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Samenvatting

Wireless sensor networks worden gebruikt om de omgeving in de gaten te houden. In het nieuwe tijdperk van
ubiquitous computing worden zulke netwerken op veel locaties ingezet om functionaliteit en ondersteuning
aan de gebruikers te bieden. Deze netwerken zijn opgebouwd uit kleine sensorknooppunten, uitgerust met
een snelle microcontroller en sensoren en worden meestal gevoed door een batterij. Om voorspelbaar gedrag
te krijgen, zijn de sensorknooppunten voorzien van een real-time besturingssysteem en resource beheer. Een
resource is functionaliteit die mogelijk beschikbaar is voor taken op het sensorknooppunt, bijvoorbeeld de
radio, een sensor of specifieke data. Daarnaast kunnen er nog energiebesparende algoritmes toegepast worden
om de vrije tijd te benutten van de sensorknooppunten, om zo de levens duur van de batterij te verlengen. Dit
rapport vergelijkt de prestaties van drie real-time scheduling algoritmes op sensorknooppunten, namelijk het
Earliest Deadline First (EDF), het Deadline Monotonic (DM) en het Rate Monotonic (RM) algoritme. Het
rapport vergelijkt ook de transaction en Nested Critical Section (NCS) resource beheermethodes, waarmee
de onderzochte schedulers uitgebreid kunnen worden om de resources in het systeem te beheren. Als laatste
worden twee nieuwe methodes om energie te besparen in combinatie met real-time scheduling geı̈ntroduceerd
en onderzocht. Het Earliest Deadline First with Inheritance and Scaling (EDFIS) beleid verlaagt de frequentie
van de microcontroller, terwijl het Temporal Shutdown Scheduling (TSS) beleid de processor uitschakelt als er
niets te doen is. De testen tonen aan dat het gedrag van het EDF algoritme het beste is. De transaction resource
beheermethode is de beste oplossing als er veel gedeelde resources in het systeem zijn. Als er een gemiddeld
aantal resources zijn, presteert het NCS resource beheeralgoritme beter. Als de taken een klein deel van de
processortijd beslaan, wordt de meeste energie bespaard met het TSS beleid. Wanneer de taken een groot deel
van de processor gebruiken, bespaart het EDFIS beleid de meeste energie.
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Abstract

Wireless sensor networks are used to monitor the environment. In the new era of ubiquitous computing such
networks are employed at different locations, to provide functionality and support to the users. These networks
are composed out of small sensor nodes, which contain a fast microcontroller and sensors and are typically fed
by a battery. To achieve predictable behavior the sensor nodes are equipped with a real-time operating system
and a resource policy. A resource is a functionality that is possibly available to the tasks on the sensor node, for
example the radio, a sensor or specific data. Furthermore energy conserving policies can be applied to utilize
the idle time of the sensor node, to extend its life time. This report compares the performance of three real-time
scheduling algorithms on a sensor node, namely the Earliest Deadline First (EDF), the Deadline Monotonic
(DM) and the Rate Monotonic (RM) algorithms. The report also compares the transaction and the Nested
Critical Section (NCS) resource policies, that can extend the examined scheduling protocols to manage shared
resources. Two new policies to conserve energy in combination with real-time scheduling are introduced and
examined. The Earliest Deadline First with Inheritance and Scaling (EDFIS) policy lowers the frequency of
the microcontroller, while the Temporal Shutdown Scheduling (TSS) policy disables it when there is idle time.
Performed tests show that the behavior of the EDF algorithm is most desirable. The transaction resource policy
is the best solution when there are a lot of shared resources in the system. When there is an average amount
of resources in the system, the NCS resource policy performs best. When a task set has a low utilization, most
energy is conserved with the TSS policy. Above an average utilization the EDFIS policy shows the best power
savings.
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Chapter 1

Introduction

With the growing popularity of Wireless Sensor Networks (WSNs), the demand increases to perform time
critical operations within such networks. A WSN should be ubiquitous and independent. The sensor nodes in
such a network are more than simple sensors. In the current WSN a sensor node contains a radio, ports for
multiple sensors and mostly a multiple mega hertz microcontroller. These sensor nodes have to provide a wide
range of functionality as long as possible, while they use their scarce energy from a battery.

Most of the tasks a sensor node in a WSN has to perform, are periodic tasks. Examples of such tasks are
the monitoring of the temperature each 3 minutes, periodically displaying new (status) information on a Liquid
Crystal Display (LCD) or communicating with nodes in the neighborhood. In some cases these tasks have to
be performed in real-time, which means that they have to be started and finished at a given time. This could be
the case when nodes have to synchronize periodically, with the nodes in the neighborhood. Full-time listening
would consume a lot more energy compared to the case in which all nodes would synchronize and send, one
after another, their status information, every hour. To achieve this, a task in the Operating System (OS) should
turn the receiver on at the right moment. Therefore the scheduler of the kernel should give real-time guarantees
on task execution.

Giving guarantees on task execution comes with a price. First, priorities should be given to tasks. With
priorities for tasks an ordering in the execution of the tasks is made. When a task is released or a task finishes
the OS can decide, given the priorities, which of the available tasks should be executed next. Beside that, it is
not possible to just add tasks to the task list in a real-time OS. The OS should check or know the feasibility of
the extended task list, before the new task is accepted.

As in regular operating systems a real-time operating system should also manage the access to its resources.
Examples of resources that can be available in an OS, are: the radio, the serial port or a sensor. Since tasks share
resources a kind of lock should be provided for mutual exclusive access to resources, when they are needed
by a task. With the priorities of the tasks, as assigned by the real-time OS, mutual exclusion can be granted in
multiple ways.

Even when the sensor node has nothing to do, the real-time OS can do something useful. Since energy is
scarce for sensor nodes, the sensor node can turn unused devices off in idle time to save energy. To use the
available energy and idle time optimal, the real-time kernel can shutdown the CPU or lower its clock frequency.

A real-time OS spends spends time on deciding which task should be scheduled next and, in some cases,
determining if new tasks can be added. The OS should also provide support for exclusive access to its resources.
It would be even better if the OS could decide how to save power by using the available idle time. The OS needs
additional processing power to make such decisions, while processing power and energy are typically scarce
for a sensor node. For that reason it is interesting to determine what kind of scheduling method and resource
management systems performs best under which circumstances and which method is best to use the idle time.
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1.1. Research goals

1.1 Research goals

In this report research is presented on lightweight real-time scheduling in the real-time operating system Ambi-
entRT. The research is conducted by three main goals:

• Compare the performance of the Deadline Monotonic with Inheritance, the Earliest Deadline First with
Inheritance and the Rate Monotonic with Inheritance real-time scheduling algorithms in AmbientRT.

• Compare the performance of the nested critical section resource policy with the performance of the
transaction resource policy in AmbientRT.

• Explore extensions for the scheduler in AmbientRT to achieve energy efficient scheduling, by using the
idle time.

1.2 Organization of the Report

This report starts with the state of the art in chapter 2, where the current state of the technology is discussed.
First the idea of a WSN is discussed, followed by lightweight operating systems. In the last section of this
chapter energy aware scheduling is discussed. In chapter 3 real-time scheduling is explained. The chapter starts
with the general scheduling theory and resource policies. At the end of the chapter the rate monotonic, deadline
monotonic and earliest deadline first scheduling algorithms are highlighted. In chapter 4, earliest deadline first
with inheritance and scaling is introduced. This chapter explains the theory that supports this offline frequency
scaling policy. Chapter 5 discusses the wireless sensor node. First the hardware platform is discussed, followed
by a section discussing the real-time operating system called AmbientRT. The implementation of the scheduler
extensions is discussed in chapter 6. The first thing highlighted are the extensions of the AmbientRT scheduler.
Next the feasibility analysis and the implementation of the two energy conserving scheduler extensions are
discussed. Chapter 7 discusses the performed test to compare the alternatives. First three scheduling algorithms
are compared on their processor load, followed by the comparison of two resource policies. The last part of this
chapter discusses the comparison of two energy conserving policies. The conclusion of the research is given in
chapter 8, followed by the recommendations for future work in chapter 9.
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Chapter 2

State of the art

This chapter discusses the state of the art. The new computer era of ubiquitous computing will be discussed,
including the WSNs. Special attention is given to how WSNs work and what their purpose is. These kind
of networks require independent devices running lightweight operating systems, these operating systems are
discussed in the next section. Since these devices should be energy efficient, this chapter concludes with a
section about energy aware scheduling.

2.1 Ubiquitous computing

The main idea of ubiquitous computing is funded by Mark Weiser. After the era in which everybody got his
personal computer, the era of ubiquitous computing has already started. In this era the computer should not
demand the focus and attention of the user, rather it should fade to the background and give the focus to the
problem at hand. When people learn to use a ubiquitous system sufficiently well, they cease to be aware of
it. Nowadays there are systems equipped with microcontrollers which already activate the world around us,
for example the stereo, the oven, light switches or the thermostat. Weiser expected the future to provide an
interconnection of these devices in a ubiquitous network. This kind of network interacts with the user by
sensing what the user wants and communicating it to other parts of the network, therefore location is important
in such a network. A wireless sensor network is an example of such a network.

2.2 Wireless sensor networks

In the introduction WSNs are mentioned, but not properly explained. Therefore this section will address what
the purpose of a WSN is and how it can function, followed by the description of a typical sensor node.

2.2.1 Network types

At the moment of writing the development of WSN is still busy, but the technology is becoming mature. The
first products equipped with sensor nodes become available to the market. Still a lot of research is performed
on a lot of different WSNs, which increases the application area. Culler et al. [9] provides the following three
categories:

• WSN monitoring spaces: Habitat monitoring, climate control, surveillance and intelligent alarms;

• WSN monitoring things: Structural monitoring, condition based equipment monitoring and urban terrain
mapping;

4



2.3. Lightweight Operating Systems

• WSN monitoring interactions of things with each other and the encompassing space: Complex interac-
tions, wild live habitats, ubiquitous computing environment and health care;

This is a high level categorization based on the complexity of the service performed by a WSN. In all three the
categories, the WSN consists of small devices that are monitoring variables in the environment. These devices,
called sensor nodes, communicate the monitored values to another sensor node. In the first two categories the
network has a typical tree structure, where all the values are send to the root sensor node. The root node is
connected to a more powerful network or processes the variables itself. The last category, including ubiquitous
computing, interacts with the user, which demands more processing power of the WSN. This type of WSNs
requires communication between nodes, to enable the reaction of one node when another senses specified
behavior.

The deployment of a WSN should be inexpensive. In general the nodes in a WSN should be cheap and
replaceable. To avoid reconfiguration when replacing sensor nodes, the network should be self organizing. This
means that sensor nodes are able to discover their neighbors. Using a distributed routing algorithm, the nodes
can send packets for their applications. Packets may pass multiple nodes before they reach their destination,
also called multihop routing. Note that mobility or physical placement of a node can limit its connectivity. The
transmission range can be limited by walls or the direction of the antenna.

2.2.2 Sensor node

A typical sensor node consists of a microcontroller, a transceiver and an array of sensors, powered by a battery.
This makes the sensor node a small stand alone device that can gather information, perform algorithms and
transfer information to neighbors. The microcontroller of a node typically performs computations at multiple
megahertz and has 2 to 10 kB of RAM. Compared to a modern PC, a sensor node has a very limited compu-
tational power and storage. Sensor nodes should be inexpensive and replaceable, therefore low cost hardware
is used. This causes that the used sensors are not completely reliable and accurate and not always available.
Therefore a WSN tries to combine multiple sensor nodes to get reliable results on demand.

The power consumption of sensor nodes is typically in the range of one to five milliwatt. Sensor nodes that
are battery powered, have their life time limited by the capacity of the battery. A 1.5 volt alkaline battery can
deliver 2,600 milliamp-hour [26]. A sensor node equipped with two alkaline batteries, using 1 milliamp at 3
volt, would have a life time of 2,600 hours, when it would be full time operational. Alternatives for battery
power are solar power and mechanical generated power. Solar cells can deliver about 10 mW/cm2 outdoor and
10 to 100 µW/cm2 when used indoors. Mechanical power can be generated by for example the movement of
windows or the vibrations of an air duct and delivers approximately 100 µW.

2.3 Lightweight Operating Systems

Since the usage of WSN is increasing, there is an increasing demand for lightweight OSs on sensor nodes.
Multiple OSs are available, this section will address two of them. First the commercially available Salvo RTOS
will be discussed. The open-source TinyOS will be discussed as second lightweight OS.

2.3.1 Salvo RTOS

The commercially available Salvo Real-Time Operating System(RTOS) is developed by Pumpkin, inc [18].
The OS is available for a wide range of micro-controllers, which includes the TI MSP430. Pumpkin offers the
possibility to enable features in the OS, which causes the used memory to increase. Still the OS requires a small
amount of RAM and no general purpose stack.

Salvo RTOS provides binary and counting semaphores to lock resources or data. The inter process communi-
cation is done by messages. It is possible to use message queues for multiple messages. Timers and events can
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2. State of the art

be used to trigger task release.

The scheduling algorithm used in this RTOS is cooperative scheduling. Salvo RTOS provides 15 priorities,
where a priority can be shared among multiple tasks. Cooperative scheduling is based on the idea that tasks
need to cooperate with preemption. This means that a running task is only preempted when it allows the higher
priority task to. The only forced preemption is performed by interrupts. When a task is preempted, its state is
saved to the ”hardware stack”.

The advantage of Salvo RTOS is that it is using a small amount of resources. The context switch time is
typically very low, because only the OS can force a preemption.

A disadvantage of Salvo RTOS is that the usage of semaphores introduces the risk of deadlocks or errors.
Pumpkin suggests to use timeouts when using semaphores, in case a timeout occurs an error is generated and the
deadlock is prevented. Another disadvantage is that semaphores introduce the possibility of priority inversion.
The usage of cooperative scheduling introduces a possible worst-case response time, since preemption is only
allowed by the OS.

2.3.2 TinyOS

The lightweight OS TinyOS for sensor nodes is developed by the University of California at Berkeley [22] and
the open-source community. At the moment of writing version 2.0 of TinyOS is made available. TinyOS is one
of the first OSs developed for a resource scarce and inexpensive hardware platform. The OS is divided in three
levels: a Hardware Presentation Layer (HPL), a Hardware Abstraction Layer (HAL) and a Hardware Indepen-
dent Layer (HIL). This layered structure make the OS easy adaptable to new hardware platforms. Among the
supported sensor boards is the Eyes node, this node is equipped with a MSP430 microcontroller and has a lot
in common with the µnode v2.0.

TinyOS is a component based OS, where a component is a software block implementing a specific function.
The components are ordered in a kind of graph. The lowest components in the graph are the ones implementing
the HPL functionality, the components implementing functionality from the HIL are in the top of the graph.
Each component has a command handler, an event handler, a fixed-size frame and one or more tasks to per-
form the function of the component. A higher component can issue a command to the component, which is
immediately executed, so it behaves like a function call. Events from the lower components can propagate to
the components on top of it and are scheduled in a queue.

The scheduler used in TinyOS is a non-preemptive FIFO scheduler. In the scheduler every task has its own
slot, so each task can be scheduled only once. A slot in the scheduler contains a variable which can be set to
reschedule the task after completion. This slot provides the possibility to queue additional calls to the task. The
scheduler used by TinyOS is not real-time, but can be replaced by a real-time scheduler. The scheduler is not
allowed to preempt, because it would violate the static concurrency analysis.

Version 2.0 of TinyOS provides extended support for timers. The OS provides the components a 32 kHz timer
and optionally one or two independent high precision timers, with a millisecond granularity. Resources are
introduced in version 2.0 of TinyOS, to provide an easy way to use shared buses and other shared devices.

An advantage of TinyOS is that it is layered, which makes the OS easy adaptable for other hardware platforms.
The development by the open-source community, makes that there is a large user group and that the OS is
frequently updated. Furthermore it is also a lightweight OS, so it can work with limited memory, energy and
processing power.

TinyOS has a few drawbacks. The FIFO scheduler causes the OS to react slow to hardware events. Replacing
the scheduler by a real-time scheduler could improve the lateness of these tasks, but the non-preemption con-
straint limits the effectiveness. It is not possible to determine the load of the independent tasks on the operating
system. Without this information it is not possible to determine whether the task set for the OS is feasible.
Since the applications are configured at compile time the task set cannot be adapted dynamically.
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2.4 Energy aware scheduling

The recent development of mobile computing in scarce resource environments, requires efficient allocation of
available resources. The energy consumption (P) of a processor is found with the equation P = V 2 · f · C.
The energy consumption depends on the square of the voltage (V), the frequency (f) and the average switched
capacity of the transistors (C). In general a processor is not full-time used. Since the largest energy savings can
be achieved by lowering the voltage, most algorithms try to scale this variable. When scaling the voltage the
delay in the circuit increases. With the increasing delay, the frequency should be reduced to compensate for the
increased latency in the circuit. An obvious alternative, to voltage and frequency scaling, is to disable the CPU
when it is idle.

In this section a few methods to apply voltage and frequency scaling and shutdown scheduling are discussed.
First, four online task set scaling algorithms are discussed, which are quite similar. Next subsection 2.4.2
discusses a combination between online and offline task set scaling. In subsection 2.4.3 the Pinwheel model is
discussed, where the task set can be altered to ease the application of scaling. Shutdown scheduling is discussed
in subsection 2.4.4. Subsection 2.4.5 discusses elastic scheduling, which shows a kind of behavior that can be
applied in power aware environment.

2.4.1 Online task set scaling

In literature multiple frequency and voltage scaling algorithms are proposed. Multiple articles, propose an
online scheduler extension to utilize slack time. In the articles [20], [25] and [11] an extension for the Earliest
Deadline First (EDF) scheduling is proposed. Sinha [27] even proposes an extension for a Rate Monotonic
(RM) and EDF scheduler.

The articles use a simplified scheduling model for EDF and RM, where the deadlines are equal to the periods
and no resources are considered. This makes it possible to use the simple EDF feasibility test, which states
that the utilization (U) is smaller or equal to 1, this will be presented in section 3.8.2. The scaling of the
tasks is performed online, which means that the scheduler determines the frequency of a task when it starts
the task. Tasks are annotated with a maximum computation time C, which is in general higher then the actual
computation time. The time a task has left between the time it finishes and when it should be finished, is called
the slack time. The mentioned extensions, propose to record the slack time of the previous task. Since the slack
time is unused time, the next task can be slowed down to use it. Because the scaling for this task is performed
with its computation time (C), it probably finishes earlier, enabling the next task to be scaled.

2.4.2 Offline and online task set scaling

In [19], a combination of online and offline scaling is proposed. The proposed algorithm is an extension of RM
scheduling, with a simplified scheduling model without resources. The offline part of the algorithm scales the
utilization of the task set to the least upper bound of the RM schedule (see equation 3.15). The online scaling
is performed using the slack time of the tasks, as explained in the previous subsection.

2.4.3 Pinwheel model

In [14] the Pinwheel model is presented. This model can be used to rearrange the periods of a task set, scheduled
with the RM algorithm and without resources. The periods of the task are rearranged and decreased in such a
way that the periods become harmonic. When a smaller period is assigned to a task it is called more frequent,
therefore the scheduler used with this model should transforms the additional calls to idle time. Using this, the
task set stays feasible and the real-time constraints of the original task set stay valid. The harmonic periods
cause less scheduler calls, even though the periods are shorter.

In addition, [13] uses the offline Pinwheel model to provide information for predictable online scheduling.
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An online Linear Programming (LP) algorithm is used to calculate the optimal frequencies for the tasks in the
altered task set. Additional energy savings are gained by using the actual computation times of the tasks in the
LP algorithm, although the real-time constraints of the task set are not guaranteed in this case.

