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Abstract

In this paper, we present a new topic in connection with project scheduling.
Since a limited work space can form a restriction to project scheduling prob-
lems, an efficient usage of these work spaces (or so-called spatial resources)
is required to produce good project schedules. The requirement for the re-
source units of these spatial resources is in an adjacent manner (we cannot
place a product under construction in separate parts of the work space). A
spatial resource unit is not required by a single activity, but by a so-called
activity group.

The requirement for adjacent resource units not only appears in project
scheduling, but also in several other applications. For example, the prob-
lem of scheduling check-in desks at an airport. The reserved check-in desks
for each single flight have to be adjacent. Another example appears in the
berthing problem, where quay space has to be assigned to ships of differ-
ent length, which berth during specified time periods. Within warehouse
management and the reservation of hotel rooms, resource adjacency is not
required but desirable.

The aim of this paper is to derive a solution method which provides an ef-
ficient spatial resource usage within project scheduling. This solution method
allocates the activity groups to the spatial resources and schedules the ac-
tivity groups, such that good solution possibilities for the overall project
scheduling problem are provided.

In this paper, we present an ILP formulation for the group scheduling
problem, and we show how the input for the group scheduling problem can
be extracted from the overall project scheduling problem. Furthermore, we
propose a way of translating back the output of the group scheduling problem
to the overall project scheduling problem. Afterwards, we show that the
group scheduling problem is NP -hard. Since the size of realistic problem
instances for the group scheduling problem is not very large, we test the
ILP model of the group scheduling problem to see upto what input sizes
the problem can be solved within reasonable time. Before we perform these
tests, we present a modification of the ILP formulation in order to decrease
the size of the ILP.
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1 Introduction

For many companies, project scheduling problems are a big issue. Since
companies have a limited amount of resources (machines, manhours, etc.),
it is very important to use these resources efficiently. The higher this effi-
ciency, the more projects the companies can handle and the more profit they
can make. A high efficiency of the resource usage can only be reached by
developing good schedules for the activities that have to be executed.

A special type of resources which companies have to deal with, are spatial
resources. Spatial resources are the work spaces, where the activities have
to be executed. For example, a dry dock is a spatial resource for a company
that builds ships. A special property of these spatial resources, is that the
requirement for its resource units, is in an adjacent manner. If we, for exam-
ple, want to place a ship in a dock, we have to reserve a number of adjacent
resource units for it. The adjacency constraint ensures us, that we do not
have to break the ship into several pieces to be able to dock it.

The requirement for adjacent resource units not only appears in project
scheduling, but also in several other applications. An example is the schedul-
ing of check-in desks at the airport. Depending on the number of passengers
and the duration of the check-in period, a number of check-in desks is re-
quired for each flight, during a certain time period before departure of the
flight. The reserved check-in desks for a certain flight have to be adjacent.

Also in the berthing problem, resource adjacency appears. The berthing
problem is the problem of finding an assignment of quay space, when ships
of different length berth during specified time periods.

There are also applications in which resource adjacency is not required,
but desirable. This happens, for example, within warehouse management and
hotel reservations. When a customer wants to hire a number of positions
in the warehouse during a certain period, then for convenience and cost-
efficiency reasons, it is desirable that these positions are adjacent. Within
the reservation of hotel rooms, if a number of guests belonging to a group
wants to stay in the hotel, then they might desire adjacent hotel rooms.

In this paper, we present a solution method, that tries to deal with the
spatial resource constraints to the project scheduling problem in an efficient
way. This solution method not only determines an allocation for the activities
to the required spatial resources, where resource adjacency is satisfied, but
also determines a sequencing of the activities, that get allocated to the same
spatial resource units. The solution method tries to find an allocation and
sequencing on the spatial resources that provides good solution possibilities
for the remainder of the project scheduling problem.

In the next section, we give a more detailed description of the problem
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we want to solve, and we discuss a number of existing solution methods for
(special cases of) this problem. In Section 3 we derive an ILP formulation
for the problem. In Section 4 we explain how the spatial resource problem is
related to the overall project scheduling problem, and in Section 5 we present
a solution method. In Section 6 we discuss the performance of the solution
method and in Section 7 we give some recommendations for further research.
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2 Problemdescription

2.1 Introduction

In many practical instances of the project scheduling problem, a limited
work space forms a restriction on the problem. This restriction can have a
large influence on the feasibility of project schedules. Therefore, it is very
important to use the available space in an efficient way. Before we discuss
the problem of finding an efficient spatial resource usage in more detail, we
present two project scheduling problems, known from literature.

A well-known project scheduling problem is the RCPSP (see De Boer [14]
and Brucker et al. [8]), the ‘Resource Constraint Project Scheduling Prob-
lem’. The RCPSP is called a resource driven project scheduling problem,
which states that the resource capacities cannot be exceeded and the objec-
tive is a minimization function of the completion times of the activities. The
time driven counterpart of the RCPSP is the TCPSP (see Guldemond [20]),
the ‘Time Constraint Project Scheduling Problem’. In the TCPSP, deadlines
for the activities are given, and in order to meet these deadlines, it might
be necessary to hire extra capacity for the resources. The objective of the
TCPSP is to minimize the total cost of the hired capacity.

In the standard RCPSP and TCPSP, the work that has to be done is
modelled as so-called activities. These activities have a certain request for
the available resources. Since space can form a restriction to the problem,
spatial resources were introduced by De Boer [14]. Examples are dry docks
in ship yards, shop floor space, pallets, etc. The spatial resources differ from
the regular resources in two essential ways.

The first difference is that a resource unit from a spatial resource is not
required by a single activity, but by a group of activities, called a spatial

resource activity group (or just activity group). The spatial resource unit is
occupied from the first moment an activity from such a group starts until the
last activity in the group finishes. Since the start time and completion time
of an activity group can be determined by different activities, the processing
time of the activity group is variable.

The second difference is that an activity group requires adjacent spatial
resource units (see Duin and van Sluis [17]). The assignment of spatial re-
source units to activity groups, represents the allocation of a product under
construction to a certain work space. Since a product under construction can-
not be broken into several smaller pieces, the spatial resource units, where a
single activity group gets allocated to, have to be adjacent.

In this paper, we derive a solution method, that tries to deal with the
additional spatial restrictions on the RCPSP and TCPSP in an efficient way.
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The problem that the solution method tries to solve, can be formulated as
follows: “Where should we allocate the activity groups, and in which order
should the activity groups, that get allocated to the same spatial resource
units, be performed, in order to provide good solution possibilities for the
overall project scheduling problem (RCPSP or TCPSP)?” We call this prob-
lem, the ‘Group Scheduling Problem’ (GSP). In the remaining of this section,
we discuss a number of existing solution methods for (special cases of) the
GSP, and we state the objectives of this paper.

2.2 Existing solution methods

The GSP is a new topic in connection with the project scheduling problem
and no solution methods for the GSP can be found in the literature. For
project scheduling problems, like the RCPSP, many solution methods exist.
However, the solution strategies that are used for the RCPSP and TCPSP,
are not applicable to the GSP. In this section, we give a brief overview of
the solution methods for the RCPSP and TCPSP, and we explain, why these
solution methods are not applicable to the GSP.

Although no solution methods for the GSP can be found in literature,
there are some special cases of the GSP, which are equivalent to well-known
mathematical problems. For these special cases, many solution methods can
be found in literature. In this section, we also discuss these special cases of
the GSP and we give a brief overview of existing literature on these problems.
The first of these problems that we observe is the: ‘The Two-Dimensional
Strip Packing Problem’. This problem is a special case of the GSP, where
only one spatial resource is considered. The second special case of the GSP, is
the: ‘The Two-Dimensional Bin Packing Problem’. This problem is a special
case of the GSP, where more then one spatial resource can be considered. The
last special case of the GSP is a generalization of the Bin Packing problem:
‘The Simple Assembly Line Balancing Problem’.

2.2.1 Solution methods for the RCPSP and TCPSP

The solution methods for the RCPSP and TCPSP can be divided into opti-
mal procedures and heuristics. The most successful optimal procedures for
the RCPSP at this moment, are based on branch and bound methods. We
mention the algorithms proposed by Demeulemeester and Herroelen [15] and
by Stinson et al. [37].

Neumann et al [30] showed that the RCPSP is NP-hard. Therefore, un-
fortunately, even the best optimal procedures known at this moment require
too much computation time to solve instances of a reasonable size. As a
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consequency, many heuristics have been developed to find good, but not nec-
essarily optimal, solutions within reasonable time. For an extensive overview
of these heuristics and the optimal procedures, we refer to Davis [13] and
Herroelen and Demeulemeester [21]. Guldemond [20] showed how adaptive
search can be used to derive good solutions for the TCPSP.

The reason that existing solution methods for the RCPSP and TCPSP
are not applicable to the GSP, is that most of these solution methods, are
(partially) based on two observations, that do not hold for the GSP.

The first observation concerns the resource-usage of a set of activities. If,
for a set of activities, it holds for every resource, that the total requirement
of the activities in the set for that resource does not exceed the capacity
of that resource, then all the activities in this set can be in progress at the
same time period. A similar observation for the GSP holds for a single time
unit, but not when we are scheduling over a certain time period. Namely,
if we have, in a similar way, a set of activity groups, such that it holds for
every spatial resource, that the total requirement of the activity groups in
the set for that spatial resource does not exceed the capacity of that spatial
resource, then this set of activity groups can get scheduled at the same time
unit. However, when we are scheduling over a certain time period, then the
adjacency restriction to the the spatial resource units to which an activity
group gets allocated to, makes it impossible to say whether this set of activity
groups can get scheduled at the same time period or not. If we, for example,
have to allocate two groups, which both require 5 spatial resource units, to
a spatial resource with capacity 10, then we can only schedule them at the
same time period, if the group which gets started first, gets allocated to one
end of the spatial resource. If it gets allocated somewhere in the middle
of the spatial resource, then there are not enough adjacent spatial resource
units left to allocate the other group at the same time period.

The second observation concerns precedence relations between activities.
In both the RCPSP and TCPSP, precedence relations between activities
may appear. A precedence relation between two activities states that we
cannot start with an activity, before its predecessor is completed. In many
of the solution methods for the RCPSP and the TCPSP, these precedence
relations are used to decrease the number of activities, that are ready to be
scheduled at a certain time, when developing partial schedules. As we show
in Section 3.3, these precedence relations between activities can be translated
into precedences relations between activity groups. However, the precedence
relations between groups is of a different type than the precedence relations
between activities. Unfortunately, the precedence relation between groups
does not tell if a group cannot start before its preceeding group is completed.
Therefore, we cannot decrease the number of activity groups, that are ready
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to be scheduled at a certain time, when developing partial schedules.
The existing solution methods for the RCPSP and TCPSP, rely on these

two observations. Therefore, the solution methods for the RCPSP and
TCPSP cannot be used for the GSP and we have to develop new solution
methods.

However, there are some special cases of the GSP, which are equivalent to
well-known mathematical problems, for which many solution methods have
been developed. In the following subsections, we discuss these cases one by
one.

2.2.2 The Two-dimensional Strip Packing Problem

The two-dimensional strip packing problem, first proposed by Baker et al.

[2], is defined as follows: Pack a set of rectangles into a strip of width 1,
such that the height that is used is minimized. The width of the rectangles
is assumed to be smaller or equal to 1, and they cannot be rotated. This
problem is equivalent to the following special case of the GSP.

Recall that we consider just one spatial resource. Furthermore, assume
that there are no precedence relations between the groups, that each group
has a fixed processing time, and that without loss of generality the spatial
resource has spatial length 1. Then, if we minimize the latest completion
time of the groups, the GSP is equivalent with the strip packing problem.
If we namely picture the groups as rectangles where the width represents its
spatial length and the height represents its duration, then finding a solution
of the GSP is equivalent with placing these rectangles into a strip with width
1 (the length of the spatial resource). Minimizing the height of this strip is
equivalent with minimizing the latest completion time of the groups (see also
Figure 1).

The strip-packing problem is NP-hard (see Baker et al. [2]). Therefore,
the search for good solution methods for the strip-packing problem has con-
centrated on heuristics and approximation algorithms. In Baker et al. [2],
some efficient approximation algorithms are developed and their worst-case
bounds are determined. In Martello et al. [27], a relaxation of the problem is
proposed that produces good lower bounds for the problem. The results are
used in a branch-and-bound algorithm, which is able to solve test instances
from the literature involving up to 200 items. In Remila [34], an approxima-
tion algorithm is developed, that finds a packing of n rectangles, whose total
height is within a factor of (1 + ε) of optimal and has running time polyno-
mial both in n and in 1

ε
. In Steinberg [36], an approximation algorithm is

proposed with absolute performance bound 2. A more extensive overview of
existing solution methods, can be found in Lodi et al. [25], where mathe-
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Figure 1: Strip Packing

matical models and lower bounds, classical approximation algorithms, recent
heuristic and metaheuristic methods, and exact enumerative approaches are
discussed.

2.2.3 The Two-Dimensional Bin Packing Problem

If the GSP has to deal with more then one spatial resource, but the re-
sources are identical, then another well-known mathematical problem ap-
pears, namely: ‘The Two-Dimensional Bin Packing Problem’, which is de-
fined as follows (see Martello et al. [26]): Pack a set of rectangular items
in identical rectangular bins, such that the number of bins that is used is
minimized. The items cannot be rotated. The two-dimensional bin packing
problem is equivalent to the following special case of the GSP.

All spatial resources have equal spatial length, the groups have a fixed
duration, there are no precedence relations between the groups, and the
groups can be allocated to any of the spatial resources. Given a fixed time
horizon, the problem is to schedule all the groups within this time horizon,
minimizing the number of used spatial resources.

We can set the width of the bins equal to the spatial length of the resources
and the height of the bins equal to the time horizon. Then the rectangles
represent the groups, where the width of the rectangle equals the spatial
length of the group and the height of the rectangle equals the duration of
the group. Minimizing the number of bins that we use is equivalent with
minimizing the number of spatial resources (see also Figure 2).
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Figure 2: Bin Packing

The two dimensional bin-packing problem is NP-hard, since already the
one dimensional bin-packing problem is NP-hard (see Garey and Johnson
[19]). Therefore, several heuristics and approximation algorithms for the
bin-packing problem have been developed. Berkey and Wang [5] devel-
oped several greedy algorithms for the bin-packing problem. Falkenauer and
Delchambre [18], proposed a genetic algorithm. Martello et al. [26] give a
survey of recent advances on exact algorithms and effective heuristics and
metaheuristics for the two dimensional bin-packing problem.

