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Summary

As part of the Multi Axis MicroStage project (MAMS), a 20-simodel of a 3 DOF parallel micro-
manipulator was created. The model serves as a design tdchawerification in order to understand
the behaviour of the actual system. The micro-manipulatas fabricated with MEMS technology. One
of the possible applications for the manipulator is mardfiah of samples in a Transmission Electron
Microscope (TEM).

A multibody model of the manipulator was created with 20-si&D Mechanics Editor. The multibody
model contains the rigid bodies (with their positions, neassnd inertias), and the kinematic construction
of joints and rigid bodies. An equation submodel of the nwitly model is exported to 20-sim. The
compliant behaviour of the manipulator is added in 20-sittiffr®ss, masses and inertias were estimated
on the basis of the physical dimensions of the actual deVite.damping has been estimated roughly from
measurements and is very low, which is typical for MEMS desic

The manipulator is actuated by comb-drives. Since it ismvatt what voltage to apply to which comb-
drive for movement of the manipulator's end-effector in adfic direction, a feed-forward position control
was designed, which controls the manipulator in the desioeddinates.

Measurements on the real manipulator were performed: Téfopin deflection was measured for
different comb-drive voltages as well as the resonancaiéegies. The model was validated with mea-
surements, which shows very similar relations between Isited and measured platform deflection as a
function of the comb-drive voltages. The difference betwsienulations and measurements are: 2.3 % in
z-direction, 3.9 % iny-direction and 12.8 % ip-rotation. The simulated and measured resonance frequen-
cies of the manipulator are also very similar: 7.1 % deviatiorotational resonance frequency, and 3.3 %
and 3.1 % for the resonance frequencies endy-direction.
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Chapter 1

Introduction

1.1 MAMS Project

This master assignment is part of the Multi-Axis MicroStageject (MAMS). The goal of the MAMS
project is design and fabrication of a micro-manipulatothvsix degrees of freedom (DOF). The most
important specifications the manipulator needs to achisxe a

< An enormously high positioning resolution; in the ordetlafanometre
« Extremely small dimensions; in the order of 1 millimetre
* Avery low drift; in the order of 0.1 nanometre per minute

Micro Electro Mechanical Systems (MEMS) process technplsgised to fabricate the manipulator. Itis a
way to create mechanical structures on a silicon chip. MEM&8ology is photo lithography based, which
is also used in the electrical chip technology.

One of the applications for the micro-manipulator is matdfian of samples in a Transmission Electron
Microscope (TEM). The small size of a MEMS device can be beiafivith respect to the conventional
manipulator. It enables a larger tilt angle in the gap sdjpayéhe magnetic lens poles; increasing achievable
magnification combined with a large tilt angle. A small devimbtains thermal equilibrium much faster.
Thermal drift, in occurrence of temperature changes, lsgabiquicker. Furthermore, the eigenfrequencies
of a small device are very high. Firmly connected to the TENuem, the manipulator will nicely follow
the movements of the electron beam due to vibrations of tHd.TE

As part of the study on a 6 DOF manipulator, a parallel in-plaranipulator with 3 DOF is fabricated.

It enables in-plane translation (alomgandy) and in-plane rotation (abouf). Together with an out-of-
plane manipulator, which enables out-of-plane movemerasglation along and rotation about andy),
6 DOF movements are possible.

1.2 Goal of the assignment

The goal of this assignment was to create a dynamic modeliofplane 3 DOF parallel manipulator in 20-
sim. The manipulator consists of three actuators, condeotparallel to an end-effector through flexures.
Actuation is based on electrostatic attraction in a scedatiomb-drive in pull-pull configuration. The
end-effector is a platform that is controlled in the tratistzal (alongz andy) and rotational coordinates
(aboutz). The model serves as a design tool and as verification irr ¢todenderstand the actual system’s
behaviour. Special attention is paid to power-port modgliof the three flexures that suspend the end-
effector in the manipulator.

A multibody model of the manipulator will be created in 2@d& 3D Mechanics Editor. The equation
submodel of the multibody model can be exported to 20-sir20ksim, actuators, springs and dampers can
be attached to the joints. Measurements should validatetiul.
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Since it is not trivial what voltage to apply to which combwer for movement of the platform in
a specific direction, a feed-forward position control is ® designed, which computes the comb-drive
deflection and actuation voltage as a function of the degil&tform coordinates.

1.3 Report outline

Prior to the modelling, a conceptual analysis of both mdaipus (in-plane and out-of-plane), concerning
identification of rigid bodies and flexures is made in Chagtefhe model of the leaf spring is treated in
Chaptef 3. In Chapter 4, a multibody model is created witlsias ‘3D Mechanics Editor’, also known as
the ‘body-editor’. And the equation submodel resultingrrthe body-editor and the bond graph model are
discussed. In Chapter 5 a feed-forward position contraldhatrols the platform in the desired coordinates
is created and simulated. The model is validated with measents in Chapter 6. The report is concluded
in Chapter 7.



Chapter 2

Manipulation concepts

In this chapter, two manipulation concepts of a 6 DOF maiaifmulare explained (see also [5]). In Para-
graph 2.1, a conceptual analysis of both manipulators ismglle identification of rigid bodies and flexures
is treated in Paragraph 2.2.

2.1 Two manipulation concepts

Figure 2.1 shows two manipulation concepts: the in-pland® Parallel manipulator can be ‘stacked’ on
top of the out-of-plane 3 DOF parallel manipulator, or it cendone the other way around. The in-plane
manipulator enables translation along@ndy and rotation about. The out-of-plane manipulator enables
rotation aboutr andy and translation along. This series connection of both 3 DOF manipulators results
in a 6 DOF manipulator.

The concept from figure 2.1(a) enables in-plane movemenrti@bbttom platform and out-of-plane
movement of the top platform. The bottom platform is conadd¢b three ‘arms’ at its corners. Each arm is
connected to the fixed world. The translational actuatoestdgrces on the platform through joints. In the
figure, the joints are represented by circles, but in redlityures transfer forces to the platform. The top
platform is also connected to three arms on its corners. Tihe are fixed to the bottom platform through
joints. Translational actuators exert forces on the ptatfthrough joints.

The concept of figure 2.1(b) enables out-of-plane movenwrihe outer platform and in-plane move-
ment of the inner platform.

2.2 Analysis of the in-plane manipulator

Figure 2.2 shows a photo of the in-plane manipulator thramgbptical microscope. The outer dimensions
are4.5 x 5.2mm and the design has a 120° point-symmetry. In the centre,ritieeffector (platform) is
located. Reinforced flexures connect the platform to stedalhuttles. Each shuttle is suspended by four
folded flexures and actuated by two comb-drives in pull-patifiguration.

Only flexible (or elastic) suspensions are used. This haadliantage of a more accurate displacement,
because regular non-elastic suspensions, constructadfearings and joints like hinges, pivots or sliders
have play and suffer from stick-slip. With the current MEMggHhinology, the minimum achievable play is
much bigger than the specified positioning resolution. TikadVantage of using elastic suspensions is that
it introduces stiffness. A force is necessary not only totpetplatform in a certain position, but also to
keep it there. Another disadvantage is that for flexible sasns the maximum deflection and bending
is limited, compared with non-elastic joints of the samesitlence, flexible suspensions are bigger in
general.
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actuator fixed world

(a) Out-of-plane manipulator ‘stacked’ on in-plane manimriaOut-of-plane manipulator is constrained for in-planevements
(=translation along andy and rotation about) and in-plane manipulator is constrained for out-of-plan@eneents (= translation
alongz and rotation about andy)

in-plane
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(b) In-plane manipulator ‘stacked’ on in-plane manipulatGut-of-plane manipulator is constrained for in-plane
movements (= translation alongandy and rotation about) and in-plane manipulator is constrained for out-of-
plane movements (= translation aloagnd rotation about andy)

Figure 2.1: Manipulation concepts
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Figure 2.2: Photo of the in-plane manipulator through amcapmicroscope
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Figure 2.3: Schematic figure of an arm and a close-up of a atninb-

Comb-drive

Figure[ 2.3 shows an on-scale schematic figure (scale 52:ap@farm’ and a close-up of a comb-drive
(scale 420:1). The arm consists of a shuttle, two comb-gdrifeair folded flexures and a reinforced flexure.
A comb-drive is a linear motor that consists of a movable aisthdonary set of comb-fingers. When a
voltage is applied to the comb-drive, an electrostaticddscgenerated, and as a result the comb fingers
attract each other in thedirection. The electrostatic forces between the fingensdirection compensate
each other. The comb-drive deflection depends on the s#foéthe folded flexures and the reinforced
flexures. The relation between force and voltage is quadrati

neh
Fcomb = _V2

g comb
With n the number of fingers; the dielectric constant of the medium between the fingergwis air or
vacuum,h the height of the comb-fingers agdhe gap between the fingers.

A comb-drive can only generate a force in one direction,esitican only attract its fingers (two opposite
charges always attract each other). Therefore, the combsdon each shuttle are configured in pull-pull
configuration to enable movement in positive as well as megyairection. One comb-drive pulls at one
side of a shuttle and the other comb-drive pulls at the ofider. $1owever, the comb-drives that ‘push’ the
platform are called push comb-drives, and the comb-drikiats ‘pull’ the platform are called pull comb-
drives, to distinguish between them. The force due to bothkedrives is calculated as follows:

(2.1)

neh
Fpusn = 7vp2ush
neh
Fpu = n—Ethz i = Fpush = —— (szush - Vp2uu) (2.2)
g u
Fpu” = _Fpush
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Figure 2.4: Folded flexure

Folded flexures (comb-drive and shuttle suspension)

A folded flexure is an element with four combined flexures ofgkt /s to make it suitable for parallel
guiding and constrain rotational movements. Moreoversti@tening effect in longitudinal direction has
been compensated. Figure 2.4(a) shows one flexure; it hadiagstiffness g,) of 12%, with I the area

moment of inertia of the folded flexure, afilYoung’s modulus of silicon. Figure 2.4(b) shows two patalle
flexures; together they have a guiding stiffness that is tmeg bigger than one flexuré4 ’f{. A folded

flexure (Figure 2.4(c)) is in fact a series construction of times two parallel flexures. The outer two

flexures, as well as the inner two flexures, are parallel th esteer. The two inner flexures and two outer
flexures are in series to each other. Hence the guiding esi$fiof one folded flexure becomes two times
smaller than that of two parallel flexures, so it has the sauigingg stiffness as one flexure ha];Z

Each shuttle is suspended with four folded flexures in palralthich have a combined guiding stlffness
that is simply four times blggeﬂS

The same story holds for the longitudinal stiffnesg).( A folded flexure has the same longitudinal
stiffness as one flexurelf@. The combined longitudinal stiffness of four folded flexsire again four times

bigger: 45;—;‘.