2.4.4 Shutdown scheduling

Jejurikar [16] proposes a combination of offline task set scaling and shutting down the CPU when it is not
needed. These methods can be applied on task sets scheduled with EDF, without resources and with tasks
having deadlines equal to their periods. A critical frequency for the CPU is found in this article, below which
the leakage of the CMOS exceeds the savings achieved by applying a lower voltage. Therefore it is proposed
to scale the task set to a frequency with the optimal combination of leakage and power per cycle.

The article addresses a few draw backs that can be encountered, when shutting down the CPU for small
periods. The overhead that can be encountered are that the registers need to be stored and that the caches and
the transition look aside buffer are lost. Therefore it is proposed to create large gaps in the schedule, with
a procrastination algorithm, in which the CPU can be disabled. The article claims that the combination of
shutting down the CPU in idle time and scaling the task set to the optimal frequency delivers optimal power
savings.

2.4.5 Elastic scheduling

Buttazzo [6] proposes elastic scheduling for flexible workload management. Although it is not the main purpose
to save energy, the described algorithm could be applied to enable flexible power consumption. The main idea
is that periods of tasks can be treated as springs. This makes the utilization of the tasks flexible. The scheduling
algorithm used is EDF and can be extended with the stack resource policy. The scheduling model assumes
that the deadline is equal to the end of a period for a task. Each task is annotated with a minimal and maximal
period, to denote the elasticity. When the period of the task increases, the service delivered by the task decreases
and the utilization of the task set drops. The periods of the tasks in the task set can be increased to lower the
utilization, which makes it possible to insert a new task. The periods of tasks can also be increased or decreased
to adapt the quality of the system during run time. In combination with shutdown scheduling, elastic scheduling
can provide a certain quality of service and shutdown scheduling can save energy during idle time.
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Chapter 3

Real-time scheduling

Real-time systems can be divided in two classes, hard and soft real-time systems. When a task fails in a
hard real-time system, correct system behavior cannot be guaranteed. To cover the worst-case scenario, the
feasibility of a schedule for such a system should be verified. If a task fails in a soft real-time system, the
behavior of the system stays correct, only the quality of the delivered services will decrease.

In the first section of this chapter an introduction to real-time scheduling is given. Following, section 3.2
presents the general scheduling assumptions. The next section discusses the general scheduler model. In
section 3.4 resources in general and two possible resource policies are discussed. Admission and removal of
tasks from task sets during run time, is discussed in section 3.5. This chapter concludes with the discussion
of the RMI, DMI and EDFI real-time scheduling algorithms. The discussion will start with a section about
the simple and fast Rate Monotonic scheduling, followed by a section about its extension, called Deadline
Monotonic scheduling. The Earliest Deadline First algorithm differs from the other two and is discussed last.
These three sections have a similar structure, with an introduction of the scheduling algorithm, its definition,
the blocking conditions and the feasibility analyses.

In this chapter the definitions and theory behind the scheduling problem will be addressed. Although some
readers will be familiar with it, it can be read to clarify definitions or methods in the report.

3.1 Basic definitions

In the discussion of real-time scheduling a few basic definitions are used. In most cases the notation of Jansen
[15] and Buttazzo [7] are used.

The first to discuss is periodic tasks. A periodic task is performed on a given frequency. The difference
between concrete and non-concrete periodic tasks [17], is that concrete periodic tasks are non-concrete periodic
tasks extended with a phase. The phase of task i is denoted with Φi and represents the time after time t = 0,
when the periodic task is released.

A periodic task is described with τi, i ∈ (1,..,n). Each periodic task τi has a relative deadline Di, a minimum
period Ti and a maximum computation time Ci. An invocation of a task is called a job. The kth invocation
of task i is denoted with τk

i , k∈(1,2,. . . ). Each invocation of τi has its own absolute release time rk
i and

absolute deadline dk
i . Constraints for the absolute values of periodic tasks are: dk

i = rk
i + Di, dk

i ≤ rk+1
i and

rk+1
i − rk

i ≥ Ti for any i ≥ 1, k ≥ 0. Beside the absolute release time and deadline, job τ
j
i has an absolute

starting time s
j
i and absolute finishing time f

j
i . Using the absolute finishing time and the absolute deadline, the

time a task has left till its deadline can be calculated, called the lateness L
j
i . The lateness of a job τ

j
i is given

by f
j
i − d

j
i = L

j
i , where in general the lateness is negative. Figure 3.1 shows an example, which contains the

discussed variables.
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Figure 3.1: Single periodic non-concrete task with its parameters

Not every task is periodic. There are also tasks that are released at a random moment. Such tasks are called
sporadic tasks. These tasks have the same relative and absolute variables as periodic task. The only different
constraint is the one used for the release time. For a sporadic task the (k+1)th invocation happens at rk+1

i ≥
rk
i + Ti.

Tasks that have to be executed are grouped in a task set. A non-concrete periodic task set is denoted with Γ
and consists of n periodic tasks. Task sets containing concrete periodic tasks are denoted with Ω.

Beside the definitions for tasks and jobs there are also a few functions expressing the behavior of the tasks in
the task set. Bellow the utilization, the workload, the processor demand function and the Baruah point will be
defined.

Using the basic definitions of tasks, it is possible to calculate the utilization of a task set, as in definition 3.1.1.
Note that when U > 1, the schedule is not feasible. There is more load than time to resolve it.

Definition 3.1.1. (Utilization)
The utilization U, is the fraction of processor time spent executing the task set. It is defined as:

U =
n
∑

i=1

Ui =
n
∑

i=1

Ci

Ti

(3.1)

The workload W(t) of a task set is introduced by Audsley [3]. The equation for W(t) as defined below is used
in the feasibility analysis of the EDFI scheduling algorithm.

Definition 3.1.2. (Workload)
The workload offered to the processor by all n tasks, between time 0 and t, is defined by:

W (t) =
n
∑

i=1

⌈

t

Ti

⌉

Ci (3.2)

This function determines the times a task has been released till time t and multiplies it with the computation
time of the task, the work load is the summation of these values for all the tasks. The feasibility algorithms
for RMI and DMI scheduling use of an altered version of the workload function. This function calculates the
workload only for the j higher priority tasks in the task set. The equation for this function is:

W j(t) =

j
∑

i=1

⌈

t

Ti

⌉

Ci (3.3)

The processor demand represents the amount of computation time requested by all jobs that are performed in
the period between time 0 and time t. This can be calculated by multiplying the number of deadlines of each
task in the period, with the computation time of this task and summing the resulting values for the whole task
set. With this equation the feasibility of task sets, scheduled with the EDFI algorithm, can be determined.

Definition 3.1.3. (Processor demand)
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The load that should be resolved by the processor, between t = 0 and t = n, is defined by:

H(t) =

n
∑

i=1

⌊

t − Di + Ti

Ti

⌋

Ci (3.4)

Baruah [28] derived an upper bound for the processor demand function. Using this upper bound a point can
be found where this line crosses the processor capacity line, the t = LB line. After this point, the processor
demand will never be larger than the processor can manage.

Definition 3.1.4. (Baruah point)
The time LB limits the period after which the processor demand will always be smaller than the processor
capacity:

LB =

∑n

i=1(1 − Di

Ti
) · Ci

1 − U
(3.5)

The point LB can be derived from the H(t) function by first defining the upper bound of H(t), also called the
Baruah line:

H(t) =

n
∑

i=1

⌊

t − Di + Ti

Ti

⌋

Ci <

n
∑

i=1

(

t − Di + Ti

Ti

)

· Ci = BL(t) (3.6)

The point where this upper bound is equal to t can be found by solving the following equation:

t =
n
∑

i=1

(

t − Di + Ti

Ti

)

· Ci

t =

n
∑

i=1

Ci

Ti

· t +

n
∑

i=1

(

Ti − Di

Ti

)

· Ci = U · t +

n
∑

i=1

(

1 −
Di

Ti

)

· Ci

t(1 − U) =

n
∑

i=1

(

1 −
Di

Ti

)

· Ci

t =

∑n

i=1

(

1 − Di

Ti

)

· Ci

1 − U
= LB (3.7)

3.2 Assumptions

For the theory in this report, the assumptions of Jansen [15] are used:

• All tasks in the task set are periodic.

• The schedulers use a highest priority first algorithm.

• The discussed algorithms are non-idling. This means that when there are tasks released and waiting for
execution, the processor cannot be idle.

• Scheduling overhead is assumed to be included in the maximum computation time Ci of the task.

• All tasks are independent of each other. There are no precedence constraints, i.e. there is no task that has
to wait with executing till another task, referenced with the precedence constraint, has finished.

• Deadlines consist of run-ability constraints only, i.e each task must be completed before the next request
for it occurs.
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Figure 3.2: Real-time scheduler, with preemption stack, release queue and waiting queue

3.3 General model

In general the transaction system is used in real-time schedulers, see Figure 3.2. This system defines the release
and waiting queue and the preemption stack. Tasks are moved from the waiting queue to the release queue when
a certain event occurs, for example the event generated by a timer on the start of a new period can release a task.
The tasks in the release queue are ordered according to the priority rules of the used scheduling algorithm. The
scheduler decides, with the rules of the scheduling algorithm, if the task at the head of the release queue should
preempt the task currently on top of the stack. This causes the stack to be arranged according to priority. When
a running task finishes, it is placed in the waiting queue.

3.4 Resources

In most operating systems, tasks use resources. Resources are functionality available to the whole or parts of
the system. Example resources are: specific data, a sensor or a radio for wireless communication. Because
resources are shared, read and write access to them has to happen under mutual exclusion. It is assumed that
multiple tasks are allowed to read a resource at the same time. Since scheduling algorithms with priorities are
used, mutual exclusion can be achieved by inheritance of the priority from the highest priority task, that will
access the resource. First the read and write floor and the inherited deadline are defined. At the end of this
section two resource policies will be discussed.

Each resource has a read floor and write floor, which contain the highest priority of the tasks that read or
write the resource, respectively. The read and write floor are defined by Jansen [15] and slightly modified by
Maurer [24]:

Definition 3.4.1. (Read floor Dr
R)

Dr
R = min({∞} ∪ {Di|τi ∈ γw(R)}) (3.8)

where γw(R) is the set of tasks that writes resource R.

Definition 3.4.2. (Write floor Dw
R)

Dw
R = min({∞} ∪ {Di|τi ∈ γw+r(R)}) (3.9)

where γw+r(R) is the set of tasks that writes and/or reads resource R.

According to Jansen [15], it is possible to define the inherited deadline ∆i of τi with the previous definitions.
In this report, the deadline is used as value for the priority. In the special case of rate monotonic scheduling,
the deadline should be equal to the period. When the deadline becomes smaller, the priority rises. Furthermore
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3.4. Resources

the set of resources read by τi, is denoted with ρr
i and the set of written resources with ρw

i . With these, the
inherited deadline ∆i can defined as:

Definition 3.4.3. (Inherited deadline)

∆i = min({Di} ∪ {Dw
R|R ∈ ρw

i } ∪ {Dr
R|R ∈ ρr

i }) (3.10)

3.4.1 Transactions

When tasks behave like transactions, a task only starts when it can use all the required resources without any
synchronization. A transaction is run in such a way, that it is run to completion, it should not wait for resource
access once it is started. It is however possible that a task is preempted by a higher priority task.

To make sure that a task is not blocked, when it acquires a resources, the deadline inheritance can be used
(equation 3.10). This way, if the task can start, it is granted non-blocking use on the shared resources it uses,
because it has the highest priority for that resources. Furthermore the priority inheritance can be determined
statically. It is known at forehand which resources a task needs, so for each resource the read and write floor
can be determined, which can be used to determine the ∆i of the tasks.

The resources used by a task are define by ρ. Capital letters are used when write access to a resource is
needed, lowercase letters for read access.

ρ : ρw ρ | ρr ρ | λ
ρr : ′a′..′z′

ρw : ′A′..′Z ′

3.4.2 Nested critical sections

Tasks can also use Nested Critical Sections (NCS). An NCS denotes a period, during task executing that certain
resources are used. The task will signal the OS when entering or leaving the NCS, this way the OS can arrange
mutual exclusive access to the resources during the NCS. Note that, when tasks would be allowed to have
only one NCS with the length of the task, the NCS resource policy would behave like the previous explained
transaction resource policy.

The NCSs of task τi are denoted with Zi. Bellow two definitions of Jansen [15] are combined to define the
NCS resource policy:

Definition 3.4.4. (Nested Critical Sections)
Task τi has mi critical sections in Zi, where Zi = {Zi,0, . . . , Zi,mi

}.

• Zi,j = ( ρi,j , ∆i,j , Si,j) where ρi,j denotes the set of resources used in this critical section, ∆i,j is the
inherited priority for this critical section and Si,j denotes the maximum duration that these resources
will be used.

• Critical sections fully overlap or are completely disjoint.

• Zi,0 = (∅, Di, Ci), this describes the deadline and the computation time of the task.

The inherited deadline as used in definition 3.4.3 concerns the resources used by a task, while ∆i,j in def-
inition 3.4.4 concerns only the resources used by one NCS. When ρr

i and ρw
i are redefined as the set of read

or written resources, respectively, for an NCS, definition 3.4.3 can be used. This leaves the entering and the
leaving of a critical section undefined:

Definition 3.4.5. (Entering and leaving an NCS)
When task τi enters a nested critical section Zi,j , its ∆i drops to min(∆i,∆i,j). When the NCS is left, ∆i is
restored to the value it had before entering.
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Figure 3.3: Nested Critical Section

As for transactions ρ defines the used resources for a task. Capital letters or lower case letters are used for
write or read access, respectively. The time a task uses a set of resources is given by a float.

ρ → float { ρ̃ ρ } | λ
ρ̃ → ρr | ρw | ρr ρ̃ | ρw ρ̃

ρr → ′a′..′z′

ρw → ′A′..′Z ′

An example concerning the usage of NCSs is given in Figure 3.3. In this Figure task τ3, from task set Γ1

(Table 3.1), is highlighted. The task starts with its normal delta level of 45. When the task claims resource b
and a for writing, its delta level drops to 20 and 10, respectively. These delta levels are equal to the deadlines
of the tasks τ2 and τ1. The delta level of the task rises to the previous level when an NCS is left.

Table 3.1: Worst-case transaction task set Γ1

Γ1 Di Ti Ci ρi

τ1 10 20 2 2{a}
τ2 20 25 3 3{b}
τ3 45 50 30 5{B 2{ A }}

3.5 Task admission and removal

When a task is added to a running task set, first the feasibility of the extended task set has to be analyzed.
When the extended task set is feasible, the new task can be released. However, admitting the task may cause
the inherited deadlines to change, which may jeopardize the ordering of the preemption stack. For example,
when the task with lowest priority has the largest ∆, corresponding to the lowest priority, a not shared resource
and is at the moment of admission at the bottom of the preemption stack. The new task has the highest priority
and writes the resource of the lowest priority task. Adding this new task, would cause the ∆-value of the lowest
priority task to drop beyond all the deadlines of the tasks on the stack, invalidating the stack ordering. This may
cause transitive blocking.

Jansen proposed two methods to insert tasks without disturbing the stack ordering. The first solution is to wait
for idle time. Since a new task can be added, the utilization of the task set is below 1, so there will be idle time.
The second solution is to alter the preemption condition. This solution is outside the scope of this text, details
can be found in [15].

Tasks can be instantly removed from a task set. Since the removal of a task can only cause the ∆-value to rise
till the deadline of the task, the ordering of the stack stays valid.
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3.6. Rate Monotonic with Inheritance

3.6 Rate Monotonic with Inheritance

In 1973 Liu and Layland introduced Rate Monotonic (RM) scheduling [23]. They showed that RM is the
optimal scheduling algorithm, among all fixed priority assignment scheduling algorithms.

Jansen [15] proposed the extension of Deadline Monotonic (DM) and RM scheduling with Inheritance, called
DMI and RMI, respectively. The inheritance is introduced, so the tasks can use resources in a mutual exclusive
way. Therefore each task τi is extended with a ∆i as proposed in definition 3.4.3. The used resource policy is
important for the determination of the maximum blocking time, which can be used to determine if task set are
feasible.

Definition 3.6.1. (RMI scheduling)
The following rules define RMI scheduling:

• The priorities of the tasks are assigned inversely proportional to the periods of the tasks.

• ∀ τi ∈ Γ, the Di = Ti.

• If τi is in the ready queue, the running task τr will be preempted,
if (Ti < Tr) ∨ (Ti < ∆r) = Ti < ∆r

3.6.1 Blocking

When RMI scheduling is used, mutual exclusive access to resources should be granted, as described in section
3.4. Therefore the inherited deadline ∆i may contain a higher priority, than the τi actually has. When τi is
running and there is a task in the ready queue with a priority between ∆i and Ti, this task is blocked.

Definition 3.6.2. (Waiting or blocking, with RMI scheduling)
If τi is in the release queue and τr is on top of the stack of the processor, τi is waiting if:

Tr ≤ Ti

τr blocks τi, if:

Tr > Ti ∧ ∆r ≤ Ti = ∆r ≤ Ti < Tr

In [15] it is proved that there can be at most one blocker when using the proposed resource policies, with DMI
scheduling. Since RMI is a special case of DMI, where the deadlines are equal to the periods, the prove also
applies to RMI. With RMI and DMI scheduling, the blocker is running or preempted at the run time stack. This
because the run time stack is fully ordered. This implies, that there will be at most one task on the run time
stack which satisfies the blocking condition. Since transitive blocking cannot occur, there will be no deadlocks.

It is possible to calculate the maximum blocking load for a task with CB(Ti), as proved in [15]. The function
CB(L) can be defined by:

Definition 3.6.3. (Blocking interval, with RMI scheduling)
The maximum blocking experienced, when using transactions, in an interval with length L is expressed by:

CB(L) = max
j

{Cj |∆j ≤ L < Tj} (3.11)

The maximum blocking experienced, when using Nested Critical Sections, in an interval with length L is ex-
pressed by:

CB(L) = max
j,k

{Sj,k|∆j,k ≤ L < Tj} (3.12)
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Figure 3.4: Critical instant for a lower priority task

3.6.2 Feasibility

The feasibility of a task set can be determined using a sufficient algorithm. This means that, when the task set
is determined to be feasible it is feasible. In case it is found to be infeasible by the sufficient algorithm, it can
still be determined feasible by the sufficient and necessary feasibility algorithm. If a sufficient and necessary
feasibility algorithm determines that a task set is infeasible, it cannot be scheduled by the scheduling algorithm.
In general a sufficient feasibility algorithm can be expressed with a short formula, such as the Ulub or the
hyperbolic bound, see equation 3.15 and 3.16, respectively. In general a necessary and sufficient feasibility
algorithm is a bit more complex.

First a short analysis of the tasks in the task set will be performed. Using this information, a sufficient schedul-
ing algorithm for RM will be derived, called the hyperbolic bound. This section ends, with the discussion of
the necessary and sufficient scheduling algorithm as introduced by Audsley et al.

Worst-case release times

To determine if a task set is feasible, it is best to check the worst-case situation for the tasks. For that reasons
the critical instants are analyzed first. The analysis does not include inheritance, but stays valid when added.
Besides that the analysis below is performed with RM scheduling. Analog to this analysis a version for DM
scheduling can be derived.

Theorem 1. (Critical instant for a task [23])
A critical instant for any task occurs, if the task is released at the same time t as the higher priority tasks.

Proof : It is first shown that a critical instant occurs when a task τi is released at the same time as all higher
priority tasks {τj |τj ∈ Γ; j < i; Φi = Φj = 0}. All tasks in the task set Γ are ordered according to their
priority, where the tasks τ1 and τn have the highest and the lowest priority, respectively.