2.2.4 The Simple Assembly Line Balancing Problem (SALBP)

If we extend the above given special case of the GSP with precedence relations
between the groups, then the following well-known mathematical problem
appears: ‘The Simple Assembly Line Balancing Problem’. This problem was
first proposed by Salveson [35] and is a generalization of the bin packing
problem. The SALBP is equivalent with the bin-packing problem where
precedence constraints are allowed (see Baybars [4]). Therefore, if we add
the possibility of having precedence constraints between the groups to the
special case of the GSP, as described in the previous section, then we have a
special case of the GSP, which is equivalent with the SALBP.

Since the SALBP is a generalization of the bin packing problem, it is also
NP-hard. For an overview of exact algorithms for the SALBP, see Baybars [4].
Bautista et al. [3], proposed a local search heuristic and a genetic algorithm
for the SALBP. McMullen and Frazier [28] demonstrated how Simulated
Annealing can be used to obtain line balancing solutions when one or more
objectives are important.

2.3 Objectives of this paper

As described, efficient use of the work space can have a large influence on the
solution possibilities for the project scheduling problem. In this paper, we
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develop a solution method, that tries to deal with these spatial restrictions
in an efficient way. In order to develop a solution method for the GSP, we
first need to derive a model for the GSP. We develop an ILP model, which
may form the hose for efficient algorithms. To be able to solve the GSP, we
need to know, how we can extract the input for the GSP from the overall
project scheduling problem. Furthermore, after solving the GSP, we have
to translate the output of the GSP back to the overall project scheduling
problem. Therefore, we can formally state the following objectives for this
paper:

• Develop an ILP model for the Group Scheduling Problem

• Determine how the input for the GSP can be extracted from the overall
project scheduling problem, and how the output of the GSP can be
translated back to the overall project scheduling problem.

• Derive a model for the GSP, that gives solutions for the GSP, which
lead to good solution possibilities for the overall project scheduling
problem.

• Find an algorithm, that solves the GSP within reasonable time for
realistic input sizes.

9



3 Model

3.1 Introduction

In this section we derive an ILP model for the GSP. Since the GSP results as
a subproblem of the project scheduling problem (RCPSP or TCPSP) with
spatial resources, we first review the model for the general project schedul-
ing problem. Therefore, we review the TCPS-model with spatial resources
proposed by Guldemond [20] in the next section. Afterwards, we develop
the group scheduling model and an ILP formulation for the GSP. In the last
section, we discuss in more detail the modeling of the spatial resources.

3.2 The TCPS problem with spatial resources

For the TCPS problem, activities have to be scheduled before a deadline.
These activities can be seen as work that has to be done for some project.
If we take, for example, the building of a ship, then all the work that has
to be done can be divided into activities, like designing the ship, welding
several components of the ship, painting the cabin. We assume that we have
N activities A1, ..., AN . Furthermore, we have a time horizon consisting of
T time units t = 1, ..., T . We assume that every activity Ai has a given
processing time pi, which states that every activity Ai has to be scheduled
for exactly pi time units, and that preemption is not allowed, which states
that if we start on an activity, then we have to keep on working on it without
interruption, until it is completed.

Each activity Ai also has a release date ri and a due date di. These dates
bound the time window in which activity Ai has to be scheduled. The release
date of an activity depends on, for example, the delivery date of materials
that are necessary for performing this activity.

Between some activities, precedence relations exist. A precedence relation
between two activities states that one activity cannot start before the other
is finished. For example, a ship cannot get painted, before it is constructed.
If an activity Aj cannot start before activity Ai is finished, then Ai is called
a predecessor of Aj, and Aj is called a successor of Ai. Sometimes we have
to wait a certain amount of time between the completion of an activity and
the start of a successor. This happens, for example, if we have to wait for
the paint to dry, before we can do other work on the ship. Therefore we
introduce on each precedence relation a nonnegative time-lag lij. This time-
lag lij equals the minimum time difference required, between the completion
time of activity Ai and the start time of activity Aj. With Pi we denote
the set of predecessors of Ai and with Si we denote the set of successors of
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activity Ai.
To build up a schedule for each activity Ai, we have to determine a

start time SAi, which describes the earliest time bucket at which Ai gets
scheduled. Since preemption is not allowed and we have to process Ai for
exactly pi time units, Ai is completed in time bucket CAi = SAi + pi − 1.
Furthermore, activity Ai cannot get scheduled before its release date or after
its due date, which implies SAi ≥ ri and CAi ≤ di. The timelag lij between
activity Aj and its predecessor Ai implies SAj ≥ CAi + lij + 1.

Due to precedence relations, it might be impossible to start an activity
at its release date (for example, if activity Ai has ri = 2 and its predecessor
Aj has rj = 1, then Aj cannot start at its release date). Therefore we define
the earliest start time ESAi of an activity Ai as the earliest moment in time
when an activity can start, taking into account the timing restrictions of all
activities. The latest completion time LCAi of an activity Ai is the latest
moment in time at which an activity has to be completed, taking into account
the timing restrictions of all activities. Obviously we have ri ≤ ESAi and
LCAi ≤ di. The earliest start time and latest completion time of an activity
define the time window, in which activity Ai can be scheduled.

The earliest completion time ECAi of an activity equals the sum of its
earliest start time and its processing time (ECAi = LSAi + pi − 1). The
latest start time LSAi of an activity equals the difference between its latest
completion time and its processing time (LSAi = LCAi − pi + 1).

For the performance of the activities, a number of resources is required.
These resources are, for example, machines and man hours. We assume that
there are K resources R1, ..., RK. Resource Rk has a certain capacity Qkt at
time t ∈ {1, ..., T} (the capacity of the resources may vary in time). Each
activity Aj requires qjk units of resource Rk during its complete processing.
If, at time t, the total request of all scheduled activities for resource Rk

exceeds its capacity Qkt, then extra capacity can be hired (against a certain
cost). The total cost for hiring this extra capacity is part of the objective of
the TCPS problem.

Next to the regular resources, spatial resources appear. These resources
are denoted by SR1, ..., SRΛ. The spatial resources are, for example, the
work spaces where the activities have to be performed. A spatial resource
can be, for example, a dock where the ship has to lay, when a number of
activities have to be performed, like building the cabin. An important differ-
ence between spatial resources and regular resources is that a resource unit
from a spatial resource is not required by a single activity, but by a group
of activities, called a spatial resource activity group (or just activity group),
introduced by De Boer [14]. A spatial resource unit is occupied from the
first moment an activity from such a group starts until the last activity in
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the group finishes. We denote the activity groups by G1, ..., GI . The set of
activities Ai that belong to group Gg is denoted by S (g).

In this paper, we focus on one-dimensional spatial resources, thus, the
capacity of the spatial resources is given as a certain length Lλ. This length
can be, for example, the length of a dock. Every activity group Gg has a
certain length requirement lg, which is the request for the spatial resource.
This length can be, for example, the length of a ship that has to lay in a
dock. We consider the case that every group Gg has to be allocated to one
specified spatial resource denoted by SRλ(g). Since a ship cannot be broken
into several pieces, the groups require adjacent spatial resource units (see
Duin and Van Sluis [17]).

3.3 The group scheduling problem

The group scheduling problem is the relaxation of the TCPS problem, where
the capacities of all regular resources (the regular resources are the non-
spatial resources) are set to infinity. Using the group scheduling model, we
try to find a scheduling of the activity groups, that provides good solution
possibilities for the TCPSP.

For the scheduling of the activity groups, two decisions have to be made.
First, we have to decide where the activity groups have to be allocated and
second, we have to decide for which period the activity groups get scheduled.
In order to provide good solution possibilities for the TCPSP, we at least
have to ensure that the output of the group scheduling model leaves the
room for feasible, or even better, high quality solutions for the TCPSP.

The period that a group occupies a spatial resource is called the duration
of the group Dg. This period lasts from the first moment an activity from
such a group starts until the last activity in the group finishes. We denote the
start time of group Gg by SGg and the completion time of group Gg by CGg.
Observe that the duration of a group is variable (if for a certain schedule the
start and completion time of a group Gg are determined by different activities
and we decrease the start time of the activity that determines the start time
of Gg, then the start time of Gg decreases, while the completion time of Gg

remains the same, i.e., the duration of Gg increases). However, as we show
in Section 4.2.3, we can derive a minimum for the group duration, in order
to ensure feasibility for the TCPSP.

To restrict the possible values for the start and the completion of the
groups, we derive earliest start, latest start, earliest completion and latest
completion times for the groups. The earliest start time ESGg of a group
Gg is defined as the earliest moment in time that an activity belonging to
Gg can start, i.e., ESGg equals the minimum over all the earliest start times
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of the activities in Gg. The latest start time LSGg of a group Gg equals
the latest moment in time that Gg can start, such that we can still meet the
time constraints of all the activities. Since the start time of a group equals
the earliest start time over the activities in the group, and every activity
Ai in the group has to start before or at its latest start time LCAi to meet
the time constraints, it follows that LSGg equals the minimum over all the
latest start times of the activities in the group. The earliest completion
time ECGg of a group Gg equals the earliest moment in time when all the
activities in the group can be completed, which is equal to the maximum over
all the earliest completion times of the activities in the group. The latest
completion time LCGg equals the maximum over all the latest completion
times of the activities in the group.

The above considerations only focus on individual groups. However, in
general there are also timing relations between the possible processing times
of different groups, caused by precedence relations between activities belong-
ing to different groups. To ensure that we can fulfill these restrictions after we
derived a schedule for the groups, we have to translate these precedence rela-
tions somehow into a precedence relation between different groups. There is
only one major difference between the precedence relations between different
activities and the precedence relations between different groups. A prece-
dence relation between two activities implies that the two activities have to
be scheduled after each other. For groups however, it might happen that they
have to be scheduled at (partially) the same period of time, due to the prece-
dence relations between the activities. Assume, for example, that we have
two groups G1 and G2 and three activities A1, A2 ∈ S (1) and A3 ∈ S (2).
Furthermore, A1 is a predecessor of A3 and A3 is a predecessor of A2. To
maintain this precedence relations in the TCPSP, we have to schedule the
groups G1 and G2 (partially) at the same period of time (at least for the
period that A3 gets scheduled).

The precedence relation in the TCPSP between two activities implied
that the succeeding activity could not start before a nonnegative time-lag was
passed after the preceding activity was completed. This kind of precedence
relation is not suitable for groups. Therefore we introduce a precedence
relation between groups, that states that if group G1 is a predecessor of
group G2, then group G2 cannot complete before a nonnegative time-lag
TL12 is passed, after group G1 has started, i.e. SG1 + TL12 ≤ CG2. If we
get back to our example, then we can see that the fact that A1 needs to be
scheduled before A3, implies SG1 + TL12 ≤ CG2 and the fact that A2 needs
to be scheduled after A3 implies SG2 + TL21 ≤ CG1. Figure 3 clarifies that
these two constraints imply that G1 and G2 will be scheduled at (partially)
the same time period.
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Figure 3: Precedence relations between groups

Deriving from all precedence relations between activities of different groups
corresponding timelags between the involved groups leads to a set of prece-
dence relations between the groups. We denote with Ph the resulting set of
predecessors of group Gh.

To model the GSP, we derive an ILP model. The necessary decisions for
the GSP are the start and finish times for the groups and the spatial resource
units which are reserved for each group. For the derivation of the start and
completion times of the groups, we use the binary variables gsgt and zgt. The
binary variable gsgt takes value 1 if group Gg starts at time unit t and takes
value 0 elsewhere. The binary variable zgt takes value 1 if group Gg is busy
at time unit t and 0 elsewhere. We can use the following equations to derive
the start and completion times of the groups:

SGg =
∑

t

gsgt ∗ t ∀g = 1, ..., I (3.1)

CGg =
∑

t

(zgt − zgt+1 + gsgt+1) ∗ t ∀g = 1, ..., I (3.2)

Observe for the first equation that we only add t to the sum when gsgt = 1
and that is exactly when group Gg starts. For the second equation, we have
3 situations:

1. zgt − zgt+1 + gsgt+1 is 0 when group Gg is not busy at time t (zgt =
zgt+1 = gsgt+1 = 0 or zgt = 0 and zgt+1 = gsgt+1 = 1)

2. zgt − zgt+1 + gsgt+1 is also 0 when group Gg is busy at time t, but also
at time t + 1 (zgt = zgt+1 = 1 and gsgt+1 = 0)

3. zgt − zgt+1 + gsgt+1 is 1 when group Gg is busy at time t, but not at
time t + 1 (zgt = 1 and zgt+1 = gsgt+1 = 0).
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We see that t only gets added to the sum when t is the last time unit
at which Gg is busy. We know that a group Gg cannot start before its
earliest start time and not after its latest start time. The same holds for the
completion time which implies the constraints:

zgt = gsgt = 0 ∀g = 1, ..., I, t < ESGg or t > LCGg

CGg ≥ ECGg ∀g = 1, ..., I

CGg ≤ LCGg ∀g = 1, ..., I

To ensure that every group starts exactly once, we have to add the fol-
lowing constraint:

∑

t

gsgt = 1 ∀g = 1, ..., I (3.3)

Furthermore, a group can only be busy at time t if it starts at time t or
if it was already busy at time t − 1, which results in the constraints:

zgt ≤ zgt−1 + gsgt ∀g = 1, ..., I, t > 1 (3.4)

zg1 = gsg1 ∀g = 1, ..., I (3.5)

For the allocation of the groups to the spatial resource units, we use
the binary variables bgl and ygl. The variable bgl is set to 1 if l is the first
unit of the spatial resource SRλ(g) to which group Gg is allocated and 0
elsewhere. Since a group Gg may occupy only one ’first’ unit, we have to add
the constraint:

Lλ(g)∑

l=1

bgl = 1 ∀g = 1, ..., I (3.6)

