
Twente Research and Education on Software Engineering,
Department of Computer Science,

Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente

Performing transformations on .NET
Intermediate Language code

S.R. Boschman

Enschede, August 23, 2006

Prof. dr. ir. M. Aksit
Dr. ir. L.M.J. Bergmans

Ir. P.E.A. Dürr

Abstract

To express crosscutting concerns in a clear manner, the aspect-oriented programming (AOP)
paradigm was introduced. In AOP languages, crosscutting concerns are defined in aspects.
These aspects are composed, or woven, with components. These components encapsulate func-
tionality expressed in traditional object-oriented languages.

As the aspect language and component language can be separated, an AOP solution can be
implemented independent of the component language. A suitable platform for such an AOP
solution is the .NET Framework, since, in principle, this platform can support a wide range of
different component languages (i.e. programming languages).

This thesis will describe the development of a tool that can weave the aspects with the com-
ponents in the .NET Framework environment. The first step is to discuss the Common Inter-
mediate Language (CIL) in more detail, as all programming languages in the .NET Framework
map to this CIL. The second step is to create a mapping from AOP constructs to CIL code struc-
tures. The third step provides an overview of possible approaches to perform the weaving of
aspects and base components. One of the weaving approaches is based on modifying the CIL
code stored in binary files, called assemblies. The fourth, and last, step is the discussion of the
creation of the weaver tool.

The result is the CIL Weaving Tool, which consists of two parts. The first part is the PE Weaver,
responsible for creating textual IL files from the assemblies and recreating the assemblies after
weaving. The second part is the IL Weaver, which performs the actual weaving on the textual
IL files. To define the weave operations that have to be performed by the IL Weaver, a weave
specification file has to be supplied. This weave specification file allows the definition of weave
points, which are based on AOP constructs.

Contents

Abstract i

List of Figures vii

List of Tables ix

Nomenclature xi

1 Introduction to AOSD 1

1.1 Introduction . 1

1.2 Traditional Approach . 3

1.3 AOP Approach . 4

1.3.1 AOP Composition . 5

1.3.2 Aspect Weaving . 5

1.4 AOP Solutions . 7

1.4.1 AspectJ Approach . 7

1.4.2 Hyperspaces Approach . 9

1.4.3 Composition Filters . 10

2 Compose? 13

2.1 Evolution of Composition Filters . 13

2.2 Composition Filters in Compose? . 14

2.3 Demonstrating Example . 16

2.3.1 Initial Object-Oriented Design . 16

2.3.2 Completing the Pacman Example . 18

iii

CONTENTS

2.4 Compose? Architecture . 19

2.4.1 Integrated Development Environment . 19

2.4.2 Compile Time . 22

2.4.3 Adaptation . 22

2.4.4 Runtime . 22

2.5 Platforms . 22

2.5.1 Java . 23

2.5.2 C . 23

2.5.3 .NET . 23

2.6 Features Specific to Compose? . 23

3 Introduction to the .NET Framework 25

3.1 Introduction . 25

3.2 Architecture of the .NET Framework . 26

3.2.1 Version 2.0 of .NET . 27

3.3 Common Language Runtime . 28

3.3.1 Java VM vs .NET CLR . 29

3.4 Common Language Infrastructure . 29

3.5 Framework Class Library . 30

3.6 Common Intermediate Language . 32

4 Problem statement 35

5 Understanding the Common Intermediate Language 39

5.1 The assembly, unit of deployment . 39

5.1.1 Portable Executable files . 40

5.2 The activation record and evaluation stack . 41

5.3 The Common Type System . 42

5.3.1 Value types . 42

5.3.2 Reference types . 43

5.4 The CIL instruction set . 45

5.4.1 Load and store instructions . 45

5.4.2 Operate instructions . 46

5.4.3 Branching and jumping instructions . 46

5.4.4 Miscellaneous instructions . 47

5.5 Example: A simple program written in the CIL . 48

5.6 Summary . 50

iv

CONTENTS

6 Mapping AOP constructs to the Common Intermediate Language 51

6.1 Crosscutting locations . 51

6.1.1 Dynamic crosscutting locations . 52

6.1.2 Static crosscutting locations . 53

6.1.3 Concern implementation . 53

6.2 Weave points . 54

6.2.1 Structural weave points . 54

6.2.2 Executional weave points . 55

6.3 From crosscutting locations to weave points . 55

6.4 Supported weave points . 55

6.5 Summary . 57

7 Towards a solution 59

7.1 Related work . 59

7.1.1 AOP Solutions for the .NET Framework . 59

7.1.2 Code-manipulation Tools . 62

7.2 Approach 1: Source code weaving . 63

7.2.1 Advantages and disadvantages . 63

7.3 Approach 2: Weaving at run-time with the profiling APIs 63

7.3.1 The profiling APIs explained . 64

7.3.2 Implementing an aspect profiler . 64

7.3.3 Advantages and disadvantages . 65

7.4 Approach 3: Adapting the Common Language Runtime 66

7.4.1 Advantages and disadvantages . 66

7.5 Approach 4: Weaving aspects into .NET assemblies 66

7.5.1 Getting the MSIL code out of the assembly 67

7.5.2 Problems with weaving assemblies . 67

7.5.3 Advantages and disadvantages . 68

7.6 Summary . 68

8 The implementation of the CIL Weaving Tool 69

8.1 Global structure of the weaver tool . 69

8.2 The weave specification file . 70

8.2.1 The assembly reference block . 71

8.2.2 The method definition block . 71

8.2.3 The application block . 74

v

CONTENTS

8.2.4 The class block . 74

8.3 The PE Weaver . 78

8.3.1 Verification of the assemblies . 78

8.3.2 Disassembling . 79

8.3.3 Assembling . 79

8.4 The IL Weaver . 79

8.4.1 Reading the weave specification file . 80

8.4.2 Reading the IL file . 80

8.4.3 The assembly inspector . 81

8.4.4 Weaving . 81

8.5 Summary . 82

9 Integrating the CIL Weaving Tool into Compose* 83

9.1 Creating the weave specification file . 83

9.2 Invoking the weaver . 85

9.3 Summary . 86

10 Conclusion and future work 89

10.1 Future work on the CIL Weaving Tool . 90

Bibliography 92

A The CIL Instruction Set 99

B A HelloWorld example in the CIL 107

C The Weave Specification file 109

D Class diagrams Weaver 111

D.1 PE Weaver . 111

D.2 IL Weaver . 113

D.3 WeaveLibrary . 114

E Listing DotNETWeaveFileGenerator 117

F Listing ILICIT 119

vi

List of Figures

1.1 Dates and ancestry of several important languages 2

2.1 Components of the composition filters model . 15

2.2 UML class diagram of the object-oriented Pacman game 17

2.3 Overview of the Compose? architecture . 21

3.1 Context of the .NET framework . 27

3.2 Relationships in the CTS . 30

3.3 Main components of the CLI and their relationships 31

3.4 From source code to machine code . 32

5.1 Single-file and multifile assembly layout. 40

5.2 The Common Type System. 42

7.1 The Phoenix compiler platform. 61

7.2 The SourceWeave.NET architecture. 61

7.3 The Weave.NET architecture. 62

7.4 The two COM interfaces of the profiling APIs. 64

8.1 Data flow diagram weaver. 70

8.2 Data flow diagram PE Weaver. 79

8.3 Data flow diagram IL Weaver. 80

9.1 Class diagram DotNETWeaveFileGenerator, Compose* module CONE. 84

9.2 Class diagram ILICIT. 86

9.3 The integration of the CIL Weaver Tool in the Compose* architecture. 87

vii

LIST OF FIGURES

D.1 Class diagram PeWeaver. 111

D.2 Class diagram ProcessManager. 112

D.3 Class diagram IL Weaver. 113

D.4 Class diagram internal IL representation, the IlStructure. 114

D.5 Class diagram internal representation of the weave specification. 116

viii

List of Tables

5.1 Built-in value and reference types. 43

6.1 Mapping of crosscutting locations to weave points. 56

A.1 Instructions with no arguments . 99

A.2 Instructions with a numeric argument . 103

A.3 Instructions with a type reference argument . 103

A.4 Instructions with a label argument . 104

A.5 Instructions with a method reference argument . 104

A.6 Instructions with a field reference argument . 105

A.7 Miscellaneous CIL instructions . 105

ix

Nomenclature

AOP Aspect-Oriented Programming

API Application Programming Interface

assembly A compiled and versioned collection of code and metadata that forms a single
functional unit, which is shared within the CLR.

boxing The operation performed on a value type that copies the data from the value
into an object of its boxed type allocated on the garbage collected heap.

CIL Common Intermediate Language

CIL instruction An instruction or operation that is defined in the CIL, e.g. addition, and
subtraction.

CLI Common Language Infrastructure

CLR Common Language Runtime

CLS Common Language Specification

CTS Common Type System

directive Basically, a directive is an instruction to the assembler to carry out some unit
of work. A directive in the CIL can be recognised by the dot preceeding the
directive name.

FCL Framework Class Library

GUI Graphical User Interface

IL Intermediate Language

JIT Just-in-time

JVM Java Virtual Machine

xi

NOMENCLATURE

manifest States the name of the assembly, the version, the locale, a list of files that form
the assembly, any dependencies the assembly has, and which features are
exported.

module A compiled collection of code without a manifest. Modules can be used to
compose assemblies.

MSIL Microsoft Intermediate Language, specific name for the intermediate lan-
guage of the .NET Framework, often the general name CIL instead of MSIL
is used.

MSIL Microsoft Intermediate Language

OOP Object-Oriented Programming

OpCode Operation Code

opcode see ’CIL instruction’

PDA Personal Digital Assistant

PE file Portable Executable file, .NET assemblies are distributed within PE files.

reference types Represent class types, array types, pointer types, and interface types. In other
words anything that is not a value type.

UML Unified Modeling Language

unboxing The operation performed on a value type that returns a pointer to the actual
value, i.e. the sequence of bits in memory, held in a boxed object.

value types Represent the simple or primitive types of many languages, e.g. int or float.

XML eXtensible Markup Language

xii

CHAPTER 1

Introduction to AOSD

The first two chapters have originally been written by seven M. Sc. students [20, 11, 59, 6, 53,
19, 5] at the University of Twente. The chapters have been rewritten for use in the following
theses [58, 9, 56, 22, 10, 21, 52]. They serve as a general introduction into Aspect-Oriented
Software Development and Compose? in particular.

1.1 Introduction

The goal of software engineering is to solve a problem by implementing a software system. The
things of interest are called concerns. They exist at every level of the engineering process. A re-
current theme in engineering is that of modularization: separation and localization of concerns.
The goal of modularization is to create maintainable and reusable software. A programming
language is used to implement concerns.

Fifteen years ago the dominant programming language paradigm was procedural program-
ming. This paradigm is characterized by the use of statements that update state variables.
Examples are Algol-like languages such as Pascal, C, and Fortran.

Other programming paradigms are the functional, logic, object-oriented, and aspect-oriented
paradigms. Figure 1.1 summarizes the dates and ancestry of several important languages [62].
Every paradigm uses a different modularization mechanism for separating concerns into mod-
ules.

Functional languages try to solve problems without resorting to variables. These languages are
entirely based on functions over lists and trees. Lisp and Miranda are examples of functional
languages.

A logic language is based on a subset of mathematical logic. The computer is programmed to
infer relationships between values, rather than to compute output values from input values.
Prolog is currently the most used logic language [62].

A shortcoming of procedural programming is that global variables can potentially be accessed

1

CHAPTER 1. INTRODUCTION TO AOSD

object-oriented

languages

procedural and concurrent

languages

functional

languages

logic

languages

aspect-oriented

languages

2000

1990

1980

1970

1960

1950

Smalltalk

Simula

Ada

Pascal

Algol-60

Algol-68

C

Cobol

Fortran

Lisp

ML

Miranda

Prolog

Sina

Sina/st Java

C++

BASIC

VB

C#
AspectJ

2005 Compose*

Hyper/J

Legenda:
Influenced by

Figure 1.1: Dates and ancestry of several important languages

and updated by any part of the program. This can result in unmanageable programs because no
module that accesses a global variable can be understood independently from other modules
that also access that global variable.

The Object-Oriented Programming (OOP) paradigm improves modularity by encapsulating
data with methods inside objects. The data may only be accessed indirectly, by calling the
associated methods. Although the concept appeared in the seventies, it took twenty years to
become popular [62]. The most well known object-oriented languages are C++, Java, C#, and
Smalltalk.

The hard part about object-oriented design is decomposing a system into objects. The task
is difficult because many factors come into play: encapsulation, granularity, dependency,
adaptability, reusability, and others. They all influence the decomposition, often in conflict-
ing ways [13].

Existing modularization mechanisms typically support only a small set of decompositions and
usually only a single dominant modularization at a time. This is known as the tyranny of the
dominant decomposition [55]. A specific decomposition limits the ability to implement other
concerns in a modular way. For example, OOP modularizes concerns in classes and only fixed
relations are possible. Implementing a concern in a class might prevent another concern from
being implemented as a class.

Aspect-Oriented Programming (AOP) is a paradigm that solves this problem.

AOP is commonly used in combination with OOP but can be applied to other paradigms as
well. The following sections introduce an example to demonstrate the problems that may arise
with OOP and show how AOP can solve this. Finally, we look at three particular AOP method-
ologies in more detail.

2

1.2. TRADITIONAL APPROACH

1 public class Add extends Calculation{
2
3 private int result;
4 private CalcDisplay calcDisplay;
5 private Tracer trace;
6
7 Add() {
8 result = 0;
9 calcDisplay = new CalcDisplay();

10 trace = new Tracer();
11 }
12
13 public void execute(int a, int b) {
14 trace.write("void Add.execute(int, int

)");
15 result = a + b;
16 calcDisplay.update(result);
17 }
18
19 public int getLastResult() {
20 trace.write("int Add.getLastResult()")

;
21 return result;
22 }
23 }

(a) Addition

1 public class CalcDisplay {
2 private Tracer trace;
3
4 public CalcDisplay() {
5 trace = new Tracer();
6 }
7
8 public void update(int value){
9 trace.write("void CalcDisplay.update(

int)");
10 System.out.println("Printing new value

of calculation: "+value);
11 }
12 }

(c) CalcDisplay

Listing 1.1: Modeling addition, display, and logging without using aspects

1.2 Traditional Approach

Consider an application containing an object Add and an object CalcDisplay. Add inherits from the
abstract class Calculation and implements its method execute(a, b). It performs the addition of
two integers. CalcDisplay receives an update from Add if a calculation is finished and prints the
result to screen. Suppose all method calls need to be traced. The objects use a Tracer object to
write messages about the program execution to screen. This is implemented by a method called
write. Three concerns can be recognized: addition, display, and tracing. The implementation
might look something like Listing 1.1.

From our example, we recognize two forms of crosscutting: code tangling and code scattering.

The addition and display concerns are implemented in classes Add and CalcDisplay respectively.
Tracing is implemented in the class Tracer, but also contains code in the other two classes
(lines 5, 10, 14, and 20 in (a) and 2, 5, and 9 in (b)). If a concern is implemented across several
classes it is said to be scattered. In the example of Listing 1.1 the tracing concern is scattered.

Usually a scattered concern involves code replication. That is, the same code is implemented a
number of times. In our example the classes Add and CalcDisplay contain similar tracing code.

In class Add the code for the addition and tracing concerns are intermixed. In class CalcDisplay

the code for the display and tracing concerns are intermixed. If more then one concern is
implemented in a single class they are said to be tangled. In our example the addition and
tracing concerns are tangled. Also display and tracing concerns are tangled. Crosscutting code

3

CHAPTER 1. INTRODUCTION TO AOSD

has the following consequences:

Code is difficult to change
Changing a scattered concern requires us to modify the code in several places. Making
modifications to a tangled concern class requires checking for side-effects with all existing
crosscutting concerns;

Code is harder to reuse
To reuse an object in another system, it is necessary to either remove the tracing code or
reuse the (same) tracer object in the new system;

Code is harder to understand
Tangled code makes it difficult to see which code belongs to which concern.

1.3 AOP Approach

To solve the problems with crosscutting, several techniques are being researched that attempt
to increase the expressiveness of the OO paradigm. Aspect-Oriented Programming (AOP) in-
troduces a modular structure, the aspect, to capture the location and behavior of crosscutting
concerns. Examples of Aspect-Oriented languages are Sina, AspectJ, Hyper/J, and Compose?.
A special syntax is used to specify aspects and the way in which they are combined with reg-
ular objects. The fundamental goals of AOP are twofold [18]: first to provide a mechanism to
express concerns that crosscut other components. Second to use this description to allow for
the separation of concerns.

Join points are well-defined places in the structure or execution flow of a program where ad-
ditional behavior can be attached. The most common join points are method calls. Pointcuts
describe a set of join points. This allows us to execute behavior at many places in a program by
one expression. Advice is the behavior executed at a join point.

In the example of Listing 1.2 the class Add does not contain any tracing code and only im-
plements the addition concern. Class CalcDisplay also does not contain tracing code. In our
example the tracing aspect contains all the tracing code. The pointcut tracedCalls specifies at
which locations tracing code is executed.

The crosscutting concern is explicitly captured in aspects instead of being embedded within
the code of other objects. This has several advantages over the previous code.

Aspect code can be changed
Changing aspect code does not influence other concerns;

Aspect code can be reused
The coupling of aspects is done by defining pointcuts. In theory, this low coupling allows
for reuse. In practice reuse is still difficult;

Aspect code is easier to understand
A concern can be understood independent of other concerns;

Aspect pluggability
Enabling or disabling concerns becomes possible.

4

1.3. AOP APPROACH

1 public class Add extends Calculation{
2 private int result;
3 private CalcDisplay calcDisplay;
4
5 Add() {
6 result = 0;
7 calcDisplay = new CalcDisplay();
8 }
9

10 public void execute(int a, int b) {
11 result = a + b;
12 calcDisplay.update(result);
13 }
14
15 public int getLastResult() {
16 return result;
17 }
18 }

(a) Addition concern

1 aspect Tracing {
2 Tracer trace = new Tracer();
3
4 pointcut tracedCalls():
5 call(* (Calculation+).*(..)) ||
6 call(* CalcDisplay.*(..));
7
8 before(): tracedCalls() {
9 trace.write(thisJoinPoint.getSignature()

.toString());
10 }
11 }

(c) Tracing concern

Listing 1.2: Modeling addition, display, and logging with aspects

1.3.1 AOP Composition

AOP composition can be either symmetric or asymmetric. In the symmetric approach every
component can be composed with any other component. This approach is followed by e.g.
Hyper/J.

In the asymmetric approach, the base program and aspects are distinguished. The base pro-
gram is composed with the aspects. This approach is followed by e.g. AspectJ (covered in more
detail in the next section).

1.3.2 Aspect Weaving

The integration of components and aspects is called aspect weaving. There are three approaches
to aspect weaving. The first and second approach rely on adding behavior in the program,
either by weaving the aspect in the source code, or by weaving directly in the target language.
The target language can be intermediate language (IL) or machine code. Examples of IL are Java
byte code and Common Intermediate Language (CIL). The remainder of this chapter considers
only intermediate language targets. The third approach relies on adapting the virtual machine.
Each method is explained briefly in the following sections.

1.3.2.1 Source Code Weaving

The source code weaver combines the original source with aspect code. It interprets the defined
aspects and combines them with the original source, generating input for the native compiler.
For the native compiler there is no difference between source code with and without aspects.
Hereafter the compiler generates an intermediate or machine language output (depending on
the compiler-type).

5

CHAPTER 1. INTRODUCTION TO AOSD

The advantages of using source code weaving are:

High-level source modification
Since all modifications are done at source code level, there is no need to know the target
(output) language of the native compiler;

Aspect and original source optimization
First the aspects are woven into the source code and hereafter compiled by the native
compiler. The produced target language has all the benefits of the native compiler opti-
mization passes. However, optimizations specific to exploiting aspect knowledge are not
possible;

Native compiler portability
The native compiler can be replaced by any other compiler as long as it has the same
input language. Replacing the compiler with a newer version or another target language
can be done with little or no modification to the aspect weaver.

However, the drawbacks of source code weaving are:

Language dependency
Source code weaving is written explicitly for the syntax of the input language;

Limited expressiveness
Aspects are limited to the expressive power of the source language. For example, when
using source code weaving, it is not possible to add multiple inheritance to a single in-
heritance language.

1.3.2.2 Intermediate Language Weaving

Weaving aspects through an intermediate language gives more control over the executable
program and solves some issues as identified in subsubsection 1.3.2.1 on source code weaving.
Weaving at this level allows for creating combinations of intermediate language constructs
that can not be expressed at the source code level. Although IL can be hard to understand, IL
weaving has several advantages over source code weaving:

Programming language independence
All compilers generating the target IL output can be used;

More expressiveness
It is possible to create IL constructs that are not possible in the original programming
language;

Source code independence
Can add aspects to programs and libraries without using the source code (which may not
be available);

Adding aspects at load- or runtime
A special class loader or runtime environment can decide and do dynamic weaving. The
aspect weaver adds a runtime environment into the program. How and when aspects
can be added to the program depend on the implementation of the runtime environment.

However, IL weaving also has drawbacks that do not exist for source code weaving:

Hard to understand
Specific knowledge about the IL is needed;

6

1.4. AOP SOLUTIONS

More error-prone
Compiler optimization may cause unexpected results. Compiler can remove code that
breaks the attached aspect (e.g., inlining of methods).

1.3.2.3 Adapting the Virtual Machine

Adapting the virtual machine (VM) removes the need to weave aspects. This technique has the
same advantages as intermediate language weaving and can also overcome some of its disad-
vantages as mentioned in subsubsection 1.3.2.2. Aspects can be added without recompilation,
redeployment, and restart of the application [45, 46].

Modifying the virtual machine also has its disadvantages:

Dependency on adapted virtual machines
Using an adapted virtual machine requires that every system should be upgraded to that
version;

Virtual machine optimization
People have spend a lot of time optimizing virtual machines. By modifying the virtual
machine these optimizations should be revisited. Reintegrating changes introduced by
newer versions of the original virtual machine, might have substantial impact.

1.4 AOP Solutions

As the concept of AOP has been embraced as a useful extension to classic programming, dif-
ferent AOP solutions have been developed. Each solution has one or more implementations to
demonstrate how the solution is to be used. As described by [12] these differ primarily in:

How aspects are specified
Each technique uses its own aspect language to describe the concerns;

Composition mechanism
Each technique provides its own composition mechanisms;

Implementation mechanism
Whether components are determined statically at compile time or dynamically at run
time, the support for verification of compositions, and the type of weaving.

Use of decoupling
Should the writer of the main code be aware that aspects are applied to his code;

Supported software processes
The overall process, techniques for reusability, analyzing aspect performance of aspects,
is it possible to monitor performance, and is it possible to debug the aspects.

This section will give a short introduction to AspectJ [26] and Hyperspaces [43], which together
with Composition Filters [4] are three main AOP approaches.

1.4.1 AspectJ Approach

AspectJ [26] is an aspect-oriented extension to the Java programming language. It is probably
the most popular approach to AOP at the moment, and it is finding its way into the industrial

7

CHAPTER 1. INTRODUCTION TO AOSD

1 aspect DynamicCrosscuttingExample {
2 Log log = new Log();
3
4 pointcut traceMethods():
5 execution(edu.utwente.trese.*.*(..));
6
7 before() : traceMethods {
8 log.write("Entering " + thisJointPoint.getSignature());
9 }

10
11 after() : traceMethods {
12 log.write("Exiting " + thisJointPoint.getSignature());
13 }
14 }

Listing 1.3: Example of dynamic crosscutting in AspectJ

software development. AspectJ has been developed by Gregor Kiczales at Xerox’s PARC (Palo
Alto Research Center). To encourage the growth of the AspectJ technology and community,
PARC transferred AspectJ to an open Eclipse project. The popularity of AspectJ comes partly
from the various extensions based on it, build by several research groups. There are various
projects that are porting AspectJ to other languages, resulting in tools such as AspectR and
AspectC.

One of the main goals in the design of AspectJ is to make it a compatible extension to Java.
AspectJ tries to be compatible in four ways:

Upward compatibility
All legal Java programs must be legal AspectJ programs;

Platform compatibility
All legal AspectJ programs must run on standard Java virtual machines;

Tool compatibility
It must be possible to extend existing tools to support AspectJ in a natural way; this
includes IDEs, documentation tools and design tools;

Programmer compatibility
Programming with AspectJ must feel like a natural extension of programming with Java.

AspectJ extends Java with support for two kinds of crosscutting functionality. The first allows
defining additional behavior to run at certain well-defined points in the execution of the pro-
gram and is called the dynamic crosscutting mechanism. The other is called the static crosscutting
mechanism and allows modifying the static structure of classes (methods and relationships be-
tween classes). The units of crosscutting implementation are called aspects. An example of an
aspect specified in AspectJ is shown in Listing 1.3.

The points in the execution of a program where the crosscutting behavior is inserted are called
join points. A pointcut has a set of join points. In Listing 1.3 is traceMethods an example of
a pointcut definition. The pointcut includes all executions of any method that is in a class
contained by package edu.utwente.trese.

The code that should execute at a given join point is declared in an advice. Advice is a method-
like code body associated with a certain pointcut. AspectJ supports before, after and around
advice that specifies where the additional code is to be inserted. In the example both before

8

1.4. AOP SOLUTIONS

1 aspect StaticCrosscuttingExample {
2 private int Log.trace(String traceMsg) {
3 Log.write(" --- MARK --- " + traceMsg);
4 }
5 }

Listing 1.4: Example of static crosscutting in AspectJ

and after advice are declared to run at the join points specified by the traceMethods pointcut.

Aspects can contain anything permitted in class declarations including definitions of pointcuts,
advice and static crosscutting. For example, static crosscutting allows a programmer to add
fields and methods to certain classes as shown in Listing 1.4.

The shown construct is called inter-type member declaration and adds a method trace to class
Log. Other forms of inter-type declarations allow developers to declare the parents of classes
(superclasses and realized interfaces), declare where exceptions need to be thrown, and allow
a developer to define the precedence among aspects.

With its variety of possibilities AspectJ can be considered a useful approach for realizing soft-
ware requirements.

1.4.2 Hyperspaces Approach

The Hyperspaces approach is developed by H. Ossher and P. Tarr at the IBM T.J. Watson Research
Center. The Hyperspaces approach adopts the principle of multi-dimensional separation of
concerns [43], which involves:

• Multiple, arbitrary dimensions of concerns;
• Simultaneous separation along these dimensions;
• Ability to dynamically handle new concerns and new dimensions of concern as they arise

throughout the software life cycle;
• Overlapping and interacting concerns. It is appealing to think of many concerns as inde-

pendent or orthogonal, but they rarely are in practice.

