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Summary

As part of the Multi Axis MicroStage project (MAMS), a 20-simmodel of a 3 DOF parallel micro-
manipulator was created. The model serves as a design tool and as verification in order to understand
the behaviour of the actual system. The micro-manipulator was fabricated with MEMS technology. One
of the possible applications for the manipulator is manipulation of samples in a Transmission Electron
Microscope (TEM).

A multibody model of the manipulator was created with 20-sim’s 3D Mechanics Editor. The multibody
model contains the rigid bodies (with their positions, masses and inertias), and the kinematic construction
of joints and rigid bodies. An equation submodel of the multibody model is exported to 20-sim. The
compliant behaviour of the manipulator is added in 20-sim. Stiffness, masses and inertias were estimated
on the basis of the physical dimensions of the actual device.The damping has been estimated roughly from
measurements and is very low, which is typical for MEMS devices.

The manipulator is actuated by comb-drives. Since it is not trivial what voltage to apply to which comb-
drive for movement of the manipulator’s end-effector in a specific direction, a feed-forward position control
was designed, which controls the manipulator in the desiredcoordinates.

Measurements on the real manipulator were performed: The platform deflection was measured for
different comb-drive voltages as well as the resonance frequencies. The model was validated with mea-
surements, which shows very similar relations between simulated and measured platform deflection as a
function of the comb-drive voltages. The difference between simulations and measurements are: 2.3 % in
x-direction, 3.9 % iny-direction and 12.8 % inϕ-rotation. The simulated and measured resonance frequen-
cies of the manipulator are also very similar: 7.1 % deviation in rotational resonance frequency, and 3.3 %
and 3.1 % for the resonance frequencies inx andy-direction.
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Chapter 1

Introduction

1.1 MAMS Project

This master assignment is part of the Multi-Axis MicroStageproject (MAMS). The goal of the MAMS
project is design and fabrication of a micro-manipulator with six degrees of freedom (DOF). The most
important specifications the manipulator needs to achieve are:

• An enormously high positioning resolution; in the order of1 nanometre

• Extremely small dimensions; in the order of 1 millimetre

• A very low drift; in the order of 0.1 nanometre per minute

Micro Electro Mechanical Systems (MEMS) process technology is used to fabricate the manipulator. It is a
way to create mechanical structures on a silicon chip. MEMS technology is photo lithography based, which
is also used in the electrical chip technology.

One of the applications for the micro-manipulator is manipulation of samples in a Transmission Electron
Microscope (TEM). The small size of a MEMS device can be beneficial with respect to the conventional
manipulator. It enables a larger tilt angle in the gap separating the magnetic lens poles; increasing achievable
magnification combined with a large tilt angle. A small device obtains thermal equilibrium much faster.
Thermal drift, in occurrence of temperature changes, stabilises quicker. Furthermore, the eigenfrequencies
of a small device are very high. Firmly connected to the TEM column, the manipulator will nicely follow
the movements of the electron beam due to vibrations of the TEM.

As part of the study on a 6 DOF manipulator, a parallel in-plane manipulator with 3 DOF is fabricated.
It enables in-plane translation (alongx andy) and in-plane rotation (aboutz). Together with an out-of-
plane manipulator, which enables out-of-plane movements (translation alongz and rotation aboutx andy),
6 DOF movements are possible.

1.2 Goal of the assignment

The goal of this assignment was to create a dynamic model of anin-plane 3 DOF parallel manipulator in 20-
sim. The manipulator consists of three actuators, connected in parallel to an end-effector through flexures.
Actuation is based on electrostatic attraction in a so-called comb-drive in pull-pull configuration. The
end-effector is a platform that is controlled in the translational (alongx andy) and rotational coordinates
(aboutz). The model serves as a design tool and as verification in order to understand the actual system’s
behaviour. Special attention is paid to power-port modelling of the three flexures that suspend the end-
effector in the manipulator.

A multibody model of the manipulator will be created in 20-sim’s 3D Mechanics Editor. The equation
submodel of the multibody model can be exported to 20-sim. In20-sim, actuators, springs and dampers can
be attached to the joints. Measurements should validate themodel.
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Since it is not trivial what voltage to apply to which comb-drive for movement of the platform in
a specific direction, a feed-forward position control is to be designed, which computes the comb-drive
deflection and actuation voltage as a function of the desiredplatform coordinates.

1.3 Report outline

Prior to the modelling, a conceptual analysis of both manipulators (in-plane and out-of-plane), concerning
identification of rigid bodies and flexures is made in Chapter2. The model of the leaf spring is treated in
Chapter 3. In Chapter 4, a multibody model is created with 20-sim’s ‘3D Mechanics Editor’, also known as
the ‘body-editor’. And the equation submodel resulting from the body-editor and the bond graph model are
discussed. In Chapter 5 a feed-forward position control that controls the platform in the desired coordinates
is created and simulated. The model is validated with measurements in Chapter 6. The report is concluded
in Chapter 7.



Chapter 2

Manipulation concepts

In this chapter, two manipulation concepts of a 6 DOF manipulator are explained (see also [5]). In Para-
graph 2.1, a conceptual analysis of both manipulators is made. The identification of rigid bodies and flexures
is treated in Paragraph 2.2.

2.1 Two manipulation concepts

Figure 2.1 shows two manipulation concepts: the in-plane 3 DOF parallel manipulator can be ‘stacked’ on
top of the out-of-plane 3 DOF parallel manipulator, or it canbe done the other way around. The in-plane
manipulator enables translation alongx andy and rotation aboutz. The out-of-plane manipulator enables
rotation aboutx andy and translation alongz. This series connection of both 3 DOF manipulators results
in a 6 DOF manipulator.

The concept from figure 2.1(a) enables in-plane movement of the bottom platform and out-of-plane
movement of the top platform. The bottom platform is connected to three ‘arms’ at its corners. Each arm is
connected to the fixed world. The translational actuators exert forces on the platform through joints. In the
figure, the joints are represented by circles, but in realityflexures transfer forces to the platform. The top
platform is also connected to three arms on its corners. The arms are fixed to the bottom platform through
joints. Translational actuators exert forces on the platform through joints.

The concept of figure 2.1(b) enables out-of-plane movement for the outer platform and in-plane move-
ment of the inner platform.

2.2 Analysis of the in-plane manipulator

Figure 2.2 shows a photo of the in-plane manipulator throughan optical microscope. The outer dimensions
are4.5 × 5.2mm and the design has a 120° point-symmetry. In the centre, the end-effector (platform) is
located. Reinforced flexures connect the platform to so-called shuttles. Each shuttle is suspended by four
folded flexures and actuated by two comb-drives in pull-pullconfiguration.

Only flexible (or elastic) suspensions are used. This has theadvantage of a more accurate displacement,
because regular non-elastic suspensions, constructed from bearings and joints like hinges, pivots or sliders
have play and suffer from stick-slip. With the current MEMS technology, the minimum achievable play is
much bigger than the specified positioning resolution. The disadvantage of using elastic suspensions is that
it introduces stiffness. A force is necessary not only to putthe platform in a certain position, but also to
keep it there. Another disadvantage is that for flexible suspensions the maximum deflection and bending
is limited, compared with non-elastic joints of the same size. Hence, flexible suspensions are bigger in
general.
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(a) Out-of-plane manipulator ‘stacked’ on in-plane manipulator. Out-of-plane manipulator is constrained for in-plane movements
(= translation alongx andy and rotation aboutz) and in-plane manipulator is constrained for out-of-plane movements (= translation
alongz and rotation aboutx andy)

(b) In-plane manipulator ‘stacked’ on in-plane manipulator.Out-of-plane manipulator is constrained for in-plane
movements (= translation alongx andy and rotation aboutz) and in-plane manipulator is constrained for out-of-
plane movements (= translation alongz and rotation aboutx andy)

Figure 2.1: Manipulation concepts
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Figure 2.2: Photo of the in-plane manipulator through an optical microscope



6 2. MANIPULATION CONCEPTS

Figure 2.3: Schematic figure of an arm and a close-up of a comb-drive

Comb-drive

Figure 2.3 shows an on-scale schematic figure (scale 52:1) ofone ‘arm’ and a close-up of a comb-drive
(scale 420:1). The arm consists of a shuttle, two comb-drives, four folded flexures and a reinforced flexure.
A comb-drive is a linear motor that consists of a movable and astationary set of comb-fingers. When a
voltage is applied to the comb-drive, an electrostatic force is generated, and as a result the comb fingers
attract each other in they-direction. The electrostatic forces between the fingers inx-direction compensate
each other. The comb-drive deflection depends on the stiffness of the folded flexures and the reinforced
flexures. The relation between force and voltage is quadratic:

Fcomb =
nǫh

g
V 2

comb (2.1)

With n the number of fingers,ǫ the dielectric constant of the medium between the fingers, which is air or
vacuum,h the height of the comb-fingers andg the gap between the fingers.

A comb-drive can only generate a force in one direction, since it can only attract its fingers (two opposite
charges always attract each other). Therefore, the comb-drives on each shuttle are configured in pull-pull
configuration to enable movement in positive as well as negative direction. One comb-drive pulls at one
side of a shuttle and the other comb-drive pulls at the other side. However, the comb-drives that ‘push’ the
platform are called push comb-drives, and the comb-drives that ‘pull’ the platform are called pull comb-
drives, to distinguish between them. The force due to both comb-drives is calculated as follows:







Fpush =
nǫh

g
V 2

push

Fpull =
nǫh

g
V 2

pull

Fpull = −Fpush

⇒ Fpush =
nǫh

g

(
V 2

push − V 2
pull

)
(2.2)
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(a) kg = 12
EI

l 3

f

(b) kg = 24
EI

l 3

f

(c) kg = 12
EI

l 3

f

Figure 2.4: Folded flexure

Folded flexures (comb-drive and shuttle suspension)

A folded flexure is an element with four combined flexures of length lf to make it suitable for parallel
guiding and constrain rotational movements. Moreover, theshortening effect in longitudinal direction has
been compensated. Figure 2.4(a) shows one flexure; it has a guiding stiffness (kg) of 12EI

l 3

f

, with I the area

moment of inertia of the folded flexure, andE Young’s modulus of silicon. Figure 2.4(b) shows two parallel
flexures; together they have a guiding stiffness that is two times bigger than one flexure:24EI

l 3

f

. A folded

flexure (Figure 2.4(c)) is in fact a series construction of two times two parallel flexures. The outer two
flexures, as well as the inner two flexures, are parallel to each other. The two inner flexures and two outer
flexures are in series to each other. Hence the guiding stiffness of one folded flexure becomes two times
smaller than that of two parallel flexures, so it has the same guiding stiffness as one flexure has:12EI

l 3

f

.

Each shuttle is suspended with four folded flexures in parallel, which have a combined guiding stiffness
that is simply four times bigger:48EI

l 3

f

.