The variable ygl indicates whether group Gg gets allocated to spatial
resource unit l of SRλ(g). It takes value 1, when group Gg gets allocated to
spatial resource unit l, otherwise it takes value 0. Since the spatial resource
units for every group Gg have to be adjacent, group Gg can only get allocated
to spatial resource unit l if it is also allocated to spatial resource unit l−1 or
if spatial resource unit l is the lowest index for which group Gg gets allocated
to its spatial resource. This results in the constraints:
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ygl ≤ ygl−1 + bgl ∀g = 1, ..., I, l > 1 (3.7)

yg1 = bg1 ∀g = 1, ..., I (3.8)

We also have to reserve enough space on the spatial resource for every
group Gg. We know that group Gg has to be allocated to lg spatial resource
units of its spatial resource. This is satisfied with the following constraint:

Lλ(g)∑

l=1

ygl = lg ∀g = 1, ..., I (3.9)

If two groups have to be allocated to the same spatial resource, then we
have to make sure that either they do not get allocated to the same spatial
resource unit or their scheduling periods do not overlap. To satisfy this, we
introduce the binary variable wgh, which takes value 1 if groups Gg and Gh

have at least one common unit in their spatial resource allocation and takes
value 0 when the scheduling periods of groups Gg and Gh are not disjunct.
Since wgh cannot take both values 0 and 1, the variable wgh ensures that
at no point in time it cannot happen that two groups are allocated to the
same spatial resource unit. The following two constraints guarantee that the
variable wgh behaves as described above:

ygl + yhl ≤ 1 + wgh ∀g 6= h, λ (g) = λ (h) , l = 1, ..., Lλ(g) (3.10)

zgt + zht ≤ 1 + (1 − wgh) ∀g 6= h, λ (g) = λ (h) , t = 1, ..., T (3.11)

The last variable is Dg, the duration of group Gg. The duration follows
simply from the equation:

Dg = CGg − SGg ∀g = 1, ..., I (3.12)

In Section 4.2.3 we derive a minimum for the duration of the group
(D ming), which implies the constraint Dg ≥ D ming. In Section 4.2.4 we
derive the time-lag TLgh for the already mentioned constraint SGg +TLgh ≤
CGh. These two constraints ensure that we can meet the time constraints of
all the activities if we incorporate the solution of the GSP into the TCPSP.

The objective function of the model is discussed in Section 4.4. The com-
plete constraints of the ILP model for the GSP is summarized in Appendix
1.
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3.4 Modeling of two-dimensional spatial resources

In the group scheduling model, the capacity of the spatial resources is mod-
elled as a certain length. This modeling works well for spatial resources like
docks, in which ships can only lay in line with each other, but not next to
each other. However, there are many applications for which the spatial re-
source capacity is not restricted to just one dimension. Examples are, shop
floor space, rooms, or pallets. If we consider such spatial resources, then the
products can not only be placed in line with each other, but also next to each
other (and maybe even on top of each other). In other words, such spatial
resources have a capacity in two (or even three) dimensions. In this section,
we show how we have to adjust the group scheduling model, such that we
can also deal with this these higher dimensional spatial resources.

For two dimensions, every spatial resource SRλ has, next to the length
Lλ, a certain width Wλ. Furthermore, for every group, next to the length
requirement of the group lg, a certain width requirement of the group bg

is given. This modeling is a generalization of the modeling in the previous
section, because if we take Wλ = 1 for all spatial resources and bg = 1 for all
groups, then we get spatial resources, where the groups can only be placed
in line with each other and not next to each other.

For the allocation of the groups to the spatial resource units, we now use
the binary variables blgl, ylgl, bbgb and ybgb. The variable blgl (bbgb) is set to
1 if l (b) is the first length (width) unit of SRλ(g), to which group Gg gets
allocated, and 0 in all other cases. To ensure that group Gg has one ’first’
length (width) unit of SRλ(g), we have to replace (3.6) by:

Lλ(g)∑

l=1

blgl = 1 ∀g = 1, ..., I

Lλ(g)∑

b=1

bbgb = 1 ∀g = 1, ..., I

Furthermore, variable ylgl (ybgb) indicates whether group Gg uses the lth(
bth
)

spatial length (width) unit, or not. To ensure that the spatial length
(width) units are adjacent for every group allocation, we have to replace (3.7)
and (3.8) by:
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ylgl ≤ ylgl−1 + blgl ∀g = 1, ..., I, l = 2, ..., Lλ(g)

ylg1 = blg1 ∀g = 1, ..., I

ybgb ≤ ybgb−1 + bbgb ∀g = 1, ..., I, b = 2, ..., Bλ(g)

ybgb = bbg1 ∀g = 1, ..., I

To ensure that every group gets enough space on their spatial resource,
we have to replace (3.9) by

Lλ(g)∑

l=1

ylgl = lg ∀g = 1, ..., I

Bλ(g)∑

b=1

ybgb = bg ∀g = 1, ..., I

The last two constraints that we have to adjust are (3.10) and (3.11).
Two groups have spatial overlap on a spatial resource if they both have a
spatial length unit as a spatial width unit in common in their allocation.
Therefore we replace the binary variable wgh by wlgh and wbgh, such that
wlgh (wbgh) takes value 1 when groups Gg and Gh get allocated to the same
spatial length (width) unit. To avoid spatial resource conflicts, we have to
ensure that when group Gg and Gh get scheduled at (partially) the same time
period, then at least one of the two binary variables wlgh and wbgh has to
take value zero. In this case it is clear that it should not happen that group
Gg and Gh have spatial overlap and get scheduled at partially the same time
period. This leads to a replacements of (3.10) and (3.11) by:

ylgl + ylhl ≤ 1 + wlgh ∀g = 1, ..., I, h = 1, ..., I, g 6= h,

λ (g) = λ (h) , l = 1, ..., Lλ(g)

ybgb + ybhb ≤ 1 + wbgh ∀g = 1, ..., I, h = 1, ..., I, g 6= h,

λ (g) = λ (h) , b = 1, ..., Bλ(g)

zgt + zht ≤ 1 + (2 − wlgh − wbgh) ∀g = 1, ..., I, h = 1, ..., I, g 6= h,

t = 1, ..., T

With these adjustments, we can use the group scheduling model also for
applications where the spatial resources have two dimensions.
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4 Relation between TCPSP and GSP

4.1 Introduction

The GSP is a relaxation of the TCPSP. Therefore, most of the input for
the GSP can be taken directly from the TCPSP. However, to ensure that
the TCPSP is still feasible after solving the GSP, we have to add certain
restrictions to the GSP, which cannot be taken directly from the TCPSP. In
the previous section, we already mentioned that, in order to ensure feasibility
of the TCPSP, a minimum for the group duration has to be derived (Section
4.2.3) and in certain cases also precedence relations between different groups
(Section 4.2.4).

After we solve the GSP, we have to translate the output of the GSP back
to the TCPSP. This translation can be done in different ways. We discuss in
Section 4.3 the advantages and disadvantages of the different ways and show
how the translation can be done.

The aim of solving the GSP, is to provide good possibilities for getting
solutions of the TCPSP. Whether these solution possibilities are provided or
not, depends strongly on the objective function used for solving the group
scheduling model. Therefore, we discuss in Section 4.4 possible objective
functions and make a choice between these possibilities. In Section 4.5, we
propose a two-phase solution method for the GSP.

4.2 Extracting the input from the TCPSP

In this section we derive the input for the group scheduling model, that
cannot be taken directly from the TCPS-model. The input which we have to
derive are the earliest and latest start times of the groups, the earliest and
latest completion times of the groups, the minimum duration of the groups,
and the precedence relations between the groups with the associated time-
lags. Before we derive this input, we summarize the parameters introduced
to the TCPS problem in Section 3.2, and we add some new parameters, which
are useful for the derivation.

4.2.1 Parameters TCPSP

We recall the following parameters of the TCPS-model.
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Ai : Activity i.

S (g) : Set of activities Ai that belong to group Gg.

ri : Release date of activity Ai.

di : Due date of activity Ai.

pi : Duration of activity Ai.

Pi : Set of direct predecessors of Ai.

Si : Set of direct successors of Ai (Si = {Aj|Ai ∈ Pj}).

lij : Minimum time-lag between the completion time of activity Ai and

the start time of activity Aj, for Aj ∈ Si.

Pi : Set of all predecessors of Ai, i.e., Pi = Pi ∪
{
Pj|Aj ∈ Pi

}
.

Si : Set of all successors of Ai

(
Si =

{
Aj|Ai ∈ Pj

})
.

ESAi : Earliest start time of activity Ai.

LSAi : Latest start time of activity Ai.

ECAi : Earliest completion time of activity Ai.

LCAi : Latest completion time of activity Ai.

Asg : Artificial start activity of group Gg (explanation in Section 4.2.3).

Atg : Artificial end activity of group Gg (explanation in Section 4.2.3).

4.2.2 Earliest and latest start and completion times

For the derivation of the earliest and latest start times, and the earliest and
latest completion times of the groups, we need to make use of the earliest
start times and latest completion times of the activities. Therefore, we first
show how to derive these parameters.

As mentioned before, some activities cannot start at their release date or
finish at their due date, due to precedence relations and timelags. Therefore,
we define the earliest start time of an activity, as the earliest moment in
time at which an activity can start, such that the time constraints of all
activities can be met, and the resource requirements are relaxed. The latest
completion time of an activity is defined as the latest moment in time an
activity can finish, such that the time constraints of all activities can be met,
and the resource requirements are relaxed. We can derive the earliest start
times with a forward recursion through the precedence network.

In each step, we have a set C of activities, for which we already deter-
mined their earliest start time, and a set D of activities, which are ready to
have their earliest start time derived (i.e., for all its predecessors we already
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determined their earliest start time). For an activity Ai ∈ D, its earliest
start time is bounded by its release date ri and by the earliest completion
time plus the time lag for all its direct predecessors Aj (i.e., ESAj +pj + lij).
Algorithm 1 summarises this process.

Algorithm 1

Initialize : C, D := ∅.

Step 1 : D := {Ai|Pi ⊆ C, Ai /∈ C} .

Step 2 : For every Ai ∈ D do ESAi := max

(
ri, max

Aj∈Pi

(ESAj + pj + lji)

)
.

Step 3 : C := C ∪ D. If C = ∪iAi then stop. Else go to step 1.

We can derive the latest completion times in a similar way by a backward
recursion through the precedence network. The sets C and D are defined in
a similar way as in Algorithm 1.

Algorithm 2

Initialize : C, D := ∅.

Step 1 : D := {Ai|Si ⊆ C, Ai /∈ C} .

Step 2 : For every Ai ∈ D do LCAi := min

(
di, min

Aj∈Si

(LCAj − pj − lij)

)
.

Step 3 : C := C ∪ D. If C = ∪iAi then stop. Else go to step 1.

The earliest and latest start and completion times of the groups follow
from the following equations.

• ESGg = minAi∈S(g) (ESAi).

• LSGg = minAi∈S(g) (LCAi − pi).

• ECGg = maxAi∈S(g) (ESAi + pi).

• LCGg = maxAi∈S(g) (LCAi).
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4.2.3 Minimum group duration

In this section, we derive a minimum on the duration of the groups. This
minimum on the group durations is necessary to meet the time constraints of
all activities, under the assumption that the regular resources have infinite
capacity. As mentioned in Section 3.3, the duration of a group is defined as
the period from the first moment an activity within that group starts until
the last activity within the group finishes. Since there exist time restrictions
on the activities, we can derive a minimum duration for the groups, which is
necessary to meet these time restrictions. Before we give a general procedure
to derive the minimum group duration, we give a small group example, in
which we derive the minimum duration for this group. Afterwards, we show
how to derive the minimum group duration in general.

To get a clear view on the problem, we present the example instance in
an Activity-On-Node network (AON-network). In this network, the nodes
represent the activities, and the arcs the precedence relations. The nodes are
labelled with a tuple (ESAi, LSAi), where LSAi is defined as the latest start
time of activity Ai (the latest start time of an activity is simply its latest
completion time LCAi minus its processing time pi). If there is an arc going
from activity Ai to Aj, then Ai is a direct predecessor of Aj. We label the
arcs with the sum of pi (the processing time of Ai) and lij (the time-lag).
If an activity Ai has no direct successor, then we write an outgoing arc at
its node, labelled with its processing time pi. Our example is presented in
Figure 4.
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Figure 4: Example instance represented in AON-Network
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In the example, group G1 is given by S (1) = {Ac, Ad, Af , Ag}. This group
is presented in Figure 5. The other activities belong to no group.
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Figure 5: Activities in group G1, extracted from figure 4

It is easy to see that in this example the minimum duration of group G1

equals 5. This duration can be attained if we start activity Ac and Ad at
time 6, and activity Af and Ag at time 9. On the other hand, the duration
of group G1 cannot be smaller then 5, since the sum of the processing times
of activities Ad and Af , and the time-lag between these two activities equals
5. Now we show a method to derive the minimum duration in general.

To derive the minimum duration of group Gg in general, we first add
two dummy-activities (Asg and Atg) to group Gg, where Asg represents the
start of group Gg and Atg represents the completion of group Gg. We use
these dummy activities, to give a generic algorithm for the derivation of the
minimum group duration. We define the processing times of Asg and Atg to
be 0, and we define SAsg := SGg and SAtg := CGg. Furthermore, we define
Asg to be a direct predecessor of all the activities in Gg, that do not have
any predecessors within Gg (i.e., Asg ∈ Pi if and only if Pi ∩ Gg = ∅), and
we define Atg to be a direct successor of all the activities in Gg, that do not
have any successors in Gg (i.e., Atg ∈ Si if and only if Si ∩ Gg = ∅). All the
time-lags for precedence relations in which Asg or Atg are involved are put
to zero. In Figure 6, we see the example group Gg1, where the activities Asg

and Atg are added to the group.
For group G1 we can derive:
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Figure 6: Group Gg1 with dummy-activities Asg and Atg

ESAsg = ESG1 = min
Ai∈S(1)

(ESAi) = 3.

LSAsg = LSG1 = min
Ai∈S(1)

(LSAi) = 6.

ESAtg = ECG1 = max
Ai∈S(1)

(ESAi + pi) = 10.

LSAtg = LCG1 = max
Ai∈S(1)

(LSAi + pi) = 16.