Trench

Figure 2.5 shows a schematic top view and two schematic sexgions of a trench (the location is shown
in Figure 2.2). Trenches separate different potentialsdefihe regions serving as electrical connections
to the comb-drives. The so-called twin-etching method ireguhat the shuttles and the platform contain
square holes. The cross section shows that the trenchigoklectrically isolates the trench from the
ground potential/y,...,q. Mechanically, the trench is fixed to the bulk. The probe paigptial Vy,qp, is
transferred to the stationary fingers of the comb-driveubhathe trench. The ground potential is transferred
to the movable fingers of the comb-drive via the bulk, andugtothe folded flexures.

Assumptions

The folded flexures are assumed to be compliant in their ggidirection, which is the direction the comb-
drive actuates. And they are assumed to be stiff in the otinectibns. This makes 1 DOF unconstrained
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Figure 2.5: Schematic cross sections of a trench isolatgdrre

and 5 DOF constrained. The longitudinal stiffness is in treeoof 10 bigger than the guiding stiffness,
so the folded flexures are assumed to be rigid in the longitldiirection. TheRz rotational stiffness (see
Figure' 2.3) that the shuttle feels due to the four folded flexus very big, because of the relatively large
distance between two neighbouring folded flexures. Rheand Ry tilt stiffness that the shuttle feels is
also very big, because of the use of four folded flexures aakté one or two.

Usually, flexures allow torsional movements due to torsiiffness. This is undesirable when only in-
plane movements are actuated, as in this manipulator. Baé she parallel construction of three flexures
(that connect the platform to the shuttles) does not alloiodyplane movements, torsion movements of the
flexures are constrained. Hence, only the in-plane movesra#rihe flexure are assumed to be compliant
and a 3 DOF model of the flexure will be sufficient.

The shuttles and the platform are modelled as rigid bodié® [@af springs and folded flexures have
compliant behaviour and are modelled as springs. If the g springs is much less than that of the
shuttles and the platform, the mass of the springs may bectegl. And if the shuttles and platform are
much stiffer than the springs, the shuttles and platform beagssumed rigid.



Chapter 3

Flexure model

In this chapter, the flexure model is addressed. Paragrahadws that it is important to choose symmetric
coordinates for the stiffness matrix of a 3 DOF flexure. Irdgaaph 3.2 a 3 DOF flexure is constructed from
1D springs in 20-sim, and it will be shown that it is impossiti construct a symmetric leaf spring from 1D
springs. In Paragraph 3.3 a solution is given to describstiffaess matrix in symmetric coordinates, but
still using an asymmetric joint-structure to construct flexure. In Paragraph 3.4 the solution is validated
by simulations. The manipulator has reinforced flexurestvhire treated in Paragraph 3.5.

3.1 Choosing symmetric stiffness matrix coordinates

Figures 3.1(a) and 3.1(b) show an undeformed flexure, wisickeimped to the fixed world at the left side.
At the right side, a rigid body is connected. A massless caosbn is connected to the bottom of the rigid
body. The in-plane forces are applied on the centre of thiagptsually a flexure is only constrained (to a
certain extent) for translation alorgand rotation about. However, since the parallel construction of three
flexures in the manipulator does not allow torsional movesierhoice is made not to consider torsional
stiffness abouy. Hence, the flexure is assumed to be constrained in the eplné directions (3 DOF)
and unconstrained in the in-plane directions (3 DOF).

The flexure in Figures 3.1(a) is rotated arounavith respect to the flexure in Figures 3.1(b). The
stiffness matrix of the flexure, around equilibrium and fioradl deformations, reflected to a pointiat %l
(in its centre of stiffness (COS)) is derived in Appendix B.2

Bl
- 00
K.=| o 12’% 0 3.1)
FA
0 0 ——

l

The force-deflection relation for this flexure (for small éefions) is:

M %)
F, | =Kc| =, (3.2)
F, Ye

The energy function of this flexure (for small deflectionsyjisdratic:

¥
EI EI FA
[ Y Te Ye K. Tc :%79034_67 1‘34'1793 (33)

FE =
l l 2
Ye

1
2
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! f

(a) Undeformed flexure (rotated abaptvith respect to flexures below)

(d) Deformed due to a positive torque (F, andFy, are zero) in world orientation

Figure 3.1: Flexure
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(f) Deformed due to a positive torque (F; andF;, are zero) with symmetric orientation

Figure 3.1: Flexure

Figure 3.1(c) shows the same flexure with a deformation daeptositive force inc-direction ., (M and
F, are zero). According to the symmetric stiffness matrixyantieflection inz-direction results.

Figure 3.1(d) shows the flexure with a deformation due to digesorque/, (F, andF, are zero).
The only deformation is a rotatiop. The orientation of the forces and torque is chosen such,itha
coincides with world coordinatesl). A flexure is a symmetric element in reality, because it doats
matter whether the left side of the flexure is clamped anddheet affect the right side, or the other way
around; the deflection stays the same in both cases. Howvtheeflexure is not modelled symmetrically
with this choice of orientation of forces and torque, beeaitisioes matter whether the flexure is viewed
from right to left or from left to right. Imagine that the tweriminals of the spring are swapped, i.e.:

« Instead of the left side, the right side is clamped to thedfixerld
« Instead of the right side, the mass is connected on theitkft s
 The flexure is turned around 180°

Then the flexure in Figure 3.1(e) results. But now, the comis are defined differently. In fact, the
orientation of the forces is now chosen such, that it comeiith the coordinates of the rigid body {).

In general, the orientation of the forces can be chosen iniialy many ways, but only one choice
leads to a symmetrically modelled flexure, which is exadatlyhie ‘middle’ of both orientationsy(,.) (see
Figure 3.1(f)). The orientation of this symmetric coordaaystem coincides with the orientation of world
coordinates, but rotated%go. And it also coincides with the orientation of body coordes but rotated
—%ap. Only in this case the flexure is modelled symmetrically. Spiag the terminals of the spring now
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does result in the same spring behaviour. Hence, the flesuneodelled symmetrically. However, the
stiffness properties have become dependant on the angailactibne.

3.2 Construction of a flexure model, based on 1 DOF springs

The body-editor is a graphical editor in which a rigid bodydab(or multibody model) can be created. In
such a model, rigid bodies (with a certain mass, inertia @mtre of mass (COM)) can be connected to each
other through joints, in a user friendly way. Compared to alling rigid bodies with 6-dimensional bond
graphs, modelling with the body-editor is much easiergiaahd less sensitive to mistakes. Currently, only
1-dimensional joints were implemented in the body-editora later stage, the program will be expanded
with multidimensional joints, since the body-editor idlsti development.

Springs are not yet implemented in the body-editor. The wamndbdel a 1D spring is to use a joint
in the body-editor and connect a spring to the power port efjtint in 20-sim. In principle, a 1 DOF
joint is an ideal joint, representing infinite stiffness ith @her directions. Each 1 DOF joint may have
its own power-port (consisting of an effort and flow) in 2@asito which for example dampers or springs
can be connected. For mechanical translation, the efféorée and the flow is velocity. For mechanical
rotation, the effort is torque and the flow is angular velpdit a stiffness (C-type element) is connected to
the power-port of a joint, the joint behaves as an ideal gprithe C-type element integrates the velocity
to a deflection£ = [ vdt) and, in the case of a linear stiffness, multiplies the détiaawith the stiffness
(k. - = = F,), which is equal to the resulting force. More generally, fitree is the partial derivative of the
energy function of the spring, no matter whether its stgBes linear or non-lineat . (x) = g—f.

To model the compliant flexure behaviour, the flexure is sedwa massless rods, with a 3 DOF spring
in between. There are two methods to define a multidimenkspnizag in the body-editor. Method 1 (which
is the normal method) is connecting a 6 DOF C-element to thepteraction ports of two rigid bodies
and constrain the out-of-plane DOFs. Rigid bodies may haeh a 6 DOF power interaction port, which
appears in the resulting equation submodel in 20-sim. Byahiit, a multidimensional force (and/or torque)
source may be connected for example.

Method 2 is constructing the spring from a series connedafdD joints and let the axes of the joints
cross in one point. A 3 DOF flexure, which is constrained indtieof-plane directions, can be constructed
from a series connection of three 1 DOF joints. However, imegal a 6 DOF spring cannot be constructed
in this way, because it is well-known that a series connaatibthree 1D rotational joints always gives
problems (the order does matter and the construction maygima gimbal lock, for example). But since
method 1 gave some numerical problems in simulations (drifhe spring position as well as numerical
instabilities), method 2 is still used. The joints that dounet an in-plane flexure would logically be the three
in-plane joints: two translational (alongandy) and one rotational (abou). However, other constructions
are possible, for example two rotational joints and a trtimhal joint in between (see Appendix B.3).

A series connection of translational 1D joints does not givgblems. The order of joints does not
matter, as is shown in Figures 3.2(a) and 3.2(b); the distlietween the rigid body and the fixed world
is the same for both multidimensional joints. A problem esisvhen rotational joints are involved. For
example, when two translational joints and one rotationiakjare connected in series. In this case, it does
matter in which order the joints are connected, becauseisti@nde between the rigid body and the fixed

©- joint

-Jomt —_jOII’lt
. ' z-joint
y—jointI P~

\ ly-joint Jy-joint \.

_ p-joint f L
L -joint
§—._. ’ %%_z.\\/ v
N z-joint =

(@) =,y (b) Y,z ©y =z (RIS

Figure 3.2: Series connection of joints
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world is different. This is shown in Figures 3.2(c) and 3)2(@wo different orders of joints are shown here
(but more different orders can be thought of).

