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Abstract

The semantics of programming languages lack a formal, standardized specification lan-
guage. We focus on control flow semantics and propose a graphical specification framework
for these semantics, consisting of three elements: a graphical control flow specification lan-
guage, a rule-based approach for constructing flow graphs and transformations from the
former to the latter.

In this thesis we introduce a control flow specification language () with which a
language designer can specify the control flow semantics of all constructs that are featured
in the programming language he or she designs. A control flow specification in  consists
of a set of specification graphs that adhere to the meta-model.

We also presents a structured, rule-based approach for constructing a flow graph () for
a program written in a particular programming language. In this approach, we use graph
transformations to transform an abstract syntax graph representation () of the program
into a . Such a graph transformation system consists of a set of programming language
specific  construction rules.

Transformations between the two models are performed by another set of graph pro-
duction rules: the  meta-rules. These meta-rules generate the  construction rules for a
programming language from a control flow specification of that language in , thereby
eliminating the need for hand designing the  construction rules.
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Chapter 1

Introduction

Like natural languages, all programming languages have a grammar, which specifies the
legal syntactical structures of the language. This grammar is typically specified in a formal
notation called Extended Backus-Naur Form ( [9]). Besides a syntactical structure, a
programming language has semantics. The semantics of a programming language, contrary
to the syntax, is typically specified informally, using natural language. The absence of a
formal specification language for the semantics of programming languages might in some
cases introduce ambiguity in the interpretation of the semantics of a programming construct.
But the main problem is that it makes automated reasoning or correctness proving of, for
instance, refactoring operations more difficult.

These problems also play a role in Model Driven Architecture () [12]. In the 
approach several, preferably automatic, transformation steps are developed in order to
transform a platform independent specification model of a system to a model which depends
more on a specific platform or technology. This process ideally ends at the level of an
executable model. In order to assure the correctness of any of these transformations, we
need a formal specification of the semantics of both the source language and the target
language of the transformation step. These are then used to prove that the transformation
step preserves the semantics of the source model.

It is therefore clear that it is desirable to have a standard, formal specification language
for the semantics of programming languages, comparable to the  standard that we have
for the syntax of languages.

This thesis will introduce a specification language that focusses on a subset of the se-
mantics of programming languages, namely the control flow semantics. To put it simply,
control flow defines the order in which individual operations in a program are executed. The
control flow semantics of a programming construct is described in terms of the influence this
construct has on this execution order in a program.

1.1 Goal

The goal of this thesis is:

The development of a formal specification language for the control flow semantics
of programming languages, using graphs and graph transformations.
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1.2 Approach

Our research has resulted in a framework for formal specification of control flow semantics,
consisting of:

1. A control flow specification language (the main goal of this research project);

2. A flow graph construction approach;

3. Transformations between the above two elements.

All the elements of this framework have been implemented, using graphs and graph
transformations. Below, we give a brief introduction to each element. The coming chapters
will treat them in far more detail and present an instantiation of this framework for our
example programming language.

1.2.1 Control flow specification language

The purpose of our control flow specification language (to which we will often refer as )
is for a language designer to be able to formally specify the control flow semantics of the
programming language he or she is designing. The most important requirements for 
are the following:

1. The language should have formal semantics;

2. The language should be programming language independent, i.e. generic;

3. A control flow specification for a particular programming language in  should have
a close relation to the syntax of the programming language;

4. The language should be powerful enough to be able to specify all control flow semantics
for any imperative programming language (including object-oriented languages with
imperative programming constructs).

When we specify the control flow semantics of a particular programming language in
, we design a control flow specification for each individual programming construct in the
programming language. Such a control flow specification states the influence the construct
has on the flow of control of any program that features this construct. Together, this set of
control flow specifications forms a specification of the control flow semantics of the entire
programming language.

Regarding requirement 1, our  is based on the mathematical graph datatype: control
flow specifications in  are graphs which adhere to the  meta-model. The  meta-
model consists of programming language independent (requirement 2) graph elements (i.e.
nodes and edges) we use to denote control flow in a specification.

We have chosen graphs as the base of our specifications because of a number of reasons.
The most important reason is that we do not want our specifications to be limited to a tree-
structure, as is present in a parsed syntax tree or, more implicitly, present in a () grammar
rule. Also, by using graphs we are able to apply graph transformations to  specifications,
as we will explain later on.
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Regarding requirement 3, the close relation with programming language syntax is re-
alised by the fact that we use a graph representation of abstracted syntax of a particular
programming language construct as the base of a control flow specification for this construct.
For this base graph we specify the control flow of the programming construct with (graph)
elements present in the meta-model.

It is not straightforward to show that requirement 4 is fulfilled by . At the end of this
thesis, we present a critical evaluation of the applicability of  to imperative programming
languages.

1.2.2 Flow graph construction

In the previous section we introduced  in which we can specify the control flow semantics
of a programming language. We now consider constructing the control flow of a program written
in some programming language.

In our framework, we represent the control flow of a program as a flow graph. For program
analysis and measurements of the structural complexity of a code fragment, programs are
often represented as flow diagrams or flow graphs [5]. The properties of these graphs (like
the number of independent paths in a flow graph) can provide the necessary information for
this kind of analysis [20].

There are many possible ways of modeling flow graphs, ranging from detailed and
accurate (with respect to real program execution) representations to abstract representations
that are more suitable for (mathematical) analysis of complexity properties. We use a detailed
flow graph model, which is based on an abstract graph representation of syntax to which
we introduce control flow information. We present an elaborate flow graph meta-model that
accommodates for the different types of control flow we discern.

We present a structured, rule-based way of introducing control flow information. For
each type of programming construct, we design a rule that decorates its abstract syntax
representation with our representation of its control flow semantics. We apply a set of these
rules in order to transform an abstract syntax graph representation into our flow graph
representation.

The abstract syntax representation we use is a graph, i.e. an abstract syntax graph and, of
course, our flow graph is also a graph. Because of this we are able to use a transformation
technique known as graph transformations [15]. When using graph transformations, we have
a graph grammar or graph production system, which consists of a set of graph production
rules and a start graph. The start graph is, in this case, an abstract syntax graph representation
of some program (fragment) for which we want to construct a flow graph. This program is
written in a specific programming language. For each programming construct that is featured
in this language, the set of production rules provides a rule that transforms a matching part
of the abstract syntax representation into a partial flow graph. In other words, for each type
of statement we have a rule that introduces the control flow information of this statement
to the abstract syntax graph of the program that features this statement. After applying all
matching rules to the abstract syntax start graph, we end up with a completed flow graph.

Even when we are committed to use graphs and graph transformations, there are still
many possible ways to represent control flow (i.e. our flow graph meta-model), to construct
a flow graph, to abstract from concrete syntax, etc. The flow graph construction approach
and the related meta-models we use in this thesis are all inspired by from an extensive case
study that we performed on constructing flow graphs, using graph transformations. During
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this case study, we have developed and applied several different approaches, before coming
to the final approach and meta-models that we use in this thesis.

1.2.3 From specifications to construction rules

As we mentioned earlier, we present  as a means for a language designer to formally
specify the control flow semantics of a programming language. A language designer specifies
for each programming construct of the language he or she is designing the control flow
semantics as a control flow specification. This results in a set of formal specifications that
can accompany the formal syntax specification of the programming language.

We also mentioned the purpose and benefits of representing a program as a flow graph
and having a structured way for constructing such graphs. As follows from the case study,
designing flow graph construction rules by hand is time-consuming and not a trivial task.
Fortunately, graph transformations can aid us here (again).

Our control flow specification framework includes a set of flow graph meta-rules: graph
production rules that transform graphs intro graph production rules. The source graphs of
these meta-rules are a set of hand-designed control flow specifications in . The production
rules that result from the application of these meta-rules are the corresponding flow graph
construction rules. Therefore, there is no need to design these flow graph construction rules
by hand.

1.2.4 Running example: the Java programming language

To provide concrete examples for both  as our flow graph construction approach, we have
chosen for the Java programming language [19], a modern and widespread programming
language. We have composed an abstract grammar which features most Java constructs. For
these constructs we present a set of control flow specifications in . We also present a
corresponding set of flow graph construction rules for these constructs in this thesis, which
were generated by our flow graph meta-rules.

1.3 The big picture

It is time to present an overview of all elements of this research mentioned above (the big
picture). For this, we look at Figure 1.1.

This figure features three meta-levels. Level 1 is at the level of program defined in a
specific programming language. Level 2 is at the level of a specific programming language,
of which a program of course is an instance. Level 3 is at the level of meta-languages, the
level in which parts of a specific programming language are defined.

Three types of actors play a role in this figure. We have a researcher who designs meta-
languages and meta-models. Next we have a language designer; he or she designs the syntax
and semantics of a specific programming language. And last, we have a developer; he or she
develops a program in this specific language.

We follow the chains, starting with the role of the language designer. The language
designer specifies the legal syntax of a new programming language (6) in  (1). This
grammar is abstracted by the language designer to an abstract syntax graph meta-model (7)
specific to this language.
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Figure 1.1: Overview of the chain of the elements involved in this thesis and the levels on
which they reside.

Next he or she specifies the control flow semantics of the language, not in natural lan-
guage, but in formal specifications (8) in our control flow specification language (3).

Graph transformations (13) are performed on these specifications using the  tool
set [14], which applies our designed set of flow graph meta-rules (4). The performed graph
transformations result in a set of corresponding flow graph construction rules (14).

Now we examine the role of the developer. The developer writes (15) some program
(16) in this new programming language, conforming to the grammar of the language (6).
The program is parsed (17), resulting in an abstract syntax graph (18) that conforms to the
abstract syntax graph meta-model that is specific for this programming language (7). The
abstract syntax graph is input for the  tool (19), were the generated set of flow graph
construction rules (14) are applied. The resulting transformations result in flow graphs (20)
that have been attached to the input abstract syntax graph and adhere to the flow graph
meta-model (9).

1.4 Overview

We now give a brief overview of the chapters in this thesis.
Chapter 2 introduces the formal notion of graphs and explains the aspects related to the
graph transformation technique and production rule application.

Chapter 3 introduces two types of graphs that play a major role in this thesis: abstract
syntax graphs and flow graphs. It presents both meta-models and illustrates these graphs by
some examples. Chapter 4 presents our flow graph construction approach and the example
flow graph construction rules we have developed for the Java programming language.
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Chapter 5 introduces our control flow specification language , the main result of this
thesis. As an example for our specification language, we present a large number of example
control flow specifications of Java statements.

In Chapter 6 we present our set of flow graph meta-rules that transform control flow
specifications into corresponding flow graph construction rules.

Chapter 7 evaluates our control flow specification language and identifies its applicability
and limitations.

Finally, Chapter 8 presents the conclusions of this thesis and summarizes related and
further work.



Chapter 2

Graph Transformations

This chapter gives an introduction to graph transformations as they are used in this thesis.
In the big picture (Figure 1.1) of this thesis, presented in Chapter 1, we have seen that
graph transformations are applied to transform control flow specifications into flow graph
construction rules (13) 1 and to construct a flow graph given an abstract syntax graph (19).

Graph transformations are a systematic, rule-based transformation technique. They have
a solid research foundation [17] and have many areas in computer science for which they are
found suitable to apply (e.g. [15, 3, 7]).

In the next section we introduce the formal definitions of the graphs we use. In the last
section, we introduce graph transformations and conclude this chapter with an introduction
example to graph transformations.

2.1 Graphs

Graphs are our mainly used datastructure, in fact we represent all components of the frame-
work we introduce as graphs. All our graphs conform to the following formal definition.

Definition 2.1.1. [15] A graph is a tuple 〈Nod,Edg〉where

• Graphs are specified over a global, finite set Lab of labels;

• Nod is a finite set of nodes;

• Edg is a subset of Nod × Lab × Nod, i.e. a (finite) set of edges.

Our graphs are directed graphs, meaning that we discern for each edge a source and a target
node. As a result, our edges can only represent binary relations (i.e. we have no hyperedges).

As follows from the definition, edges are labeled. Nodes are not labeled by definition, but
we can have edges with the same source and target node. These edges are called self-edges
of a node and, for practical purposes, can be considered as the labels of a node (as a result, a
node can have several labels). As we use a set of edges, we do not have multiple edges with
the same source, target and label (i.e. no parallel edges).

Graphically, nodes are represented as black rectangles and edges as black arrows. Self-
edges can be represented as labels of nodes (graphically depicted inside the rectangle), or as
arrows with the same start and end node.

Figure 2.1 shows an example graph. This graph is part of the Ferryman Problem example
that will be elaborated in Section 2.2.4. Note that we have represented self-edges as labels of
nodes in this figure.

1These numbers refer to one of the number elements of Figure 1.1.
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Figure 2.1: An example graph that conforms to our definitions.

2.2 Graph transformations

Now that we have made clear what type of graph we use in this thesis, we introduce the
graph transformations technique and show how we can apply this technique to our graphs.

A graph transformation system, or graph grammar [17], consists of a set of graph productions
rules and a start source graph.

A graph transformation system can transform a graph called the source graph, into an-
other graph called the target graph. The target graph is a transformed version of the source
graph. What the changes to this source graph are depends on what is specified in the graph
production rules that were applied to this source graph.

2.2.1 Graph production rules

A graph production rule consist of two graphs, a left hand side L and a right hand side R. A
production rule p has the form: L r

→R. The left hand side L is matched to (a part of) the
source graph and the occurrence of L in the source graph is replaced by R, resulting in the
target graph. Thus, the left hand side L is matched on the source graph and the right hand
side specifies elements (nodes or edges) of the matching sub graph (of the source graph)
to be preserved, elements to be removed and new elements to be introduced in the target
graph. r is a partial graph morphism, which identifies which elements (nodes or edges) in L
correspond to which elements in R. Note that we use the Single Pushout Approach, were in
the Double Pushout Approach the correspondence of elements is, among others, identified
using a common interface graph or gluing graph [17].

Matching of a left hand side L of a graph production rule on a source graph G is -
complete.

The technical details of our production rules and how they are applied are treated more
thoroughly in [17] and, more specifically, in [15].

The production rules are made up from four different kinds of elements:

Readers The readers are elements that are present in both L and R. They have to be present
in the source graph in order for L to match and are preserved in the target graph.

Erasers The erasers are elements present in L but not in R. Thus, they have been matched in
the source graph but are not found in the target graph, i.e. they are removed.

Creators The creators are elements absent in L but introduced in R. They are added to the
target graph.
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Embargoes The embargoes (or negative application conditions) are neither present in L and
R but are in fact an extension to standard graph transformations [15]. These elements
have to be absent in the source graph and in a matching of L on the source graph for
the production rule to apply.

We give an example application (Pushout) of a graph production rule to a graph in Figure
2.2. The matched nodes and edges in the source graph are depicted bold. By comparing L
and R we can see that a node and two edges are erased by this production rule. Note that
the representation of the negative application condition moored in L is technically incorrect.
In practice, after a match of L has been found in the source graph, the negative application
elements are added to this matching graph. Only when this extended matching graph does
not (again) match the source graph the rule applies.

Figure 2.2: An application of a graph production rule to a graph.

In our graphical presentation of graph production rules, the left and right hand side are
combined in a single graph. To discern the four types of rule elements, each element has a
distinct color and form, listed below. Figure 2.3 shows the combined version of the graph
production rule presented in Figure 2.2.

Readers Readers are presented as black rectangles and arrows;

Erasers Erasers are presented as dashed, blue (darker gray in black and white presentations)
rectangles and arrows;

Creators Creators are presented as bold, green (light gray in black and white presentations)
rectangles and arrows;

Embargoes Graphically, they are represented by bold, dashed, red (dark gray in black and
white presentations) rectangles and arrows.

The matchings of readers and embargoes can be refined by extending the labels of the
elements with path expressions. The path expressions used in this thesis are (a subset of)
regular expressions supported by the  tool. We list these regular path expression
operators in a grammar:
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Figure 2.3: An example of the graph production rule depicted with L and R combined.

x ::= a | x p x | x . x | x ∗ | ?

The Kleene star (∗) matches any number of subsequent edges that match the path ex-
pression that is left to the operator (the direction of the edges is of course relevant). The
choice-operator (|) matches a path that matches the path expression left of the operator or the
path expression right of the operator. The path construction operator (.), matches a path that
matches the path expression on the left side of the operator followed by the path expression
on the right side (the direction of the edges is again relevant). The wilcard operator (?)
matches an edge with any label.

Another operator we often use is the equality operator = which can be the label of a creator
or embargo. When it is used as the label of a creator, it merges the two nodes it connects to
one node, which receives all incident edges of the original nodes. When it is used as the
label of an embargo, it states that the two nodes it connects may not be matched to the same
node for a matching to be valid. This is sometimes useful, as the matching of elements in
the production rule on elements in the source graph can be non-injective (e.g. two nodes in
a production rule may be matched onto one node in the source graph).

2.2.2 Rule applications

In a graph transformation system, a set of graph production rules are applied to a start
source graph. After each application, the original start graph will be somewhat changed (i.e.
transformed). This transformation process typically continues until none of the production
rules are applicable anymore to the changed intermediate graph; we can then say that the
transformation is complete.

However, at any moment during the transformation process, several rules may apply
to the intermediate graph. We can choose to apply one of these rules arbitrarily or explore
all applications. This results in a tree-like structure of rule applications and resulting inter-
mediate graphs. Because we check each intermediate graph on isomorphism with all other
intermediate graphs and connect rule application paths when they result in isomorph result-
ing graphs, a tree-structure is not suitable. We represent rule applications using a Labeled
Transition System (), in which each node is an intermediate graph (the root node is that
start graph) and each edge represents a rule application (and is labeled with the name of the
rule).

As said, several graph production rules may apply to the same intermediate graph at
the same time. In some cases, each production rule application could eventually be leading
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to a different final graph. When this is the case, the order in which the applicable rules are
applied to the intermediate graph influences the resulting final graph.

In our case this is not desirable. We normally design production rules, which will
eventually lead to the same target graph, independent of the order in which the rules are
applied. Such rules are called confluent.

As the order in which applicable production rules is not important when the rules are
confluent, we can explore the rule applications in a linear fashion: for each intermediate
graph, one applicable rule is chosen arbitrarily. When the order of the applicable production
rules is important, we have to perform a full exploration of the rule applications state space
to end up with all possible final graphs.