The same story holds for the longitudinal stiffness (kl). A folded flexure has the same longitudinal
stiffness as one flexure:EA

lf
. The combined longitudinal stiffness of four folded flexures is again four times

bigger:4EA
lf

.

Trench

Figure 2.5 shows a schematic top view and two schematic crosssections of a trench (the location is shown
in Figure 2.2). Trenches separate different potentials anddefine regions serving as electrical connections
to the comb-drives. The so-called twin-etching method requires that the shuttles and the platform contain
square holes. The cross section shows that the trench isolation electrically isolates the trench from the
ground potentialVground. Mechanically, the trench is fixed to the bulk. The probe pad potentialVpush2

is
transferred to the stationary fingers of the comb-drive through the trench. The ground potential is transferred
to the movable fingers of the comb-drive via the bulk, and through the folded flexures.

Assumptions

The folded flexures are assumed to be compliant in their guiding direction, which is the direction the comb-
drive actuates. And they are assumed to be stiff in the other directions. This makes 1 DOF unconstrained
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Figure 2.5: Schematic cross sections of a trench isolated region

and 5 DOF constrained. The longitudinal stiffness is in the order of104 bigger than the guiding stiffness,
so the folded flexures are assumed to be rigid in the longitudinal direction. TheRz rotational stiffness (see
Figure 2.3) that the shuttle feels due to the four folded flexures is very big, because of the relatively large
distance between two neighbouring folded flexures. TheRx andRy tilt stiffness that the shuttle feels is
also very big, because of the use of four folded flexures instead of one or two.

Usually, flexures allow torsional movements due to torsion stiffness. This is undesirable when only in-
plane movements are actuated, as in this manipulator. But since the parallel construction of three flexures
(that connect the platform to the shuttles) does not allow out-of-plane movements, torsion movements of the
flexures are constrained. Hence, only the in-plane movements of the flexure are assumed to be compliant
and a 3 DOF model of the flexure will be sufficient.

The shuttles and the platform are modelled as rigid bodies. The leaf springs and folded flexures have
compliant behaviour and are modelled as springs. If the massof the springs is much less than that of the
shuttles and the platform, the mass of the springs may be neglected. And if the shuttles and platform are
much stiffer than the springs, the shuttles and platform maybe assumed rigid.



Chapter 3

Flexure model

In this chapter, the flexure model is addressed. Paragraph 3.1 shows that it is important to choose symmetric
coordinates for the stiffness matrix of a 3 DOF flexure. In Paragraph 3.2 a 3 DOF flexure is constructed from
1D springs in 20-sim, and it will be shown that it is impossible to construct a symmetric leaf spring from 1D
springs. In Paragraph 3.3 a solution is given to describe thestiffness matrix in symmetric coordinates, but
still using an asymmetric joint-structure to construct theflexure. In Paragraph 3.4 the solution is validated
by simulations. The manipulator has reinforced flexures which are treated in Paragraph 3.5.

3.1 Choosing symmetric stiffness matrix coordinates

Figures 3.1(a) and 3.1(b) show an undeformed flexure, which is clamped to the fixed world at the left side.
At the right side, a rigid body is connected. A massless construction is connected to the bottom of the rigid
body. The in-plane forces are applied on the centre of the spring. Usually a flexure is only constrained (to a
certain extent) for translation alongz and rotation aboutx. However, since the parallel construction of three
flexures in the manipulator does not allow torsional movements, choice is made not to consider torsional
stiffness abouty. Hence, the flexure is assumed to be constrained in the out-of-plane directions (3 DOF)
and unconstrained in the in-plane directions (3 DOF).

The flexure in Figures 3.1(a) is rotated aroundy with respect to the flexure in Figures 3.1(b). The
stiffness matrix of the flexure, around equilibrium and for small deformations, reflected to a point aty = 1

2 l
(in its centre of stiffness (COS)) is derived in Appendix B.2:

Kc =









EI

l
0 0

0 12
EI

l3
0

0 0
EA

l









(3.1)

The force-deflection relation for this flexure (for small deflections) is:






M

Fx

Fy




 = Kc






ϕ

xc

yc




 (3.2)

The energy function of this flexure (for small deflections) isquadratic:

E =
1

2

[

ϕ xc yc

]

Kc






ϕ

xc

yc




 = 1

2

EI

l
ϕ2

c + 6
EI

l
x2

c + 1
2

EA

l
y2

c (3.3)



10 3. FLEXURE MODEL
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(a) Undeformed flexure (rotated abouty with respect to flexures below)
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(b) Undeformed flexure
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(c) Deformed flexure due to a positive forceFx (M andFy are zero)
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ϕ
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(d) Deformed due to a positive torqueM (Fx andFy are zero) in world orientation

Figure 3.1: Flexure
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(e) Deformed due to a positive torqueM (Fx andFy are zero) in body orientation
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y
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ϕ
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1
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Ψ0

Ψ1

Fx, x

Fy, y
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(f) Deformed due to a positive torqueM (Fx andFy are zero) with symmetric orientation

Figure 3.1: Flexure

Figure 3.1(c) shows the same flexure with a deformation due toa positive force inx-directionFx, (M and
Fy are zero). According to the symmetric stiffness matrix, only a deflection inx-direction results.

Figure 3.1(d) shows the flexure with a deformation due to a positive torqueM , (Fx andFy are zero).
The only deformation is a rotationϕ. The orientation of the forces and torque is chosen such, that it
coincides with world coordinates (Ψ0). A flexure is a symmetric element in reality, because it doesnot
matter whether the left side of the flexure is clamped and the forces affect the right side, or the other way
around; the deflection stays the same in both cases. However,the flexure is not modelled symmetrically
with this choice of orientation of forces and torque, because it does matter whether the flexure is viewed
from right to left or from left to right. Imagine that the two terminals of the spring are swapped, i.e.:

• Instead of the left side, the right side is clamped to the fixed world

• Instead of the right side, the mass is connected on the left side

• The flexure is turned around 180°

Then the flexure in Figure 3.1(e) results. But now, the coordinates are defined differently. In fact, the
orientation of the forces is now chosen such, that it coincides with the coordinates of the rigid body (Ψ1).

In general, the orientation of the forces can be chosen in infinitely many ways, but only one choice
leads to a symmetrically modelled flexure, which is exactly in the ‘middle’ of both orientations (Ψc) (see
Figure 3.1(f)). The orientation of this symmetric coordinate system coincides with the orientation of world
coordinates, but rotated+ 1

2ϕ. And it also coincides with the orientation of body coordinates, but rotated
− 1

2ϕ. Only in this case the flexure is modelled symmetrically. Swapping the terminals of the spring now
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does result in the same spring behaviour. Hence, the flexure is modelled symmetrically. However, the
stiffness properties have become dependant on the angular deflectionϕ.

3.2 Construction of a flexure model, based on 1 DOF springs

The body-editor is a graphical editor in which a rigid body model (or multibody model) can be created. In
such a model, rigid bodies (with a certain mass, inertia and centre of mass (COM)) can be connected to each
other through joints, in a user friendly way. Compared to modelling rigid bodies with 6-dimensional bond
graphs, modelling with the body-editor is much easier, faster and less sensitive to mistakes. Currently, only
1-dimensional joints were implemented in the body-editor.In a later stage, the program will be expanded
with multidimensional joints, since the body-editor is still in development.

Springs are not yet implemented in the body-editor. The way to model a 1D spring is to use a joint
in the body-editor and connect a spring to the power port of the joint in 20-sim. In principle, a 1 DOF
joint is an ideal joint, representing infinite stiffness in all other directions. Each 1 DOF joint may have
its own power-port (consisting of an effort and flow) in 20-sim, to which for example dampers or springs
can be connected. For mechanical translation, the effort isforce and the flow is velocity. For mechanical
rotation, the effort is torque and the flow is angular velocity. If a stiffness (C-type element) is connected to
the power-port of a joint, the joint behaves as an ideal spring. The C-type element integrates the velocity
to a deflection (x =

∫
vdt) and, in the case of a linear stiffness, multiplies the deflection with the stiffness

(kx · x = Fx), which is equal to the resulting force. More generally, theforce is the partial derivative of the
energy function of the spring, no matter whether its stiffness is linear or non-linear:Fx(x) = ∂E

∂x
.

To model the compliant flexure behaviour, the flexure is seen as two massless rods, with a 3 DOF spring
in between. There are two methods to define a multidimensional spring in the body-editor. Method 1 (which
is the normal method) is connecting a 6 DOF C-element to the power interaction ports of two rigid bodies
and constrain the out-of-plane DOFs. Rigid bodies may have such a 6 DOF power interaction port, which
appears in the resulting equation submodel in 20-sim. To this port, a multidimensional force (and/or torque)
source may be connected for example.

Method 2 is constructing the spring from a series connectionof 1D joints and let the axes of the joints
cross in one point. A 3 DOF flexure, which is constrained in theout-of-plane directions, can be constructed
from a series connection of three 1 DOF joints. However, in general a 6 DOF spring cannot be constructed
in this way, because it is well-known that a series connection of three 1D rotational joints always gives
problems (the order does matter and the construction may endup in a gimbal lock, for example). But since
method 1 gave some numerical problems in simulations (driftin the spring position as well as numerical
instabilities), method 2 is still used. The joints that construct an in-plane flexure would logically be the three
in-plane joints: two translational (alongx andy) and one rotational (aboutz). However, other constructions
are possible, for example two rotational joints and a translational joint in between (see Appendix B.3).

A series connection of translational 1D joints does not giveproblems. The order of joints does not
matter, as is shown in Figures 3.2(a) and 3.2(b); the distance between the rigid body and the fixed world
is the same for both multidimensional joints. A problem arises when rotational joints are involved. For
example, when two translational joints and one rotational joint are connected in series. In this case, it does
matter in which order the joints are connected, because the distance between the rigid body and the fixed

(a) x, y (b) y, x (c) y, x, ϕ (d) ϕ, y, x

Figure 3.2: Series connection of joints
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world is different. This is shown in Figures 3.2(c) and 3.2(d). Two different orders of joints are shown here
(but more different orders can be thought of).

Mathematically the problem comes out as follows. Matrix multiplications are in general not commuta-
tive, but in the special case of homogeneous matrices, whichonly consist of translations, matrix multipli-
cations are commutative:

H(x) =






1 0 x

0 1 0

0 0 1




 H(y) =






1 0 0

0 1 y

0 0 1




 (3.4)

H(x)H(y) = H(y)H(x) =






1 0 x

0 1 y

0 0 1




 (3.5)

However, matrix multiplications of homogeneous matrices,consisting of rotations and translations are in
general not commutative:

H(y)H(x)H(ϕ) 6= H(ϕ)H(y)H(x) (3.6)

With H(ϕ) a homogeneous matrix, only consisting of a rotation:

H(ϕ) =






cos(ϕ) sin(ϕ) 0

− sin(ϕ) cos(ϕ) 0

0 0 1




 (3.7)

Figure 3.3(a) shows a multibody model from a flexure that is constructed by a series connection of joints in
the order(x→y→ϕ). Figure 3.3(b) shows a multibody model from a flexure that is constructed by a series
connection of joints in the order(ϕ→ x→ y). The joints are interconnected with dummy bodies, having
zero mass and inertia. The flexure is clamped to the fixed worldon the left side, and on the right side a rigid
body is connected to the flexure.