The group duration equals the difference in start times between Asg and
Atg (SAsg = SGg and SAtg = CGg and Dg = CGg − SGg). Finding a
minimum for the group duration, that is necessary to provide feasibility of
the TCPSP, is now equivalent with finding the smallest possible difference
between SAsg and SAtg, such that the time restrictions of all activities within
Gg, can still be met. In the following, we show how to find this smallest
difference.

We first let every activity Ai start at its earliest start time: SAi = ESAi.
This gives a feasible schedule (an activity can always start at its earliest start
time if all its predecessors start at their earliest start time). Next, we fix the
start time of activity Atg at its earliest start time, and we increase the start
times of its predecessors, by a backward recursion through the AON-network,
until we reach Asg. In every recursion step, we increase the start times of the
activities as much as possible, taking into account the already changed start
time of the successors of this activity. Thus, by construction, we increase the
start time of Asg as much as possible, without having to increase the start
time of Atg. We claim that the minimum duration of group Gg equals the
difference between the derived start times of Asg and Atg.
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To see that this claim is true, observe that the following two arguments
imply that we cannot decrease the duration anymore. First, we cannot de-
crease the start time of Atg, since it was already set to its earliest start time.
Second, we cannot increase the start time of Asg, without having to increase
the start time of Atg by the same amount, or hitting a deadline.

If we execute the process described above for group G1 from our example,
we start with setting the start time of activity Atg to its earliest start time,
i.e., SAtg = 10. Now we can increase the start times of its predecessors, in
the following recursive way: SAc = 6, SAf = 8, SAg = 8, and SAd = 5, and
SAsg = 5, yielding a minimum duration of 5 for the group.

In the example, we only had to consider the activities within group G1.
However, it might be possible that there exist directed paths in the AON-
network between two activities within G1, but visiting activities outside G1.
Therefore, in order to derive a minimum duration for group Gg (which is
necessary to meet the timing constraints of all activities, and not just the
activities in group Gg itself), we also need to consider the activities outside
Gg. The activities that lay on a directed path from Asg to Atg (this holds by
definition for every activity within Gg) can have an influence on the minimum
duration of Gg. Therefore, we can derive the minimum group duration, step
by step, as follows.

In the first step, we set activity Atg to its earliest start time, and we
set every activity Ai in Gg, which is not a predecessor of Atg (and therefore
it does not lay on a directed path from Asg to Atg) to its latest start time
LSAi. In each following step, we have a set C of activities for which we
already determined the latest possible start time, taking into account the
start times of its successors. Furthermore, we have a set D of activities,
which are ready to have their latest possible start time determined. For an
activity Ai ∈ D, its latest possible start time is bounded by its latest start
time LSAi, and by the latest possible start time minus the timelag and the
duration of all its direct successors Aj (i.e. LSAj − pj − lij). Algorithm 3
summarizes this process which ha to be applied to each group in order to
derive the minimum durations.
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Algorithm 3

Initialize: S̃Atg := ESGg.

S̃Ai := LSAi, ∀Ai /∈ Ptg.

C := {Atg} ∪
{
Ai|Ai /∈ Ptg

}
.

Step 1: D := {Ai|Si ⊆ C, Ai /∈ C} .

Step 2: For every Ai ∈ D do S̃Ai := min

(
LSAi, min

Aj∈Si

S̃Aj − lij − pi

)
.

Step 3: C := C ∪ D.

If Asg ∈ C, then return: D ming = S̃Atg − S̃Asg.

Else go to step 1.

4.2.4 Precedence relations between different groups

In Section 3.3, we already showed that, in order to provide feasibility of
the TCPSP, we have to translate the precedence relations between activities
belonging to different groups into precedence relations between the corre-
sponding groups. Furthermore, we showed that multiple precedence rela-
tions between activities belonging to two (or more) different groups, might
imply that we have to schedule these groups at (partially) the same time
period. Therefore, we defined precedence relation on groups, which state
that a group Gg is a predecessor of group Gh, if there exist a nonnegative
timelag TLgh between the start time of Gg and the completion time of Gh,
i.e., SGg + TLgh ≤ CGh with TLgh ≥ 0. Note, that using this definition, it
is possible that Gg is a predecessor of Gh and vice versa.

Observe now, that for every two groups Gg and Gh, for which there exist a
directed path from an activity Ai ∈ S (g) to Aj ∈ S (h) in the corresponding
AON-network, it holds that Gg is a predecessor of Gh. Namely, if such
a directed path exist, then, by construction of Asg and Atg, there exist a
directed path from Asg to Ai, a directed path from Ai to Aj, and a directed
path from Aj to Ath, which implies that there exist a directed path from
Asg to Ath. Therefore, the timelag TLgh, which is the minimum difference
between the start time of Gg and the completion time of Gh to maintain
feasibility of the TCPSP, equals the minimum time difference between SAsg

and SAth, such that the time-restrictions of all activities can be met.
In the previous subsection, we showed how to derive the minimum time

difference, between the start time and completion time of a single group, in
order to meet the time restrictions of all activities. To derive the minimum
difference between the completion time of a group, and the start time of its
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predecessor, we can follow a similar strategy. The minimum time difference,
between SAsg and SAth, is influenced by all directed paths between SAsg

and SAth in the AON-network. Algorithm 3 calculates the minimum time
difference between the activities SAsg and SAtg, taking into account all di-
rected paths between SAsg and SAtg. Therefore, we can determine, for every
pair of groups Gg and Gh, whether Gg is a predecessor of Gh, and if so, the
timelag TLgh, by substituting Ath for Atg in Algorithm 3.

4.3 The solution of the group scheduling problem trans-
lated back to the TCPSP

The group scheduling model solves a part of the overall problem, the TCPSP.
It provides an allocation of the activity groups to the spatial resources, and a
scheduling of the activity groups, which is part of the solution for the TCPSP.
Therefore, the group scheduling model simplifies the TCPSP.

We can relate the output of the group scheduling model in different ways
to the TCPSP. One way is to fix the allocations and the schedules of the
groups, as it is in the output of the group scheduling model. This implies a
strong simplification of the TCPSP. Another possibility, is to use the output
of the group scheduling model, just as an indication of the allocation and
the scheduling of the activity groups. This implies a smaller simplification
of the TCPSP. An example of such an indication is to fix the allocation of
the groups to the spatial resources, but not the group schedules, i.e. the
start and completion times of the groups. However, in order to provide
feasible schedules for the TCPSP, we have to ensure that groups, that get
allocated to the same spatial resource unit, will not get scheduled at the same
time period. One way to ensure this, is to fix the sequences in which such
groups get scheduled in the output of the group scheduling model. Fixing the
sequence of groups can be done by adding precedence constraints between
the activities within these groups. To motivate the chosen strategy to relate
the output to the TCPSP, observe the following.

We can use the objective function in the group scheduling model to look
forward to the TCPSP. If we make a good choice for the objective function,
then we may get a group schedule that provides good solution possibilities for
the TCPSP. However, this only works well if we do not restrict the TCPSP
too much. If we fix the scheduling of the groups completely, then it will be
very hard (probably even impossible through resource constraints) to get a
good solution for the TCPSP. The problem is, that the GSP is a relaxation of
the TCPSP. The GSP ’ignores’ the regular resources. Observing only activity
groups and spatial resources, we cannot predict in detail, at what moments in
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time we can expect resource conflicts at the regular resources when we try to
schedule the activities, and to which activity groups these activities belong.
In the GSP, we view the project scheduling problem at group level, which is
a more global view, than viewing the problem at activity level. Therefore,
to prevent resource conflicts, it may be better to keep the group schedules
flexible. For this reason, we opt for the second option that we mentioned
in the previous paragraph, fix the allocation of the groups to the spatial
resources and fix the sequences of the groups groups, which get allocated
to the same spatial resource unit. We can maintain the group sequences as
follows.

Assume that group Gg has to be scheduled before group Gh. This implies
that all the activities in group Gg have to be completed before we can start
with any of the activities in Gh. We can ensure this by adding precedence
relations between all pairs of activities (Ai, Aj) ∈ (S (g) , S (h)), which makes
activity Ai a direct predecessor of Aj with time-lag zero. These precedence
relations restrict the TCPSP, which makes it more easy to solve. In the
following section, we discuss a number of objective functions, that might
provide good solution possibilities for the TCPSP.

4.4 Objective functions for the group scheduling model

Till now, we mentioned only the constraints of the GSP and how we want
to incorporate the solution of the GSP into the TCPSP. We still have to
choose an objective function in the GSP. This objective function has a large
influence on the group schedules in the output of the model. But since the
output of the group scheduling model is translated back to the TCPSP, the
objective function of the group scheduling model also has a large influence on
the solution possibilities for the TCPSP. The choice of the objective function
should be motivated by this last observation and is certainly not trivial.
Therefore, we discuss in this section a number of objective functions, that
might provide good solution possibilities for the TCPSP. Before we get to the
first objective function, we discuss what kind of allocations and sequences of
activity groups may provide good solution possibilities for the TCPSP.

In the group scheduling model, we have relaxed the capacities of all reg-
ular resources Rk in the TCPSP. We have set their capacities to infinity. In
the TCPSP however, these capacities can have a large influence on the group
schedules that provide good solution possibilities. For example, a simple ob-
servation tells us that we have to schedule every group at least long enough,
such that every regular resource can deliver enough capacity, to meet the
total request for that resource from the activities within the group. If the
request is too high in a certain period for a certain resource, then we need
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to hire extra capacity. To minimize this extra capacity, we have to keep the
group schedules as flexible as possible.

The easiest way to keep a group schedule flexible, is to allocate a group
to spatial resource units, to which no other group is allocated. If this holds
for a certain group, then the start time and completion time of the group
are not restricted by other groups because of having (partially) the same
allocation. As a consequence, no extra time restrictions are added to the
activities within that group. Therefore, we try to find objective functions
which search for an equal distribution of the groups over the spatial resource
units.

4.4.1 Maximizing the idle times

The first objective we discuss, maximizes the idle times of the spatial resource
units. We call a spatial resource unit l idle at time t if there is no group
allocated to it at time t. If we maximize the times that the spatial resource
units are idle, then the objective function keeps the group durations short.
When the group durations are short, then there is much space for the groups
to increase their completion time or to decrease their start time. In other
words, the group schedules are flexible with respect to the TCPSP.

We use the binary variable iλlt to indicate whether spatial resource unit l
of spatial resource SRλ is idle at time t or not. This variable takes value 1 if
the corresponding spatial resource unit is idle at time t and it takes value 0
when it is occupied at time t. We can do this with the following constraint:

iλlt ≤ 2 − ygl − zgt ∀λ = 1, ..., Λ, g = 1, ..., I, λ (g) = λ,

l = 1, ..., Lλ, t = 1, ..., T

iλlt ∈ {0, 1}

Recall that ygl takes value 1 when group Gg gets allocated to spatial
resource unit l and zgt takes value 1 when group Gg is scheduled at time t.
We can see that iλlt only can take value 1, if every group Gg, which gets
scheduled on spatial resource SRλ, is not allocated to spatial resource unit
l (ygl = 0) and/or it is not scheduled at time t (zgt = 0). Otherwise it is
pushed to 0.

This objective function, simply maximizing the total idle time, can easily
cause some problems. If we use this objective function, then a situation as
represented in Figure 7 can be the output of the model. If in this example all
the groups are scheduled for their minimum duration, then we cannot create
any extra idle times. The amount of idle time is therefore maximal, so we
have an optimal solution.
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G1 G3

G2

T

3

Lλ = 6

Figure 7: Bad solution when maximizing the total idle time

However, in this example the flexibility of the group schedules is minimal.
None of the completion times can increase and none of the start times can
decrease. A better distribution of the groups over the spatial resource units,
and therefore more flexibility for the group schedules, can be created by
shifting group G2 to the highest spatial resource units. This results in the
solution represented in Figure 8. The solution in Figure 7 makes the flexibility
of all group schedules minimal, while the solution in Figure 8, gives maximal
flexibility to group G2, and it results in a sequencing of the groups G1 and
G3.

G2

G1 G3

T

Lλ = 6

3

Figure 8: Better solution than in Figure 7

Since the objective ’maximizing the total idle time’ does not make any
distinction between the solutions represented in Figures 7 and 8, we need
a slightly modified objective function, that does make this distinction. A
suitable objective is to maximize the minimum total idle time over the spatial
resource units, per spatial resource. If we do this for our example, then the
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objective value of the solution in Figure 7 becomes 0 (spatial unit 3 has no
idle times), but for the solution in Figure 8 it becomes equal to the minimum
duration of group G2 (this minimum is taken at spatial resource units 1, 2
and 3, which are idle during the period that group G2 is scheduled). Since
we want to maximize the minimum total idle time over the spatial resource
units, per spatial resource, we derive the minimum total idle time over the
spatial resource units for every spatial resource, and maximize the total sum
of these minima, i.e.:

max
∑

λ

(
min

l

∑

t

iλlt

)

It can happen that for some spatial resources it is more difficult to find
a good distribution of the groups, then for other spatial resources. This
happens, for example, if the total request for the spatial resource units from
the groups on a spatial resource, is high with respect to the capacity of the
spatial resource. Therefore, it might be better to use a weighed sum that we
want to maximize, where ’difficult’ spatial resources get a higher weight. If
we call this weight wλ for spatial resource SRλ, then our objective becomes:

max
∑

λ

(
wλ ∗ min

l

∑

t

iλlt

)
(4.1)

Another problem that can occur, is that there is one group on a spatial
resource that makes the minimum idle time for that spatial resource very
bad. A clear example is a group that needs to be scheduled for the whole
period T . Minimizing the maximal idle time for that spatial resource will
always result in an objective value of 0, and the objective function does
not search for a good distribution of the remaining groups on the remaining
spatial resource units. However, if this situation occurs in practice, then we
can easily deal with it by doing some pre-processing. We can allocate, for
example, the group to the first spatial resource units of the spatial resource
and we decrease the length of the spatial resource by the length of the group.
Afterwards we can remove this activity group from the TCPS-model.

Another problem that can occur using this objective function, cannot
be handled as easily in practice. This problem is illustrated in Figure 9,
where the groups are scheduled on one spatial resource for their minimum
durations. All groups have the same minimum duration and the total number
of spatial resource units that they need is higher than the length of the spatial
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resource. It is easy to see that the solution in Figure 9 is optimal with respect
to objective (4.1) (the minimum of the total idle times is twice the duration
of a group).