We have another (primitive) mechanism for guiding the applications of production rules:
rule priorities. When a production rule has been given a higher application priority than other
rules, the other applicable rules can only be applied in case the rule with higher priority is
not applicable.

2.2.3 Graph transformation tool

For graph transformation, we us the  [14] tool, which consists of an editor for creating
graphs and graph production rules and a simlator for performing graph transformations.

2.2.4 Example: The Ferryman Problem

As an introduction example to graph transformations we consider a classical problem called
the Ferryman Problem. We have a ferryman who wants to transport his wolf, his goat, and
his cabbage to the other side of a river. The problem is that he has a boat which is only large
enough for himself and one other animal or vegetable. Matters are complicated even more
for this ferryman by the fact that his possessions have created their own small food chain: his
wolf would very much like to devour his goat, while his goat has an interest in his cabbage
vegetable. Both the wolf and the goat behave while the ferryman is there to watch them, but
will start eating that what they like the moment the ferryman rows away.

We represent this problem as a graph transformation system. Such a system consists,
as mentioned above, of a start graph and a set of graph production rules. The start graph
(Figure 2.4) is the representation of the start scenario of the Ferryman Problem. The river to
cross has two Banks: one Left and one Right (remember, nodes can have several labels which
are actually labeled self-edges of the node).

Figure 2.4: The start graph of the Ferryman problem.
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The ferryman itself has no explicit representation in our graph, as we are only concerned
with the position of the Boat. The Boat can be moored on either Bank or be going to the other
side of the river.

The two animals and the vegetable are represented as nodes labeled Wolf, Goat and
Cabbage. As we know, the Wolf likes the Goat and the Goat likes the Cabbage. All three can be
either on one of both Banks or loaded in the Boat. The start graph states that all three are on
the left bank and the Boat is moored on this bank too.

The goal of the ferryman is to transport the wolf, goat and cabbage to the other side of
the river. The corresponding goal state graph (Figure 2.5) is the mirrored version of the start
graph. There are many possible states which are considered a failure. All fail states have in
common that either the Goat or the Cabbage or both have been devoured by some animal.
An example fail state graph is shown in Figure 2.6. Here we see that, although the Wolf has
been transported across the river, both the Goat and the Cabbage are no more.

Figure 2.5: The goal state of the Ferryman problem.

Figure 2.6: A fail state of the Ferryman problem.

Now that we have treated the graph representations of states of the Ferryman Problem,
we treat the set of graph production rules that are part of the graph transformation system
for this problem.

The first production rule we treat is the eat rule (this rule was already depicted in Figure
2.3). This rule performs eating actions according to the food chain. We use a simple and
standard technique to make this rule more general: we do not match the pairs (Wolf, Goat)
and (Goat, Vegetable), but instead only match on the likes relation between two unlabeled
nodes. As the nodes have no labels, the rule matches on any two nodes that are connected
with a likes edge. This way, one rule suffices for both pairs in the food chain. Both elements
should of course be on the same Bank in order for the eating process to commence. And,
another important condition is that the Boat is not moored on this Bank, we therefore have
an embargo. The result of the eat rule is that one animal or vegetable will be devoured when
applying this rule, i.e. erased.

Figure 2.2 showed a sample application of the eat rule (with the left and right hand side
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shown as separate graphs). In the source graph for the rule application, the matching nodes
and edges are depicted bold. We can see that the eat rule applies to this source graph, as the
Boat is moored on the other side of the river, while the Cabbage and Goat are left unattended
on the left bank of the river. The figure also shows the target graph, the state graph that
results from the eating of the Cabbage. We see that the Cabbage node and his outgoing on
and incoming likes edges have been deleted.

Figure 2.7 shows production rules for the four actions the ferryman can perform:

Load This rule loads one possession that is present on the same bank as the Boat is moored
in the Boat (its on edge is deleted and a new in edge is created) and starts the rowing
(by creating a go edge) to the other side (an embargo = specifies that the banks may not
be the same node);

Unload This rule unloads one possession on to the Bank to which was rowed; the Boat is
moored there too;

Go empty This rule rows the Boat to the other side (again this cannot be the same Bank node)
without loading any cargo;

Arrive empty This rule mores the Boat without unloading any cargo (the Boat must be empty,
i.e. there cannot be any node in the Boat).

(a) Load (b) Unload (c) Go - empty (d) Arrive - empty

Figure 2.7: The graph production rules for loading and moving the boat.

Figure 2.8 features the somewhat peculiar rule final: it consists only of readers, meaning
that the source and target graph of an application of this rule will be equal. This rule is used
to indicate that the goal has been reached, i.e. if this rule applies to the current state graph,
the Ferryman Problem has been solved.

Figure 2.8: The graph production rule that applies when the success-state is reached.

When we simulate the transformations in this graph transformation system, most se-
quences of rule applications lead to a fail state, i.e. a state from which a state in which the
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final rule applies cannot be reached. Rule applications sequences that lead to a state graph
in which the final rule applies are solutions to the Ferryman Problem. Figure 2.9 shows a
(partial) rule application  in which a sequence of rule applications lead to a graph to which
the final rule applies. This sequence is a solution for the Ferryman Problem. Exploring any
sequence from a state graph labeled open might lead to other solutions or failures.

Figure 2.9: The partial rule application  leading to a solution of the Ferryman problem.



Chapter 3

Graph Representations

This chapter treats two important graph representations in this thesis: abstract syntax graphs
(’s) and the flow graphs (’s). Related to the big picture of this thesis (Figure 1.1), this
chapter presents the abstract syntax meta-model (7) and the flow graph meta-model (9) and
gives examples of an abstract syntax graph (18) and flow graph (20) for a Java program.

3.1 Abstract syntax graphs

The (context-free) grammar of a programming language is typically specified in (extended)
Backus-Naur Form (()) [9]. When parsing the source code of a program written in
this language using the  grammar, the result is a concrete syntax tree: a tree structure
representing the program’s source, containing all syntactic elements (terminals) of the source
as leaf nodes and the non-terminals as intermediate nodes.

Syntactic details are often irrelevant to the control flow semantics of the parsed program.
Therefore, as is often done in compilers [21], we use an abstract representation of the concrete
syntax. In this representation most syntactic tokens (terminals) can be omitted.

A well-known abstract version of the concrete syntax tree is the abstract syntax tree ().
This tree-structure is often enhanced in another pass with extra context information: bindings
of used variables to their declarations, unification of labels for labeled statements, etc. These
enhanced (or “decorated” [21]) ’s are in fact no longer trees, but graphs.

Our abstract syntax representation is also a graph, hence we call it an abstract syntax graph
(). Yet the original tree-structure is still clearly visible in these ’s. The non-terminal
symbols in the production rules of a programming language grammar appear as nodes of
our ’s. The syntax tree structure is represented by edges labeled child between parent and
child nodes.

Unlike most compiler ’s, our ’s are not based on a programming language’s 
grammar, but on an adapted  version thereof.

An issue with an  production rule is that the right hand side may feature elements
that are optional (enclosed in square brackets). The presence or absence of these elements
in a concrete program fragment may affect the control flow semantics of that particular
statement. As a concrete example, consider the if-statement that is featured in the Java
programming language. The control flow semantics of this statement depends on whether
the optional else-part is present. Therefore, when considering the control flow semantics of
the if-statement, we actually discern two different statements: an if-then-statement and an
if-then-else-statement.

In our abstract syntax, we rewrite rules with optional parts to several new rules, which
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we combine using the standard or-operator (denoted by |). In other words, we introduce
new non-terminals for each variation of a statement due to optional parts. This actually
means that we use plain without extensions for our abstract syntax.

When considering the if-statement in Java again, our abstract syntax has the following
 production rules (we use < and > to indicate terminals):

Statement ::= IfStatement | .. | ..

IfStatement ::= IfThen | IfThenElse

IfThenElse ::= <IF> <LPAR> Expression <RPAR> Statement <ELSE> Statement

Appendix A presents an abstract, plain , grammar we have composed for a large
portion of the Java programming language (based on the  grammar presented in [6]).

We represent the non-terminals in our abstract syntax as nodes in our abstract syntax
graph. Thus, the name of a non-terminal is represented as the label of the corresponding
node.

Often, the left hand side of a  rule evaluates to one or more non-terminals. There
are two possible ways of representing this in our abstract syntax graph, which are similar to
two concepts that feature object-oriented programming: composition or inheritance. If we use
composition, the left hand side non-terminal is represented as the parent node and the right
hand side non-terminal(s) as child node(s). If we use inheritance, we use the fact that a node
can have several labels (represented as self-edges of the node), as we saw in Chapter 2. The
left hand side and right hand side non-terminal both appear as labels of the node. Table 3.1
compares both concepts in ’s to the corresponding  concepts.

 

Composition

Inheritance

Table 3.1: Composition and inheritance for representing abstract syntax, compared to the
corresponding  concepts.

Inheritance in this context is only possible if the left hand side of the grammar rule evalu-
ates to one non-terminal or several, separated by or-operators (e.g. Statement and IfStatement
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1 i f ( x >= 5)
2 x = 0 ;
3 e lse
4 x = x + 1 ;

Listing 3.1: Example of an if-then-else-statement in Java.

in the grammar above). In this thesis, we make arbitrary choices for using composition or
inheritance.

As an example, the IfStatement  rule for Java, presented above, is represented using
inheritance: an abstract syntax node, labeled IfStatement, also features the label IfThen or
IfThenElse (depending on whether it features an else-part).

Beside the tree-structure parent-child relations, represented by child edges, the syntax
representation is decorated with additional information. We annotate the relations between
parent and child syntax nodes with edges with labels that explain the role of a child syntax
node with respect to its parent. We introduce these annotations to our abstract syntax 
rules using the following notation: label:NonTerminal. Taking Java as an example again,
our  rule for the if-then-else-statement in Java therefore becomes:

IfThenElse ::= <IF> <LPAR> condition:Expression <RPAR> thenPart:Statement

<ELSE> elsePart:Statement

In our graph representation, an IfThenElse node has an edge labeled condition to its Ex-
pression child syntax node, an edge labeled thenPart to its then-part Statement syntax node
and an edge labeled elsePart to its else-part Statement syntax node.

Figure 3.1 shows the abstract syntax graph representation for if-then-else statements in
Java. Note that in this representation, terminals like if and else and parentheses are not
present.

Figure 3.1: The abstract syntax graph representation of the IfThenElse statement.

To give an example of an abstract syntax graph that actually represents a specific source
code fragment, we look at Listing 3.1. This listing is a Java code fragment that features
an if-then-else-statement. The abstract syntax graph representation of this code fragment
is depicted in Figure 3.2. We see here that the Expression and Statement child nodes of the
IfThenElse represent actual expression and assignment statements, conforming to the source
code. This figure also shows some terminals (in this case, literal values) that have been
preserved in the . The precise details of this abstract syntax graph are not important at
this point.
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Figure 3.2: An abstract syntax graph of the code fragment in Listing 3.1.

3.1.1 Generic meta-model

As we saw in the big picture (Figure 1.1), an abstract syntax graph conforms to a language-
specific abstract syntax meta-model (7). All language specific abstract syntax graph meta-
models adhere to a prescribed structure. We have specified this structure in a generic abstract
syntax meta-model, specific abstract syntax graph meta-models are specializations of this
meta-model.

The generic abstract syntax meta-model (Figure 3.3) specifies that an AbstractSyntaxEle-
ment (i.e. any node representing a non-terminal) can have any number of children (child)
and any number of annotated role edges for these children. The number of child edges and
annotated role edges need not coincide: a child edge is mandatory for any child of an abstract
syntax element, but the annotated roles are optional.

An AbstractSyntaxElement can optionally have a value relation with a literal value terminal.
For instance, a BooleanLiteral in Java has a value relation with either the True or the False node.

Figure 3.3: The generic abstract syntax meta-model.

A language specific abstract syntax graph meta-model depends, of course, on the pro-
gramming language under consideration. It is actually a set of graphs representing the
abstract syntax  grammar rules composed for that language. Figure 3.1 is an example of
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such graphs for the abstract syntax grammar we composed for Java (see Appendix A).

3.2 Flow graphs

Control flow information describes the order in which the individual, atomic, instructions
of a program are executed. Most statements are executed in the order they appear in the
program’s source code, i.e. sequential control flow.

However, some statements change this sequential flow of control. These statements are
often called control statements. They do not perform calculations or change the program’s
state, but determine the order of execution for a group of sequential statements. Most
control statements depend in their execution on the value of an associated condition. These
statements thereby introduce branches in the program’s execution. Depending on the value
of the condition one of these branches is executed, i.e. conditional branching control flow.

Most languages feature another group of statements that disrupt the control flow of a
program. The statements perform local (within the method) or in some cases non-local,
unconditional jumps. The most (in)famous example is the goto statement [4], that is fea-
tured in many programming languages. In Java, these statements are referred to as abrupt
completion statements. We refer to this type of control flow as abrupt completion control flow.

The flow of control in a program is often shown graphically in control flow diagrams or
graphs, where arrows or edges indicate how the control is transferred between statements,
which are often presented as rectangles or nodes (e.g. [5]). There are many possible ways
of modeling flow graphs, ranging from detailed to abstract. Figure 3.4 shows two examples
of abstract models of the control flow of Listing 3.1: a flow diagram and a control graph
(see [20]). In these figures, the numbers are related to the line numbers of the corresponding
listing.

(a) Flow diagram (b) Control graph

Figure 3.4: Examples of control flow diagrams and graphs of Listing 3.1.

We use a far more detailed graphical representation of control flow in the form of a flow
graph (). Our flow graph is actually an abstract syntax graph which is decorated with
control flow information in the form of special-purpose edges and nodes. The semantics and
constraints on these control flow elements are described in the following section, in which
we treat the flow graph meta-model.
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3.2.1 Meta-model

Figure 3.5 presents our flow graph meta-model. We have developed this meta-model during
the case study we have performed on designing flow graph construction rules for Java.

Figure 3.5: The flow graph meta-model.

FlowElement

We consider all abstract syntax elements with control flow semantics to be FlowElements.
For each FlowElement, we denote which element is executed when control is transferred to
this FlowElement (i.e. its entry) and which element represents the end of the FlowElement’s
execution (i.e. its exit). Thus, each FlowElement has one entry and one exit edge. The target
of these edges can be the FlowElement itself, another FlowElement (most likely some sub
statement) or a FlowConnector.

The auxiliary nodes FlowConnector, Branch and Abort inherit from FlowElement. As we
have seen in Table 3.1, this means that these auxiliary nodes also feature a FlowElement edge
and have an entry and exit, which are defined as self-edges of the auxiliary nodes.

FlowConnector

FlowConnectors serve as connection points for control flow in flow graphs and have no
semantics of their own.

Sequential control flow

Above, we identified three types of control flow: sequential, conditional branching and
abrupt completion control flow. Sequential control flow is represented by an edge labeled
flow. As sequential flow does not branch, a FlowElement can have at most one outgoing flow
edge, but it can be the target of any number of flow edges.
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Conditional branching control flow

Conditional branching has a more complex representation in our flow graphs. We represent
each possible branch with an auxiliary Branch node. A Branch has several possible edges:

branch Indicates at which statement the conditional branching originates;

condition Indicates the condition FlowElement that results in the actual value for the condi-
tional branching;

branchOn Indicates the literal value to which the condition should evaluate if this branch is
to be taken;

branchDefault Indicates that this branch is taken if no other branch can be taken;

flow Indicates to which FlowElement control is transferred upon taking this branch.

A branchDefault edge is used when we have the special default case with, for instance,
switch-statements in Java, it excludes a branchOn edge. From a FlowElement that features
conditional branching we have a branch edge to each possible branch (Branch). For example,
branching on a Boolean condition is represented by two Branches, one on true and one on
false. The statement from which this branching originates has a branch edge to each of the
Branches.

Conditional branching and sequential control flow are mutually exclusive; a constraint
on FlowElements is that they can have an outgoing flow edge or one or more outgoing branch
edges, but not both types of edges.

Abrupt completion control flow

Abrupt completion is the most complex form of control flow. The precise details on abrupt
completion are treated in Chapter 4, for now it suffices to explain the representations and
constraints for abrupt completion in flow graphs. Abrupt completion is represented by an
auxiliary node labeled Abort. An Abort has several possible edges:

abort Indicates at which statement the abrupt completion control flow originates;

reason Indicates the FlowElement that causes the abrupt completion control flow;

resumeAbort Indicates at which statement the abrupt completion control flow resumes;

flow Indicates to which FlowElement control is transferred (analogous to Branch).

The edges abort and resumeAbort are mutually exclusive. The FlowElement from which
the abrupt completion control flow is followed features an abort edge to an Abort. In some
cases, however, abrupt completion is resumed (see Chapter 4). When this is the case, the
FlowElement features one (or several) resumeAbort edge(s) to Abort(s) instead.
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Example flowgraph

As an example flow graph, we consider the Java code fragment in Listing 3.1 again. The
abstract syntax graph of this code fragment was presented in Figure 3.2. The flow graph is
shown in Figure 3.6, some syntax elements have been grayed out to make the graph more
readable. We can clearly see in this graph that the original  has been decorated by control
flow elements. Compared to the models in Figure 3.4 it is clear that our ’s are detailed
models of the control flow of a program.

Again, the precise details of this flow graph are not important yet. Still, one may wonder
where the control flow in this graph starts. Normally, the if-then-else statement is placed in
the context of some method that features an ordered list of statements. After execution of the
statement ordered before this if-then-else statement, control is transferred to the entry of the
if-then-else, in this case the Identifier node that is part of the condition. Thus, the statement
ordered before the if-then-else would feature flow edge from its exit to the Identifier node.

Figure 3.6: A flow graph of the code fragment in Listing 3.1.



Chapter 4

Flow Graph Construction Rules

This chapter introduces flow graph construction rules. In the big picture (Figure 1.1) we
have seen that flow graph construction rules (14) are applied to an abstract syntax graph (18,
see Section 3.1) representation of a program (16) developed in some programming language.
The flow graph construction rules are graph production rules (see Chapter 2) that attach a
flow graph (20, see Section 3.2) to such an .