When the joints are connected in the order(x → y → ϕ), the stiffness matrix seems to be defined in
world orientation; the forcesFx, Fy and torqueM (which are related to the deflectionx, y and rotation
ϕ by this stiffness matrix) seem to have the same orientation as world coordinates. Hence, this flexure is
equivalent to the flexure in Figure 3.1(d) and is called the ‘world-flexure’. When the joints are connected in
the order(ϕ→x→ y), the stiffness matrix seems to be defined in body orientation; the forcesFx, Fy and
torqueM (which are related to the deflectionx, y and rotationϕ by this stiffness matrix) seem to have the
same orientation as body coordinates. Hence, this flexure isequivalent to the flexure in Figure 3.1(e) and
is called the ‘body-flexure’. The three joints cannot be connected in such a way that the resulting flexure is
symmetrically modelled, like the flexure in Figure 3.1(f).

Figure 3.4(a) shows the flexure again, with three different choices of stiffness matrix coordinates. The
Ψa coordinates are asymmetric and related to the coordinates from Figure 3.3(a) and 3.1(d). TheΨb coor-
dinates are asymmetric and related to the coordinates from Figure 3.3(b) and 3.1(e). TheΨc coordinates
are the only symmetric coordinates and related to the coordinates from Figure 3.1(f).

Infinitely many choices can be made to measure the distancex andy between the spring terminals (see
Figure 3.4(b)), as long asx2 + y2 = r2 holds. Viewing the flexure from left to right, a series of four
coordinate changes is performed: first a rotationH(ϕ1), then a translationH(x), then a translationH(y)
and then a rotationH(ϕ2): H = H(ϕ1)H(x)H(y)H(ϕ2). The first rotationϕ1 can be chosen in the range
[0 : ϕ]. The second rotationϕ2 is also in the range[0 : ϕ], but should be equal toϕ − ϕ1, to make the total
rotationϕ.

The only symmetric coordinates from this range are theΨc coordinates (see Figure 3.4(c)). Viewing the
flexure from left to right, the coordinate changes areHc = H( 1

2ϕc)H(xc)H(yc)H( 1
2ϕc). Looking from

right to left, the coordinate changes areH( 1
2ϕc)H(yc)H(xc)H( 1

2ϕc). This is the same, but onlyx andy
are switched. However, this does not matter, as mentioned before (see Figures 3.2(a) and 3.2(b)).

A solution is describing the stiffness matrix in symmetric coordinates, but still using an asymmetric
joint-structure to construct the flexure. This solution is given in the next paragraph.
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(a) Series connection in the order(x→y→ϕ) (b) Series connection in the order(ϕ→x→y)

(c) Symbolic representation (d) Symbolic representation

Figure 3.3: Flexure model, constructed from 1 DOF springs

(a) Three different choices of force/torque coordinates

(b) Infinitely many choices of force/torque coordinates (c) Symmetric force/torque coordinates

Figure 3.4: Different choices of force/torque coordinates
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3.3 Symmetric model of a flexure

The energy function of the flexure is expressed in symmetricΨc coordinates. However, symmetric co-
ordinates are not available, in contrast to asymmetricΨa coordinates (or the asymmetricΨb coordinates,
depending on the order of the 1D joints, as explained in the previous paragraph). A solution is to rewrite
the energy function (Equation 3.3) and express it inΨa coordinates:

E = 1
2

EI

l
ϕ2

c + 6
EI

l
x2

c + 1
2

EA

l
y2

c (3.8)

The relation between(xc, yc) and(xa, ya) is a rotation of coordinates as can be seen in Figure 3.5:






ϕc = ϕa[

xc

yc

]

= R 1
2ϕ

[

xa

ya

]

⇒







ϕc = ϕa

xc = xa cos( 1
2ϕa) + ya sin(1

2ϕa)

yc = −xa sin(1
2ϕa) + ya cos( 1

2ϕa)

(3.9)

And substituted in the energy function:

E = 1
2

EI

l
ϕ2

a + 6
EI

l

(
xa cos( 1

2ϕa) + ya sin(1
2ϕa)

)2
+ 1

2

EA

l

(
−xa sin(1

2ϕa) + ya cos( 1
2ϕa)

)2
(3.10)

To find the force vector, the energy function has to be differentiated to the coordinates:

M =
∂E

∂ϕa

=

(
EI

l

)

ϕ +

(−3EI sin(ϕ)

l3
+

EA sin(ϕ)

4l

)

x2
a

+

(
6EI cos(ϕ)

l3
− EA cos(ϕ)

2l

)

xaya +

(
3EI sin(ϕ)

l3
− EA sin(ϕ)

4l

)

y2
a

(3.11)

Fx =
∂E

∂xa

=

(

12 cos2( 1
2ϕ)EI

l3
+

sin2( 1
2ϕ)EA

l

)

xa +

(
6 sin(ϕ)EI

l3
− sin(ϕ)EA

2l

)

ya (3.12)

Fy =
∂E

∂ya

=

(
6 sin(ϕ)EI

l3
− sin(ϕ)EA

2l

)

xa +

(

12 sin2( 1
2ϕ)EI

l3
+

cos2( 1
2ϕ)EA

l

)

ya (3.13)

These energy-conservative spring equations are put in the C-type element. Since they are non-linear, they
cannot be rewritten to matrix from, like in Equation 3.2.

When the flexure rotation is zero and only a deflection occurs, the coordinate systems overlap and the
energy functions are the same:

E = 6
EI

l
x2 + 1

2

EA

l
y2 (3.14)

Figure 3.5:12ϕ rotation fromΨa to Ψc
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The calculation can be performed for theΨb coordinates as well. But in that case, the stiffness matrix
coordinate transformation is a rotation of− 1

2ϕ instead of+ 1
2ϕ. The energy function then becomes:

E = 1
2

EI

l
ϕ2

b + 6
EI

l

(
xb cos(− 1

2ϕb) + yb sin(− 1
2ϕb)

)2
+ 1

2

EA

l

(
−xb sin(− 1

2ϕb) + yb cos(− 1
2ϕb)

)2

(3.15)
In the next paragraph a simulation shows that this solution works.

3.4 Simulation of asymmetric and symmetric flexures

To show that the orientation of coordinates of the stiffnessmatrix matters, a world-flexure (order of springs
is (x→ y →ϕ), see Figure 3.6(a)) is compared with a body-flexure (order ofsprings is(ϕ→ x→ y), see
see Figure 3.6(b)). In the next paragraph both flexures are simulated with a linear spring/stiffness matrix
(hence a quadratic energy function). In Paragraph 3.4.2 both flexures are simulated again, but with corrected
energy functions (see Equations 3.10 and 3.15). Then, the flexures get similar behaviour and are symmetric.

3.4.1 Asymmetric flexures

The stiffness matrix from Equation 4.19 has been connected to both flexures:

K =






1.09 · 10−8 0 0

0 0.0584 0

0 0 34404




 (3.16)

They both have a length of 1 mm. The rigid bodies have the mass and inertia of the platform (2.11 µg, see
Paragraph 4.3.4). Some damping is modelled to damp out the oscillations. The energy functions of the
flexures are quadratic:

E = 5.45 · 10−9 ϕ2
c + 0.0292 x2

c + 17202 y2
c (3.17)

Figure 3.7(a) shows a 3D-plot of this energy function as a function ofxc andyc, with ϕc = 0.1°. Figure 3.8
shows a 3D-plot of this energy function as a function ofxc andyc, with ϕc = 0°. Visually they are the
same, but the second one has an ‘offset’ of5.45 · 10−9 ·

(
0.1π
180

)2
= 1.66 · 10−14 J. The spring equations of

this leaf spring are:

M ′ = 1.09 · 10−8 ϕc F ′
x = 0.0584 xc F ′

y = 34404 yc (3.18)

The accent distinguishes between the force and torque at thesprings (with′), and the applied force and
torque at the end (without′) (see Figures 3.9(e) and 3.9(f)).

A certain force and torque(M,Fx, Fy) (in body orientation) acts at the end of both flexures (see Fig-
ure 3.9(a)). The deflection of the body with respect to its origin (its undeformed position) is given in
Figures 3.9(b) and 3.9(c). Between 0.015 and 0.04 seconds only a forceFx is applied. Between 0.045 and

(a) World-flexure: series connection in the order(x→

y→ϕ) (stiffness matrix is defined in world orientation)
(b) Body-flexure: series connection in the order(ϕ →

x→y) (stiffness matrix is defined in body orientation)

Figure 3.6: Flexures, constructed from 1 DOF springs
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0.065 seconds the same force is applied, together with a torqueM such that the rotationϕ is just cancelled
and a deflectionx = 13.7 µm remains. This can be calculated as follows:

{

Fx = 0.8 µN

M = 4 · 10−10 Nm
⇒

{

F ′
x = 0.8 µN

M ′ = M − Fx
1
2 l = 0

⇒
{

x′ =
F ′

x

kx
= 0.8 µN

0.0584 = 13.7 µm

ϕ′ = 0
⇒

{

x = x′ + 1
2 l sin(ϕ′) = 13.7 µm

ϕ = ϕ′ = 0

(3.19)

The applied force at the end of the flexure creates a torque in the middle, which exactly compensates for
the applied torque at the end. Between 0.07 and 0.095 secondsonly a moment is applied.

Schematic representations with deformed springs of the flexures at different time instances are given in
Figures 3.9(e) and 3.9(f). To give insight in which 1D springis deformed, undeformed 1D springs (springs
which do not feel any force at that moment) are not shown in these figures.

The deflections of both flexures indeed differ. The difference between the deflections is shown in Fig-
ure 3.9(d), which is 0.036 µm and 0.50 µm inx andy-direction. Between 0.01 and 0.04 seconds, only a
force inx-direction is applied, which results in a torque and force atthe centre of the flexure. For the world-
flexure holds thatFx is acting totally on thex-spring, but for the body-flexure holds thatFx is divided
between thex-spring andy-spring. Therefore, thex-deflection of the world-flexure is bigger than that of
the body-flexure.

As long as the rotation is zero, the coordinate systems in which the stiffness matrices are described,
overlap. This is obvious in Figure 3.4(a). Whenϕ = 0 thenxa = xb = xc andya = yb = yc. The
simulation also shows this between 0.045 and 0.065 seconds;the flexure deflections are the same.

The difference is only 0.036 µm and 0.50 µm inx and y-direction, but increases rapidly for bigger
rotations. For rotations about five times bigger (±10°), the difference is already 4.8 µm and 13 µm.