Assume task τi is released later or at the same time as task τi−1, so Φi ≥ Φi−1. According to RM Ti > Ti−1,
so one job of τi will overlap at least two jobs of τi−1. A job of τi−1 will delay a job of τi, when τi−1 is still
executing. To achieve the largest delay, the higher priority task should execute as long as possible while the job
of τi still has to execute. As can be seen for the tasks τ1 and τ2 in Figure 3.4, the longest delay for τ2 can be
achieved when τ1 and τ2 are released simultaneously.

Repeating the previous argument for all tasks from the task set, it is shown that the worst-case response for
the tasks occurs when they are released at the same time as the higher priority tasks. 2

Knowing that the a critical instant occurs when all tasks in a task set are released simultaneously, the worst-
case situation has not completely been defined. It is possible to maximize the utilization of the task set, by
determining the worst-cast parameters for the tasks (Figure 3.4). According to Liu and Layland [23] these
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3.6. Rate Monotonic with Inheritance

parameters are:

T1 < Tn < 2T1

C1 = T2 − T1

C2 = T3 − T2

. . . (3.13)
Cn−1 = Tn − Tn−1

Cn = T1 −
n−1
∑

i=1

Ci = 2T1 − Tn

General feasibility condition

Jansen defined a feasibility condition for a task set scheduled with DMI, derived from the condition of Leung
et al [21]. From this theorem the feasibility for a task set scheduled with RMI can be derived, since RMI can
be regarded as DMI with Di = Ti.

Theorem 2. (RMI feasibility)

A set Γ scheduled with RMI is feasible under blocking, if:

∀i : 1 ≤ i ≤ n : ∃t : 0 < t ≤ Ti : W i(t) + CB(Di) ≤ t (3.14)

Proof : Jansen states that the proof is based on two observations. First, when all task are released at t = 0 the
load is shifted to the left (theorem 1), which results in the maximal amount of load for i tasks, which can be
examined with the Wi(t) function. Furthermore maximum amount of blocking for i tasks can be found with
CB(Di). The second observation is that, if for these i tasks the load can be resolved before Di, which is equal
to Ti, The worst-case situation can be handled, so Γ is feasible.2

Sufficient feasibility algorithms for RM

In [23] the least upper bound for the utilization of a task set scheduled with RM is derived. The least up-
per bound is defined by Liu and Layland as in equation 3.15. When n converges to ∞ in this equation,
limn→∞ Ulub = ln2 ≈ 0.69 can be found as least upper bound.

Ulub = n(2
1
n − 1) (3.15)

The hyperbolic bound is derived in [4] and [5] by Bini et al. They derive a bound for the feasibility of a task
set scheduled with RM, which is sharper than the least upper bound in equation 3.15. Therefore the derivation
of the hyperbolic bound will be discussed next.

Theorem 3. (Hyperbolic bound)
A task set Γ with n tasks, is schedulable with the RM scheduling algorithm if:

n
∏

i=1

(Ui + 1) ≤ 2 (3.16)

Proof : Using theorem 1 and equation 3.13, the worst-case scenario can be described. When defining

Ri = Ti+1

Ti
and Ui = Ci

Ti
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3. Real-time scheduling

equation 3.13 can be rewritten as follows:

U1 = R1 − 1

U2 = R2 − 1

. . .

Un−1 = Rn−1 − 1

Un =
2T1

T2
− 1

Now it can be seen that:

n−1
∏

i=1

Ri =
T2

T1

T3

T2
. . .

Tn

Tn−1
=

Tn

T1

Using this, the maximum utilization of the task set can be derived. Note that the search minimizes the maximum
utilization among the tasks. The found criterion for feasibility is:

Un ≤
2

∏n−1
i=1 Ri

− 1

Since ∀i ∈ {1, . . . , n − 1} Ri = Ui + 1, it can be derived that:

(Un + 1)

n−1
∏

i=1

(Ui + 1) ≤ 2

from which equation 3.16 can be derived. 2

Necessary and sufficient feasibility algorithms for RMI

A necessary and sufficient feasibility analysis for RM is described by Audsley et al. [2]. Originally this
algorithm was described for DM scheduling. The analysis is based on the examination of the longest response
time Ri in a part of the task set. The response time is the sum of the interference Ii and the computation time
Ci of task τi:

Ri = Ci + Ii (3.17)

Ii =

i−1
∑

j=1

⌈

Ri

Tj

⌉

· Cj

Since both sides of the equation contain the variable Ri, the smallest value that satisfies equation 3.17 should
be found. A method is proposed with multiple estimations, where Rk

i denotes the kth estimate of Ri. The Ik
i is

used to define the interference on τi in the interval [0,Rk
i ]:

Ik
i =

i−1
∑

j=1

⌈

Rk
i

Tj

⌉

Cj (3.18)

Ri for task τi is calculated by the following three steps:

1. R0
i = Ci ∧ k = 0.

2. Ik
i for the interval [0,Rk

i ] is computed by equation 3.18.

3. In case Ik
i + Ci = Rk

i , than Rk
i = Ri is the worst-case response time.

Else the next estimation can be obtained with Rk+1
i = Ik

i + Ci, jump to step 2 for the next iteration.
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3.7. Deadline Monotonic with Inheritance

In the main iteration of the feasibility algorithm, the subset of the task set is extended with the highest priority
task τi, which is not already in the subset. The response time Ri is the time in which the load of the subset with
task τi, can be resolved. All tasks are released at the same time to create the worst-case instant, as shown in
theorem 1. When the longest response time Ri, is smaller than the longest deadline Di in the subset the subset
is feasible. The analysis is extended to support inheritance and blocking. This is done by adding the possible
blocking time Bi, of the remaining task set, to the response time Ri of the subset. This gives the following
algorithm:

Algorithm RMI feasibility analysis
schedulable = unknown;
tasks = order according period(Γ);
processed = ∅;
R = 0; // Response time
I = 0; // Interference
while ( tasks 6= ∅ ∧ schedulable == unknown) {

// Examine the following task
τi = get first( tasks );
R̃ = 0;
Bi = maxj{Cj |τj ∈ Γ; τi 6= τj ;∆j ≤ Ti < Tj};
R = Ci + Bi;
while ((R 6= R̃) ∨ (R > Ti)) {

R̃ = R;
I = 0;
for { list = processed; list 6= ∅; τj = get first(list) } {

I = I +

⌈

R̃
Tj

⌉

· Cj ;

}
R = Ci + I + Bi;

}
if (R > Ti) {

schedulable = not feasible;
}
append(τi, processed);

}
schedulable = feasible;

3.7 Deadline Monotonic with Inheritance

The Deadline Monotonic (DM) scheduling algorithm was introduced by Leung and Whitehead in 1982 [21].
The DM algorithm drops the constraint of RM, which states that ∀τi ∈ Γ : Di = Ti. This introduces the
deadline parameter for each task. Leung and Whitehead also proved the optimality of DM, which means that
DM schedules all possible task sets which other static priority algorithms can schedule.

As stated in the previous section, Jansen [15] proposed the extension of RM and DM scheduling with inher-
itance, called DMI and RMI, respectively. The definition of a task τi is therefore extended with the proposed
∆i, from definition 3.4.3.

Definition 3.7.1. (DMI scheduling)
The following rules define the DMI scheduling:

• The priorities of the tasks are assigned inversely proportional to the deadlines of the tasks.

• If τi is in the ready queue, the running task τr will be preempted, if (Di < Dr)∨(Di < ∆r) = Di < ∆r
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3. Real-time scheduling

3.7.1 Blocking

The DMI scheduling algorithm is meant to schedule tasks with resources, so it is possible that blocking occurs.
Since DMI scheduling is very similar to RMI scheduling, the main part of the blocking computation is similar to
section 3.6.1. The major difference is the used priority variable. DMI scheduling uses the deadline as priority
and RMI scheduling uses the period. To avoid confusion, the definitions will be restated for DMI, with the
correct variables.

Definition 3.7.2. (Waiting or blocking, with DMI scheduling)
If τi is in the release queue and τr is on top of the stack of the processor, τi is waiting if:

Dr ≤ Di

τr blocks τi, if:

Dr > Di ∧ ∆r ≤ Di = ∆r ≤ Di < Dr

Jansen [15] showed that there can be at most one blocker when using the proposed resource policies from
section 3.4, with DMI scheduling. The blocker is running or preempted on the run time stack, because the run
time stack is fully ordered. Since the preemption condition for DMI is used, every task on the run time stack
has a smaller Di than the ∆j of the task below it on the stack. This implies that there will be at most one task on
the run time stack which satisfies the blocking condition. As for RM, the absence of transitive blocking makes
it impossible that deadlocks occur. Because it is not possible that tasks that share resources are at the run time
stack at the same time, mutual exclusive access to shared resources is provided.

The maximum blocking load for a task can be found with CB(Di). The function CB(L) can be defined by:

Definition 3.7.3. (Blocking interval, with DMI scheduling)
The maximum blocking experienced, when using transactions, in an interval with length L can be expressed

by:

CB(L) = max
j

{Cj |∆j ≤ L < Dj} (3.19)

The maximum blocking experienced, when using NCSs, in an interval with length L can be expressed by:

CB(L) = max
j,k

{Sj,k|∆j,k ≤ L < Dj} (3.20)

3.7.2 Feasibility

The feasibility of a task set scheduled with DM scheduling can be determined with a sufficient and a suffi-
cient and necessary algorithm. First the general feasibility condition for of a task set scheduled with DMI is
introduced. Next a very simple sufficient feasibility algorithm is presented. This subsection concludes with the
necessary and sufficient algorithm, which is an optimized version of the sufficient and necessary algorithm in
section 3.6.2.

General feasibility condition

Theorem 4. (DMI feasibility (Jansen))
A set Γ scheduled with DMI is feasible under blocking, if:

∀i : 1 ≤ i ≤ n : ∃t : 0 < t ≤ Di : W i(t) + CB(Di) ≤ t (3.21)

Proof : The proof is as presented in theorem 2. The only difference is the priority parameter, period Di which
can be smaller than Ti, when DMI scheduling is used.2
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3.7. Deadline Monotonic with Inheritance

Sufficient feasibility analysis for DM

From the feasibility test of Lui and Layland in equation 3.15 a sufficient test for DM scheduling can be derived.
Since the period Ti of the tasks is increased, the utilization is decreased, which does not affect the feasibility.
A task set scheduled with DM is feasible if the following equation holds:

n
∑

i=n

Ci

Di

≤ n(2
1
n − 1) (3.22)

Necessary and sufficient feasibility analysis for DMI

In [15] an optimization of the original algorithm of Audsley et al. 3.6.2 is discussed. The algorithm of Jansen
accounts every release of a task once, instead of recalculating the interference in every cycle of the main loop.
An altered version of the workload function is used to determine the amount of interference. This function
determines the workload for a subset {τ1 . . . τj} ⊂ Γ, as presented in equation 3.3. Furthermore the algorithm
is extended to account for blocking. The complexity of the optimized feasibility algorithm is of O(n).

A graphical representation of the algorithm is given in Figure 3.5 for task set Γ2 in Table 3.2. The blocking
is visualized with the gray dotted lines, with a cross on top of it. Note that the optimized feasibility algorithm
does not start at t = 0 for each W j(t), but takes W j−1(t) and simply adds Cj to it and continues from the
previous t.

The algorithm presented below has been slightly adjusted, but the core functionality is the same. Each iteration
of the main loop extends the examined task set with the highest priority task, which is not already in the
examined task set. After every execution of the inner loop, the variable W holds the value of W j(t).

Table 3.2: Example task set Γ2, using NCS
Γ2 Di Ti Ci Zi

τ1 3 5 1 1{a}
τ2 6 7 2 1{b}
τ3 7 7 3 1.5{B 1{ A }}

Algorithm DMI feasibility analysis, optimized

schedulable = true;
j = 1;
W = 0;
while ((j ≤ n) ∧ schedulable) {

B = maxk{Ck|∆k ≤ Dj < Dk};
putOrdered(inferList,(0,j));
(t,i) = (0,j);
while (t < Dj ∧ ((W + B > t) ∨ (t == 0))) {

W += Ci;
shift(inferList);
putOrdered(inferList,(t+Ti,i));
(t,i) = first(inferList);

}
schedulable = (W + B) ≤ Dj ;
j++;

}
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Figure 3.5: Graphical representation of DMI feasibility analyzes for task set Γ2

3.8 Earliest Deadline First with Inheritance

With the introduction of RM scheduling Liu and Layland introduced deadline driven scheduling [23], nowadays
known as Earliest Deadline First (EDF) scheduling. They introduced it as a dynamic priority scheduling algo-
rithm, where the priorities are assigned to the task according to the deadlines of their current requests. They
also prove that EDF is the optimal scheduling algorithm among all dynamic priority scheduling algorithms.
This means that every schedule that is found feasible with any dynamic priority scheduling algorithm is feasi-
ble with the EDF scheduling algorithm. In [7] Buttazzo repeats the proof of Dertouzos, to show the optimality
of EDF. With the proof Buttazzo also shows that EDF minimizes the maximum lateness.

Jansen proposed the extension of EDF with inheritance. The Earliest Deadline First with Inheritance (EDFI)
algorithm can be used with the proposed resource policies in section 3.4.

Definition 3.8.1. (EDFI Scheduling)
The following rules define EDFI scheduling:

• The priorities of tasks are assigned inversely proportional to the absolute deadlines of the tasks.

• If τ
j
i is in the ready queue, the running task τ k

r will be preempted, if (dj
i < dk

r ) ∧ (Di < ∆r).

3.8.1 Blocking

As RMI and DMI, the EDFI scheduling algorithm is also meant to schedule tasks with resources. Therefore
the tasks are extended with the proposed ∆ from definition 3.4.3. This means that it is possible that blocking
occurs. In the next definitions the waiting and blocking will be defined.

Definition 3.8.2. (Waiting or blocking, with EDFI scheduling)
If the job τ s

r is in the release queue and job τ
j
i is on top of the processor stack, τ s

r is waiting if:

d
j
i ≤ ds

r
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3.8. Earliest Deadline First with Inheritance

τ
j
i blocks τ s

r , if:

d
j
i > ds

r ∧ ∆i ≤ Dr

In [15] Jansen shows that there is at most one blocker when using the proposed resource policies 3.4, with
EDFI scheduling. The blocker is running or preempted at the processor stack. Since the tasks are allowed
to preempt the running instance according to the he EDFI scheduling as defined in 3.8.1, the processor stack
is ordered. This implies that there will be at most one task at the processor stack which satisfies the blocking
condition, so no transitive blocking and deadlocks will occur. Furthermore mutual exclusive access to shared re-
sources is provided when using one of the proposed resources policies, because two tasks which share resources
cannot be on the run time stack at the same moment.

Jansen shows that the maximum blocking load for a task can be found with CB(Di). The reasoning behind
the formula is less trivial, as thought. It can be described with the following steps:

1. The interval [t,t+L] is examined to be feasible, including the possible blocking.

2. During feasibility analysis the maximum load is calculated in the interval [0,L], which also has the length
L

3. If the load and the blocking do not exceed the processor capacity, it can be concluded that this will not
happen for any interval with the length L, anywhere in time.

The blocking interval function CB(L) for EDFI is equal tot the one defined for DMI in definition 3.7.3.

3.8.2 Feasibility

As with the previous scheduling algorithms, EDFI also has sufficient and necessary and sufficient feasibility
analyses. In 1973 Liu and Layland found a simple feasibility condition, which is necessary and sufficient, for
a task set scheduled with EDF scheduling with Di = Ti. They proved that if the utilization is below or equal to
one, so U ≤ 1, the task set is feasible. This analysis does not concern deadlines or resources.

This section starts with the introduction of the general feasibility condition for a task set scheduled with
EDFI. Following, a feasibility test for EDF proposed by Devi will be introduced. At the end of this section the
necessary and sufficient feasibility test, as introduced by Jansen, will be discussed.

General feasibility condition

Jansen [15] derives the general feasibility condition for EDFI from the condition as defined by Liu and Layland.
The condition is:

Definition 3.8.3. (EDFI feasibility)
A schedule Γ is feasible when EDFI scheduling is used, if:

∀L ≥ 0 : H(L) + CB(L) ≤ L (3.23)

This definition is based on the fact that the processor demand H(L) and the blocking CB(L) should not
exceed the processor capacity L. When for every period the processor demand and the blocking are smaller
than the processor capacity, the schedule is feasible.

Sufficient feasibility for EDF and EDFI

Devi [10] proposed a sufficient feasibility analysis for EDF. The algorithm is derived from the processor demand
function.
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3. Real-time scheduling

Theorem 5. Sufficient feasibility analysis for EDF scheduling
A schedule Γ is feasible if:

∀k : 1 ≤ k ≤ n ::
k
∑

i=1

Ci

Ti

+
1

Dk

k
∑

i=1

(Ti − min(Ti, Di)

Ti

)

· Ci ≤ 1 (3.24)

Proof : The algorithm can be proved to be correct, by proving that if Γ is not schedulable by EDF than the
previous defined condition is false. This can be done by considering a period [t−1,td), in which a task τj misses
its deadline. Task τk ∈ Γ is the task with the longest deadline Dk, where Dk ≤ (td − t−1). The tasks in the
task set are ordered according their deadlines, where task τ1 is the task with the smallest deadline. The upper
bound of the load that has to be solved by the processor, in the period [t−1,td), can be defined by:

k
∑

i=1

(

⌈

td − t−1 − Di + Ti

Ti

⌉

)

· Ci

Since task τj , with j < k, misses its deadline at td, the following can be written:

td − t−1 <

k
∑

i=1

⌈

td − t−1 − Di + Ti

Ti

⌉

· Ci

≤
k
∑

i=1

( td − t−1 − Di + Ti

Ti

)

· Ci

≤
k
∑

i=1

( td − t−1 − min(Ti, Di) + Ti

Ti

)

· Ci

=

k
∑

i=1

Ci

Ti

(td − t−1 − min(Ti, Di) + Ti)

When both sides are divided by (td − t−1), the equation becomes:

1 <

k
∑

i=1

Ci

Ti

(

1 +
Ti − min(Ti, Di)

td − t−1

)

=
k
∑

i=1

Ci

Ti

+
k
∑

i=1

Ci

Ti

(Ti − min(Ti, Di)

td − t−1

)

≤
k
∑

i=1

Ci

Ti

+
1

Dk

k
∑

i=1

Ci

Ti

(Ti − min(Ti, Di))

In the last equation (td − t−1) can be replaced by Dk, because Dk ≤ (td − t−1). This is false as claimed.2

Devi also introduces a variation of the feasibility analysis where blocking is considered, under the Protocol
Ceiling Policy or the Stack Resource Policy. Since these protocols show similar blocking computations as with
EDFI, the equation can be rewritten to:

∀k : 1 ≤ k ≤ n ::
CB · Dk

Dk

+

k
∑

i=1

Ci

Ti

+
1

Dk

k
∑

i=1

(Ti − min(Ti, Di)

Ti

)

· Ci ≤ 1 (3.25)

Necessary and sufficient feasibility for EDFI

A necessary and sufficient feasibility analysis can be derived from the general feasibility condition for EDFI,
as given in definition 3.8.3. This analysis starts at time t = 0 with examining the deadline and release events
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Figure 3.6: Graphical representation of EDFI feasibility analyzes for task set Γ2

that occur. The processor demand function and the blocking are examined at every deadline, to verify that the
feasibility condition holds. When a new task is released the workload is compared to the processor capacity. All
tasks are released at t = 0 to examine the worst-case situation, according to subsection 3.6.2. This introduces the
maximum H(t)

t
in the first part of the analysis. When the workload function is equal to the processor capacity

line, point L, all load is resolved and the H(t)
t

will never be larger than the processor capacity again. Two
other bounds for the time are the Baruah point LB and the Least Common Multiple (LCM) of the periods. The
Baruah bound is defined in definition 3.1.4 and shows that the upper bound of H(t) is always smaller than the
processor capacity after the point LB , which means that the schedule is feasible after that point. When t is
equal to the LCM of the periods of the task set, all tasks are released, because their periods start. This means
that the same behavior will show up as when t = 0, so if the schedule was feasible before the LCM it will
be after. Furthermore at the LCM of the periods the workload will be equal to the processor demand, which
means all load is resolved, another check to determine that the task set is feasible. Figure 3.6 shows a graphical
representation of the analysis for the task set Γ2 from Table 3.2.