Flow graph construction rules construct a flow graph from an abstract syntax graph by
introducing elements (nodes and edges) present in the flow graph meta-model (Figure 3.5).
There are many possible approaches for this flow graph construction process. The approach
we use for flow graph construction and our flow graph meta-model were both developed
during an extensive case study on flow graph construction for the Java programming lan-
guage.

We first present our flow graph construction approach. Next we illustrate our approach
by presenting a large set of example flow graph construction rules for the Java programming
language.

4.1 Flow graph construction approach

This section presents our flow graph construction approach. Our approach consist of a
number of design choices we have made (during our case study on flow graph construction
for Java). We review these choices briefly.

Our approach mainly consist of the following principles:

1. For each type of abstract syntax element, we design one (preferred) or several flow
graph construction rules that introduce the necessary control flow elements;

2. Our flow graph construction process operates top-down, starting from the root-node
of the flow graph under construction and ending at the level of primitive statements;

3. For each flow element in the graph, we create its entry and exit (with respect to control
flow). Initially, we provide auxiliary flow connectors for these entries and exits;

4. We remove superfluous flow connectors while the flow graph is being constructed;

5. We resolve abrupt completion control flow using a bottom-up resolution process.

We explain these principles in more detail below.
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4.1.1 One construction rule per programming construct

Were possible, we design one rule per programming construct. This means that for each con-
struct in a programming language, we have a separate production rule that introduces control
flow elements to an abstract syntax graph that features that particular type of statement.

We believe that adhering to this standard results in readable and understandable flow
graph construction rules, as these rules come close to being a specification of the control
flow semantics of a particular statement type (for real control flow specifications, we refer
to Chapter 5). Most of the example construction rules for Java (Section 4.2) adhere to this
principle and are considered by us to be quite intuitive. In some cases though, we have to
break from this principle. An example of this are abrupt completion resolution rules (see
Section 4.1.4).

4.1.2 Top-down construction process

Flow graph construction is, in our case, a top-down process. By top-down we mean that we
start at an abstract syntax node that is defined to be the root of the flow graph we are going to
construct. We start flow graph construction at this root node and continue along its abstract
syntax children. More concrete, we start by marking the root node as eligible for flow graph
construction. The associated flow graph construction rule for the root node removes the
marker from this syntax node and marks all its abstract syntax child nodes as eligible. We
represent this marking by introducing or removing a self-edge labeled build to a FlowElement.
Flow graph construction rules for children of the root node match on this build to be present.
This way, the application of the flow graph construction rules is ordered top-down.

Figure 4.1 shows how in a flow graph construction rule the build marker is passed on. We
have a parent syntax node, for which the marker is removed, and n child nodes, for which
markers are introduced.

Figure 4.1: The top-down flow graph construction process illustrated.

4.1.3 Flow connectors

As we have seen in the flow graph meta-model (Figure 3.5), all flow elements feature an
explicit entry and exit (with respect to control flow). These are represented by two auxiliary
edges, labeled entry and exit.
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The control flow of a parent flow element is, among others, defined as the execution of
its flow element children. A result of using a top-down approach is that when a parent flow
element is under construction, the control flow of its children has not yet been determined.
This fact introduces a problem: the parent flow element production rule introduces control
flow that states that one of its child flow elements will be executed upon executing the parent.
But, at that time in the construction process, it is unknown where the execution of the child
flow element starts (i.e. its entry is unknown).

Our solution is to provide control flow connector nodes as the (initial) targets for the
entry and exit edges of each statement. Parent flow elements can connect their control flow
elements to these connector nodes and the child flow elements introduce their internal control
flow, starting and ending at their own flow connectors.

During flow graph construction, we introduce entries and exits to each flow element
in the flow graph under construction. We connect these edges to auxiliary control flow
connectors, represented as nodes labeled FlowConnector. Figure 4.4 shows the generic flow
graph construction rule for introducing these elements.

If we were to preserve for every abstract syntax node in a completed flow graph the entry
and exit flow connector node, the flow graphs would be somewhat crowded and as a result
less readable. Also, in most cases, control flow edges between these flow connectors do not
represent actual control flow transfer. In a simulation run of the flow graph these edges
would simply be skipped.

We therefore introduce entry and exit flow connectors uniformly to all elements, but we
remove superfluous flow connectors during flow graph construction. These flow connectors
are merged (see Chapter 2) with other flow connectors or abstract syntax elements, thereby
preserving all control flow elements that are connected to the redundant connectors. This
merging is performed when the internal control flow structure is known, i.e. when the
construction rule associated with the type of flow element is applied.

There are four scenarios in which we consider a FlowConnector obsolete and decide to
merge it:

1. A parent flow element’s execution may be defined to start at one of it child elements.
In this case, the entry flow connector node is merged with the entry node of the child.

2. A flow element may feature no children (a primitive statement) and define execution
to start at the syntax node itself. In this case, the entry flow connector node is merged
with the syntax node.

3. A flow element may feature no control flow and therefore can be skipped. In this case,
the entry flow connector of the flow element is merged with the exit flow connector.

4. A child flow element may define its exit to be the exit of the parent node. In this case,
the exit flow connector of the flow element child is merged with the exit of the parent.

We present an illustration for each of the merging processes in Figure 4.2 (remember, a
creator with a label = is a merging operation). When merging a node with another node, all
edges of the one node, including self-edges, are moved to the other node. The self-edges
of the FlowConnector must not be moved to the target node, therefore we delete those edges
before the merging.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4

Figure 4.2: The different merging operations on flow connectors, corresponding to the four
scenarios.

4.1.4 Abrupt completion resolution

Any programming language can feature specific statements that introduce control flow that
is not defined with respect to the statement itself or one of its sub statements, but that
depends on the context the statement is contained in. The transfer of control they introduce
is not a sequential transfer, but a jump to some other statement within the context, thereby
terminating prematurely one or, possibly, more statements that enclose this jump statement.
We call these statements abrupt completion statements, as they abruptly complete the execution
of one or more enclosing statements.

As these statements disrupt the sequential control flow, flow graph construction rules for
these statements are somewhat more involved. The main issue here is that the construction
rules have to examine the flow graph context of the abrupt completion statement in order
to determine the target statement of the control flow jump that is to be performed. What
types of flow elements are eligible to be targets depends on the type of abrupt completion
statement.

We refer to the process of finding the correct target flow element for an abrupt completion
statement and introducing the abrupt completion control flow to this statement as abrupt
completion resolution. The abrupt completion resolution process can be approached in many
different ways, as we learned during the case study. As we mentioned, we choose to use a
bottom-up resolution process.

When an abrupt completion statement is marked for construction, a corresponding flow
graph construction rule introduces abrupt completion flow. As in most cases the target flow
element is not immediately known, we use a stepwise resolution process: we propagate
an abrupt completion marker element upward in the syntax tree (hence bottom-up) until
the target flow element is reached. Next we apply another flow graph construction rule
that corresponds both to the type of abrupt completion statement and the type of the target
flow element. This rule connects the introduced abrupt completion control flow to the flow
element to which control should be transferred.

When the target flow element is known at the moment we introduce abrupt completion
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control flow, we immediately connect the abrupt completion control flow to the correct flow
element.

In some cases, after control is transferred to a flow element because of some abrupt
completion statement, after execution of the flow element abrupt completion is reintroduced
because of the same abrupt completion statement and another control flow jump is per-
formed. We refer to this as abrupt completion resumption (represented by resumeAbort edges).

In our flow graph meta-model (Figure 3.5) we represent abrupt completion control flow
with an auxiliary node labeled Abort. As explained in Section 3.2.1, this Abort has an abrupt
completion statement as its reason. Abrupt completion starts at the flow element that features
an abort edge to this Abort and next the control is transferred to the flow element to which the
outgoing flow edge leads. Thus, abrupt completion resolution in flow graphs is finding the
correct target node for the Abort’s flow edge.

We mentioned that we propagate an abrupt completion marker bottom-up. This marker
is an edge labeled resolving that is propagated from child to parent syntax nodes, starting at
the origin of the abrupt completion control flow. The propagation of the edge ends when
an enclosing statement is reached that terminated prematurely for this reason (i.e. this type
of abrupt completion statement). An associated construction rule introduces the flow edge
to the flow element to which control should be transferred upon abrupt completion of this
enclosing statement and removes the auxiliary resolving edge.

As mentioned, in some cases we can immediately resolve abrupt completion. We then
directly connect the newly created Abort with a flow edge to the target flow element.

In other cases, we resume abrupt completion. If this is the case, we create a new Abort
with the same reason and start a new resolution process from thereon.

4.1.5 Flow graph construction auxiliaries meta-model

We have two elements that are not present in a completed flow graph, but that we need
during its construction: the build edge, used for regulating the top-down construction order,
and the resolving edge, introduced for abrupt completion resolution. Figure 4.3 shows the
type-graph for these temporary edges.

A FlowElement can have at most one build self-edge, but can have any number of incoming
resolving edges. The source of a resolving edge always is an Abort.

Figure 4.3: The meta-model of auxiliary edges used for flow graph construction.
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4.1.6 Auxiliary production rules for flow graph construction

This section presents several auxiliary rules for flow graph construction that are not specific
to a particular programming language, but can be used in flow graph construction systems
of any (supported) language.

We have already explained the purpose of the construction rule that introduces entry and
exit edges and their initial targets, the FlowConnectors (Figure 4.4).

Figure 4.4: Rule for adding entries and exits to all flow elements.

For conditional branching flow, we often specify that a branch is followed if some condi-
tion evaluates to true or false. We assume primitive values to be implicitly present in a flow
graph, but due to the fact that the  tool [14] does not (yet) support this, they have to
be created explicitly by a graph production rule (which is not shown here).

The top-down flow graph construction process has to start at the root-node of a flow
graph under construction (for example a MethodBody in Java). The rule in Figure 4.5 initi-
ates the construction process by introducing a build edge to the root-node (which we label
ContextNode). This rule has the highest application priority.

Figure 4.5: Flow graph construction rule for initiating the top-down flow graph construction.

Our abrupt completion resolution process operates bottom-up by propagating the resolv-
ing edge from child to parent nodes. Figure 4.6 shows the construction rule that propagates
this edge. This rule has the lowest application priority (see Chapter 2), to enable abrupt
completion resolution rules to (possibly) match before the propagation is resumed.

Figure 4.6: Flow graph construction rule for propagating abrupt completion bottom-up.
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4.2 Flow graph construction rules for Java

As an example of our flow graph meta-model and our approach for designing flow graph
construction rules, we have worked out a significant portion of the statements that feature
the Java programming language [19].

The statements we have considered are method bodies, blocks of statements, the while,
do and for loop statements, the if and switch statement, assignments and several types of
expressions, the abrupt completion statements break, continue, return, throw and the try,
catch, finally exception handling statements.

For this we have used an abstract graph representation of a partial  Java grammar.
In Appendix A, this adapted grammar is given. The changes we made to the original Java
grammar in the language specification [6] are described in Section 3.1.

In the following sections we present the flow graph construction rules for Java. All
construction rules presented below were actually generated by our flow graph meta-rules,
which are treated in Chapter 6, from the control flow specifications for Java we will present
in Section 5.2.

4.2.1 Method bodies

Method declarations in Java (see [6]) consist of a method signature and a method body. A
method body consist of a block of ordered statements. After execution of the method body,
control is transferred back to the calling statement (i.e. a method invocation) of the method.

The MethodBody node is the start and end point of the flow of control in our flow graphs.
For each MethodBody in an , a flow graph is constructed. The MethodBody node is the start
point of the top-down flow graph construction process.

The flow graph construction rule of the MethodBody (Figure 4.7) introduces a build edge to
the method’s body. From thereon, this build edge is passed on to sub statements. The entry of
the MethodBody is merged with the entry of the body Block and this Block shares its exit with
the MethodBody. This exit is the end point in the flow graph.

When merging a FlowConnector with a FlowElement the edges of the FlowConnector node
(i.e. its label FlowConnector, its entry and its exit) should be removed (or end up being self-
edges of the FlowElement, see Chapter 2). All rules that merge FlowConnectors feature this
eraser edge.

Note that although the Block in this rule has two entry edges, these edges will be matched
onto the single entry edge of the Block in a flow graph under construction, because the
matching can be non-injective.

4.2.2 Blocks of statements

Like most programming languages, Java features sequentially ordered blocks of statements
(see [6] p. 361). These statements are executed in order first to last. For convenience, we
repeat the relevant  rules from our Java grammar in Appendix A.

Block ::= BlockFull | BlockEmpty

BlockFull ::= <LCUR> orderFirst:BlockStatements <RCUR>

BlockEmpty ::= <LCUR> <RCUR>

BlockStatements ::= BlockStatementsNext | BlockStatementsLast
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Figure 4.7: Flow graph construction rule for method-bodies.

BlockStatementsNext ::= Statement orderNext:BlockStatements

BlockStatementLast ::= Statement

Ordered lists of statements are handled by four rules (Figure 4.8). The statement ordered
first in a (non-empty) statement block receives a build edge from the block (Figure 4.8(a)).
The entry of the block is defined as the entry of the first statement in the block, and the exit
of the statements in a block is defined as the exit of the block.

Figure 4.8(b) shows the rule for a block of statements that is empty, i.e. it does not contain
sub statements. If this is the case, the block is simply skipped (recall Figure 4.2(c)).

A block can contain any number of statements. The recursive  rule is represented
in the abstract syntax as a number of BlockStatements nodes. A BlockStatements node has
a Statement child, the actual statement, and either another BlockStatements node (if it is a
BlockStatementsNext), or none (BlockStatementsLast).

We propagate the flow graph construction indicator (the build edge) among these Block-
Statements, by matching the ordering of statements represented by the orderNext edge (Figure
4.8(c)).

From the exit of the statement we transfer control to the next statement by introducing a
flow edge to the entry of the BlockStatements ordered next, which will be the next Statement,
due to the merging of the entry of the BlockStatements node with the entry of the Statement
node.

In both the BlockStatementsNextRule and the BlockStatementsLastRule (Figure 4.8(d)) we
merge the exit of the child statement or BlockStatements node with the parent BlockStatements
node. The exit of the statement ordered last will therefore be the same node as the exit of the
Block.

4.2.3 Conditional statements

Java features two types of conditional statements: the if and the switch. The if-statement
introduces two branches on the value of a Boolean condition, the switch-statement can have
any number of branches on the value of a condition of type char, short, int, byte or an enum
type.

If-statement

The if-statement in Java (see [6] p. 372) is the common conditional branching statement. The
if-statement features a then-part, which is executed when the condition evaluates to true,
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(a) Block - first statement (b) Block - empty

(c) Block-statements - statement ordered next

(d) Block-statements - statement ordered last

Figure 4.8: Flow graph construction rules for blocks of statements.

and an optional else-part, which is executed when the condition evaluates to false. If the
if-statement lacks a then-part, and the condition does not hold, the if-statement is finished.

Figure 4.9(a) shows the flow graph construction rule for an if-statement without an else-
part. As one would expect, the rule introduces two Branches: one branch, taken when the
condition evaluates to true, leads to the then-part Statement. The other leads to the exit of
the if-statement, and is taken when the condition does not hold.

Figure 4.9(b) shows the rule for an if-statement with an else-part, which is executed when
the condition does not hold.

After execution of the thenPart or the elsePart of an if-statement, the control flow leads to
the exit of the if-statement.

Switch-statement

The switch-statement in Java (see [6] p. 377) introduces any number of branches on literal
values of some of the primitive types to several different statements. The switch-statement
can be seen as a table of labels (the cases) and associated statements. The case to be chosen is
determined by the condition expression of the switch-statement. Cases feature fall-through in
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(a) If-then

(b) If-then-else

Figure 4.9: Flow graph construction rules for if-statement with or without else-part.

Java, this means that after execution of the statements associated with one case, the statements
of the case ordered next will be executed. A switch-statement can be terminated prematurely
by a break-statement (typically used to prevent this fall-through).

The production rules of the switch-statement are shown in Figure 4.11. Both the Switch-
Block and the SwitchBlockStatementGroups nodes are containers in the syntax representation
that have no actual control flow semantics.

The  structure of the switch-block-statements-groups is similar to sequentially ordered
blocks of statements (Section 4.2.2). Again do the orderFirst and orderNext edges indicate the
ordering of switch-block-statements-groups. Because of the fall-through, the groups are
connected with flow edges in this order (Figure 4.11(b)). The exit of the last group is defined
as the exit of the switch-statement (Figure 4.11(c)).
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The production rule in Figure 4.2.3 shows that upon entering a switch-statement, the
expression is first executed, next the flow is transferred to the SwitchStatement node.

The branching behavior of the switch-statement is represented by a Branch for every case
label present. The rule in Figure 4.12(a) adds a branch from the SwitchStatement decision
node, on the SwitchLabel’s value, to the entry of the Statement associated with the case label.
As can be concluded when considering our flow graph meta-model (Figure 3.5), we have a
special representation for the default case (Figure 4.12(b)).

Figure 4.10: Flow graph construction rule for the switch-statement.

4.2.4 Loop statements

Java features three kinds of loop-statements: the while, do and for. The while-statement and
do-statement are minor variations of eachother. The for-statement has eight variations, all
having their own control flow semantics.

While-statement

The while-statement in Java (see [6] p. 380) executes a statement (the body) repeatedly as
long as the loop condition holds. The body can ofcourse be a block of statements. The loop
condition is a boolean expression.

Control flow enters the while-statement (Figure 4.13) at the loop condition Expression. At
the WhileStatement node, a decision is made. One Branch enters the body of the while-statement
and the other proceeds directly to the exit of the while-statement. The former branch is taken
when the loop-condition evaluates to true and the latter branch is taken when the condition
evaluates to false. After execution of the body Statement, the loop condition Expression is
evaluated again (i.e. a flow edge is introduced from the exit of the Statement to the entry of the
Expression).

Do-statement

The do-statement in Java (see [6] p. 382) operates identical to the while-statement, except that
the control flow enters the do-statement at the body Statement (Figure 4.14). After execution
of the body, control is transferred to the loop condition. The do-statement thus performs at
least one iteration of its body.