We explain the Hyperspaces approach by an example written in the Hyper/J language. Hyper/J
is an implementation of the Hyperspaces approach for Java. It provides the ability to identify
concerns, specify modules in terms of those concerns, and synthesize systems and components
by integrating those modules. Hyper/J uses bytecode weaving on binary Java class files and
generates new class files to be used for execution. Although the Hyper/J project seems aban-
doned and there has not been any update in the code or documentation for a while, we still
mention it because the Hyperspaces approach offers a unique AOP solution.

As a first step, developers create hyperspaces by specifying a set of Java class files that contain
the code units that populate the hyperspace. To do this is, you create a hyperspace specification,
as demonstrated in Listing 1.5.

Hyper/J will automatically create a hyperspace with one dimension—the class file dimension.
A dimension of concern is a set of concerns that are disjoint. The initial hyperspace will con-
tain all units within the specified package. To create a new dimension you can specify concern

9

CHAPTER 1. INTRODUCTION TO AOSD

1 Hyperspace Pacman
2 class edu.utwente.trese.pacman.*;

Listing 1.5: Creation of a hyperspace

mappings, which describe how existing units in the hyperspace relate to concerns in that di-
mension, as demonstrated in Listing 1.6.

The first line indicates that, by default, all of the units contained within the package edu.utwente

.trese.pacman address the kernel concern of the feature dimension. The other mappings specify
that any method named trace or debug address the logging and debugging concern respectively.
These later mappings override the first one.

Hypermodules are based on concerns and consist of two parts. The first part specifies a set of
hyperslices in terms of the concerns identified in the concern matrix. The second part specifies
the integration relationships between the hyperslices. A hyperspace can contain several hyper-
modules realizing different modularizations of the same units. Systems can be composed in
many ways from these hypermodules.

Listing 1.7 shows a hypermodule with two concerns, kernel and logging. They are related by a
mergeByName integration relationship. This means that units in the different concerns correspond
if they have the same name (ByName) and that these corresponding units are to be combined
(merge). For example, all members of the corresponding classes are brought together into the
composed class. The hypermodule results in a hyperslice that contains all the classes without
the debugging feature; thus no debug methods will be present.

The most important feature of the hyperspaces approach is the support for on-demand remod-
ularisation: the ability to extract hyperslices to encapsulate concerns that were not separated
in the original code. Which makes hyperspaces especially useful for evolution of existing soft-
ware.

1.4.3 Composition Filters

Composition Filters is developed by M. Akşit and L. Bergmans at the TRESE group, which is
a part of the Department of Computer Science of the University of Twente, The Netherlands.
The composition filters (CF) model predates aspect-oriented programming. It started out as an
extension to the object-oriented model and evolved into an aspect-oriented model. The current
implementation of CF is Compose?, which covers .NET, Java, and C.

One of the key elements of CF is the message, a message is the interaction between objects, for
instance a method call. In object-oriented programming the message is considered an abstract
concept. In the implementations of CF it is therefore necessary to reify the message. This reified
message contains properties, like where it is send to and where it came from.

1 package edu.utwente.trese.pacman: Feature.Kernel
2 operation trace: Feature.Logging
3 operation debug: Feature.Debugging

Listing 1.6: Specification of concern mappings

10

1.4. AOP SOLUTIONS

1 hypermodule Pacman_Without_Debugging
2 hyperslices: Feature.Kernel, Feature.Logging;
3 relationships: mergeByName;
4 end hypermodule;

Listing 1.7: Defining a hypermodule

The concept of CF is that messages that enter and exit an object can be intercepted and manip-
ulated, modifying the original flow of the message. To do so, a layer called the interface part is
introduced in the CF model, this layer can have several properties. The interface part can be
placed on an object, which behavior needs to be altered, and this object is referred to as inner.

There are three key elements in CF: messages, filters, and superimposition. Messages are sent
from one object to another, if there is an interface part placed on the receiver, then the message
that is sent goes through the input filters. In the filters the message can be manipulated before
it reaches the inner part, the message can even be sent to another object. How the message
will be handled depends on the filter type. An output filter is similar to an input filter, the only
difference is that it manipulates messages that originate from the inner part. The latest addition
to CF is superimposition, which is used to specify which interfaces needs to be superimposed
on which inner objects.

11

CHAPTER 1. INTRODUCTION TO AOSD

12

CHAPTER 2

Compose?

Compose? is an implementation of the composition filters approach. There are three target
environments: the .NET, Java, and C. This chapter is organized as follows, first the evolution
of Composition Filters and its implementations are described, followed by an explanation of
the Compose? language and a demonstrating example. In the third section, the Compose?
architecture is explained, followed by a description of the features specific to Compose?.

2.1 Evolution of Composition Filters

Compose? is the result of many years of research and experimentation. The following time
line gives an overview of what has been done in the years before and during the Compose?
project.

1985 The first version of Sina is developed by Mehmet Akşit. This version of Sina contains a
preliminary version of the composition filters concept called semantic networks. The
semantic network construction serves as an extension to objects, such as classes, mes-
sages, or instances. These objects can be configured to form other objects such as
classes from which instances can be created. The object manager takes care of syn-
chronization and message processing of an object. The semantic network construction
can express key concepts like delegation, reflection, and synchronization [27].

1987 Together with Anand Tripathi of the University of Minnesota the Sina language is
further developed. The semantic network approach is replaced by declarative specifi-
cations and the interface predicate construct is added.

1991 The interface predicates are replaced by the dispatch filter, and the wait filter manages
the synchronization functions of the object manager. Message reflection and real-time
specifications are handled by the meta filter and the real-time filter [3].

1995 The Sina language with Composition Filters is implemented using Smalltalk [27]. The
implementation supports most of the filter types. In the same year, a preprocessor
providing C++ with support for Composition Filters is implemented [15].

13

CHAPTER 2. COMPOSE?

1 filtermodule{
2 internals
3 externals
4 conditions
5 inputfilters
6 outputfilters
7 }
8
9 superimposition{

10 selectors
11 filtermodules
12 annotations
13 constraints
14 }
15
16 implementation
17 }

Listing 2.1: Abstract concern template

1999 The composition filters language ComposeJ [63] is developed and implemented. The
implementation consists of a preprocessor capable of translating composition filter
specifications into the Java language.

2001 ConcernJ is implemented as part of a M. Sc. thesis [49]. ConcernJ adds the notion of
superimposition to Composition Filters. This allows for reuse of the filter modules
and to facilitate crosscutting concerns.

2003 The start of the Compose? project, the project is described in further detail in this
chapter.

2004 The first release of Compose?, based on .NET.
2005 The start of the Java port of Compose?.
2006 Porting Compose? to C is started.

2.2 Composition Filters in Compose?

A Compose? application consists of concerns that can be divided in three parts: filter module
specification, superimposition, and implementation. A filter module contains the filter logic
to filter on messages that are incoming or outgoing the superimposed object. A message has
a target, which is an object reference, and a selector, which is a method name. The superim-
position part specifies which filter modules, annotations, conditions, and methods need to be
superimposed on which objects. The implementation part contains the class implementation
of the concern. How these parts are placed in a concern is shown in Listing 2.1.

The working of the filter module is shown in Figure 2.1. A filter module can contain input and
output filters. The difference between these two sets of filters is that the first is used to filter on
incoming messages and the second filter set is used on the outgoing messages. A return of a
method is not considered as an outgoing message. A filter has three parts: the filter identifier,
the filter type, and one or more filter elements. The filter element exist out of an optional
condition part, a matching part, and a substitution part. These parts are shown below:

14

2.2. COMPOSITION FILTERS IN COMPOSE?

Figure 2.1: Components of the composition filters model

identifier︷ ︸︸ ︷
stalker filter :

filter type︷ ︸︸ ︷
Dispatch = {

condition part︷ ︸︸ ︷
!pacmanIsEvil =>

matching part︷ ︸︸ ︷
[∗.getNextMove]

substitution part︷ ︸︸ ︷
stalk strategy.getNextMove }

The filter identifier is the unique name for a filter in a filter module. A filter matches when
both the condition as the matching provide the boolean value true. In the demonstrated filter
it matches on every message where the selector is getNextMove, the ‘*’ in the target means that
every target matches. When the condition part and the matching part are true, the message
is substituted with the values of the substitution part. How these values are substituted and
how the message continues depends on the filter type. At the moment there are four basic filter
types in Compose?; it is possible to write custom filter types.

Dispatch
If the message is accepted, it is dispatched to the specified target of the message, other-
wise the message continues to the subsequent filter. This filter type can only be used for
input filters;

Send
If the message is accepted, it is sent to the specified target of the message, otherwise the
message continues to the subsequent filter. This filter type can only be used for output
filters;

Error
If the filter rejects the message, it raises an exception, otherwise the message continues to
the next filter in the set;

Meta
If the message is accepted, the message is sent as a parameter of another meta message to
an internal or external object, otherwise the message just continues to the next filter. The
object that receives the meta message can observe and manipulate the message and can
re-activate the execution of the message.

15

CHAPTER 2. COMPOSE?

The pacmanIsEvil used in the condition part must be declared in the conditions section of a
filtermodule. The targets that are used in a filter must declared as internals or externals. Inter-
nals are objects which are unique for each instance of a filter module and externals are shared
between filter modules.

The filter modules can be superimposed on classes with filter module binding, this binding
has a selection of objects on one side and a filter module on the other side. The selection is
defined with a selector definition. The selector uses predicates, such as isClassWithNameInList,

isNamespaceWithName, and namespaceHasClass, to select objects. It is also possible to bind conditions,
methods, and annotations to classes with the use of superimposition.

The last part of the concern is the implementation part. In the implementation part we can
define the object behavior of the concern, so for example in a logging concern, we can define
specific log functions.

2.3 Demonstrating Example

To illustrate the Compose? toolset, this section introduces a Pacman example. The Pacman
game is a classic arcade game in which the user, represented by pacman, moves in a maze to
eat vitamins. Meanwhile, a number of ghosts try to catch and eat pacman. There are, however,
four mega vitamins in the maze that make pacman evil. In its evil state, pacman can eat ghosts.
A simple list of requirements for the Pacman game is briefly discussed here:

• The number of lives taken from pacman when eaten by a ghost;
• A game should end when pacman has no more lives;
• The score of a game should increase when pacman eats a vitamin or a ghost;
• A user should be able to use a keyboard to move pacman around the maze;
• Ghosts should know whether pacman is evil or not;
• Ghosts should know where pacman is located;
• Ghosts should, depending on the state of pacman, hunt or flee from pacman.

2.3.1 Initial Object-Oriented Design

Figure 2.2 shows an initial object-oriented design for the Pacman game. Note that this UML
class diagram does not show the trivial accessors. The classes in this diagram are:

Game
This class encapsulates the control flow and controls the state of a game;

Ghost
This class is a representation of a ghost chasing pacman. Its main attribute is a property
that indicates whether it is scared or not (depending on the evil state of pacman);

GhostView
This class is responsible for painting ghosts;

Glyph
This is the superclass of all mobile objects (pacman and ghosts). It contains common
information like direction and speed;

Keyboard
This class accepts all keyboard input and makes it available to pacman;

16

2.3. DEMONSTRATING EXAMPLE

Figure 2.2: UML class diagram of the object-oriented Pacman game

17

CHAPTER 2. COMPOSE?

Main
This is the entry point of a game;

Pacman
This is a representation of the user controlled element in the game. Its main attribute is a
property that indicates whether pacman is evil or not;

PacmanView
This class is responsible for painting pacman;

RandomStrategy
By using this strategy, ghosts move in random directions;

View
This class is responsible for painting a maze;

World
This class has all the information about a maze. It knows where the vitamins, mega
vitamins and most importantly the walls are. Every class derived from class Glyph checks
whether movement in the desired direction is possible.

2.3.2 Completing the Pacman Example

The initial object-oriented design, described in the previous section, does not implement all the
stated system requirements. The missing requirements are:

• The application does not maintain a score for the user;
• Ghosts move in random directions instead of chasing or fleeing from pacman.

In the next sections, we describe why and how to implement these requirements in the
Compose? language.

2.3.2.1 Implementation of Scoring

The first system requirement that we need to add to the existing Pacman game is scoring. This
concern involves a number of events. First, the score should be set to zero when a game starts.
Second, the score should be updated whenever pacman eats a vitamin, mega vitamin or ghost.
And finally, the score itself has to be painted on the maze canvas to relay it back to the user.
These events scatter over multiple classes: Game (initializing score), World (updating score), Main
(painting score). Thus scoring is an example of a crosscutting concern.

To implement scoring in the Compose? language, we divide the implementation into two parts.
The first part is a Compose? concern definition stating which filter modules to superimpose.
Listing 2.2 shows an example Compose? concern definition of scoring.

This concern definition is called DynamicScoring (line 1) and contains two parts. The first part is
the declaration of a filter module called dynamicscoring (lines 2–11). This filter module contains
one meta filter called score_filter (line 6). This filter intercepts five relevant calls and sends the
message in a reified form to an instance of class Score. The final part of the concern definition
is the superimposition part (lines 12–18). This part defines that the filter module dynamicscoring

is to be superimposed on the classes World, Game and Main.

The final part of the scoring concern is the so-called implementation part. This part is defined
by a class Score. Listing 2.3 shows an example implementation of class Score. Instances of this

18

2.4. COMPOSE? ARCHITECTURE

1 concern DynamicScoring in pacman {
2 filtermodule dynamicscoring {
3 externals
4 score : pacman.Score = pacman.Score.instance();
5 inputfilters
6 score_filter : Meta = {[*.eatFood] score.eatFood,
7 [*.eatGhost] score.eatGhost,
8 [*.eatVitamin] score.eatVitamin,
9 [*.gameInit] score.initScore,

10 [*.setForeground] score.setupLabel}
11 }
12 superimposition {
13 selectors
14 scoring = { C | isClassWithNameInList(C, [’pacman.World’,
15 ’pacman.Game’, ’pacman.Main’]) };
16 filtermodules
17 scoring <- dynamicscoring;
18 }
19 }

Listing 2.2: DynamicScoring concern in Compose?

class receive the messages sent by score_filter and subsequently perform the events related
to the scoring concern. In this way, all scoring events are encapsulated in one class and one
Compose? concern definition.

2.3.2.2 Implementation of Dynamic Strategy

The last system requirement that we need to implement is the dynamic strategy of ghosts. This
means that a ghost should, depending on the state of pacman, hunt or flee from pacman. We
can implement this concern by using the strategy design pattern. However, in this way, we
need to modify the existing code. This is not the case when we use Compose? dispatch filters.
Listing 2.4 demonstrates this.

This concern uses dispatch filters to intercept calls to method RandomStrategy.getNextMove and
redirect them to either StalkerStrategy.getNextMove or FleeStrategy.getNextMove. If pacman is not
evil, the intercepted call matches the first filter, which dispatches the intercepted call to method
StalkerStrategy.getNextMove (line 9). Otherwise, the intercepted call matches the second filter,
which dispatches the intercepted call to method FleeStrategy.getNextMove (line 11).

2.4 Compose? Architecture

An overview of the Compose? architecture is illustrated in Figure 2.3. The Compose? archi-
tecture can be divided in four layers [42]: IDE, compile time, adaptation, and runtime.

2.4.1 Integrated Development Environment

Some of the purposes of the Integrated Development Environment (IDE) layer are to interface
with the native IDE and to create a build configuration. In the build configuration it is specified

19

CHAPTER 2. COMPOSE?

1 import Composestar.Runtime.FLIRT.message.*;
2 import java.awt.*;
3
4 public class Score
5 {
6 private int score = -100;
7 private static Score theScore = null;
8 private Label label = new java.awt.Label("Score: 0");
9

10 private Score() {}
11
12 public static Score instance() {
13 if(theScore == null) {
14 theScore = new Score();
15 }
16 return theScore;
17 }
18
19 public void initScore(ReifiedMessage rm) {
20 this.score = 0;
21 label.setText("Score: "+score);
22 }
23
24 public void eatGhost(ReifiedMessage rm) {
25 score += 25;
26 label.setText("Score: "+score);
27 }
28
29 public void eatVitamin(ReifiedMessage rm) {
30 score += 15;
31 label.setText("Score: "+score);
32 }
33
34 public void eatFood(ReifiedMessage rm) {
35 score += 5;
36 label.setText("Score: "+score);
37 }
38
39 public void setupLabel(ReifiedMessage rm) {
40 rm.proceed();
41 label = new Label("Score: 0");
42 label.setSize(15*View.BLOCKSIZE+20,15*View.BLOCKSIZE);
43 Main main = (Main)Composestar.Runtime.FLIRT.message.MessageInfo
44 .getMessageInfo().getTarget();
45 main.add(label,BorderLayout.SOUTH);
46 }
47 }

Listing 2.3: Implementation of class Score

20

2.4. COMPOSE? ARCHITECTURE

1 concern DynamicStrategy in pacman {
2 filtermodule dynamicstrategy {
3 internals
4 stalk_strategy : pacman.Strategies.StalkerStrategy;
5 flee_strategy : pacman.Strategies.FleeStrategy;
6 conditions
7 pacmanIsEvil : pacman.Pacman.isEvil();
8 inputfilters
9 stalker_filter : Dispatch = {!pacmanIsEvil =>

10 [*.getNextMove] stalk_strategy.getNextMove};
11 flee_filter : Dispatch = {
12 [*.getNextMove] flee_strategy.getNextMove}
13 }
14 superimposition {
15 selectors
16 random = { C | isClassWithName(C,
17 ’pacman.Strategies.RandomStrategy’) };
18 filtermodules
19 random <- dynamicstrategy;
20 }
21 }

Listing 2.4: DynamicStrategy concern in Compose?

Figure 2.3: Overview of the Compose? architecture

21

CHAPTER 2. COMPOSE?

which source files and settings are required to build a Compose? application. After creating
the build configuration the compile time is started.

The creation of a build configuration can be done manually or by using a plug-in. Examples
of these plug-ins are the Visual Studio add-in for Compose?/.NET and the Eclipse plug-in for
Compose?/J and Compose?/C.

2.4.2 Compile Time

The compile time layer is platform independent and reasons about the correctness of the com-
position filter implementation with respect to the program which allows the target program to
be build by the adaptation.

The compile time ‘pre-processes’ the composition filter specifications by parsing the specifica-
tion, resolving the references, and checking its consistency. To provide an extensible architec-
ture to facilitate this process a blackboard architecture is chosen. This means that the compile
time uses a general knowledgebase that is called the ‘repository’. This knowledgebase contains
the structure and metadata of the program which different modules can execute their activities
on. Examples of modules within analysis and validation are the three modules SANE, LOLA
and FILTH. These three modules are responsible for (some) of the analysis and validation of
the super imposition and its selectors.

2.4.3 Adaptation

The adaptation layer consists of the program manipulation, harvester, and code generator.
These components connect the platform independent compile time to the target platform. The
harvester is responsible for gathering the structure and the annotations within the source pro-
gram and adding this information to the knowledgebase. The code generation generates a
reduced copy of the knowledgebase and the weaving specification. This weaving specification
is then used by the weaver contained by the program manipulation to weave in the calls to the
runtime into the target program. The end result of the adaptation the target program which
interfaces wit the runtime.

2.4.4 Runtime

The runtime layer is responsible for executing the concern code at the join points. It is acti-
vated at the join points by function calls that are woven in by the weaver. A reduced copy of
the knowledgebase containing the necessary information for filter evaluation and execution is
enclosed with the runtime. When the function is filtered the filter is evaluated. Depending on
if the the condition part evaluates to true, and the matching part matches the accept or reject
behavior of the filter is executed. The runtime also facilitates the debugging of the composition
filter implementations.

2.5 Platforms

Compose? can in theory be applied to any programming language given certain assumptions
are met. Currently Compose? has three platforms.

22

2.6. FEATURES SPECIFIC TO COMPOSE?

2.5.1 Java

Compose?/J, the Java platform of Compose?, uses different compiling and weaving tools then
the other platforms. For the use of Compose?/J an Eclipse plug-in is provided.

2.5.2 C

Compose?/C, the C platform of Compose?, is different from its Java and .NET counterparts
because it does not have a runtime interpreter. This implies that the filters implementation
of Compose?/C uses generated composition filter code that is weaved directly in the source
code. Because the programming language C does not have the concept of objects the reasoning
within Compose? is based on sets of functions. Like the Java platform, Compose?/C provides
a plug-in for Eclipse.

2.5.3 .NET

The .NET platform called Compose?/.NET of Compose? is the oldest implementation of
Compose?. Because Compose?/.NET works with CIL code, it is programming language inde-
pendent as long as the programming language can be compiled to CIL code. The .NET platform
uses a Visual Studio add-in for ease of development.

2.6 Features Specific to Compose?

The Composition Filters approach uses a restricted (pattern matching) language to define fil-
ters. This language makes it possible to reason about the semantics of the concern. Compose?
offers three features that use this possibility, which originate in more control and correctness
over an application under construction. These features are:

Ordering of filter modules
It is possible to specify how the superimposition of filter modules should be ordered.
Ordering constraints can be specified in a fixed, conditional, or partial manner. A fixed
ordering can be calculated exactly, whereas a conditional ordering is dependent on the re-
sult of filter execution and therefore evaluated at runtime. When there are multiple valid
orderings of filtermodules on a join point, partial ordering constraints can be applied to
reduce this number. These constraints can be declared in the concern definition;

Filter consistency checking
When superimposition is applied, Compose? is able to detect if the ordering and con-
junction of filters creates a conflict. For example, imagine a set of filters where the first
filter only evaluates method m and another filter only evaluates methods a and b. In this
case the latter filter is only reached with method m; this is consequently rejected and as a
result the superimposition may never be executed. There are different scenarios that lead
to these kinds of problems, e.g., conditions that exclude each other;

Reason about semantic problems
When multiple pieces of advice are added to the same join point, Compose? can reason
about problems that may occur. An example of such a conflict is the situation where a

23

CHAPTER 2. COMPOSE?

real-time filter is followed by a wait filter. Because the wait filter can wait indefinitely, the
real-time property imposed by the real-time filter may be violated.

The above mentioned conflict analyzers all work on the assumption that the behavior of every
filter is well-defined. This is not the case for the meta filter, its user-undefined, and therefore
unpredictable, behavior poses a problem to the analysis tools.

Furthermore, Compose? is extended with features that enhance the usability. These features
are briefly described below:

Integrated Development Environment support
The Compose? implementations all have a IDE plug-in; Compose?/.NET for Visual Stu-
dio, Compose?/J and Compose?/C for Eclipse;

Debugging support
The debugger shows the flow of messages through the filters. It is possible to place break-
points to view the state of the filters;

Incremental building process
When a project is build and not all the modules are changed, incremental building saves
time.

Some language properties of Compose? can also be seen as features, being:

Language independent concerns
A Compose? concern can be used for all the Compose? platforms, because the composi-
tion filters approach is language independent;

Reusable concerns
The concerns are easy to reuse, through the dynamic filter modules and the selector lan-
guage;

Expressive selector language
Program elements of an implementation language can be used to select a set of objects to
superimpose on;

Support for annotations
Using the selector, annotations can be woven at program elements. At the moment anno-
tations can be used for superimposition.

24

CHAPTER 3

Introduction to the .NET Framework

This chapter gives an introduction to the .NET Framework of Microsoft. First, the architecture
of the .NET Framework is introduced. This section includes terms like the Common Language
Runtime, the .NET Class Library, the Common Language Infrastructure and the Intermediate
Language. These are discussed in more detail in the sections following the architecture.

3.1 Introduction

Microsoft defines [35] .NET as follows; “.NET is the Microsoft Web services strategy to con-
nect information, people, systems, and devices through software.”. There are different .NET
technologies in various Microsoft products providing the capabilities to create solutions using
web services. Web services are small, reusable applications that help computers from many
different operating system platforms work together by exchanging messages. Based on indus-
try standards like XML (Extensible Markup Language), SOAP (Simple Object Access Protocol),
and WSDL (Web Services Description Language) they provide a platform and language inde-
pendent way to communicate.

Microsoft products, such as Windows Server System (providing web services) or Office Sys-
tem (using web services) are some of the .NET technologies. The technology described in this
chapter is the .NET Framework. Together with Visual Studio, an integrated development envi-
ronment, they provide the developer tools to create programs for .NET.

Many companies are largely dependent on the .NET Framework, but need or want to use AOP.
Currently there is no direct support for this in the Framework. The Compose?/.NET project
is addressing these needs with its implementation of the Composition Filters approach for the
.NET Framework.

This specific Compose? version for .NET has two main goals. First, it combines the .NET
Framework with AOP through Composition Filters. Second, Compose? offers superimposition
in a language independent manner. The .NET Framework supports multiple languages and is,
as such, suitable for this purpose. Composition Filters are an extension of the object-oriented

25

CHAPTER 3. INTRODUCTION TO THE .NET FRAMEWORK

mechanism as offered by .NET, hence the implementation is not restricted to any specific object-
oriented language.

3.2 Architecture of the .NET Framework

The .NET Framework is Microsoft’s platform for building, deploying, and running Web Ser-
vices and applications. It is designed from scratch and has a consistent API providing support
for component-based programs and Internet programming. This new Application Program-
ming Interface (API) has become an integral component of Windows. The .NET Framework
was designed to fulfill the following objectives [32]:

Consistency
Allow object code to be stored and executed locally, executed locally but Internet-
distributed, or executed remotely and to make the developer experience consistent across
a wide variety of types of applications, such as Windows-based applications and Web-
based applications;

Operability
The ease of operation is enhanced by minimizing versioning conflicts and providing bet-
ter software deployment support;

Security
All the code is executed safely, including code created by an unknown or semi-trusted
third party;

Efficiency
The .NET Framework compiles applications to machine code before running thus elimi-
nating the performance problems of scripted or interpreted environments;

Interoperability
Code based on the .NET Framework can integrate with other code because all communi-
cation is built on industry standards.

The .NET Framework consists of two main components [32]: the Common Language Run-
time (CLR, simply called the .NET Runtime or Runtime for short) and the .NET Framework
Class Library (FCL). The CLR is the foundation of the .NET Framework, executing the code
and providing the core services such as memory management, thread management and ex-
ception handling. The CLR is described in more detail in section 3.3. The class library, the
other main component of the .NET Framework, is a comprehensive, object-oriented collection
of reusable types that can be used to develop applications ranging from traditional command-
line or graphical user interface (GUI) applications to applications such as Web Forms and XML
Web services. section 3.5 describes the class libraries in more detail.