Mathematically the problem comes out as follows. Matrix tiplications are in general not commuta-
tive, but in the special case of homogeneous matrices, winihconsist of translations, matrix multipli-
cations are commutative:

1 0 =z 1 0 0
Hx)=10 1 0 Hy)=10 1 y (3.4)
00 1 00 1
1 0 =z
H(z)H(y)=Hy)H@)=|0 1 y (3.5)
00 1

However, matrix multiplications of homogeneous matriaas)sisting of rotations and translations are in
general not commutative:

H(y)H (x)H(p) # H(p)H(y)H (z) (3.6)
With H () a homogeneous matrix, only consisting of a rotation:

cos(p) sin(p) O
H(p) = | —sin(p) cos(p) 0 (3.7)
0 0 1

Figure 3.3(a) shows a multibody model from a flexure that isstaucted by a series connection of joints in
the order(z — y — ). Figure 3.3(b) shows a multibody model from a flexure thabisstructed by a series
connection of joints in the ordéry — « — y). The joints are interconnected with dummy bodies, having
zero mass and inertia. The flexure is clamped to the fixed veorkthe left side, and on the right side a rigid
body is connected to the flexure.

When the joints are connected in the order— y — ¢), the stiffness matrix seems to be defined in
world orientation; the forceé’,, F, and torque) (which are related to the deflectiany and rotation
o by this stiffness matrix) seem to have the same orientasomwald coordinates. Hence, this flexure is
equivalent to the flexure in Figure 3.1(d) and is called therld-flexure’. When the joints are connected in
the order(y — x — y), the stiffness matrix seems to be defined in body orientatf@nforcesF,,, F,, and
torqueM (which are related to the deflectiany and rotationy by this stiffness matrix) seem to have the
same orientation as body coordinates. Hence, this flexueguivalent to the flexure in Figure 3.1(e) and
is called the ‘body-flexure’. The three joints cannot be @mtad in such a way that the resulting flexure is
symmetrically modelled, like the flexure in Figure 3.1(f).

Figure 3.4(a) shows the flexure again, with three differéwtices of stiffness matrix coordinates. The
U, coordinates are asymmetric and related to the coordinatesFigure 3.3(a) and 3.1(d). Thie, coor-
dinates are asymmetric and related to the coordinates figord-3.3(b) and 3.1(e). Th&. coordinates
are the only symmetric coordinates and related to the coatels from Figure 3.1(f).

Infinitely many choices can be made to measure the distaacgly between the spring terminals (see
Figure| 3.4(D)), as long as? + y* = r? holds. Viewing the flexure from left to right, a series of four
coordinate changes is performed: first a rotatfdfi;), then a translatiod (), then a translatiod (y)
and then a rotatioff (p2): H = H(p1)H(x)H (y)H (¢2). The first rotationp; can be chosen in the range
[0 : ¢]. The second rotation- is also in the rang® : ], but should be equal tp — 1, to make the total
rotationep.

The only symmetric coordinates from this range areltbeoordinates (see Figure 3.4(c)). Viewing the
flexure from left to right, the coordinate changes &te= H(3y.)H (z.)H (y.)H(5¢.). Looking from
right to left, the coordinate changes dté % ¢.)H (y.)H (z.)H (3¢.). This is the same, but only andy
are switched. However, this does not matter, as mentionedebésee Figures 3.2(a) and 3.2(b)).

A solution is describing the stiffness matrix in symmetraoadinates, but still using an asymmetric
joint-structure to construct the flexure. This solutioniigeg in the next paragraph.
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Figure 3.3: Flexure model, constructed from 1 DOF springs

fixed world

(b) Infinitely many choices of force/torque coordinates (c) Symmetric force/torque coordinates

Figure 3.4: Different choices of force/torque coordinates
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3.3 Symmetric model of a flexure

The energy function of the flexure is expressed in symmadigicoordinates. However, symmetric co-
ordinates are not available, in contrast to asymmeigjocoordinates (or the asymmetrig, coordinates,
depending on the order of the 1D joints, as explained in tegipus paragraph). A solution is to rewrite
the energy function (Equation 3.3) and express i¥jncoordinates:

L BI EI , |FA

27 90§+6T IC+§T y? (38)

The relation betwee(r., y.) and(x,, y,) is a rotation of coordinates as can be seen in Figure 3.5:

E =

Pec = Pa Pec = Pa
Te | _ Ry Tq = Te = Tq cos(%gpa) + Ya sin(%gpa) (3.9)
Ye 2% | ya Yo = —Tq Sin(304) + Yo cos(2pa)

And substituted in the energy function:

EI EI . 2 EA . 2
B= 1521 6E] (ncos(on) +asin(hen) + 352 (Crasin(iion) + i cos(len))? (310)

To find the force vector, the energy function has to be difféaged to the coordinates:

M= gf _ (Elf> ot (—BEIlgin(so) L EA Zn(so)) 2
‘ 3.11
n 6E1cos(p) EAcos(p) N 3EIsin(p) EAsin(p)) » ( )
B 2 a¥a 3 4l Ya

OF 12cos?(3p)EI  sin®(3¢)EA 6sin(p)EI  sin(p)EA
Fy = D < 3 + i Ta + < 3 - 9 ) Ya (3.12)

oF 6sin(o)ET  sin(p)FA 12sin?(Lo)ET  cos?(Lp)EA
F, = Sy = ( Ef) - (‘;’; )x - ( 132 - 21 Yo  (3.13)

These energy-conservative spring equations are put inlyp&element. Since they are non-linear, they
cannot be rewritten to matrix from, like in Equation 3.2.
When the flexure rotation is zero and only a deflection occhescbordinate systems overlap and the

energy functions are the same:
E=6—z2"+=—y (3.14)

wla

Figure 3.5:%<p rotation from¥, to ¥,



16 3. FLEXURE MODEL

The calculation can be performed for thig coordinates as well. But in that case, the stiffness matrix
coordinate transformation is a rotationeggo instead Of—l—%tp. The energy function then becomes:

EI El . 2 EA . 2
%T gp% + 67 (asb cos(—%gob) + yp s1n(—%<pb)) + %T (—acb sm(—%gpb) + Y cos(—%gob))

(3.15)

FE =

In the next paragraph a simulation shows that this solutiorks:

3.4 Simulation of asymmetric and symmetric flexures

To show that the orientation of coordinates of the stiffmassrix matters, a world-flexure (order of springs
is (x —y — ), see Figure 3.6(a)) is compared with a body-flexure (ordapdhgs is(y — = — y), see
see Figure 3.6(b)). In the next paragraph both flexures arelaied with a linear spring/stiffness matrix
(hence a quadratic energy function). In Paragraph 3.42fleotures are simulated again, but with corrected
energy functions (see Equations 3.10/and 3.15). Then, theréle get similar behaviour and are symmetric.

3.4.1 Asymmetric flexures

The stiffness matrix from Equation 4.19 has been connectédth flexures:

1.09-107% 0 0
K= 0 0.0584 0 (3.16)
0 0 34404

They both have a length of 1 mm. The rigid bodies have the mad@nertia of the platform (2.11 ug, see
Paragraph 4.3/4). Some damping is modelled to damp out tiklatisns. The energy functions of the
flexures are quadratic:

E =545-107° ©? + 0.0292 22 4 17202 32 (3.17)

Figure 3.7(a) shows a 3D-plot of this energy function as &tion of z. andy., with ¢, = 0.1°. Figure 3.8
shows a 3D-plot of this energy function as a functionrpfandy., with . = 0°. Visually they are the
same, but the second one has an ‘offseB.ab - 1079 - (%)2 = 1.66 - 10~ J. The spring equations of
this leaf spring are:

M' =1.09-10"% ¢, F! =0.0584 z.. Fy = 34404y, (3.18)

The accent distinguishes between the force and torque apifiregs (with’), and the applied force and
torque at the end (withoU} (see Figures 3.9(e) and 3.9(f)).

A certain force and torqueM, F,;, F) (in body orientation) acts at the end of both flexures (see Fig
ure 3.9(a)). The deflection of the body with respect to itgiari(its undeformed position) is given in
Figures 3.9(b) and 3.9(c). Between 0.015 and 0.04 secorgsidarce F,, is applied. Between 0.045 and

F

.% Fy_a\wM &— \.ﬂ

n
W

o}
=
(a) World-flexure: series connection in the order— (b) Body-flexure: series connection in the order—
y— o) (stiffness matrix is defined in world orientation) z—y) (stiffness matrix is defined in body orientation)

Figure 3.6: Flexures, constructed from 1 DOF springs
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0.065 seconds the same force is applied, together with ag¢drfjsuch that the rotatiop is just cancelled
and a deflection: = 13.7 um remains. This can be calculated as follows:

{ F, = 0.8 N j{ F! = 0.8pN

M =4-10"""Nm M =M-F,1l=0
(3.19)

=0 p=¢"=0

:>{ = % = 8"35“& = 13.7pm N { z =2’ + lsin(y’) = 13.7ym
The applied force at the end of the flexure creates a torqueeimiddle, which exactly compensates for
the applied torque at the end. Between 0.07 and 0.095 seoohda moment is applied.

Schematic representations with deformed springs of thaféexat different time instances are given in
Figures 3.9(e) and 3.9(f). To give insight in which 1D sprisgleformed, undeformed 1D springs (springs
which do not feel any force at that moment) are not shown isgHigures.

The deflections of both flexures indeed differ. The diffeeebetween the deflections is shown in Fig-
ure 3.9(d), which is 0.036 um and 0.50 umairand y-direction. Between 0.01 and 0.04 seconds, only a
force inx-direction is applied, which results in a torque and forcenatcentre of the flexure. For the world-
flexure holds thaftF, is acting totally on ther-spring, but for the body-flexure holds tha} is divided
between ther-spring andy-spring. Therefore, the-deflection of the world-flexure is bigger than that of
the body-flexure.