34 Flow Graph Construction Rules

(a) Switch-block

(b) Switch-block-statement-groups - ordered next

(c) Switch-block-statement-groups - ordered last

(d) Switch-block-statement-group

Figure 4.11: Flow graph construction rules for switch-block-statements-groups.

For-statement

The for-statement in Java (see [6] p. 384) has eight variants, depending on the presence or
absence of the loop counter initialization section, the loop condition and the loop counter
update section. As follows from Section 3.1, our abstract syntax representation enumerates
all variants of the for-statement explicitly:
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(a) Switch-label (b) Switch-label - default

Figure 4.12: Flow graph construction rules for switch-labels.

Figure 4.13: Flow graph construction rule for while-statements.

1. ForEver: for-statement without init-, condition- or update-part (Figure 4.15);

2. ForWithInit: for-statement with init-part only (not shown);

3. ForWithInitCondition: for-statement with init- and condition-part (not shown);

4. ForWithInitConditionUpdate: for-statement with init-, condition- and update-part
(Figure 4.16);

5. ForWithInitUpdate: for-statement with init- and update-part (not shown);

6. ForWithCondition: for-statement with condition-part only (not shown);

7. ForWithConditionUpdate: for-statement with condition and update-part (not shown);
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Figure 4.14: Flow graph construction rule for do-statements.

8. ForWithUpdate: for-statement with update-part only (Figure 4.17).

The init-part of a for-statement performs initialization of the loop counter(s). The
condition-part is the loop-condition and equivalent to the condition in the while-statement
and do-statement. The update-part updates the loop counter(s) after each iteration of the
body of the for-statement.

The ForEver variant (Figure 4.15) iterates its body continuously, i.e. forever. This is very
similar to a while-statement that features the Boolean literal true as loop condition, although
in the case of a while(true) the literal expression is evaluated each iteration and the Branch
on true is followed each iteration.

Figure 4.15: Flow graph construction rule for the for-statement without init-, condition- or
update-part.

The ForWithInit variant (rule omitted here)performs some initialization of loop counters
and then starts to iterate its body continuously, i.e. forever.

The ForWithInitCondition variant (rule omitted here)performs some initialization of loop
counters, evaluates its loop condition and executes its body if its condition evaluated to true.
Like the while-statement, the expression is evaluated again after each iteration of the body
to decide whether to iterate the body again.

The ForWithInitConditionUpdate variant (Figure 4.16) is the “full” version of the for-statement.
Loop counters are initialized before the first evaluation of the condition and after each itera-
tion the counters are updated before re-evaluating the condition.
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Figure 4.16: Flow graph construction rule for the for-statement with init-, condition- and
update-part.

The ForWithInitUpdate variant (rule omitted here)performs loop counter initialization and
then iterates forever, but updates the counters after each iteration of the body.

The ForWithCondition variant (rule omitted here)is equivalent to a while-statement.
The ForWithConditionUpdate variant (rule omitted here)evaluates the loop condition before

each iteration and updates the loop counters after each iteration.
The ForWithUpdate variant (Figure 4.17) executes the body forever but updates the loop

counters after each iteration of the body.

Figure 4.17: Flow graph construction rule for the for-statement with update-part.

4.2.5 Primitive statements and expressions

Java features many types of primitive statements and expressions. Due to space considera-
tions, we treat a limited number of them to illustrate how expressions are treated with respect
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to flow graph construction. The (statement) expression types we treat here are:

• Empty statements;

• Assignments;

• Local variable declarations;

• Literals;

• Identifiers;

• Binary operators;

• Method invocations.

Empty statement

The empty-statement ; in Java (see [6] p. 370) obviously is the most trivial statement of Java,
as it does nothing and is simply skipped. Figure 4.18 shows the rule that merges the entry of
the EmptyStatement with its exit.

Figure 4.18: Flow graph construction rule for the empty-statement.

Assignment

The assignment (expression) statement in Java (see [6] p. 512) stores a value to which an
expression evaluates in one or several declared variables. This is possibly the most important
statement for any programming language.

Figure 4.19 shows the production rule for assignments. The AssignmentExpression that
results in the value that is to be stored in the variable is first evaluated, next the assignment
to the variable is performed. As the AssignmentExpression can be another Assignment a value
can be stored in several variables, which are thus evaluated right to left.

The left hand side is an ExpressionName, but as we have not elaborated field selectors (i.e.
variable.field) this is in our case always a primitive Identifier.

Local variable declaration

Within method bodies, variables can be declared that are local to the method (or some scope
within the method). In Java, several local variables of the same type can be declared in one
statement (see [6] p. 363).
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Figure 4.19: Flow graph construction rule for the assignment-statement.

Figure 4.20 shows our construction rule for a LocalVariableDeclarationStatement. Control is
first transferred to the VariableDeclarators and next the declaration statement itself is executed.

Figure 4.20: Flow graph construction rule for declarations of local variables.

As one can declare several local variables in one variable declaration statement, the
VariableDeclarators are represented in an ordered list in which the declarators are evaluated
left to right. The construction rules are therefore very similar to any other ordered list (i.e.
with orderFirst and orderNext) like BlockStatements (see Section 4.2.2) and are omitted here.

An indiviual VariableDeclarator can feature an initialization expression or not. If the Vari-
ableDeclarator features an init expression (Figure 4.21(a)) this expression is evaluated first and
next control is transferred to the VariableDeclarator. The construction rule for a VariableDeclara-
tor without init is shown in Figure 4.21(b).

Literal

A literal value in Java can be a value of any primitive type or null. Figure 4.2.5 shows our
construction rule for a Literal.

Identifier

An identifier in Java can refer to a declared variable (in can also be for instance a label for
a labeled statement). In our grammar (Appendix A) such an Identifier is an ExpressionName.
Figure 4.2.5 shows the construction rules for these identifiers.
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(a) Variable declarator - init (b) Variable declarator - no init

Figure 4.21: Flow graph construction rules for variable declarators with or withour init-
expressions.

Figure 4.22: Flow graph construction rule for a literal value.

Binary operator

We treat one example binary operator expression type: the relational operator (i.e. >, >=, <,
<=). Figure 4.2.5 shows the construction rule for the RelationalOperator. First the left side and
right side of the operator are evaluated, next control is transferred to the RelationalExpression.
Other binary operators are treated in an equivalent manner, for example the AdditiveOperator
which features Figure 3.6.

Method invocation

Method invocations in Java (see [6] p. 440) are used to invoke (static or non-static) methods.
The method to invoke is determined at run-time through some elaborate method name

Figure 4.23: Flow graph construction rule for an identifier.
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Figure 4.24: Flow graph construction rule for a relational expression.

resolution procedure.
MethodInvocations come in two variants: with or without arguments. These arguments

are expressions that result in values (or references to objects) that are passed to the invoked
method. These arguments are evaluated before the invocation process begins.

Figure 4.25 shows the construction rules for MethodInvocations with or without arguments.
If a MethodInvocation features arguments, control is transferred first to the ArgumentList. Next
the MethodName is evaluated (which we have not elaborated) and the actual invocation is
executed (which method exactly to invoke is a run-time decision). A fter control is transferred
back to this calling statement, the method invocation is completed.

The ArgumentList in a method invocation is a typically ordered list in which the arguments
are evaluated left to right and each argument is an Expression. The construction rules
are therefore very similar to any other ordered list (i.e. with orderFirst and orderNext) like
BlockStatements (see Section 4.2.2) and are omitted here.

4.2.6 Abrupt completion statements

Now that we have treated how some of the common Java statements are handled by flow
graph construction rules, we look at the abrupt completion statements that feature Java.
These statements we have studied extensively in the case study we have performed on flow
graph construction for Java.

Break-statement

The break-statement in Java (see [6] p. 388) is a statement that introduces abrupt completion:
it aborts the innermost enclosing loop (for, while, do) or switch statement, in other words,
it will transfer control to the statement that is sequentially ordered next to this enclosing
statement. When its used in a switch statement, it prevents the fall-through into the next
case.

Like most abrupt completion statements, the production rule for the break-statement
without label introduces an auxiliary abrupt completion (Abort) node, with an edge labeled
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(a) Method invocation - arguments

(b) Method invocation - no arguments

Figure 4.25: Flow graph construction rules for method-invocations.

resolving that is propagated upwards, until the first enclosing loop or switch-statement is
reached (Figure 4.26(a)).

When the propagated resolving edge reaches one of the abrupt completion targets of the
break-statement, the abrupt completion is resolved by removing the resolving and introducing
a flow edge to the element to which control is transferred by the abrupt completion.

Figure 4.26(b) shows the rule that resolves abrupt completion when a while-statement is
the target of a break-statement. This while-statement is terminated by the break-statement.
Figure 4.26(c) shows the rule that resolves abrupt completion when a do-statement is the
target. This do-statement is also terminated by the break-statement. Figure 4.26(d) shows
the rule that resolves abrupt completion when a for-statement is targetted. Again, this for-
statement is terminated by the break-statement. Figure 4.26(e) shows the rule that resolves
abrupt completion when a switch-statement is targetted. Like the other break-targets, this
switch-statement is terminated by the break-statement.

Continue-statement

The continue-statement in Java (see [6] p. 390) is another statement that introduces abrupt
completion. The continue-statement terminates the current iteration and continues the next
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(a) Break-statement (b) Break-statement - abort WhileState-
ment

(c) Break-statement - abort DoState-
ment

(d) Break-statement - abort ForState-
ment

(e) Break-statement - abort Switch-
Statement

Figure 4.26: Flow graph construction rules for the break-statement, introducing abrupt
completion, and for resolving abrupt completion because of a break-statement.

iteration of the of the loop-statement it targets.
The construction rule in Figure 4.27(a) introduces abrupt completion because of a continue-

statement. Figure 4.27(b) and 4.27(c) show how the current iterations of a while-statement
or do-statement are skipped (control is transferred to the loop-condition). When we apply
the continue-statement to a for-loop, the control flow semantics depend on the presence of
a loop-condition and loop-counter update-part. If the ForUpdate part is present, control is
transferred to this section (Figure 4.27(e)). Else if the condition is present, control is trans-
ferred to this loop-condition (Figure 4.27(d)). Else, the body of the for-statement is simply
re-entered (Figure 4.27(f)).

Break-statement with label

The break-statement can optionally feature a label that refers to another (labeled) statement
that encloses the break-statement directly or indirectly, this statement can be any type of
statement that features sub statements (e.g. a WhileStatement but even a Block is possible). The
labeled statement is the abrupt completion target of the break-statement with the identical
label and is terminated by it.
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(a) Continue-statement

(b) Continue-statement - abort WhileStatement (c) Continue-statement - abort DoState-
ment

(d) Continue-statement - abort ForStatement with condition

(e) Continue-statement - abort ForState-
ment with condition and update

(f) Continue-statement - abort ForStatement without
condition and update

Figure 4.27: Flow graph construction rules for the continue-statement, introducing abrupt
completion, and for resolving abrupt completion because of a continue-statement.

The production rule for the break-statement with label is shown in Figure 4.28(a)). The
resolving edge is deleted and replaced by a flow edge, leading to the exit, when an identically
labeled enclosing flow element has been found (Figure 4.28(b)).
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(a) Break-statement with label

(b) Break-statement with label - abort labeled statement

Figure 4.28: Flow graph construction rules for the break-statement with label, introducing
abrupt completion, and for resolving abrupt completion because of a break-statement with
label.

Continue-statement with label

The continue-statement can also optionally feature a label that refers to another (labeled)
loop-statement that encloses the continue-statement directly or indirectly. The labeled loop-
statement’s current iteration is terminated by the continue-statement with an identical label.

The production rule for the continue-statement with label is shown in Figure 4.29(a)).
The resolving edge is deleted and replaced by a flow edge, leading to the exit of the body of
an identically labeled enclosing loop statement (Figure 4.29(b)).

Return-statement

The return-statement in Java (see [6] p. 392) introduces abrupt completion: it terminates the
execution of the method it is contained in.

The return-statements comes in two variants (with or without return-value), therefore
two different construction rules are used. Figure 4.30(a) shows the construction rule for
the ReturnStatement with value. First the returnValue expression is evaluated, next abrupt
completion is introduced. Figure 4.30(b) shows the construction rule for ReturnStatement
without value.

The abrupt completion of both variants of the return-statement is resolved by transferring
control to the exit of the MethodBody context node (Figure 4.30(c)).

Throw-statement

The throw-statement in Java (see [6] p. 393) introduces abrupt completion by throwing an
exception that causes control to be transferred through several enclosing statements and
possible even several method invocations on the call-stack until it is caught by an enclosing
try-statement that features a catch-clauses for a corresponding exception type.
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(a) Continue-statement with label

(b) Continue-statement with label - abort labeled state-
ment

Figure 4.29: Flow graph construction rules for the continue-statement with label, introducing
abrupt completion, and for resolving abrupt completion because of a continue-statement with
label.

The throw-statement has an expression that results in its exception object, that should be
evaluated first. Besides this, again an abrupt completion node is introduced (Figure 4.31(a)).
When the throw-statement terminates the execution of the method it is contained in (i.e. is
not enclosed by a try-statement), the rule in Figure 4.31(b) applies.

4.2.7 Exception-handling statements

The statement in Java that performs exception handling is called the try-statement (see [6] p.
396). The try-statement comes in three variants: try-finally, try-catch and try-catch-finally.

TryCatch

The try-catch-statement features a block of statements that are executed upon execution of
the try-catch-statement. It also features one or more catch clauses with associated blocks
of statements, which are not executed when the body of the try-catch-statement completes
normally.

However, if an exception occurs in the body of the try-catch statement, control is trans-
ferred to the catch-clauses. These clauses are considered in order from first to last. When
one of the clauses matches the (run-time) type of the thrown exception, control is transferred
to the block of statements associated to this clause. If (at run-time) the exception is not
caught by any of the clauses, the abrupt completion because of this exception is resumed.
After execution of the body or a block of statements associated with one of the catch-clauses,
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(a) Return-statement with value

(b) Return-statement without value (c) Return-statement - abort method-body

Figure 4.30: Flow graph construction rules for the return-statement, introducing abrupt
completion, and for resolving abrupt completion because of a return-statement.

(a) Throw-statement (b) Throw-statement - abort method-body

Figure 4.31: Flow graph construction rules for the throw-statement, introducing abrupt
completion, and for resolving abrupt completion because of a return-statement.
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the try-statement is completed normally (unless, of course, the body of the catch-clause
completed abruptly, in that case the try-statement completes abruptly).

The construction rule for the try-catch statement is presented in Figure 4.32.

Figure 4.32: Flow graph construction rule for the try-catch-statement.

Figure 4.33 shows our rule for resolving abrupt completion because of a throw-statement
in the body of a try-catch statement. In this figure we can see that control is first transferred
to the Catches (thereby, perhaps only temporarily, resolving the abrupt completion). If, at
run-time, none of the clauses match, abrupt completion is resumed. This is represented
by another Abort node with the same reason, namely the throw-statement that threw the
exception.

Figure 4.33: Flow graph construction rule for resolving throw-statements for the try-catch-
statement.

TryFinally

The try-finally-statement features a finally-statement that consists of a block of statements
that are guaranteed to be executed. Whether the body of the try-finally-statement completes
normally or abruptly, control is transferred to this finally-statement next.

The flow graph construction rule in Figure 4.34 shows that after execution of the body of
a try-finally statement, control is transferred to the finally-statement. After execution of this
statement, the try-statement completes like the finally-statement completed.
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Figure 4.34: Flow graph construction rule for the try-finally-statement.

When the body of the try-finally statement completes abruptly because of some abrupt
completion statement, the control is first transferred to the finally-statement. From the
exit of the finally-statement, a new abrupt completion node is introduced that will abort
some statement enclosing the finally-statement, because of the same abrupt completion
statement. We say that abrupt completion has been resumed. This holds for all four types of
abrupt completion in Java: break, continue, return and throw. Figure 4.35 shows the abrupt
completion resolution and resumption rule for a try-finally-statement that features a break-
statement. The other three abrupt completion statement types are treated in an equivalent
manner, therefore we omit the corresponding flow graph construction rules.

Figure 4.35: Flow graph construction rule for resolving and resuming abrupt completion of
the break-statement for the try-finally-statement.

TryCatchFinally

As follows from its name, the try-catch-finally-statement combines the features of both the
try-catch-statement as the try-finally-statement.

Figure 4.36 shows our flow graph construction rule for the try-catch-finally statement.
As we can see in this figure, after execution of the body control is transferred to the finally-
statement, and after execution of a block of statements associated with one of the catch-



50 Flow Graph Construction Rules

clauses control is also transferred to the finally-statement. When following the normal flow
of control, the catch-clauses are not reached.

Figure 4.36: Flow graph construction rule for the try-catch-finally-statement.

When the body of the try-catch-finally statement completes abruptly because of some
abrupt completion statement other than a throw-statement, control is first transferred to the
finally-statement. From the exit of the finally-statement, a new abrupt completion node is
introduced that will terminate some statement enclosing the finally-statement, because of the
same abrupt completion statement. We again say that abrupt completion has been resumed.
This holds for three of the four types of abrupt completion in Java: break (Figure 4.37(a)),
continue and return . As the rules of resolving and resuming continue- and return-statements
are equivalent to the rule for the break-statement, these rules have been omitted here.

A throw-statement present in the body of the try-catch-finally-statement is treated dif-
ferently, because of the presence of catch-clauses. Control is first transferred to the Catches
section. Whether or not the thrown exception is caught by one of these clauses, control is
transferred to the finally-statement next. Depending on whether the exception was caught
by a clause (which is a run-time decision), the exception travels further (abrupt completion
resumption) or not.

Catch-clauses

The construction rule for the catch-clauses is shown in Figure 4.38. We represent the run-time
decision whether a thrown exception matches one of the clauses of the catch-statement by a
Boolean decision, for which the condition is the catch-clause. When the condition (i.e. the
run-time instanceof check performed at the clause) evaluates to true, the block of statements
associated with the clause is executed, else the exception is tested on the next clause. If the
last clause (CatchClausesLast) is not chosen, the false-branch leads to the exit of the catch-
block, from which the exception will travel further (to another catch-block, finally-statement
or method-exit). If the one of the clauses is executed, the exception will not have to travel
further, but a finally-statement might have to be executed.