The algorithm below only examines the deadline and release events. These events are fetched as a tuple with
the GetNextEvent function. The tuple contains the time t, a flag denoting if it is a deadline or a release event
and the maximum computation time C. In case the event is of type deadline, a check is performed to see if the
processor demand and the maximum blocking are smaller than the processor capacity. When a release event
occurs the workload is examined. The bounds for the period that is examined are as discussed above. The
necessary and sufficient feasibility algorithm for EDFI is presented below.
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3. Real-time scheduling

Algorithm EDFI feasibility analysis

schedulable = unknown;
H = 0; // processor demand
W = 0; // Workload

LB =
Pn

i=1

(

1−
Di
Ti

)

·Ci

1−U
;

while (schedulable == unknown) {
(t,flag,C) = GetNextEvent;
case flag {

deadline: {
H = H + C;
CB = maxj{Cj |∆j ≤ t < Dj}
if (H + CB > t) { schedulable = no; }

}
release: {

if ((t > 0) ∧ (W ≤ t)) { schedulable = yes; }
W = W + C;

}
}
if ((t > 0) ∧ (t ≥ LB)) { schedulable = yes; }

}
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Chapter 4

Earliest Deadline First with Inheritance
and Scaling

When a task set Γ is scaled offline, it should still be feasible. The offline scaling of a task set means lowering
the processor frequency f before the task set is running, this results in increasing computation times for the
tasks. So the main objective of Earliest Deadline First with Inheritance and Scaling (EDFIS) is to determine
the maximum amount of scaling of the tasks for which the task set is still feasible.

Scaling can be performed in two ways. The first method is to determine the maximum scaling for each
independent task. This introduces an exhaustive search for the optimal frequency distribution. The second
method is to determine the maximum scaling for the whole task set. Because a higher frequency corresponds to
an exponentially higher power consumption, it is best to keep the frequencies of the independent tasks as close
as possible to the average frequency. Therefore it would be optimal to find the lowest possible frequency for
the whole task set.

This section examines the offline scaling of a task set, scheduled with EDFI. First an alternative to scaling
all functions used in the feasibility analysis is proposed. The boundaries of the search space for the scaling
factor are the point of discussion in section 4.2. This chapter concludes with a method to determine the optimal
scaling factor for a task set.

4.1 Scaling the y-axes

When scaling the frequency with a factor k < 1, the Ci of all tasks in a task set are scaled with a factor 1
k

> 1.
When applying the scaled C̃i = Ci ·

1
k

to the workload function 3.2, the processor demand function 3.4 and the
Baruah line function 3.6, the scaling factor can be separated. This is shown in equation 4.1, 4.2 and 4.3. The
processor capacity p(t), with slope one (dotted line in Figure 3.6), stays the same. This because the time does
not scale, only the load that can be resolved in one unit of time.

n
∑

i=1

⌈

t

Ti

⌉

·
1

k
· Ci =

1

k
·

(

n
∑

i=1

⌈

t

Ti

⌉

· Ci

)

=
1

k
· W (t) (4.1)

n
∑

i=1

⌊

t − Di + Ti

Ti

⌋

·
1

k
· Ci =

1

k
·

(

n
∑

i=1

⌊

t − Di + Ti

Ti

⌋

· Ci

)

=
1

k
· H(t) (4.2)

n
∑

i=1

(

Ci

Ti

)

·
1

k
· t +

n
∑

i=1

(

Ti − Di

Ti

)

·
1

k
· Ci =

1

k
·

(

U · t +
n
∑

i=1

(

Ti − Di

Ti

)

· Ci

)

=
1

k
· BL(t) (4.3)
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Since the factor 1
k

can be extracted from all the functions, it is possible to adjust the scale of the y-axis
instead. This results in all the functions staying the same, only the processor capacity line, with p(t) = t, has to
be redrawn. Instead of altering the values of the y-axis they can be redefined by stating that they are multiplied
with 1

k
. With this redefined scale the processor capacity line becomes p(t) = k · t. Using the redefined y-axis,

the H(t), W(t) and BL(t) stay the same, they don’t have to be recalculated or redrawn for a new scaling factor.

4.2 Search boundaries

To determine the scaling factor 1
k

, the maximal possible utilization of the task set has to be found. When
determining the maximal utilization two cases can be distinguished, the deadlines are equal to the periods, or
there is at least one deadline smaller than the corresponding period.

If all tasks in the task set have Di = Ti and no resources are used the proposition of Liu and Layland can be
used, as mentioned in subsection 3.8.2. They proof that the maximum utilization of the task set is 1. In this
case the optimal scaling factor for the task set is 1

k
· U = 1, so 1

k
= 1

U
.

However if the task set has a task with Di < Ti, the analysis is less trivial. This is caused by the load that
has to be resolved at the deadline of the task, which is earlier than the end of the period. This may causes the
H(t)

t
to be larger than the utilization U. To determine the maximum H(t)

t
the behavior of the task set has to be

examined till a certain time t. This can be done with the functions mentioned in equations 4.1 and 4.2.

To find the boundaries in which the maximum H(t)
t

can be found, the upper bounds and lower bounds for the
processor demand and workload function are examined. In equation 4.4 the derivation of the lower bound for
the processor demand function is shown. The upper bound of the processor demand function, also called the
Baruah line function, is already derived in equation 3.6. Equation 4.5 and equation 4.6 shows the derivation
of the lower and upper bound for the workload function W(t). Figure 4.1 shows a schematic drawing of these
bounds. Note that the slope of all the bounds is U. It can be seen that the overlap of these areas grows when the
difference between Di and Ti increases. If the deadlines are equal to the periods,

∑n

i=1

(

1 − Di

Ti

)

· Ci is zero,
so the upper bound of H(t) is the lower bound of W(t). Since W(t) ≥ H(t), the functions can only touch each
other in the area or on the line.

H(t) =

n
∑

i=1

⌊

t − Di + Ti

Ti

⌋

· Ci ≥
n
∑

i=1

(

t − Di + Ti

Ti

)

· Ci −
n
∑

i=1

Ci (4.4)

=

n
∑

i=1

Ci

Ti

· t +

n
∑

i=1

(

1 −
Di

Ti

)

· Ci −
n
∑

i=1

Ci = U · t +

n
∑

i=1

(

1 −
Di

Ti

)

· Ci −
n
∑

i=1

Ci

W (t) =

n
∑

i=1

⌈

t

Ti

⌉

· Ci ≥
n
∑

i=1

(

t

Ti

)

· Ci = U · t (4.5)

W (t) =

n
∑

i=1

⌈

t

Ti

⌉

· Ci ≤
n
∑

i=1

(

t

Ti

)

· Ci +

n
∑

i=1

Ci = U · t +

n
∑

i=1

Ci (4.6)

When a k is determined, it has to be verified that ∀t : {0 . . .∞} → H(t) < p(t). As with the EDFI
feasibility algorithm from subsection 3.8.2, three bounds can limit the search space of his verification. The
first bound is the point where all load is resolved, denoted with L. At this point the workload function W(t)
touches or intersects the p(t) line, meaning that all load is resolved and that H(t)

t
will never be larger than

k again. The second bound is the Least Common Multiple (LCM) of all task periods. At this point all tasks
are released simultaneously, causing the same behavior to show up as when t = 0. Furthermore the workload
function touches the processor demand function when t is equal to the LCM, so it certainly touched p(t). The
third bound is the Baruah point. This is the point where the p(t) function intersects the upper bound of the
processor demand function BL(t). After this point p(t) is always larger than BL(t).

The Baruah point, as in definition 3.1.4, can be determined using the upper bound of the processor demand
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Figure 4.1: The bounds for the processor demand function H(t) and the workload function W(t)

function BL(t). When scaling occurs this function is also scaled with a factor 1
k

. Just as with the workload and
the processor demand function this line can be kept the same when the processor capacity p(t) is scaled. To
find the scaled Baruah point BL(t) = k · t should be solved, as presented in equation 4.7. The found t is the
third boundary, when searching the scaling factor.

k · t = U · t +
n
∑

i=1

(

1 −
Di

Ti

)

· Ci

t · (k − U) =

n
∑

i=1

(

1 −
Di

Ti

)

· Ci (4.7)

t =

∑n

i=1

(

1 − Di

Ti

)

· Ci

k − U

The three bounds given on the time, try to prevent the occurrence of an exhaustive search. Nonetheless the
scaling causes the utilization to rise to 1. A high utilization causes idle time to be postponed until a later point
in time. This means that when k = U, the workload will only be equal to p(t) at the LCM of the periods.
When k = U both p(t) and BL(t) have slope U, so no intersection will occur. Note that if k is close to U, the
idle time and the Baruah point are placed far away. A task set can be scaled to a utilization close to U when
the deadlines of the tasks get near their periods. Note that the LCM of the task periods can be a very large. For
example if two of the task periods are chosen as a prime number, the LCM can be large.

4.3 The EDFIS algorithm

The factor k can be determined by using the scaled processor capacity line, the workload and the processor de-
mand function. With these functions it is possible to determine the max

(

H(t)
t

)

, within the presented boundaries
of t. Using this maximum, the scaling is determined by k = max

(

H(t)
t

)

.

The analysis used to find the optimal scaling factor for a task set is based on the necessary and sufficient
feasibility algorithm for EDFI, as presented in subsection 3.8.2. The EDFIS analysis is searching for the
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Figure 4.2: Example analysis of task set Γ3

Table 4.1: Example task set Γ3

Γ3 Di Ti Ci

τ1 20 70 14
τ2 30 50 5
τ2 50 90 25

maximum scaling factor within the defined boundaries for the time variable t. The timestamps at which events
occur are evaluated. The examined events are the releases and deadlines of tasks. The events are ordered
according to their time t and their type, the event with the smallest t is processed first, if two events have the
same time and different types, the deadline event is processed first. Deadline events are used to update the
processor demand information and release events are used for updating the workload information.

An example of an EDFIS analysis for task set Γ3 in Table 4.1 is shown in Figure 4.2. Initially the scaling
factor k is chosen equal to U, which is 0.578 in the given case. The Baruah line BL(t) is running parallel to the
initial scaling line, which means that they will never intersect. Note that the Baruah line has slope U and the
offset

∑n

i=1

(

1 − Di

Ti

)

· Ci = 23 1
9 on the y-axis. The two search boundaries left are the LCM of the periods

and the first idle time. The LCM of the periods in this task set is t = 3150 and the first idle time for the scaled
task set is found when the workload function is equal to the scaled processor capacity p(t). At t is 20 a deadline
event occurs, which introduces a new k = H(t)

t
= 14

20 = 0.7. Note that at t is 20 in Figure 4.2 the old processor
capacity line becomes a dotted line and the new line becomes solid. The new scaling factor gives the processor
capacity a slope larger than U, so it intersects the Baruah line. The intersection will happen at t = 173.5, which
can be calculated using equation 4.7. Continuing the examination of events, the deadline at t is 50 increases k to
44
50 = 0.88. With the new scaling factor the Baruah point LB is located at t is 76.5. Furthermore the point L is
found at t is 50 because the workload function touches the processor demand function and the scaled processor
capacity. This means that idle point has passed and the optimal scaling factor has been found.

The pseudo code for the EDFIS algorithm is presented in EDFI Scalability analysis. In the main loop the
search for the maximum scaling factor is performed by examining the events occurring for the task set. Each
iteration a tuple with the event information is fetched with the function GetNextEvent. The tuple contains a
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4.3. The EDFIS algorithm

t with the time at which the event occurs, a flag with the type of event, either deadline or release, and a C
containing the maximum computation time of the event.

When the event is of type deadline, the processor demand and the blocking are checked, to see if the scaled
processor capacity, t · k, can fulfill the demand. If the processor capacity is to low, the scaling is decreased,
so a larger k is chosen. When a larger scaling factor is chosen the Baruah point is recalculated. Initially the
Baruah point L̃B of the scaled task set is chosen as infinity, because k is chosen equal to U, which makes that
both lines never intersect.

The workload function is examined when a new job is released. When the workload function is smaller than
the scaled processor capacity (t · k), all load is resolved by the scaled processor. As with the EDFI feasibility
algorithm, no larger k = max H(t)

t
can be found after this point.

The last statement of the main loop performs a check, to see if t is larger than the Baruah point. When t is
larger, the optimal scaling is found.

Algorithm EDFI Scalability analysis
H = 0; // Processor demand
W = 0; // Workload
k = U ; // Scaling factor
schedulable = unknown;
L̃B = ∞;
while (schedulable == unknown) {

(t, f lag, C) = GetNextEvent;
case (flag) {

deadline:
H = H + C;
Cb = max

j
{Cj |∆j ≤ t < Dj};

if (H + Cb > t)
schedulable = no;

if (H+Cb

t
> k) {

k = H+Cb

t
;

if (U < k)

L̃B =
Pn

i=1
(1−

Di
Ti

)·Ci+Cb

k−U
;

else
L̃B = ∞;

}
release:

if (t > 0 ∧ W ≤ (t · k))
schedulable = scalable;

W = W + C;
}
if ((schedulable == unknown) ∧ (t ≥ L̃B)) schedulable = scalable;

}
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4. Earliest Deadline First with Inheritance and Scaling

As presented in the previous section the EDFIS algorithm tries to scale the utilization to 1. If the utilization
can be scaled to 1, the scaled Baruah point does not exist and there is no idle time. However the LCM of the task
periods is always available and guarantees that the algorithm is finite. In the worst-case situation the presented
algorithm has to examine all events until the LCM of the task periods. When the task periods are chosen as
prime numbers the number of examined events is exponentially related to the number of tasks in the task set.
Therefore in the worst-case situation the complexity of the algorithm is exponentially related to number of
tasks in the task set. In general the algorithm can be performed in pseudo polynomial time. This because the
deadlines of tasks and the blocking of resources cause the required processor capacity p(t) to be larger than
the utilization of the task set. Note that the algorithm increases k if more processor capacity is required. It is
possible that the required processor capacity causes k to become larger than 1, increasing the frequency of the
processor instead of reducing it.
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Chapter 5

Wireless sensor node

A wireless sensor node is a device equipped with an OS. The hardware platform of the wireless sensor node,
as used at the University of Twente, will be discussed in section 5.1. Following the AmbientRT OS will be
discussed in section 5.2. This discussion includes the real-time scheduler, the data manager, the modules, the
dynamic reconfiguration and the task and data definition in AmbientRT.

5.1 Hardware platform

The sensor node used in this paper is the µnode v2.0 of Ambient Systems, see Figure 5.1. At the moment
of writing this is the newest available sensor node. Below the main components of the sensor node will be
discussed.

At the hart of the sensor nodes is a Texas Instruments MSP430 microcontroller. This low power microcon-
troller has a 16-bit RISC CPU. The MSP430F1611 [30] version of the microcontroller is used. This version
provides 48 kB flash memory and 10240 B RAM. Much integrated functionality is provided, including:

• 16-bit Timer A with three capture compare registers

• 16-bit Timer B with seven capture compare registers

• 16-bit Hardware multiplier, not integrated in the CPU

• Two Universal Synchronous/Asynchronous Receive/Transmit (USART) interfaces

• Six digital I/O interfaces

• Five power saving modes

• JTAG/debug interface

• Digitally Controlled Oscillator

The µnode v2.0 is equipped with an EEPROM to provide additional storage space. The used EEPROM is the
ST M25P40 [29] 4 Mbit serial flash memory. The flash memory has a Synchronous Peripheral Interface (SPI).
It is connected to the digital I/O interfaces of the MSP430.

Sensor nodes should communicate by radio, therefor the µnode v2.0 is equipped with a low power transceiver.
This transceiver is able to communicate in the 868 and 915 MHz band. The communication ranges to typical
50 m indoors and 200 m outdoors. It can put up a connection with an effective symbol-rate of 50 kbps. As the
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5. Wireless sensor node

Figure 5.1: Ambient systems µnode v2.0

flash memory, this component provides a SPI interface and is connected to one of the digital I/O interfaces of
the MSP430.

Beside these main components all nodes have three LEDs. On the edges of the sensor nodes additional digital
I/O ports and ADCs are available, to which sensors can be connected. Some sensor nodes are equipped with a
MAXIM MAX3319. This component translates the CMOS signals, from the USART interface of the MSP430,
to RS232 compatible signals. This makes it possible to communicate with the node by the serial port of a PC.

5.2 AmbientRT

The lightweight OS used on the wireless sensor nodes is AmbientRT, which evolved from the Data-Centric
Operating System (DCOS) [12]. AmbientRT is built as a partly platform independent OS. As Hardware Ab-
straction Layer(HAL), the OS uses drivers, which provide a general interface to the peripherals. User applica-
tions can perform system calls through the functions specified in the AmbientRT library. This library contains
general functions like: ”malloc”, ”free” and ”printf”.

The data-centric OS has been developed with four main requirements: real-time scheduling, a data-centric
architecture, execution of modules and the possibility for dynamic reconfiguration. The first two subsections
explain the real-time scheduling and the data-centric architecture of AmbientRT. Subsection 5.2.3 explains how
AmbientRT executes modules and how it can be reconfigured. The last subsection explains how tasks and data
are defined in AmbientRT.

5.2.1 Real-time scheduling

The real-time scheduling algorithm used for AmbientRT is EDFI, as discussed in subsection 3.8. Since the OS
provides resources, the transaction model is chosen as resource management protocol. The EDFI scheduling
algorithm with transactions, make the OS deadlock free, as explained in subsection 3.8. Since the scheduler
needs to make the scheduling decisions and needs to manage the resources, the scheduler is invoked when
an interrupt occurs or when a task finishes. Furthermore the scheduler is released at a frequency of 16 Hz to
examine the state of the system.

To perform the EDFI scheduling algorithm the OS needs information about the tasks that are going to be
executed. Therefor the OS needs a structure OS Task Specification for each task, as shown in Figure 5.2. This
structure contains the constant basic values that are needed to perform the EDFI scheduling. Because this is
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5.2. AmbientRT

typedef struct
{

task_func entrypoint; // Location of task in memory
word deadline;
dword period;
word cputime; // Maximum computation time
word *dataspec; // List with used data types
byte *resources; // List with used resources
byte *dependencies;
word heapspace;
void *datasegment;
char *id; // Name of the task

}OS_Task_Specification;

Figure 5.2: OS Task Specification structure (constant)

typedef struct OS_Task_Entry
{

word absolute; // Relative time left till deadline
word delta; // Inherited deadline
ptrval stackbase;
word bits;
word mask; // Events to react on
word event;
OS_Task_Specification *spec;
struct OS_Task_Entry *next; // Preemption or Release queue

}OS_Task_Entry;

Figure 5.3: OS Task Entry structure (volatile)

an implementation the Ci, Di and Ti are coupled to a 32768 Hz clock. To get the duration of these values in
seconds, they should be multiplied with 1

32768 . Since the deadline and the cputime are 16-bit values, they can
represent a maximum of 2 seconds. The period is represented as a 32-bit value, which enables it to represent a
little more then 36 hours.

Beside the deadline, period and cputime, the structure contains the dataspec, resources and dependencies.
The dataspec and resources pointers, both point to a list that contains information about the used data types or
resources, respectively. Resources are represented with an 8-bit value, where the first bit indicates read or write
access. The 7 remaining bits make it possible to represent 128 different resources. Data types are represented
with 16-bit values where one bit is reserved to denote exclusive access, so 32768 different data types can be
defined. The dependencies pointer, points to a list which contains pointers to tasks with whom resources or
data are shared. When using transactions the scheduler uses this list for the offline calculation of the inherited
deadlines.