Lλ

T

Figure 9: Bad solution for maximizing minimum idle time

However, in this example the flexibility of the group schedules is minimal,
while we can increase this flexibility, by moving some of the groups:

Lλ

T

Figure 10: Better solution than in Figure 9

To overcome this problem, we have to take a more local view of the
problem. With the objective ’maximize the sum of the minimum total idle
times of the spatial resources’, we took a global view of the problem. The
idea was to find an objective, that keeps as much space as possible for the
groups, to increase their flexibility. However, it might happen, as we showed
in the last example, that this objective does not work well. In the example,
every group has a few spatial resource units, for which it is very flexible,
but not for all spatial resource units where it gets allocated to, which made
the flexibility for the group schedules minimal. Therefore, we discuss in the
remainder of this section a number of objective functions that take a more
local view of the problem.
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4.4.2 Weighed duration

In this subsection, we try to keep the group schedules as flexible as possible,
by maximizing the durations of the groups. Observing the group durations
of the groups directly, we take a more local view of the problem than in the
previous section, which must help us to overcome problems as in Figure 9.

In general, the activities within different groups, also have a different total
request for the regular resources. Therefore, it might be more important for
one group to get a long duration, then for another group. This especially
holds for activity groups, where the activities within that group have a very
high total request for one specific regular resource. Increasing the group
duration might make it possible to schedule the activities within this group
in series, which can prevent resource conflicts in the TCPSP. Therefore, we
give a weight to every group, which indicates the importance for this group
to get a long duration. The way we derive these weights will be discussed
later in this subsection. We represent these weights by Wg. This leads to the
objective function that maximizes the weighed sum of the durations:

max
∑

g

(Wg ∗ Dg)

A disadvantage of this objective function is that it might happen that
just a few groups with a high weight get their duration maximized, and some
other groups, with a slightly lower weight, get scheduled for their minimum
duration. A possibility to overcome this problem is maximizing the minimum
of the weighed durations over the groups. We now need to use the inverse
weight 1

Wg
, to increase the durations of the groups with a high weight more

then the groups with a smaller weight. Since the possibility of enlarging
the durations of groups strongly depends on the space that is left on their
spatial resource, we maximize the minimum of the weighed durations per
spatial resource. We get:

max
∑

λ

min
g|λ(g)=λ

(
1

Wg

∗ Dg

)

In the remainder of this subsection, we discuss how to derive the weights
Wg, and the different factors that have influence on the weights.

The first factor is the total request for the regular resources from the
activities within the group. Groups need to get scheduled long enough, such
that every regular resource can accommodate the total request for that re-
source of the activities within the group. Especially, groups with a high
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request for one specific regular resource need to be scheduled for a long dura-
tion and therefore need to get a higher weight. We can formulate this factor
as follows.

For every resource Rk, we first determine the total request of the activities
within group Gg. The total request for a resource Rk of a single activity Ai

equals qik ∗ pi, so the total request (qgk) of the activities within group Gg for
resource Rk equals qgk =

∑
Ai∈S(g) qik∗pi. To fulfill these requests, we need to

schedule the groups long enough. How long we need to schedule the groups,
depends on the capacity of resource Rk per time unit. Therefore, we divide
the total requests for the resources by their capacities, where we denote the
resource capacity by Qk = maxt Qkt. We get for every resource Rk the value
qgk

Qk
, which states how many time units we need to schedule Gg at least, in

order to fulfill the total request of the activities within Gg for Rk. We define
the weight Wg to be the maximum of these values over the resource Rk, since
it is most likely to encounter capacity problems for this maximum. We get:

Wg = max
k

qgk

Qk

(4.2)

qgk =
∑

Ai∈S(g)

qik ∗ pi ∀g = 1, ..., I, k = 1, ..., K

Qk = max
t

Qkt ∀k = 1, ..., K

The second factor has to do with groups, that surely have to be sched-
uled (partially) at the same time period. This happens, for example, when
there are two groups Gg and Gh, such that the intervals [LSGg, ECGg] and
[LSGh, ECGh] intersect (every group surely needs to get scheduled from its
latest start time to its earliest completion time). For these two groups we
know for sure, that they both have to get scheduled during this intersection
period. During this period, the activities within both groups, require from
the regular resources. Therefore, if both groups have a large total request for
a particular resource, then there is a big chance that we get resource conflicts
during this period. In that case, it is very important to increase the flexibility
of the group schedules of these groups. Therefore, we might want to add this
factor somehow to the weight. This can be done in several ways. One way is
to take for each group, the time that it is scheduled together with the other
group as a percentage of its minimum duration. Then we can multiply the
weight with this percentage.

A third factor we can use for the derivation of Wg, is the amount of
precedence relations between the activities within a group. This amount can
be seen as the flexibility of the schedules for the activities within the group.
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If there are many precedence relations between the activities within a group,
then this flexibility is small. For such a group, increasing the duration of the
group has just little effect on this flexibility. The flexibility seems to increase
at first sight, but if we fix just a few schedules of the activities within the
group, the flexibility for the other activity schedules might be small again.
On the other hand, if there are few precedence relations, then increasing
the group duration has a stronger effect on the flexibility of the schedules of
the activities within the group. Therefore, we might give a higher weight to
groups, where many precedence relations exist between the activities within
these groups.

4.4.3 Conclusions

The aim of the GSP, is to find a group allocation and sequencing, which pro-
vides good solution possibilities for the TCPSP. In this section, we derived
two objective functions, which were supposed to find a good group alloca-
tion and sequencing. However, test results showed that both the objective
’maximizing the idle times’ and the objective ’maximizing the weighed dura-
tion’ did produce, to a certain extent, good allocations for the groups, but in
certain cases they did not make any distinction between the possible group
sequences. Therefore, we choose to derive two new objective functions, where
the first objective function is concentrated on searching for good group allo-
cations, and the second objective function is concentrated on searching for
good group sequences. These two objective functions form a two-phase so-
lution method for the GSP, where in the first phase a good group allocation
is being determined and in the second phase a good group sequencing.

4.5 Two-phase solution method

4.5.1 Introduction

The group scheduling model solves two parts of the TCPSP. The first part
is the allocation of the groups to the spatial resources, and the second part
is the sequencing of groups which got allocated to the same spatial resource
units. In the previous section, we observed a number of objective functions
that tried to solve these two parts. However, test results showed that the
derived objective functions only searched for good group allocations. For the
determination of good group sequences, the objective functions were most of
the time useless. This happened, for example, when two groups with (almost)
the same schedule period (the schedule period for a group Gg is defined as
the time period [ESGg, LCGg]), got allocated to the same spatial resource
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unit. Since they got allocated to the same spatial resource unit, a sequence
between these two groups had to be determined. If they also did not have
any precedence relations with any other group, both group sequences were
possible. However, for the objective functions from the previous section,
both sequences lead to the same objective value, and therefore the sequence
is arbitrary.

Since the derived objective functions only worked reasonable for the allo-
cation of the groups, we decided to derive two new objective functions, which
solve the GSP in two phases. The first objective function concentrates on
the allocation of the groups and forms the first-phase of the solution method.
The second objective function concentrates on the sequencing of the groups
and forms the second phase of the solution method.

In some cases, it happens that the GSP forms only a sequencing problem
and not an allocation problem. This happens, for example, when all spatial
resources have spatial length 1. In that case, we only need to run phase two of
our two-phase solution method. On the other hand, if we find an allocation in
the first phase, such that no group sequences have to be determined anymore
(for example, when there are no different groups allocated to the same spatial
resource units), then we do not need to run phase two anymore. In the
following sections, we discuss the two phases in more detail.

4.5.2 Phase one: group allocation

In the first phase, we search for a good allocation of the groups to the spatial
resources. As mentioned before, a good allocation is an allocation where the
group schedules are as flexible as possible. This flexibility decreases, when
two groups, with overlapping schedule periods, get allocated to the same
spatial resource unit. Two groups Gg and Gh have an overlapping schedule
period, when both ESGg ≤ LCGh and ESGh ≤ LCGg hold, as shown in
Figure 11.

LCGhESGh LCGg

Gh

Gg

ESGg

Figure 11: Overlapping schedule periods

It is easy to see that if these two groups get allocated to the same spatial
resource unit, the flexibility of the group schedule for at least one of the two

36



groups gets reduced. Therefore we, will penalize if groups with overlapping
schedule periods get allocated to the same spatial resource unit. The objec-
tive of the first phase is to minimize this penalty. Before we formally state
the objective function, we discuss in more detail the penalty we want to use
and how it can be derived.

Penalties need to be derived, when groups with overlapping schedule pe-
riods get allocated to the same spatial resource units. Therefore, we define
on every pair of groups Gg and Gh, which have overlapping schedule periods
(i.e., [ESGg, LCGg] ∩ [ESGh, LCGh] 6= ∅) and which have to be allocated
to the same spatial resource (i.e., λ(g) = λ(h)), a nonnegative penalty pgh.
When these two groups do not get allocated to the same spatial resource
unit, this penalty takes value 0. When these two groups do get allocated to
the same spatial resource unit, then pgh will be derived as follows.

Reducing the flexibility of group schedules can cause resource conflicts,
when solving the remaining TCPSP. This is especially the case, when groups
with a high weight Wg (as in 4.2), get a large flexibility reduction of their
group schedule. Therefore, we use the following two factors as input for the
penalty pgh:

• The bigger the request for the regular resources from the activities
within the group, the bigger the penalty.

• The bigger the reduction of the flexibility of the group schedule, the
bigger the penalty.

As already mentioned, we can use the weight Wg for the first factor. For
the second factor, we use the reduction of the flexibility of the group schedule
relative to the maximum flexibility of the group schedule, i.e., LCGg−ESGg−Dg

LCGg−ESGg
.

Since flexibility reduction can always be spread over two groups (with each
flexibility reduction, two different groups are involved), we define the penalty
pgh as the maximum of the weighed flexibility reductions of the group sched-
ules over the groups Gg and Gh:

pgh ≥
LCGg − ESGg − Dg

LCGg − ESGg

∗ Wg (4.3)

pgh ≥
LCGh − ESGh − Dh

LCGh − ESGh

∗ Wh (4.4)

These constraints only hold if the groups Gg and Gh have overlapping
schedule periods and if they get allocated to the same spatial resource unit.
We can satisfy this by the following modification of (4.3) and (4.4). Recall
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that the binary variable wgh is set to 1 when the groups Gg and Gh get
allocated to the same spatial resource unit.

pgh ≥ 0 (4.5)

pgh ≥
LCGg − ESGg − Dg − T (1 − wgh)

LCGg − ESGg

∗ Wg (4.6)

pgh ≥
LCGh − ESGh − Dh − T (1 − wgh)

LCGh − ESGh

∗ Wh (4.7)

∀λ (g) = λ (h) , g 6= h, ESGg ≤ LCGh, ESGh ≤ LCGg

If Gg and Gh do not get allocated to the same spatial resource unit, then
wgh can be put to zero and the constraints (4.6) and (4.7) get redundant
(when wgh = 0, the right hand sides of (4.6) and (4.7) are smaller then
zero), and the penalty pgh can be pushed to zero. Furthermore, we define
the penalties pgh only for those pairs of groups Gg and Gh, which have to be
performed on the same spatial resource (λ (g) = λ (h)), and which have an
overlapping schedule period (ESGg ≤ LCGh, ESGh ≤ LCGg).

Our objective is to minimize the total penalty. We can do that in several
ways (minimize the sum of the penalties, minimize the maximal penalty,
etc.). Since the allocation problem can be harder for one spatial resource
then another, we can get dominating penalties on that resource. Therefore
we minimize the penalty per spatial resource. We do that by taking the
maximal penalty for every spatial resource and minimize the sum of these
maxima. We define pλ to be the maximum penalty for spatial resource SRλ:

pλ ≥ pgh ∀λ = 1, ..., Λ, g 6= h, λ(g) = λ(h) = λ,

ESGg ≤ LCGh, ESGh ≤ LCGg (4.8)

Using these values, we get the following objective:

min
∑

λ

pλ (4.9)

This is the solution approach for the first phase. Of course there are other
ways to define penalties. The best way to define penalties depends on the
cases you work on in practice. It might happen, for example, that for certain
regular resources, hiring extra capacity is very expensive or even impossible.
If activities in a group have a (large) request for these resources, then it is
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very important for these groups that the flexibility of their schedule period
is large.

The output of this phase provides a good allocation of the groups to the
spatial resources. However, it does not necessarily provide good sequences
for the groups which get allocated to the same spatial resource unit. In the
next section we derive an objective function that searches for good group
sequences, which forms phase two of our solution method.

4.5.3 Phase two: group sequencing

Before we derive the objective function that has to search for good group
sequences, we need to discuss in which situations we actually have to deter-
mine group sequences. We mentioned earlier, that if two groups get allocated
to the same spatial resource unit, then we have to decide in which sequence
these two groups have to get scheduled. However, in many cases there is just
one sequence possible. Between two groups Gg and Gh, there are only two
sequences possible if both ECGg ≤ LSGh and LSGg ≥ ECGh holds. This
is clarified in Figure 12:

ESGh ECGh LSGh LCGh

Gh

Gg

ESGg ECGg LSGg LCGg

Figure 12: Both sequences possible for group Gg and Gh

If in this case, where both sequences are possible, also the penalty pλ is
the same for both sequences, then the sequence in which groups Gg and Gh

get scheduled in the first phase, will be randomly chosen. The two possible
sequences do not have a different influence on the flexibility of the group
schedules of the groups Gg and Gh. However, we introduce in this section
some new activity groups, for which different sequences do have different
influences on the flexibility of the group schedules.

Assume that group Gg and Gh are two groups, which have to be se-
quenced. If group Gg gets scheduled before Gh, then it will lose flexibility
to the right side of its schedule period, which forces certain activities within
Gg to finish before their latest completion time. But then, as a consequence,
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it might happen that the direct predecessors of these activities, also have to
finish before their latest completion time. Therefore, scheduling group Gg

first, might result in a reduction of the flexibility of the activity schedules
of the direct predecessors of the activities within Gg. In a similar way we
can deduce, that scheduling Gg after Gh might result in a reduction of the
flexibility of the activity schedules of the direct successors of the activities
within Gg. These flexibility reductions might cause resource conflicts when
solving the TCPSP and therefore we penalize the reduction of the flexibility
of these schedule periods. Since we observe the project scheduling problem on
a group level, we introduce the following groups in this phase of the solution
method.