As long as the rotation is zero, the coordinate systems irhwtiie stiffness matrices are described,
overlap. This is obvious in Figure 3.4(a). When= 0 thenz, = z, = z. andy, = y» = y.. The
simulation also shows this between 0.045 and 0.065 sectireliexure deflections are the same.

The difference is only 0.036 um and 0.50 pmairand y-direction, but increases rapidly for bigger
rotations. For rotations about five times biggen (°), the difference is already 4.8 um and 13 um.

3.4.2 Symmetric flexures

The simulation is performed again, but the stiffness mesriare replaced by the non-linear stiffness equa-
tions (Equations 3.11, 3.12 and 3.13). The energy functidtise springs are calculated for this numerical
example. The energy function of the world-flexure is (seedfiqn 3.10):

Euyorta = 5.45 10772 +2.92 - 102 (24 cos(3¢a) + ¥a sin(3¢4))?
+1.72 - 10° (—zg sin(2pq) + ya cos(3¢4))*  (3.20)

Figure 3.7(b) shows a 3D-plot of this energy function as afiem of 2, andy, for o, = 0.1° (and in
Figure 3.8 withp, = 0°). The energy function is quadratic for, andy, wheny = 0, but deviates more
and more from the quadratic energy function wheimcreases. The energy function of the body-flexure is
(see Equation 3.15):

Ebody =5.45- 1079@5 +2.92- 1072(.%}, COS(%QO},) — Yp sin(%gpb))z
+1.72 - 105 (xy, sin(3¢p) + ¥ cos(%gob))2 (3.21)

Figure 3.7(c) shows a 3D-plot of this energy function as afiem of z; andy, for ¢, = 0.1° (and in
Figurée 3.8 withp, = 0°).

Figures 3.10(b) and 3.10(c) show that statically the defiestare the same. The small differences
between the deflections that are shown in Figure 3.10(d) ootyr during changes in force and torque.
Because of the small rotations possible in the manipulatdy a small error is made when asymmetric
flexures are implemented instead of the symmetric ones.

Figures 3.10(e) and 3.10(f) show the power-flow through terufles and the buffered energy. The
energy starts at zero and goes back to zero, which implies@&@y is consumed or generated. The energy
is totally generated by the sources, consumed by the darapdrisuffered by the flexure/spring.
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0.01
(b) Transformed energy function (c) Transformed energy function

Figure 3.7: Energy function as a function:ofindy, with ¢ = 0.1°
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Figure 3.8: Energy functions as a functioraoindy, with ¢ = 0° (they overlap)
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(e) Power-flow through flexure

Figure 3.10: Simulation of two symmetric flexures. The flesiare asymmetric in principle, but become
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3.5 Reinforced flexures

Instead of flexures with a fixed thickness, reinforced flesuransfer forces to the platform. These flexures
have a reinforced mid-section which not only leads to anciase in all stiffnesses (see Soemers [7]):

EI 1
£l () 0 0
k, 0 0 L \1-p B
0 0 k
Y 0 0 £4 <1 )
l 1—p

But also leads to a slower decreaséjmas a function of the-displacement, according to v.Eijk [4]:

k 1
T U—p)BP

With:

B — 700 1+ @)1 +3¢+3¢%)°
N 1+ 10g + 45¢% 4+ 105¢3 + 105¢*
Which is an advantage of reinforced flexures, as well as thease in longitudinal stiffness. A disadvan-
tage is that the lateral and rotational stiffnesses botiease.

and ¢= % (3.24)
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(b) Undeformed reinforced flexure

K

1
(c) Deformed reinforced flexure due to a positive fof¢e(M andF, are zero)

Figure 3.11: Reinforced flexure



Chapter 4

Power-port modelling & simulation

In this chapter the 20-sim model of the manipulator is adsirés Paragraph 4.1 explains the multibody
model that was created in the body-editor. In Paragraphh&20-sim model is treated. Parameters like
masses, inertias and stiffnesses are calculated in Ppha¢rd In Paragraph 4.4 the stiffness and resonance
frequencies of the manipulator are simulated with 20-sim.

4.1 Multibody model

The multibody model of the in-plane manipulator is given igife’ 4.1. The dimensions of the squares in
the grid are).5 x 0.5 mm. Three arms are connected to a triangular platform inllgarahe little cross in
the origin of the world coordinate system is the referenagybdt is fixed to the fixed world, so does not
move. The guiding direction of the folded flexures and theation the comb-drive moves are represented
by translational joints. These are connected to the referand the shuttles. The construction only allows
in-plane movement of the platform (i.e. translation alorgndy and rotation about).

Figurel 4.2 shows a schematic representation of the mulfilbaadel. It visualizes more clearly how
the flexures are constructed in the body-editor. The convesiexcite a forcd.,.,,;, on the shuttle. The
shuttle is connected to the fixed world through a spring onside, which represents the lateral stiffness
of each set of four folded flexures. On the other side, it isneated to a massless rod. The platform is
also connected to a massless rod. Both rods are connectadit@ther through two translational springs,
one rotational spring and two dummy bodies (having zero raadsinertia), which represent the in-plane
compliant behaviour of the flexure. Unlike in the scheme gkes of translation and rotation for the flexure
coincide in the multibody model.

The scheme already shows springs instead of joints, but thigxmdy model does not contain springs,
since they are not implemented in the body-editor yet (astio@d in Paragraph 3.2). The multibody
model only contains the rigid bodies (with their positiomasses and inertias), and the kinematic construc-
tion of joints and rigid bodies. The compliant behaviourla# flexures is added in 20-sim.

4.2 20-sim model

Figured 4.4 shows the total 20-sim model of the manipulathe @Gomb-drive & folded flexure part and the
flexure part of the model will be explained in the next parpbs Finally, the total model is explained.

4.2.1 Comb-drive & folded flexure part

Figure 4.3(a) shows the comb-drive and folded flexure pati®@20-sim model of the manipulator. A force
source, spring and damper is connected to the power-podaf ef the three translational (comb-drive)
joints.
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Figure 4.1: Multibody model

Figure 4.2: Schematic representation of multibody model
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Figure 4.3: Parts of 20-sim model

The force source (MSe) represents the force generated hyo t8eo comb-drives. They are excited
with a smooth voltage profile. Voltage steps should neverdie®p a comb-drive in reality, because of the
low damping in the manipulator (only some material damping air friction). A voltage step will result in
big oscillations of the platform, which is undesired. Heircéhe model, also a smooth voltage is used.

The push and pull voltage are both squared and subtracteddach other. The results is multiplied
with 2¢% to end up with the force generated by both comb-drives. Ehiexactly what the force-voltage
relation showed (see also Equation 2.2):

neh
Pzi(

FI) Vzush - V2ull) (41)

p p

Comb-drive pull-in occurs very often with these kind of dmg, which will break it. Therefore the
side-instability voltage was calculated. Legtenberg [2kg an expression for the voltage at which side-

instability occurs:
Voo = | Lo ok 6 o) _ 5y (4.2)
side =\ 2e0hn ke ¢ g) '

This is promising, because it is a very high voltage. One r&rigathat the longitudinal stiffness of the
folded flexuregk;) decreases as a function of the comb-drive deflection. Theafivig relation is given by
v.Eijk [4]:

ki 1

—_— = 4.3

kl,O 12.’L‘2 ( )

700d?
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The maximum deflection of the manipulator stays withih0 pm, which results in a decrease ipwith a
factor0.7. But then, the side-instability voltage still359 V, which is still very high. Hence, no problems
are expected considering pull-in.

Ideally, the movable part (rotor) and the stationary paet¢s) of a comb-drive are perfectly aligned
so the gap between rotor and stator is the same on both sides.id€al situation is assumed in above
calculations. However, the side-instability voltage @ases rapidly due to misalignment between rotor
and stator (see [9]).

4.2.2 Flexures/ leaf springs part

Figure 4.3(b) shows the flexure part of the 20-sim model ofntiamipulator. For each flexure, the three
power-ports of the joints are put together in a 3D-bond, gisipower splitter. A stiffness (C-element) and
damper (R-element) are connected to the 3D-bonds, whiaiesepts the flexure’s compliant behaviour.
Almost no damping exists in the real manipulator (only sonseamal damping and air friction), but a
higher damping makes simulations faster, which is handyntalsite static behaviour. Dynamic behaviour
is not as important as static behaviour, because the mamngpuoes not need to be very fast.

The compliant behaviour of the flexure is only linear in a dmaige around equilibrium. In this linear
range, a constant stiffness-mattix may represent the spring. A linear spring integrates thecitats
(¢, ,9) to deflectiongp, x, y) and multiplies it withK', which is equal to the force and torque.

However, the flexure is non-linear and described by a nagalienergy function (see Equation 3.10), so
a single stiffness matrix is not sufficient. Instead of &isifs matrix, the partial derivatives of the energy
function top, x andy (Equations 3.11, 3.12 and 3/13) are put in the C-elemeneg@kquations are related
to each other by the energy function of the spring and caneeoabdom functions). This ensures that the
C-element only buffers energy like an ideal spring, and sa¢sonsume or generate energy.

4.2.3 Total model

Figure 4.4 shows the total 20-sim model of the manipulatbe ultibody model from the body-editor is
imported in 20-sim as an equation submodel. In subblock 'ldE homogeneous matrix (consisting the
position and orientation) of the platform with respect te fixed world is monitored. Each joint has its
own power port, consisting of an effort and flow (power = dfferflow). The power-port of a translational
joint consists of an effork’, which is the relative force between the two parts of a jand a flowv, which

is the relative velocity between the two parts of the joinheTime-integral of this velocity is the relative
deflection of the joint.

4.3 Parameters

4.3.1 General dimensions

The most important dimensions with their symbols, which ased throughout this report, are given in
Table 4.1. The thickness of the reinforced flexures, thesiblitexures and the comb-drive teeth is 2 um by
design, but varies in reality (because of the mask resaiptiarying etch times, and so on).

4.3.2 Properties of silicon

The density of silicong;) is 2.33 - 10% ke/m3. The so-called twin-etching method requires that the autt
and the platform contain square holes9ok 9 um in a raster ofl2 x 12 ym. This leads to a decrease in
mass with a so-called ‘hole’-factgr = 0.4375.