The Catches part in a try-statement is a typically ordered list of clauses that are examined
first to last when handling a thrown exception. The construction rules are therefore very
similar to any other ordered list (i.e. with orderFirst and orderNext) like BlockStatements (see
Section 4.2.2) and are omitted here.
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(a) Try-catch-finally-statement - abort break

(b) Try-catch-finally-statement - abort throw

Figure 4.37: Flow graph construction rules for resolving and resuming abrupt completion
for the try-catch-finally-statement.

Figure 4.38: Flow graph construction rules for catch-clauses.
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1 public s t a t i c i n t indexOf ( i n t [ ] l i s t , i n t x ) {
2 i n t i = 0 ;
3 while ( i < l i s t . length ) {
4 i f ( l i s t [ i ] == x ) {
5 / / f ound x , b r e a k t h e w h i l e l o o p
6 break ;
7 }

8 i = i + 1 ;
9 }

10 i f ( i < l i s t . length )
11 return i ;
12 e lse
13 return −1;
14 }

Listing 4.1: Example of an linear array search in Java.

Finally-statement

The finally-statement features a block of statements that is executed upon execution of
the finally-statement. The associated flow graph construction rule merges the entry of the
FinallyStatement with the entry of the Block and shares their exits.

4.2.8 Example of Java flow graph construction

As a conclusion of this chapter on flow graph construction, we treat a fairly large Java
example. For an example Java code listing, we show how a corresponding flow graph is
constructed based on the abstract syntax graph representation of the source code. The code
listing is shown in Listing 4.1. The indexOf()method performs a linear search in array list
to find a given integer element x and returns the position of x in this array. If x is not found
in the array, the value -1 is returned.

Although there obviously is a more elegant version of the depicted algorithm, this algo-
rithm is interesting in this form because it features both a break and two return statements.
The flow graph construction process will therefore feature three instances of abrupt comple-
tion resolution.

The translation of the source code in Listing 4.1 to the abstract syntax graph depicted
in Figure 4.39 is straightforward, although there are some syntax elements present in this
graph that have not been treated in the previous sections. A new syntax element is the
EqualityExpression, this is a binary expression that checks the left and right side on (in)equality)
(i.e. == and !=). Another new syntax element is the FieldAccess (list.length in the code
listing), consisting of a reference type on which a field (Identifier) is accessed. One more new
syntax element is the ArrayAccess (list[i] in the code listing), consisting of a reference to an
array and an Expression that determines the (integer) index in the array.

The  in Figure 4.39 becomes the start graph of the flow graph construction system
for Java, which consists of a set of (84) Java flow graph construction rules. These rules are
applied in a linear fashion, resulting in a (partial) rule application  (see Section 2.2.2).
The partial rule application  for this example is shown in Figure 4.40. The flow graph
construction process is initiated by creating a build self-edge for the ContextNode, the method
body. Next for each flow element we uniformly add an entry and exit FlowConnector (part of
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Figure 4.39: Abstract syntax graph of Listing 4.1.

this section of the  has been left out). Now the rules for the individual FlowElements apply,
starting with the MethodBodyRule.

It is interesting to see that after the BreakStatementRule or ReturnStatementWithValueRule
have been applied, we have several sequential applications of the AbortPropagationRule. This
means that the abrupt completion of the break or return is being resolved, and the correct
target is searched in a bottom-up way. When the correct abrupt completion target has been
found, the WhileStatementAbortBreakStatementWithoutLabelRule or the MethodBodyAbortReturn-
StatementRule applies to resolve the abrupt completion.
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The newly introduced syntax elements EqualityExpression and FieldAccess have similar
control flow to the RelationalExpression and the ArrayAccess has similar control flow to Assign-
ments.

The resulting completed flow graph is shown in Figure 4.41. To increase the readability of
this large graph, some sacrifices had to be made. The auxiliary elements FlowConnector, Branch
and Abort do not feature their inherited labels FlowElement, entry and exit. Furthermore, many
irrelevant syntax nodes and edges have been grayed out. And last, the entry and exit edges
of each FlowElement have been grayed out too, else the graph would have been unreadable.

We can see in this graph that the starting flow edge (and the entry) of the MethodBody is
propagated all the way to the initializing expression (the integer literal 0) of the declaration
of the variable i. A reoccurring pattern is that control flow starts at the left side (a literal of
identifier) of some primitive expression and works its way up back to the control statements
like if and while.

Also interesting to note are the six branches (for the while and two if’s) and the three
cases of abrupt completion flow. We see that the break statement terminates the while and
that both return’s terminate the execution of the method body.
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Figure 4.40: Partial rule application  of the flow graph construction of Listing 4.1.
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Figure 4.41: Constructed flow graph of Listing 4.1.



Chapter 5

Control Flow Specification Language

This chapter treats our formal specification language for the control flow semantics of pro-
gramming languages (to which we refer as ), the main result of this thesis.

Let us again review the big picture of this thesis (Figure 1.1). We see that the researcher has
designed (2) the control flow specification language (3), which resides at the meta-language
level (the level of languages in which parts of programming languages are defined).

We also see that a language designer uses  to design (12) a set of formal control
flow specifications (8) for each construct that features the programming language he or she
designs. The starting point of this design process is the language specific abstract syntax
meta-model (7) he or she has designed.

In this chapter we present a manual for designing specifications in , including the
 graph meta-model, further constraints on specifications and a stepwise approach for
specification design. We then present a large number of specifications for Java constructs to
serve as examples for .

5.1 Control flow specifications design manual

This section presents a manual for designing correct control flow specifications in . The
 meta-model is discussed and additional constraints are introduced along with a graph
transformation system for checking constraint violations in control flow specifications. Next
we present a recipe for designing control flow specifications.

The basis of a control flow specification for some programming language in  is the
language-specific abstract syntax graph representation (Section 3.1, e.g. Figure 3.1) of an
abstracted version of the grammar of the language (for instance, the abstract Java grammar
in Appendix A). To such a representation we specify the corresponding control flow by
introducing elements from the meta-model where necessarily.

As a rule of thumb, we can say that for every non-terminal in the abstracted grammar of a
programming language, in other words, for every left hand side of the  production rules
we have to design a control flow specification in . The rule of thumb “one specification per
construct” applies even more than the “one rule per construct” principle to which we tried to
adhere when designing flow graph construction rules (Section 4.1.1). Summarizing, for each
construct of a specific programming language we specify in  all (possible) control flow
semantics (including, for example, possible occurences of abrupt completion resolution).
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5.1.1 CFSL Meta-model

This section presents the meta-model to which control flow specification graphs should
adhere. The meta-model of  (Figure 5.1) is on some points similar to the meta-model of
our flow graphs (Figure 3.5). But since we want our control flow specifications to be readable
and want to make it easy for a language designer to use the , this meta-model requires
fewer control flow elements. A design principle for the  meta-model was that it should
allow a language designer to only specify control flow in as far as it is interesting and not
trivial.

Figure 5.1: Meta-model of control flow specifications in .

A good example of a simplification is the fact that all control flow edges are implicitly
assumed to leave from the exit of a syntax node and enter the target syntax node at its entry,
thereby eliminating the need of specifying all entry and exit edges.

We can explicitly specify the entry or exit of any syntax node, but we are not required to.
In practice, one will only specify entries and exits as far as they are relevant and not obvious.

A new self-edge of a syntax node is KeyElement; this edge indicates that the specifica-
tion specifies the control flow for this statement type (remember our “one specification per
construct” principle). As a result a specification can have at most one KeyElement.
 does not feature flow connectors (FlowConnectors) as our flow graphs do, as these

mainly are auxiliary, and in most cases temporary, nodes necessary for facilitating top-down
flow graph construction. However, it is possible to specify the, unknown, control flow
context as the target of the exit edge of a syntax node, represented as an empty node. A
common scenario is to specify the exit of the KeyElement using this empty node.

We again use auxiliary nodes for branches (Branch) and abrupt completion (Abort). The
multiplicities of the edges associated with Branch and Abort in most cases match with the
multiplicities of the edges associated with their flow graph counterparts.

The representation of abrupt completion needs further explanation. Depending on the
associated edges, an Abort node can represent the following four types of abrupt completion:

Introduction The introduction of new abrupt completion control flow is represented by an
abort edge to the Abort node and the absence of an outgoing flow edge;
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Resolution The resolution of abrupt completion is represented by an Abort node with an
outgoing flow edge, the syntax node from which the abrupt completion originates is
indicated by an edge labeled abortFrom;

Immediate resolution Abrupt completion that can be resolved on introduction (e.g. an un-
conditional jump to a labeled statement) is represented by an Abort node that features
an incoming abort and outgoing flow edge;

Resumption The resumption of abrupt completion is represented by an Abort node that
features an incoming resumeAbort edge.

All variants of Abort nodes have at least one reason. An Abort node can have several
reasons: for readability we can combine abrupt completion control flow that behaves the
same for a set of different reasons in one Abort node.

Not present in this meta-model, but present in control flow specifications in the  due
to the fact that our abstract syntax representation forms the base of our specifications, are the
child edges and the syntax role annotation edges. Another relaxation is made for the : we
may use child edges or the language specific syntax role edges, or both, whatever suits us.

5.1.2 Additional constraints

When we consider all possible specification graphs that conform to the meta-model of ,
introduced above, a significant portion of these graphs are still considered not valid. The
meta-model is not strict enough in the sense that it allows illegal combinations of elements,
as there is no way for denoting that some element excludes another element in a meta-model.
To provide more accurate guidelines to what we consider valid and invalid specifications we
introduce a set of additional constraints on control flow specifications in .

To provide means for checking whether a specification adheres to the additional con-
straints, we provide yet another graph transformation system, in which the specification to
be checked is the start graph. For each constraint we have a graph production rule that
attempts to match a structure that violates that constraint. If a match is found in the con-
trol flow specification graph, we introduce a ConstraintViolation node with another label that
indicates the constraint that was violated.

We have identified the following additional constraints for specifications that conform to
the meta-model:

1. A specification can contain at most one node labeled KeyElement (Figure 5.2(a));

2. A node can have at most one exit (Figure 5.2(b));

3. From the exit to the context, no control flow can originate (Figure 5.2(c));

4. Sequential control flow originating from a node excludes branching control flow from
that node and vice versa (Figure 5.2(d));

5. Branching control flow originating from a node can feature at most one default case
(Figure 5.2(e));

6. All Branch nodes have a branchOn edge or a branchDefault edge (Figure 5.2(f));
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7. A Branch node can not feature both a branchOn and a branchDefault edge (Figure 5.2(g));

8. The branchOn values of branches that originate from the same node should all be
different (Figure 5.2(h));

9. All branches originating from a node should share the same condition (Figure 5.2(i));

10. Between Branch and Abort nodes, flow edges are not allowed (Figure 5.2(j));

11. An abort edge from a node excludes resumeAbort from that node and vice versa (Figure
5.2(k));

12. Abrupt completion resumption must feature the same reason as an instance of abrupt
completion resolution (Figure 5.2(l)).

We have two additional rules: OK (lowest priority, Figure 5.3(a)) and INVALID (highest
priority, Figure 5.3(b)). These are primitive indicators of the fact that a specification does or
does not violate any constraints (compare to the final indicator (Figure 2.8) for the example
in Chapter 2).

The rule application  of a specification start graph without constraint violations is
shown in Figure 5.5(a). An example of a constraint violation (constraint 3) and the de-
tection thereof by the corresponding constraint checking rule is shown in Figure 5.4. The
corresponding  is also shown in Figure 5.5.

5.1.3 Design steps for specifications

To specify the control flow semantics of a programming language in  one has to perform
several design steps:

1. Compose abstract syntax grammar;

2. Extract abstract syntax graph representations;

3. Specify control flow.

Abstract grammar composition

The first step is to compose an abstract grammar. The programming language probably
features a syntax grammar in . From this syntax grammar an abstract, pure  grammar
has to be composed (for example, see Appendix A). We summarize the rewrite steps for this
abstract grammar (see Section 3.1):

1. Plain  rules are not allowed to have optional elements; rewrite such  rules to
plain  rules by introducing new non-terminals for the variations and combining
these with the or-operator;

2. Rules that feature the Kleene Star (*) should be rewritten to recursive  rules;

3. When the abstract syntax graph representation should represent a rule using inheritance
(Figure 3.1), the right hand side cannot feature terminals;

4. Specific syntax role annotations in the syntax graph representation are denoted in this
grammar with the notation: role:NonTerminal.
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(a) Constraint 1 (b) Constraint 2 (c) Constraint 3 (d) Constraint 4

(e) Constraint 5 (f) Constraint 6 (g) Constraint 7

(h) Constraint 8 (i) Constraint 9 (j) Constraint 10

(k) Constraint 11 (l) Constraint 12

Figure 5.2: The additional constraints on specifications in .

(a) Ok (b) Invalid

Figure 5.3: Two additional rules for constraint checking.



62 Control Flow Specification Language

Figure 5.4: Example of detecting a constraint violation.

(a) LTS -
Ok

(b) LTS - Invalid

Figure 5.5: Examples of rule application ’s for valid and invalid specifications.

Abstract syntax graph extraction

The second step is to extract the abstract syntax graph representations. From an abstract
grammar it is easy to derive the corresponding graph representations. In an abstract syntax
graph representation of a  rule terminals are omitted, the left hand side is represented as
the parent node and the right hand side non-terminals as the children. The syntax roles are
represented as edges from the parent node to one of its children. Some relations between the
left hand side non-terminal and a right hand side non-terminal may be represented using
inheritance.

Specification of control flow

The third step is to create the set of control flow specifications. For each left-hand-side non-
terminal that represents a construct that has control flow semantics, we create a corresponding
control flow specification in several steps:

1. Start with the graph representation of the abstract  syntax rule;
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2. Label the syntax node corresponding to the left-hand-side non-terminal as the KeyEle-
ment;

3. For this KeyElement, specify the exit edge to a new, unlabeled node (the exit to the
context);

4. Also, for this KeyElement, specify an entry edge either as self-edge (no sub statements)
or to one of the sub statements or the unlabeled exit node (the construct is skipped);

5. Specify all control flow for the KeyElement and its sub statements, adhering to the 
meta-model and the additional constraints. Keep in mind that all control flow edges
are implicitly assumed to leave from the exit of a syntax node and enter the target syntax
node at its entry;

6. Exits of sub statements may be connected to the unlabeled exit node of the KeyElement
to imply sharing of the exit;

7. If necessary, the exit of a sub statement can be represented explicitly using again an
unlabeled node;

8. If absolutely necessary, create additional helper specifications that do not directly cor-
respond to a syntax rule (i.e. do not feature a KeyElement).

Example control flow specification design

As an example for designing control flow specifications in , we show how we design a
specification for the while-statement in Java.

As a first step, we introduce two syntax role labels (condition and body) to the  rule of
the WhileStatement:

WhileStatement ::= <WHILE> <LPAR> condition:Expression <RPAR> body:Statement

We extract the abstract syntax graph representation shown in Figure 5.6(a). Note that we
do not use the child edges here, only the syntax roles we introduced to the  rule.

Now we start with the actual control flow specification. In Figure 5.6(b), we specify the
WhileStatement to be the KeyElement, the condition Expression to be the entry point of the
while-statement (execution of the while-statement starts by evaluating the condition) and
denote an unlabeled node to be the exit of the while-statement.

We specify sequential control flow (Figure 5.6(c)): a flow edge from the Expression to
the WhileStatement and a flow edge from the Block (implicitly from its exit) to the Expression
(implicitly to its entry). The first flow edge indicates that after evaluating the condition,
control is transferred to the while-statement node, where the decision whether to continue
iterating the body is made. The second flow edge indicates that after execution of the body,
the condition is re-evaluated.

Two branches are specified (Figure 5.6(d)): on false the while-statement is completed
(normally) by transferring control to the exit node, on true the body is entered for another
iteration.
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(a) While-statement - abstract
syntax

(b) While-statement - key element (c) While-statement - sequential
control flow

(d) While-statement - conditional branching

(e) While-statement - abrupt completion

Figure 5.6: The control flow specification for blocks of statements.

Our control flow specification is nearly finished, but we still have to specify two cases
of abrupt completion resolution (Figure 5.6(e)). Because of a break-statement in the while-
statement’s body, the while-statement will be terminated. We specify an Abort node with a
reason edge to a BreakStatementWithoutLabel node and a flow edge to the exit of the while-
statement. The abrupt completion originates from somewhere in the while-statement’s body,
we indicate this with an abortFrom edge from the Block.

In case of a continue-statement in the while-statement’s body, the condition of the while-
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statement will be re-evaluated. We specify an Abort node with a reason edge to a ContinueS-
tatementWithoutLabel node and a flow edge to the condition. We again indicate the origin of
the abrupt completion flow with an abortFrom edge from the Block.

Labeled break- and continue-statements are not considered here; abrupt completion of
labeled statements is treated uniformly, as we will see in the next section.

5.2 Control flow specifications for Java

In this section, we present the control flow specifications of the Java constructs that were
also presented as examples in the chapter on flow graph construction rules (Section 4.2). The
abstracted grammar of these constructs can again be found in Appendix A.

5.2.1 Method bodies

Method-bodies in Java are described in Section 4.2.1. Related flow graph construction rules
are shown in Figure 4.7, 4.30(c) and 4.31(b).

The  specification is shown in Figure 5.7. The control flow of a method-body is
specified to start at the (first statement of the) body block of statements. After execution of
the body, the control transfers to the exit of the MethodBody.

The specification also specifies possible abrupt completion resolution for return- or throw-
statements, represented by an Abort node with the combined reasons: return and throw. The
resolution is defined as a transfer of control to the exit of the the MethodBody.

Figure 5.7: The control flow specification of a method-body.

5.2.2 Blocks of statements

Blocks of statements in Java are described in Section 4.2.2. Related flow graph construction
rules are shown in Figure 4.8(a), 4.8(b), 4.8(c) and 4.8(d).

A Block can be empty or can contain a number of sequentially ordered statements. If
the block of statements is empty, it is specified to be skipped (Figure 5.8(b)). If it contains
statements, the execution of the block is defined as the execution of the statements it contains
from left to right (Figure 5.8(a)). The exit of the BlockStatements coincides with the exit of the
Block.