Tasks also have a part of there description in volatile memory, in an OS Task Entry structure, see Figure 5.3.
This structure contains information about the dynamic priority of the task and the actual location of the task in
the memory.

The scheduler model used in AmbientRT is similar to the transaction system, as discussed in section 3.3. The
preemption stack and the release queue are realized by the ”next” pointer in the OS Task Entry structure, so
only the head of the list has to be stored. The EDFI algorithm causes these lists to be ordered according to
deadline. The transition of tasks from the waiting queue to the release queue happens by events. An event is
generated by publishing a data type, which will be discussed in more detail the next section.

The word absolute in the OS Task Entry represents the time a task has left till its deadline. To avoid updating
these times for all tasks in the queues, only the head of the queue contains the absolute time and the other tasks
in the queue store the time relative to its successors. For example when there are three items in a queue with
4, 6 and 9 ticks left till their deadline, the first item will have the absolute value 4. The second has 2 stored
in absolute, so with the value of the first item 6 can be found again. The third item stores 3, with the value
2 of the second item and 4 of the first, it can calculate that it has 9 ticks left till its deadline. The advantage
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of this method is that the remaining time for all tasks in the preemption stack and the release queue can be
decreased by only subtracting the value from the absolute value of the first item. Only when the first item has
zero as absolute value, the absolute value of the second item should be decremented and the first item should
be removed. The waiting queue does not use an ordered list structure, a task is made waiting by setting the
waiting bit in its ”mask”.

Beside the preemption stack AmbientRT also maintains a stack with the contexts of the preempted tasks.
When a new task is started, the general purpose registers of the previous task are stored on the stack. The task
also stores its exit routine and its variables on the stack. The OS Task Entry of a task contains a ”stackbase”
pointer that points to the location on the stack where a pointer to the exit routine is stored. Directly below the
stackbase the registers of the previous task are stored and above the ”stackbase” the variables of the task can be
stored.

A problem in AmbientRT arises with the three groups that can publish data types: timers, interrupts and tasks.
Since a task can be released on the occurrence of an event and an event can also be generated by for example
the interrupt of the radio or a button, the release of tasks is not strictly periodic. It can be said that these tasks
behave like sporadic tasks. Another case are tasks subscribed to events published by other tasks. This creates
precedence constraints, which are not accounted for in theory (section 3.2). Precedence constraints make the
feasibility analyses, as presented in chapter 3, invalid for the scheduler in AmbientRT. In [12] a solutions is
proposed, where the acyclic dependency graph of the task set, is transformed in a schedule that satisfies the
EDFI assumptions. The theoretical verification and implementation of the solution is considered future work.

5.2.2 Data manager

In the data-centric architecture of AmbientRT, data and the validity of data are most important. The data
manager in AmbientRT manages the data types. Tasks can publish a data type and optionally write data to the
data type. The data manager maintains a subscriber table, which contains for each data type the task that is
subscribed to it. In case a data type is published, the data manager puts all subscribed tasks, from the waiting
queue in the release queue. The combination of the data manager and the real-time scheduler results in the
data-centric scheduler of AmbientRT.

A data type is defined by the DMGR TypeEntry structure, as shown in Figure 5.4. The size defines the number
of words allocated for this data type and name contains a unique name. When a data type is published, the data
manager searches the subscription table. This table is an array of DMGR Subscriber structures (Figure 5.5).
The offset, of the DMGR TypeEntry structure points to the row in the descriptor table where the first subscrip-
tion can be found, there will be count subscriptions for the data type. The DMGR Subscriber structures contain
an index, which points to the subscribed task. The ormask contains one bit set to 1. When publishing an event,
a logic ”and” is performed between the ormask of the DMGR TypeEntry and the mask of the OS Task Entry
(Figure 5.3). At run time the 15 least significant bits in the mask can be altered. A task will respond to an event,
when the logic and between the ormask an the mask is larger than zero. Note that since the 15 bits of the mask
can correspond with one resource each, each task can be subscribed to 15 events.

The OS Task Specification descriptor, see Figure 5.2, comes with a list of data types, subscribed to or pub-
lished by the task. Since tasks can share data types, mutual exclusive access to data types should be provided.
This is achieved by treating data types as resources. Mutual exclusive access to resources can be achieved by
temporary increasing the priority of the task, which is defined by ∆. Since it is possible to have data types that
occupy 0 words of RAM and only trigger the release of tasks, interrupts also trigger tasks by data types. For
example, when a task is subscribed to a timer, the timer interrupt will be translated to the publication of the
timer data type. This way the data manager, manages all task releases.

5.2.3 Modules and dynamic reconfiguration

The AmbientRT OS uses modules to enable efficient reconfiguration. Efficiency can be gained by sending the
node a module that contains the new tasks, instead of a module that contains the whole task set including the
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typedef struct
{

word offset; // Row of first subscriber in table
byte count; // Number of subscribed tasks
byte size; // Number of words in memory
byte name[4]; // Unique name

}DMGR_TypeEntry;

Figure 5.4: DMGR TypeEntry structure

typedef struct
{

word index; // Index of subscribed task
word ormask;

}DMGR_Subscriber;

Figure 5.5: DMGR Subscriber structure

new tasks. This also makes it easier to distribute certain applications to a limited number of nodes, which offers
the opportunity to create a heterogeneous network.

The transferred modules contain information about the tasks and the used data types. When a module is
loaded, the current task set and data types need to be merged with the ones in the module. This discussion is
outside the scope of this report, detailed information can be found in [12].

5.2.4 Tasks and data

In AmbientRT data is defined and tasks are developed separate from the OS. To combine the three of them,
the tasks and the data and their relations should be defined in a Data Specification File (DSF). Offline the
DSF file is used to verify the feasibility of the task set. Furthermore the tasks are written in C code. The
main file should contain an usermain function that initializes the desired resources and inserts the desired task.
Since AmbientRT is reconfigurable, tasks can be inserted or removed at run time with system calls. Additional
information about creating task sets for AmbientRT can be found in Appendix A and [1].
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Chapter 6

Implementation

This chapter will discuss the implementation of the scheduling algorithms and their extensions. The discussed
implementations are extensions of AmbientRT, which is discussed in section 5.2. First the implementation
of the scheduler with the resource policies and task admission will be discussed. Section 6.2 explains the
implementation of the feasibility algorithms. In section 6.3 the EDFIS implementation issues are highlighted.
The last section of this chapter, section 6.4, discusses TSS.

6.1 Scheduler design

The AmbientRT OS is already providing an EDFI scheduler. As mentioned in subsection 5.2.1 the provided
scheduler performs EDFI scheduling with transactions. The scheduler is designed according to the transaction
system. The scheduler maintains a list with active tasks, where the tasks provide their scheduling parameters.

To extend the scheduler with RM and DM scheduling, the available transaction system framework is used.
At compile time the desired preemption condition can be chosen. As needed in the transaction system, the
function to order the queues is chosen accordingly to the scheduling algorithm.

The remaining part of this section starts with a discussion about the implementation of the transaction resource
policy, followed by a discussion about the implementation of the NCS resource policy. In the last subsection
the implementation of task admission and removal is discussed.

6.1.1 Transactions

AmbientRT provides the possibility to insert and remove tasks from the task set at run time. To keep the task
information valid, AmbientRT updates the ∆ values of the tasks when a task is inserted or removed. To perform
a quick update, the tasks are equipped with a dependency list, which contains the tasks with whom resources
are shared, even tasks that are not running. This list is stored as constant in the flash memory. When a new
task is inserted in the running task set, the scheduler checks this list for all the running tasks, to determine the
inherited deadlines.

6.1.2 Nested Critical Sections

When NCSs are used, the ∆ of a task can change for each resource claimed or released. In AmbientRT the
new delta value is fetched from a list with resources. As in subsection 3.4, each resource has a read and a write
floor. When new tasks are inserted in the task set, first the possible new resources are added and the read and
write floors of the used resources are updated. When a task is removed from the task set, the read and write
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typedef struct
{

word resource; // Identifier of resource or data type
word readfloor; // Highest priority of readers
word writefloor; // Highest priority of writers

}OS_Resource_Entry;

Figure 6.1: OS Resource Entry structure

floors are corrected. When these floors have a value equal to the deadline of the removed task, the running task
set has to be searched to determine the new read or write floor. When the value of the floors is smaller than the
deadline of the task, the read or write floor stays valid.

In AmbientRT data types and resources are separated, when delta levels have to be calculated data types are
treated as resources. Therefore a data type is transformed to a resource in the scheduler and added to the
resource list. This is done by setting one of the most significant bits of the data type identifier. Since the most
significant bit is already used to denote exclusive access, 14 bits are left to identify 16384 different data types.

In the scheduler as much as possible information is kept as constant in memory, to save space in the RAM.
Since the resources have read and write floors that change, they have to be stored in volatile memory. The used
OS Resource Entry structure is shown in Figure 6.1.

Tasks may claim resources and data types, to enter a critical section. This should be done by system calls.
Claiming a resource or a data type is done with the system calls:

int claim(HDEV handle,byte accessType); // Claim resource
int claim data(word handle,byte accesType); // Claim data type

The handle is the name of the resource or data type. The accessType is READ or EXCLUSIVE, to denote
read or write access to the resource. The NCS usage is listed in the DSF. To translate and validate the NCS
usage pattern for applications requires resources, which are typically scarce in sensor nodes. Therefore the OS
expects applications to use the resources and data types as declared in the DSF, to maintain the feasibility of the
schedule. When a user wants to release a resource or data type, the most recently entered NCS is left. Note that,
when the inherited deadline of the task is decreased by releasing a resource, the scheduler should be invoked.
An NCS can be left by calling the function:

int release(); // Leave last entered NCS

The structure used for an NCS is depicted in Figure 6.2. Each OS Task Entry, see Figure 5.3, is extended with
a pointer to a linked list of OS Scheduler NCS structures. When an NCS is entered a new OS Scheduler NCS
is made, the current ∆ is stored in old delta, the structure is placed at the front of the list and the current ∆ is
set to the inherited priority. The inherited priority is found in the resource list. The entrance of an NCS is of
complexity O(n), where n is the number of resources in the resource list of the scheduler. When an NCS is left,
the ∆ of the task is set to the old delta of the structure and the structure is removed from the head of the linked
list. The leave operation is of constant time, which makes the complexity O(1).

Note that the memory usage of this solution is minimal, since the memory for the NCS is only assigned when
needed. In the worst-case situation an OS Scheduler NCS structure has to be allocated for each resource that
is only written and for each NCS in which a resource is read. This because multiple tasks can read a certain
resource at the same time without inheriting a priority. As alternative solution predefined structures for the
usage of NCSs could partly be stored as a constant for each task. Still a list containing the inherited deadlines
for the NCSs should be stored in volatile memory, since these are determined at run time. The worst-case
memory consumption of this alternative is larger compared to the implemented solution.
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typedef struct OS_Scheduler_NCS
{

word old_delta;
struct OS_Scheduler_NCS *next;

}OS_Scheduler_NCS;

Figure 6.2: OS Scheduler NCS structure

6.1.3 Task admission and removal

In a real-time system tasks can be removed instantly, while keeping the run time stack and the release queue
ordered. When a task is added to the running task set, while tasks are on the run time stack, the ordering of the
run time stack can be disturbed, as explained in section 3.5.

In AmbientRT task removal can be performed instantly, by a system call. The admission of a task, while other
tasks are in the release queue or on the run time stack, would require a verification of the new situation. Since
this requires additional code and processing power, admission of tasks is only allowed when the run time stack
and the release queue are empty. When the system call is performed to add a task, the id of the task is placed
in the insertion list. When the scheduler detects idle time, it starts adding tasks from the insertion list to the
running task set. To prevent the scheduler from stalling the system while adding new tasks, the scheduler can
only add a few tasks each invocation. This maximum amount of tasks inserted at a scheduler invocation can be
configured at compile time.

6.2 Feasibility analyses

The offline feasibility analysis and DSF parsing tool Sparse is extended with additional feasibility analyses. The
tool implements the necessary and sufficient feasibility algorithms for the scheduling algorithms, as explained
in sections 3.6, 3.7 and 3.8. The explained pseudo code of the feasibility algorithms is implemented, providing
support for the NCS and transactions resource policy. How task sets can be offered to this tool for a feasibility
check with a specific scheduling algorithm and resource policy, is explained in Appendix A.

6.3 EDFI and Scaling

The EDFIS analysis is explained in section 4. The CPU frequency scaling is performed to make the microcon-
troller run at a lower frequency, which saves energy. The analysis is implemented with the suggested ordered
event queue. Nonetheless a few implementation issues arise when extending AmbientRT with EDFIS.

The analysis is not extremely lightweight, since scaling the performance to one also increases the time domain
to be searched. Therefore the moment to perform the EDFIS analysis has to be chosen carefully, to prevent the
system from stalling. Furthermore the algorithm is performed in slack time. When task insertion and task
removal occurs, the EDFIS analysis is performed. In case of task insertion or removal, the frequency is restored
to 4.6 MHz. When the task set is initialized, all tasks are inserted one by one. To prevent multiple invocations
of the EDFIS analysis at the same time, a new analysis removes a running analysis from the stack and is only
initialized when the insertion queue is empty. Furthermore the analysis is not immediately performed, it is
postponed by the largest period in the task set.

The EDFSI analysis makes use of the maximum computation times C, of the tasks. Since the user does
not always provide accurate values, the scheduler also examines the C for all tasks. After task execution the
current duration is compared to the maximum computation time, which is updated if necessary. When the
current duration of the task is larger then the provided C, the current duration is increase with 20 % to account
for the maximum computation time of the task and the scheduler time needed for the task. When a new task is
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inserted in the systems, the system runs at full speed for maxi{Ti|τi ∈ Γ}, to gather the new C of each task.
With the found values the analysis is performed.

To perform the EDFIS analysis with nested critical sections, information about the duration of the NCSs is
needed. When the module is compiled with the option EDFIS and NCS, sparse includes additional information
containing the NCS structure for each task, which is written in the flash memory. This way the EDFIS algorithm
can calculate the blocking time for the tasks.

6.4 Temporal Shutdown Scheduling

Energy can be saved by shutting down the microcontroller when it is not needed. The Temporal Shutdown
Scheduling (TSS), partly disables the microcontroller when there are no tasks left on the stack, so when it
detects idle time. The MSP430 allows five different modes, with four low power modes. In low power mode
1, only the CPU gets disabled. Low power mode 2 and 3, disable the CPU and additional parts of the internal
Digital Controlled Oscillator (DCO) and the internal clocks. Low power mode 4 also disables all internal
functionality and the external clock. The MSP430 can wake up, in 6 µs, by an interrupt. More information
about the low power modes can be found in [31].

The best energy savings, for AmbientRT, are achieved by entering low power mode 3, when the scheduler
detects idle time. This disables the CPU, the DCO and the internal clocks. Since the DCO gets disabled, all
devices driven by the internal high frequent clocks have to be disabled or attached to the external 32768 Hz
crystal. Therefore some devices need to be reconfigured. For example the RS232 is attached to the external
clock crystal when TSS is enabled, the communication for RS232 is performed at 9600 baud instead of the
normal 115200 baud. The scheduler is already attached to the external timer and is executed with a frequency
of at least 16 Hz.
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Chapter 7

Performance comparisons

The research goals of this report include the comparison of the implemented alternatives. This chapter provides
the performance comparisons for the three different subjects. The best way to verify the behavior of new
scheduling algorithms, is by testing it with an exhaustive number of random task sets. Since it is not possible
to perform such a test on the µnode v2.0 without modifying AmbientRT drastically, an alternative would be
running the test on a simulated version of the MSP430 in Matlab. Because this research concerns algorithms
that already proved themselves in such exhaustive tests, interesting task sets are selected and examined. The
behavior of the algorithms in these tests is used to examine and verify the algorithms in AmbientRT. Buttazzo
[8] provides a comparison of the EDF and RM algorithm, where the results are obtained with exhaustive tests.

As an introduction for the comparisons, this chapter starts with the measurement setup. We explain how the
measurements are performed and which values are retrieved. Next, section 7.2 discusses the performance of the
three scheduling algorithms. Four interesting situations are distinguished and examined in detail. In section 7.3
the difference between the two resource policies is highlighted for four different cases. Section 7.4 compares
the EDFIS and TSS policies on energy efficiency in four different cases.

The subsections discussing the examined cases have a general structure. Most cases start with a paragraph
about the purpose of the test, followed by one about the expected results. Next the subsection will contain
paragraphs discussing the results, the behavior that is observed in the results and finally a conclusion of the
performed test.

7.1 Measurement setup

The limited amount of RAM on the sensor nodes introduces the problem how to perform the measurements.
When measuring the performance, timestamps and event information should be stored. In the case of the sensor
node two possibilities have been examined, both with their drawbacks.

The first option for measuring is the Joint Test Action Group (JTAG) interface of the MSP430. The JTAG
interface provides an interface to debug the microcontroller, with full control over it. The ALU can be stopped
and examined by defining breakpoints in the debugger software, which allows an unlimited number of measure-
ments. The first arising problem is that the timers are not stopped when the ALU is stopped by the debugger,
via the JTAG interface. This is solved by extending the OS to store the timer values at a fixed place in the code,
where the debugger is placing its break point. Immediately after this place in the code, the timers and interrupt
flags are restored, to provide correct behavior when the microcontroller continues. Timer A is used to obtain
timestamps, it is running at 1

8 of the ALU clock to avoid saturation of the timer register. Timestamps and state
information are stored in variables when the scheduler is invoked and finished. These variables are read when
the JTAG interface interrupts the microcontroller. An unsolved problem is the time used for JTAG communi-
cation. Reading a measurement takes more than two seconds, which makes measuring time-consuming and
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simulation of radio communication impossible.

The second option is to store the timestamps in the remaining RAM of the MSP430. As stated in 5.1 the
MSP430F1611 has 10 kB of RAM. The heap space of AmbientRT can be scaled to approximately 8 kB, in
which the kernel and the user programs use space to store their variables. About 5900 bytes of the heap space
can be used to store the measurements. The time that can be measured in this amount of RAM differs from
the amount of values that are stored for each measurement and the speed of the defined timers. Note that the
scheduler is invoked every time a timer causes an interrupt. Timestamps are obtained from timer A, which
is configured it to run at 1

8 of the ALU speed. The timer has to run at a fraction of the ALU speed to prevent
saturation of its register. The storage of the measurements is performed by small parts of assembler code, which
write the information to the reserved memory and update the memory pointer for the next measurement.

The slow reaction of the JTAG interface and the resetting of the timers make it impossible to measure real
life situations. Therefore the measurements are performed by storing timestamps in the RAM. These values are
read later on and are communicated via the serial port to a PC.

Beside communicating the results via the serial port, a few alternatives are available, which have not been
examined. An option is to send blocks with measurements via the radio to another node, which in turn com-
municates it to the PC via the serial port. An other possibility could have been the available DMA controller
in the MSP430, which can be configured to communicate results to the PC via the JTAG interface. When the
microcontroller is running at a reduced speed, it is possible to use the DMA controller to transfer the memory
of the MSP430 via the JTAG interface to the PC, while the ALU keeps working.