Since silicon is an anisotropic material, its Young's maguls direction dependent. Kaajakari [3]
uses tensor formalism to calculate Young's modulus focaili With the free downloadable matlab script,
the Young's modulus can be calculated for different angfethe [1 0 0]-plane (see Figure 4.5), which
corresponds to the silicon wafer plane. The folded flexures laaf spring of Arm lay in the [100]-
direction (or[0 1 0], which is equivalent), in contradiction to the folded fleesiand leaf springs of Arsrand
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structure dimension | symbol
all structures | height (in direction perpendicular to wafer) 38 pm h
shuttle length 1200 pm
width 940 pm
reinforced total length 1mm ls
flexure thin section | width 2 um d
thick section| width 14 pm
length 720 pm
comb-drive tooth thickness 2 pm d
length 50 pm
initial overlap 20 pm co
gap 4 pm g
folded flexure| length 400 pm Iy
width 2 pm d

Table 4.1: General dimensions

90
200

150

0

Figure 4.5: Young’s modulus (GPa) in the0 0]-plane

Arms which make an angle of 30° or 60° with tfie0 0]-direction. This can be called thgy/3 0]-direction
(or [v/310], which has the same Young’s modulus). Young’s modulus inleeimportant directions:

E[lOO] = 130 GPa E[l\/go] = 158 GPa (44)

4.3.3 Shuttle

A rigid body is fully described by a mass and inertia matrixg és ‘center of mass’ (COM). The mass of
the shuttle is:
ms = psi- A-h-f=398-10"%kg = 40.4 g (4.5)

With p,; the density of siliconA the surface of the shuttle (which has been corrected for gheesthe
folded flexures take); the height of the shuttle anfithe hole-factor. The mass of the reinforced flexure is:

hole factor
width length  ——"— width length
A 142 - 92 N 10

) thin part
reinforced part P

To account for this mass in the model, it has been added to éiss of the shuttle.
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Figure 4.6: Inertia of platform

The shuttle is a rectangular body with massand dimensions x b x h. The inertia matrix of the
shuttle (in its COM and with principal axes perpendiculad garallel to the body) is:

b2 + h? 0 0 525 0 0
I = 5ms 0  a2+h? 0 =] 0 32 o |[10°°Y (4.7)
0 0 a® 4+ b? 0 0 846

4.3.4 Platform

Figure 4.6(a) shows a schematic figure of the platform. The€aoeed flexures are connected to the plat-
form in a isosceles triangle. The inertia matrix of the mlati (,) around the centroid of the triangle
(geometrical center) is calculated in this paragraph. Tlh#gvm consists of» = 378 small blocks of
12 x 12 x 38 pm. The mass of one block is:

My = psi - 12pm - 12pm - 38 um - f = 5.58 - 10~ kg (4.8)
And the mass of the platform is:
my =n-mp=2.11-10""kg = 2.11 g (4.9)
The inertia matrix of the platform in the centroid is caldelhby summing the inertia matrices of the small
blocks that build up the platform. The inertia matrix of dtocaround the centroid of the platform (see

Figure 4.6(b)) is calculated by the parallel axes rulg; = I, + myr?. The inertia matrix of the platform
is the sum of all inertia matrices:

I, = Z I,; = Z (Ib + mbrf) = nly +my Z r? (4.10)
i=1:n i=1n i=1:n
With:
T I A Y —ry 0
= —my 2?42 —ym | = | -y ol 0 (4.11)

—xizi Yz T4 y? 0 0 x? 47
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Which has been calculated for each block in a Matlab scripé ibrtia matrix of one block in its COM is
(see Figure 4.6(c)):

. 122 + 382 0 0 738 0 0
Iy =43 0 122 + 382 0 1072 = o 738 0 [-1072 (412
0 0 122 + 122 0 0 134

Finally, the inertia matrix of the platform is:

.72 —019 0
I,=| -019 127 0 |-107"7 (4.13)
0 0 294

The whole inertia matrix is calculated, because the bodipedsks for the three principal inertias. But
since out-of-plane rotations do not occur, only the inddfan-plane rotationsI.) is important.

4.3.5 Reinforced flexures & folded flexures

The stiffnesses of the three reinforced flexures are differgot only because their orientations in silicon
result in a different Young'’s modulus, but also because Weeage flexure thickness is different. The latter
is caused by the resolution of the mask used in the fabricg@tiocess, which seemed to be too low. As a
result, the borders of flexures under an angle of 30° or 60fhatretraight (SEM photos show this in [6]).

Hence, the stiffness matrix has to be calculated separfatetize first arm(K ), and for the second &
third arm(K»3):

EI 1
— 0 0
ET 1
K= 0 127 (1_])3 0 (4.14)
0 0 EA 1
ls \1—p

With A the area of the profile, anbithe area moment of inertia, which 514 as the flexure has a square
profile.

3 3
I = % =2.35-10"m?* I3 = % =1.70-10" m* (4.16)
Ay =hd; =741-10" "1 m? Ags = hdays = 6.65 - 10~ m? (4.17)
E; =130GPa Es3 = 158 GPa (4.18)

The stiffness of the reinforced flexures very much dependherthickness, because the area moment of
inertia depends on the thickness to the third power.

1.09- 108 0 0 9.58 - 1079 0 0
K, = 0 0.0584 0 Kos = 0 0.0513 0 (4.19)
0 0 34404 0 0 37525

The guiding stiffness of the comb-drive suspension (whiehfaelded flexures) igs%. They also depend
!
on the orientation in silicon:

kg, = 2.29N/m Kgys = 2.01N/m (4.20)
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(a) The stiffness the platform ‘feels’ is dominated by thedinug
stiffness of the folded flexures (= shuttle suspension)
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Figure 4.7: Simulation of the stiffness the platform feels

4.4 Simulation

4.4.1 Stiffness felt by platform

The stiffness the platform ‘feels’ is simulated by puttinfpece in the centre of the platform and looking
at its deflection (see Figure 4.7), as if the platform is pdstkégures 4.7(b) and 4.7(c) show a multiple run
simulation withF = {—30, —15,0, 15,30} uN. No voltage is put on the comb-drives in this simulation.
The force divided by the deflection is the stiffness the platffeels, which is constant for small deflections:
F, 30 uN F, 30 pN

ky, = e 06T 3.10N/m kp, = , 3o 3.36 N/m (4.21)
This is verified by calculations as follows. The most domirstiffness the platform feels when it moves
in translational directions is the guiding stiffness of fokled flexuregk,) (= shuttle suspension), which
is about 40 times bigger than the lateral stiffness of thefoeted flexures. It is easy to calculate that the
stiffness the platform feels % timesk,, due to the symmetric structure of the manipulator (see [Bile
averagek, of the three shuttle suspension®i$0 N/m. The average stiffness the platform feels is:

kp =135 ky=32-210=3.16N/m (4.22)
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To give an estimation of the manipulator’s translationaloreance frequencies, the total mass that moves
in the translational directions has to be calculated, wisatot just the sum of all masses. Similar to the
stiffness, the equivalent mass of the three shuttles irskatinal directions is timesm,. For the total
mass, the mass of the platform has to be added:

Mior = % “ms +mp = 67.7THg (4.23)

Hence, the translational resonance frequencies will batabo

1 [k
fr=— P —1087Hz (4.24)
271' Mot

4.4.2 Resonance frequencies

The resonance frequencies of the platforma(idirection,y-direction and forp-rotation) are simulated in
order to validate them with measurements in Paragraph 6snusoidal force (or torque) with increasing
frequency and a fixed amplitude is put on the centre of thégotat The deflections and rotation are plotted
in Figure 4.8. The deflection of the platform is maximal attesonance frequency, which are listed in the
table below:

direction | freq. (Hz)
© 1353 £ 10
T 1122 + 10
y 1163 4 10

Table 4.2: Simulated resonance frequencies

The resonance frequencies can also be simulated by putSimysoidal voltage on the comb-drives. The
force frequency is two times the voltage frequency, becatiffee quadratic force-voltage relation. Hence,
the frequency is doubled and an offset is introduced:

F~V?2
V =V, sin(wt)

} F ~V2sin?(wt) = $V2 — V2 cos(2wt) (4.25)
The resonance frequency depends a little on the dampingeftine the damping was estimated roughly
in another simulation. A sinusoidal voltage with an ampl&wf 14 V was put on the comb-drives and the
damping-parameter was varied until the simulated and medsleflection at the resonance frequency were
about the same. Figure 6.2(a) shows that the deflection aesiomance frequency inrdirection is about
9 um (peak-peak). In simulations a viscous damping 2.5 - 10~5 Ns/m for the folded flexures seemed
to result in about the same deflection (the damping for thefosted flexures is left zero for simplicity

reasons). The relative damping is about:

r

2vVmk

=2.7% (4.26)
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Figure 4.8: Simulation of the resonance frequency
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Chapter 5

Feed-forward position control

With the voltage controlled model, three voltages are igmat the platform will move in a certain direction,
depending on the comb-drive strength and the dynamics cfytbiem. However, it is not clear beforehand
how much volt to put on which comb-drive to let it move in e.glyothe z-direction. Instead of comb-drive
voltages, the desired platform position should be used@ag.iiHence, what is needed, is a mapping from
platform position to comb-drive voltage:

Tp_sp ‘/combl
Yp_sp = Vcomb2 (5 . 1)
(pp_sp ‘/comb;;

An inverse kinematic model (IKM) of the system could give appiag from platform position to comb-
drive deflection:

(Ep_sp C1
yp_sp Ld Co (52)
‘Pp_sp C3

And since the comb-drive deflection is proportional to theeéoof the comb-drive and proportional to the
square of the comb-drive voltage:

Fcomb1 ‘/;%)mbl
¢~ | Feomby | ~ | Vi, with i =11,2,3] (5.3)
F, combs Vc20mb3

The problem is solved using an IKM. Hence it was created @®@aph 5.1), modelled (Paragraph 5.2), and
simulated (Paragraph 5.3). Only the above described fedhfd control is used and no feedback control,
because it is unknown if the platform position will be measljrand how that will be done. Moreover, it is
not certain that the position of the platform can be measacedrately enough.