A BlockStatementsNext node features a single Statement child that is specified to be exe-
cuted upon entering the parent BlockStatementsNext node and a BlockStatements node that is
defined to be executed next (Figure 5.9(a)).

The exit of the last statement coincides with the exit of the parent BlockStatementsLast
node and, indirectly, with the exit of the containing Block node (Figure 5.9(b)).
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(a) Block (b) Block - empty

Figure 5.8: The control flow specification for blocks of statements.

(a) BlockStatements - next (b) BlockStatements - last

Figure 5.9: The control flow specification for the ordering of statements in a block.

5.2.3 Conditional statements

As is described in Section 4.2.3, Java features to types of conditional statements: the if- and
the switch-statement.

If-statement

If-statements in Java are described in Section 4.2.3. The related flow graph construction rules
are shown in Figure 4.9(a) and 4.9(b).

The control flow specifications of the if-statement with or without else-part are shown in
Figure 5.10.

Switch-statement

Switch-statements in Java are described in Section 4.2.3. The related flow graph construction
rules are shown in Figure 4.2.3, 4.11(a), 4.11(b), 4.11(c), 4.11(d), 4.12(a), 4.12(b) and 4.26(e).

We specify the control flow semantics of the switch-statement in a number of specifica-
tions. In Figure 5.11 we specify that the switch-statements starts by evaluating its condition
and that the complete switch-statement is terminated by any break-statement present in the
statements of one of its cases.

In Figure 5.12(a), we specify that a conditional branch, based on the value of the switch-
statement’s condition, is present for any of the labels in the block of cases, leading to the
statement(s) associated to the label. In Figure 5.12(b), we treat the special default label.

We specify that the groups are connected to each other in their sequential ordering to
facilitate the “fall-through”. We use a similar approach as for statements in a block (Figure
5.9 and 5.8): Figure 5.13 specifies the control flow for the block of switch-statement-block-
groups. Figure 5.14 specifies that after executing the statements associated to a group, the
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(a) IfThen

(b) IfThenElse

Figure 5.10: The flow specification of the if-statement with or without else-part.

control flow is transferred to the next group or to the exit of the switch-statement, depending
on whether there is another group ordered next.

Figure 5.11: The flow specification of the switch-statement.

5.2.4 Loop statements

Loop statements in Java are described in Section 4.2.4. Related flow graph construction rules
are shown in Figure 4.7, 4.30(c) and 4.31(b).

Java features three types of loop-statements: the while, do and for loops. The control flow
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(a) Switch label

(b) Switch label - default

Figure 5.12: The flow specification of the switch-label.

Figure 5.13: The control flow specification of the groups in a switch-block.

(a) Switch groups - next (b) Switch groups - last

(c) Switch group

Figure 5.14: The control flow specification of the switch-statement-blocks-groups.
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specification for the while-statement was given in Figure 5.6(e). The control flow specification
of the do-statement (Figure 5.15) is a minor variation on this specification.

The for-statement has eight variants, which are described in Section 4.2.4:

1. ForEver: for-statement without init-, condition- or update-part (Figure 5.16);

2. ForWithInit: for-statement with init-part only (specification omitted here);

3. ForWithInitCondition: for-statement with init- and condition-part (specification omit-
ted here);

4. ForWithInitConditionUpdate: for-statement with init-, condition- and update-part
(Figure 5.17);

5. ForWithInitUpdate: for-statement with init- and update-part (specification omitted
here);

6. ForWithCondition: for-statement with condition-part only (specification omitted here);

7. ForWithConditionUpdate: for-statement with condition and update-part (specification
omitted here);

8. ForWithUpdate: for-statement with update-part only (specification omitted here);

Figure 5.15: The flow specification of the do-statement.

5.2.5 Primitive statements and expressions

As in Section 4.2.5, we treat a limited number of primitive statements and expression types.
The (statement) expression types we treat are:

• Empty statements;

• Assignments;

• Local variable declarations;

• Literals;
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Figure 5.16: The flow specification of the for-statement without init-, condition- or update-
part.

Figure 5.17: The flow specification of the for-statement with init-, condition- and update-part.

Figure 5.18: The flow specification of the for-statement with update-part.



Control Flow Specification Language 71

• Identifiers;

• Binary operators;

• Method invocations.

Empty statement

Empty statements in Java are described in Section 4.2.5. The related flow graph construction
rule is shown in Figure 4.18. Figure 5.19 shows the control flow specification of empty
statements.

Figure 5.19: The control flow specification of empty statements.

Assignment

Assignments in Java are described in Section 4.2.5. The related flow graph construction rule
is shown in Figure 4.19. Figure 5.20 shows the control flow specification of assignments.

Figure 5.20: The control flow specification of assignments.

Local variable declaration statement

Declarations of local variables in Java are described in Section 4.2.5. Recall that several
variables of the same type can be declared in one LocalVariableDeclarationStatement. Related
flow graph construction rules are shown in Figure 4.20, 4.21(a) and 4.21(a).

Figure 5.21 shows the control flow specification of local variables declaration statements.
As one declaration can declare several variables, we have an ordering of VariableDeclarators

that are evaluated left to right. Control flow specification of this ordering is similar to
specifying the control flow of statements ordered in a block (Figure 5.9(a) and 5.9(b)), therefore
the corresponding specifications are omitted here.

An individual VariableDeclarator can feature an initializing expression or not. In Figure
5.22 we specify the control flow of both variants.
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Figure 5.21: The control flow specification of local variable declaration statements.

(a) Variable declarator - init (b) Variable declarator - no init

Figure 5.22: The control flow specification of variable declarators with or without init.

Literal

Literal values in Java are described in Section 4.2.5. The related flow graph construction rule
is shown in Figure 4.2.5. Figure 5.23 shows the control flow specification of literal values.

Figure 5.23: The control flow specification of literal values.

Identifier

Identifiers in Java that refer to declared variables are described in Section 4.2.5. The related
flow graph construction rule is shown in Figure 4.2.5. Figure 5.24 shows the control flow
specification of identifiers.
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Figure 5.24: The control flow specification of identifiers.

Binary operator

Binary operator expressions in Java are described in Section 4.2.5. Again we examine rela-
tional expressions as an example of binary operators, the related flow graph construction
rule is shown in Figure 4.2.5. Figure 5.25 shows the control flow specification of relational
expressions.

Figure 5.25: The control flow specification of relational expressions.

Method invocation

Invocations of methods in Java are described in Section 4.2.5. Method invocations can feature
an ArgumentList or not. The related flow graph construction rules are shown in Figure 4.25(a)
and 4.25(b). Figure 5.26 shows the control flow specifications of method invocations with or
without arguments.

A method invocation with arguments features an ordered list of Arguments that are evalu-
ated left to right, each individual argument being an Expression. Control flow specification of
this ordering is similar to specifying the control flow of statements ordered in a block (Figure
5.9(a) and 5.9(b)), therefore the corresponding specifications are omitted here.

5.2.6 Abrupt completion statements

The abrupt completion statements in Java are described in Section 4.2.6. The specifications
for the abrupt completion statements indicate that they terminate some enclosing statement,
i.e. that they introduce unresolved abrupt completion. Figure 5.27 specifies the control flow
of the break-statement. Figure 5.28 specifies the control flow of the continue-statement.
Figure 5.30 shows the specification for the return-statement with or without value. Figure
5.31 shows the specification of the throw-statement with its exception expression.
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(a) Method invocation - arguments (b) Method invocation - no ar-
guments

Figure 5.26: The control flow specification of method invocations with or without arguments.

(a) Break - no label (b) Break - label

Figure 5.27: The control flow specification of the break-statement with or without label.

5.2.7 Exception handling statements

The exception-handling try-statement is described in Section 4.2.7.
We have three variants of the try-statement: the try-catch, the try-finally and the try-

catch-finally.
The specification for the try-catch specifies that any thrown exception in the body of

the try-statement causes control to be transferred to the catches-block first, and that after
evaluation of the catch-clauses the exception might travel further in a bottom-up manner
(indicated by the resumeAbort edge from the Catches). But when the exception is caught

(a) Continue - no label (b) Continue - label

Figure 5.28: The control flow specification of the continue-statement with or without label.
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(a) Labeled statement - break (b) Labeled statement - continue

Figure 5.29: The control flow specification of labeled statements aborted by a break- or
continue-statement.

(a) Return - value (b) Return - no value

Figure 5.30: The control flow specification of the return-statement.

in the catches-block, the control is defined to be transferred to the exit of the try-statement
(which as a result completes normally).

The try-finally specification specifies that any type of abrupt completion of the body of the
try-statement causes the control to be transferred to the finally-statement. After execution of
the try-statement, the abrupt completion might be resumed in the bottom-up way (indicated
by the resumeAbort edge from the FinallyStatement).

The specification for the try-catch-finally combines both specifications. After normal
or abrupt completion of either the try-body or the catches-block, the finally-statement is
executed. After the finally-statement, the bottom-up abrupt completion might resume.

The specifications of the sequentially ordered catch-clauses are comparable to the state-
ments in a block (Figure 5.9).

Figure 5.31: The control flow specification of the throw-statement.
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(a) TryCatch

(b) TryFinally

(c) TryCatchFinally

Figure 5.32: The control flow specifications of the try-statement.
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Figure 5.33 shows the specification of a catch-clause. As in the associated production rule
(Figure 4.38), we have a branch on the thrown exception’s (runtime) type. The specification
denotes that if the type-comparison evaluates to false, the exit (leading to the next clause) is
to be taken, otherwise the body is to be executed. After executed of the body, the exit of the
catches-block is followed.

Figure 5.33: The control flow specification of the catch-clause.

We omit the (straightforward) control flow specification of the FinallyStatement.
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Chapter 6

Flow Graph Meta-rules

This chapter treats the flow graph meta-rules we provide with our control flow specification
framework.

We briefly review the purpose of these flow graph meta-rules. In Chapter 4 we showed
how we can use graph transformations to construct control flow graphs, given an abstract
syntax graph representation of the source code. The case study we have performed on flow
graph construction for Java showed us that designing flow graph construction rules for some
programming language (in this case, Java) is not a trivial task and involves a lot of work,
when designing these rules by hand.

We can do better: the meta-rules we present here can transform control flow specifications
of a given programming language to the corresponding flow graph construction rules for
that language. When we review the big picture of this thesis presented in Chapter 1, we see
(Figure 1.1) that the flow graph meta-rules (5), designed by us, transform a set of control flow
specifications (10), designed by a language designer, into a set of flow graph construction
rules (16).

Summarizing:

Our flow graph meta-rules transform a set of control flow specifications of a given
language, denoted in , into a set of graph production rules that can construct
flow graphs of programs written in this language.

6.1 Design of the meta-transformation

Both the control flow specifications (Chapter 5) and the flow graph construction rules (Chap-
ter 4) are graphs. As we saw in the big picture (Figure 1.1), we again apply graph transforma-
tions in order to transform control flow specifications into control flow graph construction
rules.

The rules that guide these transformations are meta-rules since they are graph production
rules that generate graph production rules.

These flow graph meta-rules are applicable to any control flow specification of any
programming language, specified in our control flow specification language. This means
that they do not depend on language- (for example, Java-) specific constructs. Thus, the rules
only match elements present in the control flow specification language meta-model (Figure
5.1) and introduce only elements present in the flow graph meta-model (Figure 3.5) and the
auxiliary and temporary elements needed for flow graph construction (Figure 4.3).
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6.1.1 Flow graph meta-rules

We have designed a set of flow graph meta-rules. These flow graph meta-rules share the
assumptions and design choices made for the control flow specification language and the
flow graph construction rules, in particular:

• Flow graph construction uses a top-down approach;

• Abrupt completion resolution operates bottom-up.

There are some clear differences between control flow specifications and flow graph
construction rules, besides the fact that the former are specifications and the latter are graph
production rules that can be applied to a source graph. In our flow specifications, we
combine the specification of all control flow semantics of one type of statement (denoted as
the KeyElement) into a single specification, thereby combining the top-down control flow and
the bottom-up abrupt completion resolution (represented by the abortFrom edge).

We can make this more clear by considering our flow specification of the while-statement
in Java (Figure 5.6(e)). This specification specifies the sequential and branching control flow
with respect to the sub statements of the while-statement. It also specifies how certain types
of abrupt completion that originate from the body of the while-statement are resolved.

In our flow graph construction rules, we split up the top-down construction and the
bottom-up abrupt completion resolution into separate rules (Figure 4.13, 4.26(b) and 4.27(b)).

This means that we in some cases generate several production rules, given one specifi-
cation. Given a control flow specification, we first transform it into a top-down production
rule. Next, we apply a different set of meta-rules to the original specification to transform it
into, perhaps several, additional bottom-up abrupt completion resolution rules.

The two sets of meta-rules differ in the way that they are applied to a flow specification
graph. The rules for construction top-down production rules are confluent (see Section 2.2.2),
meaning that we can apply these rules in a linear fashion. The end result (the final state in
the transformation ) of this linear transformation process is the flow graph construction
rule corresponding to the input control flow specification.

The meta-rules for the construction of abrupt completion resolution rules have to be
applied differently. A flow specification can feature several instances of abrupt completion
resolution. For each instance, we generate a different production rule. If we for example
have two instances of abrupt completion resolution for the while-statement (the break and the
continue), we select one of these instances for which we generate a rule at a time. The meta-
rules can now be applied in linear fashion and the end result is the flow graph construction
rule that resolves this instance of abrupt completion.

To make this more concrete, suppose we have designed a set of control flow specifications
for some programming language, say Java, and now want to use the provided meta-rules
to generate the corresponding flow graph construction rules. We use two graph production
systems: one for creating top-down flow graph construction rules and one for creating
bottom-up abrupt completion resolution rules. We introduce each control flow specification
graph subsequently as the start graph of these production systems.

Among others, we introduce a WhileStatementSpecification graph (the control flow speci-
fication for a Java while-statement) as the start graph of our flow graph construction graph
production system. After linear exploration of the applications of the meta-rules in this
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production system, we end up with a flow graph construction rule: the WhileStatementRule.
This rule application process is illustrated in Figure 6.1.

Next we present this specification graph as the start graph of the abrupt completion res-
olution graph production system. Two different linear explorations are performed, resulting
in the WhileStatementAbortBreakWithoutLabelRule and the WhileStatementAbortContinueWithout-
LabelRule. This somewhat more complicated rule application process is illustrated in Figure
6.2.

Figure 6.1: The application of the top-down flow graph construction meta-rules to an example
control flow specification.

Figure 6.2: The application of the bottom-up abrupt completion resolution meta-rules to an
example control flow specification.

Now that we have treated the purpose and modus operandi of our sets of meta-rules, we
delve into more detail on the individual flow graph meta-rules.

As the flow graph meta-rules are production rules that create production rules, we have
many cases in which we, for instance, have to specify the “creation an edge creator”. For
example, when we want to create a rule that introduces a flow edge to some node, our meta-
rule has to create a new edge that will create the flow edge when the resulting production
rule is applied.

How do we represent such a meta-transformation graphically? The creation of an edge
is, as we know, specified using a bold, green, edge. But, for the creation of creating an edge
we have no graphical representation available in the  tool. Our solution is simple: we
prefix the label of the edge that is created with the type of transformation it has to perform
if the resulting production rule is applied.

We have, of course, four types of prefixes:

new The creation of an element, i.e. a creator;

del The deletion of an element, i.e. an eraser;

not The required absence of an element, i.e. an embargo;

use The required presence of an element, i.e. a reader.
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For instance, the creation of a flow edge creator is thus denoted graphically as a bold,
green line with the label new flow (Figure 6.3).

Figure 6.3: Example of creating a flow edge creator.

The following sections treat the two sets of meta-rules in detail.

6.1.2 Meta-rules for top-down flow graph construction rules

We first list the main tasks for the set of production rules that construct top-down flow graph
construction rules:

1. Introduce the creation and removal of build edges for top-down construction;

2. Replace auxiliary elements in the specifications with the creation of their corresponding
elements in the flow graphs;

3. Introduce the creation of flow, branch or abort edges at the appropriate places;

4. Introduce the merging of some of the FlowConnectors with the elements to which they
belong;

5. Introduce the creation of the temporary resolving edge;

6. Remove Abort nodes that resolve abrupt completion.

For each of these tasks, we have designed one or more meta-rules. These meta-rules are
listed in Table 6.1. Each meta-rule is related to one or more of the mentioned tasks and has
an application priority (see Chapter 2). We treat these rules in more detail in the order in
which they are presented in this table.

Create child edges

As mentioned in Chapter 5, to improve the readability and understandability of the flow
specifications, we use abstract syntax edges that are annotated with the role of the relation.
To have generic meta-rules, we cannot match on the language-specific abstract syntax roles.

Therefore, for each sub statement of the KeyElement of a specification, we add a child
edge (Figure 6.4), resembling a syntax tree structure. Now our meta-rules can match sub
statements using this edge.

Introduce build edge propagation

For any specification that features a KeyElement, we introduce the removal of the build edge
for the KeyElement (Figure 6.5(a)) and the creation of the build edge for the sub statements of
the KeyElement (Figure 6.5(b)), matching on the child edge introduced by the rule in Figure
6.4.
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Name Task Priority Figure
ChildCreate - 4 6.4

BuildKeyElementDelIntro 1 3 6.5(a)
BuildChildCreateIntro 1 3 6.5(b)

AbortCreateIntro 2, 5 3 6.6(a)
AbortWithResolveCreateIntro 2, 5 3 6.6(b)
BranchCreateIntro 2 3 6.7(a)
BranchDefaultCreateIntro 2 3 6.7(b)

AbortWithExitCreateIntro 3 2 6.8(a)
AbortWithoutExitCreateIntro 3 2 6.8(b)
BranchWithExitCreateIntro 3 2 6.9(a)
BranchWithoutExitCreateIntro 3 2 6.9(b)
FlowWithEntryCreateIntro 3 2 6.10(a)
FlowWithExitCreateIntro 3 2 6.10(b)
FlowWithEntryExitCreateIntro 3 2 6.10(c)
FlowWithoutEntryExitCreateIntro 3 2 6.10(d)
FlowWithExitToExitNodeCreateIntro 3 2 6.10(e)
FlowWithoutExitToExitNodeCreateIntro 3 2 6.10(f)

EntryFlowConnectorMergeIntro 4 1 6.11(a)
EntrySelfEdgeFlowConnectorMergeIntro 4 1 6.11(b)
SkipFlowConnectorMergeIntro 4 1 6.11(c)
SharedExitMergeIntro 4 1 6.11(d)

AbortResolveResumeReasonDelo 6 4 6.12(a)
AbortResumeDel 6 3 6.12(b)
AbortResolveDel 6 3 6.12(c)

KeyElementDel - 0 6.13

Table 6.1: The meta-rules for top-down flow graph construction rules with their related tasks
and priorities.