The code run by the runtime is in a format called Common Intermediate Language (CIL), fur-
ther explained in section 3.6. The Common Language Infrastructure (CLI) is an open specifi-
cation that describes the executable code and runtime environment that form the core of the
Microsoft .NET Framework. section 3.4 tells more about this specification.

Figure 3.1 shows the relationship of the .NET Framework to other applications and to the com-
plete system. The two parts, the class library and the runtime, are managed, i.e., applications
managed during execution. The operating system is in the core, managed and unmanaged
applications operate on the hardware. The runtime can us other object libraries and the class
library, but the other libraries can use the same class library them self.

26

3.2. ARCHITECTURE OF THE .NET FRAMEWORK

Figure 3.1: Context of the .NET Framework (Modified) [32]

Besides the Framework, Microsoft also provides a developer tool called the Visual Studio. This
is an IDE with functionality across a wide range of areas allowing developers to build appli-
cations with decreased development time in comparison with developing applications using
command line compilers.

3.2.1 Version 2.0 of .NET

In November 2005, Microsoft released a successor of the .NET Framework. Major changes are
the support for generics, the addition of nullable types, 64 bit support, improvements in the
garbage collector, new security features and more network functionality.

Generics make it possible to declare and define classes, structures, interfaces, methods and del-
egates with unspecified or generic type parameters instead of specific types. When the generic
is used, the actual type is specified. This allows for type-safety at compile-time. Without gener-
ics, the use of casting or boxing and unboxing decreases performance. By using a generic type,
the risks and costs of these operations is reduced.

Nullable types allow a value type to have a normal value or a null value. This null value can
be useful for indicating that a variable has no defined value because the information is not
currently available.

Besides changes in the Framework, there are also improvements in the four main Microsoft
.NET programming languages (C#, VB.NET, J# and C++). The language elements are now
almost equal for all languages. For instance, additions to the Visual Basic language are the
support for unsigned values and new operators and additions to the C# language include the
ability to define anonymous methods thus eliminating the need to create a separate method.

A new Visual Studio 2005 edition was released to support the new Framework and functional-
ities to create various types of applications.

27

CHAPTER 3. INTRODUCTION TO THE .NET FRAMEWORK

3.3 Common Language Runtime

The Common Language Runtime executes code and provides core services. These core services
are memory management, thread execution, code safety verification and compilation. Apart
from providing services, the CLR also enforces code access security and code robustness. Code
access security is enforced by providing varying degrees of trust to components, based on a
number of factors, e.g., the origin of a component. This way, a managed component might
or might not be able to perform sensitive functions, like file-access or registry-access. By im-
plementing a strict type-and-code-verification infrastructure, called the Common Type System
(CTS), the CLR enforces code robustness. Basically there are two types of code;

Managed
Managed code is code, which has its memory handled and its types validated at execu-
tion by the CLR. It has to conform to the Common Type Specification (CTS section 3.4). If
interoperability with components written in other languages is required, managed code
has to conform to an even more strict set of specifications, the Common Language Spec-
ification (CLS). The code is run by the CLR and is typically stored in an intermediate
language format. This platform independent intermediate language is officially known
as Common Intermediate Language (CIL section 3.6) [60].

Unmanaged
Unmanaged code is not managed by the CLR. It is stored in the native machine language
and is not run by the runtime but directly by the processor.

All language compilers (targeting the CLR) generate managed code (CIL) that conforms to the
CTS.

At runtime, the CLR is responsible for generating platform specific code, which can actually
be executed on the target platform. Compiling from CIL to the native machine language of
the platform is executed by the just-in-time (JIT) compiler. Because of this language indepen-
dent layer it allows the development of CLRs for any platform, creating a true interoperability
infrastructure [60]. The .NET Runtime from Microsoft is actually a specific CLR implementa-
tion for the Windows platform. Microsoft has released the .NET Compact Framework especially
for devices such as personal digital assistants (PDAs) and mobile phones. The .NET Com-
pact Framework contains a subset of the normal .NET Framework and allows .NET developer
to write mobile applications. Components can be exchanged and web services can be used
so an easier interoperability between mobile devices and workstations/servers can be imple-
mented [34].

At the time of writing, the .NET Framework is the only advanced Common Language Infras-
tructure (CLI) implementation available. A shared-source1 implementation of the CLI for re-
search and teaching purposes was made available by Microsoft in 2002 under the name Ro-
tor [54]. In 2006 Microsoft released an updated version of Rotor for the .NET platform version
two. Also Ximian is working on an open source implementation of the CLI under the name
Mono2, targeting both Unix/Linux and Windows platforms. Another, somewhat different ap-
proach, is called Plataforma.NET3 and aims to be a hardware implementation of the CLR, so
that CIL code can be run natively.

1Only non-commercial purposes are allowed.
2http://www.go-mono.com/
3http://personals.ac.upc.edu/enric/PFC/Plataforma.NET/p.net.html

28

http://www.go-mono.com/
http://personals.ac.upc.edu/enric/PFC/Plataforma.NET/p.net.html

3.4. COMMON LANGUAGE INFRASTRUCTURE

3.3.1 Java VM vs .NET CLR

There are many similarities between Java and .NET technology. This is not strange, because
both products serve the same market.

Both Java and .NET are based on a runtime environment and an extensive development frame-
work. These development frameworks provide largely the same functionality for both Java
and .NET. The most obvious difference between them is lack of language independence in
Java. While Java’s strategy is ‘One language for all platforms’ the .NET philosophy is ‘All lan-
guages on one platform’. However these philosophies are not as strict as they seem. As noted
in section 3.5 there is no technical obstacle for other platforms to implement the .NET Frame-
work. There are compilers for non-Java languages like Jython (Python) [25] and WebADA [1]
available for the JVM. Thus, the JVM in its current state, has difficulties supporting such a vast
array of languages as the CLR. However, the multiple language support in .NET is not optimal
and has been the target of some criticism.

Although the JVM and the CLR provide the same basic features they differ in some ways. While
both CLR and the modern JVM use JIT (Just In Time) compilation the CLR can directly access
native functions. This means that with the JVM an indirect mapping is needed to interface
directly with the operating system.

3.4 Common Language Infrastructure

The entire CLI has been documented, standardized and approved [23] by the European associ-
ation for standardizing information and communication systems, Ecma International1. Benefits
of this CLI for developers and end-users are:

• Most high level programming languages can easily be mapped onto the Common Type
System (CTS);

• The same application will run on different CLI implementations;
• Cross-programming language integration, if the code strictly conforms to the Common

Language Specification (CLS);
• Different CLI implementations can communicate with each other, providing applications

with easy cross-platform communication means.

This interoperability and portability is, for instance, achieved by using a standardized meta
data and intermediate language (CIL) scheme as the storage and distribution format for appli-
cations. In other words, (almost) any programming language can be mapped to CIL, which in
turn can be mapped to any native machine language.

The Common Language Specification is a subset of the Common Type System, and defines the
basic set of language features that all .NET languages should adhere to. In this way, the CLS
helps to enhance and ensure language interoperability by defining a set of features that are
available in a wide variety of languages. The CLS was designed to include all the language
constructs that are commonly needed by developers (e.g., naming conventions, common prim-
itive types), but no more than most languages are able to support [33]. Figure 3.2 shows the

1An European industry association founded in 1961 and dedicated to the standardization of Information and
Communication Technology (ICT) Systems. Their website can be found at http://www.ecma-international.
org/.

29

http://www.ecma-international.org/
http://www.ecma-international.org/

CHAPTER 3. INTRODUCTION TO THE .NET FRAMEWORK

Figure 3.2: Relationships in the CTS

relationships between the CTS, the CLS, and the types available in C++ and C#. In this way the
standardized CLI provides, in theory1, a true cross-language and cross-platform development
and runtime environment.

To attract a large number of developers for the .NET Framework, Microsoft has released CIL
compilers for C++, C#, J#, and VB.NET. In addition, third-party vendors and open-source
projects also released compilers targeting the .NET Framework, such as Delphi.NET, Perl.NET,
IronPython, and Eiffel.NET. These programming languages cover a wide-range of different
programming paradigms, such as classic imperative, object-oriented, scripting, and declara-
tive languages. This wide coverage demonstrates the power of the standardized CLI.

Figure 3.3 shows the relationships between all the main components of the CLI. The top of the
figure shows the different programming languages with compiler support for the CLI. Because
the compiled code is stored and distributed in the Common Intermediate Language format,
the code can run on any CLR. For cross-language usage this code has to comply with the CLS.
Any application can use the class library (the FCL) for common and specialized programming
tasks.

3.5 Framework Class Library

The .NET Framework class library is a comprehensive collection of object-oriented reusable
types for the CLR. This library is the foundation on which all the .NET applications are built.
It is object oriented and provides integration of third-party components with the classes in the
.NET Framework. Developers can use components provided by the .NET Framework, other
developers and their own components. A wide range of common programming tasks (e.g.,
string management, data collection, reflection, graphics, database connectivity or file access)
can be accomplished easily by using the class library. Also a great number of specialized de-
velopment tasks are extensively supported, like:

• Console applications;

1Unfortunately Microsoft did not submit all the framework classes for approval and at the time of writing only
the .NET Framework implementation is stable.

30

3.5. FRAMEWORK CLASS LIBRARY

Figure 3.3: Main components of the CLI and their relationships. The right hand side of the
figure shows the difference between managed code and unmanaged code.

31

CHAPTER 3. INTRODUCTION TO THE .NET FRAMEWORK

Figure 3.4: From source code to machine code

• Windows GUI applications (Windows Forms);
• Web applications (Web Forms);
• XML Web services;
• Windows services.

All the types in this framework are CLS compliant and can therefore be used from any pro-
gramming language whose compiler conforms to the Common Language Specification (CLS).

3.6 Common Intermediate Language

The Common Intermediate Language (CIL) has already been mentioned briefly in the sections
before, but this section will describe the IL in more detail. All the languages targeting the .NET
Framework compile to this CIL (see Figure 3.4).

A .NET compiler generates a managed module which is an executable designed to be run by the
CLR [47]. There are four main elements inside a managed module:

• A Windows Portable Executable (PE) file header;
• A CLR header containing important information about the module, such as the location

of its CIL and metadata;

32

3.6. COMMON INTERMEDIATE LANGUAGE

• Metadata describing everything inside the module and its external dependencies;
• The CIL instructions generated from the source code.

The Portable Executable file header allows the user to start the executable. This small piece of
code will initiate the just-in-time compiler which compiles the CIL instructions to native code
when needed, while using the metadata for extra information about the program. This native
code is machine dependent while the original IL code is still machine independent. This way
the same IL code can be JIT-compiled and executed on any supported architecture. The CLR
cannot use the managed module directly but needs an assembly.

An assembly is the fundamental unit of security, versioning, and deployment in the .NET
Framework and is a collection of one or more files grouped together to form a logical unit [47].
Besides managed modules inside an assembly, it is also possible to include resources like im-
ages or text. A manifest file is contained in the assembly describing not only the name, culture
and version of the assembly but also the references to other files in the assembly and security
requests.

The CIL is an object oriented assembly language with around 100 different instructions called
OpCodes. It is stack-based, meaning objects are placed on an evaluation stack before the ex-
ecution of an operation, and when applicable, the result can be found on the stack after the
operation. For instance, when adding two numbers, first those numbers have to be placed onto
the stack, second the add operation is called and finally the result can be retrieved from the
stack.

1 .assembly AddExample {}
2
3 .method static public void main() il managed
4 {
5 .entrypoint // entry point of the application
6 .maxstack 2
7
8 ldc.i4 3 // Place a 32-bit (i4) 3 onto the stack
9 ldc.i4 7 // Place a 32-bit (i4) 7 onto the stack

10
11 add // Add the two and
12 // leave the sum on the stack
13
14 // Call static System.Console.Writeline function
15 // (function pops integer from the stack)
16 call void [mscorlib]System.Console::WriteLine(int32)
17
18 ret
19 }

Listing 3.1: Adding example in IL code

To illustrate how to create a .NET program in IL code we use the previous example of adding
two numbers and show the result. In Listing 3.1 a new assembly is created with the name
AddExample. In this assembly a function main is declared as the starting point (entrypoint) of this
assembly. The maxstack command indicates there can be a maximum of two objects on the stack
and this is enough for the example method. Next, the values 3 and 7 are placed onto the stack.
The add operation is called and the results stays on the stack. The method WriteLine from the
.NET Framework Class Library is called. This method resides inside the Console class placed
in the System assembly. It expects one parameter with a int32 as its type that will be retrieved

33

CHAPTER 3. INTRODUCTION TO THE .NET FRAMEWORK

from the stack. The call operation will transfer the control flow to this method passing along
the parameters as objects on the stack. The WriteLine method does not return a value. The ret

operation returns the control flow from the main method to the calling method, in this case the
runtime. This will exit the program.

To be able to run this example, we need to compile the IL code to bytecode where each OpCode
is represented as one byte. To compile this example, save it as a text file and run the ILASM
compiler with as parameter the filename. This will produce an executable runnable on all the
platforms where the .NET Framework is installed.

This example was written directly in IL code, but we could have used a higher level language
such as C# or VB.NET. For instance, the same example in C# code is shown in Listing 3.2 and
the VB.NET version is listed in Listing 3.3. When this code is compiled to IL, it will look like
the code in Listing 3.1.

1 public static void main()
2 {
3 Console.WriteLine((int) (3 + 7));
4 }

Listing 3.2: Adding example in the C# language

1 Public Shared Sub main()
2 Console.WriteLine(CType((3 + 7), Integer))
3 End Sub

Listing 3.3: Adding example in the VB.NET language

34

CHAPTER 4

Problem statement

The Composition Filters approach uses a concern specification to define the aspects imposed
on the base system (see section 1.3.1). Separating aspect and component parts provides a way
to use one aspect language that can target many component languages, as long as this aspect
language is based on the interface specification of the component part. To demonstrate this
separation the Compose* project aims at providing a component language (or programming
language) independent implementation of the Composition Filters model. In other words, the
Compose* project should make no assumptions about the component language used for defin-
ing the implementation parts. The .NET architecture looks very suitable for achieving this aim,
since in principle it can support a wide range of different component languages, with a simple
shared object model.
Because of the asymmetric composition approach used by Composition Filters, somewhere in
the compilation, load, or run phase of an application the component and aspect languages
have to be coupled. This process is called weaving. To enforce filter execution at run-time three
different approaches can be followed (see section 1.3.2 for background information on aspect
weaving): source code weaving, intermediate language weaving, and adapting the virtual ma-
chine.
The first approach, source code weaving, can be implemented as a source code weaver, i.e. the
original source code and the aspect code are automatically combined by a tool, this output is
given to the native source language compiler for compilation. For example SourceWeave.NET
[24] attempts to overcome the source language dependency, usually associated with source
code weaving, by using the .NET CodeDOM model. Unfortunately the .NET CodeDOM model
is a standard representation for languages conforming to the Common Language Specifications
(CLS) only. Even when interoperability with components written in other languages is not a
design issue, the use of the .NET CodeDOM model by SourceWeave.NET still places restric-
tions on language constructs which can be used in the source code. The use of CSharp nested
namespaces is for example not mappable to the .NET CodeDOM model, the nested names-
pace hierarchy will be flattened out. Furthermore, a .NET CodeDOM parser is still required
for every language, and only a small portion of the languages targeting the .NET Framework
provide such a parser today. Of course source code weaving also can rely on the application

35

CHAPTER 4. PROBLEM STATEMENT

developer instead of a tool. The application developer has to include the necessary code to
link to a run-time execution engine for the filters (e.g. associating aspects via attributes [51]
or objects extending a specialized message filtering object [14]). Two major disadvantages of
this approach are that the source code is always needed and extending an existing application
with Composition Filters can become a difficult task, as this approach can put restrictions on
the design of the application. For example the approach of extending a specialized message fil-
tering object requires that the object in the existing application does not already extend another
object, since multi-inheritance is not possible in most languages.
The second approach, intermediate language weaving, relies on an aspect weaver to modify
already compiled code, i.e. the aspect weaver uses the output of the native source language
compiler. In the .NET architecture (see section 3.2 for information about the .NET architecture)
all supported programming languages are compiled to the Common Intermediate Language (CIL).
This means an aspect weaver for the .NET architecture has to modify programs expressed in
the CIL. Two advantages over the first approach are that the source code is no longer needed
and the addition of filters does not restrict the design of the base system. in any way.
The third and last approach consists of adapting the virtual machine. In the .NET architecture
this means adapting the Common Language Runtime (CLR). In addition to the disadvantages
of this approach mentioned in section 1.3.2, the source code of the CLR of the .NET Framework
is not publicly available making the adaptation of that CLR not an option. Only the public
Common Language Infrastructure (CLI) projects Mono ([41]) and ROTOR ([48]) have the code of
their CLR available so that it is possible to modify it to support weaving. Due to the ’under
development’ status of these projects and the effort involved to keep an up to date modified CLR
adapting these CLRs is currently not a viable option.

In a wider perspective, Composition Filters can be seen as just one of the many AOP solutions
around today. AOP solutions that aim at weaving the aspects into code can embrace the CIL,
as abstracting from source code knowledge is already done by native compilers. The CIL code
has to be transformed to include the behavior defined in aspects. But in doing so the AOP
language has the potency to bring AOP to all programming languages compiled to the CIL. As
transforming the CIL code may not be as simple as it sounds, the development of AOP tools
targeting the .NET architecture can benefit from a tool doing the CIL code transformations for
them.

The set of code transformations offered by such a tool should be expressive enough to sup-
port at least the most basic set of AOP constructs. Apart from expressiveness, the way code
transformations are defined for a certain application has to be in a human readable format.
These transformation definitions have to be created by the developers of the AOP tools and
therefore the definition scheme should not require a lot of effort to understand. Of course the
usage of such a transformation tool is not bound to AOP tools alone. Every project requiring
transformations of the CIL code provided by this tool can make use of it.

To overcome the limitations of source code weaving and provide a general way for AOP solu-
tions to weave aspects this thesis will focus on the development of an usuable aspect weaver
for the CIL. Hence a proper set of aspect-oriented crosscutting locations is defined together
with the possible crosscutting behavior at these locations. In the next step a mapping from
these crosscutting locations to well-defined points in the CIL will be made. Based on this in-
formation a transformation tool can be designed and implemented to perform the necessary
transformations on the CIL code. As providing the Compose* project with a way to enforce
filter execution at run-time is one of the goals, the created transformation tool should be em-
bedded in the Compose* project. This can be done by providing a mapping from the Composi-

36

tion Filters model to the transformation definitions used by the tool. In terms of the Compose*
architecture, as described in section 2.4, this means that the compile time layer has to create the
transformation definitions and execute the transformation tool.

37

CHAPTER 4. PROBLEM STATEMENT

38

CHAPTER 5

Understanding the Common Intermediate Language

In section 3.2 a general overview of the .NET architecture was given. In this chapter we will
discuss in more detail the Common Intermediate Language (CIL), the intermediate language
used by the .NET platform, and the way the CIL is deployed.

Section 5.1 describes the contents of an assembly, the unit of deployment for the .NET plat-
form, and how the CIL is embedded within. The execution of CIL code is performed by the
stack-based Common Language Runtime (CLR). Section 5.2 will explain the two mechanisms
used to store state information within the CLR. In section 5.3 the Common Type System (CTS)
is discussed in some detail, to give the reader a better understanding of the type system (e.g.
primitive types like int or float, classes, or interfaces) used by the .NET platform. Following the
CTS we will discuss briefly the instruction set used by the CLR in section 5.4. The instruction
set consists of base instructions (e.g. addition, or subtraction), and object model instructions
(e.g. object initialisation, or method calls). Finally section 5.5 gives an example of a simple Hel-
loWorld program expressed in the CIL to show some of the concepts described in this chapter.

5.1 The assembly, unit of deployment

.NET application executables and dynamic link libraries are deployed through assemblies, these
are the shared units within the runtime environment (the Common Language Runtime, or CLR
for short). An assembly is a compiled and versioned collection of code and metadata that forms
a single functional unit [39].

Each assembly contains a manifest (also called assembly metadata), which states the name of the
assembly, the version, the locale, a list of files that form the assembly, any dependencies the
assembly has, and which features are exported (type metadata) [36]. Optionally an assembly
can include .NET Framework types (interfaces and classes) and resources. In a single assembly
the interfaces and classes may be spread over multiple namespaces. They are stored in the
intermediate language code, better known as the Common Intermediate Language (CIL), used
by the CLR. Microsoft also uses the term ’Microsoft Intermediate Language’ (MSIL) instead

39

CHAPTER 5. UNDERSTANDING THE COMMON INTERMEDIATE LANGUAGE

of CIL for the intermediate language used by the .NET Framework. Resources embedded or
referenced in an assembly can be files of any type, e.g. bitmaps, JPEG files, resource files, or
XML files.

An assembly can be composed of multiple modules, or netmodules [39, section Building a Mul-
tifile Assembly]. These modules contain the .NET Framework types and can be compiled sep-
arately. The main reason to combine multiple modules in a single assembly is to combine
modules written in different languages and deploy them as a single file.

Although an assembly can be thought of as a single logical unit it can consist of more than
one physical file 1 [36]. Figure 5.1 shows both a single-file and a multifile assembly. In the
single-file assembly MyAssembly.dll the manifest, type metadata, MSIL code and resources are
contained in a single physical file. On the other hand in the multifile assembly a part of the
type metadata and MSIL code has been moved to a different physical file, Util.netmodule. Since
an assembly only can have one manifest, the Util.netmodule is compiled as a module. Also the
resource Graphic.bmp is not embedded in the assembly file but rather referenced in the manifest.

Single-file assembly Multifile assembly

Figure 5.1: Single-file and multifile assembly layout.
Source: Assemblies [36, section Contents].

The assembly layout described above is that of a static assembly [36]. Static assemblies are stored
on disk, as portable executable (PE) files (see section 5.1.1). They are the most commonly used
type of assembly. However with the powerful reflection capabilities of the .NET Framework it
is also possible to create assemblies at runtime. Assemblies created this way are called dynamic
assemblies and run directly from memory.

5.1.1 Portable Executable files

PE files are the binary distribution format of 32-bit Windows (Win32) programs [44]. They
contain a stub MSDOS program to make sure the program runs inside a compatible Windows
environment. .NET binaries must contain a Win32 stub to use .NET to run the actual program,
or to inform the user that .NET is required to run the program. The stubs together with the
section table, of which the records point to all the different sections in the PE file, are called the
PE file header. Following this PE file header a .NET PE file has three sections of data:

MSIL code: This is the section that actually gets compiled to native code and executed by the
CLR. To optimize performance a method is compiled at the moment it is called, this is

1The files that make up a multifile assembly are not physically linked by the file system. Rather, they are linked
through the assembly manifest and the CLR manages them as a unit [36].

40

5.2. THE ACTIVATION RECORD AND EVALUATION STACK

called Just-In-Time (JIT) compilation. Of course this compiled version is buffered to serve
subsequent calls to the same method without an additional compilation penalty.

Metadata: In the metadata section the content of the MSIL code is described. For example
which methods are provided, which arguments the methods accept, and which type the
methods return.

Manifest: The assembly manifest is important for the CLR to load other components the as-
sembly requires in order to run. To find the correct referenced assembly, the CLR also
uses the assembly manifest of the referenced assembly. It can compare the information
provided in the reference with the information of an assembly.

5.2 The activation record and evaluation stack

The CLR makes use of two structures to store the execution state of a program: the activation
record and the evaluation stack. The activation record holds all the activation data of a single
execution of a method. To exchange data between successive operations the evaluation stack is
used.

For each execution of a method a new activation record is created. It stores the arguments and
the local variables of the method in two separate numbered collections. Of course there may be
zero or more arguments, and zero or more local variables. The exact amount and types of both
arguments and local variables form part of the definition (or signature) of the method and are
hence known at the time the activation record is initialized [17]. The numbering of arguments
and local variables is a logical numbering, i.e. an argument or a local variable is allocated an
index based on its position in the declaration, regardless of its size.

CIL operations are performed on the evaluation stack and can be divided into three main cate-
gories [17]:

Load instructions: These operations push values onto the evaluation stack, making the stack
deeper.

Value instructions: Operations performed on values already on the stack belong to this cate-
gory, e.g. arithmetic instructions. Depending on the number of incoming and outgoing
values of the instruction the evaluation stack becomes deeper or shallower.

Store instructions: These operations pop the top element of the stack and store the value in
the specified place. The evaluation stack will become shallower through the use of these
operations.

The evaluation stack can only be accessed from the top, i.e. there is no way to access any
element other than the top element [17]. Also it is not possible to access the top element without
removing it from the stack. Just like the activation record has logical numbered collections, the
evaluation stack is a logical numbered stack. In other words the stack entries are type instances
and only accessible as such, contrary to a stack which is accessed by bytes or words. This means
the depth of the stack is the number of elements on the stack, regardless of their type.

41

CHAPTER 5. UNDERSTANDING THE COMMON INTERMEDIATE LANGUAGE

5.3 The Common Type System

The basic CLR type system, or Common Type System (CTS), can logically be divided into two
subsystems: the value types system, and the reference types system. Figure 5.2 depicts both
subsystems of the CTS. A sequence of bits in memory can make up a value type, e.g. a 32-
bit integer. Value types are considered equal if their sequence of bits is identical [61]. On the
other hand reference types contain the memory address of the value, also known as its identity.
Comparing reference types, therefore, can be done by identity or by equality. If two references
refer to the same object (they refer to the same memory location) it means they have the same
identity; if two references refer to two different objects that have the same sequence of bits, i.e.
the same data, they are equal [61].

Figure 5.2: The Common Type System.
Source: Common Type System [38, section Overview].

5.3.1 Value types

Value types are used to represent the simple or primitive types of many languages, e.g. int
or float. They can be used as method arguments, local variables, or return types of methods.
A value type always directly inherits from System.ValueType or System.Enum (which in turn
inherits from System.ValueType). Furthermore value types are sealed, which means other types
can not inherit from them [61].

For every value type there exists a corresponding object type, known as its boxed type [61].
There are two operations that can be performed with types:

Boxing: The operation performed on a value type that copies the data from the value into an
object of its boxed type allocated on the garbage collected heap.

Unboxing The operation performed on a boxed type that returns a pointer to the actual value,
i.e. the sequence of bits in memory, held in a boxed object.

The fact that all value types can be converted to their corresponding object types allows all
values in the type system to be treated as objects if required [61]. Note that this unifies the two
different types in the CLR, because every type can be treated as a subtype of System.Object (see
section 5.3.2 for more details).