5.1 Inverse kinematic model

The rigid body model has four stiffnesses and hence four D&Fpn. The platform has only three DOF
so a kinematic model would be underconstrained and an IKMdawvaot have a unique solution. Additional
force equations would be necessary to give a unique solutlowever, a simple solution is to remove one
DOF for the calculation of the IKM. The translation belongito the longitudinal stiffness of the reinforced
flexure should be removed, because it is by far the biggdBtests in the model. It is in the order o6*
bigger than the lateral stiffness of the folded flexure, anithé order ofi0° bigger than the lateral stiffness
of the reinforced flexure.
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€2

(a) Multibody model; the joints belonging to the longitudistiffnesses of the reinforced
flexures are removed

T3qs ySa)
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(b) Schematic represenation of above multibody model

Figure 5.1: Kinematic Model
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Figure 5.1(b) shows a schematic figure of a kinematic modéi@manipulator. No masses are taken
into account and all springs are replaced by ideal joints;esia kinematic model does not contain any
dynamics. The only movements that are possible are a ttamstiue to the comb-drive , co, c3) and a
rotation and translation due to the leaf sprifigs, p2, v3) and(z1,x2, x3). The black dots only indicate
the coordinates (e.gx14, ¥14))- 7, s @nda are parameters. The coordinates at the corners of the iphatfo
can be written as functions of the platform coordinates:

Z1p = Tp + aCos @y Y1b = Yp + asing, (5.4)
Zop = Tp + G COS (cpp + %w) Y2u = Yp + asin (gop + %w) (5.5)
T3 = T + acos (pp + 57) Ysb = Yp + asin (¢, + 37) (5.6)

The following equation fronarm; was made using Figure 5.1(b):
Yla + 7+ 1+ sc0501 = Y1 (5.7)

Keeping in mind that:
p1=p2 =3 =1 (5.8)

Rewriting Equation 5.7 delivers as a function ofz,,, y,,, ¢p):
c1=1Yp+asing, —scospy, —Yig — T (5.9

Similar toarmy, the following equations fromrm, were made:

Top + 5 oS ((pg + %7‘() + %xz + § (ca+7) =294 (5.10)
Yap + Ssin (goz + %71’) — ?azg + % (c2+7) =y (5.11)

Now, two equations are needed instead of one, because thie aatparallel to the:-axis ory-axis as arm
1is. Both equations depend on the variabjewhich can be eliminated by multiplying Equation 5.10 with
/3 and adding Equation 5.11 to it. Rewriting the resulting d¢iquedeliverse, as a function ofz,, y,, ¢, ):

V3

_§ (zp —asin (@p + t7)) — Bscos (¢p + 27) — 3Yp

Cy =

— %a cos ((pp + %ﬂ') — %s sin (app + %77) + @l‘ga + %yza —r (5.12)

Finally the equations fromrmg:

T3q + @ (cs+r)— %.’L‘g + ssin (gog + %w) = T3 (5.13)
Ysb + s cos (@3 + 37) + ?md +2(c3+7) =ysa (5.14)

Multiplying Equation 5.13 withy/3 and adding Equation 5.14 to it, eliminates and deliversc; as a
function of (z, yp, ¥p):

es =3 (wp — acos (pp + §7)) — Fssin (g + 57) — 33

+ %a sin (gap + %w) — %s cos (gop + %TF) — §$3a + %yga —r (5.15)
Linearisation around zero of the IKM equatiohs (5.9, 5.18/ari5) delivers the following transformation
matrix (which is also given in [6], but with a different defiion of a, a rotated coordinate system and a
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different matrix order):

[ O0cq 0cy dcy 1
dpp ©p=0 Oy 2,=0 Yy yp=0
1 802 802 802 #p
c =\ a5 A a x
? Iplo—0 Tpla,—0 IYply,—o i
= 803 863 663 Yp
B oz Y, (5.16)
| 9¥plp,=0 Pla,=0 OYply,=0 |
[ 0 1
C1 (pp
Fle|=|a _§ -3 Zp
The inverse of this matrix is:
1 1 1
Pp 3a 3a 3a C1
z, | = 0 _@ @ o (5.17)
2 1 1
yp 3 —3 -3 C3

These matrices give the global relation between comb-dieflection and platform position.

5.2 20-sim model

Figure 5.2 shows the feed-forward position control 20-siouei. The IKM equations (Equations 5.9, 5.12
and 5.15) are put in the IKM submodel. A setpdina}, s,, Yp sp. ©p_sp) iS input and the IKM will calculate
the comb-drive deflections needed to ensure that the retibraposition (z,, y,, ©,) Will follow the
setpoint. The gains before and after the IKM, and the squareafter the IKM reflect the proportionality
between comb-drive deflection and voltage (Equation 5.8& Jains depend on the geometry, the stiffness
of the system and the force-voltage relation of the comtedtilf the platform position follows the setpoint
in any case, the IKM works right.

As another check, the IKM equations are also put in submddiel ‘ Instead of the setpoint, the real
position of the platform is put in the IKM equations. The riéisg comb-drive deflections should be very
similar to the real comb-drive deflections, which are theestén the folded flexure submodels (‘Kff1’ to
‘Kff3’). Only a small deviation due to the neglected longlinal stiffness is possible.

5.3 Simulation

5.3.1 \oltage-deflection relation

The model has been simulated for different setpoints @mdy-direction: {—12, —8, —4, 0,4, 8,12} [pm]
(see Figure 5.3), to be able to validate the model with measents in Paragraph 6.1. Moreover, the effect
of the IKM on the model is checked. Figure 5.3(a) shows théqia setpoint(z), s,,y, sp) as well as
the platform deflectiotz,, y,,). Figure 5.3(b) shows the comb-drive voltages, calculatethe IKM. The
comb-drive voltage squared, divided by the setpoint is st value for all setpoints, as can be seen in
Figure 5.3(c). Hence, when the voltage squared is plottathagthe deflection, a constant slope is visible.
This means that, as expected, the voltage-deflectionaelaiquadratic (for small deflections), because the
force-voltage relations of the comb-drives are quadraitic] the stiffnesses of the flexures are linear (for
small deflections).

All possible slopes are calculated, except for the relabetween comb-driveand «,, because the
voltage of comb-driveremains zero for movement irrdirection. The slope is not calculated for voltages
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lower than a certain minimum voltage, because the slopegeilio infinity when the voltage is close to
zero, which introduces spikes in the simulation. Moreother,slope is only important when the setpoint is
reached (i.e0.01 — 0.02 and0.035 — 0.045s).

The gains before and after the IKM are determined by trialemor. They are given in the table below:

parameter | value
gain_comb | 19400
gain_comb | 18900
gain_comb | 18900
gain_py, 0.96
gain_z, 0.735
gain_y, 0.745

Table 5.1: Gain parameters

The ratio betwee@% and~"2— in the simulation i).81. If the flexures would have the same stiffness

comby comby

and the comb-drives the same strength, the ratio wouldé—%ez 0.866, according to the matrix from

Equation 5.17 (the factor belongingtg andcs, divided by the factor belonging tg, andc; is ?).
The same holds for the ratio betwe@e”"— and 22—, which is 2.1 in the simulation. But if the

2
comby Viombs

flexures would have the same stiffness and the comb-drigeesatime strength, the ratio would 6 (which
is the factor belonging tg, andc;, divided by the factor belonging g, andc).

The model also has been simulated for different setpoints-fntation: {—3, -2, —1,0,1,2,3} [°]
(see Figuré 5]4). Again, a constant slope returns from sitimls, which means a quadratic relation exists
between comb-drive voltage and platform rotation (for $mwhtions).
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Chapter 6

Measurements & Validation

6.1 Voltage-deflection relation

To verify the simulation from Paragraph 5.3.1, the platfateflection is measured for different comb-
drive voltages. Voltages are applied in the ratio accortiingpe simple linear kinematic model (see Equa-
tion[5.17), keeping in mind the square force-voltage refatf the comb-drives. For movement in the
positivey-direction, the voltage on push comb-drivie /2 times the voltage on pull comb-drivand pull
comb-drivg. For movement in the positive-direction, the voltage on comb-drivés left zero; the voltage
on pull comb-drive and push comb-driveis the same. The same holds for the negative directionspexce
that push and pull are switched.

Figure 6.1 shows the measured data points together withrlimest-fit lines (using the Matlab function
‘polyfit’), as well as the simulated data for the three platiocoordinates. A negative voltage means a
voltage on the pull comb-drive and a positive voltage meawgltage on the push comb-drive. In the
andy-direction the simulation and measurements match well th@p-rotation it matches less well. This
is due to the fact that the real thickness of the flexures antbedrive teeth is not known very accurately,
so the real stiffness might be different, as well as the cadinie strength. Especially because the stiffness
depends on the thickness to the third power. Hence, a 5%rdmyvia thickness already becomes a 16%
deviance in stiffness and this will also change the voltdgiection relation.

For calculation of the best-fit line in-direction, the measurements2500 V2 and—2500 V2 were not
taken into account, since the manipulator hit one or morestops. The difference between simulations
and measurements are:atrdirection 2.3 %, iny-direction 3.9 % and ip-rotation 12.8 %.

T T T T T T T T
10H x measured data A 10H * measured data
best fit: 0.0043V* x best fit: 0.0035V*
8H —— simulation: 0.0044V? % x . 8H_—— simulation: 0.0036\2 ,,/7

[um]
[um]
°

o,

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
2,
Vi Vo, (V)

comb,
1

@) zp-V2

combg

relation (b) yp-V2

comby relation

Figure 6.1: Voltage-deflection measurements, compardusaitulation
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Figure 6.1: Voltage-deflection measurements, comparddsiitulation

6.2 Resonance frequencies

In order to get more information about the manipulator, g&nance frequencies of the manipulator are
measured. They were already simulated in Paragraph 4o04a2;emparison can be made. It gives different
information than the voltage-deflection relation, sinoe thsonance frequencies are influenced by masses
and inertias, but not by the comb-drive strength. This isointrast to the voltage-deflection relation, which
is influenced by the comb-drive strength, but not by massesramtias.