3.4.2 Symmetric flexures

The simulation is performed again, but the stiffness matrices are replaced by the non-linear stiffness equa-
tions (Equations 3.11, 3.12 and 3.13). The energy functionsof the springs are calculated for this numerical
example. The energy function of the world-flexure is (see Equation 3.10):

Eworld = 5.45 · 10−9ϕ2
a + 2.92 · 10−2(xa cos( 1

2ϕa) + ya sin(1
2ϕa))2

+ 1.72 · 105(−xa sin(1
2ϕa) + ya cos( 1

2ϕa))2 (3.20)

Figure 3.7(b) shows a 3D-plot of this energy function as a function of xa andya for ϕa = 0.1° (and in
Figure 3.8 withϕa = 0°). The energy function is quadratic forxa andya whenϕ = 0, but deviates more
and more from the quadratic energy function whenϕ increases. The energy function of the body-flexure is
(see Equation 3.15):

Ebody = 5.45 · 10−9ϕ2
b + 2.92 · 10−2(xb cos( 1

2ϕb) − yb sin(1
2ϕb))

2

+ 1.72 · 105(xb sin(1
2ϕb) + yb cos( 1

2ϕb))
2 (3.21)

Figure 3.7(c) shows a 3D-plot of this energy function as a function of xb andyb for ϕb = 0.1° (and in
Figure 3.8 withϕb = 0°).

Figures 3.10(b) and 3.10(c) show that statically the deflections are the same. The small differences
between the deflections that are shown in Figure 3.10(d) onlyoccur during changes in force and torque.
Because of the small rotations possible in the manipulator,only a small error is made when asymmetric
flexures are implemented instead of the symmetric ones.

Figures 3.10(e) and 3.10(f) show the power-flow through the flexures and the buffered energy. The
energy starts at zero and goes back to zero, which implies no energy is consumed or generated. The energy
is totally generated by the sources, consumed by the dampersand buffered by the flexure/spring.
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(b) Transformed energy function
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(c) Transformed energy function

Figure 3.7: Energy function as a function ofx andy, with ϕ = 0.1°
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Figure 3.8: Energy functions as a function ofx andy, with ϕ = 0° (they overlap)
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Figure 3.9: Simulation of two asymmetric flexures
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Figure 3.10: Simulation of two symmetric flexures. The flexures are asymmetric in principle, but become
symmetric due to the transformed stiffness matrices
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3.5 Reinforced flexures

Instead of flexures with a fixed thickness, reinforced flexures transfer forces to the platform. These flexures
have a reinforced mid-section which not only leads to an increase in all stiffnesses (see Soemers [7]):

K =






kϕ 0 0

0 kx 0

0 0 ky




 =











EI

l

(
1

1 − p

)

0 0

0 12
EI

l3

(
1

1 − p3

)

0

0 0
EA

l

(
1

1 − p

)











(3.22)

But also leads to a slower decrease inky as a function of thex-displacement, according to v.Eijk [4]:

ky

ky,0
=

1

1 +
12x2

(1 − p)Bd2

(3.23)

With:

B = 700
(1 + q)(1 + 3q + 3q2)3

1 + 10q + 45q2 + 105q3 + 105q4
and q =

p

1 − p
(3.24)

Which is an advantage of reinforced flexures, as well as the increase in longitudinal stiffness. A disadvan-
tage is that the lateral and rotational stiffnesses both increase.
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(c) Deformed reinforced flexure due to a positive forceFx (M andFy are zero)

Figure 3.11: Reinforced flexure



Chapter 4

Power-port modelling & simulation

In this chapter the 20-sim model of the manipulator is addressed. Paragraph 4.1 explains the multibody
model that was created in the body-editor. In Paragraph 4.2 the 20-sim model is treated. Parameters like
masses, inertias and stiffnesses are calculated in Paragraph 4.3. In Paragraph 4.4 the stiffness and resonance
frequencies of the manipulator are simulated with 20-sim.

4.1 Multibody model

The multibody model of the in-plane manipulator is given in Figure 4.1. The dimensions of the squares in
the grid are0.5 × 0.5 mm. Three arms are connected to a triangular platform in parallel. The little cross in
the origin of the world coordinate system is the reference body. It is fixed to the fixed world, so does not
move. The guiding direction of the folded flexures and the direction the comb-drive moves are represented
by translational joints. These are connected to the reference and the shuttles. The construction only allows
in-plane movement of the platform (i.e. translation alongx andy and rotation aboutz).

Figure 4.2 shows a schematic representation of the multibody model. It visualizes more clearly how
the flexures are constructed in the body-editor. The comb-drives excite a forceFcomb on the shuttle. The
shuttle is connected to the fixed world through a spring on oneside, which represents the lateral stiffness
of each set of four folded flexures. On the other side, it is connected to a massless rod. The platform is
also connected to a massless rod. Both rods are connected to each other through two translational springs,
one rotational spring and two dummy bodies (having zero massand inertia), which represent the in-plane
compliant behaviour of the flexure. Unlike in the scheme, theaxes of translation and rotation for the flexure
coincide in the multibody model.

The scheme already shows springs instead of joints, but the multibody model does not contain springs,
since they are not implemented in the body-editor yet (as mentioned in Paragraph 3.2). The multibody
model only contains the rigid bodies (with their positions,masses and inertias), and the kinematic construc-
tion of joints and rigid bodies. The compliant behaviour of the flexures is added in 20-sim.

4.2 20-sim model

Figure 4.4 shows the total 20-sim model of the manipulator. The comb-drive & folded flexure part and the
flexure part of the model will be explained in the next paragraphs. Finally, the total model is explained.

4.2.1 Comb-drive & folded flexure part

Figure 4.3(a) shows the comb-drive and folded flexure part ofthe 20-sim model of the manipulator. A force
source, spring and damper is connected to the power-port of each of the three translational (comb-drive)
joints.
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Figure 4.1: Multibody model

Figure 4.2: Schematic representation of multibody model
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(a) 20-sim model of comb-drive

(b) 20-sim model of flexure

Figure 4.3: Parts of 20-sim model

The force source (MSe) represents the force generated by a set of two comb-drives. They are excited
with a smooth voltage profile. Voltage steps should never be put on a comb-drive in reality, because of the
low damping in the manipulator (only some material damping and air friction). A voltage step will result in
big oscillations of the platform, which is undesired. Hencein the model, also a smooth voltage is used.

The push and pull voltage are both squared and subtracted from each other. The results is multiplied
with nǫh

g
to end up with the force generated by both comb-drives. This is exactly what the force-voltage

relation showed (see also Equation 2.2):

Fpp =
nǫh

g

(
V 2

push − V 2
pull

)
(4.1)

Comb-drive pull-in occurs very often with these kind of devices, which will break it. Therefore the
side-instability voltage was calculated. Legtenberg [2] gives an expression for the voltage at which side-
instability occurs:

Vside =

√
√
√
√ g2kg

2ǫ0hn

(√

2
kl

kg

+
c2
0

g2
− c0

g

)

= 415V (4.2)

This is promising, because it is a very high voltage. One remark is that the longitudinal stiffness of the
folded flexures(kl) decreases as a function of the comb-drive deflection. The following relation is given by
v.Eijk [4]:

kl

kl,0
=

1

1 +
12x2

700d2

(4.3)
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The maximum deflection of the manipulator stays within±10 µm, which results in a decrease inkl with a
factor0.7. But then, the side-instability voltage still is379V, which is still very high. Hence, no problems
are expected considering pull-in.

Ideally, the movable part (rotor) and the stationary part (stator) of a comb-drive are perfectly aligned
so the gap between rotor and stator is the same on both sides. This ideal situation is assumed in above
calculations. However, the side-instability voltage decreases rapidly due to misalignment between rotor
and stator (see [9]).

4.2.2 Flexures / leaf springs part

Figure 4.3(b) shows the flexure part of the 20-sim model of themanipulator. For each flexure, the three
power-ports of the joints are put together in a 3D-bond, using a power splitter. A stiffness (C-element) and
damper (R-element) are connected to the 3D-bonds, which represents the flexure’s compliant behaviour.
Almost no damping exists in the real manipulator (only some material damping and air friction), but a
higher damping makes simulations faster, which is handy to simulate static behaviour. Dynamic behaviour
is not as important as static behaviour, because the manipulator does not need to be very fast.

The compliant behaviour of the flexure is only linear in a small range around equilibrium. In this linear
range, a constant stiffness-matrixK may represent the spring. A linear spring integrates the velocities
(ϕ̇, ẋ, ẏ) to deflections(ϕ, x, y) and multiplies it withK, which is equal to the force and torque.

However, the flexure is non-linear and described by a non-linear energy function (see Equation 3.10), so
a single stiffness matrix is not sufficient. Instead of a stiffness matrix, the partial derivatives of the energy
function toϕ, x andy (Equations 3.11, 3.12 and 3.13) are put in the C-element. (These equations are related
to each other by the energy function of the spring and cannot be random functions). This ensures that the
C-element only buffers energy like an ideal spring, and doesnot consume or generate energy.

4.2.3 Total model

Figure 4.4 shows the total 20-sim model of the manipulator. The multibody model from the body-editor is
imported in 20-sim as an equation submodel. In subblock ‘Hp’, the homogeneous matrix (consisting the
position and orientation) of the platform with respect to the fixed world is monitored. Each joint has its
own power port, consisting of an effort and flow (power = effort × flow). The power-port of a translational
joint consists of an effortF , which is the relative force between the two parts of a joint;and a flowv, which
is the relative velocity between the two parts of the joint. The time-integral of this velocity is the relative
deflection of the joint.

4.3 Parameters

4.3.1 General dimensions

The most important dimensions with their symbols, which areused throughout this report, are given in
Table 4.1. The thickness of the reinforced flexures, the folded flexures and the comb-drive teeth is 2 µm by
design, but varies in reality (because of the mask resolution, varying etch times, and so on).

4.3.2 Properties of silicon

The density of silicon (ρsi) is 2.33 · 103 kg/m3. The so-called twin-etching method requires that the shuttles
and the platform contain square holes of9 × 9 µm in a raster of12 × 12 µm. This leads to a decrease in
mass with a so-called ‘hole’-factorf = 0.4375.