42

5.3. THE COMMON TYPE SYSTEM

Most languages do not allow developers to implement their own value types, but the CTS does.
Of course the CTS has a basic set of value types already defined, the built-in value types [61].

5.3.1.1 Built-in value types

Table 5.1 lists all the built-in value types of the CTS in the categories integer, floating point,
logical and other [2, 17, 61]. In the column ”Type” the name of the type in the Base Framework is
shown. The next column, ”CLS?” states if the type is a Common Language Specification (CLS)
type; only CLS types can be used in cross-language value exchange. The column ”CIL name”
shows the name of the type as used in the CIL. The ”Suffix” column shows the suffix used to
differentiate between CIL instruction targeting different types, e.g. conv.i1 and conv.i8 which,
respectively, converts the top-of-stack element to a 1-byte integer and a 8-byte integer. Finally
in the column ”Description” a short description of the type is given.

Category Type CLS? CIL Name Suffix Description
Integer SByte × int8 i1 8-bit signed integer

Int16 √ int16 i2 16-bit signed integer
Int32 √ int32 i4 32-bit signed integer
Int64 √ int64 i8 64-bit signed integer
Byte √ unsigned int 8 u1 8-bit unsigned integer
UInt16 × unsigned int 16 u2 16-bit unsigned integer
UInt32 × unsigned int 32 u4 32-bit unsigned integer
UInt64 × unsigned int 64 u8 64-bit unsigned integer

Floating point Single √ float32 r4 IEEE 32-bit floating point type
Double √ float64 r8 IEEE 64-bit floating point type

Logical Boolean √ bool u1 Boolean type
Other Char √ wchar u2 a Unicode (16-bit) character

Decimal √ decimal a 96-bit decimal value
IntPtr √ native int a signed integer, the size of

which depends on the underly-
ing platform (a 32-bit value on
a 32-bit platform and a 64-bit
value on a 64-bit platform)

UIntPtr × unsigned native int an unsigned integer, the size of
which depends on the underly-
ing platform (a 32-bit value on
a 32-bit platform and a 64-bit
value on a 64-bit platform)

Class types Object √ object base class for all class types
String √ string an immutable, fixed-length

string of Unicode characters

Table 5.1: Built-in value and reference types.

5.3.2 Reference types

In contrast to value types, the reference types do not inherit from System.ValueType or Sys-
tem.Enum. These reference types can inherit from any other class though. Because reference

43

CHAPTER 5. UNDERSTANDING THE COMMON INTERMEDIATE LANGUAGE

types are always allocated on the garbage collected heap and the garbage collector is free to
move objects during execution, they are accessed via strongly typed references1 rather than di-
rectly. When the garbage collector moves an object these strongly typed references are updated
as part of the relocation process [61].
In the CTS three categories of reference types can be identified (see figure 5.2): self describing
types (class types and array types), pointer types, and interface types.

The self describing types can be split into class types and array types. The class types are the
set of all exact types for all objects. In many object-oriented languages class types are simply
referred to as ’classes’. An instance of a class type is called an ’object’. The built-in class types
are described later in this section. Array types are defined by specifying the element type,
the number of dimensions (rank), and the upper and lower bounds of each dimension [37].
Exact array types (fixed number of dimensions and bounds) are automatically created by the
CLR when needed [38, section Arrays]. This means the CLR will handle dynamically supplied
number of dimensions and bounds without the need for any special constructs.

Pointer types provide the CLR with a way of specifying the location of either code or a value.
Three pointer types can be identified [61]:

Managed pointers: These pointers are known to the garbage collector and will be updated if
they refer to an item that is moved by the garbage collector. Managed pointers are CLS
compliant.

Unmanaged function pointers: They refer to the address of the function and are similar to
function pointers in C++.

Unmanaged pointers: They are similar to unmanaged function pointers but refer to values
instead of function addresses. Unmanaged pointers are not CLS compliant, many lan-
guages have no syntax to define or use them.

Interface types are partial specifications of types to share a common contract between types.
Implementers are bound by this contract to provide implementations of the interface members.
Object types may support many interface types and an interface type may inherit from other
interface types. Members that can be defined in an interface type are: methods (static and
instance), fields (static), properties, and events [61].
There are no built-in interface types included in the CLR, although a number of interface types
are provided by the Base Framework.

5.3.2.1 Built-in reference types

The CTS has a set of already defined reference types in the category class types: Object and
String [61].
System.Object or simply Object is the CLR type from which all class types inherit, either di-
rectly or indirectly. The most important result of this is the enforcement of a singular rooted
inheritance hierarchy for all CLR types. Even value types can be treated as subtypes of Object
through boxing.
The other built-in reference type is System.String or simply String. This class is sealed and

1Strongly-typed languages, like the CIL, have a strict enforcement of type rules. Many strongly-typed languages
also provide strongly typed references to objects, i.e. the pointer knows the type of the object it is referring to.

44

5.4. THE CIL INSTRUCTION SET

immutable, i.e. respectively no type can be subtyped from it and a method modifying a string
creates a new string. Both facts allow for a very efficient implementation in the CLR [61]. For
instance, strings are always safe for multithreading, since there’s nothing a thread can do that
would mess up another thread by modifying a string, since strings cannot be modified.
Details of the built-in reference types Object and String can be found in table 5.1 in the category
class types [2, 61].

5.4 The CIL instruction set

The CIL instruction set contains about 220 instructions, also called opcodes. Roughly two thirds
are base instructions, e.g. addition, and subtraction. The other instructions serve the support
of the object model [17]. With only 220 instructions one byte (256 different states) is enough
to store the exact instruction. A CIL instruction can be followed by one argument, in contrast
to Java byte-code instructions which can be followed by more than one argument [29]. By
definition the instruction itself indicates whether or not it is followed by an argument, and the
form of the argument (if any) it takes.

For optimalisation reasons a lot of instructions has so called short forms [17]. These short forms
have the argument embedded into the instruction. Compare the following instructions for
loading the arguments of a method: ldarg <index>, ldarg.0, ldarg.1, ldarg.2, and ldarg.3. The
first instruction is the normal instruction to load the method arguments, and it takes the index
of the method argument to load as instruction argument. The other four instructions are the
short forms for loading the first four method arguments. So when loading one of the first four
method arguments it is possible to save one byte, no index is needed, per load instruction by
using the short form. Apart from the size optimalisation, the use of short forms also eliminates
the reading of an instruction argument, the index in the example above, by the CLR.

To get a basic understanding of the different instructions the following sections will briefly
describe them, categorized by their functionality. A complete list of instructions can be found
in appendix A.

5.4.1 Load and store instructions

The load instructions, i.e. instructions to push values or addresses on the stack, can further be
divided in three subcategories: loading values, loading constants, and loading addresses [17].

Values that can be pushed on the stack are static field values, instance field values, local variable
values, method argument values, and array element values. The argument of these instructions
specifies the details of the instruction.

Numbers, strings, and null are the constants that can be pushed on the stack. Loading numbers
is done by four different instructions denoting their type: ldc.i4 (int32), ldc.i8 (int64), ldc.r4
(float32), and ldc.r8 (float64). In section 5.3.1.1 also the built-in value types boolean, int8, and
int16 are shown. They do not have separate loading instructions, but rather are loaded as int32
values and converted to the right type. For example loading the boolean value true on the stack
is done by loading the int32 value 1 and casting it to the System.Boolean type. Just like the short
forms for loading values, there are ten short forms for loading the most used int32 values (-1 to
8).

45

CHAPTER 5. UNDERSTANDING THE COMMON INTERMEDIATE LANGUAGE

Addresses that can be pushed on the stack, for example for passing method arguments by
reference (byref), are the addresses of the values that can be pushed on the stack.

To store a top-of-stack value one can use the counterparts of the load instructions for values
[17]. To store the value of a top-of stack address one can use the indirect store instructions.
Since the store instructions on the stack are implicitly subject to the usual unary conversion
rules1 it’s not necessary that the top-of-stack type is the same as the destination type. In case
the destination type is smaller than the type on the stack, truncation will occur. E.g. it is valid to
store an int32 to a int16 location, automatic truncation will occur. Note that automatic trunca-
tion will occur without any kind of warning, resulting in possible dataloss. To trap a possible
overflow the conversion from int32 to int16 has to be made explicitly with a conversion instruc-
tion, for details see the next section.

5.4.2 Operate instructions

These instructions operate on values on the top of the stack and hence do not posses any in-
struction arguments. Since their operands are implicitly taken from the stack most of these in-
structions are polymorphic, i.e. the actual operator is chosen by the CLR to match the operand
type(s) on the stack [17].

The operate instructions can be categorized in three groups [17]:

Arithmetic: The arithmetic instructions include addition, subtraction, multiplication, etc..

Logical: Logical instructions comprise the boolean comparisons, e.g. and, or, not, etc., and the
shift instructions.

Type conversion: To convert the various numeric types the type conversion instructions can
be used. There are two sets of type conversion instructions: non overflow-checked and
overflow-checked instructions.

5.4.3 Branching and jumping instructions

Branching and jumping refer to continue program execution at an instruction other than the
sequentially next one. Conditional branching allows a program to take two different paths
depending on a condition. Jumping or unconditional branching on the other hand allow only
one path to be taken. From a high-level language standpoint, branching and jumping are used
for if statements and loops (e.g. a while loop). Note that this means that CIL instructions do not
map uniquely to high-level language constructs, making identification of high-level language
contructs in CIL code difficult, if not impossible. There are several branching instructions in
the CIL which can be divided into three groups: conditional branch instructions, unconditional
branch instructions, and the table switch instruction.

Both conditional and unconditional branch instructions take a label as instruction argument. In
textual CIL, as described in section 5.5, a label is a distinct identifier followed by a colon [17]. A
label has to be unique, only inside a method, logically resulting from the fact that the method
boundary is also the branching boundary. In other words it is not possible to branch outside

1Implicit unary conversion is performed by the CLR with the use of the usual unary operators. A unary operator
acts on one operand.

46

5.4. THE CIL INSTRUCTION SET

the scope of a method. But in binary CIL, i.e. the format used in assemblies and by the CLR,
labels are defined as a positive or negative offset in bytes from the branch instruction. Note that
the offset is in bytes and therefore the exact size of all instructions and their arguments have
to be computed at compile time to get the right offset. For this reason all branch instructions
also have a short form. The short form only takes one byte as its argument, in contrast to the
normal form which takes 4 bytes, and is used to optimize jumps within 128 bytes of the branch
instruction.

Conditional branch instructions take their operands from the stack and based on the boolean
evaluation a branch occurs. For example the ’branch if equal’ instruction beq compares the
two elements on top of the stack for equality and only branches to the defined label if the two
elements are equal. If the two elements are not equal, execution continues at the instruction
directly following the branch instruction.

In fact there is only one unconditional branch instruction, br. In contrast to the conditional
branch instructions no evaluation is performed, but a direct branch to the specified label oc-
curs. Again the normal form takes a four byte argument and the short form takes a single byte
argument.

For switch and case statements an indexed, indirect branch instruction exists, named switch. In
listing 5.1 a typical example of the switch instruction in textual CIL is given.

Listing 5.1: Example of a typical format of the switch instruction [17, pg. 39]

1 <instructions to push selector value on the stack>
2 switch (/ / s t a r t l a b e l t a b l e
3 lb01, / / f i r s t l a b e l
4 ...,
5 lb07 / / l a s t l a b e l
6)
7 br lb08 / / b ranch t o d e f a u l t l a b e l

5.4.4 Miscellaneous instructions

Instructions that do not fit in the former three categories include calls, returns, and some non
verifiable instructions operating on untyped data.

There are a few different call instructions for calling static and instance methods [17]. The
four most important instructions are for: normal calls, virtual calls (instance only), calls by
function pointer, and virtual calls by function pointer (instance only). Each call instruction has
as instruction argument the full signature of the method to be called; the method arguments
are taken from the top of the stack. In case of an instance call also the instance to make the
call to should be pushed onto the stack, in front of the method arguments. The virtual call
instructions allow calling inherited methods on an instance, i.e. calling a method defined in a
parent type of the instance the call is made to.

There is only a single return instruction to return from a method, which returns from both void
and value-returning functions. In the last case the return value should be left on the stack.

To efficiently implement some ANSI C functions, like memset and memcpy, the CIL contains a
few non verifiable instructions [17]. These instructions will not be discussed here any further.

47

CHAPTER 5. UNDERSTANDING THE COMMON INTERMEDIATE LANGUAGE

5.5 Example: A simple program written in the CIL

The CIL code used in assemblies and by the CLR is a binary code. But since binary code
is very hard to read for humans a textual representatation of the CIL code exists. To make
the concepts described in the previous sections more clear we will briefly discuss the textual
representatation of a simple HelloWorld program written in the CIL. The complete CIL code can
be found in appendix B.

Textual CIL begins with referencing the external assemblies it requires using the directive .as-
sembly extern. The HelloWorld example requires the external assembly ’mscorlib’, the core li-
brary of the .NET Framework. Listing 5.2 gives the CIL code referencing the core library
’mscorlib’. Apart from the name of the referenced assembly the public key token, if any, and
the version number are stored. Both key token and version number are used to load the correct
external assembly. The key token should prevent the loading of modified assemblies (signed
assemblies are)

Listing 5.2: An external assembly reference in the CIL
1 .assembly extern mscorlib
2 {
3 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
4 .ver 1:0:5000:0
5 }

Next to the external assembly reference(s) the information of the current assembly is given
using the directive .assembly (see listing 5.3, lines 1-5). Among others the public key token, if
any, and the version of the assembly is stored. Following this public information the private
assembly information is given, like the module(s) making up the assembly (.module. Both pub-
lic and private assembly information are given in listing 5.3. In the example only the module
’HelloWorld.exe’ is embedded in the assembly (line 7).
Together all this information forms part of the assembly manifest, as described in section 5.1.

Listing 5.3: The assembly information in the CIL
1 .assembly HelloWorld
2 {
3 .hash algorithm 0x00008004
4 .ver 1:0:1720:26694
5 }
6
7 .module HelloWorld.exe

Next the CIL code states the namespace(s), .namespace, and class(es), .class, implemented by
the assembly. The reason this information is explicitly printed out in the CIL code is the close
relation with the binary CIL code and the metadata. In fact we are still looking at the represen-
tation of the metadata at this point. Listing 5.4 gives the structure of classes for the HelloWorld
example.

Listing 5.4: The structure of classes in the CIL
1 .namespace HelloWorldExample
2 {
3 .class private HelloWorldMain
4 extends [mscorlib]System.Object
5 {
6 } / / end o f c l a s s HelloWorldMain
7 }

48

5.5. EXAMPLE: A SIMPLE PROGRAM WRITTEN IN THE CIL

Finally the implementation of the classes is given, see listing 5.5. For each namespace and class
the structure is repeated and extended with fields, .field, and methods, .method, to supply the
implementation.
As can be seen in listing 5.5 at line 3 a class definition contains not only the access level (public,
family, private) and the name of the class but also a series of other parameters. The complete
list of possible parameters will not be discussed here, for now it is enough to keep in mind they
exist. As can be seen on line 4 the ’HelloWorldMain’ class extends the System.Object type, in
fact this line is not even nessecary since all classes inherit by definition from System.Object (as
described in section 5.3.2).

Listing 5.5: The implementation of classes in the CIL
1 .namespace HelloWorldExample
2 {
3 .class private auto ansi beforefieldinit HelloWorldMain
4 extends [mscorlib]System.Object
5 {
6 .method public hidebysig specialname rtspecialname instance void .ctor() cil managed
7 {
8 .maxstack 1
9 IL_0000: ldarg.0

10 IL_0001: call instance void [mscorlib]System.Object::.ctor()
11 IL_0006: ret
12 } / / end o f method . c t o r
13
14 .method private hidebysig instance void Run() cil managed
15 {
16 .maxstack 2
17 IL_0000: ldarg.0
18 IL_0001: ldstr "Hello world"
19 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
20 IL_000b: ret
21 } / / end o f method Run
22
23 .method private hidebysig static void Main(string[] args) cil managed
24 {
25 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
26 .entrypoint
27 .maxstack 1
28 .locals init (
29 [0]class HelloWorldExample.HelloWorldMain
30)
31 IL_0000: newobj instance void PeWeaverTests.HelloWorld::.ctor()
32 IL_0005: stloc.0
33 IL_0006: ldloc.0
34 IL_0007: callvirt instance void PeWeaverTests.HelloWorld::Run()
35 IL_000c: ret
36 } / / end o f method Main
37
38 } / / end o f c l a s s HelloWorldMain
39 }

The HelloWorld example consists of three methods: .ctor (lines 6-12), Run (lines 14-21), and Main
(lines 23-36). The method definition also contains more identifiers than its access level and its
name. For example the methods .ctor and Run use the identifier instance, while the method
Main uses the identifier static. These two identifiers are each others opposite; instance methods
can only be called on an object, static methods can be called without an object.

In the implementation of the three methods one can see the labeling and CIL instructions with
their arguments as described in section 5.4. The numbering of the labels is based on the size in
bytes of the instructions and their arguments. For example the call instruction itself is one byte
(as all instructions are one byte) and takes a four byte instruction argument, so in total it takes

49

CHAPTER 5. UNDERSTANDING THE COMMON INTERMEDIATE LANGUAGE

five bytes which is reflected in the labeling.
In the Run method a message (in the form of a string) is printed to the screen (line 19). The
called method WriteLine takes one parameter of type string. This parameter has to be on the
stack before the call instruction is processed. Therefore the call instruction is proceeded by the
ldstr instruction (line 18) which pushes the string ’Hello world’ onto the stack.
The Main method shows a few optional method directives, like entrypoint (line 26, which de-
notes that this method is to be called by the CLR when the class is loaded) and locals (line 28,
which lists the local method variables).

5.6 Summary

In this chapter the CIL, the Common Intermediate Language, and the way it is deployed by
assemblies were introduced. The assembly is the shared unit within the Common Language
Runtime (CLR) and has a layout containing the manifest, the modules, the code, and the re-
sources.
To get a basic understanding of the way the CIL operates the activation record, evaluation
stack, the Common Type System (CTS), and the CIL instruction set were discussed. Both the
activation record and the evaluation stack exist due to the fact that the CLR is a stack-based
virtual machine. They are used to store values passed from one method to another respectively
to store values passed from one instruction to the next. The type system used by the CLR, the
CTS, is a singular rooted inheritance hierarchy with the reference type System.Object at the top.
Apart from reference types the CTS consists of value types, which can be mapped to reference
types by the boxing and unboxing operations. Roughly 220 instructions form the CIL instruc-
tion set, this instruction set consists of both base instructions and instructions to support the
object model.
Finally the textual CIL code of a simple program was discussed to show the different concepts
of the CIL in practice.

50

CHAPTER 6

Mapping AOP constructs to the Common Intermediate Language

The AOP paradigm, introduced in chapter 1, solves the problem of crosscutting concerns by
defining the aspect to capture the location and behavior of crosscutting concerns. The CIL is a
language with support for objects but not for aspects as we have seen in the previous chapter.
To add support for aspects to the CIL we have to map the location of crosscutting concerns (in
other words the crosscutting locations) to a well-defined point in the CIL. At this well-defined
point in the CIL the behavior of the aspect can be added. In this chapter we will make an
inventory of crosscutting locations and how they can be mapped to well-defined points in the
CIL.

Section 6.1 gives an overview of common crosscutting locations which can be identified in
many AOP solutions. In section 6.1.3 the different possibilities for the concern implementation
are briefly explained. Which points in the CIL we can see as well-defined points is investigated
in section 6.2. Once we have identified the crosscutting locations and the well-defined points in
the CIL we can create a mapping from crosscutting locations to well-defined points in the CIL,
this is done in section 6.3. Section 6.4 will narrow down the mapping list of section 6.3 to the
list of well-defined points in the CIL which have to be supported by our tool. Finally section
6.5 will wrap up this chapter.

6.1 Crosscutting locations

As described in section 1.4.1 there are two kinds of crosscutting mechanisms: dynamic crosscut-
ting and static crosscutting. All crosscutting locations can be catagorized in thse two crosscutting
mechanisms.

A crosscutting location is a well-defined point in the execution (dynamic crosscutting location)
or in the type structure (static crosscutting location) of a program. A crosscutting concern must
be attached to a crosscutting location to have any usefulness in a program. Many crosscutting
locations can be defined as a combination of other crosscutting locations. The minimal set of
crosscutting locations in which all crosscutting locations can be expressed is the set of primitive

51

CHAPTER 6. MAPPING AOP CONSTRUCTS TO THE COMMON INTERMEDIATE LANGUAGE

crosscutting locations.

These primitive crosscutting locations form the basis for the mapping from AOP constructs to
weave points in the CIL. The sections 6.1.1 and 6.1.2 will describe in more detail the primitive
dynamic crosscutting locations respectively the primitive static crosscutting locations.

6.1.1 Dynamic crosscutting locations

The following primitive dynamic crosscutting locations have been identified and will be de-
scribed here briefly:

Application start: This is the location where the first user code is executed after the applica-
tion has started, i.e. after default application initialization code. For AOP implementa-
tions based on an interpreter this is the location to load all required information for the
interpreter.

Constructor call: The constructor call location is defined as the location where an initial con-
structor of the object is called, i.e. not for ’super’ or ’this’ constructor calls.

Object pre-initialization: The pre-initialization of an object is the part from entering the first-
called constructor to the call of the super constructor. The location is identified by a
certain signature.

Object initialization/constructor execution: At this location the code of the constructor is ex-
ecuted, after its ’super’ or ’this’ constructor call.

Method call: This is the location where a call to a method is made. Note that the execution
context is at the side of the caller.

Method execution: This is the location where the code of a method is executed, i.e. the execu-
tion context is at the side of the callee (the executed method).

Field access (get and set): There are two forms of field access, namely getting the value of a
field and setting the value of a field. Both forms have their execution context at the side
of the getter or setter, comparable with the method call context.

Exception handler: The location where an exception handler executes is identified with this
crosscutting location. The exception being handled is available for inspection.

This: Every location when the currently executing object is an instance of a certain type.

Target: Every location when the target executing object is an instance of a certain type.

Arguments: Every location when the arguments are instances of certain types.

Control flow (if) every join point in the control flow of each join point P picked out by Point-
cut, including P itself.

Assignment: Every location where a value gets assigned.

52

6.1. CROSSCUTTING LOCATIONS

The crosscutting locations object pre-initialization, construction exection, method call, and method
execution are not uniquely identified by the name of the constructor or method. In many lan-
guages a constructor or method can have different overloaded forms which take different ar-
guments. These different overloaded forms are said to have different signatures. The four
crosscutting locations named above are therefore identified by their full name and optionally
by signature.

6.1.2 Static crosscutting locations

With static crosscutting, the program structure can be changed, for example methods and fields
can be added to the type declaration. The use of aspects allows the change of multiple types
with one single statement. In AspectJ the feature of static crosscutting is called inter-type decla-
rations.

6.1.3 Concern implementation

When a crosscutting location is found, the concern implementation (the additional code to
execute) can be inserted. We identify four insertion possibilities at a crosscutting location:

1. before the crosscutting location;

2. after the crosscutting location;

3. around the crosscutting location (combination of before and after);

4. replace the crosscutting location.

Insertion before the crosscutting location:
Inserting additional code to execute before the identified crosscutting location is one of the four
concern implementations. The additional code has to be executed before the point identified
with the crosscutting location is executed, e.g. before the call to a method is made.

Insertion after the crosscutting location:
The additional code to be executed is inserted after the identified crosscutting location. For
example after the call to a method is completed. A special case can be added in the event the
method returns an exception. That way the execution of additional code can be prevented if
the method returned with an exception.

Insertion around the crosscutting location:
This is a combination of before and after insertion. The benefit of using around insertion
instead of before and after separately is that you can re-use information in the after part, which
was stored in the before part. In other words, a local executing contect can be carried from the
before part to the after part. For example the value of a variable set in the before part can be
accessed in the after part.

Replacement of the crosscutting location:
Certain crosscutting locations allow the complete replacement of the crosscutting location code

53

CHAPTER 6. MAPPING AOP CONSTRUCTS TO THE COMMON INTERMEDIATE LANGUAGE

with new code. For example the crosscutting location method call: the call to the method can be
replaced with a call to another method.

6.2 Weave points

Of course a list of wanted crosscutting locations can be made, but these crosscutting locations
have to be identifiable in the program execution trace. Otherwise it is impossible to execute
the concern implementation at the required point in the program execution. Reasoning about
program execution in this context can be seen as the execution at runtime (dynamic weaving)
or as an interpretation of the code (static weaving).
Since we are interested in static weaving we have to identify unique points in the CIL code of a
program. We will call these points in the CIL code weave points from now. Chapter 5 introduced
CIL code and gives an idea of what would be possible weave points.
As long as there is a one to one mapping from the high level language constructs (constructs
in the program language used by the developer on which crosscutting locations are defined)
to CIL code constructs (our weave points) no problems occur. But some high level language
constructs like conditional expressions and loops are all mapped to the same branching CIL
code constructs. This makes it very difficult or sometimes impossible to map a CIL code con-
struct to a crosscutting location. Therefore these CIL code constructs can not be used as weave
points. We can split weave points into structural and executional weave points, which will be
explained in more detail in section 6.2.1 respectively section 6.2.2.

6.2.1 Structural weave points

Structural weave points are points in the CIL code where it is possible to add, change or delete
the structure of a class. For example adding a new method to a class. The following list is an
overview of all the structural weave points in the CIL we have identified.

Constructor: Constructors are special methods (methods are recognised by a .method keyword)
identified by their name ’.cctor’ in CIL code.

Method: Methods are identified by the .method keyword.

Field: Fields are identified by the .field keyword in the variable declaration part of a method.

Attribute: Attributes are identified by the .custom instance keyword in the variable declaration
part of a method.

Delegates: Delegates are a type-safe mechanism to implement function pointers. They are also
used to implement event types. In the CIL code, delegates are identified by the fact that
they have to extend the System.MulticastDelegate class.

Property: Properties are identified by the .property keyword.

Inheritance relationships: Depending on the actual inheritance relationship it is identified by
the extends or implements keywords following the name of the class in the class definition
(a class definition is recognised by the .class keyword).

54

6.3. FROM CROSSCUTTING LOCATIONS TO WEAVE POINTS

6.2.2 Executional weave points

Executional weave points are points identified in the program flow and mostly found in the
CIL instruction set itself.

Application start: The method defined as starting point for an application is recognised by the
.entrypoint keyword in the list of declarations for that method.