The resonance frequencies of the system were measured tngpatsinusoidal voltage with a fixed
amplitude on the comb-drives and changing its frequencye déflection of the platform is maximum
at the resonance frequency. The system has very low damgingpe resonance frequency peak is very
narrow. A1-2 Hz change around the resonance frequency is even visible.egistial inspection of the
maximum deflection through an optical microscope works fiffee amplitude of the voltage should not be
too small (otherwise vibrations would be invisible), noo taig (otherwise the system might hit an end-stop
and damage). An amplitude o4 V seemed to be a good compromise.

Each of the three platform coordinates has its own resorfaegeency. Since the voltage can be put on
the push comb-drives as well as the pull comb-drives, thesorements were done twice per coordinate:
for the negative and positive direction. The measured @som frequencies are compared with simulated
resonance frequencies (from Table 4.2) in the table below:

measurements model

coordinate difference
voltage freq. (Hz) | force freq. (Hz) | freq. (Hz)
+@ 728 £2 1456 £ 4 1353 + 10 719%
—p 729 £ 2 1458 £ 4
+x 581 £2 1162 £ 4 1122 + 10 3.3%
-z 579 £2 1158 £ 4
+y 600 £ 2 1200 £ 4 1163 + 10 319
—y 600 + 2 1200 £ 4

Table 6.1: Measured and simulated resonance frequencies

Because of the point-symmetry of the system, the resonaagadncies in all translational directions are
expected to be the same. But the measurements show a dehatiween the resonance frequencies in
andy direction, which is likely due to the following:
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(a) x—directionl

Figure 6.2: Pictures of the manipulator in resonance tii@argoptical microscope

« Effects of the mask resolution were found, looking at tliecttire with a SEM (see Figure 6 in [6]).
« A difference exists in the Young’s modulus between 30° dr&€uctures and 0° or 90° structures.

The difference between simulated and measured resonaupeeficies is likely to be caused by the follow-
ing:

* The stiffness, masses and inertias were calculated asdtbtlknown very accurately.

* When a sinusoidal voltage is applied on the comb-drivesptagorm does not only vibrate in the
actuated direction. This can be seen from the pictures takéime resonance frequencies (see Fig-
ure 6.2). Especially in thg-direction, a deviation is visible on the top right hand sidiéhe platform.

« The damping has a little influence on the resonance frequefichigher damping will lower the
resonance frequency a bit.

In the conclusions (Paragraph 7.1) more details are given.
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(c) go-rotationO

Figure 6.2: Pictures of the manipulator in resonance thi@argoptical microscope



Chapter 7

Conclusions & Recommendations

7.1 Conclusions

Body-editor

The body-editor of 20-sim is a great tool for creating 3D rfnaltly models. Compared to modelling
rigid bodies with 6-dimensional bond graphs, modellinghwtite body-editor is much easier, faster and
less sensitive to mistakes. A kinematic construction ofdrigpdies, which represents the manipulator’s
kinematic behaviour, was created in the body-editor. Anatign model of the multibody model was
generated and imported into 20-sim. Currently, flexibleralats or springs cannot be modelled directly
in the body-editor. Instead, it can be modelled in 20-sim emghected to the equation submodel of the
multibody model. The way to model multidimensional sprisgsuld be connecting two rigid bodies with
a stiffness, without using a construction of 1D-joints i thody-editor. However, some problems were
encountered concerning this way of implementing a stiines20-sim and its body-editor (drift in the
spring position as well as numerical instabilities). Tliere a construction of 1D-joints was used for the
flexures.

Validation

Validation showed that the behaviour of the modelled mdaipu s close to the behaviour of the real ma-
nipulator. The simulated voltage-deflection relationsheftanipulator match to the real voltage-deflection
relation very well. The simulated resonance frequenciesmi® the measured resonance frequencies of
the real manipulator, but the simulated resonance fredegrsre a bit lower. Possible reasons for this
deviation are:

« More material is etched away than designed, resultingemthss being estimated too high. A lower
mass in the model will increase the resonance frequenaiebals no effect on the voltage-deflection
relation. When the holes are nbtx 9 pm, but for exampled.4 x 9.4 um (which is a 9.1% increase
in area), the mass decreases about 12% and the resonan@nfreincreases about 5.4%.

* The real stiffness is bigger than the modelled stiffnesshigher stiffness in the model will in-
crease the resonance frequencies, but will also changeottegye-deflection relation. To maintain
the voltage-deflection relation while increasing the s&ffs, the comb-drive strength in the model
should be increased as well. As mentioned before, the thgkof the flexures and comb-drive teeth
is not known accurately enough, so the real stiffness mightifierent, as well as the comb-drive
strength. Especially because the stiffness depends omittieéss to the third power. Hence, the
voltage-deflection relation is very much affected by thekhess.

« The damping is not known very accurately. It is estimatadyhdy and assumed to be viscous.
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7.2 Recommendations

Validation

More measurement data is necessary to improve the vewficati the model. The voltage-deflection
relation was only measured for specific voltages that wilventhe platform in the in-plane coordinates.
For further measurements, certain voltages have to beeappti each comb-drive and the position of the
platform has to be measured for all possible combinatiort®ofb-drive voltages. This will result in a big
table with much more information, because the position eftlatform will also be measured for combined
rotations and translations. Ideally, the measurements tabe performed for more than one device, to
exclude measurement errors and to check whether a deviatists between different manipulators. The
measurement data can also be used for feed-forward control.

Modelling

The inverse kinematic model has to be implemented on themaalpulator to check whether it also works
in reality. Probably a micro-controller can perform theccdditions needed. In combination with the feed-
forward control, a feedback control can be designed whenasvk what kind of measurement signals are
to be expected. Different solutions can be thought of. Toenarfew:

« The position of the platform may be determined by measuttiegcapacitance in the comb-drives,
which is related to the comb-drive deflection.

< A camera may monitor the position of the manipulator, whiah be extracted with image-processing
technigues.

When bigger translational or rotational deflections becoossible in a future manipulator, better kinemat-
ics and dynamics are necessary in the model. For exampletheds need more accurate energy functions
that are also valid for bigger deflections.

The out-of-plane manipulator has to be modelled to comletemodel of the 6 DOF manipulator.
When the out-of-plane manipulator and the 6 DOF manipulaterfabricated, measurements should be
performed to validate the models.

Design

The design of the real manipulator was not intended to mad®d¢bmpact and efficient as possible. Hence,
the design of the real manipulator can be improved and optichimuch, although criteria would be neces-
sary. The model of the manipulator can be used to simulatgeedict the behaviour of the manipulator
for changes in the design.

« First of all, for use in a TEM, the size must be reduced. This be accomplished by, for example,
shifting the reinforced flexures inside the shulttle.

» Considering the size of the current shuttles, much morebedrive teeth could be created, which
will strengthen the manipulator and decrease the maximutage®needed.

* Much space is wasted between platform and shuttles. Thiseasolved by shifting the flexures
inside the shuttles. A nice consequence is that the sizentecgmaller, while the performance is
maintained.

» The size and position of the reinforcement in the flexurasha be considered. The advantage of
reinforcement is that the longitudinal stiffness and thelding force increase. But the disadvantage
is that the lateral stiffness increases a bit, and the ootatistiffness increases much.



Appendix A

Homogeneous coordinates

A.1 Homogeneous matrices

The positionp? of rigid bodyi with respect to the reference body in the planar case is (geedA.1):

p? = T; (A1)

The position of a body can also be expressed in homogeneaudicates. A homogeneous matik
consists of a rotation matrik® and a position vectgs. The rotation matrix was chosen such that a positive
 results in a counterclockwise rotation (to let clockwisepbsitive, R has to be transposed, but then many
signs change). The positidid? of body: with respect to the reference body is:

R cos(p;)  sin(p;) @
HY = OZ 11 1 = | —sin(p:) cos(pi) wi (A-2)
0 0 1
Y
7
reference x;
body '

Figure A.1: Rigid body position
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The positionH; of the reference body with respect to bodys the inverse ofH?. The inverse of a
homogeneous matrix can simply be calculated with just pasisions:

Hy = (H)™
_ | B —Rlp
0 1

L (A.3)
cos(pi) —sin(p;) —x;cos(p;) + y;sin(p;)

= | sin(pi) cos(pi)  —zisin(p;) — yicos(pi)

0 0 1

A.2 Twists & wrenches

The generalized translational and angular speed iR-tloe 3-dimensional case is called a Twist (quantity
T). And the generalized force and torque is called a Wrenchnfijyad?’). Hence the mechanical power
Pisjust: P = WTT. For the twistT;’0 of body i with respect to the reference body (expressed in body
coordinates) holds:

w; i
Tiuo - Uj — l’l COS((pi) — yz SIH(QOZ) (A4)
V4 o sin(p;) + 9i cos(p;)
For the wrench holds:
M
W=| F, (A.5)
Fy
So the power is:
P =W'T = Mw; + Fyu; + Fyv; (A.6)

Besides the column vector notation, a twist can also beenritt ‘tilde’ notation. It is easier to be calculated
in that way:

71,0 _ rri 770
Ti° = HyH!

0 ¢ @icos(pi) — ¥isin(p;)
=1 —pi 0 Z;sin(p;) + s cos(s)

L 0 0 0 (A7)
[ 0 Ww;  U;
= —w; 0 vy
0 0 0

For the twist of body with respect to the reference body, but expressed in referemordinates, holds:

T = H)H;

[0 ¢~ + i

= @i 0 Gimi+

0 0 0 (A.8)

0 wWo Up
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Equations A.7 eh A8 imply a mapping of twists in differenbedinate systems:
T = By
& (Hy) ' = 1Y
SH) = H)T" (A.9)
~0,0 . i
7= H?HO
ST = YT

This mapping can also be written in column notation, with aaled ‘Adjoint’ representation of the H-
matrix:

T = Adp 77" (A.10)
With Ad o:
1 0 0
Adgo = | —y;  cos(pi)  sin(p) (A.11)

x; —sin(p;) cos(p;)
A twist is transformed according to Equation A.10. A wrenslsimilarly transformed in order to conserve
power(P) and energy:

T, = Ady:T. } p—wTT,

_ T /.
We = Ady; Wi = ((AdL,)'W.)T Adyy; T.
P ¢ (A.12)
=W, AdHiAdHiTC
=wlIT,
These transformations can be used to transform a stiffna®«ato other coordinates:
W = Kiq;
< W; = K;Adyiqc
& (Adpy) ™' We = KiAdp; g (A.13)
S W, = Ad};szAdHé dc
—_———
K.