Since silicon is an anisotropic material, its Young’s modulus is direction dependent. Kaajakari [3]
uses tensor formalism to calculate Young’s modulus for silicon. With the free downloadable matlab script,
the Young’s modulus can be calculated for different angles in the [1 0 0]-plane (see Figure 4.5), which
corresponds to the silicon wafer plane. The folded flexures and leaf spring of Arm1 lay in the [1 0 0]-
direction (or[0 1 0], which is equivalent), in contradiction to the folded flexures and leaf springs of Arm2 and
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Figure 4.4: 20-sim model of manipulator
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structure dimension symbol

all structures height (in direction perpendicular to wafer) 38 µm h

shuttle length 1200 µm

width 940 µm

reinforced total length 1mm ls

flexure thin section width 2 µm d

thick section width 14 µm

length 720 µm

comb-drive tooth thickness 2 µm d

length 50 µm

initial overlap 20 µm c0

gap 4 µm g

folded flexure length 400 µm lf

width 2 µm d

Table 4.1: General dimensions
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Figure 4.5: Young’s modulus (GPa) in the[1 0 0]-plane

Arm3 which make an angle of 30° or 60° with the[1 0 0]-direction. This can be called the[1
√

3 0]-direction
(or [

√
3 1 0], which has the same Young’s modulus). Young’s modulus in thetwo important directions:

E[1 0 0] = 130GPa E[1
√

3 0] = 158GPa (4.4)

4.3.3 Shuttle

A rigid body is fully described by a mass and inertia matrix, and its ‘center of mass’ (COM). The mass of
the shuttle is:

ms = ρsi · A · h · f = 3.98 · 10−8 kg = 40.4 µg (4.5)

With ρsi the density of silicon,A the surface of the shuttle (which has been corrected for the space the
folded flexures take),h the height of the shuttle andf the hole-factor. The mass of the reinforced flexure is:

mf = ρsi · h
( width

︷ ︸︸ ︷

14 µm ·
length

︷ ︸︸ ︷

720 µm ·

hole factor
︷ ︸︸ ︷

142 − 92

142
︸ ︷︷ ︸

reinforced part

+

width
︷︸︸︷

2 µm ·
length

︷ ︸︸ ︷

280 µm
︸ ︷︷ ︸

thin part

)

= 5.7 · 10−10 kg = 0.57 µg (4.6)

To account for this mass in the model, it has been added to the mass of the shuttle.
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(a) Platform (b) Inertia of one block around the
platform’s centroid

(c) Inertia of one block around
its COM (in principal axes)

Figure 4.6: Inertia of platform

The shuttle is a rectangular body with massm and dimensionsa × b × h. The inertia matrix of the
shuttle (in its COM and with principal axes perpendicular and parallel to the body) is:

Is =
1

12
ms






b2 + h2 0 0

0 a2 + h2 0

0 0 a2 + b2




 =






5.25 0 0

0 3.22 0

0 0 8.46




 10−15 (4.7)

4.3.4 Platform

Figure 4.6(a) shows a schematic figure of the platform. The reinforced flexures are connected to the plat-
form in a isosceles triangle. The inertia matrix of the platform (Ip) around the centroid of the triangle
(geometrical center) is calculated in this paragraph. The platform consists ofn = 378 small blocks of
12 × 12 × 38 µm. The mass of one block is:

mb = ρsi · 12 µm · 12 µm · 38 µm · f = 5.58 · 10−12 kg (4.8)

And the mass of the platform is:

mp = n · mb = 2.11 · 10−9 kg = 2.11 µg (4.9)

The inertia matrix of the platform in the centroid is calculated by summing the inertia matrices of the small
blocks that build up the platform. The inertia matrix of block i around the centroid of the platform (see
Figure 4.6(b)) is calculated by the parallel axes rule:Ip,i = Ib + mbr

2
i . The inertia matrix of the platform

is the sum of all inertia matrices:

Ip =
∑

i=1:n

Ip,i =
∑

i=1:n

(
Ib + mbr

2
i

)
= nIb + mb

∑

i=1:n

r2
i (4.10)

With:

r2
i =






y2
i + z2

i −xiyi −xizi

−xiyi x2
i + z2

i −yizi

−xizi −yizi x2
i + y2

i




 =






y2
i −xiyi 0

−xiyi x2
i 0

0 0 x2
i + y2

i




 (4.11)
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Which has been calculated for each block in a Matlab script. The inertia matrix of one block in its COM is
(see Figure 4.6(c)):

Ib =
mb

12






122 + 382 0 0

0 122 + 382 0

0 0 122 + 122




 · 10−12 =






7.38 0 0

0 7.38 0

0 0 1.34




 · 10−22 (4.12)

Finally, the inertia matrix of the platform is:

Ip =






1.72 −0.19 0

−0.19 1.27 0

0 0 2.94




 · 10−17 (4.13)

The whole inertia matrix is calculated, because the body-editor asks for the three principal inertias. But
since out-of-plane rotations do not occur, only the inertiafor in-plane rotations(Iz) is important.

4.3.5 Reinforced flexures & folded flexures

The stiffnesses of the three reinforced flexures are different, not only because their orientations in silicon
result in a different Young’s modulus, but also because the average flexure thickness is different. The latter
is caused by the resolution of the mask used in the fabrication process, which seemed to be too low. As a
result, the borders of flexures under an angle of 30° or 60° arenot straight (SEM photos show this in [6]).

Hence, the stiffness matrix has to be calculated separatelyfor the first arm(K1), and for the second &
third arm(K23):

K =











EI

ls

(
1

1 − p

)

0 0

0 12
EI

l3s

(
1

1 − p3

)

0

0 0
EA

ls

(
1

1 − p

)











(4.14)

With A the area of the profile, andI the area moment of inertia, which is112hd3 as the flexure has a square
profile.

d1 = 1.95 µm d23 = 1.75 µm (4.15)

I1 =
hd3

1

12
= 2.35 · 10−23 m4 I23 =

hd3
23

12
= 1.70 · 10−23 m4 (4.16)

A1 = hd1 = 7.41 · 10−11 m2 A23 = hd23 = 6.65 · 10−11 m2 (4.17)

E1 = 130GPa E23 = 158GPa (4.18)

The stiffness of the reinforced flexures very much depends onthe thickness, because the area moment of
inertia depends on the thickness to the third power.

K1 =






1.09 · 10−8 0 0

0 0.0584 0

0 0 34404




 K23 =






9.58 · 10−9 0 0

0 0.0513 0

0 0 37525




 (4.19)

The guiding stiffness of the comb-drive suspension (which are folded flexures) is48EI
l 3

f

. They also depend

on the orientation in silicon:

kg1
= 2.29 N/m kg23

= 2.01 N/m (4.20)
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(a) The stiffness the platform ‘feels’ is dominated by the guiding
stiffness of the folded flexures (= shuttle suspension)
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(c) Deflection of the platform inx andy direction

Figure 4.7: Simulation of the stiffness the platform feels

4.4 Simulation

4.4.1 Stiffness felt by platform

The stiffness the platform ‘feels’ is simulated by putting aforce in the centre of the platform and looking
at its deflection (see Figure 4.7), as if the platform is pushed. Figures 4.7(b) and 4.7(c) show a multiple run
simulation withF = {−30,−15, 0, 15, 30}µN. No voltage is put on the comb-drives in this simulation.
The force divided by the deflection is the stiffness the platform feels, which is constant for small deflections:

kpx
=

Fx

x
=

30 µN

9.67 µm
= 3.10 N/m kpy

=
Fy

y
=

30 µN

8.92 µm
= 3.36 N/m (4.21)

This is verified by calculations as follows. The most dominant stiffness the platform feels when it moves
in translational directions is the guiding stiffness of thefolded flexures(kg) (= shuttle suspension), which
is about 40 times bigger than the lateral stiffness of the reinforced flexures. It is easy to calculate that the
stiffness the platform feels is32 timeskg, due to the symmetric structure of the manipulator (see [8]). The
averagekg of the three shuttle suspensions is2.10 N/m. The average stiffness the platform feels is:

kp = 3
2 · kg = 3

2 · 2.10 = 3.16 N/m (4.22)
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To give an estimation of the manipulator’s translational resonance frequencies, the total mass that moves
in the translational directions has to be calculated, whichis not just the sum of all masses. Similar to the
stiffness, the equivalent mass of the three shuttles in translational directions is32 timesms. For the total
mass, the mass of the platform has to be added:

mtot = 3
2 · ms + mp = 67.7 µg (4.23)

Hence, the translational resonance frequencies will be about:

fr =
1

2π

√

kp

mtot

= 1087Hz (4.24)

4.4.2 Resonance frequencies

The resonance frequencies of the platform (inx-direction,y-direction and forϕ-rotation) are simulated in
order to validate them with measurements in Paragraph 6.2. Asinusoidal force (or torque) with increasing
frequency and a fixed amplitude is put on the centre of the platform. The deflections and rotation are plotted
in Figure 4.8. The deflection of the platform is maximal at theresonance frequency, which are listed in the
table below:

direction freq. (Hz)

ϕ 1353 ± 10

x 1122 ± 10

y 1163 ± 10

Table 4.2: Simulated resonance frequencies

The resonance frequencies can also be simulated by putting asinusoidal voltage on the comb-drives. The
force frequency is two times the voltage frequency, becauseof the quadratic force-voltage relation. Hence,
the frequency is doubled and an offset is introduced:

F ∼ V 2

V = Va sin(ωt)

}

F ∼ V 2
a sin2(ωt) = 1

2V 2
a − 1

2V 2
a cos(2ωt) (4.25)

The resonance frequency depends a little on the damping. Therefore the damping was estimated roughly
in another simulation. A sinusoidal voltage with an amplitude of 14 V was put on the comb-drives and the
damping-parameter was varied until the simulated and measured deflection at the resonance frequency were
about the same. Figure 6.2(a) shows that the deflection at theresonance frequency inx-direction is about
9 µm (peak-peak). In simulations a viscous dampingr = 2.5 · 10−5 Ns/m for the folded flexures seemed
to result in about the same deflection (the damping for the reinforced flexures is left zero for simplicity
reasons). The relative damping is about:

ζ =
r

2
√

mk
= 2.7 % (4.26)
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Figure 4.8: Simulation of the resonance frequency
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Figure 4.8: Simulation of the platform’s resonance frequencies



Chapter 5

Feed-forward position control

With the voltage controlled model, three voltages are inputand the platform will move in a certain direction,
depending on the comb-drive strength and the dynamics of thesystem. However, it is not clear beforehand
how much volt to put on which comb-drive to let it move in e.g. only thex-direction. Instead of comb-drive
voltages, the desired platform position should be used as input. Hence, what is needed, is a mapping from
platform position to comb-drive voltage:






xp_sp

yp_sp

ϕp_sp




 7→






Vcomb1

Vcomb2

Vcomb3




 (5.1)

An inverse kinematic model (IKM) of the system could give a mapping from platform position to comb-
drive deflection:






xp_sp

yp_sp

ϕp_sp




 7→






c1

c2

c3




 (5.2)

And since the comb-drive deflection is proportional to the force of the comb-drive and proportional to the
square of the comb-drive voltage:

ci ∼






Fcomb1

Fcomb2

Fcomb3




 ∼






V 2
comb1

V 2
comb2

V 2
comb3




 with i = [1, 2, 3] (5.3)

The problem is solved using an IKM. Hence it was created (Paragraph 5.1), modelled (Paragraph 5.2), and
simulated (Paragraph 5.3). Only the above described feed-forward control is used and no feedback control,
because it is unknown if the platform position will be measured, and how that will be done. Moreover, it is
not certain that the position of the platform can be measuredaccurately enough.