Instantiation: Instantiation is linked to constructor methods. We can identify the instantiation
of a static class (code that is executed when a static method of that class is called) and
the instantiation of a normal class, i.e. the creation of an object. Both instantiation forms
have a unique weave point at the point the first code inside the body of the constructor
method is being executed. Because the call to the constructor for a normal instantiation
is explicitly being made we can also identify two weave points in the method calling the
constructor. Namely a weave point before the call to the constructor is made and a weave
point after the call to the constructor is made. Note that in the first case the actual object
to be created is not yet available for the weave point information. A normal constructor
call is identified by a newobj instructions.

Method: For both static and non-static method calls, three weave points can be identified:
before the call is made (in the calling method’s body), just before the first code in the
method body, and after the call is made (again in the calling method’s body). Calls to
methods are identified by call and callvirt instructions.

Field access: Field access can be split into setting the value of the field and retrieving the value
of the field (both have a static and non-static form). Just as with methods we can identify
a weave point before and after the actual setting or retrieving of the value of a field. Field
access is recognised by the ldfld/ldsfld and the stfld/stsfld instructions.

Exception handling: Exception handling blocks are identified in the CIL code by the .try key-
word. Following the .try keyword additional blocks can be identified by the catch, filter,
finally, and fault keywords.

6.3 From crosscutting locations to weave points

Based on the list of crosscutting locations we have tried to make a mapping to the weave points
we have identified. This mapping is listed in table 6.3. The list is split up in dymanic crosscut-
ting locations and static crosscutting locations.

6.4 Supported weave points

In the first version of the weaver tool, not all weave points will be supported. The list of
supported weave points is primarily based on the basic weave points needed to support an
AOP implementation, like Compose*.
In that context the dymanic weave points that at least have to be supported are application start,
object initialization, class initialization, constructor execution, method call, and field access. To
reduce the complexity for the first version the matching will be done by name only, it will not

55

CHAPTER 6. MAPPING AOP CONSTRUCTS TO THE COMMON INTERMEDIATE LANGUAGE

C
rosscutting

location
C

oncern
im

plem
entation

W
eave

points
R

em
arks

D
ynam

ic
crosscutting

(join
points)

A
pplication

start
after

entrypointm
ethod

O
bjectinitialization

before,after,around
objectinstantiation

constructor
call,

nam
e

or
signature

m
atch

C
lass

initialization
before,after,around

class
instantiation

static
constructor

C
onstructor

execution
before,after,around

constructor
body

nam
e

or
signature

m
atch

M
ethod

call
before,after,around,replace

m
ethod

invocation
nam

e
or

signature
m

atch
M

ethod
execution

before,after
(3

cases),around,replace
m

ethod
body

nam
e

or
signature

m
atch

Field
access

(getand
set)

before,after,around,replace
load

and
store

field
nam

e
or

signature
m

atch

Exception
handling

before,after,around,catch
throw

,catch
block

exception
nam

e/type
used

to
iden-

tify
T

his
before,after,around

loading
this

this
objectidentified

by
its

type
Target

before,after,around
loading

object
targetobjectidentified

by
its

type
A

rgum
ents

before,after,around,replace
loading

sequence
ofvars

only
applicable

to
constructors

and
m

ethods
C

ontrolflow
(if)

before,after,around
other

join
point

com
bined

w
ith

other
join

point(s)to
guard

execution
D

ataflow
[30]

after
sequence

ofother
join

points
A

ssignm
ent

before,after,around,replace,catch
allstore

operations

Static
crosscutting

(inter-type
declarations)

A
dd

constructor
new

constructor
specification

class
specification

lim
ited

to
a

new
signature

A
dd

static
constructor

new
constructor

specification
class

specification
only

if
a

static
constructor

does
not

yetexist
R

em
ove

constructor
n/a

class
specification

identified
by

signature
(non-static)

A
dd

m
ethod

new
m

ethod
specification

class
specification

R
em

ove
m

ethod
n/a

class
specification

A
dd

field
new

field
specification

class
specification

R
em

ove
field

n/a
class

specification
A

dd
attribute

new
attribute

specification
m

any
points

R
em

ove
attribute

n/a
m

any
points

Inheritance
relationships

before,catch
objectinstantiation,casting

supportfor
m

ultiple
inheritance

Table
6.1:M

apping
ofcrosscutting

locations
to

w
eave

points.

56

6.5. SUMMARY

be possible to match on signature.
Static weave points (based on inter-type declarations) will not be available in this first version
of the weaver tool.

6.5 Summary

This capter described the mapping of AOP constructs, the crosscutting locations, to well-
defined points in the CIL, so called weave points.
The crosscutting locations can be split up in dynamic crosscutting locations and static crosscutting
locations. Dynamic crosscutting locations are well-defined points in the execution of a program,
static crosscutting locations are well-defined points in the type structure of a program. In both
types of crosscutting locations primitive crosscutting locations can be identified, this is a minimal
set of crosscutting locations in which all crosscutting locations can be expressed.
The concern implementation can be added when a crosscutting location is identified. We iden-
tified four possible ways to add the concern implementation: insertion before the crosscutting
location, insertion after the crosscutting location, insertion around the crosscutting location,
and replacement of the crosscutting location.
The well-defined points in the CIL, the weave points, can be split up in static and executional
weave points. The identified static weave points are: contructor, method, field, attribute, dele-
gate, property, inheritance relationship. Executional weave points identified are the following:
application start, instantiation, method, field access, exceptional handling.

57

CHAPTER 6. MAPPING AOP CONSTRUCTS TO THE COMMON INTERMEDIATE LANGUAGE

58

CHAPTER 7

Towards a solution

This chapter will start with an overview of related work in section 7.1. Based on the findings we
will describe four possible approaches to weave aspects into CIL code: source code weaving,
CIL code weaving using the profiling APIs, CIL code weaving using assemblies, and adapting
the Common Language Runtime (CLR). The first approach, described in section 7.2, is based
on a standard representation for languages conforming to the Common Language Specification
(CLS). The second approach relies on the modification of the CIL code just before it is compiled
into native machine code. To modify the code at runtime we have to use special hooks into the
CLR. This approach is described in more detail in section 7.3. The third approach involves the
adaptation of the CLR itself, and will be described briefly in section 7.4. The fourth approach,
which can be used to weave the aspects into the program at compile-time, is the modification
of .NET assemblies. Section 7.5 will explain this approach in more detail. Finally section 7.6
will give a short summary of the different approaches explained in this chapter.

7.1 Related work

In this section first a brief overview will be given of currently existing AOP approaches tar-
geting the .NET Framework. Some of these approaches are based on modifying the .NET in-
termediate language code. As some Java AOP approaches are also based on modifying the
Java intermediate language code, this section will also look at some of the Java tools used for
byte-code manipulation as reference.

7.1.1 AOP Solutions for the .NET Framework

Aspect#
Aspect# is a framework for the CLI, based on the usage of DynamicProxies [7]. This approach
relies on the program developer to include references to the Aspect# framework. For example
the creation of the Aspect# engine, or the implemention of Aspect# interfaces.

59

CHAPTER 7. TOWARDS A SOLUTION

LOOM .NET
LOOM .NET is an aspect weaving tool, which weaves aspect code into already compiled
.NET assemblies [50]. To inspect the already compiled .NET assemblies LOOM .NET uses
meta data and reflection mechanisms. Based on the original classes, contained in the .NET
assemblies, proxy classes are created during the aspect weaving process. A proxy class contains
the aspect code and can be compiled to produce an extended version of the original class.
These extended classes are linked together to reproduce the original structure contained in the
.NET assembly. Because weaving is done on already compiled .NET assemblies LOOM .NET
works implementation language independent.
Listing 7.1 shows a typical class template. The classprotection (the modifiers of the class),
classname (the name of the class), and baseclass (the base class) symbols are used to identify the
original class. For each identified class, a proxy class is created. The extensions to the class are
defined in the memberdefinition symbol.

Listing 7.1: A LOOM .NET class template [50, pg. 3].
1 /∗ [CLASSPROTECTION] ∗ / class /∗ [CLASSNAME] ∗ /: /∗ [BASECLASS] ∗ /
2 {
3 /∗ [MEMBERDEFINITION] ∗ /
4 }

Listing 7.2 shows an example of an interception using the method rule. The modifier (the mod-
ifier of the method), resulttype (the result type of the method), methodname (the method name),
and paramdeclaration (the argument declaration of the method) symbols are used to identify the
method(s). The method in the proxy class will call the Log method of the MyLogger class, before
executing the original implementation.

Listing 7.2: A LOOM .NET method rule [50, pg. 4].
1 public /∗ [MODIFIER] ∗ / /∗ [RESULTTYPE] ∗ / /∗ [METHODNAME] ∗ /(/∗ [PARAMDECLARATION] ∗ /)
2 {
3 MyLogger.Log("enter /*[METHODNAME]*/");
4 /∗ [RETVALINIT] ∗ /
5 /∗ [RETVALASSIGN] ∗ / base. /∗ [METHODNAME] ∗ /(/∗ [PARAMLIST] ∗ /)
6 /∗ [RETVALRETURN] ∗ /
7 }

Microsoft Phoenix
Phoenix is a framework designed to support compilation and program analysis techniques [40].
The framework provides building blocks, which can be linked together to cover the entire
compilation process. This compilation process also includes analysis and optimization tasks.
The architecture of Phoenix is shown in figure 7.1.
To handle different implementation languages, Phoenix uses an intermediate representation

(Phoenix IR) to represent the CIL code. All analysis, instrumentation, and optimization tools
target this IR, and in doing so are independent of the implementation language.
An AOP solution can be implemented as different building blocks targeting the Phoenix IR.
Weaving the crosscutting locations and aspects can be done by modifying the Phoenix IR.

SourceWeave.NET
SourceWeave.NET is cross-language source code weaver [24], i.e. crosscutting concerns can be
introduced independent of implementation language. The joinpoint and aspect model used
are based on AspectJ. Pointcuts and advice are defined in a separate XML specification.
The SourceWeave.NET architecture, see figure 7.2, consists of three main components: a parser

60

7.1. RELATED WORK

Figure 7.1: The Phoenix compiler platform.
Source: Phoenix Framework [40].

component, a joinpoint model component, and a compilation component. The parser component
consists of a set of language parsers that convert the source code to the SourceWeave.NET
AST. The AST used by SourceWeave.NET is based on the CodeDOM (Code Document Object
Model). Note that each implementation language to be supported requires a specific language
parser. The joinpoint model component weaves the source code and the aspects. Weaving is
done on the AST created by the parser component. Finally, the modified AST is compiled into
assemblies by the compilation component.

Figure 7.2: The SourceWeave.NET architecture.
Source: SourceWeave.NET: Cross-Language Aspect-Oriented Programming [24].

Benefits of SourceWeave.NET are:

1. The separation of the AOP XML language from the CLS. Allowing the usage of an exten-
sive joinpoint model and providing more reusable code and crosscutting specifications.

2. Cross language-support by weaving on an AST. Any implementation language that has a

61

CHAPTER 7. TOWARDS A SOLUTION

CodeDOM parser can be woven. Although the CodeDOM itself, it is a very generic AST,
places some limitations on the cross language-support as described by the limitations
below.

3. Native debugger support. Because the aspects are woven into the source code, the devel-
oper can trace through the execution of the woven code using the native debugger for the
implementation language the original code was written in.

Limitations of SourceWeave.NET are:

1. A parser from the .NET language to CodeDOM is needed.

2. Limitations in expressiveness of CodeDOM. Not all .NET languages’ constructs can be
mapped to CodeDOM, for example nested namespaces.

3. Weaving can result in unsolvable compilation dependencies. In other words, the source
code can not be compiled as a circular dependency is introduced after weaving. This
problem is inherent in many AOP solutions.

4. Access to source code is required. Hence pre-compiled, third-party components cannot
be included in the weaving process.

Weave.NET
The programming model used by Weave.NET [28] addresses two issues: how to specify as-
pects, and what architecture to use to compose the aspects with the components.
To specify aspects, Weave.NET uses the semantics from AspectJ, but AO cross-cutting details
are defined in a separate XML deployment script. This allows the aspect behavior and compo-
nents to be implemented in any language targeting the CLI.
The heart of the Weave.NET architecture is formed by the Weave.NET Tool, see figure 7.3. Pro-
vided a component and the crosscutting specifications, the Weave.NET Tool will modify the
code of the component to bind join points to aspect behavior. Binding join points is done by
introducing method calls to the aspect behavior, creating a woven component.

Figure 7.3: The Weave.NET architecture.
Source: Language-Independent Aspect-Oriented Programming [28].

7.1.2 Code-manipulation Tools

BCEL
The Byte Code Engineering Library (BCEL) allows analysis, creation, and manipulation of

62

7.2. APPROACH 1: SOURCE CODE WEAVING

binary Java class files [57]. The symbolic information of the class, e.g. methods, fields, and byte
code instructions, is represented by objects, which can be manipulated. BCEL only provides a
way to read, manipulate, and write Java class files, which manipulations to perform is up to
the user.
A tool like BCEL can be used to weave AOP aspects into Java classes, for example AspectJ and
JMangler [16] use BCEL as weaver. In .NET terms this would mean a tool to read, modify, and
write the CIL code. The CIL code is read for example from an assembly. Namespaces, classes,
methods, etc. would be represented by objects for easy manipulation. After manipulation, a
new assembly with the updated CIL code has to be constructed.

Javassist
Like BCEL, Javassist [8] is also a toolkit for transforming Java class files. But, unlike other li-
braries, Javassist is a reflection-based toolkit. This means users do not have to have detailed
knowledge of bytecode as transformations are described with source-level vocabulary.
Describing transformations in an implementation language under .NET is less desirable, be-
cause breaking free of a single implementation language is one of the big advantages .NET
offers in this context.

7.2 Approach 1: Source code weaving

The .NET architecture has the CLS defined for interoperability between components written
in different implementation languages (see chapter 3 for more information). Based on the CLS
an AOP solution can define crosscutting locations. At these crosscutting locations, the AOP
solution can use the code generation abilities of the .NET Framework to reflect AOP behavior
in the source code. Afterwards, the modified source code can be compiled with the native
compiler for the implementation language.
An example of an approach aimed at source code weaving under .NET is SourceWeave.NET [24].

7.2.1 Advantages and disadvantages

As with all solutions based on source code weaving, one of the biggest advantages is the use
of the language specific compiler to compile the code after weaving. The major disadvantage
of this approach is the need to create a custom source code parser to support a language. This
source code parser is needed to create a generic AST, representing the source code, on which
the weaving can be done.

7.3 Approach 2: Weaving at run-time with the profiling APIs

To monitor the performance and memory usage of programs executing on the Common Lan-
guage Runtime (CLR), special interfaces can be used. These interfaces, the profiling APIs, pro-
vide an efficient way to hook into CLR events such as execution entering or leaving a method.
These hooks into the execution of a program are intended as a way to measure the performance
of parts of a program. But instead of adding code to measure the performance, we can also add
other code. In this way we can use the hooks to execute aspect code. One of the simplest cases
is hooking into the method entering and leaving events to provide before and after advice on

63

CHAPTER 7. TOWARDS A SOLUTION

a method. More advanced cases could hook into the JIT compilation events, analyse the MSIL
code stream, and insert additional code into the original code stream. For example this ap-
proach could be used to scan the code stream for calls to certain constructors or methods and
execute something else first.
Before explaining the possibilities of these profiling APIs to weave aspects at run-time in more
detail, we will first briefly describe the profiling APIs.

7.3.1 The profiling APIs explained

The profiling APIs are implemented as two COM interfaces, shown in figure 7.4. One is imple-
mented by the CLR (ICorProfilerInfo), the other is implemented by the profiler (ICorProfiler-
Callback).

The ICorProfilerCallback interface is the ’notification API’, consisting of methods with names

Figure 7.4: The two COM interfaces of the profiling APIs.
Source: Profiling [31].

like ClassLoadStarted, ClassLoadFinished, FunctionEnter, FunctionLeave. Each time the CLR
takes one of these actions it calls the corresponding method in the profiler’s ICorProfilerCallback
interface.
The other profiling interface is ICorProfilerInfo. This interface exposes methods the profiler can
use to get more information about the CLR event being analysed. For example, the CLR sup-
plies the profiler with a FunctionId of the method being entered. With this FunctionId the profiler
can call the ICorProfilerInfo interface to discover more information about the method identified
with that FunctionId.
Loading a profiler is done by the CLR itself during its initialization in each process. Depending
upon the value for two environment variables (Cor Enable Profiling and Cor Profiler) the CLR
decides whether or not to load a profiler. Note that this allows the usage of only one profiler
for a process at one time in a given environment.

7.3.2 Implementing an aspect profiler

The implementation of the base framework for a profiler is straight-forward, as multiple code
samples are available. But the power, and hardest goal to achieve, of the aspect profiler is
the analysis and modification of the MSIL code stream before it is JIT compiled. Achieving
dynamic run-time weaving should be possible with this approach. Code manipulation occurs
in memory, leaving the original code on disk. When updating the aspect specifications, the

64

7.3. APPROACH 2: WEAVING AT RUN-TIME WITH THE PROFILING APIS

aspect profiler should mark methods for recompilation. Next time the method, is executed
the aspect profiler can modify the code stream according to the new aspect specifications.
Unfortunately, the analysis of the code stream is complex. There are two main reasons for
this. The first reason is the mapping that has to be made between the way the CLR identifies
constructs like classes, and methods and the way one could identify these constructs outside
the CLR to create the aspect specifications. E.g. the CLR identifies a method with a unique
FunctionId which only has a meaning inside the CLR at that moment while outside the CLR the
same method can only be identified by another ID referring to the method’s name. The second
reason that complicates the process is the fact that operations are performed at the lowest
possible form of MSIL outside of the .NET Framework. This means that tasks normally left to
compiler tools have to be programmed yourself (e.g. if-statements do not exist, you really have
to write out the correct conditional branch statements) and that really useful functionality like
.NET Reflection is not available.
To illustrate one of the more complex problem occurring in the manipulation of the code
stream we will look at jumping and branching statements. As mentioned in section 5.4.3, a
jump or branch is given as a positive or negative offset from the current position in the code
stream. If we insert additional instructions in the code stream we have to scan the entire
code stream for jump or branch instructions and if nessesary compute new offsets. Worst case
scenario also involves expanding short forms to normal forms accommodating a new offset
which exceeds the size a short form can hold. If such an expansion occurs, the scan process
has to be restarted, because this expansion can make the offset of a branch statement already
scanned invalid. Maybe it’s wiser to expand all short forms by default, eliminating the need
to restart the scan process. However these short forms exist for a reason, to save memory. To
find the best possible solution in both memory usage and processing time for this problem
more investigation has to be done. So apart from the need for a more complex modification
scheme, manipulation time will increase. In other words runtime performance of the program
will suffer from this.

7.3.3 Advantages and disadvantages

The profiling APIs provide a way to hook into CLR events and in doing so allow us to execute
aspect code. The following listing will give the most important advantages of this approach:

Independent from the unit of deployment: As described in section 5.1 the assembly is com-
monly used to deploy .NET programs. By hooking into the CLR we let the CLR take care
off loading the CIL codestream from disk, for example read the contents of an assembly.

Dynamic weaving possible: Only the code in memory is modified to include the aspects. The
CLR provides a hook to mark certain code for recompilation, this makes it possible to add
or remove aspects from an executing program.

Of course the approach with the profiling APIs has a few major disadvantages too:

Running a profiler requires administration privileges: To register a profiler with the Win-
dows operating system administration privileges are required.

Profiling interface allows only one active profiler: The profiler and the program are linked
one-to-one. This means only one profiler can be active for a program. Using the profiling

65

CHAPTER 7. TOWARDS A SOLUTION

approach to weave aspects into the program means no performance measuring tool using
the profiling APIs can be used.

A profiler runs outside of the .NET CLR: A profiler hooking into CLR events runs outside of
the .NET CLR itself. To be exact a profiler runs as a COM object in the process space of
the operating system.

Negative impact on the runtime performance of a program: Since all the modification are
done at runtime the program suffers without doubt performance loss.

7.4 Approach 3: Adapting the Common Language Runtime

The third approach involves adapting the runtime environment itself. The mechanism to en-
force aspect behavior is built into the runtime. The aspect behavior and the crosscutting speci-
fications have to be provided separate of the base program to the runtime.

7.4.1 Advantages and disadvantages

Major advantage of this approach is the seamless integration of the AOP solution with the run-
time environment. Errors resulting from the AOP added behavior can be caught and handled
by the runtime environment. The downside of the this integration with the runtime environ-
ment is the fact that to run a program the AOP modified runtime environment is needed. This
also puts the additional task upon the AOP solution developers to keep their modified run-
time environment up-to-date. Modifying an open-source runtime environment would be the
easiest solution. Unfortunately, the only state-of-the-art CLR is the .NET Runtime and not all
of the .NET source code is publicly available. Adapting open-source code CLR projects like
Mono ([41]) or ROTOR ([48]) is less viable as these projects are still under development, and the
modified runtime environment has to be updated frequently.

7.5 Approach 4: Weaving aspects into .NET assemblies

The fourth, and last, approach is based on the modification of .NET assemblies. At compile-
time we can modify these .NET assemblies generated by the different language compilers and
include code statements to execute our aspects. In principal this is the same idea as the aspect
profiler approach. But at compile-time, the time needed to insert the statements is less of a
problem (within certain boundaries of course). Another advantage compared to the aspect
profiler approach is that we are now able to use .NET Reflection to find information or to create
constructs for us. Unfortunately, .NET Reflection works at a higher level of abstraction than
the profiling APIs do, resulting in the fact that we have no easy access to the MSIL code stream
(section 7.5.1 will discuss this problem in detail). Since we are weaving assemblies and storing
the modified assemblies to disk we have to consider a few problems that might arise from this,
section 7.5.2 will explain those problems in more detail.

66

7.5. APPROACH 4: WEAVING ASPECTS INTO .NET ASSEMBLIES

7.5.1 Getting the MSIL code out of the assembly

As mentioned before, .NET itself does not provide a way to easily access the MSIL code stream
of an assembly. The .NET Reflection methods only provide an easy way to access the metadata
of the assembly. But even with this metadata info it is not possible to extract the code stream.
As explained in section 5.1.1, all data is stored in a PE file, and to extract the code stream you
have to get the correct offsets and lengths for a particular code stream. This leaves us with the
following options:

Build a PE file reader/writer Requires a thorough understanding of the PE file format and will
result in a lot of work before we can get to the real challenge, the weaving of the MSIL
code. Another disadvantage of this approach is that changes to the PE file format for a
next .NET Framework version have to be integrated.

Use a third-party PE file reader/writer If we can use an open-source PE file reader/writer for
.NET, we may be able to quite easily extend it with a MSIL code stream manipulation
method. Unfortunately at the time of investigation no such tool existed. Only a few
demonstrating examples were available and in practice we would be building our own
PE file reader/writer tool.

Using the ilasm and ildasm tools These .NET supplied tools are a fully functional IL Assem-
bler (ilasm) and an IL Disassembler (ildasm). Using ildasm it is possible to disassemble an
assembly, creating a textual IL representation of the .NET code contained in the assembly.
With ilasm we can assemble a textual IL file and create an assembly. Now we only have to
build a tool that can read textual IL, apply the manipulations and write out the modified
textual IL.

A clear distinction between the first two approaches and the third approach is the manipulation
of respectively binary IL and textual IL.

7.5.2 Problems with weaving assemblies

The following issues have to be considered in relation to weaving assemblies:

Manipulating signed assemblies: To protect the assembly against modification and to verify
that the assembly is authentic an assembly can be signed. Signing an assembly is done
by a private key mechanism. The private key, only known to the signer of the assembly,
is used to generate a signature, the public keytoken, for the assembly. All assemblies that
reference a signed assembly will include the public keytoken of the signed assembly. The
security system of .NET will check if the public keytoken of a referenced assembly is the
same as the expected keytoken. In other words we can never modify an assembly to
include additional code for aspects, because we do not have the private key to sign the
assembly.

Manipulating the standard .NET libraries may not be feasible: A few practical problems
arise when manipulating standard .NET libraries. The huge size of some of these li-
braries could drastically impact performance. But this also means that your application
has to be distributed with its own version of some standard libraries. Which means up-
dates to these standard libraries are not automatically integrated in your application, we

67

CHAPTER 7. TOWARDS A SOLUTION

have to recompile and redistribute for that. Apart from the practical issues involved one
could argue about the desirability of modifying standard libraries; what is the meaning
of ’standard’ in this context?

Manipulating developer supplied assemblies: These are the third-party assemblies the de-
veloper includes in his project. Just like the standard .NET libraries, we have to distribute
our manipulated assemblies along with the application. If there is an update of a third-
party assembly we have to recompile and redistribute our application to incorporate the
changes. Furthermore we have to consider the legal issues when modifying third-party
assemblies. The developer may very well have bought the assembly and is allowed to use
it, but not to change it. So is it legal if we modify such assemblies and they are distributed
by the developer in a commercial application?

7.5.3 Advantages and disadvantages

As every language targeting .NET Framework is compiled into the CIL, this approach abstracts
from any source code knowledge. Apart from multi-language support, being able to weave
third-party assemblies is a clear advantage. Although weaving third-party assemblies is not
without any problems, as described in section 7.5.2. Disadvantage of weaving assemblies is the
loss of the link with the source code for a debugger.

7.6 Summary

In this chapter various approaches for implementing an AOP solution in .NET have been dis-
cussed. The major solutions discussed in section 7.1.1 are LOOM .NET, SourceWeave.NET and
Weave.NET. As modifying the Java byte-code to support aspects is used in many AOP solutions
for the Java platform, section 7.1.2 briefly describes a few byte-code manipulation tools for the
Java platform.
Sections 7.2, 7.3, 7.5, and 7.4 describe the four possible ways to implement an AOP solution
in the .NET Framework: source code weaving, run-time weaving using the profiling APIs,
adapting the .NET CLR, and weaving assemblies. For interoperability components, written in
different implementation languages, have to conform to the CLS. An AST based on the set of
language constructs defined in the CLS can be used in a cross-language source code weaver.
Weaving at run-time can be done by using the special profiling hooks provided by the CLR for
performance and memory usage measurement. It is also possible to integrate the AOP behav-
ior into the runtime itself, this involves creating or adapting a runtime environment. Every
application written in a .NET language is compiled to an intermediate language, the CIL. This
CIL can serve as the input for a implementation language independent AOP weaver.