The group Gpre(g) is defined as the group of activities that are direct
predecessor of one or more activities in S(g). The group Gsuc(g) is defined
as the group of activities that are direct successor of one or more activities
in S(g). For example, in the group example represented in Figures 4 and
5, we can see that S(pre(g1)) = {Aa, Ab} and S(suc(g1)) = ∅. Since all
the activities in group Gpre(g) have a direct successor in Gg, its completion
time will always be strictly smaller then the completion time of Gg. In other
words, there exist a positive time-lag TLg,pre(g) between the completion time
CGpre(g) of group Gpre(g) and the completion time of group Gg. On the other
hand, since all the activities in group Gsuc(g) have a direct predecessor in Gg,
its start time will always be strictly larger then the start time of Gg. So
there also exist a positive timelag TLg,suc(g) between the start time of group
Gg and the start time SGsuc(g) of group Gsuc(g).

Consider now again the two groups Gg and Gh for which we have to
determine the best sequence. Suppose that we schedule Gg first. Then the
flexibility of the schedule period of Gg gets reduced from the right, which
implies by the time-lag TLg,pre(g) that also the flexibility of the group schedule
of Gpre(g) gets reduced. We penalize this flexibility reduction in a similar
way as how we did in the first phase. We can deduce similarly that also the
flexibility of the group schedule of Gsuc(h) gets reduced.

In other words, scheduling Gg before Gh can imply a flexibility reduction
of the group schedules of Gpre(g) and Gsuc(h), and scheduling Gh before Gg can
imply a flexibility reduction of the group schedules of Gpre(h) and Gsuc(g). We
penalize these flexibility reductions and we try to minimize these penalties to
find the best possible sequences. These penalties are similar to the penalties
in the previous section and therefore we need to derive the weight wpre(g)

for group Gpre(g) and the weight wsuc(g) for group Gsuc(g). We also have to
add a binary variable vgh to the model, to indicate whether group Gg gets
scheduled first or group Gh. The variable vgh takes value 0 when Gg gets
scheduled first and it takes value 1 when Gh gets scheduled first. The second
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phase becomes as follows.
First we fix the allocation of the groups as in the output of the first phase.

This implies that we can leave the constraints (3.6) to (3.11) out of the model
and the variables bgl, ygl and wgh become given parameters with the values
from the output of the first phase. For every pair of groups Gg and Gh,
which satisfy wgh = 1, ECGg ≤ LSGh and LSGg ≥ ECGh, we introduce
the groups Gpre(g), Gsuc(g), Gpre(h) and Gsuc(h), and the binary variable vgh.
As in the first phase, we try to minimize the maximum penalty per spatial
resource, but now we also consider the groups Gpre(g) and Gsuc(g) and therefore
we have to add the following constraints:

pgh ≥
LCGpre(g) − ESGpre(g) − Dpre(g) − Tvgh

LCGpre(g) − ESGpre(g)
∗ wpre(g) (4.10)

pgh ≥
LCGsuc(h) − ESGsuc(h) − Dsuc(h) − Tvgh

LCGsuc(h) − ESGsuc(h)

∗ wsuc(h) (4.11)

pgh ≥
LCGsuc(g) − ESGsuc(g) − Dsuc(g) − T (1 − vgh)

LCGsuc(g) − ESGsuc(g)
∗ wsuc(g) (4.12)

pgh ≥
LCGpre(h) − ESGpre(h) − Dpre(h) − T (1 − vgh)

LCGpre(h) − ESGpre(h)

∗ wpre(h) (4.13)

∀g 6= h, wgh = 1, ECGg ≤ LSGh, LSGg ≥ ECGh

Observe that constraints (4.12) and (4.13) are redundant when vgh = 0
and (4.10) and (4.11) when vgh = 1 (the schedule period of a group is always
smaller then the complete time horizon T ). So when vgh = 0, we just consider
the penalties for Gpre(g) (4.10) and Gsuc(h) (4.11), which is what we want,
since vgh = 0 indicates that Gg starts before Gh. On the other hand, with
vgh = 1 we indicate that Gh starts before Gg, which is satisfied, since vgh = 1
implicates that we just consider the penalties for Gsuc(g) (4.12) and Gpre(h)

(4.13).
In the second phase we keep the constraints (4.6) and (4.7). We do this,

because the sequencing of Gg and Gh can have influence on the schedule
periods of Gg and Gh and therefore on the flexibility of the group schedules
of these groups. The objective function in the second phase is the same as
in the first phase (4.9), where we derive pλ as in (4.8).
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5 Solution method

Till now, we derived an ILP formulation for the GSP, we discussed a number
of objective functions for the GSP, and we mentioned how we want to incor-
porate the solution of the GSP into the TCPSP. In this section, we discuss
how we are going to solve the GSP.

Applying the GSP in practice makes only sense if it can be solved within
reasonable time for realistic input sizes. The time to solve the GSP, depends
on the running time of the algorithm we use. The running time of an algo-
rithm is determined by the complexity of the algorithm, and the input size
of the instance. The complexity of the algorithm tells how fast the running
time grows in terms of the input size. An algorithm is called efficient, when
its running time is bounded by a polynomial in the input size. If an algo-
rithm is not efficient, then the running time of the algorithm explodes when
we increase the input size.

If a problem belongs to the complexity class P , then there exist an efficient
algorithm for that problem. If a problem is NP -hard, then it is highly
unlikely that there exist an efficient algorithm. The latter is the case for the
GSP, as we show in Section 5.1. Therefore, solving it to optimality is only
possible for small input sizes of the GSP.

Since it is unlikely to find an algorithm, that solves the GSP to optimality
within reasonable time, we resort to heuristic approaches. Heuristics are
solution methods that try to find good, but not necessarily optimal, solutions
within reasonable time.

In the next two subsections, we discuss the complexity and the size of
the GSP. We start with the complexity of the problem, where we also give a
short introduction to the notion of P and NP , which are complexity classes
for problems. Furthermore we explain what we mean with NP -complete
problems and NP -hard problems. Afterwards, in Section 5.2 we discuss the
size of the ILP model of the GSP for realistic input sizes of the GSP. We
finish this section by giving a modification of the ILP formulation, which
reduces the number of variables significantly. A formulation with a smaller
number of variables makes ILP solvers work, in general, faster.

5.1 Complexity

In this section, we discuss the complexity of the GSP. The complexity of
a problem tells something about the possibilities of the running time of al-
gorithms for it. The running time of an algorithm can be expressed in the
number of elementary calculations it has to execute to solve the problem.
This number depends on the input size of the problem. The input size of a
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problem is the number of characters that represents the input.
An algorithm is called polynomial, when its running time is polynomial

in the input size, i.e., the number of elementary calculations is of O(p(n))
where p(n) is a polynomial function in n. If there exist a polynomial time
algorithm for a certain problem, then this problem belongs to the class P ,
the class of problems which can be solved within polynomial time. The class
P is a subclass of the class NP . A problem belongs to the class NP , if there
exist an algorithm that can verify a given solution to the problem within
polynomial time. If we can solve a problem within polynomial time, then
we can also verify a given solution to the problem within polynomial time.
Therefore, we have P ⊆ NP . Whether also NP ⊆ P holds or not, is still an
unsolved question in mathematics.

A special class of problems in NP is the class of NP -complete problems.
A problem is called NP -complete, if we can reduce any other problem in
NP to this problem within polynomial time. Therefore, if we can find a
polynomial algorithm for an NP -complete problem, then we can solve every
problem in NP within polynomial time and we get NP ⊆ P . The NP -
complete problems are the hardest problems in NP to solve.

The problems in P and NP are decision problems. For every optimization
problem, like the GSP, we have an associated decision problem. When the
objective of an optimization problem is to minimize something, then the
associated decision problem is to determine if there exist a solution that
does not exceed a certain specified value. Optimization problems for which
their associated decision problem is NP -complete are called NP -hard.

One of the problems that belongs to the class of NP -hard problems is the
Partion Problem: “Given a set of n integers {a1, ..., an}. Does there exists a
partition of the index set I = 1, ..., n into two subsets S1 and S2, such that∑

j∈S1
aj =

∑
j∈S2

aj.”
Consider now the following instance of the GSP. We have 1 spatial re-

source with 1 spatial resource unit. Assume that we have T =
∑n

j=1 aj + 1
time units and that we have n+1 groups such that the minimum duration of
groups Gj equals aj, for j = 1, ..., n. Furthermore, we have that the minimum
duration of group Gn+1 is 1 and that ESGn+1 = LSGn+1 = 1

2

∑n

j=1 aj and

ECGn+1 = LCGn+1 = 1
2

∑n

j=1 aj + 1. In other words, there is only one pos-

sibility to schedule Gn+1, namely from t = 1
2

∑n

j=1 aj until t = 1
2

∑n

j=1 aj +1.
The other groups have no restrictions to their start and completion times
and neither are there precedence relations between the groups. Independent
of the objective function that is used, we only get a feasible schedule if we
partition the groups G1 to Gn into two sets of groups, such that the sum
of the minimum durations in both these sets equal 1

2

∑n

j=1 aj, as shown in
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Figure 13.
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Figure 13: NP -hardness

Finding a feasible schedule for this small instance of the GSP is therefore
equivalent with the Partition Problem. Therefore, the GSP is NP -hard.

Observe that this small instance (all groups and spatial resources have
spatial length 1) shows that even when the allocation of all groups is known,
the GSP is NP -hard. On the other hand, we can show that if the timing is
known for all groups, the remaining part of the GSP, i.e. the allocation of the
groups, is also NP -hard. Namely, if we know the timing of all groups, then
we know for every group their start and completion time, and our problem
is equivalent with the ARS-R problem, as described in Duin and van Sluis
([17]). Duin and van Sluis ([17]) showed that the ARS-R is strongly NP-
hard, and therefore also the GSP, where the timing of all groups is known,
is strongly NP -hard.

5.2 Input size

In the previous section, we showed that the GSP is NP -hard. As a conse-
quence, it is highly unlikely that we can find an efficient algorithm for the
GSP, and therefore solving the GSP to optimality in reasonable time is only
possible for inputs of small size. In this section, we discuss the size of the
ILP, which we get for realistic input sizes of the GSP. If the size of the ILP
becomes too large, then we need to use other solution methods, like heuristics
to solve the GSP.

The following input values represent already quite large instances of prob-
lems in practice. Assume that we have an instance with 20 groups (I = 20),
200 weeks (T = 200), and 5 spatial resources (Λ = 5) with each 20 spatial
resource units (Lλ = 20). This leads to an ILP model with the following
variables: gsgt,zgt,bgl,ygl,wgh,SGg,CGg,Dg. For inputs of the mentioned size,
we get a total of 9260 integer variables and 88520 constraints.

5.3 Better modeling to decrease input size

Although the GSP is NP-hard, we try to solve the problem to optimality,
since realistic input sizes for the GSP are not too large. In order to decrease
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the running time of an ILP solver, we propose some modifications of the group
scheduling model. These modifications decrease the number of variables in
the ILP model, without changing the group allocations and sequencings in the
output of the ILP. Therefore, these modifications may decrease the running
time to solve the GSP, but do not affect the quality of the solutions of the
GSP.

The variables that have the biggest contribution to the total number
of variables are the variables with two indices: gsgt, zgt, bgl, ygl, wgh. Since
we have to make sure that groups do not have both overlap in time and in
allocation, we have to keep the variable wgh. Therefore, we try to reformulate
the group scheduling model, without using the variables gsgt, zgt, bgl and ygl.

If we throw the mentioned variables away, then we also throw away the
constraints (3.1) until (3.11). These constraints determined the allocation of
the groups, the schedule of the groups, and they ensured that groups do not
have both overlap in time and allocation. We replace these constraints as
follows.

For every group Gg we define the variables SLg (0 ≤ SLg ≤ Lλ(g)) and
CLg (0 ≤ CLg ≤ Lλ(g)), where SLg represents the lowest value for which Gg

gets allocated to its spatial resource and CLg represents the highest value
for which Gg gets allocated to its spatial resource. Since we have to reserve
enough spatial length for every group on its spatial resource, we have to add
the following constraint:

CLg − SLg = lg ∀g = 1, ..., I (5.1)

When two groups Gg and Gh have overlap in allocation, wgh has to take
value 1. To satisfy this, observe the following. If two groups Gg and Gh

do not overlap in allocation, then either SLg ≥ CLh or SLh ≥ CLg holds.
When they do overlap in allocation, then neither SLg ≥ CLh nor SLh ≥ CLg

holds. Therefore, the following two constraints ensure that wgh takes value 1,
when Gg and Gh have overlap in allocation, and wgh can take value 0, when
they do not overlap in allocation.
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wgh ≥

(
CLh − SLg − Lλ(g) ∗ ygh

)

Lλ(g)

∀g = 1, ..., I, h = 1, ..., I,

g 6= h, λ (g) = λ (h) (5.2)

wgh ≥

(
CLg − SLh − Lλ(g) ∗ (1 − ygh)

)

Lλ(g)

∀g = 1, ..., I, h = 1, ..., I,

g 6= h, λ (g) = λ (h) (5.3)

ygh ∈ {0, 1} (5.4)

If the groups Gg and Gh do not overlap in allocation, then exactly one of
the values CLh − SLg and CLg − SLh is strictly positive and one of these
values is nonpositive. Furthermore, these values are always smaller then or
equal to Lλ(g). Therefore, making the right choice for ygh (for example, if
CLh −SLg > 0, then we choose ygh = 1), we can make both right hand sides
of (5.2) and (5.3) nonpositive and wgh can take value 0. If Gg and Gh do have
overlap in allocation, then we cannot do this, because then both the values
CLh − SLg and CLg − SLh are strictly positive, and we can only make one
of the right hand sides of (5.2) and (5.3) nonpositive with our choice for ygh.
So in case of allocation overlap, one of the right hand sides of (5.2) and (5.3)
is strictly positive, and since we divide both right hand sides by Lλ(g), this
value is always smaller or equal to 1. We do not get infeasibility and wgh will
be pushed to 1.