5.1 Inverse kinematic model

The rigid body model has four stiffnesses and hence four DOF per arm. The platform has only three DOF
so a kinematic model would be underconstrained and an IKM would not have a unique solution. Additional
force equations would be necessary to give a unique solution. However, a simple solution is to remove one
DOF for the calculation of the IKM. The translation belonging to the longitudinal stiffness of the reinforced
flexure should be removed, because it is by far the biggest stiffness in the model. It is in the order of104

bigger than the lateral stiffness of the folded flexure, and in the order of105 bigger than the lateral stiffness
of the reinforced flexure.
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(a) Multibody model; the joints belonging to the longitudinal stiffnesses of the reinforced
flexures are removed

(b) Schematic represenation of above multibody model

Figure 5.1: Kinematic Model
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Figure 5.1(b) shows a schematic figure of a kinematic model ofthe manipulator. No masses are taken
into account and all springs are replaced by ideal joints, since a kinematic model does not contain any
dynamics. The only movements that are possible are a translation due to the comb-drives(c1, c2, c3) and a
rotation and translation due to the leaf springs(ϕ1, ϕ2, ϕ3) and(x1, x2, x3). The black dots only indicate
the coordinates (e.g.(x1a, y1a)). r, s anda are parameters. The coordinates at the corners of the platform
can be written as functions of the platform coordinates:

x1b = xp + a cos ϕp y1b = yp + a sin ϕp (5.4)

x2b = xp + a cos
(
ϕp + 2

3π
)

y2b = yp + a sin
(
ϕp + 2

3π
)

(5.5)

x3b = xp + a cos
(
ϕp + 4

3π
)

y3b = yp + a sin
(
ϕp + 4

3π
)

(5.6)

The following equation fromarm1 was made using Figure 5.1(b):

y1a + r + c1 + s cos ϕ1 = y1b (5.7)

Keeping in mind that:

ϕ1 = ϕ2 = ϕ3 = ϕp (5.8)

Rewriting Equation 5.7 deliversc1 as a function of(xp, yp, ϕp):

c1 = yp + a sin ϕp − s cos ϕp − y1a − r (5.9)

Similar toarm1, the following equations fromarm2 were made:

x2b + s cos
(
ϕ2 + 1

6π
)

+ 1
2x2 +

√
3

2 (c2 + r) = x2a (5.10)

y2b + s sin
(
ϕ2 + 1

6π
)
−

√
3

2 x2 + 1
2 (c2 + r) = y2a (5.11)

Now, two equations are needed instead of one, because the armis not parallel to thex-axis ory-axis as arm
1 is. Both equations depend on the variablex2, which can be eliminated by multiplying Equation 5.10 with√

3 and adding Equation 5.11 to it. Rewriting the resulting equation deliversc2 as a function of(xp, yp, ϕp):

c2 = −
√

3
2

(
xp − a sin

(
ϕp + 1

6π
))

−
√

3
2 s cos

(
ϕp + 1

6π
)
− 1

2yp

− 1
2a cos

(
ϕp + 1

6π
)
− 1

2s sin
(
ϕp + 1

6π
)

+
√

3
2 x2a + 1

2y2a − r (5.12)

Finally the equations fromarm3:

x3a +
√

3
2 (c3 + r) − 1

2x3 + s sin
(
ϕ3 + 1

3π
)

= x3b (5.13)

y3b + s cos
(
ϕ3 + 1

3π
)

+
√

3
2 x3 + 1

2 (c3 + r) = y3a (5.14)

Multiplying Equation 5.13 with
√

3 and adding Equation 5.14 to it, eliminatesx3 and deliversc3 as a
function of(xp, yp, ϕp):

c3 =
√

3
2

(
xp − a cos

(
ϕp + 1

3π
))

−
√

3
2 s sin

(
ϕp + 1

3π
)
− 1

2yp

+ 1
2a sin

(
ϕp + 1

3π
)
− 1

2s cos
(
ϕp + 1

3π
)
−

√
3

2 x3a + 1
2y3a − r (5.15)

Linearisation around zero of the IKM equations (5.9, 5.12 and 5.15) delivers the following transformation
matrix (which is also given in [6], but with a different definition of a, a rotated coordinate system and a
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different matrix order):
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(5.16)

The inverse of this matrix is:
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 (5.17)

These matrices give the global relation between comb-drivedeflection and platform position.

5.2 20-sim model

Figure 5.2 shows the feed-forward position control 20-sim model. The IKM equations (Equations 5.9, 5.12
and 5.15) are put in the IKM submodel. A setpoint(xp_sp, yp_sp, ϕp_sp) is input and the IKM will calculate
the comb-drive deflections needed to ensure that the real platform position(xp, yp, ϕp) will follow the
setpoint. The gains before and after the IKM, and the square root after the IKM reflect the proportionality
between comb-drive deflection and voltage (Equation 5.3). The gains depend on the geometry, the stiffness
of the system and the force-voltage relation of the comb-drives. If the platform position follows the setpoint
in any case, the IKM works right.

As another check, the IKM equations are also put in submodel ‘Hp’. Instead of the setpoint, the real
position of the platform is put in the IKM equations. The resulting comb-drive deflections should be very
similar to the real comb-drive deflections, which are the states in the folded flexure submodels (‘Kff1’ to
‘Kff3’). Only a small deviation due to the neglected longitudinal stiffness is possible.

5.3 Simulation

5.3.1 Voltage-deflection relation

The model has been simulated for different setpoints inx andy-direction:{−12,−8,−4, 0, 4, 8, 12} [µm]
(see Figure 5.3), to be able to validate the model with measurements in Paragraph 6.1. Moreover, the effect
of the IKM on the model is checked. Figure 5.3(a) shows the platform setpoint(xp_sp, yp_sp) as well as
the platform deflection(xp, yp). Figure 5.3(b) shows the comb-drive voltages, calculated by the IKM. The
comb-drive voltage squared, divided by the setpoint is a constant value for all setpoints, as can be seen in
Figure 5.3(c). Hence, when the voltage squared is plotted against the deflection, a constant slope is visible.
This means that, as expected, the voltage-deflection relation is quadratic (for small deflections), because the
force-voltage relations of the comb-drives are quadratic,and the stiffnesses of the flexures are linear (for
small deflections).

All possible slopes are calculated, except for the relationbetween comb-drive1 andxp, because the
voltage of comb-drive1 remains zero for movement inx-direction. The slope is not calculated for voltages
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ẋ
ẏ
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lower than a certain minimum voltage, because the slope willgo to infinity when the voltage is close to
zero, which introduces spikes in the simulation. Moreover,the slope is only important when the setpoint is
reached (i.e.0.01 − 0.02 and0.035 − 0.045 s).

The gains before and after the IKM are determined by trial anderror. They are given in the table below:

parameter value

gain_comb1 19400

gain_comb2 18900

gain_comb3 18900

gain_ϕp 0.96

gain_xp 0.735

gain_yp 0.745

Table 5.1: Gain parameters

The ratio between xp

V 2

comb3

and yp

V 2

comb1

in the simulation is0.81. If the flexures would have the same stiffness

and the comb-drives the same strength, the ratio would be
√

3
2 ≈ 0.866, according to the matrix from

Equation 5.17 (the factor belonging toxp andc3, divided by the factor belonging toyp andc1 is
√

3
2 ).

The same holds for the ratio betweenyp

V 2

comb1

and yp

V 2

comb2

, which is2.1 in the simulation. But if the

flexures would have the same stiffness and the comb-drives the same strength, the ratio would be2.0 (which
is the factor belonging toyp andc1, divided by the factor belonging toyp andc2).

The model also has been simulated for different setpoints inϕ-rotation: {−3,−2,−1, 0, 1, 2, 3} [°]
(see Figure 5.4). Again, a constant slope returns from simulations, which means a quadratic relation exists
between comb-drive voltage and platform rotation (for small rotations).
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Figure 5.3: Simulation for translational deflections
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Chapter 6

Measurements & Validation

6.1 Voltage-deflection relation

To verify the simulation from Paragraph 5.3.1, the platformdeflection is measured for different comb-
drive voltages. Voltages are applied in the ratio accordingto the simple linear kinematic model (see Equa-
tion 5.17), keeping in mind the square force-voltage relation of the comb-drives. For movement in the
positivey-direction, the voltage on push comb-drive1 is

√
2 times the voltage on pull comb-drive2 and pull

comb-drive3. For movement in the positivex-direction, the voltage on comb-drive1 is left zero; the voltage
on pull comb-drive2 and push comb-drive3 is the same. The same holds for the negative directions, except
that push and pull are switched.

Figure 6.1 shows the measured data points together with linear best-fit lines (using the Matlab function
‘polyfit’), as well as the simulated data for the three platform coordinates. A negative voltage means a
voltage on the pull comb-drive and a positive voltage means avoltage on the push comb-drive. In thex
andy-direction the simulation and measurements match well. Fortheϕ-rotation it matches less well. This
is due to the fact that the real thickness of the flexures and comb-drive teeth is not known very accurately,
so the real stiffness might be different, as well as the comb-drive strength. Especially because the stiffness
depends on the thickness to the third power. Hence, a 5% deviance in thickness already becomes a 16%
deviance in stiffness and this will also change the voltage-deflection relation.

For calculation of the best-fit line inx-direction, the measurements at2500V2 and−2500V2 were not
taken into account, since the manipulator hit one or more end-stops. The difference between simulations
and measurements are: inx-direction 2.3 %, iny-direction 3.9 % and inϕ-rotation 12.8 %.
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Figure 6.1: Voltage-deflection measurements, compared with simulation
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Figure 6.1: Voltage-deflection measurements, compared with simulation

6.2 Resonance frequencies

In order to get more information about the manipulator, the resonance frequencies of the manipulator are
measured. They were already simulated in Paragraph 4.4.2, so a comparison can be made. It gives different
information than the voltage-deflection relation, since the resonance frequencies are influenced by masses
and inertias, but not by the comb-drive strength. This is in contrast to the voltage-deflection relation, which
is influenced by the comb-drive strength, but not by masses and inertias.

The resonance frequencies of the system were measured by putting a sinusoidal voltage with a fixed
amplitude on the comb-drives and changing its frequency. The deflection of the platform is maximum
at the resonance frequency. The system has very low damping,so the resonance frequency peak is very
narrow. A1-2Hz change around the resonance frequency is even visible. Hence, visual inspection of the
maximum deflection through an optical microscope works fine.The amplitude of the voltage should not be
too small (otherwise vibrations would be invisible), nor too big (otherwise the system might hit an end-stop
and damage). An amplitude of14V seemed to be a good compromise.