And hence a stiffness matrix is transformed to other coatein as follows:

Ko = Adj K; Ady;: (A.14)
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Appendix B

Stiffness matrix transformations

B.1 Generalization of Newton’s law to the planar case

A rigid body has three degrees of freedom in the planar catbeie are no constraints: two translations
(x,y) and arotatiorfy). In the one dimensional case, there is just one degree afdneeSee Figure B.1(a)
for a schematic representation. Newton’s second law foiir poass states:

F=p,withp =mv (B.1)
Only when the mass is constant (ire.= 0) it can be rewritten into:
F=mo=mi (B.2)
This can be generalized to the planar case:

W =JT (B.3)

=J| z (B.4)

(a) One-dimensional case (b) Two-dimensional case

Figure B.1: Extension of a mass from 1D to 2D
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Ax

(a) One-dimensional case

(b) Two-dimensional case

Figure B.2: Extension of a spring from 1D to 2D

With J a matrix that contains the mass and the mass moments ofairdréi rigid body with a random
shape, described in its centre of mass (see Figure B.1(l)$ohematic representation.):

J:

e

0 0

m 0 (B.5)
0 m

The following equation describes a 1D linear spring:

F=kx (B.6)

This can be extended to the planar case as well (see Figufie) Bo2 a schematic representation):

W = Kgq
M 4 (B.7)
S| F | =K | ¢
F, )

With K a stiffness matrix and the generalized coordinates.
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A rigid body is fully described by a mass and inertia matringd ats ‘centre of mass’ (COM), despite
its shape (see Equation B.5). Just like a rigid body has a @3ring consists of a certain point called
‘centre of stiffness’ (COS). When the spring is describedhen@OS, there is a minimum coupling between
translation and rotation.

B.2 Theory for small deflections

A force and moment are acting on the end of the flexure in Figud¢a). Point 4 from the table at page
882 in [1] states that a forcE, that is acting on the end of a flexure (of lengtlarea moment of inertia
and Young's modulu€’), results in anc-deflection and an angle of:

R R
YT 3EI LYoy

(B.8)

The minus sign in the-F, relation is due to the choice of the direction of the force amament in the
figure; a positive force will result in a negative rotatioriit 6 from the same table states that a tordue
that is acting on the end of a flexure, results in a deflectiand an angle of:

M2 M

T= 3R] Y= EI (8.9)

The minus sign in the-M relation is due to the choice of the direction of the force arament in the
figure; a positive moment will result in a negativaleflection. When both a force and a torque are acting on
the flexure, the deflections and angles from Equations B.Ba#tiave to be superimposed. The equations
can be rewritten in matrix notation as follows:

3 12
v | _ | 3B 2EI Iy (B.10)
12 !

" 2EI  FEI M

2

Inverting this matrix gives the relationship between theedoversus displacement and torque versus angle
of a flexure:

B EI

Fal _ B . (B.11)
EI  EI

M 6— 4=— || ¢

12 l
Depending on the direction of the force and moment in the éigtire cross-terms of the stiffness matrix
will either have a plus or minus sign.

The relationship between a fordg, and they-deflection is derived from Hooke’s law, which states
there is a linear relationship between stress and stsain:Ee. This can be rewritten as follows:

o= Fe
F,  _y
e =E7 (B.12)
EA
e k=Y
Hence, the stiffness in thedirection ,) is:
EA

ky = —— (B.13)
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(a) Stiffness matrix described at the end

(b) Stiffness matrix described in the centre

Figure B.3: Flexure

The above stiffnesk, and the stiffness-matrix from Equation B.11 are combineatirx 3 stiffness matrix:

EI EI
4= -
NE 0
K.=| EI EI B.14
603 1205 0 (B.14)
EA
o7

This stiffness matrix is not described in the geometricaitieeof the flexure, but at one of the ends. If a
spring is described in the COS, there is maximum decoupktgden rotational and translational stiffness.
It seems obvious that the geometrical centre of the flexuremes with the COS.

Figure B.3(b) shows a flexure with a force and moment actinthercentre of the flexure. A positive
force on the end of the flexure will result in a negative monmmthe centre of the flexure. The following
equations relate the centre-forces to the end-forces anaritten to matrix-form:

M.=—3l-F, + M, M, 1 =31 0 M,
F, =F,, =|F.|=]0 1 0 F,. (B.15)
F, =F, E,. 0 0 1 F,.
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The force-deflection relation can be rewritten as follows:

[ M, ] ©
F,, | =Kc| z.
L Fye d Ye
[ M. ] o ]
S| F, | =TK:| z. (B.16)
L ch i Ye
[ M. ] @
s | B, | =TKT" | .
L Fy. K. Ye

With T the transformation matrix from Equatibn B]15:

-1 0
T=10 1 0 (B.17)
0 0 1
So, the stiffness matriX,. is:
EI
- 0 0
K.=TK.TT=1| o 12% 0 (B.18)
EA
0 0 —_—

l

The cross-terms are zero, which implies a maximum decogfiletween the rotational stiffness and the
translational stiffnesses. Hence, the centre of the sjisittte COS. Advantages of describing the stiffness
in the centre of the spring are:

« The direction of the forces and torque determine the sigh@tross-terms i&.. Since these cross-
terms are zero i<, the direction has no influence. Hence, no mistakes can be mhdther the
cross-terms need a plus or minus sign.

» Real flexures show shortening effects in thdirection due to ar-deflection and rotation. When the
flexure is described at the end of the spring, shorteningsfiaf the flexure do not occur. But when
the flexure is described at the centre of the spring, shagezffects do occur.

« Less computations are necessary when the flexure is sedulat

The transformation can also be calculated as follows. Tiffaests is moved from the end of the leaf spring
to the geometrical centre. This corresponds to a displamem%l in the y-direction. The homogeneous
matrix H! belonging to this transformation is:

! (B.19)

0 0
1 0 (B.20)
0 1
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My, 0% AVe My, Q@ |
N ' 2
!
/
1 /
3! ,
/
J !
F,r AU
1
_< ______ ? wCQ
!
7
/
My, 61 1, r
2
v__.
4 T
(a) Spacar leaf spring (b) Spacar leaf spring (c) Multibody leaf spring

Figure B.4: Coordinate transformation for Spacar leafrgpend a multibody leaf spring

B.3 Spacar leaf spring

In the Finite Element program Spacar, different coordimated a different stiffness matrix is used for a leaf
spring (see Figure B.4(a)). It will be shown that this is arfkaard way of representation from a multibody
point of view. In fact a mechanical construction is used ttaobsimilar behaviour. This construction
consists of a translational spring that is connected taaorsprings on both sides through (massless) rods.
In Sections B.3.1 and B.3.2 the equivalent stiffness megrat the end of the leaf springs will be calculated
for both ways of modelling. The leaf spring equation in Spasa

F T
M1 :Ks 91 (821)
Moy 0
With K: i i

EA
—_— 0 0
l

K.=1| 4% _Q% (B.22)

B.3.1 Leaf spring model from a multibody point of view

The jacobian/,,,, describes a mapping of twists frdf to 7;, which can be used to transform the stiffness
matrix from the centre of the spring (which is assigne@pto the end of the spring (which is assigned to
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;). See Figure B.4(c).
T; = Jmb (‘pcwrcvyc) Tc (823)

The distance betweeh,;, and¥,, (¢;,z;,y;) is related to the distance betwe®n, and¥., (., zc, y.)
as follows:

Pi = Pc
x; =z + 3lsin(p.) (B.24)
Yi = Yo + 3

Differentiating these equations to time and putting themnatrix form delivers the jacobia#,,;:

Vi 1 0 0 Pe
@ | = | tlcos(pes) 1 0 Ze (B.25)
Yi 0 0 1 Ye

For small rotationsos(¢.) = 1 and henceJ,,,;, becomes:

T = (B.26)

o NI
S = O
= o O

The stiffness matrix from Equation B.18 can be transformith this jacobian, because the relation between
W, andq. can be rewritten as follows:
W, =K. q.
SW.=K.J,; a (B.27)
& Wi=(J) Koy di

Hence: ) _
EI EI
47 —h—
] 65 0
K= (Joy)  Ked iy = —6% 12% 0 (B.28)
EA
0 o7

And this is the equivalent stiffness at the end of the spriajra as computed in Section B.2.

B.3.2 Spacar leaf spring model

The jacobian/,, describes a mapping from the three coordinates that Spaear(ue.r, 8, andds,) to a
twist 7... See Figure B.4(b).
i
T, = Jop (r,601,62) | 6, (B.29)
6
Jsp is computed in the same way as in Paragraph B.3.1, by firstabngpp,, z. andy. as functions of-,
0, andfy:
Pe =01 + 03
Ze =20+ (I +7)sin(dy) (B.30)
Ye = yo + (I + 1) cos(61)
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Differentiating these equations to time and putting themnatrix form delivers the jacobian:

Ge 0 1 1 7=
Ze | = | sin(61) (I+7)cos(fy) O 6, (B.31)
Ye cos(f1) —(I+r)sin(fy) O Gy

By using the stiffness matrix from Equation B.2Z,, is computed as follows:
Ko, = (J5 ) Ko Jg)! (B.32)

K, is full of sines and cosines. But for small rotations andsfations: cos(¢.) = 1, sin(¢.) = 0 and
r < l. Then,K,, becomes:

G GEL
I 12
K., = EI EI B.33
T 6 1295 0 (B.33)
EA
0 o T

Since the equivalent stiffness matrices at the end of thiesiedng are the same for both models (see
Equations B.28 and B.33), the models are equivalent and gfesame behaviour. However, the multibody
model is preferred, because for the Spacar model, a meethaoigstruction is needed. Another advantage
is that the stiffness matrix has no cross terms. Hence, tHebmdy model is simpler and needs less
computations.
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