/docs/glibc/libc.htmi#SETp

Groothuis, M.A. (2001)20-sim code generation for PC/104 targeudividual Design Report, no
009R2001, University of Twente, Enschede.

Groothuis, M.A. (2004)Distributed HIL Simulation for BodeydiSc Thesis, no 020CE2004, Control
Laboratory, University of Twente, Enschede.

Heesch, D.v. (2005poxyGen http://www.stack.nl/~dimitri/doxygen/

Jovanovic, D., G.H. Hilderink and J.F. Broenink @2} Integrated Design Tool for Embedded
Control Systemsin: Progress 2001 Workshop, Karelse (Ed.), Veldhoven, Netherlands, pp.
121-126, ISBN: 90-73461-26-X.

Kathiresan, G. (2005)yx-Devcpphttp://wxdsgn.sourceforge.net/

Mesa Electronics (2004Mesa Electronicdhttp://www.mesanet.com

RTAI (2004),DIAM RTAI - Real-time Application Interfadettp://www.rtai.org

Rubini, A. and J. Corbert (200Dinux Device Drivers, 2nd Editio®'Reilly and Associates Inc.,
Sebastopol, ISBN: 0-596-00008-1.

Sanvido, M.A.A. (2002)Hardware-in-the-loop simulation FramewotfRhD, Automatic Control
Laboratory, ETH Zurich, Zirich, ISBN.

Scintilla (2005) Scintilla text editorhttp://scintilla.sourceforge.net/

SECO (2005)M570 Manual,

W3C (2004) XML, http://www.w3c.org/XML/

Wijbrans, K.C.J. (1993)Twente Hierarchical Embedded Systems Implementhyidimulation - a
structured method for controller realizatioRhD thesis, Faculty of Electrical Engineering,
University of Twente, Enschede, Netherlands, ISB){9005933-4.

Wijbrans, K.C.J., J.v. Amerongen, A.W.P. Bakkerd arf. Broenink (1993), Twente Hierarchical
Embedded Systems Implementation by Simulation (Shésstructured approach to
controller realisation on transputeds A 34, pp. 51-59.

University of Twente