Each of the three platform coordinates has its own resonancefrequency. Since the voltage can be put on
the push comb-drives as well as the pull comb-drives, the measurements were done twice per coordinate:
for the negative and positive direction. The measured resonance frequencies are compared with simulated
resonance frequencies (from Table 4.2) in the table below:

coordinate
measurements model

difference
voltage freq. (Hz) force freq. (Hz) freq. (Hz)

+ϕ 728 ± 2 1456 ± 4
1353 ± 10 7.1%

−ϕ 729 ± 2 1458 ± 4

+x 581 ± 2 1162 ± 4
1122 ± 10 3.3%

−x 579 ± 2 1158 ± 4

+y 600 ± 2 1200 ± 4
1163 ± 10 3.1%

−y 600 ± 2 1200 ± 4

Table 6.1: Measured and simulated resonance frequencies

Because of the point-symmetry of the system, the resonance frequencies in all translational directions are
expected to be the same. But the measurements show a deviation between the resonance frequencies inx
andy direction, which is likely due to the following:
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(a) x-directionl
Figure 6.2: Pictures of the manipulator in resonance through an optical microscope

• Effects of the mask resolution were found, looking at the structure with a SEM (see Figure 6 in [6]).

• A difference exists in the Young’s modulus between 30° or 60° structures and 0° or 90° structures.

The difference between simulated and measured resonance frequencies is likely to be caused by the follow-
ing:

• The stiffness, masses and inertias were calculated and thus not known very accurately.

• When a sinusoidal voltage is applied on the comb-drives, theplatform does not only vibrate in the
actuated direction. This can be seen from the pictures takenat the resonance frequencies (see Fig-
ure 6.2). Especially in they-direction, a deviation is visible on the top right hand sideof the platform.

• The damping has a little influence on the resonance frequency. A higher damping will lower the
resonance frequency a bit.

In the conclusions (Paragraph 7.1) more details are given.
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(b) y-direction↔

(c) ϕ-rotationª

Figure 6.2: Pictures of the manipulator in resonance through an optical microscope



Chapter 7

Conclusions & Recommendations

7.1 Conclusions

Body-editor

The body-editor of 20-sim is a great tool for creating 3D multibody models. Compared to modelling
rigid bodies with 6-dimensional bond graphs, modelling with the body-editor is much easier, faster and
less sensitive to mistakes. A kinematic construction of rigid bodies, which represents the manipulator’s
kinematic behaviour, was created in the body-editor. An equation model of the multibody model was
generated and imported into 20-sim. Currently, flexible elements or springs cannot be modelled directly
in the body-editor. Instead, it can be modelled in 20-sim andconnected to the equation submodel of the
multibody model. The way to model multidimensional springsshould be connecting two rigid bodies with
a stiffness, without using a construction of 1D-joints in the body-editor. However, some problems were
encountered concerning this way of implementing a stiffness in 20-sim and its body-editor (drift in the
spring position as well as numerical instabilities). Therefore a construction of 1D-joints was used for the
flexures.

Validation

Validation showed that the behaviour of the modelled manipulator is close to the behaviour of the real ma-
nipulator. The simulated voltage-deflection relations of the manipulator match to the real voltage-deflection
relation very well. The simulated resonance frequencies match to the measured resonance frequencies of
the real manipulator, but the simulated resonance frequencies are a bit lower. Possible reasons for this
deviation are:

• More material is etched away than designed, resulting in the mass being estimated too high. A lower
mass in the model will increase the resonance frequencies, but has no effect on the voltage-deflection
relation. When the holes are not9 × 9 µm, but for example9.4 × 9.4 µm (which is a 9.1% increase
in area), the mass decreases about 12% and the resonance frequency increases about 5.4%.

• The real stiffness is bigger than the modelled stiffness. Ahigher stiffness in the model will in-
crease the resonance frequencies, but will also change the voltage-deflection relation. To maintain
the voltage-deflection relation while increasing the stiffness, the comb-drive strength in the model
should be increased as well. As mentioned before, the thickness of the flexures and comb-drive teeth
is not known accurately enough, so the real stiffness might be different, as well as the comb-drive
strength. Especially because the stiffness depends on the thickness to the third power. Hence, the
voltage-deflection relation is very much affected by the thickness.

• The damping is not known very accurately. It is estimated roughly and assumed to be viscous.
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7.2 Recommendations

Validation

More measurement data is necessary to improve the verification of the model. The voltage-deflection
relation was only measured for specific voltages that will move the platform in the in-plane coordinates.
For further measurements, certain voltages have to be applied on each comb-drive and the position of the
platform has to be measured for all possible combinations ofcomb-drive voltages. This will result in a big
table with much more information, because the position of the platform will also be measured for combined
rotations and translations. Ideally, the measurements have to be performed for more than one device, to
exclude measurement errors and to check whether a deviationexists between different manipulators. The
measurement data can also be used for feed-forward control.

Modelling

The inverse kinematic model has to be implemented on the realmanipulator to check whether it also works
in reality. Probably a micro-controller can perform the calculations needed. In combination with the feed-
forward control, a feedback control can be designed when is known what kind of measurement signals are
to be expected. Different solutions can be thought of. To name a few:

• The position of the platform may be determined by measuringthe capacitance in the comb-drives,
which is related to the comb-drive deflection.

• A camera may monitor the position of the manipulator, whichcan be extracted with image-processing
techniques.

When bigger translational or rotational deflections become possible in a future manipulator, better kinemat-
ics and dynamics are necessary in the model. For example the flexures need more accurate energy functions
that are also valid for bigger deflections.

The out-of-plane manipulator has to be modelled to completethe model of the 6 DOF manipulator.
When the out-of-plane manipulator and the 6 DOF manipulator are fabricated, measurements should be
performed to validate the models.

Design

The design of the real manipulator was not intended to make itas compact and efficient as possible. Hence,
the design of the real manipulator can be improved and optimised much, although criteria would be neces-
sary. The model of the manipulator can be used to simulate andpredict the behaviour of the manipulator
for changes in the design.

• First of all, for use in a TEM, the size must be reduced. This can be accomplished by, for example,
shifting the reinforced flexures inside the shuttle.

• Considering the size of the current shuttles, much more comb-drive teeth could be created, which
will strengthen the manipulator and decrease the maximum voltage needed.

• Much space is wasted between platform and shuttles. This can be solved by shifting the flexures
inside the shuttles. A nice consequence is that the size becomes smaller, while the performance is
maintained.

• The size and position of the reinforcement in the flexures have to be considered. The advantage of
reinforcement is that the longitudinal stiffness and the buckling force increase. But the disadvantage
is that the lateral stiffness increases a bit, and the rotational stiffness increases much.



Appendix A

Homogeneous coordinates

A.1 Homogeneous matrices

The positionp0
i of rigid bodyi with respect to the reference body in the planar case is (see Figure A.1):

p0
i =






ϕi

xi

yi




 (A.1)

The position of a body can also be expressed in homogeneous coordinates. A homogeneous matrixH
consists of a rotation matrixR and a position vectorp. The rotation matrix was chosen such that a positive
ϕ results in a counterclockwise rotation (to let clockwise bepositive,R has to be transposed, but then many
signs change). The positionH0

i of bodyi with respect to the reference body is:

H0
i =

[

Ri pi

0 1

]

=






cos(ϕi) sin(ϕi) xi

− sin(ϕi) cos(ϕi) yi

0 0 1




 (A.2)

Figure A.1: Rigid body position
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The positionHi
0 of the reference body with respect to bodyi is the inverse ofH0

i . The inverse of a
homogeneous matrix can simply be calculated with just transpositions:

Hi
0 = (H0

i )−1

=

[

RT
i −RT

i pi

0 1

]

=




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cos(ϕi) − sin(ϕi) −xi cos(ϕi) + yi sin(ϕi)

sin(ϕi) cos(ϕi) −xi sin(ϕi) − yi cos(ϕi)

0 0 1






(A.3)

A.2 Twists & wrenches

The generalized translational and angular speed in the2- or 3-dimensional case is called a Twist (quantity
T ). And the generalized force and torque is called a Wrench (quantity W ). Hence the mechanical power
P is just: P = WT T . For the twistT i,0

i of body i with respect to the reference body (expressed in body
coordinates) holds:

T i,0
i =






ωi

ui

vi




 =






ϕ̇i

ẋi cos(ϕi) − ẏi sin(ϕi)

ẋi sin(ϕi) + ẏi cos(ϕi)




 (A.4)

For the wrench holds:

W =






M

Fx

Fy




 (A.5)

So the power is:
P = WT T = Mωi + Fxui + Fyvi (A.6)

Besides the column vector notation, a twist can also be written in ‘tilde’ notation. It is easier to be calculated
in that way:

T̃ i,0
i = Hi

0Ḣ
0
i

=






0 ϕ̇i ẋi cos(ϕi) − ẏi sin(ϕi)
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0 0 0
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


=






0 ωi ui

−ωi 0 vi

0 0 0






(A.7)

For the twist of bodyi with respect to the reference body, but expressed in reference coordinates, holds:

T̃ 0,0
i = Ḣ0

i Hi
0

=






0 ϕ̇i −ϕ̇iyi + ẋi

−ϕ̇i 0 ϕ̇ixi + ẏi

0 0 0
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
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0 ω0 u0

−ω0 0 v0

0 0 0






(A.8)
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Equations A.7 en A.8 imply a mapping of twists in different coordinate systems:

T̃ i,0
i = Hi

0Ḣ
0
i

⇔(Hi
0)

−1T̃ i,0
i = Ḣ0

i

⇔Ḣ0
i = H0

i T̃ i,0
i

T̃ 0,0
i = Ḣ0

i Hi
0

⇒T̃ 0,0
i = H0

i T̃ i,0
i Hi

0

(A.9)

This mapping can also be written in column notation, with a socalled ‘Adjoint’ representation of the H-
matrix:

T 0,0
i = AdH0

i
T i,0

i (A.10)

With AdH0

i
:

AdH0

i
=






1 0 0

−yi cos(ϕi) sin(ϕi)

xi − sin(ϕi) cos(ϕi)




 (A.11)

A twist is transformed according to Equation A.10. A wrench is similarly transformed in order to conserve
power(P ) and energy:

Ti = AdHi
c
Tc

Wc = AdT
Hi

c
Wi

}

P = WT
i Ti

= ((AdT
Hi

c
)−1Wc)

T AdHi
c
Tc

= WT
c Ad−1

Hi
c
AdHi

c
Tc

= WT
c Tc

(A.12)

These transformations can be used to transform a stiffness matrix to other coordinates:

Wi = Kiqi

⇔ Wi = KiAdHi
c
qc

⇔ (AdT
Hi

c
)−1Wc = KiAdHi

c
qc

⇔ Wc = AdT
Hi

c
KiAdHi

c
︸ ︷︷ ︸

Kc

qc

(A.13)

And hence a stiffness matrix is transformed to other coordinates as follows:

Kc = AdT
Hi

c
KiAdHi

c
(A.14)