68

CHAPTER 8

The implementation of the CIL Weaving Tool

A detailed description of the implementation of the weaver tool will be presented in this chap-
ter. Section 8.1 begins with an overview of the different parts of the weaver tool. Also the data
flow between the environment and the weaver tool, and the data flow between the different
parts of the weaver tool are given. Section 8.2 will discuss the input supplied by the weave
specifications file. Sections 8.3 and 8.4 explain the two major parts of the weaver tool: the PE
Weaver respectively the IL Weaver A short summary of the implementation of the weaver tool
is given at the end of this chapter, in section 8.5.

8.1 Global structure of the weaver tool

The weaver tool consists of two major components, the PE Weaver and the IL Weaver. The
PE Weaver (see section 8.3 for a detailed description) performs two steps. In the first step it
converts an assembly into a textual IL file, this process is called disassembling. To process these
texutal IL files, the IL Weaver is called. In the last step the PE Weaver converts the modified
textual IL file to an assembly, this process is called assembling. Figure 8.1 shows this process,
including the input and output of the data.

The separation of the assembling/disassembling process and the actual weaving process into
two separate tools is the result of a limitation in the .NET Framework. Figure 8.1 shows that the
AssemblyInspector, part of the IL Weaver, depends on the input assemblies. These assemblies
are needed to gather information for the weaving process and are loaded into the application
domain using .NET reflection. Unfortunately the .NET Framework has no method to unload an
assembly from the application domain. This results in assemblies being locked by the operating
system as long as the application runs. But one of the loaded assemblies may very well be an
assembly we have to modify, which is not possible since it is locked (i.e. we cannot overwrite
the file with the modified version). In the solution with two applications the assemblies are
only loaded into the IL Weaver application domain and hence they are unlocked when the IL
Weaver exits. Only after the IL Weaver has exited the PE Weaver will start overwriting the old

69

CHAPTER 8. THE IMPLEMENTATION OF THE CIL WEAVING TOOL

Figure 8.1: Data flow diagram weaver.

assemblies with the new modified versions.

8.2 The weave specification file

To specify a set of weave operations, a separate configuration file is used, see appendix C for
a complete listing of the layout of this file. This weave specification file is an xml file. Using
a xml format has two advantages. First, the content of the file is relatively easy to understand
for the developer incorporating the weaver in his own project. After all, he has to make a
mapping from the weave operations native to his project to the format used by the weaver.
Secondly, using a file layout as xml allows for easy extensions of the weaver. The extension of
the weaver will require additions to the weave specification file to specify this new or updated
functionality.

In listing 8.1 the general structure of the weave specification file is given. The weave specifi-
cation has been given a version number to identify different versions. The first block in the
specification file lists references to assemblies that should be included or excluded in the to be
woven assembly, section 8.2.1 will explain this block. The second block contains all the method
definitions, which can later be referenced in the application and class blocks. A more detailed
description of the method definition block can be found in section 8.2.2. The third block spec-
ifies modifications at the application level, for example executing a method at the start of the
application. Section 8.2.3 will describe the application block in more detail. The fourth, and
last block specifies all the modifications at the class level. A class block is identified by the
fully qualified name of the class it should be imposed on. This means that the class block is not
unique, multiple class blocks with different values for the fully qualified name can occur. The
details of the class block are discussed in section 8.2.4.

Listing 8.1: The weave specification file

70

8.2. THE WEAVE SPECIFICATION FILE

1 <?xml version="1.0" encoding="UTF-8"?>
2 <weaveSpecification version="<weave specification version>">
3 ["assembly reference block"]
4 ["method definition block"]
5 ["application block"]
6 ["class block"]
7 </weaveSpecification>

8.2.1 The assembly reference block

Each assembly can contain references to other assemblies. The CLR uses these references to
check if everything is available to run. When adding code, for example method calls, it can
occur that the target is defined in an external assembly which was not yet referenced. For
such cases the assembly reference block has the forceReferenceIn attribute. To force a reference
in all assemblies, the wildcard cam be used. It can also occur that all code that uses a certain
assembly is removed, making the assembly reference obsolete. The attribute remove provides a
way to remove certain assembly references, so unused assemblies no longer need to pass the
CLR checks. Listing 8.2 shows the structure of the assembly reference block.

Listing 8.2: The assembly reference block
1 <assemblies>
2 <assembly name="<assembly name>"
3 version="<assembly version>"
4 publicKeytoken="<keytoken of the assembly>"
5 forceReferenceIn="[<assembly name>/*]"
6 remove="[yes/no]"/>
7 </assemblies>

Example: If we introduce a logging aspect to an existing program, we have to make sure the
.NET Runtime can find our logging methods. These logging methods are supplied in an extra
assembly, called LoggingLibrary. This assembly is identified by its name (name attribute) and
by its version number 1.0.0.0 (version attribute). But the program in which we introduce the
logging, has no knowledge of this assembly. Using the assembly reference block we can create
references in all the assemblies of the program to this LoggingLibrary by using the wildcard for
the forcereRerenceIn attribute. See listing 8.3 for the example code.

Listing 8.3: Referencing the LoggingLibrary
1 <assemblies>
2 <assembly name="LoggingLibrary"
3 version="1.0.0.0"
4 publicKeytoken=""
5 forceReferenceIn="*">
6 </assemblies>

8.2.2 The method definition block

The method definition block defines signatures of methods, which can be used in the applica-
tion and class blocks. Signatures have to reflect methods that exist in the application domain.
A overview of the method definition block can be found in listing 8.4.

Listing 8.4: The method definition block
1 <methods>

71

CHAPTER 8. THE IMPLEMENTATION OF THE CIL WEAVING TOOL

2 <method id="<id of the method reference>"
3 assembly="<assembly the method can be found in>"
4 class="<fully qualified name of the class the method belongs to>"
5 name="<name of the method>"
6 returnType="<type of the function result>">
7 <argument value="" type="[string/int]"/>
8 <argument value="%senderobject"/>
9 <argument value="%createdobject"/>

10 <argument value="%targetobject"/>
11 <argument value="%targetmethod"/>
12 <argument value="%originalparameters"/>
13 <argument value="%casttarget"/>
14 <argument value="%fieldvalue"/>
15 </method>
16 </methods>

Within the method definition block more than one method definition can be defined. Each
method definition consists of four attributes to identify the method and an optional number of
attributes defining the parameters of the method.
The first attribute is the id, this is the name this method can be referenced by in this weave
specification file. The second attribute, assembly, contains the name of the assembly the linked
method belongs to. The third attribute, class, defines the fully qualified name of the class this
linked method is part of. The fourth attribute, name, is the name of the method that is being
linked. Together the assembly, class, and name attributes uniquely identify a method.
To define the parameters of the linked method an optional number of argument attributes can
be supplied to the method definition. There are two options to define a value for a parameter:
a constant value, or a dynamic value based on the runtime context where the method is called.
Currently the only constant values supported are the string and integer types. The currently
supported dynamic values are explained in more detail below:

%senderobject (type object): The object in which the weave point is found is passed to the
target function. Note that this has only any meaning in a non-static context, i.e. the
weave point is found in a non-static context. When used in a static context, a null value
will be passed to the target function.

%createdobject (type object): This value can only be used in the context of an after class instan-
tiation block (see below for a description). At runtime the newly created object instance
will be passed as parameter of the target function. The parameter type for this parameter
of the target function is the object type. There are two reasons to use the most basic type,
object, for this. First, the target function can now be used in more than one class block.
This allows the developer to create a single function for handling the class instantiation,
for example logging the creation of new objects with the type of the object as extra in-
formation. Second, it allows the developer to separate the application from the methods
handling the weave points. Which in turn allows easy re-use of weave point handling
methods by putting them in a seperate assembly, independent of the application.

%targetobject (type object): If the weave point is a non-static operation on an object, e.g. a
method call, the object can be passed to the target function. If no object is available at the
weave point, a null value will be passed to the target function.

%targetmethod (type string): If the weave point is a method call the name of the method can
be passed to the target function using the %targetmethod value. This can be used when
the weave point is very general, for example all calls to methods of a certain object. The

72

8.2. THE WEAVE SPECIFICATION FILE

target function can now be supplied with the exact name of the called method intercepted
at that point.

%originalparameters (type object array): In case the weave point is a method call, the %orig-
inalparameters value can be used to pass all the parameters of the original method call to
the target function. The original parameters are placed in an array and are passed as a
single parameter to the target function.

%casttarget (type string): If the weave point is the cast from one object type to another, the
target function can be supplied with the object being casted and the type casted to. The
object being casted can be passed to the target function using the %targetobject value. To
pass the type casted to the %casttarget value can be used. The type of this value is the
string type, in other words the target function receives the name of the type being casted
to.

%fieldvalue (any type): If the weave point is an operation on a field, the original value of the
field can be passed to the target function with the %fieldvalue value.

Example: The LoggingLibrary assembly contains the class FileLogger to log events to a file. One
of the methods of the FileLogger class is the Log method, the signature of the Log method can
be found in listing 8.5. The Log method has four parameters: the sender object (the object that
made the intercepted call), the target object (the object on which the intercepted call was made),
the name of the method that was intercepted, and the parameters passed to the method that
was intercepted.

Listing 8.5: The Log method of the FileLogger class
1 public class FileLogger
2 {
3 public void Log(Object sender,
4 Object target,
5 String targetmethod,
6 Object[] parameters) {
7 }
8 }

Listing 8.6 shows the reference, in the weave specification file, to this Log method. In the rest of
the weave specification file this Log method can now be referenced with the id logOpenConnec-
tion. To pass the required values to the Log method the corresponding four dynamic values are
used in the method definition: %senderobject, %targetobject, %targetmethod, and %originalparam-
eters.

Listing 8.6: The method definition of the Log method
1 <methods>
2 <method id="logOpenConnection"
3 assembly="LoggingLibrary"
4 class="FileLogger"
5 name="Log"
6 <argument value="%senderobject"/>
7 <argument value="%targetobject"/>
8 <argument value="%targetmethod"/>
9 <argument value="%originalparameters"/>

10 </method>
11 </methods>

73

CHAPTER 8. THE IMPLEMENTATION OF THE CIL WEAVING TOOL

8.2.3 The application block

The structure of the application block is given in listing 8.7. Below is an explanation of the
different attributes.

As identified in chapter 6 (see the dynamic crosscutting locations in table 6.3) the start of the
application is a weave point. The application block allows to link a method, defined in the
method definition block, to the start of the application using the notifyStart attribute.

Listing 8.7: The application block
1 <application name="">
2 <notifyStart id="<reference to a method definition>"/>
3 </application>

Example: This weave point can be used to initialize the AOP environment, e.g. an interpreter,
in which the program should be executed.

8.2.4 The class block

In listing 8.8 the layout of the class block is given. A weave specification file can contain mul-
tiple class blocks, each identified by a different class name in the name attribute. Apart from
identifying a class block by the fully qualified class name, a wild card can be used as class name.
A wild card matches every class in the application. For example this can be used to add a call
to a logging method in every class at a file operation.

Listing 8.8: The class block
1 <class name="[*/<fully qualified class name>]">
2 ["after class instantiation block"]
3 ["method invocation block"]
4 ["cast block"]
5 ["class replacement block"]
6 ["field access block"]
7 </class>

The class block contains four sub blocks, which will be explained below.

8.2.4.1 The after class instantiation sub block

The after class instantiation block contains a method reference in the executeMethod part. The id of
the reference method is stated in the id attribute and refers to a previously defined method in
the method definition block (see section 8.2.2). Listing 8.9 shows the after class instantiation block.
This weave point is implemented in the method that instantiates the class, i.e. after a new
object of the class has been created. Note that this allows us to pass the newly created object as
parameter (using the %createdobject value) to the referenced method.

Listing 8.9: The after class instantiation block
1 <afterClassInstantiation>
2 <executeMethod id="<reference to a method definition>"/>
3 </afterClassInstantiation>

Example: If we want to be notified of all TcpConnection objects being created by a program,
we can add an after class instantiation block to the TcpConnection class. Listing 8.10 shows the
related weave specification file parts.

74

8.2. THE WEAVE SPECIFICATION FILE

Listing 8.10: Adding notification to TcpConnection object creation
1 <assemblies>
2 <assembly name="LoggingLibrary"
3 version="1.0.0.0"
4 publicKeytoken=""
5 forceReferenceIn="*">
6 </assemblies>
7
8 <methods>
9 <method id="logNewConnectionObject"

10 assembly="LoggingLibrary"
11 class="FileLogger"
12 name="LogNewConnectionObject"
13 <argument value="%senderobject"/>
14 <argument value="%targetobject"/>
15 </method>
16 </methods>
17
18 <class name="TcpConnection">
19 <afterClassInstantiation>
20 <executeMethod id="logNewConnectionObject"/>
21 </afterClassInstantiation>
22 </class>

8.2.4.2 The method invocation sub block

As identified in chapter 6 the call to a method is a weave point. This weave point can be
specified in the method invocation block, see listing 8.11. A methodInvocations node can contain
multiple callToMethod sub nodes, each identified by a different fully qualified method name
(the class and name attributes). Contained in the callToMethod node are the voidRedirectTo and
returnvalueRedirectTo nodes. These nodes are used to specify the target method to call, identified
by its id attribute.

Listing 8.11: The method invocation block
1 <methodInvocations>
2 <callToMethod class="" name="">
3 <voidRedirectTo id="<reference to a method definition>"/>
4 <returnvalueRedirectTo id="<reference to a method definition>"/>
5 </callToMethod>
6 </methodInvocations>

The reason for two nodes to identify the target method is due to the fact that a .NET method
can have a return value. If the intercepted method does not have a return value, in other
words has the return type void, the target method reference in the voidRedirectTo node will be
used. Otherwise if the intercepted method has a return value the target method reference in
the returnvalueRedirectTo will be used. As return type of the target method the object type can
be used. The weaver will automatically cast it to the expected return type. Note that it is the
responsibility of the target method to return a correct castable type.

Example: A method invocation can be used to add logging to certain method calls. The method
call we want to log can be defined in the attributes of the callToMethod node. See listing 8.12 for
an example of adding logging to the Open method of the TcpConnection class. As the logging
library (LoggingLibrary assembly) is not referenced in the assemblies using the TcpConnection
class an explicit reference to the LoggingLibrary is made. This reference can be found in the
assemblies block. The method responsible for logging the information to disk is the Log method
of the FileLogger class provided by the LoggingLibrary assembly. The methods block shows the

75

CHAPTER 8. THE IMPLEMENTATION OF THE CIL WEAVING TOOL

details on the reference definition of the Log method. See section 8.2.2 for an explanation of the
argument values used for the Log method.

Listing 8.12: Adding logging to the TcpConnection class
1 <assemblies>
2 <assembly name="LoggingLibrary"
3 version="1.0.0.0"
4 publicKeytoken=""
5 forceReferenceIn="*">
6 </assemblies>
7
8 <methods>
9 <method id="logOpenConnection"

10 assembly="LoggingLibrary"
11 class="FileLogger"
12 name="Log"
13 <argument value="\%senderobject"/>
14 <argument value="\%targetobject"/>
15 <argument value="\%targetmethod"/>
16 <argument value="\%originalparameters"/>
17 </method>
18 </methods>
19
20 <methodInvocations>
21 <callToMethod class="TcpConnection" name="Open">
22 <voidRedirectTo id="logOpenConnection"/>
23 </callToMethod>
24 </methodInvocations>

8.2.4.3 The cast sub block

In listing 8.13 the layout of the cast block shown. The weave point identified by the cast block
is the cast from one class to another class as supported by the class hierarchy of the .NET
Framework. Matching will occur on the fully qualified name of the target class of the cast,
defined with the assembly and class attributes of the castTo node. The only supported action at
this weave point is the execution of a target method. A reference to this method is stated in the
id attribute of the executeMethodBefore node. The signature of the referenced method is defined
in the method definition block.

Listing 8.13: The cast block
1 <casts>
2 <castTo assembly="" class="">
3 <executeMethodBefore id="<reference to a method definition>"/>
4 </castTo>
5 </casts>

Passing the original object, i.e. the object being cast, to the target function can be done by
defining the %targetobject value for the target function. The target method is expected to have
a object as return type, logically it should be castable to the expected target type. By defining
the %casttarget value for the target function it is possible to supply this target function with the
type being casted to. (see section 8.2.2).

Example: This approach allows the target function to modify the original object, which can be
exploited to introduce multi-inheritance into the single-inheritance class hierarchy of the .NET
Framework. In the .NET code the type checking on casting can be avoided by explicitly cast-
ing to the object type before the desired casting is done, e.g. TypeA a = (TypeA)(Object)(TypeB).
At runtime this code will give a casting exception, as TypeB is not castable to TypeA. But the

76

8.2. THE WEAVE SPECIFICATION FILE

target function can now substitute the object of TypeB with a valid object of TypeA to allow
multi-inheritance. Note that the entire mechanism to keep track of a multi-inheritance tree and
provide the right object at every weave point is not provided by this weaving tool.
E.g. a platypus has characteristics of both a mammal and a bird. So we want the class Platypus
to inherit from the classes Mammal and Bird. To implement this we define the inheritance from
the Mammal class in the .NET class hierarchy (class Platypus : Mammal). The inheritance from
the class Bird will we provided by the AOP implementation, by defining a cast definition for
the cast to the Bird object. To use the inheritance relation from the class Bird the following code
can be used: Bird bird = (Bird)(Object)platypus. The weaving tool will intercept this cast and
call the defined target funtion for this cast, which in turn should filter out the multi-inheritance
casts, and return a Bird object representing the Platypus object.

8.2.4.4 The class replacement sub block

The class replacement block is in fact a simple renaming operation. See listing 8.14 for the struc-
ture of the class replacement block. Bound to the parent class block operations performed on a
certain class can be redirected to another class. Inside the class replacement block multiple re-
placements can be defined, i.e. it can contain more than one classReplacement node. The class to
be replaced (or renamed) is identified by the assembly and class attributes of the classReplacement
node. The name of the target assembly and class are defined respectively in the assembly and
the class attributes of the replaceWith node inside the classReplacement node.

Example: Logging operations in an existing application can be redirected to a new logging
class as long as the public interface of the new logging class matches the interface in the existing
application.

Listing 8.14: The class replacement block
1 <classReplacements>
2 <classReplacement assembly="" class="">
3 <replaceWith assembly="" class=""/>
4 </classReplacement>
5 </classReplacements>

8.2.4.5 The field block

Three different operation can be identified at the field access weave point. Field access is de-
fined as a reading or writing the value of a field. The three operations are: calling a target
funtion before the field is accesed. calling the target function after the field is accesed, and
replacing the field access operation with a call to the target function. An overview of the field
access block can be found in listing 8.15.

Listing 8.15: The field access block
1 <fieldAccesses>
2 <field class="" name="">
3 <callBefore id="<reference to a method definition>"/>
4 <callAfter id="<reference to a method definition>"/>
5 <replaceWith id="<reference to a method definition>"/>
6 </field>
7 </fieldAccesses>

77

CHAPTER 8. THE IMPLEMENTATION OF THE CIL WEAVING TOOL

The class and name attributes of the class node are used to identify the fully qualified name of
the field. Note that the fieldAccesses node can contain multiple field nodes for different fields.
The method referenced by a replaceWith node has to have its returnType attribute defined. It is
the responsibility of this target function to return a valid type, i.e. the type of the result should
not cause a .NET type conflict with the original type of the field.

Example: The TcpConnection class has a field, ConnectionString, to store the connection string,
i.e. the name of the target machine and the associated port number. To log the value of this
connection string every time it is used we can use the weave specification listed in listing 8.16.

Listing 8.16: Logging the connection string
1 <assemblies>
2 <assembly name="LoggingLibrary"
3 version="1.0.0.0"
4 publicKeytoken=""
5 forceReferenceIn="*">
6 </assemblies>
7
8 <methods>
9 <method id="logFieldAccess"

10 assembly="LoggingLibrary"
11 class="FileLogger"
12 name="LogFieldAccess"
13 <argument value="\%senderobject"/>
14 <argument value="\%fieldvalue"/>
15 </method>
16 </methods>
17
18 <fieldAccesses>
19 <field class="TcpConnection" name="ConnectionString">
20 <callBefore id="logFieldAccess"/>
21 </field>
22 </fieldAccesses>

8.3 The PE Weaver

As shown in figure 8.1 the main tasks of the PE Weaver are disassembling the original assem-
blies and assembling the modified assemblies. But apart from these two main tasks the PE
Weaver can do verification of the original and modified assemblies. A more detailed view of
the PE Weaver can be found in figure 8.2.
A class diagram of the PE Weaver can be found in appendix D.1. The PE Weaver consists of
two classes: PeWeaver, and ProcessManager. The ProcessManager class is used by the PeWeaver
class to execute the external application to verify, disassemble, and assemble .NET assemblies.

8.3.1 Verification of the assemblies

To verify the assemblies before and after the weave process the peverify tool distributed with
the .NET SDK is used. This tool checks the assembly for various errors, e.g. stack overflows or
unknown method/assembly references. Especially in the development process of a tool using
the weaver error checking can be very useful.

78

8.4. THE IL WEAVER

Figure 8.2: Data flow diagram PE Weaver.

8.3.2 Disassembling

Disassembling an original assembly is one of the main tasks of the PE Weaver. To disassemble
an assembly the ildasm tool (IL Disassembler) distributed with the .NET SDK is used. The out-
put of the ildasm tool is a text file with the textual representation of the IL code in the assembly.
This textual IL file is used as input for the IL Weaver, see section 8.4.

8.3.3 Assembling

After the IL Weaver has modified the textual IL files a new assembly has to be created. This
process is called assembling and is done by the ilasm tool (IL Assembler) part of the standard
.NET Distribution. If the assembling succeeded without errors the original assembly will be
overwritten, unless the special /out command-line switch of the PE Weaver is used. With this
switch it is possible to define the name of the new assembly and the original assembly will not
be overwritten. This option is only usable when weaving a single assembly.

8.4 The IL Weaver

The IL Weaver performs the actual weaving of the instructions from the weave specification
file into the IL code. Figure 8.3 shows the main tasks performed by the IL Weaver.

The input for the IL Weaver is the weave specification file, the textual IL file(s) containing the
code (provided by the PE Weaver), and all assemblies needed to extract additional information
about the .NET structure of the application. The output from the IL Weaver is a modified
version of the textual IL file(s).
Additional information about these steps performed by the IL Weaver can be found below.

79

CHAPTER 8. THE IMPLEMENTATION OF THE CIL WEAVING TOOL

Figure 8.3: Data flow diagram IL Weaver.

8.4.1 Reading the weave specification file

In section 8.2 the detail of the weave specification file have been explained. To use the informa-
tion stored in the weave specification file, the IL Weaver has to read it and store the information
into an internal structure. This internal structure is needed to query the information fast.
An overview of the classes related to this internal representation of the weave specification file
can be found in figure D.5 (appendix D).

8.4.2 Reading the IL file

Before the actual weaving can be done, the textual IL file generated by the PE Weaver has to be
loaded. To be able to reason about the structure of the IL code contained in the textual IL file, the
file is parsed into a special structure. This structure could in fact be a complete representation
of the CIL language, but we haven chosen to only implement the part of the structure we need.
We have chosen for this approach for the following reasons: simplicity, less error prone and
upgradability. The first reason, simplicity, is because the CIL specifications is very detailed and
complex. Besides implementing a structure to store every possible CIL option is not necessary,
we only need a very limited part for the weave process. The second reason, less error prone,
also results from the complexity of the CIL specifications. If we limit the structure to what we
need and do not try to parse the rest, we only have to worry about a very small part of the
complete CIL specifications. The third and last reason, upgradability, means that changes to
the CIL specifications are less likely to have impact on the structure used to store the IL code.
The IL structure is located in the Weavers.IlStructures namespace and contains the following
classes: NamespaceBlock, ExternalAssemblyBlock, ClassBlock, MethodBlock, and IlOpcode.
A complete class diagram of the IL structure can be found in figure D.4 (appendix D).

80

8.4. THE IL WEAVER

8.4.3 The assembly inspector

The assembly inspector has the task to gather information about types in the application do-
main, when needed to perform certain weave operations. For example, checking inheritance
relationships. The best way to get this information is using .NET Reflection. To be able to query
information about a certain assembly using reflection the assembly has to be loaded into the
application domain of the IL Weaver. To obtain the best performance, the assembly inspector
uses an internal hashtable to store results, at the cost of increased memory usage. To keep the
results available for the weave process of every IL file, the assembly inspector is implemented
as a singleton.
Listing 8.17 shows the public interface of the assembly inspector. This isMethod method will it-
erate over the list of assemblies supplied by the enumAssemblies parameter and look for the class
or type stated in the className parameter. If this type is found, it is retrieved with reflection
using the GetType method. The result is stored in a System.Type object. The final step is invok-
ing the GetMember method of the System.Type object to determine if the supplied methodName
parameter is an existing method of this type.

Listing 8.17: Public method IsMethod of the assembly inspector

1 public bool IsMethod(String currentAssembly,
2 IEnumerator enumAssemblies,
3 String className,
4 String methodName)

Especially in the process of determining the class hierarchy for casting operations this function-
ality is used. Because the weave specifications are defining a certain class to weave on, but in
the case of methods inherited from a parent class, the IL code states the parent class. Matching
just the class from the weave specifications to the class name in the IL code will not give the
proper result.
For example: ClassA has a method MethodOfA, and ClassB inherits from ClassA. We want to
intercept all calls made to an instance of ClassB, including the inherited method MethodOfA.
But, the call in the IL code made on the instance of ClassB is ClassA:MethodOfA(). So, when a
method call is found, in this case the ClassA:MethodOfA() call, a check has to be done to see if
it can be a method call on an instance of ClassB. Otherwise the call to MethodOfA will not be
found, as the ClassB:MethodOfA() call does not exist in the IL code.

8.4.4 Weaving

In the weave process an iteration over all the IL structures (see appendix D, figure D.4), based
on the textual IL file, is performed. Inside the MethodBlock class, the IL instructions are stored
in an array of IlOpcode objects. To identify weave points in the IL code the IlOpcode objects are
checked for certain values, for example the opcode for a method call. When a weave point is
identified, a weave operation can be performed, for example calling the defined target function.
After all the weave points in a MethodBlock have been found, the weave process will update the
IL administration of the method. In a number of cases the addition of calls to a target function
require the increase of the maximum stack size value of the method.