If the groups Gg and Gh do overlap in allocation, then we have to ensure
that these groups do not overlap in time. We can do that with the following
two constraints.

SGg + T ∗ (1 + vgh − wgh) ≥ CGh ∀g = 1, ..., I, h = 1, ..., I,

g 6= h, λ (g) = λ (h) (5.5)

SGh + T ∗ (2 − vgh − wgh) ≥ CGg ∀g = 1, ..., I, h = 1, ..., I,

g 6= h, λ (g) = λ (h) (5.6)

If the groups Gg and Gh do overlap in allocation, then wgh = 1. In this
case, if we take vgh = 0, then (5.5) implies that group Gg cannot start before
Gh is completed. If we take vgh = 1, then (5.6) implies that group Gh cannot
start before Gg is completed. Since T ≥ CGg − SGh holds for every Gg and
Gh, (5.6) is redundant when vgh = 0 and (5.5) is redundant when vgh = 1. If
the groups Gg and Gh do not overlap in allocation (wgh = 0), then (5.5) and
(5.6) are both redundant, no matter what choice we make for vgh.
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The new model can be found in Appendix 2. The variables in the new
group scheduling model are: wgh,ygh,vgh,SGg,CGg,Dg,SLg,CLg. If we take
the same input sizes as mentioned in the previous section, then we only have
730 variables, instead of the 9260 variables, and 1940 constraints instead of
88520, before the modification of the ILP model. Therefore, an ILP solver
using Branch and Bound techniques may be much faster on this new formu-
lation.
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6 Computational results

6.1 Introduction

As we showed in the previous section, the GSP is NP-hard. Therefore, it
is highly unlikely that there exist an efficient algorithm to solve the GSP to
optimality. However, as we also mentioned, realistic input sizes for the GSP
are not very large. In order to see upto what input sizes the GSP can be
solved to optimality within reasonable time, we test several problem instances
for the group scheduling model. The problem instances we use, are bench-
mark instances generated by the parameterdriven project generator ProGen,
which was developed by Kolisch et al. [24]. The project generator ProGen
has been widely used as a tool for the evaluation of algorithms proposed for
resource-constrained project scheduling.

The benchmark problems generated by ProGen, can be obtained from
the library PSPLIB [33]. For our tests, we modified the benchmark problems
generated for the standard RCPSP. These problem instances consider 30,
60, 90 or 120 jobs (activity groups). Within the GSP, every group needs to
get allocated to exactly 1 spatial resource. Therefore, we only observe those
problem instances where every job has a requirement for exactly 1 resource.

The benchmark instances are generated for the standard RCPSP. Since
there are some differences between the RCPSP and the GSP, we made some
adjustments to the problem instances. First, we assume that the requirement
for the resources is in an adjacent manner. Second, we assume that the given
job durations are minimum durations for the activity groups. Within the
benchmark instances, precedence relations on the jobs exist, but no time-
lags. These precedence relations state that a job cannot start before all
its predecessors are completed. However, as we discussed in Section 3.3, a
precedence relation between two activity groups is defined as a nonnegative
timelag between the start time of the preceeding group and the completion
time of its successor. Therefore, we add for every precedence relation a
timelag equal to the sum of the minimum group durations of the two groups
involved in the precedence relation. Figure 14 clarifies that this timelag
implies that group Gh can get scheduled after group Gg (and if fixed durations
are concerned instead of minimum durations, then Gh has to get scheduled
after its predecessor Gg).

In Section 4.4, we discussed a number of objective functions for the group
scheduling model. However, a few preliminary test results showed that these
objectives only work reasonable for the allocation problem of the GSP. There-
fore, we developed the two-phase solution method in Section 4.5, which we
assume to be the most promising method to solve the GSP. Therefore, we
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Figure 14: Adding timelags to the benchmark problems

only test the GSP for the two-phase solution method. As we will show in
the end of this section, phase 1 of the two-phase solution method forms the
bottleneck concerning the running time. Therefore, we only test the GSP for
the first phase of the two-phase solution method.

Running just a few tests already shows that problem instances where
30 groups (or more) are considered are too large to be solved to optimality
within reasonable time. Therefore, we only consider the first n groups of the
benchmark instances for our tests, where we try to find the maximum value
of n for which the GSP can be solved within reasonable time. We also want
to test the GSP for different numbers of spatial resources. However, all the
benchmark instances consider 4 spatial resources. In order to create instances
considering 1 or 2 spatial resources, we propose the following adjustments of
the instances.

We create instances considering 1 spatial resource as follows. For every
problem instance, the capacity of the spatial resource equals the sum of
the capacities of the 4 resources in the original instance. The requirement
from a group for the spatial resource equals the sum of the requirement over
all 4 resources in the original instance. We create instances considering 2
spatial resources in a similar way. The resource capacity of spatial resource
1 (2) equals the sum of the capacities of resources 1 (2) and 3 (4) in the
original instance, and the resource requirement from a single group for spatial
resource 1 (2) equals the sum of the resource requirements of the group for
resources 1 (2) and 3 (4) in the original instance.

The tests for the GSP are organized as follows. First, we test the problem
instances with different deadlines as no deadlines are provided for the jobs
within the benchmark instances. Afterwards, we test the problem instances
with different adjustments to the resource capacities and to the requirements
of the activity groups for the resources. Next, we test the influence of release
and due dates on the solver time. Since the benchmark problems do not
provide release and due dates for the activity groups (the earliest start times
and latest completion times of the groups only depend on the precedence
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relations), we introduce release and due dates for the groups by adjusting
the earliest start times and latest completion times of the groups. Finally,
we test the two subproblems of the GSP, where all group allocations are
known, or where all group schedules are known.

We programmed the ILP model of the GSP as presented in Section 5.3
in AIMMS 3.6 [1] and XA 14 [38] is used as an MIP solver. At the end of
this section, we derive some conclusions about the input sizes for which the
GSP can be solved to optimality within reasonable time.

6.2 Different time horizons

The benchmark problems do not provide a deadline T . Therefore, we intro-
duce deadlines. We let the deadlines vary from Tmin to Tmax, where Tmin

equals the maximum over the earliest completion times of the groups and
Tmax equals the sum of the minimum durations of the groups. In other
words, Tmin is the earliest moment in time at which all groups can be com-
pleted when we relax the resource constraints, and Tmax is earliest deadline
for which all groups can get scheduled one after the other. Therefore, the
deadline Tmax does not form a restriction to the allocation of the groups, and
the allocations will not change by increasing Tmax.

We test the problem instances for different numbers of groups, different
numbers of spatial resources, and different deadlines. We test instances with
1, 2 and 4 spatial resources. Furthermore, we test the problem instances
for the deadlines Tmin, Tmax and a number of deadlines Tmin + a ∗ ∆, where
0 < a < 1 and ∆ = Tmax−Tmin. For every combination of number of groups,
number of spatial resources and deadline T , we solve 80 problem instances.
Preliminary tests showed that most problem instances which could not be
solved within 100 seconds, also could not be solved within 1 hour. Therefore,
we decide to interrupt the solver after 100 seconds (if necessary) and we
present the results as the percentage of the 80 problem instances which were
solved within 100 seconds.

When we test problem instances with 6 groups, all problem instances for
all different configurations of spatial resources and deadlines are solved within
100 seconds. The results of the problem instances with 8 and 10 groups are
presented in Table 1.

As we can see, increasing the deadline makes it harder to solve the prob-
lem instances. This can be explained by the fact that increasing the deadline
might imply more possible group sequences, and therefore more feasible so-
lutions. The problem instances considering 8 groups did not cause many
problems. More problems occur, when we try to solve the problem instances
where 10 groups and 1 or 2 spatial resources are considered. It seems a
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Table 1: Results for 8 and 10 groups with different deadlines
# Groups # SR Tmin Tmin+ Tmin+ Tmin+ Tmin+ Tmax

1
9
∆ 2

9
∆ 3

9
∆ 5

9
∆

I = 8 Λ = 1 100% 98.8% 97.5% 95% 93.8% 93.8%
Λ = 2 100% 97.5% 96.3% 95% 63.8% 93.8%
Λ = 4 100% 100% 97.5% 96.2% 96.2% 97.5%

I = 10 Λ = 1 92.5% 80% 71.2% 70% 66.2% 65%
Λ = 2 77.5% 66.2% 57.5% 52.5% 47.5% 46.2%
Λ = 4 98.8% 98.8% 97.5% 98.8% 97.5% 97.5%

little strange that most problems occur when 2 spatial resources are consid-
ered. One might expect that when fewer spatial resources are considered,
the problem becomes harder due to the increase of the number of possible
group sequences.

However, there might be another reason for the fact that fewer problems
occur when we consider 1 spatial resource instead of 2 spatial resources. As
mentioned, the benchmark instances only consider 4 spatial resources. In
order to create instances considering 1 and 2 spatial resources, we added
capacities of different spatial resources and we added requirements for dif-
ferent spatial resources. But by adding these capacities and requirements,
we relaxed the resource constraints in the problem instances a bit, which
might make it more easy to find an optimal schedule. This relaxation is
the strongest when we consider only 1 spatial resource, and that can be the
reason for having more problems solving instances considering 2 spatial re-
sources instead of 1 spatial resource. To get an idea of the influence of the
resource capacities and requirements on the solver time, we developed some
tests which are presented in the next subsection.

6.3 Different scalings of resource capacity and request

As mentioned in the previous section, adjusting the problem instances to
instances considering 1 or 2 spatial resources has relaxed the resource capac-
ity. On the other hand, in the benchmark problems, the request from the
jobs for the resources vary from 1 to 10 resource units. However, in many
practical instances, the spatial length of different groups does not vary that
much. Therefore, we scale the capacity of the resources and the spatial group
lengths. We do this, by dividing the resource capacities and the spatial group
lengths by a factor a > 1, and by rounding up the new resource capacities
and spatial group lengths. This implies a smaller number of different pos-
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sible group lengths, and since we round up the resource requirements and
resource capacities, the occupation of the spatial resources becomes tighter.
The extra tightness reduces the resource relaxation that appeared when we
created the problem instances considering 1 or 2 spatial resources.

Again, the test results show that all instances considering 6 groups could
be solved within 100 seconds. The results of the problem instances consid-
ering 8 groups are presented in Table 2.

Table 2: Results for 8 groups with different resource scalings
# SR Scaling Tmin Tmin+ Tmin+ Tmin+ Tmax

0.1 ∗ ∆ 0.25 ∗ ∆ 0.5 ∗ ∆
Λ = 1 a = 1 100% 98.8% 97.5% 93.8% 93.8%

a = 2 100% 96.3% 92.5% 88.8% 86.3%
a = 4 96.3% 85% 77.5% 72.5% 67.5%
a = 10 91.3% 65% 48.8% 42.5% 35%
a = 1000 100% 100% 100% 100% 100%

Λ = 2 a = 1 100% 97.5% 96.3% 93.8% 92.5%
a = 2 100% 98.8% 100% 96.3% 95%
a = 4 98.8% 98.8% 96.3% 92.5% 91.3%
a = 10 98.8% 95% 92.5% 91.3% 88.8%
a = 1000 100% 100% 100% 100% 100%

Λ = 4 a = 1 100% 100% 97.5% 97.5% 97.5%
a = 2 100% 98.8% 97.5% 97.5% 97.5%
a = 4 100% 100% 98.8% 96.3% 96.3%
a = 10 100% 100% 100% 97.5% 96.3%
a = 1000 100% 100% 100% 100% 100%

If we observe the results for 4 spatial resources, then we see that scaling
the resource capacities and requirements does not have much influence on
the solver time. The last resourcescaling (a = 1000), shows what happens
if all resource capacities and requirements are 1, i.e. when all allocations
are known. If this is the case, then all instances can be solved within 100
seconds.

If we observe the results for 1 and 2 spatial resources, then we can see
that the problem is more hard to solve, when the occupation of the resources
becomes tighter. Now we can also see that the problem instances, where we
consider just 1 spatial resource, are harder to solve than problem instances
where we consider 2 spatial resources. We expected this to happen, since
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more groups on 1 spatial resource might imply more possible group sequences,
and therefore more feasible schedules. It seems that problem instances con-
sidering 8 groups can only be solved within reasonable time, if more then 1
spatial resource is considered. If we need to allocate 8 or more groups to 1
spatial resource, then the GSP probably cannot be solved anymore within
reasonable time using the presented ILP model (unless the spatial resource
capacity is 1).

The test results for 10 groups are presented in Table 3. Since the alloca-
tion of 8 groups to 1 spatial resource causes severe problems, we only present
the results where 2 or 4 spatial resources are considered.

Table 3: Results for 10 groups with different resource scalings
# SR Scaling Tmin Tmin+ Tmin+ Tmin+ Tmax

0.1 ∗ ∆ 0.25 ∗ ∆ 0.5 ∗ ∆
Λ = 2 a = 1 92.5% 86.3% 76.3% 71.3% 68.8%

a = 2 95% 86.3% 71.3% 65% 63.8%
a = 4 88.8% 73.8% 57.5% 53.8% 50%
a = 10 82.5% 53.8% 41.3% 35% 30%
a = 1000 100% 100% 100% 100% 100%

Λ = 4 a = 1 98.8% 98.8% 97.5% 97.5% 96.3%
a = 2 98.8% 98.8% 97.5% 96.3% 96.3%
a = 4 97.5% 97.5% 98.8% 96.3% 95%
a = 10 98.8% 95% 95% 90% 88.8%
a = 1000 100% 100% 100% 100% 100%

We can make a similar observation as for instances considering 8 groups.
Resourcescaling has not much effect (in this case even a slightly negative
effect) on the instances considering 4 spatial resources. For the instances
considering 2 spatial resources, we can see that the resource relaxation by
the creation of these instances had a large effect on the solver time, and we
can conclude that problem instances considering 2 spatial resources cannot
be solved within reasonable time using the presented ILP, when 10 groups
or more are considered.

6.4 Different scalings of release and due dates

The benchmark instances do not provide release dates and due dates for the
activity groups. Therefore, the earliest start times and latest completion
times of the groups, only depend on the precedence relations between the
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groups. In order to test the influence of release and due dates on the solv-
ability of the problem instances, we made the following adjustment to the
problem instances.