52 A. HOMOGENEOUS COORDINATES



Appendix B

Stiffness matrix transformations

B.1 Generalization of Newton’s law to the planar case

A rigid body has three degrees of freedom in the planar case ifthere are no constraints: two translations
(x, y) and a rotation(ϕ). In the one dimensional case, there is just one degree of freedom. See Figure B.1(a)
for a schematic representation. Newton’s second law for a point mass states:

F = ṗ , with p = mv (B.1)

Only when the mass is constant (i.e.ṁ = 0) it can be rewritten into:

F = mv̇ = mẍ (B.2)

This can be generalized to the planar case:

W = JṪ (B.3)

⇔






M

Fx

Fy




 = J






ϕ̈

ẍ

ÿ




 (B.4)

(a) One-dimensional case (b) Two-dimensional case

Figure B.1: Extension of a mass from 1D to 2D
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(a) One-dimensional case

(b) Two-dimensional case

Figure B.2: Extension of a spring from 1D to 2D

With J a matrix that contains the mass and the mass moments of inertia of a rigid body with a random
shape, described in its centre of mass (see Figure B.1(b) fora schematic representation.):

J =






I 0 0

0 m 0

0 0 m




 (B.5)

The following equation describes a 1D linear spring:

F = kx (B.6)

This can be extended to the planar case as well (see Figure B.2(b) for a schematic representation):

W = Kq

⇔






M

Fx

Fy




 = K






ϕ

x

y






(B.7)

With K a stiffness matrix andq the generalized coordinates.
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A rigid body is fully described by a mass and inertia matrix, and its ‘centre of mass’ (COM), despite
its shape (see Equation B.5). Just like a rigid body has a COS,a spring consists of a certain point called
‘centre of stiffness’ (COS). When the spring is described in the COS, there is a minimum coupling between
translation and rotation.

B.2 Theory for small deflections

A force and moment are acting on the end of the flexure in FigureB.3(a). Point 4 from the table at page
882 in [1] states that a forceFx that is acting on the end of a flexure (of lengthl, area moment of inertiaI
and Young’s modulusE), results in anx-deflection and an angleϕ of:

x =
Fxl3

3EI
ϕ = −Fxl2

2EI
(B.8)

The minus sign in theϕ-Fx relation is due to the choice of the direction of the force andmoment in the
figure; a positive force will result in a negative rotation. Point 6 from the same table states that a torqueM
that is acting on the end of a flexure, results in a deflectionx and an angleϕ of:

x = −Ml2

2EI
ϕ =

Ml

EI
(B.9)

The minus sign in thex-M relation is due to the choice of the direction of the force andmoment in the
figure; a positive moment will result in a negativex-deflection. When both a force and a torque are acting on
the flexure, the deflections and angles from Equations B.8 andB.9 have to be superimposed. The equations
can be rewritten in matrix notation as follows:







x

ϕ







=








l3

3EI
− l2

2EI

− l2

2EI

l

EI














Fx

M







(B.10)

Inverting this matrix gives the relationship between the force versus displacement and torque versus angle
of a flexure:







Fx

M







=








12
EI

l3
6
EI

l2

6
EI

l2
4
EI

l














x

ϕ







(B.11)

Depending on the direction of the force and moment in the figure, the cross-terms of the stiffness matrix
will either have a plus or minus sign.

The relationship between a forceFy and they-deflection is derived from Hooke’s law, which states
there is a linear relationship between stress and strain:σ = Eǫ. This can be rewritten as follows:

σ = Eǫ

⇔ Fy

A
= E

y

l

⇔ Fy =
EA

l
y

(B.12)

Hence, the stiffness in they-direction (ky) is:

ky =
EA

l
(B.13)
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Fxe
, xe

Fye
, ye

Me, ϕe

(a) Stiffness matrix described at the end

Fxc
, xc

Fyc
, yc

Mc, ϕc

(b) Stiffness matrix described in the centre

Figure B.3: Flexure

The above stiffnessky and the stiffness-matrix from Equation B.11 are combined ina3×3 stiffness matrix:

Ke =












4
EI

l
6
EI

l2
0

6
EI

l2
12

EI

l3
0

0 0
EA

l












(B.14)

This stiffness matrix is not described in the geometrical centre of the flexure, but at one of the ends. If a
spring is described in the COS, there is maximum decoupling between rotational and translational stiffness.
It seems obvious that the geometrical centre of the flexure coincides with the COS.

Figure B.3(b) shows a flexure with a force and moment acting onthe centre of the flexure. A positive
force on the end of the flexure will result in a negative momenton the centre of the flexure. The following
equations relate the centre-forces to the end-forces and are rewritten to matrix-form:







Mc = − 1
2 l · Fxe

+ Me

Fxc
= Fxe

Fyc
= Fye

⇒






Mc

Fxc

Fyc




 =






1 − 1
2 l 0

0 1 0

0 0 1











Me

Fxe

Fye




 (B.15)
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The force-deflection relation can be rewritten as follows:





Me

Fxe

Fye




 = Ke






ϕ

xe

ye






⇔






Mc

Fxc

Fyc




 = TKe






ϕ

xe

ye






⇔






Mc

Fxc

Fyc




 = TKeT

T

︸ ︷︷ ︸

Kc






ϕ

xc

yc






(B.16)

With T the transformation matrix from Equation B.15:

T =






1 − 1
2 l 0

0 1 0

0 0 1




 (B.17)

So, the stiffness matrixKc is:

Kc = TKeT
T =









EI

l
0 0

0 12
EI

l3
0

0 0
EA

l









(B.18)

The cross-terms are zero, which implies a maximum decoupling between the rotational stiffness and the
translational stiffnesses. Hence, the centre of the springis the COS. Advantages of describing the stiffness
in the centre of the spring are:

• The direction of the forces and torque determine the sign ofthe cross-terms inKe. Since these cross-
terms are zero inKc, the direction has no influence. Hence, no mistakes can be made whether the
cross-terms need a plus or minus sign.

• Real flexures show shortening effects in they-direction due to anx-deflection and rotation. When the
flexure is described at the end of the spring, shortening effects of the flexure do not occur. But when
the flexure is described at the centre of the spring, shortening effects do occur.

• Less computations are necessary when the flexure is simulated.

The transformation can also be calculated as follows. The stiffness is moved from the end of the leaf spring
to the geometrical centre. This corresponds to a displacement of 1

2 l in they-direction. The homogeneous
matrixHi

c belonging to this transformation is:

Hi
c =






1 0 0

0 1 1
2 l

0 0 1




 (B.19)

The adjoint representation (see Equation A.11) of this homogeneous matrix is:

AdHi
c

=






1 0 0

− 1
2 l 1 0

0 0 1




 (B.20)
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(a) Spacar leaf spring (b) Spacar leaf spring (c) Multibody leaf spring

Figure B.4: Coordinate transformation for Spacar leaf spring and a multibody leaf spring

B.3 Spacar leaf spring

In the Finite Element program Spacar, different coordinates and a different stiffness matrix is used for a leaf
spring (see Figure B.4(a)). It will be shown that this is an awkward way of representation from a multibody
point of view. In fact a mechanical construction is used to obtain similar behaviour. This construction
consists of a translational spring that is connected to torsion springs on both sides through (massless) rods.
In Sections B.3.1 and B.3.2 the equivalent stiffness matrices at the end of the leaf springs will be calculated
for both ways of modelling. The leaf spring equation in Spacar is:






F

M1

M2




 = Ks






r

θ1

θ2




 (B.21)

With Ks:

Ks =












EA

l
0 0

0 4
EI

l
−2

EI

l

0 −2
EI

l
4
EI

l












(B.22)

B.3.1 Leaf spring model from a multibody point of view

The jacobianJmb describes a mapping of twists fromTc to Ti, which can be used to transform the stiffness
matrix from the centre of the spring (which is assigned toΨc) to the end of the spring (which is assigned to
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Ψi). See Figure B.4(c).
Ti = Jmb (ϕc, xc, yc) Tc (B.23)

The distance betweenΨi1 andΨi2 (ϕi, xi, yi) is related to the distance betweenΨc1
andΨc2

(ϕc, xc, yc)
as follows:

ϕi = ϕc

xi = xc + 1
2 l sin(ϕc)

yi = yc + 1
2 l

(B.24)

Differentiating these equations to time and putting them inmatrix form delivers the jacobianJmb:






ϕ̇i

ẋi

ẏi




 =






1 0 0
1
2 l cos(ϕc) 1 0

0 0 1











ϕ̇c

ẋc

ẏc




 (B.25)

For small rotationscos(ϕc) = 1 and henceJmb becomes:

Jmb =






1 0 0
1
2 l 1 0

0 0 1




 (B.26)

The stiffness matrix from Equation B.18 can be transformed with this jacobian, because the relation between
Wc andqc can be rewritten as follows:

Wc = Kc qc

⇔ Wc = KcJ
−1
mb qi

⇔ Wi = (J−1
mb)

T KcJ
−1
mb qi

(B.27)

Hence:

Ki = (J−1
mb)

T KcJ
−1
mb =












4
EI

l
−6

EI

l2
0

−6
EI

l2
12

EI

l3
0

0 0
EA

l












(B.28)

And this is the equivalent stiffness at the end of the spring again, as computed in Section B.2.

B.3.2 Spacar leaf spring model

The jacobianJsp describes a mapping from the three coordinates that Spacar uses (i.e.r, θ1 andθ2) to a
twist Te. See Figure B.4(b).

Te = Jsp (r, θ1, θ2)






ṙ

θ̇1

θ̇2




 (B.29)

Jsp is computed in the same way as in Paragraph B.3.1, by first computingϕe, xe andye as functions ofr,
θ1 andθ2:

ϕe = θ1 + θ2

xe = x0 + (l + r) sin(θ1)

ye = y0 + (l + r) cos(θ1)

(B.30)
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Differentiating these equations to time and putting them inmatrix form delivers the jacobian:






ϕ̇e

ẋe

ẏe




 =






0 1 1

sin(θ1) (l + r) cos(θ1) 0

cos(θ1) −(l + r) sin(θ1) 0
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







ṙ

θ̇1

θ̇2




 (B.31)

By using the stiffness matrix from Equation B.22,Ks2
is computed as follows:

Ks2
= (J−1

sp )T KsJ
−1
sp (B.32)

Ks2
is full of sines and cosines. But for small rotations and translations:cos(ϕc) = 1, sin(ϕc) = 0 and

r ≪ l. Then,Ks2
becomes:

Ks2
=
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l3
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








(B.33)

Since the equivalent stiffness matrices at the end of the leaf spring are the same for both models (see
Equations B.28 and B.33), the models are equivalent and showthe same behaviour. However, the multibody
model is preferred, because for the Spacar model, a mechanical construction is needed. Another advantage
is that the stiffness matrix has no cross terms. Hence, the multibody model is simpler and needs less
computations.
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