7.1.1 General measurement setup

As explained in section 5.2.1, after each interrupt or finished task, the scheduling algorithm is performed. The
scheduler can preempt a running task or leave the stack in its current state. This way four different scheduler
calls can be distinguished:

• Scheduler invocation by interrupt, with preemption

• Scheduler invocation by interrupt, without preemption

• Scheduler invocation by finished task, with preemption

• Scheduler invocation by finished task, without preemption

Internal the scheduler code is composed out of two parts. The first part is the part called by an interrupt or
by the exit routine of a task. The second part is the actual scheduler, which possibly preempts the task on top
of the stack. To check the influence of the measurements on the scheduler, the duration of the measurements
is also measured. Since the interrupt and the exit routine have the same code to record the measurement, the
measurement duration is equal. Figure 7.1 shows the durations of measurements. Since the measurements are
performed with a clock at 4,608 MHz, the duration is also expressed in seconds.

The measurements performed for the NCSs also take time. When a resource is claimed or released, times-
tamps are stored. The timestamps for claiming and releasing are equal. Their duration is shown in Figure
7.2.

The structure used for the measurements is depicted in Figure 7.3. The startOfSched, InterOfSched and
endOfSched are read from timer A, during measurement phase 1, 2 and 3, respectively. Note that timer A
runs at 576 kHz, which is 1

8 of the main clock. The measurement phases are shown in Figure 7.1 and 7.2.
When measurements are performed for NCSs, the interOfSched and deadline variable are not used. Timer B
is running at 32,768 kHz and captured in startOfSchedB when the scheduler is started. The scheduleType, task
and deadline variable are fetched in measurement phase 3. The variable scheduleType records which of the
four different scheduler invocations is performed. The word task contains the address of the task in memory,
to distinguish between the different tasks. The deadline variable contains the time a task has left at the slow B
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Figure 7.1: Durations of the measurements in the scheduler
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Figure 7.2: Durations of the measurements at the beginning and end of an NCS

timer when it finishes, used to calculate the lateness of the task. Typically 5900 bytes are reserved at the heap
of AmbientRT to perform measurements, providing space for 421 MeasureResults structures.

7.2 DM, RM and EDF compared

To test the three different scheduling algorithms four different tests are performed. The first test in subsection
7.2.1 examines the characteristic features of the algorithms. This test should verify the behavior of the algo-
rithms as found in the theory. The test in subsection 7.2.2 examines the behavior of the scheduling algorithms
under a constant load, but with an increasing number of tasks. This should give information about the influence
of the number of tasks in the task set on the scheduler. The test in subsection 7.2.3 examines the behavior of
the scheduler when the utilization of the task set rises due to the addition of tasks, which classifies the relation
between the used scheduler time and the utilization. In subsection 7.2.4 the best-case situation for the EDF
scheduler compared to the DM and RM schedulers is examined. In addition subsection 7.2.5 examines a case
in which the DM and RM schedulers have an advantage. In this test a task set is examined with short high
priority tasks that are scheduled with a small lateness by DM and RM scheduling. The last subsection draws a
conclusion.

Note that the tests are performed without shared resources. The used framework contains the transaction
resource policy. This means that the delta levels are calculated for all tasks but are always equal to the deadline
or period of the task. This way the tested algorithms behave like the DM, EDF and RM schedulers.

7.2.1 Characteristic features

The purpose of this test is to verify the proper behavior of the different scheduling algorithms. The used task
set Γ4 is shown in Table 7.1. This task set contains two tasks, chosen such that the task set is feasible with the
three algorithms and has a high utilization, 0.86 in reality. In this measurement the number of preempted tasks
and the lateness of the tasks is examined.

typedef struct{
word startOfSched; // A timer @ measurement 1
word startOfSchedB; // B timer @ measurement 1
word InterOfSched; // A timer @ measurement 2
word endOfSched; // A timer @ measurement 3
word scheduleType; // Type of scheduler invocation
word task;
word deadline; // Time left till deadline

}MeasureResults;

Figure 7.3: MeasureResults structure
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Table 7.1: Task set Γ4 to test characteristic features
Γ4 D T C

τ1 320 320 32
τ2 360 360 280

It is expected that the RM and DM algorithms perform the same. Furthermore these algorithms will show a
very small lateness for τ1 and a lager lateness for task τ2, because the higher priority task gets a low lateness
by preempting τ2 when it is released. Since the EDF algorithm minimizes the maximum lateness, it is expected
that the maximum lateness of the EDF algorithm is smaller compared to the maximum lateness of DM or RM.
Furthermore the smallest lateness of EDF will be larger compared to DM and RM, because task τ1 is postponed
to shorten the lateness of task τ2. Another difference is the expected times a task is preempted. As for RM and
DM, when the low priority task is running it will be preempted each time the high priority task is released. The
EDF algorithm will only preempt the running task if the deadline of the task in the release queue is smaller
compared to the running task. It is expected that the EDF algorithm will preempt less tasks compared to the
DM and RM algorithms.

The results for this test are shown in Table 7.2. This Table shows the number of times the scheduler has
preempted a task in the column #preempted tasks, the utilization of the scheduler in the column U scheduler.
The times task i has been executed is given in column # τi, with its average lateness in column Li and the
standard deviation of Li is in column σLi

.

As expected the DM and RM algorithms behave the same. The characteristics of the algorithms match our
expectations. Task τ1 has a very small lateness, with a small σL1

, caused by its high priority. This static high
priority causes the low priority task to be preempted quite often, which is correct for the algorithm. The EDF
algorithm does not preempt a task. The maximum lateness is smaller for the EDF algorithm compared to the
DM and RM algorithms, but the lateness averaged over all tasks is larger.

The conclusion drawn is that the scheduling algorithms show the expected behavior.

Table 7.2: Test results with Γ4

Algorithm #preempted tasks U scheduler #jobs τ1 L1 σL1
#jobs τ2 L2 σL2

DM 85.8 0.02704 110 -296.51 1.33 98 -51.47 2.82
EDF 0 0.02721 110 -198.65 87.36 98 -70.47 5.52
RM 85.8 0.02711 110 -296.51 1.33 98 -51.74 2.71

7.2.2 Constant utilization

The purpose of this test is to examine how the scheduler behaves under a constant utilization with an increasing
number of tasks. For this test three constant utilization values are used: 0.55, 0.65 and 0.80. During a test at
one of the utilization values, the number of tasks in the task set is increased from 1 to 16. In the beginning of
the test one task utilizes the microcontroller, according to the utilization factor of the test. At the end of the test,
each task utilizes the microcontroller for 1

16 of the determined utilization factor. All tasks in the task set have a
period and deadline of 4096 ticks on the 32,768 kHz clock.

It is expected that the time needed by the three scheduling algorithms increases linear with the number of tasks
in the task set, because the scheduler is called when a task finishes or when it is released. With the increasing
number of tasks in the task set, there are more tasks calling the scheduler when they finish. A minor difference
between the three algorithms is expected.

The results are shown in Figure 7.4, 7.5 and 7.6 for the utilization factors 0.55, 0.65 and 0.80, respectively. In
these Figures the a part shows the total utilization as achieved by the number of running tasks and the scheduler.
The b part of the Figures show the amount of time used by the schedulers.
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The results partly match the expectations. The time used by the scheduler is indeed linear correlated to the
number of tasks in the task set. Two things that do not match the expectations are the fluctuation in utilization
when tasks are added to the task set and the offset between the utilization for the different scheduling algorithms.

The fluctuation in utilization is probably caused by truncation of the number of calculations that have to be
performed by the tasks. The tasks contain a main loop with an inner loop. The number of times the main loop
is performed, is determined by dividing a fixed number with the number of active tasks. If truncation occurs
all the active tasks truncate, causing the inner loop to be skipped quite a lot of times. Despite that, the results
obtained by this test are useful, because the results for the different algorithms are similar.

The offset between the utilization of the different schedulers is unexpected. It is probably caused by fluctu-
ations of the temperature in the room, used for the measurements. Section 4.2.4 of the MSP430 user guide
[31] mentions the temperature dependency of the DCO. The temperature could influence the measurements,
because the tasks are released according to the stable external crystal and the ALU uses the internal DCO as
clock. Furthermore the measurements for one scheduling algorithm are performed in series, causing the period
needed for a test to be long. Since the offset is constant and the shape of the resulting graphs is equal, this does
not invalidate the results.

From the measurements it can be concluded that the used scheduling time correlates linear with the amount
of tasks. It can also be concluded that the three scheduling algorithms show equal performances in these tests,
due to the framework of AmbientRT.

7.2.3 Constant task load

The scheduler is examined on its performance of tasks with a constant size. This test examines the behavior of
the scheduler with 1 to 16 running tasks. Therefore the utilization of the task set increases with the number of
added tasks. It is examined whether the increasing utilization influences the time needed by the scheduler. The
deadline and period of the tasks is 4096 ticks, the maximum computation time is 200 ticks at the 32.768 kHz
clock.

It is expected that the total utilization and the utilization of the scheduler rise linear. This is expected because
the scheduler is called more often by the increasing number of tasks and the number of operations performed by
the task set increases linear with the number of added tasks. This test shows the relation between the different
scheduling algorithms and their linear rising scheduling times.

In Figure 7.7a the linear increasing total utilization can be seen. Figure 7.7b shows the linear increase in time
needed for scheduling the tasks.

The results show that the total utilization and the required time for the scheduler rises linear, as expected. The
time needed by the scheduler is equal as in the previous test, where the utilization was constant. Therefore the
time needed for the scheduler is not related to the utilization of the task set.

From this measurement it can be concluded that the different schedulers perform equal, as already concluded
in subsection 7.2.2. In this measurement the utilization does not influence the time needed by the scheduler.
Therefore the time needed by the scheduler only depends on the number of task in the task set, as found in the
previous test.

7.2.4 Advantage for EDF scheduling

The purpose of this test is to examine the advantage of EDF scheduling over DM and RM scheduling. As
highlighted in section 3.8, the EDF scheduler can schedule tasks with a utilization up to 1, when deadlines are
equal to the periods. The RM and DM scheduler can certainly schedule task sets with U below the least upper
bound (Ulub ≈ 0.69 ). When U rises above Ulub the schedule has to be verified. To test the advantage of
EDF above RM and DM, a schedule can be chosen in such a way that only EDF can schedule it. This kind of
measurement would only show interesting results for EDF. In this case the test would not be a comparison, so
mentioning that EDF performs better in this kind of situation suffices.

46



7.2. DM, RM and EDF compared

 0.532

 0.533

 0.534

 0.535

 0.536

 0.537

 0.538

 0.539

 0.54

 0.541

 0  2  4  6  8  10  12  14  16

P
ro

ce
ss

or
 u

til
iz

at
io

n

# running tasks

Utilization using DM
Utilization using RM

Utilization using EDF

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0  2  4  6  8  10  12  14  16

Fr
ac

tio
n 

of
 p

ro
ce

ss
or

 ti
m

e

# running tasks

DM scheduler
RM scheduler

EDF scheduler

(b)

Figure 7.4: Total utilization (a) and fraction of time used by the scheduler (b), U = 0.55
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Figure 7.5: Total utilization (a) and fraction of time used by the scheduler (b), U = 0.65
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Figure 7.6: Total utilization (a) and fraction of time used by the scheduler (b), U = 0.80
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Figure 7.7: Total utilization (a) and fraction of time used by the scheduler (b), U rises to 0.80
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7.2.5 Advantage for RM and DM scheduling

The purpose of this test is to highlight the advantage of DM and RM scheduling above EDF scheduling. The
priority rules of DM and RM scheduling make that high priority tasks are scheduled at the moment they are
released. This causes the lateness Li of high priority tasks, to be as small as possible. This is already shown
in the test of section 7.2.1. To show the real latency advantage of DM and RM above EDF, a schedule is made
with a high utilization. The load for the schedulers is caused by very small tasks and very long tasks. In this
way a lot of tasks are preempted and queues in the scheduler are constantly filled. Note that this task set is
placing an almost worst-case load on the schedulers. This load is caused by 9 tasks with short periods which
are attached to the two fast timers and 7 tasks with long periods and computation times which are constantly
preempted. The used task set Γ5 is shown in Table 7.3.

Table 7.3: Task set Γ5

Γ5 D T C

τ1 127 128 3
τ2 128 128 3
τ3 287 288 7
τ4 288 288 7
τ5 288 288 7
τ6 2048 2048 51
τ7 2048 2048 51
τ8 2048 2048 51
τ9 2048 2048 51
τ10 2048 2048 51
τ11 4096 4096 307
τ12 4096 4096 307
τ13 6144 6144 614
τ14 6144 6144 614
τ15 6144 6144 614
τ16 6144 6144 614

The expected results are that RM and DM have a smaller lateness for their high priority tasks and a low
standard deviation σLi

, compared to the EDF scheduler. It is also expected that EDF scheduling will show
a larger average lateness with a larger average standard deviation of the lateness, compared to DM and RM
scheduling. Furthermore the total utilization of the EDF scheduler will be lower, compared to DM and RM,
because the algorithm preempts less tasks.

Table 7.4 shows the results of the test. The test results are composed of 10 measurements, which were per-
formed with an interval of approximately one minute. The three right most columns give the results for the
different scheduling algorithms. The first row presents the utilization U , the second row the number of pre-
empted task #preempted tasks and the third row the fraction of time used by the scheduler Usched. Furthermore,
for the two high priority tasks the times task i has been executed is shown in row #jobs τi, the lateness in row Li

and the standard deviation of the lateness in row σLi
. The three last rows show: the total number of executed

jobs total #jobs, the average lateness of all tasks Average L and the average standard deviation of the lateness
for all the tasks in the task set Average σLi

.

The result differ from the expectation. The utilization and the number of preempted tasks with the EDF
algorithm are only a little bit smaller compared to the other two algorithms. The lateness of the high priority
tasks is smaller for the EDF algorithm than for the DM and RM scheduling algorithms. Both are caused by the
deadlines of the low priority tasks, which are this far in to the future that EDF preempts them. This can also be
the reason that EDF shows only a minor higher average Li and σLi

. With the task set applying a heavy load on
the schedulers, the fraction of time used by the schedulers is around 0.116.
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Table 7.4: Results with task set Γ5

DM EDF RM
U 0.8546 0.8487 0.8636
#preempted tasks 83.4 82.1 84
Usched 0.1146 0.1155 0.1166
#jobs τ1 73 72.7 72.7
L1 -120.31 -116.15 -116.34
σL1

2.4433 2.1221 2.6143
#jobs τ2 72.7 73.3 73
L2 -115.15 -119.49 -118.41
σL2

2.4176 2.2410 2.4801
Total #jobs 277 276.7 276.7
Average L all τ -1794.10 -1817.38 -1782.62
Average σLi

33.63 38.09 34.76

The conclusion can be drawn that the advantages for DM and RM do not show up in this test. It is possible
that the chosen task set is not optimal for the two algorithms, but it is more plausible that their advantage is not
that big. This is also confirmed by Buttazzo in [8], where random task sets consisting of 10 tasks are compared
on their lateness. Buttazzo shows that with a utilization larger than 0.7, EDF has a small average lateness and
DM and RM have a smaller lateness for their high priority tasks. The results show that the fraction of time used
by the schedulers is around 0.116, leaving time to execute task sets with at most a utilization of 0.884.

7.2.6 Conclusion

In the previous tests a small subset of the possible task sets has been examined. Although no exhaustive average
task set test has been performed a few conclusions can be drawn. The tests performed in subsection 7.2.3 and
7.2.2 show that the fraction of time used by the scheduler is linear correlated to the number of tasks in the task
set. Furthermore, when the results of these tests are compared, it can be seen that the utilization of the scheduler
is independent of the total utilization. Note that this is only valid in the situation where one timer is used. The
last test examines a task set, which requires a close to worst-case amount of time for the scheduler, in this case
0.884 of the processor time is available for the task set. The results also show that the schedulers perform quite
similar, when used in AmbientRT.

The last two subsections try to highlight the advantages of EDF, DM and RM scheduling. EDF scheduling
is able to schedule task sets that cannot be scheduled by DM and RM. Furthermore the advantage of a small
lateness for high priority tasks with the DM and RM scheduling algorithm is smaller than expected. The last
test shows that the lateness and the standard deviation of the lateness are almost equal for the three scheduling
algorithms. Therefore no real advantage of DM and RM over EDF can be found. When the smallest possible
lateness for high priority tasks is not mandatory, EDF scheduling seems to be the best scheduling solution.

7.3 Transactions and NCS compared

In this section cases are selected to highlight the difference between the transaction and NCS resource policies.
The tests are performed for multiple scheduling algorithms, but the main focus is on the performance difference
between the two resource policies.

This section starts, as the previous section, with examining how the scheduler behaves when executing a task
set with a constant utilization. This should show the relation between the number of resources in the task set
and the time needed by the scheduler for the resource policy. In subsection 7.3.2 the time used by the scheduler
is examined for tasks with fixed sizes. The relation between the utilization and the time needed for the resource
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policy is examined in this test. Next, subsection 7.3.3 examines a case in which the NCS resource policy has
an advantage over the transactions resource policy. Followed by subsection 7.3.4, examining the time needed
for removing and adding tasks. Finally a conclusion is drawn from the gathered results.

7.3.1 Constant utilization

This test examines the relation between the computation time used by the different resource policies and the
number of resources in the task set. As in subsection 7.2.2, the number of tasks in the task set is increased to 16,
but the utilization of the task set is kept constant. Three constant values for the utilization are selected: 0.55,
0.65 and 0.80. All tasks have 2 resources and 4 data types assigned, in total there are 5 different resources and
19 different data types in the task set. The priority of the tasks in the task set decreases, so the last task added
to the task set has the lowest priority. The periods and deadlines of the tasks range from 4079 to 4094. The
data types used by the tasks overlap, so most tasks get a new inherited deadline for each data type they claim.
Furthermore two different cases are examined for the NCS resource policy. In the first case the resource policy
releases all resources at once when the task is finished. In the second case the task releases the resources one
by one, so its priority is restored after each release.

It is expected that the transaction resource policy will take the least time. This because the inherited deadlines
are calculated when the tasks are inserted in the task set, so no online calculations are performed. Furthermore
the time needed for the NCS resource policy is much larger, because the inherited deadlines have to be calcu-
lated when an NCS is entered. When the tasks release all resources independently, the required time is even
larger due to additional time needed for the scheduler invocations after each release resource.

The results for this test are shown in the Figures 7.8, 7.9 and 7.10. These Figures contain the three different
examined cases: NCS with resource release, NCSs and transactions. Furthermore the measurements are per-
formed for the three scheduling algorithms, already compared in section 7.2. The a parts of the Figures show
the total utilization and the b parts of the Figures show the fraction of time used by the scheduler.

The first thing seen in the Figures is that the three different scheduling algorithms perform equal, as in the
previous section. More interesting is the fraction of time used by the scheduler when transactions are used, this
is equal to the case where no resources are available in the system, see subsection 7.2.2. Therefore it can be
concluded that the time used by the transaction resource policy is independent of the number of resources and
data types in the system. The fraction of time used by the scheduler with the NCS resource policy is equal for
the three different utilization factors, so there is no influence of the utilization. As expected, the independent
releases of the resources take more time compared to releasing all resources at once, because the scheduler
is invoked at each release. The number of resources and releases in the system increases linear, therefore it
can be concluded that the releasing of a resource takes a constant amount of time. The NCS resource policy
requires quite an amount of time, it is expected that predefining an NCS structure for each resource considerably
decreases the required time, this optimization is left as future work. The fluctuation in the total utilization is
caused by the limited amount of timestamps that can be recorded, this causes differences in the amount of
idle time recorded for the measurements. Note that the fluctuation is equal for the three different scheduling
algorithms at the three examined utilization factors.

From the measurements it can be concluded that transactions take a constant amount of time, independent
of the amount of resources in the system. When NCSs are used, the time to calculate the inherited deadlines
increases linearly with the number of resources in the system. Furthermore, when releasing the resources, the
time needed by the NCS resource policy increases even faster with an increasing number of resources in the
system.