For every group, we have a certain time window [ESGg, LCGg], which
defines the schedule period of the group. Since we schedule over a given time
horizon, the scheduling problem is symmetric, and we can measure the influ-
ence of release and due dates by only adjusting the earliest start times. In
order to keep feasibility of the problem instances, we may increase the earliest
start times of the groups to at most LCGg − D ming. More precisely, we in-
crease the earliest start time of every group by a∗(LCGg − ESGg − D ming),
where a ∈ [0, 1]. The results for the problem instances considering 8 groups
are presented in Table 4.

Table 4: Results for 8 groups with different earliest start time adjustments
# SR Scaling Tmin Tmin+ Tmin+ Tmin+ Tmax

0.1 ∗ ∆ 0.25 ∗ ∆ 0.5 ∗ ∆
Λ = 1 a = 0 100% 98.8% 97.5% 93.8% 93.8%

a = 0.2 100% 98.8% 98.8% 93.8% 93.8%
a = 0.4 100% 98.8% 98.5% 96.3% 93.8%
a = 0.6 100% 100% 98.8% 98.8% 93.8%
a = 0.8 100% 100% 100% 98.8% 98.8%
a = 1 100% 100% 100% 100% 100%

Λ = 2 a = 0 100% 97.5% 96.3% 93.8% 92.5%
a = 0.2 100% 100% 97.5% 96.3% 92.5%
a = 0.4 100% 100% 98.8% 93.8% 93.8%
a = 0.6 100% 100% 98.8% 96.3% 95%
a = 0.8 100% 100% 100% 98.8% 97.5%
a = 1 100% 100% 100% 100% 100%

Λ = 4 a = 0 100% 98.8% 97.5% 97.5% 95%
a = 0.2 100% 97.5% 96.3% 95% 95%
a = 0.4 100% 100% 97.5% 97.5% 95%
a = 0.6 100% 100% 100% 98.8% 95%
a = 0.8 100% 100% 100% 98.8% 97.5%
a = 1 100% 100% 100% 100% 100%

As we can see, enlarging the release dates makes the problem easier to
solve. The schedule periods of the groups get reduced, and therefore the
number of possible group sequences gets reduced. If we set a = 1, then the
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group schedules are completely determined, i.e. ESGg = LSGg, and the GSP
becomes only an allocation problem. In that case, the GSP is equivalent with
the ARS-R problem as proposed by Duin and van Sluis [17]. Since adjusting
the release dates of the groups has a positive influence on the solvability
of the GSP, we present in Table 5 the results for instances considering 10
groups. Here we can see even more clearly the influence of release dates on
the solvability of the GSP.

Table 5: Results for 10 groups with different earliest start time adjustments
# SR Scaling Tmin Tmin+ Tmin+ Tmin+ Tmax

0.1 ∗ ∆ 0.25 ∗ ∆ 0.5 ∗ ∆
Λ = 1 a = 0 95% 83.8% 72.5% 66.3% 65%

a = 0.2 96.3% 87.5% 76.3% 68.8% 65%
a = 0.4 97.5% 91.3% 81.3% 70% 66.3%
a = 0.6 97.5% 95% 92.5% 80% 68.8%
a = 0.8 97.5% 97.5% 93.8% 93.8% 83.8%
a = 1 98.8% 98.8% 98.8% 98.8% 98.8%

Λ = 2 a = 0 90% 83.8% 75% 67.5% 65%
a = 0.2 90% 82.5% 76.3% 70% 65%
a = 0.4 91.3% 86.3% 76.3% 71.3% 65%
a = 0.6 93.8% 91.3% 85% 76.3% 68.8%
a = 0.8 98.8% 98.8% 95% 90% 76.3%
a = 1 100% 100% 100% 100% 100%

Λ = 4 a = 0 98.8% 98.8% 98.8% 97.5% 96.3%
a = 0.2 98.8% 98.8% 97.5% 96.3% 97.5%
a = 0.4 98.8% 98.8% 98.8% 96.3% 96.3%
a = 0.6 100% 100% 100% 98.8% 96.3%
a = 0.8 100% 100% 100% 100% 98.8%
a = 1 100% 100% 100% 100% 100%

6.5 Subproblems of GSP

If we fix the complete group schedule, then the problem gets reduced to an
allocation problem. If we fix the whole group allocation, then we only need
to schedule the groups. These are two subproblems of the GSP, which are
both NP -hard as shown in Section 5.1. We also test these subproblems, in
order to see upto what input sizes these problems can be solved within rea-
sonable time. Therefore, we test the benchmark instances for resourcescaling
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1000, and for the maximal release date adjustment, and we searched for the
maximum number of groups, such that at least 95 per cent of the problem
instances could be solved within 100 seconds. The results are shown in Table
6.

Table 6: Maximum number of groups for subproblems GSP
# SR Fixed group schedules Fixed allocations
Λ = 1 > 30 groups 9 groups
Λ = 2 > 30 groups 12 groups
Λ = 4 > 30 groups 15 groups

6.6 Conclusions

We tested the ILP model of the GSP for several problem instances. As we
could see, it takes more time to solve the GSP, when the deadline is large.
An explanation for this is that increasing the deadline might increase the
number of possible group sequences, and therefore the number of feasible
solutions.

Scaling the resource capacities and requirements also has a negative effect
on the solver time. This is especially the case for the instances considering 1
or 2 spatial resources. The reason for this lays in the fact that the adjustments
of the benchmark instances to instances where 1 or 2 spatial resources are
considered, implies a relaxation of the resource constraints. The resource
scaling also showed, that problem instances considering 1 spatial resource
can be solved via the presented ILP model within reasonable time, if up to
7 or 8 groups are considered. For problem instances considering 2 spatial
resources, maximally 9 or 10 groups can be considered in order to keep the
solver time reasonable. Running a few more tests for problem instances
concerning 4 spatial resources showed that these instances can be solved via
the presented ILP model within reasonable time, if up to 11 or 12 groups are
considered.

Adjustments of the release and due dates of the groups has more effect
on the solver time. These adjustments reduce the schedule periods of the
groups, which might imply that fewer group schedules are possible.

In the beginning of this section, we mentioned that phase 1 of the two-
phase solution method forms the bottleneck of the GSP concerning the solver
time. To see this, observe the following. In the second phase all group
allocations are known. Furthermore, Table 1 and Table 6 show that the
subproblem, in which all group allocations are known, can be solved within
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reasonable time for larger input instances then the complete GSP. In phase
two of the two-phase solution method, we add some groups to the model.
However, the schedules for these extra groups are completely determined by
the schedules of the original groups in the problem, which were also consid-
ered in phase 1. Therefore, the solver time of phase 2 is proportional to the
solver time of the subproblem of the first phase, in which all allocations are
known.
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7 Conclusions and Recommendations

In this paper, we developed a group scheduling model which schedules and
allocates activity groups to spatial resources. This model can be used as
a pre-scheduling for the TCPSP with spatial resources. We derived an ILP
formulation for the GSP, and we showed how the necessary input for the GSP
can be extracted from the TCPSP. Furthermore, we proposed a strategy to
translate the output of the GSP back to the TCPSP. Since the GSP is a
relaxation of the TCPSP, it cannot predict in detail at which time buckets
resource conflicts occur. Therefore, we proposed to fix the group allocation
and sequences as in the output of the GSP, and not the exact start and
completion times.

The GSP provides feasible schedules for the TCPSP with relaxed resource
constraints. Furthermore, the GSP can be used to check feasibility of the
TCPSP with respect to the spatial resources. The choice of the objective
function for the GSP, has a large influence on the output of the GSP, and
therefore on the feasible schedules for the complete TCPSP. We discussed a
number of objective functions, which might lead to good solution possibilities
for the TCPSP. Since these objectives showed better results for the allocation
of the groups, than the sequencing of the groups, we proposed a two-phase
solution method, where the first phase is concentrated on the allocation of
the groups, and the second phase is concentrated on the sequencing of the
groups.

We showed that the GSP is NP -hard. Even the subproblems of the GSP,
where all group allocations are known or all group schedules are known,
are NP -hard. However, since realistic input sizes for the GSP are not very
large, we tried to solve the GSP to optimality. Test results showed that
problem instances considering 1, 2 or 4 spatial resources could be solved via
the presented ILP model within reasonable time, if up to 8, 10 or 12 groups,
respectively, are considered. For the subproblem of the GSP, where all group
allocations are known, problem instances where 1, 2 or 4 spatial resources are
considered can be solved via the presented ILP model within reasonable time,
if up to 9, 12 or 15 groups, respectively, are considered. For the subproblem
of the GSP, where all group schedules are known, instances where 1, 2 or
4 spatial resources are considered can all be solved via the presented ILP
model within reasonable time if up to 30 groups are considered (or possibly
even more). Furthermore, increasing the deadline has a negative effect on
the solver time, while increasing (decreasing) the release (due) dates has a
positive effect on the solver time.

In Section 2.3, we stated a few objectives for this paper. Some of these ob-
jectives have been reached, some of them require further research. Therefore,
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we recommend the following for further research.

• The GSP has been solved to optimality within reasonable time for
small input sizes. Therefore, we recommend further research in the
size of realistic problem instances for the GSP. If these input sizes
are too large, solving the GSP to optimality requires too much time.
Therefore, we recommend further research in heuristical procedures to
solve the GSP.

• We proposed to translate the output of the GSP back to the TCPSP,
by fixing the group allocations and sequences. We also proposed several
objective functions for the group scheduling model. The combination
of the objective function and the way in which the output of the GSP
gets translated back to the TCPSP, has a very large influence on the
solution possibilities for the remaining TCPSP. Therefore, we recom-
mend further testings to see which objective function for the GSP, and
which translation of the output of the GSP to the TCPSP, provides
high quality solutions with respect to solving the TCPSP.

• We derived the GSP, as a pre-scheduling for the TCPSP. Within the
TCPSP, the timing constraints are strong and the resource constraints
are weak. Therefore, relaxing the resource constraints in the TCPSP,
in order to derive the input for the GSP, does not affect the feasibility
of the TCPSP. This observation does not hold for the RCPSP (in the
RCPSP, the resource constraints are strong). We recommend further
research to see if the GSP can also be used as a pre-scheduling for the
RCPSP with spatial resources.
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Appendices

Appendix 1: ILP-formulation of GSP

∑

t

gsgt = 1 ∀g = 1, ..., I

zgt ≤ zgt−1 + gsgt ∀g = 1, ..., I, t = 2, ..., T

zg1 = gsg1 ∀g = 1, ..., I

Lλ(g)∑

l=1

bgl = 1 ∀g = 1, ..., I

ygl ≤ ygl−1 + bgl ∀g = 1, ..., I, l = 2, ..., Lλ(g)

yg1 = bg1 ∀g = 1, ..., I

Lλ(g)∑

l=1

ygl ≥ lg ∀g = 1, ..., I

ygl + yhl ≤ 1 + wgh ∀g = 1, ..., I, h = 1, ..., I, g 6= h,

λ (g) = λ (h) , l = 1, ..., Lλ(g)

zgt + zht ≤ 1 + (1 − wgh) ∀g = 1, ..., I, h = 1, ..., I, g 6= h,

t = 1, ..., T

SGg =
∑

t

gsgt ∗ t ∀g = 1, ..., I

CGg =
∑

t

(zgt − zgt+1 + gsgt+1) ∗ t ∀g = 1, ..., I

Dg = CGg − SGg + 1 ∀g = 1, ..., I

Dg ≥ D ming ∀g = 1, ..., I

SGg + TLgh ≤ CGh ∀h = 1, ..., I, Gg ∈ Ph

gsgt, zgt ∈ {0, 1} ∀g = 1, ..., I, t = 1, ..., T

bgl, ygl ∈ {0, 1} ∀g = 1, ..., I, l = 1, ..., Lλ(g)

wgh ∈ {0, 1} ∀g = 1, ..., I, h = 1, ..., I

SGg ∈ {ESGg, LSGg} ∀g = 1, ..., I

CGg ∈ {ECGg, LCGg} ∀g = 1, ..., I

Dg ∈ {0, T} ∀g = 1, ..., I
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Appendix 2: Improved ILP-formulation of GSP

D ming ≤ CGg − SGg ∀g = 1, ..., I

lg = CLg − SLg ∀g = 1, ..., I

SGg ≤ CGh − TLgh ∀h = 1, ..., I, Gg ∈ Ph

wgh ≥

(
CLh − SLg − Lλ(g) ∗ ygh

)

Lλ(g)
∀g = 1, ..., I, h = 1, ..., I, λ (g) = λ (h) ,

g 6= h, ESGg ≤ LCGh, ESGh ≤ LCGg

wgh ≥

(
CLg − SLh − Lλ(g) ∗ (1 − ygh)

)

Lλ(g)

∀g = 1, ..., I, h = 1, ..., I, λ (g) = λ (h) ,

g 6= h, ESGg ≤ LCGh, ESGh ≤ LCGg

SGg ≥ CGh − T ∗ (1 + vgh − wgh) ∀g = 1, ..., I, h = 1, ..., I,

g 6= h, λ (g) = λ (h)

SGh ≥ CGg − T ∗ (2 − vgh − wgh) ∀g = 1, ..., I, h = 1, ..., I,

g 6= h, λ (g) = λ (h)

wgh ∈ {0, 1} ∀λ = 1, ..., Λ, g 6= h, λ(g) = λ(h),

ESGg ≤ LCGh, ESGh ≤ LCGg

vgh ∈ {0, 1} ∀λ = 1, ..., Λ, g 6= h, λ(g) = λ(h),

ESGg ≤ LCGh, ESGh ≤ LCGg

ygh ∈ {0, 1} ∀λ = 1, ..., Λ, g 6= h, λ(g) = λ(h),

ESGg ≤ LCGh, ESGh ≤ LCGg

SGg ∈ {ESGg, LSGg} ∀g = 1, ..., I

CGg ∈ {ECGg, LCGg} ∀g = 1, ..., I

SLg ∈
{
0, Lλ(g) − lg

}
∀g = 1, ..., I

CLg ∈
{
lg, Lλ(g)

}
∀g = 1, ..., I
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