81

CHAPTER 8. THE IMPLEMENTATION OF THE CIL WEAVING TOOL

8.5 Summary

In this chapter the implementation of the CIL Weaver has been discussed. The CIL Weaver is
a combination of two tools: the PE Weaver, and the IL Weaver. The PE Weaver disassembles
the input assemblies into textual IL files. These textual IL files are used as input for the IL
Weaver. After the IL weaver finishes the weaving, the PE Weaver assembles the textual IL
files into new assemblies. The IL Weaver performs the actual weaving and uses the following
input: the weave specification, the textual IL files, and related assemblies to gather additional
information. As output the IL Weaver gives a modified textual IL file, which can be assembled
by the PE Weaver.
As stated earlier one of the goals of the CIL Weaver is to provide a tool that other developers
can use to implement their own AOP tool. In the next chapter the integration of the CIL Weaver
into the Composestar project is described. In a wider context this can be seen as an example of
integrating the CIL Weaver into an AOP solution.

82

CHAPTER 9

Integrating the CIL Weaving Tool into Compose*

This chapter will show the integration of the CIL Weaving Tool into the Compose* project.
The integration of the CIL Weaving Tool is done in two steps. The first step is the creation of
the weave specification file, which is described in section 9.1. The second step is running the
CIL Weaving Tool and have it apply the needed modifications to the assemblies of the target
application. This second step is described in section 9.2.

9.1 Creating the weave specification file

As described in chapter 8 the information on how to weave is supplied to the weaver tool by a
file, the weave specification file. To integrate the weaver tool into an AOP project a component
has to be made that generates this weave specification file.
Compose* itself has a modular design and the generation of the weave specification file can be
added as a module. The name of this module is CONE (COde GEneration), more information
on the structure of Compose* can be found in chapter 2.
The CONE module consists of two interfaces: Composestar.Core.CONE.RepositorySerializer, and
Composestar.Core.CONE.WeaveFileGenerator. The first interface is for the generation of the repos-
itory file, and the second interface is for the generation of the weave specification file.
As the weaver tool described in chapter 8 is only usable for the .NET environment, the imple-
mentation resides in the Composestar.DotNET.CONE package. The class diagram of the
Composestar.DotNET.CONE.DotNETWeaveFileGenerator class can be found in figure 9.1.

The Compose* master module invokes the run method, which calls the methods to write out
the required weave specification file blocks. The blocks used are the assembly reference block,
the method definition block, the application block, and the class block.

The assembly references:
First of all, the Compose* runtime assemblies have to be referenced, otherwise the calls to the
runtime interpreter defined at the weave points will result in a runtime error. Secondly, in
the main assembly of the application, all the assemblies making up the application have to

83

CHAPTER 9. INTEGRATING THE CIL WEAVING TOOL INTO COMPOSE*

Figure 9.1: Class diagram DotNETWeaveFileGenerator, Compose* module CONE.

be referenced. This means all missing assemblies have to be added. The reason for this is to
provide the runtime interpreter with a way to work with all the types in the application, e.g. to
create internals.

The method definitions:
The method definitions are forming the interface to the MessageHandlingFacility and Casting-
Facility of the runtime interpreter. For every method referenced, a method signature has to be
defined in the method definitions block. The signature is linked to a shorthand name, which
has to be used in the rest of the definition blocks in the weave specification file.
The implementation of the MessageHandlingFacility and the CastingFacility can be found respec-
tively in
Composestar.RuntimeDotNET.FLIRT.DotNETMessageHandlingFacility and
Composestar.RuntimeCore.FLIRT.CastingFacility.

The application info:
Because the runtime interpreter has to be initialised, we make use of the application block. The
MessageHandlingFacility of the runtime interpreter contains a special method, handleApplication-
Start, to initialise the interpreter. The shorthand name to reference this method is created in the
method definitions block.

The class definitions:
The information needed to construct the class definitions is gathered from the Compose* repos-
itory in a few steps.
The first step is finding and writing out the method invocations, cast interceptions, and class
replacements that have to be applied everywhere in the target program. To apply these

84

9.2. INVOKING THE WEAVER

changes everywhere in the target program, we make use of the wildcard as class name, <class
name=”*”>. The method invocations are gathered and written out in the function writeMethod-
Invocations. Basically this function adds a method invocation for every method of a class that
is found as a concern, i.e. using a wildcard as method name. After that, the cast interceptions
are collected and written out in the writeCastingInterceptions function. In Compose* the cast
interceptions consist of all classes used as internals in a concern. As last part of the first step
the class replacements are written out, i.e. if a certain classname has to be replaced by another
classname it is defined here. In Compose* this is done to remove all the references to the dummy
library used during the compilation phase of the target program.
The second step is writing out the class definitions for concerns that have outputfilters defined.
This is done by iterating over all concerns and checking if they have outputfilters. Once we
find a concern with outputfilters, we write out the class definition for that concern. This class
definition includes the definition for the instantiation of the class, and any method invocation
needed to enforce the defined outputfilters on this class.
The third, and last, step is writing out the class definitions for concerns that only require class
instantiation notification. For these concerns, the runtime interpreter only has to be notified
when an instance of the class implementing the concern is created in the runtime environment.
For example classes that are used as external in other concerns.

9.2 Invoking the weaver

As the CIL Weaving Tool is a stand-alone program it has to be run or executed by the AOP
solution. In the case of Compose*m the ILICIT module is responsible for running the CIL
Weaving Tool. To do this, ILICIT has to collect the following information: verification status,
debug context, weave specification file, and the target assemblies.
The verification switch is included in the configuration file for the Compose* project. Based on
the debug status of the Compose* project itself the debug status for the CIL Weaving Tool is
decided. The name of the weave specification file created by CONE is supplied as an argument
to the CIL Weaving Tool, so it can find the weave specifications. Finally, all the assemblies that
have to be woven are supplied as argument to the CIL Weaving Tool. To be able to handle
large projects, Compose* has the option to supply a file to the CIL Weaving Tool containing the
names of all the assemblies that have to be woven. However this is only done if the number of
files is twenty or more, to prevent any problems with commandline prompt overflows. ILICIT
will create this file and supply the filename as argument to to CIL Weaving Tool.

Figure 9.2 shows the class diagram for the ILICIT module. The main and run functions are
required by the Compose* module framework and are the entry points of the ILICIT mod-
ule. The four functions castingInterceptions, getAfterInstantiationClasses, getConcernsWithFMO,
and getConcernsWithOutputFilters are for constructing the target assemblies list. Each function
checks a different AOP construction for concerns which require weaving. From this list of con-
cerns a list of assemblies is created, by finding the assemblies in which the concerns are defined.
This list of assembly names is provided to the CIL Weaving Tool.

85

CHAPTER 9. INTEGRATING THE CIL WEAVING TOOL INTO COMPOSE*

Figure 9.2: Class diagram ILICIT.

9.3 Summary

This chapter described the integration of the CIL Weaving Tool in the Compose* architecture.
The integration consists of two steps: creating the weave specifications for the CIL Weaver Tool,
and invoking the CIL Weaver Tool. Figure 9.3 shows an overview of the Compose* architecture
and highlights the parts used in the integration of the CIL Weaving Tool. Responsible for writ-
ing out the repository and weave specification is the CONE module. The weave specification,
together with the assemblies compiled by the Compose* compile time are supplied to the CIL
Weaving Tool as input. Invoking the CIL Weaving Tool with the right arguments is the task of
ILICIT. The repository and the modified assemblies (the output from the CIL Weaving Tool),
together with the Compose* runtime allow for the execution of the aspects when the program
runs.

86

9.3. SUMMARY

Figure 9.3: The integration of the CIL Weaver Tool in the Compose* architecture.

87

CHAPTER 9. INTEGRATING THE CIL WEAVING TOOL INTO COMPOSE*

88

CHAPTER 10

Conclusion and future work

To express crosscutting concerns in a clear manner, the aspect-oriented programming (AOP)
paradigm was introduced. In AOP languages, crosscutting concerns are defined in aspects.
These aspects are composed, or woven, with base components. These components encapsulate
functionality expressed in traditional object-oriented languages. By separating the crosscutting
concerns from the components, the AOP paradigm tries to solve problems as code tangling and
code scattering.

As the aop language and base component language can be separated, an AOP solution can
be implemented independent of the base component language. In other words, the languages
used to define crosscutting locations can be different from the language used to define the base
components. A suitable platform for such an AOP solution is the .NET Framework, since,
in principle, this platform can support a wide range of different component languages (i.e.
programming languages). The .NET platform uses an intermediate language, the Common
Intermediate Language (CIL), to which all the programming languages are mapped at compile
time. At runtime the CIL code is compiled into native machine language by the Just-in-Time
(JIT) compiler and executed. To distribute applications, the CIL code is wrapped into binary
files, called assemblies.

To weave aspects and components together, we have identified four possible approaches.
The first approach is source code weaving. The idea is to weave the aspect source and compo-
nent source together before compiling it to the CIL, using the native language compiler.
The second approach uses the profiling API’s to weave at the JIT compiling phase. The profil-
ing API’s offer hooks into the .NET runtime machine, the Common Language Runtime (CLR).
These hooks allow the change of the CIL code just before it is compiled into native machine
language.
The third approach is the adaptation of the CLR, the .NET runtime machine. The logic to de-
cide where and when to execute certain aspects can be built into the CLR.
The fourth, and last, approach is weaving the aspects into the .NET assemblies containing the
component code. Both the advice code and base component code are compiled using the native
language compilers. Afterwards the assemblies, containing the component code, are modified

89

CHAPTER 10. CONCLUSION AND FUTURE WORK

to include hooks to the aspect code. These hooks can be directly linked to the aspect code
or they can be linked to an interpreter, which in turn will call the appropriate aspect code to
execute.

Based on the advantages and disadvantages of each approach, we have decided to create a
compile time CIL weaver (third approach). The purpose of this CIL Weaving Tool is to make
transformations to the .NET Common Intermediate Language (CIL) code available to other
tools. An example of a tool, that can use the weaver tool, is an AOP implementation for the
.NET Framework.

This CIL Weaving Tool consists of two parts: the PE Weaver and the IL Weaver.
The PE Weaver extracts the IL code from the assemblies, which are binary files, and creates the
corresponding textual IL files. This extraction process is called disassembling, and is done with
the help of the ildasm tool (IL Disassembler), distributed with the .NET SDK. These textual IL
files, together with the weave specification file, form the input for the IL Weaver. After the IL
Weaver has updated the textual IL files, according to the information supplied in the weave
specification file, they are transformed into assemblies again by the PE Weaver. This process is
called assembling, and is done with the ilasm tool (IL Assembler), distributed with the standard
.NET installation.
The IL Weaver is responsible for actual weaving of the instructions contained in the weave
specification file. Internally the IL Weaver consists of five processes: a reader for the weave
specification file (also creates an internal representation of it), a reader for the textual IL file
(also makes an internal representation of it), the weaver process, and a writer to write out the
modified textual IL file.
This weave specification file is an xml file to specify the set of weave operations, which can be based
on AOP constructs. The general structure of the weave specification file consists of the follow-
ing blocks: the assembly reference block (references to other assemblies to include/exclude),
the method definition block (defines signatures of methods which can be referenced in the other
blocks), the application block (defines modifications at application level), and the class block
(defines modifications at class level, a class block is identified by its fully qualified name).

10.1 Future work on the CIL Weaving Tool

Future work on the CIL Weaving Tool can involve the following issues:

Improve performance of the reading and writing of assemblies: The current approach, used
to extract the CIL code from the assemblies, is to disassemble them using the .NET dis-
assemble tool ildasm. After wards the CIL Weaving Tool performs weaving operations
on the textual IL code. Finally, the .NET assemble tool ilasm is used to create the new
assembly. This process however relies heavily on I/O operations, and therefore can be-
come slow. A way to improve performance is to extract the CIL code from the assembly
directly into the internal structure, representing the CIL code, used by the weaver. Doing
so, partly eliminates the slow down caused by the processing of textual IL files, which
can become very large compared to the size of the assembly.

Expand the internal structure representing the CIL code: In its current state the CIL Weaving
Tool uses a very limited internal structure to represent all the CIL code structures. Only
information needed for the weaving process is fully parsed and placed in an internal
AST, the rest of the information is just stored without parsing. Allthough this approach

90

10.1. FUTURE WORK ON THE CIL WEAVING TOOL

allows a certain amount of changes to the CIL specifications without affecting the weaver,
it can also limit the implementation of new weave points. This is due to the fact that the
information needed for the weave point may not be parsed. To have all the information
available, the CIL code has to be fully parsed and stored in an internal AST.

Increase the number of possible weave points: The weave points implemented in the current
version are the most basic weave points possible. A lot of additional weave points can be
added to support the most advanced AOP constructs. For example weave points related
to the try and catch block can be added.

Refine the selection of existing weave points: Currently implemented weave points can be
refined. For example the weave points identified by constructors/methods are currently
only matched by name, in addition they could also be matched by signature.

Update the Program Debug Database (PDB) file: By modifying the CIL code, any informa-
tion stored in the PDB files for debugging the program is rendered invalid. But it might
be possible to update the information in the PDB files according to the modifications
made to the CIL code. This would allow the developer to use native debugging tools
during the development phase of a program.

91

CHAPTER 10. CONCLUSION AND FUTURE WORK

92

Bibliography

[1] Ada. Ada for the web, 1996. URL http://www.acm.org/sigada/wg/web_ada/.

[2] aspxreme. Getting Started with ASP.NET. Technical report, aspxtreme, 2004. URL http:

//authors.aspalliance.com/aspxtreme/aspnet/index.aspx.

[3] L. Bergmans. Composing Concurrent Objects. PhD thesis, University of Twente,
1994. URL http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.

pi.top.htm.

[4] L. Bergmans and M. Akşit. Composing crosscutting concerns using composition filters.
Comm. ACM, 44(10):51–57, Oct. 2001.

[5] S. R. Boschman. Performing transformations on .NET intermediate language code. Mas-
ter’s thesis, University of Twente, The Netherlands, 2006. To be released.

[6] R. Bosman. Automated reasoning about Composition Filters. Master’s thesis, University
of Twente, The Netherlands, Nov. 2004.

[7] Castle Project. Aspect#. Technical report, 2005. URL http://www.castleproject.org/

index.php/AspectSharp.

[8] S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Bytecode Transla-
tors. In Proc. of 2nd Int’l Conf. on Generative Programming and Component Engineering (GPCE
’03), pages 364–376, 2003.

[9] O. Conradi. Fine-grained join point model in Compose*. Master’s thesis, University of
Twente, The Netherlands, 2006. To be released.

[10] D. Doornenbal. Analysis and redesign of the Compose* language. Master’s thesis, Uni-
versity of Twente, The Netherlands, 2006. To be released.

[11] P. E. A. Dürr. Detecting semantic conflicts between aspects (in Compose*). Master’s thesis,
University of Twente, The Netherlands, Apr. 2004.

[12] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Comm. ACM, 44(10):
29–32, Oct. 2001.

93

http://www.acm.org/sigada/wg/web_ada/
http://authors.aspalliance.com/aspxtreme/aspnet/index.aspx
http://authors.aspalliance.com/aspxtreme/aspnet/index.aspx
http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.pi.top.htm
http://www.castleproject.org/index.php/AspectSharp
http://www.castleproject.org/index.php/AspectSharp

BIBLIOGRAPHY

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: elements of reusable
object-oriented software. Addison Wesley, 1995.

[14] C. F. N. Garcı́a. Compose* - a runtime for the .NET platform. Master’s thesis, Vrije Uni-
versiteit Brussel, Belgium, Aug. 2003.

[15] M. Glandrup. Extending C++ using the concepts of composition filters. Master’s the-
sis, University of Twente, 1995. URL http://trese.cs.utwente.nl/publications/

paperinfo/glandrup.thesis.pi.top.htm.

[16] M. A. Gnter Kniesel, Pascal Costanza. Jmangler - a powerful back-end for aspect-oriented
programming. In T. E. R. Filman and M. A. S. Clarke, editors, Aspect-oriented Software
Development. Prentice Hall, 2004. URL http://roots.iai.uni-bonn.de/research/

jmangler/downloads/papers/kniesel2003_aosdBook.pdf. To appear.

[17] J. Gough. Compling for the .NET Common Language Runtime (CLR). Prentice Hall, 2001.
ISBN 0-13-062296-6.

[18] J. D. Gradecki and N. Lesiecki. Mastering AspectJ: Aspect-Oriented Programming in Java.
John Wiley and Sons, 2003. ISBN 0471431044.

[19] W. Havinga. Designating join points in Compose* - a predicate-based superimposition
language for Compose*. Master’s thesis, University of Twente, The Netherlands, May
2005.

[20] F. J. B. Holljen. Compilation and type-safety in the Compose* .NET environment. Master’s
thesis, University of Twente, The Netherlands, May 2004.

[21] R. L. R. Huisman. Debugging Composition Filters. Master’s thesis, University of Twente,
The Netherlands, 2006. To be released.

[22] S. H. G. Huttenhuis. Patterns within aspect orientation. Master’s thesis, University of
Twente, The Netherlands, 2006. To be released.

[23] E. International. Common language infrastructure (CLI). Standard ECMA-335, ECMA In-
ternational, 2002. URL http://www.ecma-international.org/publications/files/

ecma-st/Ecma-335.pdf.

[24] A. Jackson and S. Clarke. SourceWeave.NET: Cross-Language Aspect-Oriented Program-
ming. Technical report, Trinity College Dublin, 2004.

[25] Jython. Jython homepage. URL http://www.jython.org/.

[26] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS 2072, pages 327–353, Berlin,
June 2001. Springer-Verlag.

[27] P. Koopmans. Sina user’s guide and reference manual. Technical report, Dept. of
Computer Science, University of Twente, 1995. URL http://trese.cs.utwente.nl/

publications/paperinfo/sinaUserguide.pi.top.htm.

[28] D. Lafferty and V. Cahill. Language-Independent Aspect-Oriented Programming. Techni-
cal report, 2003.

94

http://trese.cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm
http://roots.iai.uni-bonn.de/research/jmangler/downloads/papers/kniesel2003_aosdBook.pdf
http://roots.iai.uni-bonn.de/research/jmangler/downloads/papers/kniesel2003_aosdBook.pdf
http://www.ecma-international.org/publications/files/ecma-st/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ecma-st/Ecma-335.pdf
http://www.jython.org/
http://trese.cs.utwente.nl/publications/paperinfo/sinaUserguide.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/sinaUserguide.pi.top.htm

BIBLIOGRAPHY

[29] T. Lindholm and F. Yellin. The JavaTMVirtual Machine Specification (2nd edition). Addison-
Wesley Pub Co, 1999. ISBN 0201432943.

[30] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented programming.
In Proceedings of The First Asian Symposium on Programming Languages and Systems
(APLAS’03), pages 105–121, nov 2003.

[31] Microsoft Corporation. Profiling. Technical report, Microsoft Corporation, 2002.

[32] Microsoft Corporation. Overview of the .NET framework. Technical report, Microsoft
Corporation, 2003. URL http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/cpguide/html/cpovrintroductiontonetframeworksdk.asp.

[33] Microsoft Corporation. What is the common language specification. Technical report, Mi-
crosoft Corporation, 2003. URL http://msdn.microsoft.com/library/default.asp?

url=/library/en-us/cpguide/html/cpconwhatiscommonlanguagespecification.

asp.

[34] Microsoft Corporation. .NET compact framework - technology overview. Technical
report, Microsoft Corporation, 2003. URL http://msdn.microsoft.com/mobility/

prodtechinfo/devtools/netcf/overview/default.aspx.

[35] Microsoft Corporation. What’s is .NET? Technical report, Microsoft Corporation, 2005.
URL http://www.microsoft.com/net/basics.mspx.

[36] Microsoft Corporation. ”Assemblies”. Technical report, Microsoft Corporation,
2004. URL http://www.msdn.microsoft.com/library/default.asp?url=/library/

en-us/cpguide/html/cpconassemblies.asp.

[37] Microsoft Corporation. ”Arrays”. Technical report, Microsoft Corporation, 2004.

[38] Microsoft Corporation. ”Common Type System”. Technical report, Microsoft Corporation,
2004. URL http://www.msdn.microsoft.com/library/default.asp?url=/library/

en-us/cpguide/html/cpconthecommontypesystem.asp.

[39] Microsoft Corporation. Programming with Assemblies. Technical report, Microsoft
Corporation, 2004. URL http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/cpguide/html/cpconprogrammingwithassemblies.asp.

[40] Microsoft Corporation. Phoenix Framework. Technical report, 2005. URL http://

research.microsoft.com/phoenix/technical.aspx.

[41] Mono. Mono. URL http://www.mono-project.com.

[42] I. Nagy. On the Design of Aspect-Oriented Composition Models for Software Evolution. PhD
thesis, University of Twente, The Netherlands, June 2006.

[43] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the Hyperspace
approach. In M. Akşit, editor, Software Architectures and Component Technology. Kluwer
Academic Publishers, 2001. ISBN 0-7923-7576-9.

[44] M. Pietrek. An in-depth look into the win32 portable executable file format. MSDN Mag-
azine, February 2002.

95

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpovrintroductiontonetframeworksdk.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpovrintroductiontonetframeworksdk.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconwhatiscommonlanguagespecification.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconwhatiscommonlanguagespecification.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconwhatiscommonlanguagespecification.asp
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/netcf/overview/default.aspx
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/netcf/overview/default.aspx
http://www.microsoft.com/net/basics.mspx
http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconassemblies.asp
http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconassemblies.asp
http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconthecommontypesystem.asp
http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconthecommontypesystem.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconprogrammingwithassemblies.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconprogrammingwithassemblies.asp
http://research.microsoft.com/phoenix/technical.aspx
http://research.microsoft.com/phoenix/technical.aspx
http://www.mono-project.com

BIBLIOGRAPHY

[45] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-oriented programming.
In G. Kiczales, editor, Proc. 1st Int’ Conf. on Aspect-Oriented Software Development (AOSD-
2002), pages 141–147. ACM Press, Apr. 2002.

[46] A. Popovici, G. Alonso, and T. Gross. Just in time aspects. In M. Akşit, editor, Proc.
2nd Int’ Conf. on Aspect-Oriented Software Development (AOSD-2003), pages 100–109. ACM
Press, Mar. 2003.

[47] J. Prosise. Programming Microsoft .NET. Microsoft Press, Redmond, WA, USA, 2002. ISBN
0-7356-1376-1.

[48] Rotor. ROTOR. URL http://msdn.microsoft.com/net/sscli/.

[49] P. Salinas. Adding systemic crosscutting and super-imposition to Composition Filters.
Master’s thesis, Vrije Universiteit Brussel, Aug. 2001.

[50] W. Schult, P. Troeger, and A. Polze. LOOM .NET - An Aspect Weaving Tool. Technical
report, 2003.

[51] D. Shukla, S. Fell, and C. Sells. Aspect-Oriented Programming Enables Better Code En-
capsulation and Reuse. MSDN Magazine, March 2002.

[52] D. R. Spenkelink. Compose* incremental. Master’s thesis, University of Twente, The
Netherlands, 2006. To be released.

[53] T. Staijen. Towards safe advice: Semantic analysis of advice types in Compose*. Master’s
thesis, University of Twente, Apr. 2005.

[54] D. Stutz. The Microsoft shared source CLI implementation. 2002.

[55] P. Tarr, H. Ossher, S. M. Sutton, Jr., and W. Harrison. N degrees of separation: Multi-
dimensional separation of concerns. In R. E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors, Aspect-Oriented Software Development, pages 37–61. Addison-Wesley, Boston, 2005.
ISBN 0-321-21976-7.

[56] J. W. te Winkel. Bringing Composition Filters to C. Master’s thesis, University of Twente,
The Netherlands, 2006. To be released.

[57] The Apache Jakarta Project. The Byte Code Engineering Library. Technical report, 2005.
URL http://jakarta.apache.org/bcel/.

[58] M. D. W. van Oudheusden. Automatic derivation of semantic properties in .NET. Master’s
thesis, University of Twente, The Netherlands, 2006. To be released.

[59] C. Vinkes. Superimposition in the Composition Filters model. Master’s thesis, University
of Twente, The Netherlands, Oct. 2004.

[60] D. Watkins. Handling language interoperability with the Microsoft .NET framework.
Technical report, Monash Univeristy, Oct. 2000. URL http://msdn.microsoft.com/

library/default.asp?url=/library/en-us/dndotnet/html/interopdotnet.asp.

[61] D. Watkins, M. Hammond, and B. Abrams. Programming in the .NET Environment. Addison
Wesley Professional, 2002. ISBN 0201770180.

96

http://msdn.microsoft.com/net/sscli/
http://jakarta.apache.org/bcel/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/interopdotnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/interopdotnet.asp

BIBLIOGRAPHY

[62] D. A. Watt. Programming language concepts and paradigms. Prentice Hall, 1990.

[63] J. C. Wichman. The development of a preprocessor to facilitate composition filters in the
Java language. Master’s thesis, University of Twente, 1999. URL http://trese.cs.

utwente.nl/publications/paperinfo/wichman.thesis.pi.top.htm.

97

http://trese.cs.utwente.nl/publications/paperinfo/wichman.thesis.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/wichman.thesis.pi.top.htm

BIBLIOGRAPHY

98

APPENDIX A

The CIL Instruction Set

The following tables contain a brief description of each instruction of the Common Intermediate
Language instruction set, the instructions are grouped by the type of their argument. The tables
are taken from Compiling for the .NET Common Language Runtime (CLR) [17] and are included
for reference purposes only.