Map auxiliary specification elements to flow graph elements

To generate a production rule that introduces abrupt completion from a specification that
features an Abort node without flow edge, we, among other things, introduce the creation of
a resolving edge to the parent node (for which we introduce a reader) of the node from which
the abrupt completion originates.

We also make sure that the specification specifies abrupt completion introduction and not
the immediate resolution of abrupt completion, using a negative application condition on
the presence of a flow edge in the specification. Figure 6.6(a) shows our meta-rule for creating
a rule that introduces abrupt completion.
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Figure 6.4: The meta-rule that adds a child edge to any sub statement of the specification
element.

(a) Build -
erase

(b) Build - create

Figure 6.5: The meta-rules for creating the top-down construction using build edges.

In case of immediate resolution of abrupt completion, we do not have to introduce the
bottom resolution procedure using the resolving edge, as the abrupt completion target is
already known at the moment that the abrupt completion is introduced (Figure 6.6(b)).

(a) Abrupt completion introduction (b) Abrupt completion immediate resolution

Figure 6.6: The meta-rule that creates the introduction of abrupt completion with or without
immediate resolution.

For creating rules that feature Branch introduction, we have two meta-rules: one for
Branches with a branchOn edge (Figure 6.7(a)) and one for Branches with a branchDefault edge
(Figure 6.7(b)).

Introduce flow, branch and abort edges

For the creation of rules that introduce flow, branch or abort edges, we have to deal with
the assumption made in our specification language (see Section 5.1.1) that, unless otherwise
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(a) Branch

(b) Branch - default

Figure 6.7: The meta-rules for creating the introduction of Branchs for Branches in the speci-
fications.

specified, these edges leave the abstract syntax node from their exit and enter an abstract
syntax node through its entry.

As a result, for each of the three control flow edges we have to consider a number of
variants. As the destination of a branch or abort edge always is a Branch or Abort, respectively,
for these edges we only discern two alternatives: the edge leaves from the exit of an abstract
syntax node or directly from the node itself. This is visible in the rules for the branch edge
(Figure 6.9) and the abort edge (Figure 6.8).

(a) abort - with exit (b) abort - without exit

Figure 6.8: The meta-rules for creating the introduction of abort edges for abort in the speci-
fications.

For the flow edge, we have to discern more variants. Depending on whether the specifi-
cation has specified an exit for the source of the sequential flow and an entry for the target, we
create a different rule that introduces this flow edge. This results in four different meta-rules.

Another possibility is that the target of a flow in a specification is an unlabeled exit node.
In this case, we of course do not want to create a rule that connects a new flow edge to the entry
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(a) branch - with exit (b) branch - without exit

Figure 6.9: The meta-rules for creating the introduction of branch edges for branch in the
specifications.

of this node, as this unlabeled node in a specification may map to a FlowConnector or some
other FlowElement in a flow graph. In the first case, this is not a problem, because the entry
of a FlowConnector is a self-edge of the node. In the second case, the entry may be defined
as some sub statement, in which case we connect the flow edge to the wrong flow element.
Therefore, we make the unlabeled a special case for these meta-rules (which we check using
the regular expression ?, this matches the presence of any label). This results in another two
different meta-rules, depending on whether the source of the flow edge has an exit specified
or not. The following table gives an overview of the six different meta-rules.

Source exit Target entry Exit node Figure
× X × 6.10(a)
X × × 6.10(b)
X X × 6.10(c)
× × × 6.10(d)
× X X 6.10(e)
× × X 6.10(f)

Merge flow connectors

In our flow graphs, every flow element has an entry and an exit. Initially, these are edges
pointing to auxiliary FlowConnector nodes. But in many cases, it is possible to define the entry
or exit of a flow element as another flow element (for example, a sub statement). In these
cases, our flow graph construction rules merge the entry or exit FlowConnector with this flow
element. The meta-rules in Figure 6.11 introduce this merging to flow graph construction
rules under construction.

The meta-rule in Figure 6.11(a) merges a flow connector with some statement that is
defined as the entry of a statement in a specification. Figure 6.11(b) shows a meta-rule that
merges a flow connector with the corresponding flow element itself, if the specification
features an entry self-edge. The meta-rule in Figure 6.11(c) merges the entry flow connector
with the exit flow connector of a flow element that is to be skipped. Figure 6.11(d) depicts
a meta-rule that merges the exit flow connector if a sub statement shares the exit of the
KeyElement.
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(a) flow - with entry (b) flow - with exit (c) flow - with entry and exit

(d) flow - without entry or exit (e) flow - with exit to exit node (f) flow - without exit to exit node

Figure 6.10: The meta-rules for creating the introduction of flow edges for flow in the specifi-
cations.

(a) FlowConnector merge - en-
try

(b) FlowConnector merge - self-edge
entry

(c) FlowConnector merge - skip
flow element

(d) FlowConnector merge -
shared exit

Figure 6.11: The meta-rules for creating the merging of FlowConnectors where appropriate.
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Remove abrupt completion resolution

The set of meta-rules for bottom-up abrupt completion resolution rules creates production
rules for resolving and, possibly, resuming abrupt completion. Therefore, in the flow graph
construction meta-rules set, any nodes or edges related to resolving or resuming abrupt
completion present in the specifications should be removed.

First, we remove all reason nodes from the specification, as an abrupt completion (Abort)
node in a specification can specify the abrupt completion for several possible reasons (Figure
6.12(a)).

Next, we have two cases: the specification of abrupt completion resolution with or
without resumption.

The meta-rule AbortResumeDel in Figure 6.12(b) removes abrupt completion resolution
(an Abort node with flow edge) with resumption (another Abort node with the same reason
and an abortFrom edge) from the specifications.

The meta-rule AbortResolveDel in Figure 6.12(c) removes abrupt completion resolution
without resumption.

(a) Abort deletion - re-
moving reasons

(b) Abort deletion - re-
suming abrupt com-
pletion

(c) Abort deletion -
abrupt completion res-
olution

Figure 6.12: The meta-rules for deleting Abort nodes in the specifications related to abrupt
completion resolution.

Remove KeyElement edge

After we have transformed a specification in a top-down flow graph construction rule, we
remove the label KeyElement from the main node (Figure 6.13), as this label does not have
any meaning in a flow graph construction rule. This rule has the lowest application priority.

Figure 6.13: The meta-rule that removes the KeyElement edge from the specifications.

6.1.3 Meta-rules for bottom-up abrupt completion resolution rules

We again first list the main tasks for the set of production rules that construct bottom-up
abrupt completion resolution rules:

• If the specification does not feature any instance of abrupt completion resolution, all
elements should be erased;
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• Else, replace one Abort node that is an instance of abrupt completion resolution with a
corresponding Abort;

• Introduce the creation of resuming bottom-up abrupt completion, if necessary;

• Remove all information relevant to top-down flow graph construction;

• Remove all other Abort nodes.

We again have a set of meta-rules, in which each meta-rule has a certain priority and
is related to a one of the mentioned tasks. Table 6.2 enumerates the meta-rules and their
properties. The most notable rule is the ResolveAbortIntro rule. All applications of this meta-
rule lead to different production rules, as explained before. The other rules are confluent
with respect to each other. We treat these meta-rules in the order in which they are presented
in the table.

Name Task Priority Figure
AllNoAbortResolutionDel 1 3 6.14

ResolveAbortIntro 2 3 6.15
AbortFlowToEntryCreateIntro 2 3 6.16(a)
AbortFlowNotToEntryCreateIntro 2 3 6.16(b)
AbortFlowToExitNodeCreateIntro 2 3 6.16(c)

ResumeAbortWithExitCreateIntro 3 2 6.17(a)
ResumeAbortWithoutExitCreateIntro 3 2 6.17(b)
AbortResumeCreateIntro 3 3 6.18

AllExceptAbortDel 4, 5 1 6.19
FlowDel 4 1 6.20
EntryDel 4 1 6.21(a)
ExitDel 4 1 6.21(b)
KeyElementDel 4 0 6.22

Table 6.2: Priorities of meta-rules for bottom-up abrupt completion resolution rules.

Specifications without abrupt completion resolution

Specifications that do not feature abrupt completion resolution should be cleared, because
this set of meta-rules should not create rules for these kind of specifications. The meta-rule
in Figure 6.14 simply removes all nodes from these kind of specifications. Remember that in
our specifications we represent abrupt completion resolution as an Abort node with outgoing
flow edge.

Introduce abrupt completion resolution

For each abrupt completion resolution rule that is generated from a specification, one in-
stance of abrupt completion resolution in the specification is selected. On this instance, the
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Figure 6.14: The meta-rule that removes everything from specifications that do not feature
abrupt completion resolution.

ResolveAbortIntro meta-rule is applied (Figure 6.15). From thereon, the other rules in this set
can be applied in a linear fashion.

Figure 6.15: The meta-rule that introduces abrupt completion resolution.

The meta-rules in Figure 6.16 handle the resolution of an Abort, by introducing the creation
of a flow edge to the element to which the Abort node in the specification featured a flow edge.

The three meta-rules in Figure 6.16 treat the case in which the target of the flow edge has
no entry in the specification, does have some entry or is an exit node.

(a) Abort - flow to entry (b) Abort - flow not to entry (c) Abort - flow to exit node

Figure 6.16: The meta-rules for introducing the creation of flow edges for resolving abrupt
completion.

Introduce abrupt completion resumption

We have abrupt completion resumption when abrupt completion, because of some reason,
is resolved and, next, abrupt completion because of the same reason is introduced (in speci-
fication, we denote this resuming using a resumeAbort edge).

This set of meta-rules also handles the case that abrupt completion resumes after reso-
lution. The meta-rule in Figure 6.18 introduces the creation of the new abrupt completion
for the same old reason. The meta-rules in Figure 6.17 treat the resumeAbort edge (coming
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from a syntax node or the exit of the syntax node) that are present in the specification and
are introduced to the flow graph by the resulting production rule.

(a) resumeAbort - exit (b) resumeAbort - no exit

Figure 6.17: The meta-rules for introducing the creation of abort edges for resuming abrupt
completion.

Figure 6.18: The meta-rule that introduces the resuming of abrupt completion.

Remove flow graph construction elements

In the abrupt completion resolution rules, nothing related to the top-down flow graph con-
struction process may persist.

The meta-rule in Figure 6.19 deletes all nodes it can safely remove from a specification
that features abrupt completion resolution. Care must be taken that this rule does not remove
elements relevant to the resolution or resumption of abrupt completion.

The meta-rule in Figure 6.20 removes all sequential flow from the specifications. Figure
6.21 features meta-rules for taking care of the, in this case, unwanted entry and exit edges.
Finally, Figure 6.22 features a rule for removing the specification-related KeyElement edge.
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Figure 6.19: The meta-rule that removes everything that is not needed for abrupt completion
resolution from the specifications.

Figure 6.20: The meta-rule that removes flow edges from the specifications.

(a) Remove entry (b) Remove exit

Figure 6.21: The meta-rules for deleting entry and exit edges from the specifications.

Figure 6.22: The meta-rule that removes the KeyElement edge from the specifications.



Chapter 7

Evaluation of the Framework

We evaluate our control flow semantics framework in two ways. First we evaluate the
control flow semantics framework on its applicability to other programming languages than
our example language: Java. We identify different and unconventional constructs that are
featured in existing programming languages and describe ways of specifying them in 
along with any encountered problems. Next we list limitations of the research itself. Due
to the time-constraints that come with a master thesis not all possible and relevant research
topics have been explored. We list what research could have been beneficial to our framework
when more time had been available. These suggestions are also part of the relevant further
work we indicate in Chapter 8.

7.1 Applicability of the framework

Although we in Chapter 1 claim to introduce a generic, i.e. programming language indepen-
dent, control flow semantics framework, all examples provided in this thesis come from the
Java programming language. Therefore we think it is useful to evaluate the applicability
of our framework to other programming languages. We of course cannot prove that our
framework can be applied to any programming language based on imperative constructs
currently existing or yet to come, but we can at least show that it can be applied to most
constructs that are featured in current programming languages.

Instead of examining a number of selected programming constructs, we could have
worked out a set of control flow specifications in  for another programming language
(e.g. Pascal). But as most programming languages feature the same or very similar set
of programming constructs, most control flow specifications would be very or completely
similar to the specifications presented for Java. We therefore focus on constructs that really
differ on their control flow semantics.

7.1.1 Conventional constructs

We first examine some conventional programming constructs that are featured in popular
programming languages and are actually used to some degree. The control flow of these
constructs turns out to be quite simple to specify in .

Repeat-statement

Pascal features a loop-statement that iterates until its condition evaluates to true (where
in Java loops are iterated as long as their condition holds): the repeat-statement. The
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repeat-statement is actually a do-statement with an inverted condition. Figure 7.1.1 shows
a specification in  and the associated flow graph construction rule. Note that it features
a conditional branch path leading to the exit of the repeat-statement, when the condition
evaluates to true.

(a) Specification

(b) Rule

Figure 7.1: The repeat-statement in Pascal.

Goto-statement

Many programming languages (e.g. Pascal, , ) feature the primitive, unconditional
jump-statement known as goto. A goto-statement immediately transfers control to a labeled
statement that can be anywhere in the same method (or function) body. This control transfer
may thereby abruptly complete any number of enclosing statements that were currently
executing (e.g. loop-statements). It is therefore logical to represent the control flow jump of
a goto-statement with abrupt completion that features immediate resolution (as the abrupt
completion target is known due to the label). Figure 7.1.1 shows both the specification and
the rule for a goto-statement (in ).
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(a) Specification

(b) Rule

Figure 7.2: The goto-statement in .

7.1.2 Exotic constructs

Now that we have treated some commonly used statements in popular programming lan-
guages we examine some more exotic and, as a result, far less often used statements, to see
what the limitations of  are. These statements are mostly more obscure variants on the
well known unconditional jump (goto). As the goto-statement is considered to increase the
complexity of code and therefore could be considered “harmful” [4], these statements are
even more harmful.

Come-from-statement

The come-from-statement [2] is roughly the opposite of a goto-statement. It features a label
that is identical to the label of some other statement within the operation. But instead of
introducing an abrupt jump to that identically labeled statement, it introduces a jump at
the moment the labeled statement completes to the statement sequentially ordered to execute
after the come-from-statement. When sequential execution reaches the come-from-statement
itself, the come-from-statement is simply skipped.

Although this statement was introduced by the author of [2] as a joke, it has been imple-
mented in - and some version of .

In Figure 7.1.2 we show a  specification and corresponding flow graph construction
rule for the COMEFROM. Note the (counter-intuitive) jump they specify/introduce from the exit
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of the labeled statement to the exit of the come-from-statement.

(a) Specification

(b) Rule

Figure 7.3: The comefrom-statement, roughly the opposite of the infamous goto-statement.

Conditional come-from-statement

An even worse variant of the come-from-statement introduced above is the conditional come-
from-statement. This statement introduces an abrupt jump after completion of the identically
labeled statement if the associated condition holds, else control is transferred back to the exit
of the labeled statement.

The conditional come-from-statement introduces a problem: from the exit of the condi-
tional statement we jump to the Expression of the ComeFromStatement, but after evaluating
this expression, one possible Branch leads back to the exit of the labeled statement to resume
sequential execution. Because of the fact that abrupt completion control flow overrules
sequential control flow, the jump to the Expression will be made again and again.

A solution is to specialize the auxiliary Abort as a DynamicAbort. The DynamicAbort is
an Abort node that features a status: it is either active or notActive. If the DynamicAbort is
notActive, the sequential control flow is followed, else the abrupt completion occurs. With
two additional edges labeled activate and deactive we can specify that when the flow of control
reaches a certain flow element, the status of the DynamicAbort is changed.

Figure 7.1.2 shows a  specification and corresponding flow graph construction rule
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of the conditional come-from-statement that use this solution.

(a) Specification

(b) Rule

Figure 7.4: The conditional comefrom-statement solved with a dynamic abort node.

This auxiliary DynamicAbort node is interesting and could perhaps be included in the
framework. Example usage scenarios include catch-clauses, were we could model the pos-
sible resumption of abrupt completion when the thrown exception is not caught at run-time
by any of the clauses with a DynamicAbort that activated by default and is deactivated when
entering one of the clauses’s bodies. Another possible use is to introduce DynamicAborts to
every method invocation, deactivated by default, to indicate were control is transferred in
case the invocation is terminated because of an uncaught exception. Unfortunately, as we
have not fully explored run-time behavior and its simulation (see Section 7.2), we cannot
(yet) safely make the choice whether to include this DynamicAbort.
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Arithmetic If

The arithmetic if-statement that features  consists of an integer expression and three
labels. Depending on whether the expression evaluates to a value greater than, equal or less
than zero, one of the labels is chosen to goto.

This statement should be handled by three Branches with more advanced and complex
branchOns (possible by applying attributed graph grammars [11]), each leading to one of
three goto-like constructions.

Computed goto-statement

The computed goto-statement that features  can be seen as some kind of primitive
switch-statement. It consists of an integer expression that results in an index to a list of labels.
The selected label is used to goto. If the index exceeds the length of the label list, the statement
sequentially ordered to be executed after the computed goto-statement is executed.

To handle this statement we should introduce a Branch for each label, with a branchOn the
corresponding index literal value.

Gosub-statement

Old versions of the programming language  feature the GOSUB / RETURN statement, some
sort of primitive method invocation mechanism.