7.3.2 Constant task load

The purpose of this test is to measure the relation between the time needed by the resource policies and the
utilization of the task set. As in the previous section, the test starts with one task in the task set and the number
of tasks is increased to 16. Each task has 2 resources and 4 data types assigned and there are in total 5 different
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Figure 7.8: Total utilization (a) and fraction of time used by the scheduler (b), U = 0.55
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Figure 7.9: Total utilization (a) and fraction of time used by the scheduler (b), U = 0.65
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Figure 7.10: Total utilization (a) and fraction of time used by the scheduler (b), U = 0.80
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resources and 19 different data types. Three cases are examined, one where the schedulers are equipped with
a transaction resource policy and two where the schedulers use the NCS resource policy. When using the
NCS resource policy, tasks claim all their resources and data types when started. In the two cases with the
NCS resource policy, the OS releases all resources at once when the task is finished, or the tasks release their
resources one by one. The deadline and the priority of the tasks range from 4079 till 4094 for task 1 to task 16,
respectively. As in the previous test the used data types overlap partly with the lower and higher priority tasks.

It is expected that during this test the fraction of time used by the scheduler is equal to the test in subsec-
tion 7.2.3. The scheduler with the transactions resource policy does not require additional computations, since
the inherited deadlines are already calculated offline. The NCS resource policy needs additional time to find
the inherited deadline. When the resources are released one by one, even more time is needed by the scheduler.
It is expected that the required time by the resource policies does not depend on the increasing utilization of the
task set.

The result for this test is shown in Figure 7.11. The a part of this Figure shows the total utilization, while the
b part shows the fraction of time used by the scheduler and the resource policies.

From this test it can be seen that the fraction of time used by the scheduler is indeed equal to the values
measured in subsection 7.3.1. This means the time needed by the scheduler is independent of the utilization.
Figure 7.11 shows a high and low value in the measurement for a task set containing 12 tasks, scheduled with
the DMI scheduler and the NCS resource policy. It is probable that this measurement is faulty, because the
measurements with EDF and RM scheduling, in the same situation, show the correct behavior.

From this measurement it can be concluded that the time needed by a scheduler with one of the resource
policies, is independent of the utilization of the task set. The transaction resource policy uses a constant amount
of time, independent of the number of resources in the system. The time required by the NCS resource policy
is linear correlated with the number of used resources in the task set.

7.3.3 Advantage for NCS

This test is performed to pinpoint the worst-case situation when using transactions. Blocking occurs when a
low priority task τ2 inherits a high priority, from task τ1 and blocks the owner. The worst-case situation, using
the EDFI scheduling algorithm, occurs when the addition of the blocking time B(D1) and run time C1 are
equal to the relative deadline D1. In this situation τ1 is possibly blocked by τ2. This causes a big fluctuation
in the lateness (L1) of τ1. The task set used in this test to simulate this behavior, is shown in Table 7.5. Task
set Γ6 is feasible with the EDFI algorithm in combination with both resource policies, although the transaction
resource policy experiences a lot of blocking. The EDFI scheduling algorithm is used, because it allows more
blocking compared to the RMI and DMI algorithms. It should be possible to create a similar situation for the
DMI and RMI scheduling algorithms.

Table 7.5: Worst-case transaction task set Γ6

Γ6 D T C R

τ1 160 160 40 1{*A}
τ2 310 310 120 1{*A}

It is expected that the EDFI scheduler with the transaction resource policy shows big fluctuation in the lateness
of the tasks and the number of preempted tasks will be 0. The tasks will not preempt each other, because they
have the same inherited deadline. This inherited priority causes the tasks to be executed in the order they are
released, causing the fluctuation in the lateness. The EDFI scheduler with the NCS resource policy will show
the behavior of the underlying EDFI algorithm, since the high priority of τ1 is only inherited for a fraction of
the computation time of τ2.

The results can be found in Table 7.6. The different resource policies can be found in the two right most
columns. The rows give detail information about the measured values. The rows #jobs τ1 and #jobs τ2 give the
number of times the two tasks are executed.
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Figure 7.11: Total utilization (a) and fraction of time used by the scheduler (b), U rises to 0.80
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Table 7.6: Results with task set Γ6

Transactions NCS
U 0.6515 0.6889
Usched 0.0439 0.0699
#preempted tasks 0 37.5
#jobs τ1 1378 828
C1 (mean) 38.2 38.8
L1 (mean) -95.29608 -113.11594
σL1

32.47383 3.53432
#jobs τ2 710 421
C2 (mean) 109.6 111.1
L2( mean) -183.60986 -138.13777
σL2

13.75505 9.15374

The difference between the number of executed jobs is caused by the additional timestamps needed to measure
the claiming and releasing of NCSs. The results show a large standard deviation for the lateness of τ1 when
transactions are used, this is caused by τ2 using its inherited priority. The results also show an increased σL2

and a smaller L2 when comparing the transaction resource policy to the NCS resource policy. Due to the
inherited deadline τ2 can finish earlier with the transaction resource policy.

From this test, the conclusion can be drawn that the inherited deadline of the transaction resource policy
can completely override the used priority system. The performed test shows the worst-case situation. Normal
applications will not show this extreme behavior, but the underlying scheduling algorithm will not perform
as well as with NCSs. By claiming the resources for a small period, the blocking gets smaller. With the
smaller blocking, a scheduler in combination with the NCS resource policy can schedule task sets with a
higher utilization. Furthermore the NCS resource policy shows a smaller maximum lateness compared to the
transaction resource policy, when EDFI scheduling is used.

7.3.4 Admission and removal

The purpose of the test is to compare the time needed for task admission and removal with the different resource
policies. Two tests are performed. The first test adds and removes the 16 tasks one by one. In the second test the
tasks are added and removed in groups, starting with a group of one task and finishing with a group of 16 tasks.
The task set used, is composed in such a way that the added task always has the highest priority. Since the tasks
all write the same resource, this means that for every added task the inherited deadlines or the write floor has
to be corrected. The periods and deadlines of the tasks range from 2001 to 2016. No maximum computation
times were attached to the tasks, since only the addition and removal times of the tasks are examined.

It is expected that task admission and removal is performed faster with the NCS resource policy than with the
transaction resource policy. The NCS resource policy only has to update the read and write floors of the used
resources. Note that this is only needed when the deadline of the task is smaller than the current read or write
floor, which is always the case in this test. When the transaction resource policy is used, the inherited deadlines
have to be recalculated after each task admission. Therefore the system will compare the deadlines of all the
tasks, which takes some time.

The results of this test can be found in Figure 7.12 and Figure 7.13. Three different measurements are per-
formed for each case: tasks with NCSs, tasks with transactions and tasks with transactions, but no shared
resources. Figure 7.12 shows the amount of used clock ticks when the tasks are added or removed one by one.
The a part of the Figure shows the admission time and the b part shows the removal time, of the tasks. In Figure
7.13 the clock ticks needed for the admission and removal for groups of tasks is shown. As with the previous
Figure, the a part shows the time needed for admission and the b part shows the removal time, for the groups
of tasks. Note that in this Figure the unity of the x-axis is the size of the added or removed group.
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The results in Figure 7.12a show that the addition of a single task with the NCS resource policy takes a
constant amount of time, as expected. When tasks without resources are added, while using the transaction
resource policy, the time used is increasing linear compared to number of added tasks. The reason for this linear
increase in used time is that, although there are no resources, the list with tasks is processed twice. In the first
iteration all task dependencies are processed and in the second processing round, the tasks get their inherited
deadline set. Each time a task is added the list grows, causing the time needed to check the dependencies and
write the inherited deadlines to increase. The time needed by the transaction resource policy to add tasks with
resources to the task set is increasing polynomial with the number of added tasks. For each task the deadlines
of the tasks in the dependency list are examined. In this test all tasks share the same resource, so each task
examines the whole task set to determine its inherited deadline.

The results shown in Figure 7.13 matches the expectations. A similar explanation as in the previous paragraph
can be used. An interesting thing seen in the a part of the Figure is the pattern for task admission. When the
number of added tasks has three as a divider, the number of used clock cycles show a kind of a dip. This is
caused by the limitation on the scheduler, which prevents the scheduler from inserting more than 3 tasks at once
in the task set. This pattern is best seen in the measurements performed with the transaction resource policy,
but also occurring in the measurement with the NCS resource policy. The b part of this Figure shows that the
clock ticks needed for the transaction resource policy increases polynomially, compared to the linear increasing
number of ticks used by the NCS resource policy to remove groups of tasks.

From this test the conclusion can be drawn that the addition and removal of a task can be done in constant
time, when a scheduler with the NCS resource policy is used. The time needed to insert or remove a task with
a scheduler using the transaction resource policy, is polynomially (O(n2)) correlated with the number of tasks
in the active task set. The protection of the scheduler, preventing it to insert more than 3 tasks at the same time,
causes the need for additional time when inserting groups of tasks.

7.3.5 Conclusion

In the previous section two resource policies are compared. The tests in subsection 7.3.1 and 7.3.2 show that
the time used by the resource policies is not related to the utilization of the task set. Further more the tests show
that the transaction resource policy uses a constant amount of time, independent of the number of resources in
the task set. The time used by the NCS resource policy is linearly correlated to the number of used resource
in the task set. When considering the behavior of the two resource policies, the characteristic features of the
used scheduling algorithm are better preserved when NCSs are used. This because the tasks are not using their
inherited priority full time. Furthermore the NCS resource policy introduces less blocking, allowing a larger
set of task sets to be scheduled. Note that transaction resource policy use less processing power, allowing task
sets with a high utilization to be schedulable, while the NCS resource policy could exceed deadlines due to the
additional amount of time needed.

When the admission and removal times of tasks from the task set are examined, opposing results are found.
The NCS resource policy uses a constant amount of time to remove or add tasks. The transaction resource
policy determines the inherited deadlines of the tasks by examining the tasks with whom resources are shared
for each task. Therefore the time used for admission and removal of tasks is polynomially related to the number
of tasks in the task set.

7.4 EDFIS and TSS compared

In this section the two introduced energy conserving policies are compared. This is done by performing simu-
lations in the best and worst-case scenarios for both policies. This should explain the advantages and disadvan-
tages of both policies. EDFIS is related to EDFI scheduling, thus EDFI scheduling is used in all tests.

Real-time measurements of the consumed power are difficult and require a complex test setup. Therefore the
tests in this section measure the idle time and the time the processor is busy performing calculations. Beside
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Figure 7.12: Admission (a) and removal (b) of single tasks, with different resource policies
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Figure 7.13: Admission (a) and removal (b) for groups of tasks, with different resource policies

62



7.4. EDFIS and TSS compared

that, the determined frequency of the DCO is stored when the EDFIS policy is used. Offline test are performed
to determine the power consumption of the µnode v2.0 at the different frequencies and during the different low
power modes. During these measurements the peripherals of the sensor node are disabled. In this way only the
power consumption of the MSP430 and the electronics at the µnode v2.0 are considered.

The measured time for TSS scheduling has to be corrected, because the 6 µs wake up time is not measured, but
can be found when the power consumption is examined with an oscilloscope. Therefore the measurements of
the TSS policy are corrected, by extending the computation time and decreasing the idle time, with the number
of times the microcontroller woke up multiplied with 12 µs. Note that shutting down the microcontroller also
takes time.

Testing with the TSS policy means that the DCO is turned off, when idle time is detected. Therefore the speed
of the USART connection is lowered to 9600 baud. This introduces timing problems while sending test results
to the PC, which can be solved by lowering the speed at which the information is fed to the USART connection.

The tests in this section first examine the best-case scenarios for the two energy conserving algorithms. First
the best-case scenario for the EDFIS policy is examined, followed by the best-case scenario for the TSS policy
in subsection 7.4.2. Next subsection 7.4.3 examines the worst-case scenario for the EDFIS policy. The last
test in subsection 7.4.4 examines the worst-case scenario for TSS scheduling. This section finishes with a
conclusion of the found results.

7.4.1 Advantage for EDFIS

This test is performed with the purpose of examining how both energy conserving policies behave in the best-
case situation for the EDFIS policy. In the best-case situation for the EDFIS policy, the deadlines of the tasks
are equal to their periods and no resources are shared, enabling the policy to scale the utilization close to 0.90.
Therefore a task set containing one task, with a period and deadline of 500 is selected, without resources. Note
that the task does not run at the frequency of the scheduler, causing additional scheduler calls for the TSS
policy. Five different utilization factors are examined: 0.10, 0.20, 0.40, 0.60 and 0.80. The computation time
of the task is 50 with a utilization factor of 0.10 and 400 with the utilization factor of 0.80.

It is expected that the EDFIS policy will have the advantage that the utilization of the task set can be scaled to
something close to 0.90. Since the frequency of the microcontroller is scaled the additional scheduler calls at
16 Hz are also performed at a lower frequency, consuming less power. The TSS scheduler has to wake up, to
perform the additional scheduler calls at 4.608 MHz, causing this policy to use more power.

The results for this test are shown in Figure 7.14. The a part shows the total utilization and the fraction of time
used by the scheduler, for the different policies. Three different measurements are performed: with the EDFIS
policy, without any energy conserving policy and with the TSS policy. The a part of the Figure shows a lower
total utilization of the EDFIS policy, compared to the total utilization of TSS scheduling. The total utilization
of TSS scheduling gets close to 1, because the fast timer used for the timestamps is turned off when idle time is
detected. The experienced idle time for the TSS policy is similar to the case in which no scaling is applied. The
three lines in the lower part of the Figure represent the fraction of time used for scheduling, for the different
measurements. Again the fraction of time used for scheduling while using the TSS policy is increased due to
the absence of recorded idle time. The b part of the Figure shows the estimated energy consumption at the
different utilization factors. Table 7.7 provides additional results about the frequency determined by the EDFIS
policy and the time the policy needed to determine the frequency. Note that the EDFIS policy is performed in
slack time, while the task set is running at full speed. This time is used only once.

Observing the results it can be seen that, while using the EDFIS policy, the fraction of time used by the
scheduler gets linearly larger when the frequency is reduced. The line in Figure 7.14a is not completely linear
decreasing because EDFIS does not apply the same scaling factor to the task set for the different utilization
factors. Furthermore the scaling of the EDFIS policy increases the utilization to 0.80, while 0.90 was expected.
This is caused by the additional 20% of time added to the measured computation time of the tasks in the task set.
The low power consumption of the TSS policy on all the different utilization factors is also unexpected. The
savings of the policy in idle time, make up for the additional scheduler calls which are performed at full speed.

63



7. Performance comparisons

From the results in Figure 7.14b a power saving of 30% for EDFIS and even 39% for TSS can be derived1,
when the utilization of the task set is 0.10. The percentage of saved energy drops linear to 2% for both policies,
when the utilization rises to 0.80.

The test results lead to the conclusion that the TSS policy is able to safe the largest amount of power with
the single task in the task set. The EDFIS policy also saves a fair amount of power compared to the normal
situation.

Table 7.7: Measurements for the EDFIS analysis, during the best-case EDFIS analysis
U 0.10 0.20 0.40 0.60 0.80
Frequency (Hz) 569,344 1,130,496 2,322,432 3,371,008 4,550,656
Duration EDFIS analysis (s) 0.0245 0.0158 0.0100 0.0100 0.0161

7.4.2 Advantage for TSS

Corresponding to the previous test the goal of this test is to select the scenario in which TSS scheduling performs
best. The reasoning is that TSS scheduling profits from large idle times between tasks. Furthermore it if the 16
Hz scheduler calls occur simultaneously with the task releases, no wake up time is spoiled. Therefore a task set
with one task is selected. The task has a period and deadline of 2048 and is attached to the same timer as the
scheduler. The task set is examined for multiple utilization factors: 0.10, 0.20, 0.40, 0.60 and 0.80.

It is expected that the TSS policy performs best in this test, since the idle time is maximized. The EDFIS
policy will also show a good performance, because the task set is scalable, due to the deadline that is equal to
the period and the absence of blocking.

The results of this test are shown in Figure 7.15. As explained in the previous subsection, part a of the Figure
shows the total utilization and the fraction of time used by the scheduler. The b part of the Figure shows the
power consumption. Table 7.8 provides additional measurements for the EDFIS policy.

The results show the expected behavior. The utilization of the EDFIS and TSS policy show similar behavior
as in the previous test in subsection 7.4.1. Figure 7.15b shows that the TSS policy indeed saves the largest
amount of power. With a utilization factor of 0.10, the TSS policy uses 42% and the EDFIS policy uses 34%
less power, compared to the normal case2. This power saving decreases almost linear for the TSS policy, to a
power saving of 2% at a utilization factor of 0.80. The EDFIS policy shows a nonlinear line in the percentage
of saved power. When the utilization of the task set is 0.40, the percentage of power saved by the EDFIS policy
equals the savings of the TSS policy. When the utilization is above 0.40, the percentage of power saving gained
with the EDFIS policy decreases even sub-linear.

From this test the conclusion can be drawn that TSS scheduling saves the largest percentage of power, in
this case. Interesting is the sub-linear relation of the saved power with the utilization, for the EDFIS policy.
This because the policy saves more energy compared to TSS when the utilization increases, especially in the
best-case scenario for TSS.

Table 7.8: Measurements for the EDFIS analysis, during the best-case TSS analysis
when the utilization increases U 0.10 0.20 0.40 0.60 0.80
Frequency (Hz) 540,672 1,093,632 2,191,360 3,272,704 4,378,624
Duration EDFIS analysis (s) 0.0085 0.0085 0.0086 0.0088 0.0088

1Applying the provided information about the batteries [26], with the TSS policy the node can be operational for 4.4 months, with the
EDFIS policy for 3.8 months and in the normal case only 2.7 months.

2When applying the information about the batteries [26], the TSS policy extends the life time from 2.8 months to 4.8 months, while the
EDFIS policy keeps the node functional for 4.2 months.
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Figure 7.14: Utilization (a) and power consumption (b) during a best-case scenario for EDFIS
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Figure 7.15: Utilization (a) and power consumption (b) during a best-case scenario for TSS
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Figure 7.16: Worst-case scenario for the EDFIS policy

7.4.3 Disadvantage for EDFIS

To examine the worst-case scenario for the EDFIS policy a task set should be selected with small deadlines. In
fact the scenario sketched in Figure 3.4 can be extended with small deadlines to create the scenario in Figure
7.16. Note that the tasks cannot be scaled, since that would cause the tasks to exceed their deadlines. Therefore
a worst-case situation for the EDFIS policy occurs when a task set cannot be scaled. In such a case the power
consumption is equal to the normal situation. The other tests show examples of how the TSS policy relates to
the situation in which no scaling is performed.

7.4.4 Disadvantage for TSS

This subsection tries to select the worst-case scenario for TSS scheduling. Since TSS scheduling performs best
with large idle times, a task is selected with a small period. The task has a period and deadline of 125. This
means that the task is released at a frequency of 262 Hz. Furthermore the frequency is chosen such that it differs
from the frequency of the scheduler. Different utilization factors are examined: 0.10, 0.20, 0.40, 0.60 and 0.80.

The expected result is that the wake up time of the TSS policy introduces a large amount of overhead. This
will cause the policy to be less efficient, compared to the EDFIS policy. Since the EDFIS policy scales the
utilization of the task set to 0.80, it will perform similar as in the tests in subsection 7.4.1 and 7.4.2.

The results of this test are shown in Figure 7.17. The a part of the Figure shows the total utilization of the
task set and the fraction of time used by the scheduler. In the b part of the Figure the power consumption for
the different utilization factors can be found. The results for the EDFIS policy at the utilization of 0.10 and
0.20 are included, but are not valid. Due to the increase of needed scheduler time at lower frequencies, the task
exceeded its deadline multiple times. Therefore the results of the EDFIS policy are not valid. The problem of
increasing the computation time of the tasks to account for the scheduler time at lower frequencies and with
fast timers, is left as future work. In Table 7.9 additional measurements for the EDFIS policy are provided.