The final column in the tables give the stack-∆ for the instruction. Instructions marked with ”
*” have a stack-∆ that depends on the arguments of the call. In the case of instruction prefixes,
the stack-∆ depends on the following instruction. [17]

Instruction Description ∆
add Add two top elements on stack -1
add.ovf Add two top elements on stack and trap signed overflow -1
add.ovf.un Add two top elements on stack and trap unsigned overflow -1
and Bitwise and of two top-of-stack elements -1
arglist Push the arglist of a ”varargs” method 1
break Breakpoint instruction for debugging 0
ceq Compare for equality and push bool -1
cgt Compare for greater than and push bool -1
cgt.un Compare for greater than unsigned and push bool -1
ckfinite Throw an exception if top of stack is a NaNS 0
clt Compare for less than and push bool -1
clt.un Compare for less than unsigned and push bool -1
conv.i Convert top of stack to natural integer 0
conv.i1 Convert top of stack to 1-byte integer 0
conv.i2 Convert top of stack to 2-byte integer 0
conv.i4 Convert top of stack to 4-byte integer 0
conv.i8 Convert top of stack to 8-byte integer 0
conv.ovf.i Convert top of stack to natural integer and trap overflow 0

99

APPENDIX A. THE CIL INSTRUCTION SET

Instruction Description ∆
conv.ovf.i.un Convert from unsigned on top of stack to natural integer and

trap overflow
0

conv.ovf.i1 Convert top of stack to int8 and trap overflow 0
conv.ovf.i1.un Convert from unsigned on top of stack to int8 and trap overflow 0
conv.ovf.i2 Convert top of stack to int16 and trap overflow 0
conv.ovf.i2.un Convert from unsigned on top of stack to int16 and trap over-

flow
0

conv.ovf.i4 Convert top of stack to int32 and trap overflow 0
conv.ovf.i4.un Convert from unsigned on top of stack to int32 and trap over-

flow
0

conv.ovf.i8 Convert top of stack to int64 and trap overflow 0
conv.ovf.i8.un Convert from unsigned on top of stack to int64 and trap over-

flow
0

conv.ovf.u Convert top of stack to natural uint and trap overflow 0
conv.ovf.u.un Convert from unsigned on top of stack to natural uint and trap

overflow
0

conv.ovf.u1 Convert top of stack to natural uint8 and trap overflow 0
conv.ovf.u1.un Convert from unsigned on top of stack to natural uint8 and trap

overflow
0

conv.ovf.u2 Convert top of stack to natural uint16 and trap overflow 0
conv.ovf.u2.un Convert from unsigned on top of stack to natural uint16 and

trap overflow
0

conv.ovf.u4 Convert top of stack to natural uint32 and trap overflow 0
conv.ovf.u4.un Convert from unsigned on top of stack to natural uint32 and

trap overflow
0

conv.ovf.u8 Convert top of stack to natural uint64 and trap overflow 0
conv.ovf.u8.un Convert from unsigned on top of stack to natural uint64 and

trap overflow
0

conv.r4 Convert top-of-stack value to float32 0
conv.r8 Convert top-of-stack value to float64 0
conv.u Convert top-of-stack value to natural uint 0
conv.u1 Convert top-of-stack value to uint8 0
conv.u2 Convert top-of-stack value to natural uint16 0
conv.u4 Convert top-of-stack value to uint32 0
conv.u8 Convert top-of-stack value to uint64 0
cpblk Support for ANSI C ”memcopy” function -3
div Signed division of two top elements on stack -1
div.un Unsigned division of two top elements on stack -1
dup Duplicate the top-of-stack value 1
endfilter Return value from filter block -1
endfinally Return from finally block 0
initblk Support for ANSI C ”memset” function -3
ldarg.0 Load the zeroth argument 1
ldarg.1 Load the first argument 1
ldarg.2 Load the second argument 1
ldarg.3 Load the third argument 1
ldc.i4.0 Load literal 0 of type int32 1

100

Instruction Description ∆
ldc.i4.1 Load literal 1 of type int32 1
ldc.i4.2 Load literal 2 of type int32 1
ldc.i4.3 Load literal 3 of type int32 1
ldc.i4.4 Load literal 4 of type int32 1
ldc.i4.5 Load literal 5 of type int32 1
ldc.i4.6 Load literal 6 of type int32 1
ldc.i4.7 Load literal 7 of type int32 1
ldc.i4.8 Load literal 8 of type int32 1
ldc.i4.M1 Load literal -1 of type int32 1
ldelem.i Load natural integer array element 1
ldelem.i1 Load int8 array element 1
ldelem.i2 Load int16 array element 1
ldelem.i4 Load int32 array element 1
ldelem.i8 Load int64 array element 1
ldelem.r4 Load float32 array element 1
ldelem.r8 Load float64 array element 1
ldelem.ref Load reference array element 1
ldelem.u Load natural unsigned integer array element 1
ldelem.u1 Load uint8 array element 1
ldelem.u2 Load uint16 array element 1
ldelem.u4 Load uint32 array element 1
ldind.i Load natural integer pointed to by top of stack 0
ldind.i1 Load int8 pointed to by top of stack 0
ldind.i2 Load int16 pointed to by top of stack 0
ldind.i4 Load int32 pointed to by top of stack 0
ldind.i8 Load int64 pointed to by top of stack 0
ldind.r4 Load float32 pointed to by top of stack 0
ldind.r8 Load float64 pointed to by top of stack 0
ldind.ref Load reference pointed to by top of stack 0
ldind.u Load natural unsigned integer pointed to by top of stack 0
ldind.u1 Load uint8 pointed to by top of stack 0
ldind.u2 Load uint16 pointed to by top of stack 0
ldind.u4 Load uint32 pointed to by top of stack 0
ldlen Load length of array referenced by top of stack 0
ldloc.0 Load zeroth local variable 1
ldloc.1 Load first local variable 1
ldloc.2 Load second local variable 1
ldloc.3 Load third local variable 1
ldnull Load a null value on the stack 1
localloc Expand the current activation record -1
mul Multiply top-of-stack elements 1
mul.ovf Multiply top-of-stack elements and trap overflow 1
mul.ovf.un Multiply top-of-stack elements and trap unsigned overflow 1
neg Arithmetically negate top-of-stack element 0
nop Do nothing 0

101

APPENDIX A. THE CIL INSTRUCTION SET

Instruction Description ∆
not Bitwise negate top-of-stack element 0
or Bitwise or top-of-stack elements -1
pop Discard top-of-stack element -1
refanytype Extract type token from typed reference 0
rem Remainder of two top-of-stack elements -1
rem.un Unsigned remainder of two top-of-stack elements -1
ret Return to caller, maybe with function result *
rethrow Rethrow the current exception 0
shl Arithmetic shift left -1
shr Arithmetic shift right -1
shr.un Logical shift right -1
stelem.i Store array element of natural integer type -3
stelem.i1 Store array element of int8 type -3
stelem.i2 Store array element of int16 type -3
stelem.i4 Store array element of int32 type -3
stelem.i8 Store array element of int64 type -3
stelem.r4 Store array element of float32 type -3
stelem.r8 Store array element of float64 type -3
stelem.ref Store array element of reference type -3
stind.i Store top of stack to natural integer pointer target -2
stind.i1 Store top of stack to int8 pointer target -2
stind.i2 Store top of stack to int16 pointer target -2
stind.i4 Store top of stack to int32 pointer target -2
stind.i8 Store top of stack to int64 pointer target -2
stind.r4 Store top of stack to float32 pointer target -2
stind.r8 Store top of stack to float64 pointer target -2
stind.ref Store top of stack reference to pointer target -2
stloc.0 Store top of stack to zeroth local variable -1
stloc.1 Store top of stack to first local variable -1
stloc.2 Store top of stack to second local variable -1
stloc.3 Store top of stack to third local variable -1
sub Subtract top-of-stack elements -1
sub.ovf Subtract top-of-stack elements and trap overflow -1
sub.ovf.un Subtract top-of-stack elements and trap unsigned overflow -1
tail. Prefix. Following call terminates method *
throw Throw top-of-stack object as exception -1
unaligned. Prefix. Pointer on top of stack may be unaligned *
volatile. Prefix. Address on top of stack is of volatile location *
xor Bitwise xor of top-of-stacks elements -1

Table A.1: Instructions with no arguments

102

Instruction Description ∆
ldarg Num Load the N-th argument 1
ldarg.s Num Load the N-th argument (short form) 1
ldarga Num Load the N-th argument address 1
ldarga.s Num Load the N-th argument address (short form) 1
starg Num Store the N-th argument -1
starg.s Num Store the N-th argument (short form) -1
ldloc Num Load the N-th local variable 1
ldloc.s Num Load the N-th local variable (short form) 1
ldloca Num Load address of the N-th local variable 1
ldloca.s Num Load address of the N-th local variable (short form) 1
stloc Num Store top of stack to N-th local variable -1
stloc.s Num Store top of stack to N-th local variable (short form) -1
ldc.i4 Num Load literal N as int32 1
ldc.i4.s Num Load literal N as int32 (short form) 1
ldc.i8 Num Load literal N as int64 1
ldc.r4 Num Load literal N as float32 1
ldc.r8 Num Load literal N as float64 1

Table A.2: Instructions with a numeric argument

Instruction Description ∆
box TRef Create boxed copy of top-of-stack value of type T 0
castclass TRef Cast top-of-stack reference to type T 0
cpobj TRef Copy value object of type T -2
initobj TRef Initialize value of type T -1
isinst TRef Test if top of stack is an instance of type T 0
ldelema TRef Load address of array element of type T -1
ldobj TRef Load value of type T onto stack 0
mkrefany TRef Make typed reference of type T from top-of-stack pointer 0
newarr TRef Create array of element type T 0
refanyval TRef Extract pointer from typed reference of type T 0
sizeof TRef Load size in bytes of value type T 1
stobj TRef Store top-of-stack value of type T 2
unbox TRef Create managed pointer to boxed value 0

Table A.3: Instructions with a type reference argument

103

APPENDIX A. THE CIL INSTRUCTION SET

Instruction Description ∆
beq Lab Branch to label if equal -2
beq.s Lab Branch to label if equal (short form) -2
bge Lab Branch to label if greater or equal -2
bge.s Lab Branch to label if greater or equal (short form) -2
bge.un Lab Branch to label if unsigned greater or equal -2
bge.un.s Lab Branch to label if unsigned greater or equal (short form) -2
bgt Lab Branch to label if greater than -2
bgt.s Lab Branch to label if greater than (short form) -2
bgt.un Lab Branch to label if unsigned greater than -2
bgt.un.s Lab Branch to label if unsigned greater than (short form) -2
ble Lab Branch to label if less than or equal -2
ble.s Lab Branch to label if less than or equal (short form) -2
ble.un Lab Branch to label if unsigned less than or equal -2
ble.un.s Lab Branch to label if unsigned less than or equal (short form) -2
blt Lab Branch to label if less than -2
blt.s Lab Branch to label if less than (short form) -2
blt.un Lab Branch to label if unsigned less than -2
blt.un.s Lab Branch to label if unsigned less than (short form) -2
bne.un Lab Branch to label if unequal or unordered -2
bne.un.s Lab Branch to label if unequal or unordered (short form) -2
br Lab Unconditional branch to label 0
br.s Lab Unconditional branch to label (short form) 0
brfalse Lab Branch to label if top of stack zero or null -1
brfalse.s Lab Branch to label if top of stack zero or null (short form) -1
brtrue Lab Branch to label if top of stack not zero or null -1
brtrue.s Lab Branch to label if top of stack not zero or null (short form) -1
leave Lab Exit from try, catch, or filter block 0
leave.s Lab Exit from try, catch, or filter block (short form) 0

Table A.4: Instructions with a label argument

Instruction Description ∆
call MRef Statically call specified method *
callvirt MRef Virtual call of specified method *
jmp MRef Jump from current method to MRef 0
ldftn MRef Load function pointer to specified method 1
ldvirtftn MRef Load virtual function pointer of top-of-stack object 0
newobj MRef Allocate new object and call constructor *

Table A.5: Instructions with a method reference argument

104

Instruction Description ∆
ldfld FRef Load field of object with reference on the top of stack 0
ldflda FRef Load address of field of top-of-stack object 0
ldsfld FRef Load static field of specified class 1
ldsflda FRef Load address of static field of specified class 1
stfld FRef Store top-of-stack value to field of object next on stack -2
stsfld FRef Store top of stack to static field of specified class -1

Table A.6: Instructions with a field reference argument

Instruction Description ∆
ldstr Str Load literal string 1
calli Sig. Indirect method call with specified signature *
ldtoken Token Load runtime handle of metadata token 1
switch ... Table switch on value -1

Table A.7: Miscellaneous CIL instructions

105

APPENDIX A. THE CIL INSTRUCTION SET

106

APPENDIX B

A HelloWorld example in the CIL

In this appendix an example program written in the Common Intermediate Lanuage (CIL) is
given. It is a simple console application printing the words ’Hello world’ to the screen. See
section 5.5 for a detailed description of the example.

Listing B.1: The infamous HelloWorld example written in the CIL
1 .assembly extern mscorlib
2 {
3 .publickeytoken = (B7 7A 5C 56 19 34 E0 89)
4 .ver 1:0:5000:0
5 }
6
7 .assembly HelloWorld
8 {
9 .hash algorithm 0x00008004

10 .ver 1:0:1720:26694
11 }
12
13 .module HelloWorld.exe
14 .imagebase 0x00400000
15 .subsystem 0x00000003
16 .file alignment 4096
17 .corflags 0x00000001
18
19 .namespace HelloWorldExample
20 {
21 .class private auto ansi beforefieldinit HelloWorldMain
22 extends [mscorlib]System.Object
23 {
24 } / / end o f c l a s s HelloWorldMain
25 }
26
27 .namespace HelloWorldExample
28 {
29 .class private auto ansi beforefieldinit HelloWorldMain
30 extends [mscorlib]System.Object
31 {
32 .method public hidebysig specialname rtspecialname instance void .ctor() cil managed
33 {
34 .maxstack 1
35 IL_0000: ldarg.0

107

APPENDIX B. A HELLOWORLD EXAMPLE IN THE CIL

36 IL_0001: call instance void [mscorlib]System.Object::.ctor()
37 IL_0006: ret
38 } / / end o f method . c t o r
39
40 .method private hidebysig instance void Run() cil managed
41 {
42 .maxstack 2
43 IL_0000: ldarg.0
44 IL_0001: ldstr "Hello world"
45 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
46 IL_000b: ret
47 } / / end o f method Run
48
49 .method private hidebysig static void Main(string[] args) cil managed
50 {
51 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
52 .entrypoint
53 .maxstack 1
54 .locals init (
55 [0]class HelloWorldExample.HelloWorldMain
56)
57 IL_0000: newobj instance void PeWeaverTests.HelloWorld::.ctor()
58 IL_0005: stloc.0
59 IL_0006: ldloc.0
60 IL_0007: callvirt instance void PeWeaverTests.HelloWorld::Run()
61 IL_000c: ret
62 } / / end o f method Main
63
64 } / / end o f c l a s s HelloWorldMain
65 }

108

APPENDIX C

The Weave Specification file

1 <?xml version="1.0" encoding="UTF-8"?>
2 <weaveSpecification version="<weave specification version>">
3 <assemblies>
4 <assembly name="<assembly name>"
5 version="<assembly version>"
6 publicKeytoken="<keytoken of the assembly>"
7 forceReferenceIn="[<assembly name>/*]"
8 remove="[yes/no]"/>
9 </assemblies>

10 <methods>
11 <method id="<id of the method reference>"
12 assembly="<assembly the method can be found in>"
13 class="<fully qualified name of the class the method belongs to>"
14 name="<name of the method>">
15 <argument value="" type="[string/int]"/>
16 <argument value="%senderobject"/>
17 <argument value="%createdobject"/>
18 <argument value="%targetobject"/>
19 <argument value="%targetmethod"/>
20 <argument value="%originalparameters"/>
21 <argument value="%casttarget"/>
22 </method>
23 </methods>
24 <application name="<name of the application>">
25 <notifyStart id="<reference to a method definition>"/>
26 </application>
27 <class name="[*/<fully qualified class name>]">
28 <afterClassInstantiation>
29 <executeMethod id="<reference to a method definition>"/>
30 </afterClassInstantiation>
31 <methodInvocations>
32 <callToMethod class="<fully qualified name of the class>" name="<name of the method>">
33 <voidRedirectTo id="<reference to a method definition>"/>
34 <returnvalueRedirectTo id="<reference to a method definition>"/>
35 </callToMethod>
36 </methodInvocations>
37 <casts>
38 <castTo assembly="<assembly the method can be found in>" class="">
39 <executeMethodBefore id="<reference to a method definition>"/>
40 </castTo>
41 </casts>
42

109

APPENDIX C. THE WEAVE SPECIFICATION FILE

43 <classReplacements>
44 <classReplacement assembly="<assembly the method can be found in>" class="">
45 <replaceWith assembly="<assembly the method can be found in>" class=""/>
46 </classReplacement>
47 </classReplacements>
48 <fieldAccesses>
49 <field class="<fully qualified name of the class>" name="<name of the field>">
50 <callBefore id="<reference to a method definition>"/>
51 <callAfter id="<reference to a method definition>"/>
52 <replaceWith id="<reference to a method definition>"/>
53 </field>
54 </fieldAccesses>
55 </class>
56 </weaveSpecification>

110

APPENDIX D

Class diagrams Weaver

D.1 PE Weaver

Figure D.1: Class diagram PeWeaver.

111

APPENDIX D. CLASS DIAGRAMS WEAVER

Figure D.2: Class diagram ProcessManager.

112

D.2. IL WEAVER

D.2 IL Weaver

Figure D.3: Class diagram IL Weaver.

113

APPENDIX D. CLASS DIAGRAMS WEAVER

D.3 WeaveLibrary

Figure D.4: Class diagram internal IL representation, the IlStructure.

114

D.3. WEAVELIBRARY

115

APPENDIX D. CLASS DIAGRAMS WEAVER

Figure D.5: Class diagram internal representation of the weave specification.

116

APPENDIX E

Listing DotNETWeaveFileGenerator

Listing E.1: WeaveFileGenerator interface
1 package Composestar.Core.CONE;
2
3 import Composestar.Core.Master.CTCommonModule;
4
5 public interface WeaveFileGenerator extends CTCommonModule
6 {
7 }

Listing E.2: DotNETWeaveFileGenerator class
1 package Composestar.DotNET.CONE;
2
3 /∗∗
4 ∗ Thi s c l a s s g e n e r a t e s t h e i n t e r c e p t i o n s p e c i f i c a t i o n f i l e f o r ILICIT b a s e d on
5 ∗ i n f o r m a t i o n in t h e r e p o s i t o r y .
6 ∗ /
7 public class DotNETWeaveFileGenerator implements WeaveFileGenerator
8 {
9 private PrintWriter out = null;

10 private String repository = "repository.xml";
11 private int debugLevel = 0;
12 private String application = "";
13
14 public DotNETWeaveFileGenerator() {
15 }
16
17 private void writeAssemblyReferenceDefinitions(CommonResources resources)
18 throws ModuleException
19 {
20 ...
21 }
22
23 private void writeMethodDefinitions() { ... }
24
25 public ArrayList getAfterInstantiationClasses() { ... }
26
27 private void writeMethodInvocations(CommonResources resources) { ... }
28
29 private void writeClassReplacements() { ... }

117

APPENDIX E. LISTING DOTNETWEAVEFILEGENERATOR

30
31 private void writeClassDefinitions(CommonResources resources) { ... }
32
33 public void run(CommonResources resources) throws ModuleException { ... }
34
35 private void writeApplicationInfo() { ... }
36
37 private void writeAssemblyDefinitionRecord(String name, String version) { ... }
38
39 private void writeAssemblyDefinitionRecord(String name, String version, boolean remove) {

... }
40
41 private void writeAssemblyDefinitionRecord(String name, String version,
42 String forceReferenceIn) { ... }
43
44 private void writeAssemblyDefinitionRecord(String name, String version, boolean remove,
45 String forceReferenceIn) { ... }
46
47 private void writeMethodInvocationRecord() { ... }
48
49 private void writeMethodInvocationRecord(String target) { ... }
50
51 private void writeClassReplacementRecord(String oldAssembly, String oldClass,
52 String newAssembly, String newClass) { ... }
53
54 private void writeAfterInstantiationRecord() { ... }
55
56 private void writeAfterInstantiationRecord(String className) { ... }
57
58 private void writeCastingInterceptionRecord(String className) { ... }
59
60
61 class MethodInformation {
62 public MethodInformation(String className, String methodName) { ... }
63
64 public String MethodInformation(String className, String methodName) { ... }
65
66 public String getMethodName() { ... }
67 }
68
69 class ClassInformation {
70 public String getClassName() { ... }
71
72 public void AddInvocation(DotNETWeaveFileGenerator.MethodInformation invocation) { ... }
73
74 public Iterator getInvocationsIterator() { ... }
75 }
76 }

118

APPENDIX F

Listing ILICIT

Listing F.1: WEAVER interface
1 package Composestar.Core.WEAVER;
2
3 import Composestar.Core.Exception.ModuleException;
4 import Composestar.Core.Master.CTCommonModule;
5 import Composestar.Core.Master.CommonResources;
6
7 public interface WEAVER extends CTCommonModule {
8 public abstract void run(CommonResources resources) throws ModuleException;
9 public abstract void main(String[] args);

10 }

Listing F.2: ILICIT class
1 package Composestar.DotNET.ILICIT;
2
3 public class ILICIT implements WEAVER {
4 public void run(CommonResources resources) throws ModuleException {
5 ...
6 }
7
8 /∗∗
9 ∗ @param s r c A b s o l u t e pa th o f a s o u r c e f i l e

10 ∗ @return A r r a y L i s t c o n t a i n i n g a l l c o n c e r n s with FMO and e x t r a c t e d from
11 ∗ t h e s o u r c e and i t s e x t e r n a l l i n k e d s o u r c e s
12 ∗ /
13 public ArrayList getConcernsWithFMO(String src) {
14 ...
15 }
16
17 /∗∗
18 ∗ @param s r c A b s o l u t e pa th o f a s o u r c e f i l e
19 ∗ @return A r r a y L i s t c o n t a i n i n g a l l c o n c e r n s r e c o g n i z e d as a c a s t i n g i n t e r c e p t i o n
20 ∗ Only c o n c e r n s e x t r a c t e d from t h e s o u r c e and i t s e x t e r n a l l i n k e d s o u r c e s a r e r e t u r n e d
21 ∗ /
22 public ArrayList castingInterceptions(String src) throws ModuleException {
23 ...
24 }
25
26 /∗∗

119

APPENDIX F. LISTING ILICIT

27 ∗ @param s r c A b s o l u t e pa th o f a s o u r c e f i l e
28 ∗ @return A r r a y L i s t c o n t a i n i n g a l l c o n c e r n s which i n s t a n t i a t i o n s h o u l d be i n t e r c e p t e d
29 ∗ Only c o n c e r n s e x t r a c t e d from t h e s o u r c e and i t s e x t e r n a l l i n k e d s o u r c e s a r e r e t u r n e d
30 ∗ /
31 public ArrayList getAfterInstantiationClasses(String src) throws ModuleException {
32 ...
33 }
34
35 /∗∗
36 ∗ @param s r c A b s o l u t e pa th o f a s o u r c e f i l e
37 ∗ @return A r r a y L i s t c o n t a i n i n g a l l c o n c e r n s with o u t p u t f i l t e r (s)
38 ∗ Only c o n c e r n s e x t r a c t e d from t h e s o u r c e and i t s e x t e r n a l l i n k e d s o u r c e s a r e r e t u r n e d
39 ∗ /
40 public ArrayList getConcernsWithOutputFilters(String src) throws ModuleException {
41 ...
42 }
43
44 public void main(String[] args) {
45 ...
46 }
47 }

120

	Abstract
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction to AOSD
	1.1 Introduction
	1.2 Traditional Approach
	1.3 AOP Approach
	1.3.1 AOP Composition
	1.3.2 Aspect Weaving

	1.4 AOP Solutions
	1.4.1 AspectJ Approach
	1.4.2 Hyperspaces Approach
	1.4.3 Composition Filters

	2 Compose*
	2.1 Evolution of Composition Filters
	2.2 Composition Filters in Compose*
	2.3 Demonstrating Example
	2.3.1 Initial Object-Oriented Design
	2.3.2 Completing the Pacman Example

	2.4 Compose* Architecture
	2.4.1 Integrated Development Environment
	2.4.2 Compile Time
	2.4.3 Adaptation
	2.4.4 Runtime

	2.5 Platforms
	2.5.1 Java
	2.5.2 C
	2.5.3 .NET

	2.6 Features Specific to Compose*

	3 Introduction to the .NET Framework
	3.1 Introduction
	3.2 Architecture of the .NET Framework
	3.2.1 Version 2.0 of .NET

	3.3 Common Language Runtime
	3.3.1 Java VM vs .NET CLR

	3.4 Common Language Infrastructure
	3.5 Framework Class Library
	3.6 Common Intermediate Language

	4 Problem statement
	5 Understanding the Common Intermediate Language
	5.1 The assembly, unit of deployment
	5.1.1 Portable Executable files

	5.2 The activation record and evaluation stack
	5.3 The Common Type System
	5.3.1 Value types
	5.3.2 Reference types

	5.4 The CIL instruction set
	5.4.1 Load and store instructions
	5.4.2 Operate instructions
	5.4.3 Branching and jumping instructions
	5.4.4 Miscellaneous instructions

	5.5 Example: A simple program written in the CIL
	5.6 Summary

	6 Mapping AOP constructs to the Common Intermediate Language
	6.1 Crosscutting locations
	6.1.1 Dynamic crosscutting locations
	6.1.2 Static crosscutting locations
	6.1.3 Concern implementation

	6.2 Weave points
	6.2.1 Structural weave points
	6.2.2 Executional weave points

	6.3 From crosscutting locations to weave points
	6.4 Supported weave points
	6.5 Summary

	7 Towards a solution
	7.1 Related work
	7.1.1 AOP Solutions for the .NET Framework
	7.1.2 Code-manipulation Tools

	7.2 Approach 1: Source code weaving
	7.2.1 Advantages and disadvantages

	7.3 Approach 2: Weaving at run-time with the profiling APIs
	7.3.1 The profiling APIs explained
	7.3.2 Implementing an aspect profiler
	7.3.3 Advantages and disadvantages

	7.4 Approach 3: Adapting the Common Language Runtime
	7.4.1 Advantages and disadvantages

	7.5 Approach 4: Weaving aspects into .NET assemblies
	7.5.1 Getting the MSIL code out of the assembly
	7.5.2 Problems with weaving assemblies
	7.5.3 Advantages and disadvantages

	7.6 Summary

	8 The implementation of the CIL Weaving Tool
	8.1 Global structure of the weaver tool
	8.2 The weave specification file
	8.2.1 The assembly reference block
	8.2.2 The method definition block
	8.2.3 The application block
	8.2.4 The class block

	8.3 The PE Weaver
	8.3.1 Verification of the assemblies
	8.3.2 Disassembling
	8.3.3 Assembling

	8.4 The IL Weaver
	8.4.1 Reading the weave specification file
	8.4.2 Reading the IL file
	8.4.3 The assembly inspector
	8.4.4 Weaving

	8.5 Summary

	9 Integrating the CIL Weaving Tool into Compose*
	9.1 Creating the weave specification file
	9.2 Invoking the weaver
	9.3 Summary

	10 Conclusion and future work
	10.1 Future work on the CIL Weaving Tool

	Bibliography
	A The CIL Instruction Set
	B A HelloWorld example in the CIL
	C The Weave Specification file
	D Class diagrams Weaver
	D.1 PE Weaver
	D.2 IL Weaver
	D.3 WeaveLibrary

	E Listing DotNETWeaveFileGenerator
	F Listing ILICIT