The GOSUB part behaves exactly like an ordinary goto-statement, introducing an abrupt
jump to some identically labeled statement. The RETURN part makes a control flow jump back
to the most recently executed GOSUB statement. Which statement this is can of course only be
determined at runtime, therefore our framework does not (yet) support this statement.

Longjump-statement

The longjmp statement in  introduces a non-local jump (possible through several nested
method calls) to the corresponding setjmp statement. This setjmp stores information on the
execution environment in a buffer when it is reached by a sequential transfer of control and
restores the environment when it is reached through the non-local (long) jump.

This statement is used in  as an (primitive) exception handling mechanism, but is not
supported by our framework.

7.2 Limitations of the research

The framework presented in this thesis lacks elaboration on some fronts. Due to time
constraints some topics could not be explored and in some cases the scope of the research
was narrowed to fit in the tight schedule that is inherent to a master thesis. We list research
options that would have been beneficial to the framework had time allowed for them.

During the design of our flow graph construction approach and our control flow spec-
ification language we have focused on programming constructs that occur inside method
or function bodies. Method invocation, object creation and initialization have only been
explored to a limited extent. Concurrency has not been explored at all. Given more time,
these topics could have been explored in more detail, making the research more complete.
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As a proof of concept, we then would have been able to present a complete specification of
the control flow semantics of all Java constructs.

To the extent to which it is possible, we solve control flow statically in flow graphs or
specifications. Some constructs however have partially or completely runtime control flow
behavior. Examples include method invocation and exception handling. In these cases, we
indicate possible control flow paths that can be followed at run-time. Given more time,
we could have created a simulation system for run-time control flow behavior, as is done
in [10]. Such a simulation system is (again) a graph transformation system consisting of a
set of control flow simulation rules and a start flow graph. Each simulation rule specifies
the execution semantics of the corresponding statement and performs a run-time transfer of
control (sequential, branching or abrupt completion) by moving a “program counter” to the
construct to be executed next. These simulations could have provided more insight in what
kind of information (related to control flow determined at run-time) we have to provide in
control flow specifications or control flow graphs in order to accommodate for control flow
simulations.

On a more detailed level, it is useful to review one of the design choices of our flow graph
construction approach. This choice involves the uniform introduction of flow connectors
before the actual flow graph construction process commences. This choice has had several
advantages, making flow graph construction and flow graph construction rule generation
(through the use of meta-rules) more straightforward.

It is not without its disadvantages, however. Many flow graph construction rules contain
flow connector merging operations and, due to the fact that we have chosen to limit the
possible merging scenarios to four (see Section 4.1.3), a constructed flow graph contains
quite a few flow connectors.

An alternative option would be to introduce flow connectors on the fly (i.e. during
construction, only were deemed necessary). Our reason for choosing the uniform approach
is that on the fly introduction seemed to complicate the flow graph construction process and
would introduce the need to discern too many different cases (e.g. introduce a flow connector
for a particular programming construct only when it is placed in a particular context). Still,
it remains worthwhile to explore whether there is a more elegant alternative to the uniform
introduction of flow connectors.
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Chapter 8

Conclusion

In this thesis we aimed at designing a generic specification language for the control flow
semantics of programming languages. We presented the graph-based specification language
. A language designer can use  to specify the control flow semantics of the program-
ming language he or she is designing. This results in a set of control flow specifications,
one for each programming construct that is featured in the programming language. These
control flow specification graphs conform to the meta-model we presented (and can be
checked on conformance with respect to the additional constraints we impose).

We also aimed at developing a structured approach for constructing flow graphs for
programs. Our presented approach consists of introducing control flow information to
an abstract syntax graph representation of a program’s source code. We presented meta-
models for both our abstract syntax graphs and our flow graphs. For each construct in a
programming language, our flow graph construction system features one (or several) flow
graph construction rule(s). Our flow graph construction process operates top-down in most
cases. We made an exception for abrupt completion control flow: this type of control flow
we solve in a bottom-up way.

Last, we completed our control flow semantics framework by introducing flow graph
meta-rules, with which we can generate from specifications in  a set of corresponding
flow graph construction rules.

With this we believe to have introduced a valuable control flow specification and con-
struction framework that is generic to the extent we think is desirable (see Chapter 7), although
more (case) studies on other programming languages will have to be performed to further
consolidate this belief.

The next section compares our research to related work. The last section summarizes
further research that can be performed to extend our framework.

8.1 Related work

In this section, we give a brief overview of related research. We first discuss research that is
(almost) directly comparable to our work. Next we treat the concept of flow graphs and how
they are typically used for complexity analysis. Last we discuss graph transformations as a
transformation technique with a broad range of application areas.

8.1.1 Research with comparable content

The research that is closely related to our work is that of [10]. In this report, Rensink
et al. present the complete path from parsing a program to simulating its execution for a
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custom developed programming language called . The  language is an object-
oriented language which features the basic imperative constructs and inheritance, but when
compared to, for example, Java, lacks abrupt completion and exception handling constructs.
The authors apply graph transformation for flow graph construction and program execution
simulation. For flow graph construction, they have designed a set of flow graph construction
rules by hand, one for each  construct. This work has been the starting point for the
current research project.

Another example of closely related work is [3]. In [3] the authors introduce a translation
mechanism from Java programs to graph transformation system for execution simulation of
these programs. Among others, their research differs from this research in that it is specific
to Java and that, for a portion of Java, they introduce translation schemas that convert Java
source code directly into a simulation system.

Their simulation systems consists of basic simulation rules applicable to all Java programs
(constructs that can occur inside a method body) and program-specific rules (for each method
/ constructor in a specific Java program they create a rule that replaces a call to a method
with the graph representation of that method’s body). The data and control information
during simulation are represented as hyperedges with labeled tentacles (connectors of the
hyperedge). They enforce sequential execution by propagating a program counter (a global
GO hyperedge) between the in and out (compare to our entry and exit).

Currently, their model does not support simulation of loop-statements (or abrupt com-
pletion statements), because a control hyperedge is deleted on execution by its rule (each
statement can therefore be executed once). However, using recursion loops can be introduced
(as each method invocation rule introduces a copy of the method body graph).

In [8] Gurevich and Huggins use a form of control flow graphs to describe the transfer of
control (to which they refer as changing the current “task”) that  statements cause, as part
of a complete specification of the semantics of the  programming language.

Although not directly comparable to our work, the work on Montages is also worth
noting. In [1] an extensive framework is introduced for aiding a language designer when
specifying the syntax and the (static and dynamic) semantics of a programming language.
The authors share many design principles and choices with us. They too compose a complete
programming language specification from a set of specifications, one for each individual
programming construct, and, as with ours, their specifications have a very close relation to
the  grammar. Their control flow graph are also based on abstract syntax trees to which
control flow information is introduced per statement.

The main difference is that they do not use graphs and graph transformations for flow
graph construction but local finite state machines that decorate an abstract syntax tree and are
connected to each other later. A specification of a programming language construct in [1] is
called a Montage and consist of three parts: a plain  syntax rule, a local finite state machine
() specified in the Montage Visual Language () and several action rules associated to
nodes in the local state machine. Figure 8.1 shows an example Montage for a referenced
variable (for the toy language presented in [1]).

A local  of a programming construct in  consists of two types of nodes: nodes
that refer to  child nodes of the construct and nodes that represent a state corresponding
to the construct (to which an action rule may be associated). By decorating each node in
an  with the corresponding local  a global, hierarchical,  is obtained. Each local
 features a initial (I, compare to entry) node and a terminal (T, compare to exit) node. By
merging these nodes between local ’s, the hierarchical global  can be flattened.
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Figure 8.1: An example Montages for a referenced variable.

8.1.2 The concept of flow graphs

Flow graphs have been widely used as an abstracted representation of code for measuring
(cyclomatic) complexity. Examples include the work of Fenton and Pfleeger on Software
Metrics [5]. In [20], Tang, Dogru, Kurfess and Tanik introduce Cubic Flow Graphs (graphs
in which each node has 3 edges incident to the node) and show how the properties of these
graphs relate to the cyclomatic complexity of the represented program. They prove that the
cyclomatic complexity of a program is equal to the number of decision nodes in its cubic
flow graph plus one and equal to the number of prime flow graphs into which the cubic flow
graph can be decomposed.

8.1.3 The graph transformation technique

Graph transformations are a transformation technique with many possible application areas
within Computer Science [17, 15]. Many extensions have been proposed to the basic graph
transformation technique (e.g. the negative application conditions we use) in order to increase
its expressiveness and thereby the applicability of the technique to areas as modeling, model
transformation, simulation, verification, constraint checking, etc.

In [11], Kastenberg gives an overview on how to introduce attributed graphs in the
 tool (the graph transformation tool we use). This will likely further increase the
expressiveness of graphs as a way of modeling, among others, control flow semantics.

In [18], Schürr argues that the common approach of having one-to-one relationships
between elements in the source graph (e.g. an abstract syntax graph) and the target graph
(e.g. a control flow graph) has it shortcomings. He introduces correspondence graphs to
accomodate for m-to-n relationships between elements in source and target graphs. His
Triple Graph Grammars thus consist of tuples of a left hand side graph, a correspondence
graph and a right hand side graph.

In the context of  [13], graph transformations are being proposed as a suitable formal
technique for model transformations by several authors. Examples include [7], in which the
authors make this point by presenting a case study on model transformations using graph
transformations for  Statecharts.

8.2 Future work

Although we think this thesis introduces an interesting framework for the specification of
control flow semantics of programming languages, there is still much work left that can be
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done to improve it. We have already described in detail some limitations of the framework
in Chapter 7. Summarizing, the three main research topics that we think should be explored
in order to improve the framework are:

1. A structured approach for simulating program execution using graphs and graph
transformations;

2. A structured approach for abstracting the syntax of programming languages;

3. Extensions of the control flow semantics framework for the specification of other kinds
of semantics of programming languages.

As mentioned in Chapter 7, we have not explored the simulation of the dynamic control
flow behaviour of programs. We believe that the development of a structured approach for
program simulation will provide additional insights in the dynamic control flow semantics
of programming languages and that the resulting simulation approach will be a valuable
addition to the framework.

Both specifications in  and flow graphs are based on an abstract syntax graph repre-
sentation. Although we have provided a meta-model and several guidelines and constraints
for abstracting programming language syntax, we have left some to (ad hoc) choices to be
made by a language designer. Examples include the choice between inheriting and com-
posing right hand side non-terminals in our graphs. A completely structured approach for
abstracting the concrete  syntax of programming languages in graphs (see Section 3.1) is
in our view desirable. An additional benefit of structuring the syntax abstraction is that the
grammar conversion can then be automated.

As mentioned in Chapter 1, we have focused on the control flow semantics of programming
languages and presented the control flow specification language . Again related to ,
a specification language for all semantics of programming languages is required for correct
model transformations. With some extensions to our graph models (for example attributed
graph grammars [11]) we believe graphs and graph transformations should be powerful
enough to serve as the basis of such a semantics specification language. Related research
here is the  project [16], which strives to develop a Language Definition Language
for specification of the semantics of all software languages, including software specification
languages (for example as are part of ).
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Appendix A

Abstract Java Grammar

This appendix presents our abstracted  grammar for a large portion of the Java pro-
gramming language [19]. This grammar is based on the  syntax grammar presented in
[6]. Chapter 3 describes the abstractions we made to the original grammar and the relation
between this abstract grammar and the abstract syntax graph representations in this thesis.

Listing A.1: Abstract Java BNF grammar
MethodBody ::=

Block

Block ::=

BlockFull | BlockEmpty

BlockFull ::=

<LCUR> orderFirst:BlockStatements <RCUR>

BlockEmpty ::=

<LCUR> <RCUR>

BlockStatements ::=

BlockStatementsNext | BlockStatementsLast

BlockStatementsNext ::=

Statement orderNext:BlockStatements

BlockStatementLast ::=

Statement

Statement ::= Block | IfStatement | ForStatement | WhileStatement | DoStatement | TryStatement | SwitchStatement |

BreakStatement | ContinueStatement | ThrowStatement | ReturnStatement | LabelledStatement | EmptyStatement |

StatementExpression | LocalVariableDeclarationStatement

IfStatement ::=

IfThen | IfThenElse

IfThen ::=

<IF> <LPAR> condition:Expression <RPAR> thenPart:Statement

IfThenElse ::=

<IF> <LPAR> condition:Expression <RPAR> thenPart:Statement <ELSE> elsePart:Statement

ForStatement ::= ForEver | ForWithInit | ForWithInitCondition | ForWithInitUpdate | ForWithInitConditionUpdate |

ForWithCondition | ForWithConditionUpdate | ForWithUpdate

ForEver ::=

<FOR> <LPAR> <SC> <SC> <RPAR> body=Statement

ForWithInit ::=

<FOR> <LPAR> init:ForInit <SC> <SC> <RPAR> body:Statement

ForWithInitCondition ::=

<FOR> <LPAR> init:ForInit <SC> condition:Expression <SC> <LPAR> body:Statement

ForWithInitConditionUpdate ::=

<FOR> <LPAR> init:ForInit <SC> condition:Expression <SC> update:ForUpdate <RPAR> body:Statement

ForWithCondition ::=

<FOR> <LPAR> <SC> condition:Expression <SC> <RPAR> body:Statement

ForWithConditionUpdate ::=

<FOR> <LPAR> <SC> condition:Expression <SC> update:ForUpdate <RPAR> body:Statement

ForWithUpdate ::=

<FOR> <LPAR> <SC> <SC> update:ForUpdate <RPAR> body:Statement

ForInit ::=
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Expression Expressions

ForUpdate ::=

StatementExpressionList

LabelledStatement ::=

label:Identifier <C> Statement

EmptyStatement ::=

<SC>

WhileStatement ::=

<WHILE> <LPAR> condition:Expression <RPAR> body:Statement

DoStatement ::=

<DO> body:Statement <WHILE> <LPAR> condition:Expression <RPAR> <SC>

TryStatement ::=

TryCatch | TryFinally | TryCatchFinally

TryCatch ::=

<TRY> body:Block catches:Catches

TryFinally ::=

<TRY> body:Block finally:FinallyStatement

TryCatchFinally ::=

<TRY> body:Block catches:Catches finally:FinallyStatement

FinallyStatement ::=

<FINALLY> body:Block

BreakStatement ::=

BreakStatementWithoutLabel | BreakStatementWithLabel

BreakStatementWithoutLabel ::=

<BREAK> <SC>

BreakStatementWithLabel ::=

<BREAK> label:Identifier <SC>

ContinueStatement ::=

ContinueStatementWithoutLabel | ContinueStatementWithLabel

ContinueStatementWithoutLabel ::=

<CONTINUE> <SC>

ContinueStatementWithLabel ::=

<CONTINUE> label:Identifier <SC>

ReturnStatement ::=

ReturnStatementWithoutValue | ReturnStatementWithValue

ReturnStatementWithoutValue ::=

<RETURN> <SC>

ReturnStatementWithValue ::=

<RETURN> returnValue:Expression <SC>

ThrowStatement ::=

<THROW> exception:Expression <SC>

Catches ::=

orderFirst:CatchClauses

CatchClauses ::=

CatchClausesNext | CatchClausesLast

CatchClausesNext ::=

CatchClause orderNext:CatchClauses

CatchClausesLast ::=

CatchClause

CatchClause ::=

<CATCH> <LPAR> type:FormalParameter <RPAR> body:Block

SwitchStatement ::=

<SWITCH> <LPAR> condition:Expression <RPAR> <LCUR> block:SwitchBlock <RCUR>

SwitchBlock ::=

orderFirst:SwitchBlockStatementGroups

SwitchBlockStatementGroups ::=

SwitchBlockStatementGroupsNext | SwitchBlockStatementGroupsLast

SwitchBlockStatementGroupsNext ::=

SwitchBlockStatementGroup orderNext:SwitchBlockStatementGroups

SwitchBlockStatementGroupsLast ::=
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SwitchBlockStatementGroup

SwitchBlockStatementGroup ::=

SwitchLabels block:BlockStatements

SwitchLabels ::=

SwitchLabel SwitchLabels | SwitchLabel

SwitchLabel ::=

SwitchLabelNotDefault | SwitchLabelDefault

Assignment ::=

left:ExpressionName operator:AssignmentOperator right:AssignmentExpression

AssignmentExpression ::=

Expression

LocalVariableDeclarationStatement ::=

mods:VariableModifiers type:Type orderFirst:VariableDeclarators

VariableDeclarators ::=

VariableDeclaratorsNext | VariableDeclaratorsLast

VariableDeclaratorsNext ::=

VariableDeclarator orderNext:VariableDeclarators

VariableDeclaratorsLast ::=

VariableDeclarator

VariableDeclarator ::=

VariableDeclaratorWithInit | VariableDeclaratorWithoutInit

VariableDeclaratorWithInit ::=

name:Identifier <BASSIGN> init:Expression

VariableDeclaratorWithoutInit ::=

name:Identifier

MethodInvocation ::=

MethodInvocationWithArguments | MethodInvocationWithoutArguments

MethodInvocationWithArguments ::=

name:MethodName args:ArgumentList

MethodInvocationWithoutArguments ::=

name:MethodName

MethodName ::=

ExpressionName | StaticMethodName | PrimaryExpressionMethodName | SuperMethodName | ClassNameSuperMethodName

ArgumentList ::=

orderFirst:Arguments

Arguments ::=

ArgumentsNext | ArgumentsLast

ArgumentsNext ::=

Expression orderNext:Arguments

ArgumentsLast ::=

Expression

Expression ::=

Literal | ExpressionName | AdditiveExpression | RelationalExpression | Assignment | MethodInvocation

ExpressionName ::=

Identifier

AdditiveExpression ::=

left:Expression operator:AdditiveOperator right:Expression

RelationalExpression ::=

left:Expression operator:RelationalOperator right:Expression

RelationalOperator ::=

<LESSTHAN> | <LESSTHANEQUAL > | <GREATERTHANEQUAL > | <GREATERTHAN >

AdditiveOperator ::=

<ADD> | <SUBSTRACT >

StatementExpression ::=

Assignment | MethodInvocation | ..

Literal ::=

IntegerLiteral | BooleanLiteral | StringLiteral | FloatingPointLiteral | CharacterLiteral | NullLiteral
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