The results match the expectations, since the lowest power saving of the TSS policy is achieved. Compared
to the normal case, only 31% of power is saved, with a utilization factor of 0.10. This decreases almost linear
to a power saving of 1% when the utilization factor of the task set is increased to 0.80. The results for the
EDFIS policy at the utilization of 0.10 and 0.20 are not valid. Nonetheless the power savings achieved at the
factors 0.60 and 0.80 are interesting. At these utilization factors, the policy saves more power, compared to the
TSS policy, 7% at a utilization of 0.60 and 1.5% at a utilization of 0.80. In this test EDFIS saves even more
power at a utilization of 0.60, compared to the best-case test of EDFIS in subsection 7.4.1. The reason for this
power saving is the higher utilization of the task set and the small period of the task. Since the small period
of the task causes a higher utilization of the scaled task set, less idle time is wasted compared to the test in
subsection 7.4.1.

From this test the conclusion can be drawn that the TSS policy saves even a fair amount of power in its worst-
case situation, in combination with tasks sets with a low utilization. Although the EDFIS policy is not able yet
to handle the high frequent clocks, a good percentage of saved power is showed at utilization factors above the
0.60. At these utilization factors it outperforms the TSS policy.
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Figure 7.17: Utilization (a) and power consumption (b) during a worst-case scenario for TSS
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Table 7.9: Measurements for the EDFIS analysis, during the worst-case TSS analysis
U 0.10 0.20 0.40 0.60 0.80
Frequency (Hz) 737,280 1,179,648 2,469,888 3,354,624 4,460,544
Duration EDFIS analysis (s) 0.0293 0.0536 0.0551 0.0831 0.2111

7.4.5 Conclusion

As more devices operate in a energy scarce environment, the problem of energy conservation becomes more
relevant. The tests in this section examined the behavior of the TSS and EDFIS policy, which each save energy
in a different way. The TSS policy saves energy by disabling the peripherals and parts of the microcontroller,
while the EDFIS policy saves energy by reducing the speed of the microcontroller.

The tests performed in this section, show that there is not a single best performing policy. The results show
that in general the TSS policy saves most energy, in combination with task sets that have a low utilization,
typically 0.40 or lower. Note that when the TSS policy is used, devices cannot use the fast timers. For example
the USART should be connected to the external crystal. At a utilization factor above the 0.60 the EDFIS policy
saves most power. These results show that the TSS policy should be applied in combination with task sets that
have a low utilization and EDFIS should be applied in combination with task sets which have a high utilization.
Introducing the idea that a combination of the two policies could even outperform both. The development of
such an policy is left as future work.
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Chapter 8

Conclusion

The context of the presented research is a Wireless Sensor Network (WSN). This network is build up by
µnode v2.0 sensors using the AmbientRT Operating System (OS). In this real-time OS different solutions are
compared.

The presented research focuses on three different subjects, all related to real-time scheduling. The first exam-
ined subject is the real-time scheduling algorithm. Although many research and tests are available, the behavior
of the algorithms is examined for the µnode v2.0. Furthermore the performance of different resource policies is
examined on the µnode v2.0. Because sensor nodes belong to the category of devices that operate in a typically
energy scarce environment, two energy conservation policies are examined.

The next sections will start with a summary of the theory. Some remarks will be given about the used algo-
rithms and the performed test are discussed. Finally a conclusion is drawn from the collected information.

8.1 Scheduling algorithms

The behavior of the Earliest Deadline First (EDF), the Deadline Monotonic (DM) and Rate Monotonic (RM)
real-time scheduling algorithms is examined. The EDF scheduling algorithm assigns dynamic priorities to
tasks, while DM and RM scheduling assigns static priorities.

The performed tests show similar behavior for the different scheduling algorithms of the AmbientRT frame-
work. The time needed by the algorithms is independent of the utilization of the task set in the system. The
time used by all three scheduling algorithms correlates linear with the number of tasks in the task set. A test
to examine the available time for the task set shows that in the worst-case situation a fraction of 0.884 of the
processor time is available for the task set. When the advantages of the different algorithms are examined, EDF
scheduling is able to schedule a larger group of task sets with a high utilization, in particular when the deadlines
of the tasks are equal to their periods. When a test is performed to compare the lateness of high priority tasks
under DM and RM scheduling with the lateness of the same high priority tasks under EDF scheduling, only a
small difference is found. In this comparison the lateness of the other tasks is smaller under EDF scheduling,
compared to DM and RM scheduling.

The conclusion can be drawn that the percentage of time used by the scheduling algorithms in the AmbientRT
OS is similar for the EDF, DM and RM algorithms. Therefore the characteristics determine the preferred
algorithm. EDF scheduling is the best option, since it allows task sets with a utilization of at most one and
minimizes the maximum lateness; the maximum lateness lower bound offers a predictable average response
time of the tasks. When a short high priority task should be performed with a guaranteed small lateness, the
usage of DM scheduling becomes interesting. However the lateness of the other tasks cannot be guaranteed
under DM scheduling.
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8.2. Resource policies

8.2 Resource policies

In this report two resource policies are high lighted, the transaction and Nested Critical Section (NCS) resource
policy. The purpose of the resource policies is to provide mutual exclusive access to data and resources. Both
resource policies achieve this by assigning an inherited priority to each task, which is possibly higher than the
current priority of the task, preventing other tasks from preempting. The transaction resource policy assigns
this priority for the whole length of the task. The NCS resource policy assigns the inherited priority only in the
period that the task is using the resource. Therefore the NCS resource policy determines the inherited priority
at run time, while the transaction resource policy assigns them offline. Note that, since the transaction resource
policy assigns the higher priority for the whole duration of the task, more blocking occurs.

The expected behavior is confirmed by the tests. The transaction resource policy takes a constant amount
of time, independent of the number of resources in the system, because the inherited deadlines are calculated
offline. The time used by the NCS resource policy increases linear with the number of used resources in the
system. Additional tests show that the transaction resource policy may hinder the behavior of the underlying
scheduling algorithm, by always assigning the tasks a static inherited priority. Therefore a smaller maximum
lateness can be achieved when the NCS resource policy is used in combination with EDF scheduling. The
addition of a task to the task set with the NCS resource policy can be performed in constant time. When the
transaction resource policy is used the time required for the addition of a task is polynomial (O(n2)) in the
number of tasks in the task set.

Since the transaction resource policy uses a constant amount of time, it seems the best solution in a resource
scarce environment. The NCS resource policy allows the scheduling algorithm to schedule the tasks according
to their priorities, but uses linearly more time on the microcontroller when the number of used resources in-
creases. Therefore the best resource policy depends on the task set. When the task set has an average amount
of used resources, the NCS resource policy is the best solution in most cases. When the task set has a high
utilization or uses many resources the transaction resource policy is likely to be the best solution.

8.3 Energy conserving policies

Since resources are scarce in a WSN, two energy conserving policies have been developed. The Temporal
Shutdown Scheduling (TSS) puts the microcontroller of the sensor node in a low power mode, when it detects
idle time. An encountered problem when using this solution, is that devices cannot be attached to the fast
internal clock. This clock gets disabled when entering the low power mode. The second energy conserving
policy is Earliest Deadline First with Inheritance and Scaling (EDFIS). This policy stretches the tasks in the
task set to their maximum length. The scaling possibilities of the EDFIS policy are limited by the amount of
blocking and early deadlines of tasks in the task set.

When these solutions are applied to different hardware platforms, different results will show up. As stated in
subsection 2.4.4 other processors might have registers, caches or transition look aside buffers that get lost when
they get disabled. It is also possible that the wake up time is longer, decreasing the responsiveness of the TSS
policy. At the other hand the ability to apply online frequency scaling might be missing, making it difficult to
use the EDFIS policy. Another interesting addition to the hardware platform, for the EDFIS algorithm, could
be the option to scale the voltage. With a small extension, the algorithm could use this option to achieve even
better power savings.

To examine the energy consumption of the two policies the best and worst-case situations have been distin-
guished for both. The tests show that at a utilization of 0.10 the power saved by the TSS policy lies between
the 31% and 42%. The difference is mainly caused by the frequency at which the scheduler is called, which is
related to the period of the tasks in the task set. In the worst-case situation of the EDFIS policy, it can not scale
the task set due to small deadlines or blocking. The maximum amount of power saved by the EDFIS policy is
34% at a utilization of 0.10. Another interesting result shown in the tests is that EDFIS outperforms TSS when
the utilization of the tasks set is above 0.60.
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8. Conclusion

Not a single solution can be provided the best power savings on the µnode v2.0. In case the utilization of the
task set is low, typically below 0.40, the TSS policy can deliver power savings up to 42%. Drawback of this
solution is that devices cannot use the fast timers. When the utilization is above 0.60 the EDFIS policy shows
a larger amount of saved power. Restriction is that the task set should not have to much blocking or small
deadlines.
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Chapter 9

Future work

Searching efficient solutions for sensor nodes did not only provide results. The research also provided new
points of interrest:

• Precedence constraints and sporadic tasks: The data-centric scheduler of AmbientRT releases tasks
on signals of running tasks and on received interrupts. Both are not supported by the used real-time
scheduling theory. Therefore research should be performed to integrate the precedence constraints and
sporadic tasks in the theory.

• Determination of inherited deadlines: When tasks with shared resources are added to a task set, while
the transaction resource protocol is used, a polynomial relation (O(n2)) between the time needed for
addition and the number of tasks can be found. It should be possible to find a solution that determines
the inherited deadlines of the tasks in linear time.

• Efficient NCS allocation: The results in section 7.3 show a strong increase in time needed by the
scheduler and the NCS resource policy when more resources need to be claimed. Further research can
be performed to optimize and reduce the required time to claim and release a resource. The current
implementation minimizes the memory consumption by assigning the memory for the NCS structure,
when it is required. It might be faster to provide a preallocated NCS structure for each resource. An
additional analysis should be performed to determine if there are multiple readers of a resource, that can
be on the the stack at the same time. In this case additional NCS structures can be preallocated.

• Determination of computation time: When using the EDFIS algorithm, the time needed by the sched-
uler increases with a lower frequency or faster clocks. Research should be performed to determine the
amount of time for scheduling assigned to the tasks.

• Procrastination of tasks: The best case situation for TSS scheduling occurs when large pieces of idle
time are available. Literature [16] proposes to delay tasks in order to create larger gaps with idle time.
This could increase the power savings achieved with the TSS algorithm. Note that this violates one of
the main assumptions of real-time scheduling, see section 3.2. It should be verified if the definitions of
real-time scheduling stay valid with such an addition.

• Combining the TSS and EDFIS algorithm: When the TSS and EDFIS algorithms are combined, the
best of both can be used. Research should be performed to find the optimal combination in which both
algorithms keep their characteristics.
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Acronyms

ADC Analog to Digital Converter
ALU Arithmetic Logic Unit
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
DCO Digital Controlled Oscillator
DCOS Data-Centric Operating System
DM Deadline Monotonic
DMI Deadline Monotonic with Inheritance
DSF Data Specification File
EDF Earliest Deadline First with
EDFI Earliest Deadline First with Inheritance
EDFIS Earliest Deadline First with Inheritance and Scaling
EEPROM Electric Erasable Programmable Read Only Memory
FIFO First In First Out
HAL Hardware Abstraction Layer
HIL Hardware Independent Layer
HPL Hardware Presentation Layer
JTAG Joint Test Action Group
LCD Liquid Crystal Display
LCM Least Common Multiple
LED Light Emitting Diode
LP Linear Programming
NCS Nested Critical Section
OS Operating System
PC Personal Computer
RAM Random Access Memory
RM Rate Monotonic
RMI Rate Monotonic with Inheritance
RTOS Real-Time Operating System
SPI Synchronous Peripheral Interface
TSS Temporal Shutdown Scheduling
USART Universal Synchronous/Asynchronous Receive/Transmit
WSN Wireless Sensor Network
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Appendix A

Data Specification File

Data and tasks are defined separate from the OS in AmbientRT. A Data Specification File (DSF) is used to
provide information about the tasks written in the C code and the used data. The information in the DSF file is
parsed by the offline feasibility analysis and DSF parsing tool Sparse. This tool checks if the provided data is
valid and creates a file defining the constants in C code for the task set.

This Appendix explains how tasks and data can be defined in a DSF file. Furthermore this appendix contains
an extension of the DSF language to enable the usage of NCSs. In addition the extension to check the feasibility
of task sets with different schedule algorithms is discussed. First the general syntax of the DSF is explained.
A complete specification of the DSF language with system calls for AmbientRT, but without the extensions, is
given in [1].

A data type is defined by:
data(id, size, name);

The id is the name of the variable as used within the DSF. The size defines the number of words reserved for
this data type. The name, is the unique name for the data type as used in AmbientRT.

AmbientRT provides two types of timers, the fast timer working at a frequency of 32768 Hz and the slow
ltimer, working at 16 Hz. There are two fast timers available for the users and up to 16 slow ltimers. A timer
and ltimer are defined by:

timer(id, ticks); # A (32768 / ticks) Hz fast timer
ltimer(id, ticks); #A (16 / ticks) Hz slow ltimer

The id of the timer or the ltimer should be in the range of the available numbers, with the first timer having
id 0. The ticks variable denotes the frequency the timer should operate on, with ticks maximal 65536 for both
timers. For the fast timer the frequency is 32768

ticks
and the ltimer has a frequency of 16

ticks
.

Tasks need to be annotated with scheduling information, so the real-time scheduler can assign priorities:
task(name, cname, deadline, period, cputime, reserved)

The name is the name of the task in the DSF file. The cname is the name of the function as defined in the C
file. The deadline, period and cputime are as needed for EDFI scheduling. The reserved value is not used at
the moment.

Inside the task definition three keywords are available. The dataspec key word is used, with a list of data
types the task is subscribed to or going to publish. The resources keyword has a list with the resources the
task is going to read or write. The descriptors in the list of dataspec and resource, can be preceded by *, this
means that mutual exclusive access is desired to the resource. The list with data types and or resources is given
between square brackets, where the items are separated by commas. The subscribe keyword contains a list with
data types the task wants to subscribe for, when these data types are published the subscribed task is released.
Note that timers are also treated as a data types, this means that the OS publishes the timer data types. These
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A. Data Specification File

# # # # # # #
# Example Data Specification File
# This file defines a shell, that sends the number of input
# characters to a counter. The char_count is used
# to transport the value and signal the function counter.
# The function counter writes its result to the LCD display
# and the network, by the radio it is subscribed to.
# There is also a blink_function that blinks a LED
# # # # # # #
# Data types
data(char_count,2,"ccnt");

# Timers
ltimer(0,4);

# Tasks
task(shell,shell_function,1000,1024,512,0) {

dataspec[*char_count];
resources[*SERIAL];
subscribe[SERIALIN];

}

task(counter,counter_function,300,1024,50,0){
dataspec[char_count];
resources[*LCD, *RADIO];
subscribe[char_count];

}

task(blink,blink_function,200,8192,50,0){
subscribe[LTIMER0];

}

Figure A.1: Example DSF file for AmbientRT

data types contain no actual data.

An example DSF file is given in Figure A.1. This file defines one data type ’char count’, one slow ltimer and
three tasks. The task ’shell’ is writing and listening to the serial port, since the serial port is defined as written in
resources and it is subscribed for in subscribe. The task publishes the data type ’char count’, since it is marked
as a written data type in ’dataspec’. The task ’counter’ is subscribed to the data type ’char count’, since it is
in the subscribe list and as read data type in the dataspec list. The task ’blink’ is only subscribed to the slow
LTIMER0, which will cause it to blink at a frequency of 4 Hz.

A.1 NCS extension

To enable the usage of NCSs, the DSF language is extended. For every task, the used resources and duration of
the sections can be stated. The usageflow keyword is followed by the list. The syntax for the list with sections
corresponds to the syntax as discussed in section 3.4.2. The exact syntax as accepted in the DSF file is:
usage → [ ρ′ ]
ρ′ → ρ̃ | ρ̃ , ρ′

ρ̃ → int { exclusive ρ } | int { exclusive ρ , ρ̃ }
ρ → resource name | resource name , ρ

exclusive → ∗ | λ
In this syntax, resource name denotes a resource or data type and int denotes the duration of the NCS in ticks
on the 32.768 kHz clock.

An example of a task set with NCSs is given in Figure A.2. This task set contains two tasks, with the names
mac in and msgin. The task mac in is started when the radio publishes the data type RADIOIN. During its
execution it will claim radio message and LCD sequentially. Writing access to RADIO is claimed for 150 time
units and LCD is claimed 50 time units for writing. The task msgin has a critical section of 50 time units in
which radio message is read. In this critical section is an NCS of 25 time units in which counter is written.
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A.2. Feasibility analysis

# # # # # # #
# Example Data Specification File
# The task mac_in receives network traffic. This information
# is displayed on a LCD and written to the data type
# radio_message. The task msgin is subscribed to radio_message
# and writes the number of received messages to the data
# type counter.
# # # # # # #
# Data types
data(radio_message,17,"rmsg");
data(counter,2,"cntr");

# Tasks
task(mac_in,mac_in,500,1024,200,0) {

dataspec[*radio_message];
usageflow[150{*radio_message},50{*LCD}];
resources[*RADIO,*LCD];
subscribe[RADIOIN];

}

task(msgin,msgin,10000,32768,100,0) {
dataspec[radio_message,*counter];
usageflow[50{radio_message,25{*counter}}];
subscribe[radio_message];

}

Figure A.2: Example DSF file with NCSs

A.2 Feasibility analysis

The information given in the DSF file can be used to perform a feasibility analysis. With the discussed additions
to AmbientRT, as discussed in section 5, the used scheduling algorithm and resource policy should be known
when performing the check. Therefore the syntax to enable a feasibility analysis is extended to:

analyze(analysis name,schedule algorithm,resource policy,task list);
The analysis name is the name that is assigned to this particular analysis, since multiple analysis can be declared
in one DSF. In the variable schedule algorithm, the preferred schedule algorithm can be chosen, the algorithm
names are ’dmi’, ’edfi’ and ’rmi’. Note, that since rate monotonic scheduling does not use deadlines, the
deadline values of the tasks are ignored. In AmbientRT two resource policies are available, ’transactions’ and
’ncs’, these can be chosen in resource policy. The task list variable contains the tasks that should be in the task
set on which the feasibility check is performed. This list contains the names of the tasks, separated by commas
and between square brackets. An example DSF file is given in Figure A.3
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A. Data Specification File

# # # # # # #
# Example Data Specification File
# Three tasks are defined to be analyzed by different
# feasibility analysis. This DSF shows that multiple
# task sets can be defined in a single DSF file.
# Multiple analyzes can be performed to verify their
# feasibility.
# # # # # # #
# Timers
timer(0,500);
timer(1,700);

# Data types
data(a,2,"adat");
data(b,2,"bdat");

# Tasks
task(task1,task1_function,300,500,100,0) {

dataspec[a];
usageflow[5{a}];
subscribe[TIMER0];

}

task(task2,task2_function,600,700,200,0) {
dataspec[*b];
usageflow[10{*b}];
subscribe[TIMER1];

}

task(task3,task3_function,700,700,300,0) {
dataspec[*a,b];
usageflow[15{b,10{*a}}];
subscribe[TIMER1];

}

# Analysis
analyze(dmi_trans,dmi,transactions,[task1,task3]);
analyze(dmi_ncs,dmi,ncs,[task1,task2,task3]);
analyze(edfi_trans,edfi,transactions,[task1,task2,task3]);
analyze(edfi_ncs,edfi,ncs,[task1,task2,task3]);
analyze(rmi_trans,rmi,transactions,[task3,task2]);
analyze(rmi_ncs,rmi,ncs,[task3]);

Figure A.3: Example DSF file with multiple feasibility checks
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